WO2024060257A1 - 用电装置、电机及其定子 - Google Patents

用电装置、电机及其定子 Download PDF

Info

Publication number
WO2024060257A1
WO2024060257A1 PCT/CN2022/121109 CN2022121109W WO2024060257A1 WO 2024060257 A1 WO2024060257 A1 WO 2024060257A1 CN 2022121109 W CN2022121109 W CN 2022121109W WO 2024060257 A1 WO2024060257 A1 WO 2024060257A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
conductors
branch
layer
conductor
Prior art date
Application number
PCT/CN2022/121109
Other languages
English (en)
French (fr)
Inventor
吴凯
Original Assignee
宁德时代(上海)智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代(上海)智能科技有限公司 filed Critical 宁德时代(上海)智能科技有限公司
Priority to CN202280005830.6A priority Critical patent/CN117916980A/zh
Priority to PCT/CN2022/121109 priority patent/WO2024060257A1/zh
Publication of WO2024060257A1 publication Critical patent/WO2024060257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present application relates to the field of power devices, and in particular to an electrical device, a motor and its stator.
  • this application provides an electrical device, a motor and its stator, which can reduce the voltage drop of the internal winding of the motor and reduce the internal energy loss of the motor.
  • the present application provides a stator of a motor, including a stator core and a stator winding provided on the stator core.
  • the inner wall of the stator core is provided with a plurality of winding slots, and the stator winding includes a plurality of conductors inserted in the winding slots.
  • the stator winding includes a first phase winding, and the first phase winding includes a first branch and a second branch.
  • the first branch includes a first incoming line end, a first outgoing line end, and a plurality of conductors connected in series between the first incoming line end and the first outgoing line end.
  • the second branch includes a second incoming line end, a second outgoing line end, and a plurality of conductors connected in series between the second incoming line end and the second outgoing line end.
  • the first wire incoming terminal and the second wire incoming terminal are respectively connected to conductors of different layers in the same winding trough.
  • the first outlet terminal and the second outlet terminal are respectively connected to conductors of different layers in the same winding groove.
  • the first incoming line terminal and the second incoming line end are respectively connected to conductors of different layers in the same winding trough, and the first outgoing line terminal and the second outgoing line end are respectively connected.
  • Using different layers of conductors in the same winding trough can reduce the distance between the first incoming line end and the second incoming line end and the distance between the first outgoing line end and the second outgoing line end, facilitating the connection of the two branches. It is beneficial to the layout of busbars and the implementation of winding processing technology.
  • the conductors in each winding slot are arranged in n layers, n is a positive even number; in the direction from the bottom of the winding slot to the slot opening of the winding slot, the n-layer conductors are recorded as L 1 layer,... ..., Li layer, ... and L n layer, 1 ⁇ i ⁇ n; the first incoming line end and the second incoming line end are respectively connected to the L 1 layer conductor and L n layer conductor in the same winding trough; The first outlet terminal and the second outlet terminal are respectively connected to the L1 layer conductor and the Ln layer conductor in the same winding groove.
  • the first incoming line end and the first outgoing line end are both connected to the L 1 layer conductor, and the L 1 layer conductor is close to the radially outer end of the stator core, which facilitates the realization of the first incoming line end and the first outgoing line end.
  • the second incoming line end and the second outgoing line end are both connected to the L n layer conductor, and the L n layer conductor is close to the radially inner end of the stator core, which facilitates the second incoming line end and the second outgoing line end to connect with the outside. row of welding.
  • the first branch and the second branch each include a plurality of series-connected plug connectors, each plug connector including at least one conductor.
  • One conductor or multiple conductors can be provided in the plug connector.
  • the conductor is arranged in the winding groove, has a simple structure, is easy to produce, and takes up little space. The above technical solution can improve the power density of the motor.
  • At least two conductors connected to each other are on the same layer. Conductors connected on the same layer can balance the slot potential of the branches and reduce the circulation loss between branches.
  • the first branch includes 2k conductors; along the direction from the first incoming line end to the second incoming line end, the first branch includes 2k conductors, respectively recorded as A 1 , A 2 , ..., A k ,..., A 2k-1 and A 2k ; the A k -th conductor and the A k + 1 -th conductor are both L n layer conductors; the A 1 -th conductor to the A k -th conductor winds along the first wave
  • the directions are connected in sequence from the L 1 layer to the L n layer.
  • the A k+1 conductor to the A 2k conductor are connected in sequence from the L n layer to the L 1 layer along the second wave winding direction.
  • the first wave winding direction is connected to the second wave winding direction.
  • the waves wind in opposite directions.
  • At least two conductors connected to each other are on the same layer. Conductors connected on the same layer can balance the slot potential of the branches and reduce the circulation loss between branches.
  • the second branch includes 2k conductors; along the direction from the second incoming line end to the second incoming line end, the second branch includes 2k conductors, denoted as B 1 , B 2 , ..., respectively.
  • the B k -th conductor and the B k + 1 -th conductor are both L 1 layer conductors;
  • the B 1 -th conductor to the B k -th conductor winds along the second wave
  • the directions are connected in sequence from the L n layer to the L 1 layer, and the B k+1 -th conductor to the B 2k -th conductor are connected in sequence from the L 1 layer to the L n layer along the first wave winding direction.
  • the first phase winding includes 2p pole phase groups, p is a positive integer; the plurality of conductors of the first branch are distributed in all pole phase groups, and the plurality of conductors of the second branch are distributed in all In the extreme phase group.
  • the conductor of the first branch and the second branch are arranged alternately.
  • two adjacent conductors located in the same winding groove are denoted as the Ax layer and the By layer respectively, 1 ⁇ x ⁇ y ⁇ k, where
  • the above winding scheme can make
  • 12*N winding slots are provided on the inner wall of the stator core, and N is a positive integer; the conductors of the first phase winding are distributed in 4*N winding slots; the stator winding also includes a second phase winding. And the third phase winding, the second phase winding is distributed in 4*N winding slots, and the third phase winding is distributed in 4*N winding slots.
  • the present application provides a motor, including the stator in the above embodiment.
  • the present application provides an electrical device, including the motor in the above embodiment.
  • Figure 1 is a schematic structural diagram of a stator of a motor provided by some embodiments of the present application.
  • Figure 2 is a schematic cross-sectional view of a stator provided by some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a stator connector provided by some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of a stator connector provided by other embodiments of the present application.
  • FIG 5 is another structural schematic diagram of the stator shown in Figure 1;
  • Figure 6 is a schematic structural diagram of the first phase winding of the stator winding provided by some embodiments of the present application.
  • Figure 7 is a schematic diagram of a phase winding of the stator provided by some embodiments of the present application.
  • Figure 8 is an enlarged schematic diagram of Figure 2 at box A;
  • Figure 9 is a schematic diagram of a phase winding of a stator provided by other embodiments of the present application.
  • Figure 10 is a schematic diagram of three phase windings of a stator provided by some embodiments of the present application.
  • Figure 11 is a schematic connection diagram of the phase windings of the stator windings provided by some embodiments of the present application.
  • Figure 12 is a schematic diagram of the connection of the phase windings of the stator windings of the stator provided by other embodiments of the present application;
  • Figure 13 is a schematic diagram of the connection of the phase windings of the stator windings provided in some embodiments of the present application.
  • Figure 14 is a schematic diagram of the connection of the phase windings of the stator windings of the stator provided in some embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • the stator is generally composed of a stator core and a conductor wound on the stator core.
  • the conductor is wound in the winding slot of the stator core and forms an integral structure, which is called a stator winding.
  • a stator winding In order to increase the slot fill rate, multiple layers of conductors can be arranged in a winding slot.
  • the stator winding usually includes multiple phase windings, each phase winding includes multiple branches, and each branch usually needs to be connected by a bus.
  • the distance between the wiring terminals of each branch is relatively far, resulting in a large space occupied by the bus connecting the branches, resulting in a larger size of the motor.
  • stator for a motor which connects the first input terminal and the second input terminal to conductors of different layers in the same winding slot.
  • the outlet end and the second outlet end are respectively connected to conductors of different layers in the same winding trough, which can reduce the distance between the first inlet end and the second inlet end and the distance between the first outlet end and the second outlet end, which facilitates
  • the connection of the two branches is beneficial to the layout of the busbar and the implementation of the winding processing technology.
  • Stator refers to the stationary part of the motor, its function is to generate a rotating magnetic field.
  • Rotor refers to the rotating component in the motor, which is used to convert electrical energy into mechanical energy.
  • Span refers to the distance spanned by two components of the same component in the motor winding on the surface of the armature. It is usually expressed by the number of winding slots opened on the stator core.
  • Number of magnetic pole pairs P The number of magnetic pole pairs is referred to as the number of pole pairs.
  • the magnetic poles formed after the motor winding is energized appear in pairs of N pole and S pole.
  • the total number of magnetic poles is 2P.
  • Pole pitch refers to the distance occupied by each magnetic pole of the motor along the circumferential surface of the air gap.
  • the pole pitch can be expressed by the number of winding slots in the stator core.
  • the pole pitch is Z/2P; Z is the total number of winding slots of the stator core.
  • Pole phase group In AC motors, when multiple coils belonging to the same phase winding under a pole pitch are connected in series to form a group, it is called a pole phase group, also called a coil group.
  • the current directions and electromagnetic effects of each coil in the pole phase group are the same, and these coils jointly produce the magnetic poles in the phase winding.
  • phase winding is a set of windings connected in series or parallel by one or more parallel branches in a specified way.
  • the conductors in the phase winding usually span multiple pole pitches, and the coils are interconnected to form a whole.
  • Figure 1 is a schematic structural diagram of the stator of the motor provided by some embodiments of the present application
  • Figure 2 is a schematic cross-sectional view of the stator provided by some embodiments of the present application
  • Figure 3 is a schematic diagram of the connector of the stator provided by some embodiments of the present application.
  • Structural schematic diagram
  • Figure 4 is a schematic structural diagram of the connector of the stator provided by some embodiments of the present application
  • Figure 5 is another schematic structural diagram of the stator shown in Figure 1
  • Figure 6 is a schematic structural diagram of the stator provided by some embodiments of the present application. Schematic diagram of the structure of the first phase winding of the stator winding.
  • the stator 10 includes a stator core 101 and a stator winding 102 .
  • the stator winding 102 is provided on the stator core 101.
  • a plurality of winding slots 1011 are formed on the inner wall of the stator core 101.
  • the stator winding 102 includes a plurality of conductors 1021 inserted in the winding slots 1011.
  • the conductor 1021 is the part of the stator winding 102 that is embedded in the stator core 101 and plays the role of electromagnetic pole energy conversion.
  • the cross section of the conductor 1021 may be circular, rectangular or other shapes.
  • the conductor 1021 is a flat wire conductor.
  • the stator winding 102 includes a plurality of plug connectors 1022 , each plug connector 1022 including at least one conductor 1021 .
  • the portion of the plug connector 1022 inserted into the winding groove 1011 can serve as the conductor 1021 .
  • each plug connector 1022 includes a first plug portion 1026 , a second plug portion 1027 , and a connecting portion 1028 connecting the first plug portion 1026 and the second plug portion 1027 .
  • the portion of the first plug-in portion 1026 inserted into the winding groove 1011 can serve as a conductor 1021
  • the portion of the second plug-in portion 1027 inserted into the winding groove 1011 can serve as a conductor 1021 .
  • the plug connector 1022 further includes a first extension portion 1029 and a second extension portion 1030, wherein the first extension portion 1029 extends from one end of the first plug connector 1026 away from the first connection portion 1028, and the second extension portion 1030 extends from one end of the second plug connector 1027 away from the first connection portion 1028.
  • the first extension portion 1029 and the second extension portion 1030 extend out of the winding groove 1011, respectively, so as to facilitate connection with other plug connectors.
  • the stator core 101 has a first end 1012 and a second end 1013 along its axial direction, and the winding groove 1011 extends along the first end 1012 to the second end 1013 to penetrate the stator core.
  • the stator winding 102 may include a plug end and a welding end. The plug end of the stator winding 102 may be located at the first end 1012 of the stator core 101 , and the welding end of the stator winding 102 may be located at the second end 1013 of the stator core 101 .
  • connection portion 1028 may be located at the first end 1012 of the stator core 101 .
  • the plug connector 1022 is a hairpin coil. Before being inserted into the winding slot 1011, the plug connector 1022 may include two straight sides. The two straight sides are inserted into the winding slot 1011 through the first end 1012. The portions of the two straight sides accommodated in the winding slot 1011 respectively form the second straight edge.
  • the parts of the two straight sides extending through the second end 1013 form a first extension part 1029 and a second extension part 1030 respectively.
  • the first extension part 1029 and the second extension part 1030 are both provided at the welding end of the stator winding 102 . After the plug connector 1022 is inserted into the stator core 101, the first extension part 1029 and the second extension part 1030 can be bent so that the first extension part 1029 and the second extension part 1030 can be welded to other plug connectors 1022.
  • a plurality of winding slots 1011 are arranged along the circumference of the stator core 101, and two adjacent plug connectors 1022 can be directly connected or indirectly connected through other conductive structures.
  • a conductive strip can be provided on the second end 1013 of the stator core 101, and the two ends of the conductive strip are respectively welded to two adjacent plug connectors 1022 to connect the two adjacent plug connectors 1022.
  • the connector 1022 may be a full-pitch coil, and the span of the full-pitch coil is equal to the pole pitch of the stator 10.
  • a plurality of winding grooves 1011 are evenly arranged along the circumferential direction of the inner wall of the stator core 101 . In other words, in the circumferential direction, a plurality of winding grooves 1011 are equidistantly arranged.
  • the span of the plug connector 1022 can be determined according to the number of slots, thereby reducing the line shape of the plug connector 1022 and simplifying the wire embedding process.
  • the winding slot 1011 extends along the axial direction of the stator core 101 and penetrates the stator core 101 along the axial direction of the stator core 101. This embodiment can reduce the bending of the plug-in component 1022 during the insertion of the plug-in component 1022 into the winding slot 1011, thereby reducing the difficulty of assembly.
  • the number of the winding grooves 1011 is 12*N, where N is a positive integer.
  • N is a positive integer.
  • the span between the first plug-in portion 1026 and the second plug-in portion 1027 is 6 winding grooves 1011 .
  • the first plug-in part 1026 and the second plug-in part 1027 serve as conductors 1021 in corresponding winding slots 1011 respectively.
  • the conductors 1021 in each winding slot 1011 are arranged in multiple layers. Along the direction from the bottom of the winding groove 1011 to the slot opening of the winding groove 1011, the multi-layer conductors 1021 are distributed in sequence. Optionally, the multilayer conductors 1021 are stacked along the radial direction of the stator core 101 .
  • the first plug-in part 1026 and the second plug-in part 1027 of the plug connector 1022 are two conductors 1021 of the plug connector 1022 .
  • the conductor 1021 is the effective side of the connector 1022 and is the part embedded in the stator core 101 that plays the role of electromagnetic pole energy conversion. Providing multi-layer conductors 1021 can improve the electromagnetic pole energy conversion efficiency.
  • the two conductors 1021 of the plug connector 1022 are embedded in the two winding grooves 1011 respectively.
  • the multi-layer conductors 1021 in each winding slot 1011 respectively belong to a plurality of plug connectors 1022.
  • the slot of the winding groove 1011 is opened on the inner wall of the stator core 101 facing the rotor.
  • the bottom of the winding slot 1011 is the bottom wall of the winding slot 1011 opposite to the slot opening.
  • the cross section of the conductor 1021 may be any one or more of a rectangular shape, an elliptical shape, a racetrack shape, etc.
  • the above structure can improve the slot filling ratio of the stator core 101 .
  • the stator winding 102 includes a plurality of phase windings, each phase winding includes at least one branch, and each branch includes a plurality of series-connected connectors 1022 .
  • the number of phase windings can be 2, 3, 4, 5. Of course, the number of phase windings can also be greater than 5.
  • the stator 10 of the embodiment of the present application is suitable for motors with different numbers of phases and can be adapted to different voltage and power ranges.
  • the stator winding 102 may include three phase windings, which are a first phase winding 1023, a second phase winding, and a third phase winding respectively.
  • the first phase winding 1023 is a U-phase winding
  • the second phase winding is a V-phase winding
  • the third phase winding is a W-phase winding.
  • Each phase winding may include only one branch or multiple branches.
  • the branch of the phase winding can also be called a parallel branch.
  • the number of branches of the phase winding can be any integer to expand the scope of winding design and adapt to different voltage and power ranges.
  • the phase winding in the embodiment of the present application includes a first branch U1 and a second branch U2.
  • both the first branch U1 and the second branch U2 may include multiple plug connectors 1022 .
  • the plurality of plug connectors 1022 of the first branch U1 are connected in series, and the plurality of plug connectors 1022 of the second branch U2 are connected in series.
  • This embodiment does not limit the number of plug connectors 1022 in the branch circuit.
  • the number of connectors 1022 of the branch circuit can be freely adjusted as needed, thereby expanding the scope of winding design and adapting to different voltage and power ranges.
  • FIG. 6 is a schematic structural diagram of a phase winding of the stator provided by some embodiments of the present application
  • FIG. 7 is a schematic diagram of the first phase winding 1023 of the stator 10 provided by some embodiments of the present application.
  • the stator winding 102 includes a first phase winding 1023
  • the first phase winding 1023 includes a first branch and a second branch
  • the first branch includes a first inlet terminal, a first outlet terminal, and a plurality of conductors 1021 connected in series between the first inlet terminal and the first outlet terminal.
  • the second branch includes a second inlet terminal, a second outlet terminal, and a plurality of conductors connected in series between the second inlet terminal and the second outlet terminal.
  • the first inlet terminal and the second inlet terminal are respectively connected to conductors 1021 of different layers in the same winding slot 1011; the first outlet terminal and the second outlet terminal are respectively connected to conductors 1020 of different layers in the same winding slot 1011.
  • Figure 7 shows a U-phase winding.
  • the stator winding of this application will be described in detail below, taking the U-phase winding as an example.
  • the U-phase winding includes a plurality of branches, two of the plurality of branches serve as the first branch U1 and the second branch U2.
  • the first table shows the first branch U1
  • the second table shows the second branch U2
  • the third table shows the U-phase winding.
  • One of the first incoming line terminal and the first outgoing line terminal is a positive terminal, and the other is a negative terminal.
  • the polarity of the second incoming line terminal is the same as that of the first incoming line terminal, and the polarity of the second outgoing line terminal is the same as that of the first outgoing line terminal.
  • the following description takes the first incoming line terminal and the second incoming line terminal as positive terminals, and the first outgoing line terminal and the second outgoing line terminal as negative terminals.
  • U1+ represents the first incoming terminal of the first branch U1
  • U1- represents the first outgoing terminal of the first branch U1
  • U2+ represents the second incoming terminal of the second branch U2
  • U2- represents the second outlet terminal of the second branch U2.
  • N and S respectively represent the two magnetic poles of the stator.
  • the stator is provided with 8 magnetic poles, that is, 4 magnetic pole pairs.
  • the stator core is provided with a plurality of winding slots 1011, and the plurality of winding slots 1011 are represented by a row of numbers under the N pole and S pole.
  • the stator core 101 is provided with 48 winding slots 1011 .
  • the 48 winding slots 1011 are respectively represented by a row of numbers under the N pole and S pole, that is, 1-48.
  • each magnetic pole corresponds to 6 winding slots 1011.
  • Each winding groove 1011 contains multiple layers of conductors 1021.
  • each winding groove 1011 contains 8 conductors 1021.
  • the 8 conductors 1021 are respectively located on layer a, layer b, layer c, layer d, layer e, layer f, layer g and h layer.
  • the first branch U1 includes a plurality of conductors 1021 connected in series.
  • the plurality of conductors of the first branch U1 are represented by serial numbers distributed in the table.
  • the first branch U1 includes 64 conductors, and the 64 conductors are represented by 64 serial numbers distributed in the table; the 64 conductors of the first branch U1 are connected in sequence according to the serial numbers; the first incoming line terminal is connected to the first Conductor, the first outlet terminal is connected to the 64th conductor.
  • the second branch U2 includes a plurality of conductors connected in series.
  • the plurality of conductors of the second branch U2 are represented by serial numbers distributed in the table.
  • the second branch U2 includes 64 conductors, and the 64 conductors are represented by 64 serial numbers distributed in the table; the 64 conductors of the second branch U2 are connected in sequence according to the serial numbers; the second incoming line terminal is connected to the first conductor, the second outlet terminal is connected to the 64th conductor.
  • the first incoming wire terminal and the second incoming wire terminal are respectively connected to conductors of different layers in the same winding slot 1011, and the first outgoing wire terminal and the second outgoing wire terminal are respectively connected to the same wire winding trough 1011.
  • the different layers of conductors in a winding trough 1011 can reduce the distance between the first incoming line end and the second incoming line end and the distance between the first outgoing line end and the second outgoing line end, which facilitates the connection of the two branches and is beneficial to Arrangement of busbars and implementation of winding processing technology.
  • the conductors in each winding slot 1011 are arranged to be n layers, where n is a positive even number.
  • the n layers of conductors are recorded as L 1 layer, ..., L i layer, ... and L n layer, where 1 ⁇ i ⁇ n.
  • the first inlet terminal and the second inlet terminal are respectively connected to the L 1 layer conductor and the L n layer conductor in the same winding slot 1011.
  • the first outlet terminal and the second outlet terminal are respectively connected to the L 1 layer conductor and the L n layer conductor in the same winding slot 1011.
  • n may be 2, 4, 6, 8, 16, or 32.
  • n is 8
  • the L 1 layer to L 8 layer can also be recorded as a layer, b layer, c layer, d layer, e layer, f layer, g layer and h layer respectively.
  • the first incoming terminal U1+ and the first outgoing terminal U1- are both connected to the L1 layer conductor, and the L1 layer conductor is close to the radially outer end of the stator core 101, which facilitates the realization of the first The connection between the incoming line terminal U1+ and the first outgoing line terminal U1- and the external bus.
  • the second incoming terminal U2+ and the second outgoing terminal U2- are both connected to the L n layer conductor, and the L n layer conductor is close to the radially inner end of the stator core, which facilitates the realization of the second incoming terminal and the second outgoing terminal. Connection to external bus.
  • both the first branch U1 and the second branch U2 include a plurality of plug connectors 1022 connected in series, and each plug connector 1022 includes at least one conductor.
  • One conductor or multiple conductors can be provided in the plug connector 1022, and the conductors are provided in the winding groove 1011.
  • the structure is simple, easy to produce, and takes up little space. The above technical solution can improve the power density of the motor.
  • At least two conductors connected to each other are on the same layer along the direction from the first incoming line end to the first outgoing line end. Conductors connected on the same layer can balance the slot potential of the branches and reduce the circulation loss between branches.
  • the first branch includes 2k conductors; along the direction from the first incoming line end to the second incoming line end, the first branch includes 2k conductors, each marked as A. 1 , A 2 ,..., A k ,..., A 2k-1 and A 2k ; the A k -th conductor and the A k+1 -th conductor are both L n- layer conductors; the A 1st conductor to the A-th conductor
  • the k conductors are connected in sequence from the L 1 layer to the L n layer along the first wave winding direction, and the A k+1 conductors to the A 2k conductors are connected in sequence from the L n layer to the L 1 layer along the second wave winding direction.
  • the direction of the first wave is opposite to that of the second wave.
  • the k-layer conductors of the branch are connected in series, connected in sequence from the A 1 layer to the A k layer, and then connected in sequence from the A k layer to the A 2k layer.
  • the A1 layer is connected to the first incoming terminal
  • the A2k layer is connected to the first outgoing terminal.
  • the first wave winding direction can be in a clockwise direction, with the conductor being staggered between two adjacent layers.
  • the conductor is wound from the L 1th layer of slot J to the L 2 layer of slot J+G in the clockwise direction across G winding slots; and then across G winding slots in the clockwise direction. After the slot, go around to the L 1st floor of the J+2G slot... and cycle like this until you return to the J slot, then go around to the L 3rd floor of the J slot, and then start from the J slot in a clockwise direction.
  • the L 3rd layer of the slot crosses G winding slots in the clockwise direction, and then winds to the L 4th layer of the J+G slot; then crosses the G winding slots in the clockwise direction, and winds to J+2G In the L3 layer of the number slot... cycle like this to wind the L n layer of the winding slot.
  • the second wave winding direction is opposite to the first wave winding direction, and may be to stagger the conductor between two adjacent layers in a counterclockwise direction.
  • the conductor is wound from the L nth layer of slot J to the L n -1 layer of slot J+G in the clockwise direction across G winding slots; and then across G winding slots in the clockwise direction. After winding the slot, wind it to the L nth layer of slot J+2G... and so on until you return to slot J, then wind the L n-2 layer of slot J, and then wind it clockwise.
  • the direction is from the L n-2 layer of slot J to the L n-2 layer in the clockwise direction across G winding slots, then to the L n-3 layer of slot J+G; then across G winding slots in the clockwise direction.
  • this embodiment is not limited to using the aforementioned plug connector.
  • This embodiment can also use other methods of winding the plug connector, as long as the serial number difference of the conductors meets the range requirements.
  • the conductors 1021 connected to each other are on the same layer along the direction from the second incoming line end to the second outgoing line end.
  • the conductors 1021 connected on the same layer can also balance the slot potential of the branches and reduce the circulation loss between the branches.
  • the second branch U2 includes 2k conductors; in the direction from the second incoming line end to the second incoming line end, the second branch U2 includes 2k conductors, denoted as B 1 and B 2 respectively. ,..., B k ,..., B 2k-1 and B 2k ; the B k- th conductor and the B k+1 -th conductor are both L1 layer conductors; the B1 - th conductor to the B k -th conductor are along the The second wave winding direction is connected in sequence from the L n layer to the L 1 layer, and the B k+1 -th conductor to the B 2k -th conductor is connected in sequence from the L 1 layer to the L n layer along the first wave winding direction.
  • the first phase winding includes 2p pole phase groups, p is a positive integer; the plurality of conductors 1021 of the first branch U1 are distributed in all pole phase groups, and the conductors 1021 of the second branch U2 A plurality of conductors 1021 are distributed in all pole phase groups.
  • the first branch U1 in the winding trough where the first branch U1 and the second branch U2 are distributed, the first branch U1
  • the conductors 1021 of and the conductors 1021 of the second branch U2 are arranged alternately.
  • two adjacent conductors located in the same winding groove are respectively recorded as the Ax layer and the By layer, 1 ⁇ x ⁇ y ⁇ k, where
  • the first incoming terminal U1+ is connected to the No. 1 conductor of the first branch U1
  • the first outgoing terminal U1- is connected to the No. 64 conductor of the first branch U1.
  • conductors 1-32 of the first branch are connected in series.
  • Conductors No. 1, 3, 5, and 7 are all A-layer conductors, and conductors No. 2, 4, 6, and 8 are all B-layer conductors.
  • Conductors 9, 11, 13, and 15 are all C-layer conductors.
  • Conductors No. 10, 12, 14, and 16 are all D-layer conductors.
  • Conductors 17, 19, 21, and 23 are all e-layer conductors.
  • Conductors 18, 20, 22, and 24 are all f-layer conductors.
  • Conductors 25, 27, 29, and 31 are all g-layer conductors.
  • Conductors No. 26, 28, 30, and 32 are all h-layer conductors.
  • conductors 33-64 of the first branch are connected in series.
  • Conductors No. 33, 35, 37, and 39 are all g-layer conductors, and conductors No. 34, 36, 38, and 40 are all h-layer conductors.
  • Conductors 41, 43, 45, and 47 are all f-layer conductors.
  • Conductors No. 42, 44, 46, and 48 are all e-layer conductors.
  • Conductors No. 49, 51, 53, and 55 are all D-layer conductors.
  • Conductors No. 50, 52, 54, and 56 are all C-layer conductors.
  • Conductors No. 57, 59, 61, and 63 are all B-layer conductors.
  • Conductors No. 58, 60, 62, and 64 are all A-layer conductors.
  • conductor No. 32 and conductor No. 33 of the first branch are both h-layer conductors.
  • the conductors 1021 connected on the same layer can also balance the slot potential of the branches and reduce the circulation loss between branches.
  • conductor No. 1 connected to the first incoming terminal U1+ is located in the winding trough No. 13
  • conductor No. 64 connected to the first outlet terminal U1- is located in the winding trough No. 20.
  • conductor No. 1 connected to the first incoming terminal U1+ and conductor No. 64 connected to the first outgoing terminal U1- are both layer a conductors. This embodiment facilitates the arrangement of busbars and facilitates the connection of the first incoming line terminal U1+ and the first outgoing line terminal U1- to the external circuit.
  • the stator includes 8 magnetic poles and correspondingly the phase windings include 8 pole phase groups.
  • the 16 connectors of branch U1 are distributed in 8 pole phase groups, which can reduce the branch potential imbalance caused by rotor eccentricity.
  • the span between the conductor connected to the first incoming terminal of the first branch U1 and the conductor connected to the second incoming terminal of the second branch U2 is less than or equal to the pole pitch.
  • the embodiments of the present application can reduce the distance between the incoming lines of two branches, facilitate the connection of the incoming lines of the two branches, and facilitate the arrangement of busbars and the implementation of winding processing technology.
  • the second branch U2 includes 64 conductors.
  • the 64 conductors are represented by 64 serial numbers distributed in the table. The 64 conductors are connected sequentially according to the serial number.
  • the positive terminal is the second incoming terminal
  • the negative terminal is the second outgoing terminal
  • U2+ represents the second incoming line terminal
  • U2- represents the second outgoing line terminal.
  • the second incoming line terminal U2+ is connected to the No. 1 conductor of the second branch U2, and the second outgoing line terminal U2- is connected to the No. 64 conductor of the second branch U2.
  • conductors No. 1-32 of the second branch are connected in series in sequence.
  • Conductors 1, 3, 5, and 7 are all h-layer conductors, and conductors 2, 4, 6, and 8 are all g-layer conductors.
  • Conductors 9, 11, 13, and 15 are all f-layer conductors.
  • Conductors 10, 12, 14, and 16 are all e-layer conductors.
  • Conductors 17, 19, 21, and 23 are all D-layer conductors.
  • Conductors 18, 20, 22, and 24 are all C-layer conductors.
  • Conductors No. 25, 27, 29, and 31 are all B-layer conductors.
  • Conductors No. 26, 28, 30, and 32 are all layer A conductors.
  • conductors No. 33-64 of the second branch are connected in series in sequence.
  • Conductors No. 33, 35, 37, and 39 are all A-layer conductors, and conductors No. 34, 36, 38, and 40 are all B-layer conductors.
  • Conductors 41, 43, 45, and 47 are all C-layer conductors.
  • Conductors 42, 44, 46, and 48 are all D-layer conductors.
  • Conductors No. 49, 51, 53, and 55 are all e-layer conductors.
  • Conductors No. 50, 52, 54, and 56 are all f-layer conductors.
  • Conductors No. 57, 59, 61, and 63 are all g-layer conductors.
  • Conductors No. 58, 60, 62, and 64 are all h-layer conductors.
  • the conductor 1021 connected to the first incoming terminal of the first branch U1 and the conductor 1021 connected to the second incoming terminal of the second branch U2 are provided in the same winding groove 1011.
  • the embodiment of the present application leads out the incoming wire ends of two branches from the same winding trough 1011, thereby further reducing the distance between the incoming wire ends of the two branches, facilitating the connection of the incoming wire ends of the two branches, and is beneficial to Arrangement of busbars and implementation of winding processing technology.
  • conductor No. 32 and conductor No. 33 of the second branch U2 are both layer a conductors. Conductors connected on the same layer can also balance the slot potential of the branches and reduce the circulation loss between branches.
  • conductor No. 1 connected to the second incoming terminal U2+ is located in the winding trough No. 13
  • conductor No. 64 connected to the second outlet terminal U2- is located in the winding trough No. 20.
  • conductor No. 1 connected to the second incoming terminal U2+ and conductor No. 64 connected to the second outgoing terminal U2- are both layer a conductors. This embodiment facilitates the arrangement of busbars and facilitates the connection of the first incoming line terminal U1+ and the first outgoing line terminal U1- with the external circuit.
  • the stator 10 includes 8 magnetic poles, and correspondingly, the phase windings include 8 pole phase groups.
  • the 16 connectors of the second branch U2 are distributed in 8 pole phase groups, which can reduce the branch potential imbalance caused by the rotor eccentricity.
  • the span between the conductor connected to the first incoming line terminal of the first branch U1 and the conductor connected to the second incoming line terminal of the second branch U2 is less than or equal to the pole pitch.
  • the embodiment of the present application can reduce the spacing between the incoming line terminals of the two branches, facilitate the connection of the incoming line terminals of the two branches, and facilitate the arrangement of the busbar and the implementation of the winding processing technology.
  • multiple branches of the phase winding may be connected in series or in parallel.
  • the first branch U1 and the second branch U2 may be connected in series or in parallel.
  • the No. 1 conductor of the first branch U1 is connected to the first incoming terminal U1+ of the first branch U1
  • the No. 1 conductor of the second branch U2 is connected to the second conductor of the second branch U2.
  • the outlet terminal U2+ is connected.
  • the No. 1 conductor of the first branch U1 and the No. 1 conductor of the second branch U2 are provided in the same winding trough, that is, the winding trough 13 .
  • the first incoming wire ends of the two branches are led out from the same winding trough 1011, thereby further reducing the distance between the incoming wire ends of the two branches, facilitating the connection of the incoming wire ends of the two branches, and benefiting the busbar layout and implementation of winding processing technology.
  • conductor No. 1 of the first branch U1 and conductor No. 64 of the first branch U1 are both layer a conductors
  • Conductor No. 64 is an h-layer conductor. This embodiment facilitates the arrangement of busbars and facilitates the connection of the incoming wire terminals (U1+, U2+) and the outgoing wire terminals (U1-, U2-) with external circuits respectively.
  • the U-phase winding shown in Figure 7 can balance the potential of each branch slot, reduce the circulation loss between branches, reduce the branch electromotive force imbalance caused by the rotor eccentricity, reduce the voltage stress of the conductor in the slot, and at the same time have It is conducive to the layout of busbars and the implementation of winding processing technology.
  • the embodiment of the present application can reduce the maximum voltage drop between adjacent conductors in the same winding trough to 0.47U ph (U ph is the phase voltage). Compared with traditional stator windings, the embodiment of the present application can reduce the voltage drop in the winding slot by 51.5%.
  • Figure 9 is a schematic diagram of a phase winding of the stator provided by some embodiments of the present application. Illustratively, Figure 9 shows a U-phase winding.
  • each winding slot contains six conductors.
  • the eight conductors are located on layer a, layer b, layer c, layer d, layer e and layer f.
  • U1+ represents the first incoming terminal of the first branch U1
  • U1- represents the first outgoing terminal of the first branch U1
  • U2+ represents the second incoming terminal of the second branch U2
  • U2- represents The second outlet terminal of the second branch U2.
  • N and S represent the two magnetic poles of the stator respectively.
  • the stator is provided with 8 magnetic poles, that is, 4 magnetic pole pairs.
  • the stator core is equipped with 48 winding slots.
  • the 48 winding slots are represented by a row of numbers under the N pole and S pole, that is, 1-48. Each magnetic pole corresponds to 6 winding slots.
  • the positive terminal is the first incoming terminal
  • the negative terminal is the first outgoing terminal
  • U1+ represents the first incoming line terminal
  • U1- represents the first outgoing line terminal.
  • the first incoming terminal U1+ is connected to conductor No. 1, and the first outgoing terminal U1- is connected to conductor No. 48.
  • conductors 1-24 of the first branch are connected in series.
  • Conductors No. 1, 3, 5, and 7 are all A-layer conductors, and conductors No. 2, 4, 6, and 8 are all B-layer conductors.
  • Conductors 9, 11, 13, and 15 are all C-layer conductors.
  • Conductors No. 10, 12, 14, and 16 are all D-layer conductors.
  • Conductors 17, 19, 21, and 23 are all e-layer conductors.
  • Conductors 18, 20, 22, and 24 are all f-layer conductors.
  • conductors No. 25-48 of the first branch U1 are connected in series in sequence.
  • Conductors No. 25, 27, 29, and 31 are all f-layer conductors.
  • Conductors No. 26, 28, 30, and 32 are all e-layer conductors.
  • Conductors No. 33, 35, 37, and 39 are all d-layer conductors.
  • Conductors No. 34, 36, 38, and 40 are all c-layer conductors.
  • Conductors No. 41, 43, 45, and 47 are all b-layer conductors.
  • Conductors No. 42, 44, 46, and 48 are all a-layer conductors.
  • the conductor No. 24 and the conductor No. 25 of the first branch U1 are both f-layer conductors.
  • the two connectors 1022 can be welded with full pitch without cross-layer welding, thereby simplifying the welding process.
  • the conductors connected on the same layer can also balance the slot potential of the branch and reduce the circulation loss between the branches.
  • conductor No. 1 connected to the first incoming terminal U1+ is located in the winding trough No. 13
  • conductor No. 48 connected to the first outlet terminal U1- is located in the winding trough No. 20.
  • conductor No. 1 connected to the first incoming terminal U1+ and conductor No. 48 connected to the first outgoing terminal U1- are both layer a conductors. This embodiment facilitates the arrangement of busbars and facilitates the connection of the first incoming line terminal U1+ and the first outgoing line terminal U1- to the external circuit.
  • the stator includes 8 magnetic poles and correspondingly the phase windings include 8 pole phase groups.
  • the multiple connectors 1022 of branch U1 are distributed in eight pole phase groups, which can reduce the branch potential imbalance caused by rotor eccentricity.
  • the span between the conductor connected to the first incoming terminal of the first branch U1 and the conductor connected to the second incoming terminal of the second branch U2 is less than or equal to the pole pitch.
  • the embodiment of the present application can reduce the distance between the incoming lines of the two branches, facilitate the connection of the incoming lines of the two branches, and is beneficial to the layout of the busbar and the implementation of the winding processing technology.
  • the positive terminal in the second branch U2 is the second incoming terminal, and the negative terminal is the second outgoing terminal.
  • U2+ represents the second incoming line terminal, and U2- represents the second outgoing line terminal.
  • the second incoming terminal U2+ is connected to conductor No. 1, and the second outgoing terminal U2- is connected to conductor No. 48.
  • conductors No. 1 to No. 24 of the second branch U2 are connected in series in sequence.
  • Conductors 1, 3, 5, and 7 are all f-layer conductors, and conductors 2, 4, 6, and 8 are all e-layer conductors.
  • Conductors 9, 11, 13, and 15 are all D-layer conductors.
  • Conductors 10, 12, 14, and 16 are all C-layer conductors.
  • Conductors 17, 19, 21, and 23 are all B-layer conductors.
  • Conductors 18, 20, 22, and 24 are all layer A conductors.
  • conductors 25-48 of the second branch are connected in series in sequence.
  • Conductors No. 25, 27, 29, and 31 are all h-layer conductors.
  • Conductors No. 26, 28, 30, and 32 are all e-layer conductors.
  • Conductors No. 33, 35, 37, and 39 are all D-layer conductors.
  • Conductors No. 34, 36, 38, and 40 are all C-layer conductors.
  • Conductors 41, 43, 45, and 47 are all B-layer conductors.
  • Conductors No. 42, 44, 46, and 48 are all layer A conductors.
  • the conductor connected to the first incoming terminal of the first branch U1 and the conductor connected to the second incoming terminal of the second branch U2 are provided in the same winding groove 1011.
  • the embodiment of the present application leads out the incoming wire ends of two branches from the same winding trough 1011, thereby further reducing the distance between the incoming wire ends of the two branches, facilitating the connection of the incoming wire ends of the two branches, and is beneficial to Arrangement of busbars and implementation of winding processing technology.
  • conductor No. 24 and conductor No. 25 of the second branch are both layer A conductors. Conductors connected on the same layer can also balance the slot potential of the branches and reduce the circulation loss between branches.
  • conductor No. 1 connected to the second incoming terminal U2+ is located in the winding trough No. 13
  • conductor No. 48 connected to the second outlet terminal U2- is located in the winding trough No. 20.
  • conductor No. 1 connected to the second incoming terminal U2+ and conductor No. 48 connected to the second outgoing terminal U2- are both layer a conductors. This embodiment facilitates the arrangement of busbars and facilitates the connection of the first incoming line terminal U1+ and the first outgoing line terminal U1- to the external circuit.
  • the stator 10 includes 8 magnetic poles, and correspondingly, the phase windings include 8 pole phase groups.
  • the plurality of connectors 1022 of the second branch U2 are distributed in eight pole phase groups, which can reduce the branch potential imbalance caused by the rotor eccentricity.
  • the span between the conductor connected to the first incoming terminal of the first branch U1 and the conductor connected to the second incoming terminal of the second branch U2 is less than or equal to the pole pitch.
  • the embodiment of the present application can reduce the distance between the incoming lines of the two branches, facilitate the connection of the incoming lines of the two branches, and is beneficial to the layout of the busbar and the implementation of the winding processing technology.
  • the 24 plug connectors 1022 of the second branch U2 are also distributed in 8 pole phase groups. This embodiment can reduce branch potential imbalance caused by rotor eccentricity.
  • multiple branches of phase windings may be connected in series or in parallel.
  • the first branch U1 and the second branch U2 may be connected in series or in parallel.
  • the No. 1 conductor of the first branch U1 is connected to the first incoming terminal U1+ of the first branch U1, and the No. 1 conductor of the second branch U2 is connected to the second conductor of the second branch U2.
  • the outlet terminal U2+ is connected.
  • the No. 1 conductor of the first branch U1 and the No. 1 conductor of the second branch U2 are provided in the same winding groove 1011, that is, the winding groove 13.
  • the incoming wire ends of the two branches are led out from the same winding trough 1011, thereby further reducing the distance between the incoming wire ends of the two branches, facilitating the connection of the incoming wire ends of the two branches, and conducive to the layout of the busbar and implementation of winding processing technology.
  • conductor No. 1 of the first branch U1 and conductor No. 64 of the first branch U1 are both layer a conductors
  • Conductor No. 48 is an f-layer conductor. This embodiment facilitates the arrangement of busbars and facilitates the connection of the two incoming wire terminals (U1+, U2+) and the two outgoing wire terminals (U1-, U2-) with external circuits.
  • the U-phase winding shown in Figure 98 can balance the potential of each branch slot, reduce the circulation loss between branches, reduce the branch electromotive force imbalance caused by the rotor eccentricity, reduce the voltage stress of the conductor in the slot, and at the same time have It is conducive to the layout of busbars and the implementation of winding processing technology.
  • the embodiment of the present application can reduce the maximum voltage drop between adjacent conductors in the same winding trough to 0.46 U ph (U ph is the phase voltage).
  • the embodiments of the present application can be applied to windings with different numbers of layers, which are beneficial to broadening the voltage range and power range used by the windings.
  • Figure 10 is a schematic diagram of three phase windings of a stator provided by some embodiments of the present application.
  • Figure 10 shows the U-phase winding, V-phase winding and W-phase winding of the stator winding.
  • Figure 10 splits the three-phase windings of the stator winding into three tables.
  • all incoming terminals in the plurality of phase windings are connected to conductors in different winding slots. This embodiment can increase the distance between each incoming line terminal and reduce the voltage stress between phases.
  • all terminals in the plurality of phase windings are connected to conductors in different winding slots. This embodiment can increase the distance between each outlet terminal and reduce the voltage stress between phases.
  • all incoming wire terminals and all outgoing wire terminals are connected to conductors in different winding ducts. This embodiment can increase the spacing between the incoming wire ends and the spacing between the outgoing wire terminals and reduce the voltage stress between phases.
  • the U-phase winding includes a first branch U1 and a second branch U2, U1+ represents the first incoming end of the first branch U1, and U1- represents the first branch U1.
  • One outlet terminal; U2+ represents the second incoming terminal of the second branch U2, and U2- represents the second outlet terminal of the second branch U2.
  • the U-phase winding in Figure 10 can be formed by merging the first branch U1 and the second branch U2 shown in Figure 11 .
  • the V-phase winding includes the first branch V1 and the second branch V2.
  • V1+ represents the first incoming terminal of the first branch V1
  • V1- represents the first outlet terminal of the first branch V1
  • V2+ represents the second branch.
  • the second incoming terminal of V2, V2- represents the second outgoing terminal of the second branch V2.
  • the W-phase winding includes the first branch W1 and the second branch W2.
  • W1+ represents the first incoming terminal of the first branch W1, W1- represents the first outlet terminal of the first branch W1; W2+ represents the second branch.
  • the second incoming terminal of W2, W2- represents the second outgoing terminal of the second branch W2.
  • the 12 conductors connected to the terminals U1+, U1-, U2+, U2-, V1+, V1-, V2+, V2-, W1+, W1-, W2+, W2- are respectively arranged on 12 windings groove.
  • the six conductors connected to the terminals U1+, U1-, U2+, U2-, V1+, and V1- are all a-layer conductors.
  • the aforementioned terminals are all close to the radially outer end of the stator core to facilitate welding.
  • the 12 conductors connected to terminals U1+, U1-, U2+, U2-, V1+, V1-, V2+, V2-, W1+, W1-, W2+, W2- are distributed in three adjacent Within the magnetic pole, it is beneficial to the layout of the busbar.
  • the stator winding includes three phase windings, namely, a U-phase winding, a V-phase winding, and a W-phase winding.
  • the three phase windings are connected in a triangle.
  • the U-phase winding includes a first branch U1 and a second branch U2 connected in series.
  • the V-phase winding includes a first branch V1 and a second branch V2 connected in series.
  • the W-phase winding includes a first branch W1 and a second branch W2 connected in series.
  • 12*N winding slots 1011 are provided on the inner wall of the stator core 101, and N is a positive integer.
  • the conductors of the first phase winding are distributed in 4*N winding slots.
  • the second phase winding is distributed in 4*N winding slots, and the third phase winding is distributed in 4*N winding slots.
  • the stator winding includes three phase windings, namely, U-phase winding, V-phase winding and W-phase winding.
  • N 4
  • U-phase winding, V-phase winding and W-phase winding are respectively distributed in 16 winding slots 1011.
  • the U-phase windings are distributed in slots 1-2, 7-8, 13-14, 19-20, 25-26, 31-32, 37-38 and 43-44.
  • the V-phase windings are distributed in slots 5-6, 11-12, 17-18, 23-24, 29-30, 35-36, 41-42 and 47-48.
  • W-phase windings are distributed in slots 3-4, 9-10, 15-16, 21-22, 27-28, 33-34, 39-40 and 45-46.
  • the above arrangement can reduce the circulating current loss between the three phase windings and improve the conversion efficiency of the motor.
  • the U-phase winding includes a first branch U1 and a second branch U2 connected in series.
  • the V-phase winding includes a first branch V1 and a second branch V2 connected in series.
  • the W-phase winding includes a first branch W1 and a second branch W2 connected in series.
  • FIG. 13 is a schematic connection diagram of the phase windings of the stator windings of the stator provided by other embodiments of the present application.
  • the stator winding includes three phase windings, namely, U-phase winding, V-phase winding and W-phase winding.
  • the three phase windings are connected in a delta.
  • the U-phase winding includes a first branch U1 and a second branch U2 connected in parallel.
  • the V-phase winding includes a first branch V1 and a second branch V2 connected in parallel.
  • the W-phase winding includes a first branch W1 and a second branch W2 connected in parallel.
  • Figure 14 is a schematic diagram of the connection of the phase windings of the stator windings of the stator provided in some embodiments of the present application.
  • the stator winding includes three phase windings, namely, U-phase winding, V-phase winding and W-phase winding.
  • the three phase windings are connected in star shape.
  • the U-phase winding includes a first branch U1 and a second branch U2 connected in parallel.
  • the V-phase winding includes a first branch V1 and a second branch V2 connected in parallel.
  • the W-phase winding includes a first branch W1 and a second branch W2 connected in parallel.
  • the number of series turns of the stator winding phases can be adjusted to adapt to different voltage and power level applications.
  • An embodiment of the present application also provides a motor, which includes the stator provided in any of the foregoing embodiments.
  • the motor further includes a rotor, and the rotor is disposed in a space surrounded by the inner wall of the stator core.
  • the motor in the embodiment of the present application can be either a generator or an electric motor.
  • An embodiment of the present application also provides an electrical device, which includes the motor provided in any of the foregoing embodiments.
  • the electrical device includes a powertrain, which includes a reducer and the above-mentioned motor.
  • Motor and reducer transmission connection Specifically, the drive shaft of the motor and the input shaft of the reducer can be connected through transmission components such as couplings to output the driving force from the motor to the reducer.
  • An embodiment of the present application also provides a vehicle, including the above-mentioned power assembly.
  • the above-mentioned power assembly is disposed in the vehicle and provides operating power for the vehicle.
  • the vehicle may be a new energy vehicle driven by electric energy, for example.
  • new energy vehicles can specifically be hybrid electric vehicles, pure electric vehicles or fuel cell electric vehicles, etc., or they can be vehicles that use high-efficiency energy storage devices such as supercapacitors, flywheel batteries or flywheel energy storage devices as the source of electric energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

本申请公开了一种用电装置、电机及其定子。定子,包括定子铁芯和定子绕组,定子铁芯的内壁开设有多个绕线槽,定子绕组包括插设于绕线槽中的多个导体,定子绕组包括第一相绕组,第一相绕组包括第一支路和第二支路,第一进线端和第二进线端分别连接于同一个绕线槽中的不同层的导体;第一出线端和第二出线端分别连接于同一个绕线槽中的不同层的导体。本申请实施例的技术方案可减小第一进线端和第二进线端的间距以及第一出线端和第二出线端的间距,便于实现两个支路的连接,有利于汇流排的布置和绕组加工工艺的实施。

Description

用电装置、电机及其定子 技术领域
本申请涉及动力装置领域,特别是涉及一种用电装置、电机及其定子。
背景技术
随着新能源汽车产业的发展,其驱动电机的发展也趋向高压化、高速化、集成化、平台化、小型化方向发展,其中,小型化必然要求电机功率密度有大幅度提升。
目前,如何降低电机内部的压降,减少内部能量损耗,也是本领域研究的目标之一。
发明内容
鉴于上述问题,本申请提供一种用电装置、电机及其定子,能够降低电机内部绕组的压降,减少电机的内部能量损耗。
第一方面,本申请提供了一种电机的定子,包括定子铁芯和设置于定子铁芯的定子绕组。定子铁芯的内壁开设有多个绕线槽,定子绕组包括插设于绕线槽中的多个导体。定子绕组包括第一相绕组,第一相绕组包括第一支路和第二支路。第一支路包括第一进线端、第一出线端以及串联于第一进线端和第一出线端之间的多个导体。第二支路包括第二进线端、第二出线端以及串联于第二进线端和第二出线端之间的多个导体。第一进线端和第二进线端分别连接于同一个绕线槽中的不同层的导体。第一出线端和第二出线端分别连接于同一个绕线槽中的不同层的导体。
本申请实施例的技术方案中,其通过将第一进线端和第二进线端分别连接于同一个绕线槽中的不同层的导体,将第一出线端和第二出线端分别连接于同一个绕线槽中的不同层的导体,可减小第一进线端和第二进线端的间距以及第一出线端和第二出线端的间距,便于实现两个支路的连接,有利于汇流排的布置和绕组加工工艺的实施。
在一些实施例中,各绕线槽中的导体设置为n层,n为正偶数;沿绕线槽的槽底指向绕线槽的槽口的方向,n层导体记为L 1层、……、L i层、……和L n层,1≤i≤n;第一进线端和第二进线端分别连接于同一个绕线槽中的L 1层导体和L n层导体;第一出线端和第二出线端分别连接于同一个绕线槽中的L 1层导体和L n层导体。
在上述的实施例中,第一进线端和第一出线端均连接于L 1层导体,而L 1层导体靠近定子铁芯沿径向的外端,这便于实现第一进线端和第一出线端与外部汇流排的焊接。第二进线端和第二出线端均连接于L n层导体,而L n层导体靠近定子铁芯沿径向的 内端,这便于实现第二进线端和第二出线端与外部汇流排的焊接。
在一些实施例中,第一支路和第二支路均包括多个串联连接的插接件,各插接件包括至少一个导体。插接件中可以设置一个导体或者多个导体。导体设置在绕线槽中,结构简单,便于生产,并且占用空间小,上述的技术方案能提高电机的功率密度。
在一些实施例中,在第一支路中,沿第一进线端指向第一出线端的方向,至少两个彼此连接的导体处于同层。同层连接的导体能够平衡支路的槽电势,减少支路间的环流损耗。
在一些实施例中,第一支路包括2k个导体;沿第一进线端指向第二进线端的方向,第一支路包括2k个导体,分别记为A 1、A 2、……、A k、……、A 2k-1和A 2k;第A k个导体和第A k+1个导体均为L n层导体;第A 1个导体至第A k个导体沿第一波绕方向从L 1层至L n层依次连接,第A k+1个导体至第A 2k个导体沿第二波绕方向从L n层至L 1层依次连接,第一波绕方向与第二波绕方向相反。通过上述的设置方式,能够尽可能降低同一相绕组中相邻绕线槽的导体之间的压降。
在一些实施例中,在第二支路中,沿第二进线端指向第二出线端的方向,至少两个彼此连接的导体处于同层。同层连接的导体能够平衡支路的槽电势,减少支路间的环流损耗。
在一些实施例中,第二支路包括2k个导体;沿第二进线端指向第二进线端的方向,第二支路包括2k个导体,分别记为B 1、B 2、……、B k、……、B 2k-1和B 2k;第B k个导体和第B k+1个导体均为L 1层导体;第B 1个导体至第B k个导体沿第二波绕方向从L n层至L 1层依次连接,第B k+1个导体至第B 2k个导体沿第一波绕方向从L 1层至L n层依次连接。通过上述的设置方式,能够尽可能降低同一绕线槽中的相邻导体之间的压降。
在一些实施例中,第一相绕组包括2p个极相组,p为正整数;第一支路的多个导体分布于全部的极相组中,第二支路的多个导体分布于全部的极相组中。上述的技术方案,可以降低由于转子偏心带来的支路电势不平衡,提高电机的能量转换效率。
在一些实施例中,在第一支路和第二支路分布的绕线槽内,沿绕线槽的槽底指向绕线槽的槽口的方向,第一支路的导体和第二支路的导体交替设置。
在一些实施例中,位于同一个绕线槽内且相邻的两个导体分别记为A x层和B y层,1≤x≤y≤k,其中,|y-x|≤k。
导体的序号之差越大,两个导体之间的压差越大。如果位于同一个绕线槽内且相邻的两个导体的序号之差过大,将会造成绕线槽内的导体的电压应力过大,上述的绕线方案能使|y-x|≤k。以减小绕线槽内的导体之间的电压应力,降低槽内压降。
在一些实施例中,定子铁芯的内壁开设有12*N个绕线槽,N为正整数;第一相绕组的导体分布于4*N个绕线槽;定子绕组还包括第二相绕组以及第三项绕组,第二相绕组分布于4*N个绕线槽,第三项绕组分布于4*N个绕线槽。
第二方面,本申请提供了一种电机,包括上述实施例中的定子。
第三方面,本申请提供了一种用电装置,包括上述实施例中的电机。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段, 而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图做简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的电机的定子的一结构示意图;
图2为本申请一些实施例提供的定子的剖视示意图;
图3为本申请一些实施例提供的定子的插接件的结构示意图;
图4为本申请另一些实施例提供的定子的插接件的结构示意图;
图5为图1所示的定子的另一结构示意图;
图6为本申请一些实施例提供的定子的定子绕组的第一相绕组的结构示意图;
图7为本申请一些实施例提供的定子的一个相绕组的示意图;
图8为图2在方框A处的放大示意图;
图9为本申请另一些实施例提供的定子的一个相绕组的示意图;
图10为本申请一些实施例提供的定子的三个相绕组的示意图;
图11为本申请一些实施例提供的定子的定子绕组的相绕组的连接示意图;
图12为本申请另一些实施例提供的定子的定子绕组的相绕组的连接示意图;
图13为本申请又一些实施例提供的定子的定子绕组的相绕组的连接示意图
图14本申请再一些实施例提供的定子的定子绕组的相绕组的连接示意图。
在附图中,附图未必按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定 均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
目前,新能源汽车的驱动电机中,定子一般由定子铁芯以及及缠绕在定子铁芯上的导体组成,导体绕制在定子铁芯的绕线槽中并形成一个整体结构,成为定子绕组。为了提高槽满率,可以在一个绕线槽中设置多层的导体。定子绕组通常包括多个相绕组,各相绕组包括多个支路,各支路通常需要通过汇流排连接。发明人注意到,在相关技术中,各支路的接线端的距离较远,造成连接支路的汇流排占用的空间大,导致电机的尺寸偏大。
基于上述的原因,发明人研究并设计出了一种电机的定子,其通过将第一进线端和第二进线端分别连接于同一个绕线槽中的不同层的导体,将第一出线端和第二出线端分别连接于同一个绕线槽中的不同层的导体,可减小第一进线端和第二进线端的间距以及第一出线端和第二出线端的间距,便于实现两个支路的连接,有利于汇流排的布置和绕组加工工艺的实施。
为方便理解,以下先对本申请中出现的专业名词作如下解释说明。
定子:是指电机中静止不动的部分,其作用在于产生旋转磁场。
转子:是指电机中的旋转部件,作用在于实现电能与机械能的转换。
跨距:是指电机绕组中同一元件的两个元件边在电枢表面所跨的距离,通常用定子铁芯上开设的绕线槽的数量来表示。
磁极对数P:磁极对数简称极对数。电机绕组通电后所形成的磁极是以N极和S极成对的形式出现的。磁极总数为2P。
极距:极距是指电机每个磁极沿气隙圆周表面所占的距离。极距可用定子铁芯的绕线槽的数量表示。示例性地,极距为Z/2P;Z为定子铁芯的绕线槽的总数。
极相组:在交流电机中凡是一个极距下属于同相绕组的多个线圈串接成一组,就称为极相组,也叫线圈组。极相组内各个线圈的电流方向、电磁作用都是相同的,这几个线圈共同产生该相绕组中的磁极。
相绕组:相绕组指由一条或多条并联支路按规定接法,通过串、并联接起来的一套绕组。相绕组中的导体通常跨越多个极距,且线圈之间相互连接并形成整体。
图1为本申请一些实施例提供的电机的定子的一结构示意图;图2为本申请一些实施例提供的定子的剖视示意图;图3为本申请一些实施例提供的定子的插接件的结构示意图;图4为本申请另一些实施例提供的定子的插接件的结构示意图;图5为图1所示的定子的另一结构示意图;图6为本申请一些实施例提供的定子的定子绕组的第一相绕组的结构示意图。
如图1及图2所示,本申请一些实施例提供了一种电机的定子10,定子10包括定子铁芯101和定子绕组102。定子绕组102设置于定子铁芯101,定子铁芯101的内壁开设有多个绕线槽1011,定子绕组102包括插设于绕线槽1011中的多个导体1021。
导体1021是定子绕组102的嵌入到定子铁芯101中起电磁极能量转换作用的部分。
导体1021的截面可以是圆形、矩形或其它形状。示例性地,导体1021为扁线导体。
在一些实施例中,如图3所示,定子绕组102包括多个插接件1022,各插接件1022包括至少一个导体1021。插接件1022的插入到绕线槽1011内部分可作为导体1021。
在一些实施例中,请结合参考图4,各插接件1022包括第一插接部1026、第二插接部1027以及连接第一插接部1026和第二插接部1027的连接部1028。第一插接部1026插入绕线槽1011的部分可作为一个导体1021,第二插接部1027插入绕线槽1011的部分可作为一个导体1021。
在一些实施例中,插接件1022还包括第一延伸部1029和第二延伸部1030,第一延伸部1029从第一插接部1026远离第一连接部1028的一端延伸,第二延伸部1030从第二插接部1027远离第一连接部1028的一端延伸。第一延伸部1029和第二延伸部1030分别伸出绕线槽1011,以便于与其它插接件连接。
在一些实施例中,如图5所示,定子铁芯101沿自身轴向具有第一端1012以及第二端1013,绕线槽1011沿第一端1012延伸至第二端1013以贯穿定子铁芯101。沿定子铁芯101的轴向,定子绕组102可包括插线端和焊接端。定子绕组102的插线端可位于定子铁芯101的第一端1012,定子绕组102的焊接端可位于定子铁芯101的第二端1013。在绕制插接件1022时,插接件1022可经由第一端1012插入绕线槽1011并经由第二端1013伸出绕线槽1011。连接部1028可位于定子铁芯101的第一端1012。
示例性的,插接件1022为发卡线圈。在插入绕线槽1011之前,插接件1022可包括两个直线边,两个直线边经由第一端1012插入绕线槽1011,两个直线边的容纳于绕线槽1011的部分分别形成第一插接部1026和第二插接部1027,请继续参考图4,两个直线边的经由第二端1013伸出的部分分别形成第一延伸部1029和第二延伸部1030。
第一延伸部1029和第二延伸部1030均设置于定子绕组102的焊接端。在将插接件1022插入定子铁芯101后,可以弯折第一延伸部1029和第二延伸部1030,以便于 第一延伸部1029和第二延伸部1030与其它的插接件1022焊接。
多个绕线槽1011沿定子铁芯101周向布置,相邻的两个插接件1022可以直接连接,也可以通过其它导电结构间接连接。示例性的,可以在定子铁芯101的第二端1013设置导电条,导电条的两端分别焊接于两个相邻的插接件1022,以将相邻的两个插接件1022连接。
在本申请的一些实施例中,插接件1022可以为整距线圈,整距线圈的跨距等于定子10的极距。整距线圈通常跨越M个绕线槽1011,示例性的,M=6。
在一些实施例中,多个绕线槽1011沿定子铁芯101的内壁的周向均匀设置。换言之,在周向上,多个绕线槽1011等距设置。在设计插接件1022时,插接件1022的跨距可以根据槽数确定,从而减少插接件1022的线型,简化嵌线工艺。
在一些实施例中,绕线槽1011沿定子铁芯101的轴向延伸,并沿定子铁芯101的轴向贯通定子铁芯101。本实施例可在插接件1022插入绕线槽1011的过程中减小插接件1022的弯折,降低装配难度。
在一些实施例中,绕线槽1011的数量为12*N,N为正整数。示例性地,第一插接部1026和第二插接部1027的跨距为6个绕线槽1011。
在一些实施例中,第一插接部1026以及第二插接部1027分别作为对应绕线槽1011中的导体1021。各绕线槽1011中的导体1021设置为多层。沿绕线槽1011的槽底指向绕线槽1011的槽口的方向,多层导体1021依次分布。可选的,多层导体1021沿定子铁芯101的径向层叠设置。
插接件1022的第一插接部1026、第二插接部1027为插接件1022的两个导体1021。导体1021为插接件1022的有效边,是嵌入到定子铁芯101中起电磁极能量转换作用的部分。设置多层导体1021可提升电磁极能量转换效率。
在一些实施例中,插接件1022的两个导体1021分别嵌入在两个绕线槽1011内。各绕线槽1011内的多层导体1021分别属于多个插接件1022。绕线槽1011的槽口开设在定子铁芯101的面向转子的内壁上。绕线槽1011的槽底是绕线槽1011的与槽口相对的底壁。
在一些实施例中,导体1021的截面可以为矩形、椭圆形或跑道型等中的任意一种或多种。上述的结构能够提高定子铁芯101的槽满率。
在一些实施例中,定子绕组102包括多个相绕组,各相绕组包括至少一个支路,各支路均包括多个串联的插接件1022。相绕组的数量可以是2、3、4、5。当然,相绕组的数量也可以大于5。本申请实施例的定子10适用于不同相数的电机,可适配不同电压与功率范围。
在一些实施例中,定子绕组102可包括三个相绕组,三个相绕组分别为第一相绕组1023、第二相绕组和第三相绕组。示例性地,第一相绕组1023为U相绕组,第二相绕组为V相绕组,第三相绕组为W相绕组。
各相绕组可以仅包括一个支路,也可以包括多个支路。相绕组的支路也可以称之为并联支路。相绕组的支路的数量可以为任意整数,以扩展绕组设计使用范围,适 配不同电压与功率范围。示例性的,本申请实施例中的相绕组包括第一支路U1以及第二支路U2。
在一些实施例中,第一支路U1、第二支路U2均可包括多个插接件1022。第一支路U1的多个插接件1022串联,第二支路U2的多个插接件1022串联。本实施例对支路的插接件1022的数量不作限制。根据需要,支路的插接件1022的数量可以自由调整,从而扩展绕组设计使用范围,适配不同电压与功率范围。
图6为本申请一些实施例提供的定子的一个相绕组的结构示意图;图7为本申请一些实施例提供的定子10的第一相绕组1023的示意图。
如图7所示,在一些实施例中,定子绕组102包括第一相绕组1023,第一相绕组1023包括第一支路和第二支路,第一支路包括第一进线端、第一出线端以及串联于第一进线端和第一出线端之间的多个导体1021。第二支路包括第二进线端、第二出线端以及串联于第二进线端和第二出线端之间的多个导体。第一进线端和第二进线端分别连接于同一个绕线槽1011中的不同层的导体1021;第一出线端和第二出线端分别连接于同一个绕线槽1011中的不同层的导体1020。
示例性地,图7示出了U相绕组。下面以U相绕组为例,详细描述本申请的定子绕组。
如图7所示,U相绕组包括多个支路,多个支路中的两个作为第一支路U1和第二支路U2。
为了便于理解,在图7中,第一个表格示出了第一支路U1,第二表格示出了第二支路U2,第三个表格示出了U相绕组。
第一进线端和第一出线端中的一者为正极接线端,另一者为负极接线端。第二进线端的电极性与第一进线端的电极性相同,第二出线端的电极性与第一出线端的电极性相同。
示例性地,下面以第一进线端和第二进线端为正极接线端、第一出线端和第二出线端均为负极接线端为例进行说明。对应地,在图7中,U1+表示第一支路U1的第一进线端,U1-表示第一支路U1的第一出线端;U2+表示第二支路U2的第二进线端,U2-表示第二支路U2的第二出线端。
在图7的各个表格中,N和S分别表示定子的两个磁极。示例性地,定子设有8个磁极,即4个磁极对。
定子铁芯设有多个绕线槽1011,多个绕线槽1011用N极、S极下的一行数字表示。示例性地,在图7中,定子铁芯101设有48个绕线槽1011。在图7中,48个绕线槽1011分别用N极、S极下的一行数字表示,即1-48。可选地,每个磁极对应6个绕线槽1011。
每个绕线槽1011内容纳有多层导体1021。示例性地,在图7中,每个绕线槽1011内容纳有8个导体1021。8个导体1021分别位于a层、b层、c层、d层、e层、f层、g层和h层。
第一支路U1包括多个串联的导体1021。示例性地,在图7的第一个表格中,第 一支路U1的多个导体以分布在表格中的序号表示。例如,第一支路U1包括64个导体,64个导体以分布在表格中的64个序号表示;第一支路U1的64个导体按照序号依次连接;第一进线端连接于第1个导体,第一出线端连接于第64个导体。
第二支路U2包括多个串联的导体。示例性地,在图7的第二个表格中,第二支路U2的多个导体以分布在表格中的序号表示。例如,第二支路U2包括64个导体,64个导体以分布在表格中的64个序号表示;第二支路U2的64个导体按照序号依次连接;第二进线端连接于第1个导体,第二出线端连接于第64个导体。
在本申请实施例中,通过将第一进线端和第二进线端分别连接于同一个绕线槽1011中的不同层的导体,将第一出线端和第二出线端分别连接于同一个绕线槽1011中的不同层的导体,可减小第一进线端和第二进线端的间距以及第一出线端和第二出线端的间距,便于实现两个支路的连接,有利于汇流排的布置和绕组加工工艺的实施。
在一些实施例中,如图8所示。各绕线槽1011中的导体设置为n层,n为正偶数。沿绕线槽1011的槽底指向绕线槽的槽口的方向,n层导体记为L 1层、……、L i层、……和L n层,1≤i≤n。第一进线端和第二进线端分别连接于同一个绕线槽1011中的L 1层导体和L n层导体。第一出线端和第二出线端分别连接于同一个绕线槽1011中的L 1层导体和L n层导体。
示例性地,n可以为2、4、6、8、16或32。可选地,如图7所示,n为8,L 1层至L 8层也可分别记为a层、b层、c层、d层、e层、f层、g层和h层。
在上述的实施例中,第一进线端U1+和第一出线端U1-均连接于L 1层导体,而L 1层导体靠近定子铁芯101沿径向的外端,这便于实现第一进线端U1+和第一出线端U1-与外部汇流排的连接。第二进线端U2+和第二出线端U2-均连接于L n层导体,而L n层导体靠近定子铁芯沿径向的内端,这便于实现第二进线端和第二出线端与外部汇流排的连接。
在本申请的一些实施例中,第一支路U1和第二支路U2均包括多个串联连接的插接件1022,各插接件1022包括至少一个导体。插接件1022中可以设置一个导体或者多个导体,导体设置在绕线槽1011中,结构简单,便于生产,并且占用空间小,上述的技术方案能提高电机的功率密度。
在本申请的一些实施例中,在第一支路U1中,沿第一进线端指向第一出线端的方向,至少两个彼此连接的导体处于同层。同层连接的导体能够平衡支路的槽电势,减少支路间的环流损耗。
在本申请的实施例中,请继续参考图7,第一支路包括2k个导体;沿第一进线端指向第二进线端的方向,第一支路包括2k个导体,分别记为A 1、A 2、……、A k、……、A 2k-1和A 2k;第A k个导体和第A k+1个导体均为L n层导体;第A 1个导体至第A k个导体沿第一波绕方向从L 1层至L n层依次连接,第A k+1个导体至第A 2k个导体沿第二波绕方向从L n层至L 1层依次连接,第一波绕方向与第二波绕方向相反。
具体的,支路的k层导体串联,从A 1层到A k层依次连接,再从A k层依次连接到A 2k层。示例性地,A 1层连接于第一进线端,A 2k层连接于第一出线端。
第一波绕方向,可以是沿着顺时针方向,在相邻的两个层之间将导体进行交错绕制。示例性的,导体从J号槽的第L 1层沿顺时针方向跨G个绕线槽后,绕至J+G号槽的第L 2层中;然后沿顺时针方向跨G个绕线槽后,绕至J+2G号槽的第L 1层中……如此循环,直至回到第J号槽,然后绕至J号槽的第L 3层,再沿着顺时针方向从J号槽的第L 3层沿顺时针方向跨G个绕线槽后,绕至J+G号槽的第L 4层中;然后沿顺时针方向跨G个绕线槽后,绕至J+2G号槽的第L 3层中……如此循环,绕制绕线槽的L n层。
第二波绕方向,与第一波绕方向相反,可以是沿着逆时针方向在相邻的两个层之间将导体进行交错绕制。示例性的,导体从J号槽的第L n层沿顺时针方向跨G个绕线槽后,绕至J+G号槽的第L n-1层中;然后沿顺时针方向跨G个绕线槽后,绕至J+2G号槽的第L n层中……如此循环,直至回到第J号槽,然后绕制J号槽的第L n-2层,再沿着顺时针方向从J号槽的第L n-2层沿顺时针方向跨G个绕线槽后,绕至J+G号槽的第L n-3层中;然后沿顺时针方向跨G个绕线槽后,绕至J+2G号槽的第L n-2层中……如此循环,绕制绕线槽的L 1层。
发明人注意到,在绕线槽内,相邻的导体的序号之差越大,两个导体之间的压差越大。如果位于同一个绕线槽内且相邻的两个导体的序号之差过大,那么将会造成绕线槽内的导体之间的电压应力过大,影响定子绕组的绝缘可靠性。
通过上述的设置方式,能够尽可能降低同一绕线槽内的相邻导体之间的压降,提高绝缘可靠性。特别地,本实施例并不限于采用前述的插接件,本实施例也可以采用其它绕制插接件的方式,只要导体的序号差满足范围要求即可。
在本申请的一些实施例中,在第二支路U2中,沿第二进线端指向第二出线端的方向,至少两个彼此连接的导体1021处于同层。上述技术方案中,同层连接的导体1021还能够平衡支路的槽电势,减少支路间的环流损耗。
在本申请的一些实施例中,第二支路U2包括2k个导体;沿第二进线端指向第二进线端的方向,第二支路包括2k个导体,分别记为B 1、B 2、……、B k、……、B 2k-1和B 2k;第B k个导体和第B k+1个导体均为L 1层导体;第B 1个导体至第B k个导体沿第二波绕方向从L n层至L 1层依次连接,第B k+1个导体至第B 2k个导体沿第一波绕方向从L 1层至L n层依次连接。通过上述的设置方式,能够尽可能降低同一绕线槽中的相邻导体之间的压降。
在本申请的一些实施例中,第一相绕组包括2p个极相组,p为正整数;第一支路U1的多个导体1021分布于全部的极相组中,第二支路U2的多个导体1021分布于全部的极相组中。上述的技术方案,可以降低由于转子偏心带来的支路电势不平衡。
在本申请的一些实施例中,在第一支路U1和第二支路U2分布的绕线槽内,沿绕线槽的槽底指向绕线槽的槽口的方向,第一支路U1的导体1021和第二支路U2的导体1021交替设置。
在本申请的一些实施例中,位于同一个绕线槽内且相邻的两个导体分别记为A x层和B y层,1≤x≤y≤k,其中,|y-x|≤k。
导体的序号之差越大,两个导体之间的压差越大。如果位于同一个绕线槽1011 内且相邻的两个导体的序号之差过大,将会造成绕线槽1011内的导体1021的电压应力过大,上述的技术方案使|y-x|≤k。以减小绕线槽1011内的导体之间的电压应力,提高绝缘可靠性。
示例性地,第一进线端U1+与第一支路U1的第1号导体连接,第一出线端U1-与第一支路U1的第64号导体连接。
在一些实施例中,第一支路的第1-32号导体依次串联连接。1、3、5、7号导体均为a层导体,2、4、6、8号导体均为b层导体。9、11、13、15号导体均为c层导体。10、12、14、16号导体均为d层导体。17、19、21、23号导体均为e层导体。18、20、22、24号导体均为f层导体。25、27、29、31号导体均为g层导体。26、28、30、32号导体均为h层导体。
在一些实施例中,第一支路的第33-64号导体依次串联连接。33、35、37、39号导体均为g层导体,34、36、38、40号导体均为h层导体。41、43、45、47号导体均为f层导体。42、44、46、48号导体均为e层导体。49、51、53、55号导体均为d层导体。50、52、54、56号导体均为c层导体。57、59、61、63号导体均为b层导体。58、60、62、64号导体均为a层导体。
在本申请的一些实施例中,第一支路的32号导体和33号导体均为h层导体。同层连接的导体1021还能够平衡支路的槽电势,减少支路间的环流损耗。
在一些实施例中,与第一进线端U1+相连的第1号导体位于第13号绕线槽,与第一出线端U1-相连的第64号导体位于第20号绕线槽。
在一些实施例中,与第一进线端U1+相连的第1号导体以及与第一出线端U1-相连的第64号导体均为a层导体。本实施例有利于汇流排的布置,便于第一进线端U1+和第一出线端U1-与外电路的连接。
在一些实施例中,定子包括8个磁极,对应地,相绕组包括8个极相组。支路U1的16个插接件分布于8个极相组,可以降低由于转子偏心带来的支路电势不平衡。
在一些实施例中,连接于第一支路U1的第一进线端的导体与连接于第二支路U2的第二进线端的导体之间的跨距小于或等于极距。本申请实施例可以减小两个支路的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。
第二支路U2包括64个导体。在图7中,64个导体以分布在表格中的64个序号表示。64个导体按照序号依次连接。
示例性地,正极接线端为第二进线端,负极接线端为第二出线端。在图7中,U2+表示第二进线端,U2-表示第二出线端。
第二进线端U2+与第二支路U2的第1号导体连接,第二出线端U2-与第二支路U2的第64号导体连接。
在一些实施例中,第二支路的第1-32号导体依次串联连接。1、3、5、7号导体均为h层导体,2、4、6、8号导体均为g层导体。9、11、13、15号导体均为f层导体。10、12、14、16号导体均为e层导体。17、19、21、23号导体均为d层导体。18、 20、22、24号导体均为c层导体。25、27、29、31号导体均为b层导体。26、28、30、32号导体均为a层导体。
在一些实施例中,第二支路的第33-64号导体依次串联连接。33、35、37、39号导体均为a层导体,34、36、38、40号导体均为b层导体。41、43、45、47号导体均为c层导体。42、44、46、48号导体均为d层导体。49、51、53、55号导体均为e层导体。50、52、54、56号导体均为f层导体。57、59、61、63号导体均为g层导体。58、60、62、64号导体均为h层导体。
在一些实施例中,连接于第一支路U1的第一进线端的导体与连接于第二支路U2的第二进线端的导体1021设于同一个绕线槽1011。本申请实施例从同一个绕线槽1011内引出两个支路的进线端,从而进一步减小两个支路的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。
在本申请的实施例中,第二支路U2的32号导体和33号导体均为a层导体。同层连接的导体还能够平衡支路的槽电势,减少支路间的环流损耗。
在一些实施例中,与第二进线端U2+相连的第1号导体位于第13号绕线槽,与第二出线端U2-相连的第64号导体位于第20号绕线槽。
在一些实施例中,与第二进线端U2+相连的第1号导体以及与第二出线端U2-相连的第64号导体均为a层导体。本实施例有利于汇流排的布置,便于第一进线端U1+和第一出线端U1-与外电路的连接。
在一些实施例中,定子10包括8个磁极,对应地,相绕组包括8个极相组。第二支路U2的16个插接件分布于8个极相组,可以降低由于转子偏心带来的支路电势不平衡。
在一些实施例中,连接于第一支路U1的第一进线端的导体与连接于第二支路U2的第二进线端的导体之间的跨距小于或等于极距。本申请实施例可以减小两个支路的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。
在一些实施例中,相绕组的多个支路可串联或并联。示例性地,第一支路U1和第二支路U2可以串联,也可以并联。
如图7所示,第一支路U1的第1号导体与第一支路U1的第一进线端U1+相连,第二支路U2的第1号导体与第二支路U2的第二出线端U2+相连。可选地,第一支路U1的第1号导体和第二支路U2的第1号导体设于同一个绕线槽,即绕线槽13。从同一个绕线槽1011内引出两个支路的第一进线端,从而进一步减小两个支路的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。
在一些实施例中,第一支路U1的第1号导体和第一支路U1的第64号导体均为a层导体,第二支路U2的第1号导体和第二支路U1的第64号导体均为h层导体。本实施例有利于汇流排的布置,便于第进线端(U1+、U2+)和出线端(U1-、U2-)分别与外电路的连接。
图7所示的U相绕组,可平衡各支路槽电势,减少了支路间的环流损耗,降低了 由于转子偏心带来的支路电动势不平衡,减小槽内导体电压应力,同时有利于汇流排的布置与绕组加工工艺的实施。本申请实施例可以将同一个绕线槽内的相邻导体之间的最大压降减小至0.47U ph(U ph为相电压)。相较于传统的定子绕组,本申请实施例可以降低绕线槽内51.5%的压降。
图9为本申请一些实施例提供的定子的一个相绕组的示意图。示例性地,图9示出了U相绕组。
如图9所示,在一些实施例中,每个绕线槽内容纳有6个导体。8个导体分别位于a层、b层、c层、d层、e层和f层。
在图9中,U1+表示第一支路U1的第一进线端,U1-表示第一支路U1的第一出线端;U2+表示第二支路U2的第二进线端,U2-表示第二支路U2的第二出线端。
N和S分别表示定子的两个磁极。示例性地,定子设有8个磁极,即4个磁极对。定子铁芯设有48个绕线槽。在图9中,48个绕线槽分别用N极、S极下的一行数字表示,即1-48。每个磁极对应6个绕线槽。
示例性地,正极接线端为第一进线端,负极接线端为第一出线端。在图8中,U1+表示第一进线端,U1-表示第一出线端。
第一进线端U1+与第1号导体连接,第一出线端U1-与第48号导体连接。
在一些实施例中,第一支路的第1-24号导体依次串联连接。1、3、5、7号导体均为a层导体,2、4、6、8号导体均为b层导体。9、11、13、15号导体均为c层导体。10、12、14、16号导体均为d层导体。17、19、21、23号导体均为e层导体。18、20、22、24号导体均为f层导体。
在一些实施例中,第一支路U1的第25-48号导体依次串联连接。25、27、29、31号导体均为f层导体。26、28、30、32号导体均为e层导体。33、35、37、39号导体均为d层导体。34、36、38、40号导体均为c层导体。41、43、45、47号导体均为b层导体。42、44、46、48号导体均为a层导体。
在本申请的实施例中,第一支路U1的24号导体和25号导体均为f层导体。这两个插接件1022可以采用整距焊接,无需跨层焊接,从而简化焊接工艺。同层连接的导体还能够平衡支路的槽电势,减少支路间的环流损耗。
在一些实施例中,与第一进线端U1+相连的第1号导体位于第13号绕线槽,与第一出线端U1-相连的第48号导体位于第20号绕线槽。
在一些实施例中,与第一进线端U1+相连的第1号导体以及与第一出线端U1-相连的第48号导体均为a层导体。本实施例有利于汇流排的布置,便于第一进线端U1+和第一出线端U1-与外电路的连接。
在一些实施例中,定子包括8个磁极,对应地,相绕组包括8个极相组。支路U1的多个插接件1022分布于8个极相组,可以降低由于转子偏心带来的支路电势不平衡。
在一些实施例中,连接于第一支路U1的第一进线端的导体与连接于第二支路U2的第二进线端的导体之间的跨距小于或等于极距。本申请实施例可以减小两个支路 的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。
示例性地,如图9所示,第二支路U2中正极接线端为第二进线端,负极接线端为第二出线端。在图9中,U2+表示第二进线端,U2-表示第二出线端。
第二进线端U2+与第1号导体连接,第二出线端U2-与第48号导体连接。
在一些实施例中,如图9所示,第二支路U2的第1-24号导体依次串联连接。1、3、5、7号导体均为f层导体,2、4、6、8号导体均为e层导体。9、11、13、15号导体均为d层导体。10、12、14、16号导体均为c层导体。17、19、21、23号导体均为b层导体。18、20、22、24号导体均为a层导体。
在一些实施例中,第二支路的第25-48号导体依次串联连接。25、27、29、31号导体均为h层导体。26、28、30、32号导体均为e层导体。33、35、37、39号导体均为d层导体。34、36、38、40号导体均为c层导体。41、43、45、47号导体均为b层导体。42、44、46、48号导体均为a层导体。
在一些实施例中,连接于第一支路U1的第一进线端的导体与连接于第二支路U2的第二进线端的导体设于同一个绕线槽1011。本申请实施例从同一个绕线槽1011内引出两个支路的进线端,从而进一步减小两个支路的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。
在本申请的实施例中,第二支路的24号导体和25号导体均为a层导体。同层连接的导体还能够平衡支路的槽电势,减少支路间的环流损耗。
在一些实施例中,与第二进线端U2+相连的第1号导体位于第13号绕线槽,与第二出线端U2-相连的第48号导体位于第20号绕线槽。
在一些实施例中,与第二进线端U2+相连的第1号导体以及与第二出线端U2-相连的第48号导体均为a层导体。本实施例有利于汇流排的布置,便于第一进线端U1+和第一出线端U1-与外电路的连接。
在一些实施例中,定子10包括8个磁极,对应地,相绕组包括8个极相组。第二支路U2的多个插接件1022分布于8个极相组,可以降低由于转子偏心带来的支路电势不平衡。
在一些实施例中,连接于第一支路U1的第一进线端的导体与连接于第二支路U2的第二进线端的导体之间的跨距小于或等于极距。本申请实施例可以减小两个支路的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。第二支路U2的24个插接件1022也分布于8个极相组。本实施例可以降低由于转子偏心带来的支路电势不平衡。
在一些实施例中,相绕组的多个支路可串联或并联。示例性地,第一支路U1和第二支路U2可以串联,也可以并联。
如图9所示,第一支路U1的第1号导体与第一支路U1的第一进线端U1+相连,第二支路U2的第1号导体与第二支路U2的第二出线端U2+相连。可选地,第一支路U1的第1号导体和第二支路U2的第1号导体设于同一个绕线槽1011,即绕线槽13。从同 一个绕线槽内1011引出两个支路的进线端,从而进一步减小两个支路的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。
在一些实施例中,第一支路U1的第1号导体和第一支路U1的第64号导体均为a层导体,第二支路U2的第1号导体和第二支路U1的第48号导体均为f层导体。本实施例有利于汇流排的布置,便于两个进线端(U1+、U2+)和两个出线端(U1-、U2-)与外电路的连接。
图98所示的U相绕组,可平衡各支路槽电势,减少了支路间的环流损耗,降低了由于转子偏心带来的支路电动势不平衡,减小槽内导体电压应力,同时有利于汇流排的布置与绕组加工工艺的实施。本申请实施例可以将同一个绕线槽内的相邻导体之间的最大压降减小至0.46U ph(U ph为相电压)。
本申请实施例可适用于不同层数的绕组,有利于拓宽绕组使用的电压范围和功率范围。
图10为本申请一些实施例提供的定子的三个相绕组的示意图。图10示出了定子绕组的U相绕组、V相绕组和W相绕组。为了便于理解,图10将定子绕组的三相绕组拆分为3个表格。
在一些实施例中,多个相绕组中的所有进线端连接于不同的绕线槽中的导体。本实施例可以增大各第进线端的间距,减小相间电压应力。
在一些实施例中,多个相绕组中的所有出线端连接于不同的绕线槽中的导体。本实施例可以增大各出线端的间距,减小相间电压应力。
在一些实施例中,所有进线端和所有出线端连接于不同的绕线槽中的导体。本实施例可以增大进线端的间距以及出线端的间距,减小相间电压应力。
示例性地,如图10所示,U相绕组包括第一支路U1和第二支路U2,U1+表示第一支路U1的第一进线端,U1-表示第一支路U1的第一出线端;U2+表示第二支路U2的第二进线端,U2-表示第二支路U2的第二出线端。可选地,图10的U相绕组可由图11所示的第一支路U1和第二支路U2合并而成。
V相绕组包括第一支路V1和第二支路V2,V1+表示第一支路V1的第一进线端,V1-表示第一支路V1的第一出线端;V2+表示第二支路V2的第二进线端,V2-表示第二支路V2的第二出线端。
W相绕组包括第一支路W1和第二支路W2,W1+表示第一支路W1的第一进线端,W1-表示第一支路W1的第一出线端;W2+表示第二支路W2的第二进线端,W2-表示第二支路W2的第二出线端。
在一些实施例中,与接线端U1+、U1-、U2+、U2-、V1+、V1-、V2+、V2-、W1+、W1-、W2+、W2-相连的12个导体分别设置于12个绕线槽。
在一些实施例中,与接线端U1+、U1-、U2+、U2-、V1+、V1-相连的6个导体均为a层导体。前述接线端均靠近定子铁芯沿径向的外端,便于实现焊接。
在一些实施例中,与接线端U1+、U1-、U2+、U2-、V1+、V1-、V2+、V2-、W1+、W1-、W2+、W2-相连的12个导体分布于相邻的三个磁极内,有利于汇流排的布置。
如图11所示,在一些实施例中,定子绕组包括三个相绕组,即U相绕组、V相绕组和W相绕组。示例性地,三个相绕组呈三角形连接。
U相绕组包括串联的第一支路U1和第二支路U2。V相绕组包括串联的第一支路V1和第二支路V2。W相绕组包括串联的第一支路W1和第二支路W2。
在本申请的实施例中,定子铁芯101的内壁开设有12*N个绕线槽1011,N为正整数。第一相绕组的导体分布于4*N个绕线槽。第二相绕组分布于4*N个所述绕线槽,第三相绕组分布于4*N个绕线槽。
如图12所示,在一些实施例中,定子绕组包括三个相绕组,即U相绕组、V相绕组和W相绕组。其中,N=4,U相绕组、V相绕组和W相绕组分别分布于16个绕线槽1011中。
具体的,U相绕组分布于1-2、7-8、13-14、19-20、25-26、31-32、37-38以及43-44号槽中。V相绕组分布于5-6、11-12、17-18、23-24、29-30、35-36、41-42以及47-48号槽中。W相绕组分布于3-4、9-10、15-16、21-22、27-28、33-34、39-40以及45-46号槽中。
上述的设置方式,能够降低三个相绕组之间的环流损耗,提高电机的转换效率。
U相绕组包括串联的第一支路U1和第二支路U2。V相绕组包括串联的第一支路V1和第二支路V2。W相绕组包括串联的第一支路W1和第二支路W2。
图13为本申请另一些实施例提供的定子的定子绕组的相绕组的连接示意图。
如图13所示,在一些实施例中,定子绕组包括三个相绕组,即U相绕组、V相绕组和W相绕组。示例性地,三个相绕组呈三角形连接。
U相绕组包括并联的第一支路U1和第二支路U2。V相绕组包括并联的第一支路V1和第二支路V2。W相绕组包括并联的第一支路W1和第二支路W2。
图14为本申请再一些实施例提供的定子的定子绕组的相绕组的连接示意图。
如图14所示,在一些实施例中,定子绕组包括三个相绕组,即U相绕组、V相绕组和W相绕组。示例性地,三个相绕组呈星形连接。U相绕组包括并联的第一支路U1和第二支路U2。V相绕组包括并联的第一支路V1和第二支路V2。W相绕组包括并联的第一支路W1和第二支路W2。
参照图11至图14所示的不同的定子绕组,通过改变相绕组的连接方式以及相绕组的支路的连接方式,可以调整定子绕组相串联匝数,从而适配不同电压与功率等级应用。
本申请实施例还提供了一种电机,其包括前述任一实施例提供的定子。示例性地,电机还包括转子,转子设于定子铁芯的内壁所围设形成的空间中。
本申请实施例的电机,既可以是发电机,也可以是电动机。
本申请实施例还提供一种用电装置,其包括前述任一实施例提供的电机。
在一些实施例中,用电装置包括动力总成,该动力总成包括减速器和上述的电机。电机和减速器传动连接。具体地,电机的驱动轴与减速器的输入轴可通过联轴器等传动件实现传动连接,以将驱动力自电机输出至减速器。
本申请实施例还提供了一种车辆,包括上述的动力总成,上述的动力总成设置于车辆内,并为车辆提供运行动力。具体地,本实施例中,车辆可具体为以电能进行驱动的新能源车辆,比如。其中,新能源车辆具体可以是混合动力电动车辆、纯电动车辆或燃料电池电动车辆等,也可以是采用超级电容器、飞轮电池或飞轮储能器等高效储能器作为电能来源的车辆。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种电机的定子,包括定子铁芯和设置于所述定子铁芯的定子绕组,所述定子铁芯的内壁开设有多个绕线槽,所述定子绕组包括插设于所述绕线槽中的多个导体,
    所述定子绕组包括第一相绕组,所述第一相绕组包括第一支路和第二支路,所述第一支路包括第一进线端、第一出线端以及串联于所述第一进线端和所述第一出线端之间的多个所述导体,所述第二支路包括第二进线端、第二出线端以及串联于所述第二进线端和所述第二出线端之间的多个所述导体;
    所述第一进线端和所述第二进线端分别连接于同一个所述绕线槽中的不同层的所述导体;所述第一出线端和所述第二出线端分别连接于同一个所述绕线槽中的不同层的所述导体。
  2. 根据权利要求1所述的定子,其中,各所述绕线槽中的所述导体设置为n层,n为正偶数;沿所述绕线槽的槽底指向所述绕线槽的槽口的方向,n层所述导体记为L 1层、……、L i层、……和L n层,1≤i≤n;
    所述第一进线端和所述第二进线端分别连接于同一个所述绕线槽中的L 1层导体和L n层导体;所述第一出线端和所述第二出线端分别连接于同一个所述绕线槽中的L 1层导体和L n层导体。
  3. 根据权利要求2所述的定子,其中,所述第一支路和所述第二支路均包括多个串联连接的插接件,各所述插接件包括至少一个所述导体。
  4. 根据权利要求1-3中任一项所述的定子,其中,在所述第一支路中,沿所述第一进线端指向所述第一出线端的方向,至少两个彼此连接的所述导体处于同层。
  5. 根据权利要求4所述的定子,其中,所述第一支路包括2k个导体;沿所述第一进线端指向所述第二进线端的方向,所述第一支路包括2k个导体,分别记为A 1、A 2、……、A k、……、A 2k-1和A 2k
    第A k个导体和第A k+1个导体均为L n层导体;
    所述第A 1个导体至所述第A k个导体沿第一波绕方向从L 1层至L n层依次连接,所述第A k+1个导体至所述第A 2k个导体沿第二波绕方向从L n层至L 1层依次连接,所述第一波绕方向与所述第二波绕方向相反。
  6. 根据权利要求5所述的定子,其中,在所述第二支路中,沿所述第二进线端指向所述第二出线端的方向,至少两个彼此连接的所述导体处于同层。
  7. 根据权利要求6所述的定子,其中,所述第二支路包括2k个导体;沿所述第二进线端指向所述第二进线端的方向,所述第二支路包括2k个导体,分别记为B 1、B 2、……、B k、……、B 2k-1和B 2k
    第B k个导体和第B k+1个导体均为L 1层导体;
    所述第B 1个导体至所述第B k个导体沿所述第二波绕方向从L n层至L 1层依次连接,所述第B k+1个导体至所述第B 2k个导体沿所述第一波绕方向从L 1层至L n层依次连接。
  8. 根据权利要求7所述的定子,其中,所述第一相绕组包括2p个极相组,p为正整数;
    所述第一支路的多个所述导体分布于全部的所述极相组中,所述第二支路的多个所述导体分布于全部的所述极相组中。
  9. 根据权利要求7或8所述的定子,其中,在所述第一支路和所述第二支路分布的所述绕线槽内,沿所述绕线槽的槽底指向所述绕线槽的槽口的方向,所述第一支路的导体和所述第二支路的导体交替设置。
  10. 根据权利要求7或8所述的定子,其中,位于同一个所述绕线槽内且相邻的两个所述导体分别记为A x层和B y层,1≤x≤y≤k,
    其中,|y-x|≤k。
  11. 根据权利要求1-10中任一项所述的定子,其中,所述定子铁芯的内壁开设有12*N个所述绕线槽,N为正整数;所述第一相绕组的导体分布于4*N个所述绕线槽;
    所述定子绕组还包括第二相绕组以及第三相绕组,所述第二相绕组分布于4*N个所述绕线槽,所述第三相绕组分布于4*N个所述绕线槽。
  12. 一种电机,包括如权利要求1-11中任一项所述的定子。
  13. 一种用电装置,包括如权利要求12所述的电机。
PCT/CN2022/121109 2022-09-23 2022-09-23 用电装置、电机及其定子 WO2024060257A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280005830.6A CN117916980A (zh) 2022-09-23 2022-09-23 用电装置、电机及其定子
PCT/CN2022/121109 WO2024060257A1 (zh) 2022-09-23 2022-09-23 用电装置、电机及其定子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121109 WO2024060257A1 (zh) 2022-09-23 2022-09-23 用电装置、电机及其定子

Publications (1)

Publication Number Publication Date
WO2024060257A1 true WO2024060257A1 (zh) 2024-03-28

Family

ID=90453796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121109 WO2024060257A1 (zh) 2022-09-23 2022-09-23 用电装置、电机及其定子

Country Status (2)

Country Link
CN (1) CN117916980A (zh)
WO (1) WO2024060257A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210194307A1 (en) * 2019-12-20 2021-06-24 Valeo Siemens Eautomotive Germany Gmbh Stator with offset pins for an electric machine
CN114204708A (zh) * 2021-10-30 2022-03-18 华为数字能源技术有限公司 定子、扁线电机、动力总成和车辆
CN114552811A (zh) * 2022-03-29 2022-05-27 浙江极氪智能科技有限公司 一种电机定子及其应用的电机
CN114583863A (zh) * 2021-12-31 2022-06-03 华为数字能源技术有限公司 定子、扁线电机、动力总成和车辆
CN114825723A (zh) * 2022-04-22 2022-07-29 浙江极氪智能科技有限公司 一种多层扁线绕组、定子组件及电机
CN115001182A (zh) * 2022-06-30 2022-09-02 重庆青山工业有限责任公司 一种电机的双层扁线绕组结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210194307A1 (en) * 2019-12-20 2021-06-24 Valeo Siemens Eautomotive Germany Gmbh Stator with offset pins for an electric machine
CN114204708A (zh) * 2021-10-30 2022-03-18 华为数字能源技术有限公司 定子、扁线电机、动力总成和车辆
CN114583863A (zh) * 2021-12-31 2022-06-03 华为数字能源技术有限公司 定子、扁线电机、动力总成和车辆
CN114552811A (zh) * 2022-03-29 2022-05-27 浙江极氪智能科技有限公司 一种电机定子及其应用的电机
CN114825723A (zh) * 2022-04-22 2022-07-29 浙江极氪智能科技有限公司 一种多层扁线绕组、定子组件及电机
CN115001182A (zh) * 2022-06-30 2022-09-02 重庆青山工业有限责任公司 一种电机的双层扁线绕组结构

Also Published As

Publication number Publication date
CN117916980A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
TWI815630B (zh) 定子、扁線電機、動力總成和車輛
CN110829641B (zh) 发卡扁线电机定子及发卡扁线电机
WO2023124509A1 (zh) 定子、扁线电机、动力总成和车辆
EP4135165A1 (en) Motor stator, motor, and vehicle
CN218920099U (zh) 定子、扁线电机、动力总成和车辆
CN113422453B (zh) 一种六相扁线波绕组结构、六相电机、动力总成和车辆
CN115765254A (zh) 定子、扁线电机、动力总成和车辆
WO2024032001A1 (zh) 定子、扁线电机、动力总成和车辆
CN218920101U (zh) 车辆、动力总成、扁线电机及其定子
CN111181264A (zh) 一种电机定子及电机
WO2022156815A1 (zh) 插针绕组式定子及电机
CN111355317B (zh) 一种扁线定子及扁线电机
CN115498794A (zh) 电机定子、扁线电机、动力总成和动力装置
CN212278005U (zh) 一种每极每相槽数为3的扁铜线绕组结构及电机
WO2024026824A1 (zh) 扁线电机及其定子
CN110337772B (zh) 分段定子电机
CN218920102U (zh) 定子、扁线电机、动力总成和车辆
WO2024060257A1 (zh) 用电装置、电机及其定子
WO2024060038A1 (zh) 一种电机及其定子和用电装置
CN111541330A (zh) 一种每极每相槽数为3的扁铜线绕组结构及电机
WO2024007713A1 (zh) 定子、扁线电机、动力总成和车辆
WO2024007709A1 (zh) 定子、扁线电机、动力总成及车辆
JP3494729B2 (ja) 三相電機子巻線
CN212435461U (zh) 一种短节距电机定子
CN216216162U (zh) 一种电机定子及具有其的电机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280005830.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959259

Country of ref document: EP

Kind code of ref document: A1