WO2024060038A1 - 一种电机及其定子和用电装置 - Google Patents

一种电机及其定子和用电装置 Download PDF

Info

Publication number
WO2024060038A1
WO2024060038A1 PCT/CN2022/120031 CN2022120031W WO2024060038A1 WO 2024060038 A1 WO2024060038 A1 WO 2024060038A1 CN 2022120031 W CN2022120031 W CN 2022120031W WO 2024060038 A1 WO2024060038 A1 WO 2024060038A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductors
conductor
winding
branch
stator
Prior art date
Application number
PCT/CN2022/120031
Other languages
English (en)
French (fr)
Inventor
吴凯
Original Assignee
宁德时代(上海)智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代(上海)智能科技有限公司 filed Critical 宁德时代(上海)智能科技有限公司
Priority to PCT/CN2022/120031 priority Critical patent/WO2024060038A1/zh
Priority to CN202280005833.XA priority patent/CN118057968A/zh
Publication of WO2024060038A1 publication Critical patent/WO2024060038A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present application relates to the technical field of power devices, and more specifically, to an electric motor, its stator and electrical device.
  • This application provides a motor and its stator, which can reduce the voltage drop of the internal winding of the motor and reduce the internal energy loss of the motor.
  • embodiments of the present application provide a stator for a motor, including a stator core and a stator winding provided on the stator core.
  • the inner wall of the stator core is provided with a plurality of winding slots.
  • the stator winding includes a plurality of winding slots inserted into the stator core. conductors in winding ducts.
  • the conductors in each winding trough are set to n layers, n is a positive even number; along the bottom of the winding trough, point in the direction of the slot opening of the winding trough, the n-layer conductors are recorded as L 1 layer, L 2 layer, ... and L n layers.
  • the stator winding includes a plurality of phase windings, and each phase winding includes a plurality of pole phase groups; each pole phase group of the phase winding includes a first region, a second region and a third region, and the second region and the third region are respectively located in the first region.
  • the conductors located in the first area are from the L 1 layer to the L n layer
  • the conductors located in the second area are from the L n/2+1 layer to the L n layer
  • the conductors located in the third area are from the L 1 layer to the L n layer.
  • Each phase winding includes a first branch and a second branch.
  • the first branch includes 4k conductors connected in series, k is a positive integer; the 4k conductors of the first branch are recorded as A 1 ,..., A 2k ... ...and A 4k ; the second branch includes 4k conductors connected in series, and the 4k conductors of the second branch are denoted as B 1 , ..., B 2k ... and B 4k .
  • a 1 to A 2k and B 1 to B 2k are distributed in the first area; part of A 2k+1 to A 4k is distributed in the second area, and the remaining part of A 2k+1 to A 4k is distributed in the third area; A part of B 2k+1 to B 4k is distributed in the second area, and the remaining part of B 2k+1 to B 4k is distributed in the third area.
  • the first half of the conductors in the first branch and the second branch are distributed in the first area, and the second half of the conductors are distributed in the second area and the third area, so that It can reduce the maximum voltage drop between adjacent out-of-phase conductors and between adjacent in-phase conductors, improve the insulation reliability of the stator winding, reduce the internal loss of the motor, and improve the energy conversion of the motor. efficiency.
  • the above-mentioned structure forms a short-distance winding, which can reduce winding harmonics, suppress torque pulsation, improve noise and vibration, and improve efficiency.
  • a 2k+1 to A 3k are distributed in the second area, A 3k+1 to A 4k are distributed in the third area; B 2k+1 to B 3k are distributed in the third area, and B 3k+1 to A 4k are distributed in the third area.
  • B 4k is distributed in the second area.
  • a 1 and B 1 are located in the same winding slot.
  • the incoming ends of the two branches are set in the same winding trough, which can facilitate connection with external equipment such as busbars and improve the efficiency of stator installation.
  • a 1 is the L 1 layer conductor in the winding trough
  • B 1 is the L n layer conductor in the winding trough.
  • the incoming terminals of the first branch and the second branch are respectively located at the bottom layer and slot layer of the same winding trough to facilitate the connection of the busbars.
  • a 4k is a conductor of the L n layer in the winding trough; B 4k is a conductor of the L n layer in the winding trough.
  • the outlet ends of the first branch and the second branch are respectively located at the bottom layer and slot layer of the same winding trough to facilitate the connection of the busbars.
  • the first branch includes a first positive lead connected to A 1 and a first negative lead connected to A 4K ;
  • the second branch includes a second positive lead connected to B 1 and connected to B 4K the second negative lead.
  • the positive lead and the negative lead can extend out of the winding groove, which improves the convenience of welding the incoming and outgoing ends, and facilitates the connection of external components to the first branch and the second branch.
  • the first branch includes a first single-conductor connector and a plurality of first two-conductor connectors, the first single-conductor connector includes one conductor, and each first two-conductor connector includes two a conductor.
  • the first branch in the embodiment of the present application uses a combination of multiple connectors, which can make the winding method of the first branch more flexible.
  • first single conductor plug connectors there are two first single conductor plug connectors, one first single conductor plug connector includes A 1 , and the other first single conductor plug connector includes A 4k .
  • the two first single-conductor plug-ins can serve as incoming end conductors and outgoing end conductors respectively to facilitate the connection between the first branch and external components.
  • the plurality of first dual-conductor plug connectors includes a first plug connector, a second plug connector, and a third plug connector; the span of the two conductors of the first plug connector is equal to the pole pitch, The span of the two conductors of the second plug connector is less than the pole pitch, and the span of the two conductors of the third plug connector is greater than the pole pitch.
  • a 2k and A 2k+1 are two conductors of the third plug connector;
  • a 3k and A 3k+1 are two conductors of the second plug connector.
  • the connector performs short-distance bridging; the above structure can improve the efficiency of conductor plug-in installation.
  • the second branch includes a second single-conductor connector and a plurality of second dual-conductor connectors, the second single-conductor connector includes one conductor, and each second dual-conductor connector includes two conductors; there are two second single-conductor plug-in connectors, one second single-conductor plug-in connector includes B 1 , and the other first single-conductor plug-in connector includes B 4k ; a plurality of second dual-conductor plug-in connectors includes a third Four plug connectors, a fifth plug connector and a sixth plug connector; the span of the two conductors of the fourth plug connector is equal to the pole pitch, and the span of the two conductors of the sixth plug connector is smaller than that of the fifth plug connector The span of the two conductors of the fifth connector is less than the pole pitch.
  • the second single-conductor plug-in connector can facilitate the welding of the second positive electrode lead and the second negative electrode lead, and the second double-conductor plug-in connector can be respectively disposed in the two winding grooves to reduce the occupied space, so that The structure of the stator is more compact.
  • the two second single-conductor plug-ins can be used as incoming end conductors and outgoing end conductors respectively to facilitate the connection between the second branch and the external busbar.
  • Providing plug-in connectors with different spans can adapt to the connection between conductors of different spans and adapt to different conductor connection methods.
  • B 2k and B 2k+1 are two conductors of the fifth plug connector; B 3k and B 3k+1 are two conductors of the sixth plug connector.
  • the fifth plug connector when bridging from the first area to the third area, is used for short-distance bridging.
  • the sixth plug connector is used for bridging.
  • the connector performs short-distance bridging; the above structure can improve the efficiency of conductor plug-in installation.
  • the stator winding includes three phase windings, and the three phase windings adopt a star connection or a delta connection.
  • the winding slots are multiples of 12.
  • the number of winding slots is 48, n is 8, and the number of poles of the stator is 8.
  • embodiments of the present application provide a motor, including the stator in any of the above embodiments.
  • embodiments of the present application provide an electrical device, including the motor in any of the above embodiments.
  • Figure 1 is a schematic structural diagram of a stator of a motor provided by some embodiments of the present application.
  • Figure 2 is a schematic cross-sectional view of a stator provided by some embodiments of the present application.
  • Figure 3 is an enlarged schematic diagram of Figure 2 at box A;
  • Figure 4 is a schematic distribution diagram of the first area, the second area and the third area provided by some embodiments of the present application;
  • Figure 5 is a schematic diagram of the pole phase groups of the stator windings of the stator provided by some embodiments of the present application;
  • Figure 6 is a schematic structural diagram of the first single conductor plug-in connector of the stator provided by some embodiments of the present application.
  • Figure 7 is a schematic structural diagram of the first dual-conductor connector of the stator provided by some embodiments of the present application.
  • Figure 8 is a schematic structural diagram of the second single-conductor plug-in connector of the stator provided by some embodiments of the present application.
  • Figure 9 is a schematic structural diagram of the second dual-conductor plug connector of the stator provided by some embodiments of the present application.
  • Figure 10 is a schematic diagram of a phase winding of the stator provided by some embodiments of the present application.
  • Figure 11 is a schematic diagram of three phase windings of a stator provided by some embodiments of the present application.
  • Figure 12 is a schematic connection diagram of the phase windings of the stator windings provided by some embodiments of the present application.
  • Figure 13 is a schematic connection diagram of the phase windings of the stator windings of the stator provided by other embodiments of the present application;
  • Figure 14 is a schematic connection diagram of the phase windings of the stator windings of the stator provided in some embodiments of the present application;
  • Figure 15 is a schematic diagram of the connection of the phase windings of the stator windings of the stator provided in some embodiments of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • “Plural” appearing in this application means two or more (including two).
  • multi-layer conductors can be installed in the winding slots of the stator winding of the motor, and the conductors can be connected to form the stator winding.
  • Stator windings usually take the form of full-pitch windings or short-pitch windings.
  • the same-phase voltage drop and out-of-phase voltage drop in short-distance winding slots are both large, the insulation reliability is low, and the internal losses of the motor are large.
  • the inventor researched and designed a stator that effectively reduces the voltage drop of two adjacent out-of-phase conductors in the same winding slot and the voltage drop of the same winding by changing the winding method of the stator winding.
  • the voltage drop between the same-phase conductors in the trunking improves the insulation reliability of the stator winding.
  • Stator refers to the stationary part of the motor, its function is to generate a rotating magnetic field.
  • Rotor refers to the rotating component in the motor, which is used to convert electrical energy into mechanical energy.
  • Span refers to the distance spanned by two components of the same component in the motor winding on the surface of the armature. It is usually expressed by the number of winding slots opened on the stator core.
  • Number of magnetic pole pairs P The number of magnetic pole pairs is referred to as the number of pole pairs.
  • the magnetic poles formed after the motor winding is energized appear in pairs of N pole and S pole.
  • the total number of magnetic poles is 2P.
  • Pole pitch refers to the distance occupied by each magnetic pole of the motor along the circumferential surface of the air gap.
  • the pole pitch can be expressed by the number of winding slots of the stator core.
  • the pole pitch is Z/2P; Z is the total number of winding slots of the stator core.
  • Pole phase group In AC motors, when multiple coils belonging to the same phase winding under a pole pitch are connected in series to form a group, it is called a pole phase group, also called a coil group.
  • the current directions and electromagnetic effects of each coil in the pole phase group are the same, and these coils jointly produce the magnetic poles in the phase winding.
  • Phase winding refers to a set of windings connected in series and parallel by one or more parallel branches according to the prescribed connection method.
  • the conductors in a phase winding usually span multiple pole pitches, and the coils are connected to each other to form a whole.
  • Figure 1 is a schematic structural diagram of a stator of a motor provided by some embodiments of the present application
  • Figure 2 is a schematic cross-sectional view of the stator provided by some embodiments of the present application
  • Figure 3 is an enlarged schematic diagram of Figure 2 at block A
  • Figure 4 A schematic diagram of the distribution of the first region, the second region and the third region provided for some embodiments of the present application
  • Figure 5 is a schematic diagram of the pole phase groups of the stator windings of the stator provided by some embodiments of the present application.
  • the stator 10 includes a stator core 101 and a stator winding 102 provided on the stator core 101 .
  • a plurality of winding slots 1011 are provided in the inner wall of the stator core 101 .
  • the stator winding 102 includes conductors 1021 inserted in a plurality of winding slots 1021 .
  • the conductors 1021 in each winding slot 1011 are arranged in n layers, and n is a positive even number.
  • the n-layer conductors 1021 are denoted as L 1 layer, L 2 layer, ... and L n layer.
  • the stator winding 102 includes a plurality of phase windings, and each phase winding includes a plurality of pole phase groups; each pole phase group of the phase windings includes a first region 301, a second region 302, and a third region 303.
  • the second region 302 and the third region 303 are respectively located on both sides of the first region 301; the conductor 1021 located in the first region 301 is L 1 to L n layer, and the conductor 1021 located in the second region 302 is L n/2+1 layer to L n layer, the conductor 1021 located in the third region is L 1 layer to L n/2 layer.
  • the phase winding includes the first branch U1 and the second branch U2.
  • the first branch U1 includes 4k conductors 1021 connected in series, k is a positive integer; the 4k conductors 1021 of the first branch U1 are recorded as A 1 ,... ..., A 2k ... and A 4k ; the second branch U2 includes 4k conductors 1021 connected in series, and the 4k conductors 1021 of the second branch U2 are recorded as B 1 , ..., B 2k ... and B 4k .
  • a 1 to A 2k and B 1 to B 2k are distributed in the first area 301; a part of the conductors 1021 in A 2k+1 to A 4k are distributed in the second area 302, and the remaining conductors in A 2k+1 to A 4k 1021 is distributed in the third area 303; a part of the conductors 1021 of B 2k+1 to B 4k is distributed in the second area 302, and the remaining part of the conductors 1021 of B 2k+1 to B 4k is distributed in the third area 303.
  • a 2k+1 to A 3k are distributed in the second area 302, and A 3k to A 4k are distributed in the third area 303.
  • B 2k+1 to B 3k are distributed in the third area 303, and B 3k to B 4k are distributed in the second area 302.
  • the number n of conductors 1021 in the winding slots 1011 may be 2, 4, 6, 8, 16 or 32.
  • the number of winding slots 1011 may be determined according to the number of phase windings in the stator 10, and adapted to different voltage and power ranges in accordance with the design use range of the windings.
  • n is 8.
  • L1 to L8 layers may also be respectively recorded as a layer, b layer, c layer, d layer, e layer, f layer, g layer and h layer.
  • the embodiment of the present application does not limit the shape of the conductor 1021.
  • the cross section of the conductor 1021 may be circular, rectangular, oval, racetrack-shaped, etc.
  • the cross-section of the conductor 1021 is rectangular, which can increase the cross-sectional area of the conductor 1021 and can be adapted to the rectangular wire slot of the iron core to improve the slot fill rate of the stator core; the rectangular conductor 1021 can also be used. It is called a flat wire conductor.
  • a plurality of winding slots 1011 are provided at intervals along the circumferential direction of the stator core 101 .
  • the plurality of winding slots 1011 are evenly arranged along the circumferential direction of the stator core 101; in other words, the plurality of winding slots 1011 are equidistantly arranged in the circumferential direction.
  • the stator winding includes multiple phase windings, and the number of phase windings can be 2, 3, 4, or 5. Of course, the number of phase windings can also be greater than 5.
  • the stator of the embodiment of the present application is suitable for motors with different numbers of phases and can be adapted to different voltage and power ranges.
  • the number of pole phase groups of the phase winding is a positive even number.
  • the first region 301 , the second region 302 and the third region 303 of each pole phase group are distributed in three different winding slots 1011 .
  • the second area 302 is located on one side of the first area 301 in the clockwise direction
  • the third area 302 is located on one side of the first area 301 in the counterclockwise direction; alternatively, the second area 302 is located on the first area 301 along one side in the counterclockwise direction
  • the third area 303 is located on one side of the first area 301 along the clockwise direction.
  • Each phase winding may include multiple branches.
  • the branch of the phase winding can also be called a parallel branch.
  • the number of branches of the phase winding can be any integer to expand the scope of winding design and adapt to different voltage and power ranges.
  • the phase winding in the embodiment of the present application includes a first branch U1 and a second branch U2 connected in parallel; the first branch U1 may be one or multiple, and the second branch U2 may be one. It can also be multiple.
  • a 1 ,..., A 2k ... and A 4k are connected in series in sequence.
  • B 1 ,..., B 2k ... and B 4k are connected in series.
  • the adjacent same-phase conductors 1021 in the same winding slot 1011 are A x and By y respectively, 1 ⁇ x ⁇ 4k, 1 ⁇ y ⁇ 4k; the larger the value of
  • the numbers of the conductors 1021 distributed in the first area 301 do not exceed 2k, and the difference in numbers of adjacent in-phase conductors 1021 will also be less than 2k, which can reduce the number of adjacent in-phase conductors in the first area 301.
  • the maximum voltage drop between the conductors 1021 thereby improves the insulation reliability of the stator winding, reduces the internal loss of the motor, and improves the energy conversion efficiency of the motor.
  • the numbers of the conductors 1021 distributed in the second area 302 and the third area 303 both exceed 2k, and the difference in numbers of the adjacent same-phase conductors 1021 will be less than 2k, which can reduce the number of adjacent same-phase conductors 1021 in the second area 302.
  • the maximum voltage drop between the two adjacent same-phase conductors 1021 in the third region 303 improves the insulation reliability of the stator winding, reduces the internal loss of the motor, and improves the energy conversion efficiency of the motor.
  • the second area 302 occupies only a part of the winding slot 1011
  • the third area 303 occupies only a part of the winding slot 1011, so the phase winding adopts the form of short-distance winding.
  • Short-distance winding can reduce winding harmonics and improve motor torque pulsation and noise vibration.
  • phase windings in the embodiment of the present application adopt the form of short-pitch windings
  • adjacent out-of-phase conductors may exist in some winding slots 1011 .
  • the second area 302 of one phase winding and the third area 303 of the other phase winding are distributed.
  • the adjacent same-phase conductors in the same winding slot 1011 are A ⁇ y ⁇ 4k; the smaller the value of x+y, the greater the voltage drop between adjacent out-of-phase conductors, and the higher the insulation requirements of the electrodes on the stator winding.
  • the numbers of the conductors distributed in the second area 302 and the third area 303 are both greater than 2k, so the numbers of the conductors in the same winding slot 1011 and belonging to different phase windings are all greater than 2k, and the phase numbers are both greater than 2k.
  • the sum of the numbers of adjacent out-of-phase conductors will also be greater than 4k, thereby reducing the maximum voltage drop between adjacent out-of-phase conductors, improving the insulation reliability of the stator winding, reducing the internal losses of the motor, and increasing the energy of the motor. conversion efficiency.
  • the winding groove 1011 extends along the axial direction of the stator core 101 and penetrates the stator core 101 along the axial direction of the stator core 101 .
  • the number of winding slots 1011 is 12 ⁇ M, and M is a positive integer.
  • the stator winding may include three phase windings, the three phase windings are respectively a first phase winding, a second phase winding and a third phase winding.
  • the first phase winding is a U phase winding
  • the second phase winding is a V phase winding
  • the third phase winding is a W phase winding.
  • a 2k+1 to A 3k are distributed in the second area 302, A 3k+1 to A 4k are distributed in the third area 303; B 2k+1 to B 3k are distributed in the third area 303 , B 3k+1 to B 4k are distributed in the second area 302 .
  • conductors 1021 with numbers greater than 3k can be present in both the second region 302 and the third region 303. This can increase the sum of the numbers of adjacent out-of-phase conductors, thereby reducing the maximum voltage between adjacent out-of-phase conductors. It improves the insulation reliability of the stator winding, reduces the internal losses of the motor, and improves the energy conversion efficiency of the motor.
  • the first branch U1 adopts the form of a wave winding and is divided into a first region 301 of a plurality of pole phase groups, a second region 302 of a plurality of pole phase groups, and a third region of a plurality of pole phase groups.
  • the order of area 303 is wound sequentially.
  • the second branch U2 adopts the form of a wave winding and is sequentially wound in the order of first regions 301 of multiple pole phase groups, third regions 303 of multiple pole phase groups, and second regions 302 of multiple pole phase groups.
  • the connecting lines between the conductors 1021 can be reduced and the winding process of the stator winding can be simplified.
  • a 1 and B 1 are located in the same winding slot 1011.
  • the incoming wire ends of the two branches are arranged in the same winding groove 1011, which can facilitate connection with external components such as busbars and improve the efficiency of stator installation.
  • a 1 is the L 1 layer conductor 1021 in the winding groove 1011
  • B 1 is the L n layer conductor 1021 in the winding groove.
  • the incoming terminals of the first branch U1 and the second branch U2 are respectively located at the bottom layer and slot layer of the same winding groove 1011 to facilitate the connection of the busbar.
  • a 4k is the L n layer conductor 1021 in the winding groove 1011; B 4k is the L n layer conductor 1021 in the winding groove.
  • the outlet terminals of the first branch U1 and the second branch U2 are respectively located at the bottom layer and slot layer of the same winding groove 1011 to facilitate the connection of the busbar.
  • Figure 5 is a schematic structural diagram of a phase winding in an embodiment of the present application.
  • the first branch U1 includes a first positive lead U1+ connected to A 1 and a first positive lead U1+ connected to A 4K
  • the first negative lead U1- includes a second positive lead U2+ connected to B 1 and a second negative lead U2- connected to B 4K .
  • the first positive lead U1+, the first negative lead U1-, the second positive lead U2+ and the second negative lead U2- can extend out of the winding groove 1011, which can facilitate the connection between external components and the first branch U1 and the second branch. U2 connection.
  • the first branch U1 includes a plurality of serially connected plug connectors. Each connector includes at least one conductor 1021 .
  • the first branch U1 includes a first single-conductor plug connector 1031 and a plurality of first dual-conductor plug connectors 1022.
  • the first single-conductor plug connector Piece 1031 includes one conductor 1021 and each first two-conductor plug connector 1022 includes two conductors 1021 .
  • the conductor 1021 of the first single-conductor plug connector 1031 and the conductor 1021 of the first dual-conductor plug connector 1022 are different conductors in the first branch U1.
  • the first branch U1 in the embodiment of the present application adopts a combination of various plug connectors, which can make the winding method of the first branch U1 more flexible.
  • the first two-conductor plug connector 1022 may include a connection portion 1028 that connects the two conductors 1021 .
  • the two conductors 1021 may be connected by welding.
  • the span between the two conductors 1021 is small, for example, when the spacing between the two conductors 1021 is less than or equal to 2 winding slots, the two conductors 1021 may be connected by direct welding.
  • the first two-conductor plug connector 1022 further includes two extensions, one extension extending from an end of one conductor away from the connection, and another extension extending from an end of the other conductor away from the connection. .
  • the two extension parts extend out of the winding groove 1011 to facilitate connection with other plug connectors.
  • the first two-conductor connector 1022 may be a hairpin coil.
  • the first dual-conductor plug connector 1022 Before being inserted into the winding slot 1011, the first dual-conductor plug connector 1022 may include two straight sides. The two straight sides are inserted into the winding slot 1011 through one end of the stator core, and the two straight sides are accommodated in the winding slot 1011. The parts respectively form two conductors 1021, and the parts of the two straight sides extending through the other end of the stator core form two extension parts.
  • the two extension parts are respectively the first extension part 1029 and the second extension part 1030.
  • the first extension part 1029 and the second extension part 1030 are both provided at the welding end of the stator winding. After inserting the dual-conductor plug connector into the stator core, the first extension portion 1029 and the second extension portion 1030 can be bent so that the first extension portion 1029 and the second extension portion 1030 can be welded to other plug connectors.
  • first single conductor plug connectors 1031 there are two first single conductor plug connectors 1031, one first single conductor plug connector 1031 includes A 1 , and the other first single conductor plug connector 1031 includes A 4k .
  • the two first single-conductor plug-ins 1031 can respectively serve as the incoming end conductor and the outgoing end conductor to facilitate the bus connection between the first branch U1 and external components.
  • the plurality of first two-conductor plug connectors 1022 includes a first plug connector, a second plug connector, and a third plug connector.
  • the span of the two conductors of the first plug connector is equal to the pole pitch
  • the span of the two conductors 1021 of the second plug connector is less than the pole pitch
  • the span of the two conductors 1021 of the third plug connector is greater than the pole pitch.
  • the plurality of first dual-conductor plug connectors 1022 can be divided into multiple types according to different spans.
  • the first connector is a first two-conductor connector 1022 with a span equal to the pole pitch.
  • the second connector may be a first two-conductor connector 1022 with a span less than the pole pitch.
  • the third connector may be a first two-conductor connector 1022 whose span is greater than the pole pitch.
  • Providing plug connectors 1022 with different spans can adapt to the connection between conductors 1021 with different spans and adapt to different conductor connection methods. It can be understood that the structures of the first plug connector, the second plug connector and the third plug connector are all as shown in Figure 6, and the difference lies in the span between the two conductors 1021 in different plug connectors. The distance is different.
  • the number of the third plug connector is one, and the third plug connector includes two conductors 1021 of A 2k and A 2k + 1 and a connection portion 1028 connecting the two conductors 1021 .
  • the number of the second plug connector is one.
  • the second plug connector includes two conductors 1021 of A 3k and A 3k + 1 and a connecting portion 1028 connecting the two conductors 1021 .
  • the above-mentioned structure can improve the efficiency of conductor plug-in installation.
  • the second branch U2 includes a second single-conductor plug connector 1041 and a plurality of second dual-conductor plug connectors 1042.
  • the second single-conductor plug connector Piece 1041 includes one conductor 1021 and each second two-conductor plug connector 1042 includes two conductors 1021 .
  • the conductor 1021 of the second single-conductor plug connector 1041 and the conductor 1021 of the second dual-conductor plug connector 1042 are different conductors in the second branch U2.
  • the second dual-conductor plug connector includes a fourth plug connector, a fifth plug connector, and a sixth plug connector; the span of the two conductors 1021 of the fourth plug connector is equal to the pole distance, the span of the two conductors 1021 of the sixth plug connector is smaller than that of the fifth plug connector, and the span of the two conductors 1021 of the fifth plug connector is smaller than the pole pitch.
  • the plurality of second dual-conductor plug connectors 1042 can be divided into multiple types according to different spans.
  • the fourth connector is a second two-conductor connector 1042 with a span equal to the pole pitch.
  • the fifth connector may be a second two-conductor connector 1042 with a span less than the pole pitch.
  • the third plug connector may be a second two-conductor plug connector 1042 with a span smaller than that of the fifth plug connector.
  • the number of the fifth plug connector is one, and the fifth plug connector includes two conductors 1021 of B 2k and B 2k+1 and a connecting portion 1028 connecting the two conductors 1021 .
  • the number of the sixth plug connector is one, and the sixth plug connector includes two conductors 1021 of B 3k and B 3k+1 and a connecting portion 1028 connecting the two conductors 1021 .
  • the second single-conductor plug-in connector 1041 can facilitate the welding of the second positive lead U2+ and the second negative lead U2-, and the second two-conductor plug-in connector 1042 can be disposed in two winding grooves respectively.
  • the space occupied in the stator 1011 is reduced, making the structure of the stator 10 more compact.
  • the two second single-conductor plug-ins 1041 can respectively serve as the incoming end conductor and the outgoing end conductor to facilitate the connection between the second branch U2 and the external busbar.
  • Providing plug connectors with different spans can adapt to the connection between conductors 1021 of different spans and adapt to different connection methods of the conductors 1021.
  • B 2k and B 2k+1 are the two conductors of the fifth plug connector; B 3k and B 3k+1 are the two conductors 1021 of the sixth plug connector.
  • the stator winding 102 includes three phase windings, and the three phase windings adopt a star connection or a delta connection.
  • the three phase windings are connected in star configuration.
  • the number of winding grooves 1011 is a multiple of 12.
  • the number of winding slots 1011 is 48, n is 8, and the number of poles of the stator 10 is 8. Each magnetic pole corresponds to 6 winding slots 1011.
  • FIG. 10 is a schematic diagram of a phase winding of the stator 10 provided by some embodiments of the present application. Illustratively, Figure 10 shows a U-phase winding. The stator winding of this application will be described in detail below, taking the U-phase winding as an example.
  • the U-phase winding includes a plurality of branches, two of the plurality of branches serve as the first branch U1 and the second branch U2.
  • the first table shows the first branch U1
  • the second table shows the second branch U2
  • the third table shows the U-phase winding.
  • U1+ represents the first positive lead of the first branch U1
  • U1- represents the first negative lead of the first branch U1
  • U2+ represents the second positive lead of the second branch U2
  • U2- represents the second The second negative lead of branch U2.
  • N and S respectively represent the two magnetic poles of the stator 10 .
  • the stator is provided with 8 magnetic poles, that is, 4 magnetic pole pairs.
  • the stator core is provided with a plurality of winding slots 1011, and the plurality of winding slots 1011 are represented by a row of numbers under the N pole and S pole.
  • the stator core 101 is provided with 48 winding slots 1011.
  • the 48 winding slots are represented by a row of numbers under the N pole and S pole, that is, 1-48.
  • Each magnetic pole corresponds to 6 winding slots 1011.
  • Each winding slot 1011 contains multiple layers of conductors 1021.
  • each winding slot 1011 contains eight conductors 1021.
  • the eight conductors 1021 are located at layers a, b, c, d, e, f, g and h, respectively.
  • Branch U1 includes 64 conductors 1021 connected in series.
  • 64 conductors 1021 are represented by 64 serial numbers distributed in a table.
  • the 64 conductors 1021 are connected in sequence according to the serial number.
  • the solid arrows in Figure 10 represent the connection methods of the 64 conductors 1021 at the welding end, and the dotted arrows represent the connection methods of the conductors 1021 at the plug end.
  • the first positive lead U1+ is connected to the first conductor 1021, and the first negative lead U1- is connected to the 64th conductor 1021.
  • the conductors 1021 of the first branch U1 are connected in series in sequence.
  • Conductors 1, 3, 5 and 7 are all layer a conductors
  • conductors 2, 4, 6 and 8 are all layer b conductors.
  • Conductors 9, 11, 13 and 15 are all layer c conductors.
  • Conductors 1021, 12, 14, and 16 are all d-layer conductors 1021.
  • Conductors 17, 19, 21, and 23 are all e-layer conductors 1021.
  • Conductors 18, 20, 22, and 24 are all f-layer conductors. 1021.
  • Conductors 1021 No. 25, 27, 29, and 31 are all g-layer conductors 1021.
  • Conductors 1021 No. 26, 28, 30, and 32 are all h-layer conductors 1021.
  • conductors 1021 No. 33-64 of the first branch U1 are connected in series in sequence.
  • Conductors 1021 No. 33, 35, 37, and 39 are all h-layer conductors 1021.
  • Conductors 1021 No. 34, 36, 38, and 40 are all g-layer conductors 1021.
  • Conductors 1021 No. 41, 43, 45, and 47 are all f-layer conductors 1021 .
  • Conductors 1021 No. 42, 44, 46, and 48 are all e-layer conductors 1021.
  • Conductors 1021 No. 49, 51, 53, and 55 are all d-layer conductors 1021.
  • Conductors 1021 No. 57, 59, 61, and 63 are all b-layer conductors 1021.
  • Conductors 1021 No. 58, 60, 62, and 64 are all a-layer conductors 1021.
  • conductor No. 32 and conductor 1021 of No. 33 of the first branch U1 are both h-layer conductors.
  • the conductors 1021 connected on the same layer can balance the slot potential of the branches and reduce the circulation loss between the branches.
  • the No. 1 conductor 1021 connected to the first positive lead U1+ is located in the No. 14 winding slot
  • the No. 64 conductor 1021 connected to the first negative lead U1- is located in the No. 9 winding slot. groove.
  • the No. 1 conductor 1021 connected to the first positive lead U1+ and the No. 64 conductor 1021 connected to the first negative lead U1- are both a-layer conductors 1021. This embodiment is beneficial to the arrangement of the busbar and facilitates the connection of the first positive lead U1+ and the first negative lead U1- to the busbar and other components.
  • the stator includes 8 magnetic poles, and correspondingly, the phase windings include 8 pole phase groups.
  • the 64 conductors of the first branch U1 are distributed in 8 pole phase groups, which can reduce the branch potential imbalance caused by the rotor eccentricity.
  • the span between the conductor 1021 connected to the first positive lead U1+ of the first branch U1 and the conductor 1021 connected to the second positive lead U2+ of the second branch U2 is less than or equal to Extreme distance.
  • the embodiment of the present application can reduce the distance between the incoming lines of the two branches, facilitate the connection of the incoming lines of the two branches, and is beneficial to the layout of the busbar and the implementation of the winding processing technology.
  • the second branch U2 includes 64 conductors 1021 .
  • 64 conductors 1021 are represented by 64 serial numbers distributed in a table.
  • the 64 conductors 1021 are connected in sequence according to the serial number.
  • the solid arrows in Figure 10 represent the connection methods of the 64 conductors 1021 at the welding end, and the dotted arrows represent the connection methods of the conductors 1021 at the plug end.
  • U2+ represents the second positive electrode lead
  • U2- represents the second negative electrode lead
  • the second positive lead U2+ is connected to the No. 1 conductor 1021 of the second branch U2, and the second negative lead U2- is connected to the No. 64 conductor 1021 of the second branch U2.
  • the conductors 1021 of the second branch U2 are connected in series in sequence.
  • Conductors 1, 3, 5, and 7 are all h-layer conductors
  • conductors 2, 4, 6, and 8 are all g-layer conductors.
  • Conductors 9, 11, 13, and 15 are all f-layer conductors.
  • Conductors 1021, 12, 14, and 16 are all e-layer conductors 1021.
  • Conductors 17, 19, 21, and 23 are all d-layer conductors 1021.
  • Conductors 18, 20, 22, and 24 are all c-layer conductors. 1021.
  • Conductors 1021 No. 25, 27, 29, and 31 are all b-layer conductors 1021.
  • Conductors 1021 No. 26, 28, 30, and 32 are all a-layer conductors 1021.
  • conductors 1021 No. 33-64 of the second branch U2 are connected in series in sequence.
  • Conductors 1021 No. 33, 35, 37, and 39 are all layer a conductors 1021.
  • Conductors 1021 No. 34, 36, 38, and 40 are all layer conductors 1021.
  • Conductors 1021 No. 41, 43, 45, and 47 are all layer conductors 1021 c. .
  • Conductors 1021 No. 42, 44, 46, and 48 are all d-layer conductors 1021.
  • Conductors 1021 No. 49, 51, 53, and 55 are all e-layer conductors 1021.
  • Conductors 1021 No. 50, 52, 54, and 56 are all f-layer conductors. 1021.
  • Conductors 1021 No. 57, 59, 61, and 63 are all g-layer conductors 1021.
  • Conductors 1021 No. 58, 60, 62, and 64 are all h-layer conduct
  • the conductor 1021 connected to the first positive lead U1+ of the first branch U1 and the conductor 1021 connected to the second positive lead U2+ of the second branch U2 are provided in the same winding groove 1011 .
  • the incoming wire ends of the two branches U2 are led out from the same winding trough 1011, thereby further reducing the distance between the incoming wire ends of the two branches and facilitating the connection of the incoming wire ends of the two branches. It is beneficial to the layout of busbars and the implementation of winding processing technology.
  • conductor No. 32 1021 and conductor No. 33 1021 of the second branch U2 are both layer a conductors 1021 .
  • the conductors 1021 connected on the same layer can balance the slot potential of the branches and reduce the circulation loss between branches.
  • the No. 1 conductor 1021 connected to the second positive lead U2+ is located in the No. 14 winding slot
  • the No. 64 conductor 1021 connected to the second negative lead U2- is located in the No. 7 winding slot. groove.
  • the No. 1 conductor 1021 connected to the second positive lead U2+ and the No. 64 conductor 1021 connected to the second negative lead U2- are both h-layer conductors 1021. This embodiment facilitates the arrangement of busbars and facilitates the connection of the second positive lead U2+ and the second negative lead U2- with the external circuit.
  • the stator includes 8 magnetic poles, and correspondingly, the phase windings include 8 pole phase groups.
  • the 64 conductors 1021 of the second branch U2 are distributed in 8 pole phase groups, which can reduce the branch potential imbalance caused by the rotor eccentricity.
  • multiple branches of phase windings may be connected in series or in parallel.
  • the first branch U1 and the second branch U2 may be connected in series or in parallel.
  • the No. 1 conductor 1021 of the first branch U1 is connected to the first positive lead U1+ of the first branch U1
  • the No. 1 conductor 1021 of the second branch U2 is connected to the No. 1 conductor 1021 of the second branch U2.
  • the two positive leads U2+ are connected.
  • the No. 1 conductor 1021 of the first branch U1 and the No. 1 conductor 1021 of the second branch U2 are provided in the same winding trough, that is, the winding trough 14 .
  • the incoming wire ends of the two branches are led out from the same winding trough, thereby further reducing the distance between the incoming wire ends of the two branches, facilitating the connection of the incoming wire ends of the two branches, and conducive to the layout and arrangement of the busbar. Implementation of winding processing technology.
  • the No. 1 conductor 1021 of the first branch U1 and the No. 64 conductor 1021 of the first branch U1 are both layer A conductors 1021, and the No. 1 conductor 1021 and the second conductor 1021 of the second branch U2
  • the No. 64 conductor 1021 of the branch U1 is an h-layer conductor 1021. This embodiment facilitates the arrangement of busbars and facilitates the connection of the two incoming wire terminals (U1+, U2+) and the two outgoing wire terminals (U1-, U2-) with external circuits.
  • the stator winding 102 includes three phase windings, and the three phase windings adopt a star connection.
  • the steady-state voltage drop of adjacent out-of-phase conductors 1021 in the same winding slot 1011 can be calculated according to the formula [(2*4k-xy)/4k]*U dc /2.
  • U dc is the bus voltage.
  • x and y are respectively the numbers of two adjacent out-of-phase conductors 1021.
  • 4k is the total number of conductors 1021 in the first branch.
  • the maximum voltage drop of the out-of-phase conductor 1021 in the same winding trough is 0.29U dc .
  • the steady-state voltage drop of adjacent same-phase conductors 1021 in the same winding slot 1011 can be calculated according to the formula [
  • U dc is the bus voltage.
  • x and y are the numbers of two adjacent same-phase conductors 1021 respectively.
  • the maximum voltage drop of the same-phase conductor 1021 in the same winding trough is 0.27U dc .
  • the U-phase winding shown in Figure 10 can balance the slot potential of each branch, reduce the circulation loss between branches, reduce the branch electromotive force imbalance caused by the rotor eccentricity, and reduce the conductor in the slot 1021 Voltage stress is also beneficial to the layout of busbars and the implementation of winding processing technology.
  • Figure 11 is a schematic diagram of three phase windings of a stator provided by some embodiments of the present application.
  • Figure 11 shows the U-phase winding, V-phase winding and W-phase winding of the stator winding.
  • the U-phase winding includes a first branch U1 and a second branch U2, U1+ represents the first positive lead of the first branch U1, and U1- represents the first positive lead of the first branch U1.
  • the V-phase winding includes the first branch V1 and the second branch V2.
  • V1+ represents the first positive lead of the first branch V1
  • V1- represents the first negative lead of the first branch V1
  • V2+ represents the second branch V2.
  • the second positive lead, V2- represents the second negative lead of the second branch V2.
  • the W-phase winding includes the first branch W1 and the second branch W2.
  • W1+ represents the first positive lead of the first branch W1
  • W1- represents the first negative lead of the first branch W1
  • W2+ represents the second branch W2.
  • the second positive lead, W2- represents the second negative lead of the second branch W2.
  • 12 conductors connected to the leads U1+, U1-, U2+, U2-, V1+, V1-, V2+, V2-, W1+, W1-, W2+, W2- are arranged in 9 winding slots.
  • the six conductors connected to the leads U1+, U1-, W1+, W1-, V1+, and V1- are all a-layer conductors.
  • the aforementioned leads are all close to the radially outer end of the stator core to facilitate welding.
  • the stator winding 102 includes three phase windings, namely, a U-phase winding, a V-phase winding, and a W-phase winding.
  • the three phase windings are connected in a delta.
  • the U-phase winding includes a first branch U1 and a second branch U2 connected in series.
  • the V-phase winding includes a first branch V1 and a second branch V2 connected in series.
  • the W-phase winding includes a first branch W1 and a second branch W2 connected in series.
  • the stator winding includes three phase windings, namely, U-phase winding, V-phase winding and W-phase winding.
  • the three phase windings are connected in star shape.
  • the U-phase winding includes a first branch U1 and a second branch U2 connected in series.
  • the V-phase winding includes a first branch V1 and a second branch V2 connected in series.
  • the W-phase winding includes a first branch W1 and a second branch W2 connected in series.
  • Figure 14 is a schematic diagram of the connection of the phase windings of the stator windings of the stator provided by other embodiments of the present application.
  • the stator winding includes three phase windings, namely, U-phase winding, V-phase winding and W-phase winding.
  • the three phase windings are connected in a delta.
  • the U-phase winding includes a first branch U1 and a second branch U2 connected in parallel.
  • the V-phase winding includes a first branch V1 and a second branch V2 connected in parallel.
  • the W-phase winding includes a first branch W1 and a second branch W2 connected in parallel.
  • Figure 15 is a schematic diagram of the connection of the phase windings of the stator windings of the stator provided in some embodiments of the present application.
  • the stator winding includes three phase windings, namely, U-phase winding, V-phase winding and W-phase winding.
  • the three phase windings are connected in star shape.
  • the U-phase winding includes a first branch U1 and a second branch U2 connected in parallel.
  • the V-phase winding includes a first branch V1 and a second branch V2 connected in parallel.
  • the W-phase winding includes a first branch W1 and a second branch W2 connected in parallel.
  • An embodiment of the present application also provides a motor, which includes the stator provided in any of the foregoing embodiments.
  • the motor further includes a rotor, and the rotor is disposed in a space surrounded by the inner wall of the stator core.
  • the motor in the embodiment of the present application can be either a generator or an electric motor.
  • An embodiment of the present application also provides an electrical device, which includes the motor provided in any of the foregoing embodiments.
  • the electrical device includes a powertrain, which includes a reducer and the above-mentioned motor.
  • Motor and reducer transmission connection Specifically, the drive shaft of the motor and the input shaft of the reducer can be connected through transmission components such as couplings to output the driving force from the motor to the reducer.
  • An embodiment of the present application also provides a vehicle, including the above-mentioned power assembly.
  • the above-mentioned power assembly is disposed in the vehicle and provides operating power for the vehicle.
  • the vehicle may be a new energy vehicle driven by electric energy, for example.
  • new energy vehicles can specifically be hybrid electric vehicles, pure electric vehicles or fuel cell electric vehicles, etc., or they can be vehicles that use high-efficiency energy storage devices such as supercapacitors, flywheel batteries or flywheel energy storage devices as the source of electric energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

本申请实施例提供一种电机及其定子和用电装置。定子包括定子铁芯和设置于定子铁芯的定子绕组,定子铁芯的内壁开设有多个绕线槽,定子绕组包括插设于多个绕线槽中的导体。定子绕组包括多个相绕组,各相绕组包括第一支路和第二支路。

Description

一种电机及其定子和用电装置 技术领域
本申请涉及动力装置技术领域,并且更具体地,涉及一种电机及其定子和用电装置。
背景技术
随着新能源汽车产业的发展,其驱动电机的发展也趋向高压化、高速化、集成化、平台化、小型化方向发展。
目前,如何降低电机内部的压降,减少内部能量损耗,是本领域研究的目标之一。
发明内容
本申请提供了一种电机及其定子,能够降低电机内部绕组的压降,减少电机的内部能量损耗。
第一方面,本申请实施例提供了一种电机的定子,包括定子铁芯和设置于定子铁芯的定子绕组,定子铁芯的内壁开设有多个绕线槽,定子绕组包括插设于多个绕线槽中的导体。
各绕线槽中的导体设置为n层,n为正偶数;沿绕线槽的槽底指向绕线槽的槽口的方向,n层导体记为L 1层、L 2层、……和L n层。
定子绕组包括多个相绕组,各相绕组包括多个极相组;相绕组的每个极相组包括第一区域、第二区域和第三区域,第二区域和第三区域分别位于第一区域的两侧;位于第一区域的导体为L 1层至L n层,位于第二区域的导体为L n/2+1层至L n层,位于第三区域的导体为L 1层至L n/2层。
各相绕组包括第一支路和第二支路,第一支路包括4k个依次串联的导体,k为正整数;第一支路的4k个导体记为A 1、……、A 2k……和A 4k;第二支路包括4k个依次串联的导体,第二支路的4k个导体记为B 1、……、 B 2k……和B 4k
A 1至A 2k、B 1至B 2k分布于第一区域;A 2k+1至A 4k中的一部分分布于第二区域,A 2k+1至A 4k中的剩余部分分布于第三区域;B 2k+1至B 4k的一部分分布于第二区域,B 2k+1至B 4k的剩余部分分布于第三区域。
在本申请实施例的技术方案中,第一支路以及第二支路中的前半部分导体均分布于第一区域中,后半部分的导体分布在第二区域以及第三区域中,这样可以能够减小相邻异相导体之间的最大压降,以及减小相邻同相导体之间的最大压降,提高定子绕组的绝缘可靠性,降低了电机的内部损耗,提升了电机的能量转换效率。同时,上述的结构构成短距绕组,可降低绕组谐波,抑制转矩脉动,改善噪音振动,提升效率。
在一些实施例中,A 2k+1至A 3k分布于第二区域,A 3k+1至A 4k分布于第三区域;B 2k+1至B 3k分布于第三区域,B 3k+1至B 4k分布于第二区域。通过将第一支路依次分布在第一区域、第二区域以及第三区域,将第二支路依次分布在第一区域、第三区域以及第二区域,可减小相邻异相导体之间的最大压降,提高定子绕组的绝缘可靠性,降低了电机的内部损耗,提升了电机的能量转换效率。同时,上述的结构构成短距绕组,可降低绕组谐波,抑制转矩脉动,改善噪音振动,提升效率。
在一些实施例中,A 1和B 1位于同一个绕线槽。两个支路的进线端设置于同一个绕线槽,能便于与汇流排等外部设备连接,提升定子安装的效率。
在一些实施例中,A 1为绕线槽内的L 1层导体,B 1为绕线槽内的L n层导体。将第一支路以及第二支路的进线端分别设于同一绕线槽的槽底层以及槽口层,便于汇流排的连接。
在一些实施例中,A 4k为绕线槽内的L n层的导体;B 4k为绕线槽内的L n层导体。将第一支路以及第二支路的出线端分别设于同一绕线槽的槽底层以及槽口层,便于汇流排的连接。
在一些实施例中,第一支路包括与A 1连接的第一正极引线以及与A 4K连接的第一负极引线;第二支路包括与B 1连接的第二正极引线以及与B 4K连接的第二负极引线。正极引线以及负极引线能伸出绕线槽外,提升进线端 以及出线端焊接的便利性,能够便于外部部件与第一支路以及第二支路的连接。
在一些实施例中,第一支路包括第一单导体插接件和多个第一双导体插接件,第一单导体插接件包括一个导体,各第一双导体插接件包括两个导体。本申请实施例的第一支路采用多种插接件的组合,可以使第一支路的绕制方式更为灵活。
在一些实施例中,第一单导体插接件为两个,一个第一单导体插接件包括A 1,另一个第一单导体插接件包括A 4k。两个第一单导体插件能够分别作为进线端导体以及出线端导体,便于第一支路与外部部件连接。
在一些实施例中,多个第一双导体插接件包括第一插接件、第二插接件和第三插接件;第一插接件的两个导体的跨距等于极距,第二插接件的两个导体的跨距小于极距,第三插接件的两个导体的跨距大于极距。设置不同跨距的插接件,能适应不同跨距的导体之间的连接,适应不同的导体连接方式。
在一些实施例中,A 2k和A 2k+1为第三插接件的两个导体;A 3k和A 3k+1为第二插接件的两个导体。在第一支路中,从第一区域跨接到第二区域时,通过第三插接件进行长距的跨接,从第二区域和第三区域之间跨接时,通过第二插接件进行短距的跨接;上述的结构能提升导体插接安装的效率。
在一些实施例中,第二支路包括第二单导体插接件和多个第二双导体插接件,第二单导体插接件包括一个导体,各第二双导体插接件包括两个导体;第二单导体插接件为两个,一个第二单导体插接件包括B 1,另一个第一单导体插接件包括B 4k;多个第二双导体插接件包括第四插接件、第五插接件和第六插接件;第四插接件的两个导体的跨距等于极距,第六插接件的两个导体的跨距小于第五插接件,第五插接件的两个导体的跨距小于极距。
在第二支路中,第二单导体插接件能便于第二正极引线以及第二负极引线的焊接,第二双导体插接件能够分别设置于两个绕线槽中减少占用空间,使得定子的结构更加紧凑。两个第二单导体插件能够分别作为进线端导体以及出线端导体,便于第二支路与外部的汇流排连接。设置不同跨 距的插接件,能适应不同跨距的导体之间的连接,适应不同的导体连接方式。
在一些实施例中,B 2k和B 2k+1为第五插接件的两个导体;B 3k和B 3k+1为第六插接件的两个导体。
在第二支路中,从第一区域跨接到第三区域时,通过第五插接件进行短距的跨接,从第二区域和第三区域之间跨接时,通过第六插接件进行短距的跨接;上述的结构能提升导体插接安装的效率。
在一些实施例中,定子绕组包括三个相绕组,三个相绕组采用星型连接或三角连接。
在一些实施例中,绕线槽为12的倍数。
在一些实施例中,绕线槽的个数为48,n为8,定子的极数为8。
第二方面,本申请实施例提供了一种电机,包括上述任一实施例中的定子。
第三方面,本申请实施例提供了一种用电装置,包括上述任一实施例中的电机。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的电机的定子的一结构示意图;
图2为本申请一些实施例提供的定子的剖视示意图;
图3为图2在方框A处的放大示意图;
图4为本申请一些实施例提供的第一区域、第二区域以及第三区域的分布示意图;
图5为本申请一些实施例提供的定子的定子绕组的相绕组的极相组示意图;
图6为本申请一些实施例提供的定子的第一单导体插接件的结构示 意图;
图7为本申请一些实施例提供的定子的第一双导体插接件的结构示意图;
图8为本申请一些实施例提供的定子的第二单导体插接件的结构示意图;
图9为本申请一些实施例提供的定子的第二双导体插接件的结构示意图
图10为本申请一些实施例提供的定子的一个相绕组的示意图;
图11为本申请一些实施例提供的定子的三个相绕组的示意图;
图12为本申请一些实施例提供的定子的定子绕组的相绕组的连接示意图;
图13为本申请另一些实施例提供的定子的定子绕组的相绕组的连接示意图;
图14为本申请又一些实施例提供的定子的定子绕组的相绕组的连接示意图;
图15为本申请再一些实施例提供的定子的定子绕组的相绕组的连接示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和 “具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
新能源汽车的驱动电机中,为了提高电机的槽满率,提高功率密度和转矩密度,可以在电机的定子绕组的绕线槽中设置多层导体,并将导体连接形成定子绕组。定子绕组通常采用整距绕组或短距绕组的形式。
发明人发现,相关技术中,整距绕组谐波含量较高,槽内的同相导体之间的压降大,降低了绝缘可靠性以及电机能量转换效率。短距绕组槽内同相压降以及异相压降都较大,绝缘可靠性低,并且电机内部损耗大。
基于上述的原因,发明人研究并设计出了一种定子,其通过改变定 子绕组的绕线方式,以有效的降低同一个绕线槽内相邻两个异相导体的压降以及同一个绕线槽内同相导体之间的压降,提高定子绕组的绝缘可靠性。
为方便理解,以下先对本申请中出现的专业名词作如下解释说明。
定子:是指电机中静止不动的部分,其作用在于产生旋转磁场。
转子:是指电机中的旋转部件,作用在于实现电能与机械能的转换。
跨距:是指电机绕组中同一元件的两个元件边在电枢表面所跨的距离,通常用定子铁芯上开设的绕线槽的数量来表示。
磁极对数P:磁极对数简称极对数。电机绕组通电后所形成的磁极是以N极和S极成对的形式出现的。磁极总数为2P。
极距:极距是指电机每个磁极沿气隙圆周表面所占的距离。极距可用定子铁芯的绕线槽的数量表示。示例性地,极距为Z/2P;Z为定子铁芯的绕线槽的总数。
极相组:在交流电机中凡是一个极距下属于同相绕组的多个线圈串接成一组,就称为极相组,也叫线圈组。极相组内各个线圈的电流方向、电磁作用都是相同的,这几个线圈共同产生该相绕组中的磁极。
相绕组:相绕组指由一条或多条并联支路按规定接法,通过串、并联接起来的一套绕组。相绕组中的导体通常跨越多个极距,且线圈之间相互连接并形成整体。
图1为本申请一些实施例提供的电机的定子的一结构示意图;图2为本申请一些实施例提供的定子的剖视示意图;图3为图2在方框A处的放大示意图;图4为本申请一些实施例提供的第一区域、第二区域以及第三区域的分布示意图;图5为本申请一些实施例提供的定子的定子绕组的相绕组的极相组示意图。
如图1及图2所示,本申请一些实施例提供了一种电机的定子10,定子10包括定子铁芯101和设置于定子铁芯101的定子绕组102。定子铁芯101的内壁开设有多个绕线槽1011。定子绕组102包括插设于多个绕线槽1021中的导体1021。请参考图3,各绕线槽1011中的导体1021设置为n层,n为正偶数。沿绕线槽1011的槽底指向绕线槽1011的槽口的方向,n层导体1021记为L 1层、L 2层、……和L n层。
请结合参考图4,定子绕组102包括多个相绕组,各相绕组包括多个极相组;相绕组的每个极相组包括第一区域301、第二区域302和第三区域303,第二区域302和第三区域303分别位于第一区域301的两侧;位于第一区域301的导体1021为L 1层至L n层,位于第二区域302的导体1021为L n/2+1层至L n层,位于第三区域的导体1021为L 1层至L n/2层。
相绕组包括第一支路U1和第二支路U2,第一支路U1包括4k个依次串联的导体1021,k为正整数;第一支路U1的4k个导体1021记为A 1、……、A 2k……和A 4k;第二支路U2包括4k个依次串联的导体1021,第二支路U2的4k个导体1021记为B 1、……、B 2k……和B 4k
A 1至A 2k、B 1至B 2k分布于第一区域301;A 2k+1至A 4k中的一部分导体1021分布于第二区域302,A 2k+1至A 4k中的剩余部分的导体1021分布于第三区域303;B 2k+1至B 4k的一部分导体1021分布于第二区域302,B 2k+1至B 4k的剩余部分导体1021分布于第三区域303。
示例性地,A 2k+1至A 3k分布于第二区域302,A 3k至A 4k分布于第三区域303。B 2k+1至B 3k分布于第三区域303,B 3k至B 4k分布于第二区域302。
示例性地,绕线槽1011中导体1021的数量n可以为2、4、6、8、16或32。绕线槽1011的数量可根据定子10中的相绕组的数量确定,配合绕组设计使用范围,适配于不同电压与功率范围。在一些实施例中,如图6所示,n为8。示例性地,L 1层至L 8层也可分别记为a层、b层、c层、d层、e层、f层、g层和h层。
本申请实施例不限制导体1021的形状。示例性地,导体1021的截面可以为圆形、矩形、椭圆形或跑道型等。可选地,导体1021的截面为矩形,能够增大导体1021的横截面积,并且能与铁芯的矩形插线槽适配,以提高定子铁芯的槽满率;矩形的导体1021也可称之为扁线导体。
示例性地,多个绕线槽1011沿定子铁芯101的周向间隔设置。可选地,多个绕线槽1011沿定子铁芯101的周向均匀设置;换言之,在周向上,多个绕线槽1011等距设置。
定子绕组包括多个相绕组,相绕组的数量可以是2、3、4、5。当然,相绕组的数量也可以大于5。本申请实施例的定子适用于不同相数的电机, 可适配不同电压与功率范围。
相绕组的极相组的个数为正偶数。每个极相组的第一区域301、第二区域302和第三区域303分布于三个不同的绕线槽1011。示例性地,第二区域302位于第一区域301沿顺时针方向的一侧,第三区域302位于第一区域301沿逆时针方向的一侧;可替代地,第二区域302位于第一区域301沿逆时针方向的一侧,第三区域303位于第一区域301沿顺时针方向的一侧。
各相绕组可以包括多个支路。相绕组的支路也可以称之为并联支路。相绕组的支路的数量可以为任意整数,以扩展绕组设计使用范围,适配不同电压与功率范围。示例性的,本申请实施例的相绕组包括并联的第一支路U1以及第二支路U2;第一支路U1可以为一个,也可以为多个,第二支路U2可以为一个,也可以为多个。
示例性地,从第一支路U1的正极到负极,A 1、……、A 2k……和A 4k依次串联。从第二支路U2的正极到负极,B 1、……、B 2k……和B 4k依次串联。
发明人注意到,在同一个绕线槽1011内,相邻的同相导体1021之间的压降与导体1021编号之间的差相关。示例性地,同一个绕线槽1011内相邻的同相导体1021分别为A x和B y,1≤x≤4k,1≤y≤4k;|x-y|的值越大,相邻的同相导体1021之间的压降越大,电机对定子绕组的绝缘性要求越高。
在申请实施例中,第一区域301内分布的导体1021的编号均不超过2k,相邻的同相导体1021的编号之差也就会小于2k,这样可以减小第一区域301内相邻同相导体1021之间的最大压降,从而提高定子绕组的绝缘可靠性,降低了电机的内部损耗,提升了电机的能量转换效率。
第二区域302和第三区域303内分布的导体1021的编号均超过2k,相邻的同相导体1021的编号之差也就会小于2k,这样可以减小第二区域302内相邻同相导体1021之间的最大压降和第三区域303内相邻同相导体1021之间的最大压降,从而提高定子绕组的绝缘可靠性,降低了电机的内部损耗,提升了电机的能量转换效率。
在本申请的实施例中,第二区域302仅占用绕线槽1011的一部分、 第三区域303仅占用绕线槽1011的一部分,所以相绕组采用了短距绕组的形式。短距绕组可降低绕组谐波,改善电机转矩脉动与噪音振动。
由于本申请实施例的相绕组采用了短距绕组的形式,所以在某些绕线槽1011内会存在相邻的异相导体。示例性地,同一个绕线槽1011内,会分布一个相绕组的第二区域302和另一个相绕组的第三区域303。
发明人注意到,在同一个绕线槽1011内,相邻的异相导体之间的压降与导体1021编号之和相关。示例性地,同一个绕线槽1011内相邻的同相导体分别为A x和A y(也可能是B x和B y,还可能是A x和B y),1≤x≤4k,1≤y≤4k;x+y的值越小,相邻的异相导体之间的压降越大,电极对定子绕组的绝缘性要求越高。
在本申请的实施例中,第二区域302和第三区域303内分布的导体的编号均超过2k,那么在同一个绕线槽1011内且属于不同相绕组的导体的编号均大于2k,相邻的异相导体的编号之和也就会大于4k,从而减小相邻异相导体之间的最大压降,提高定子绕组的绝缘可靠性,降低了电机的内部损耗,提升了电机的能量转换效率。
在本申请的一些实施例中,绕线槽1011沿定子铁芯101的轴向延伸,并沿定子铁芯101的轴向贯通定子铁芯101。
在本申请的实施例中,绕线槽1011的数量为12·M,M为正整数。
在本申请的一些实施例中,定子绕组可包括三个相绕组,三个相绕组分别为第一相绕组、第二相绕组和第三相绕组。示例性地,第一相绕组为U相绕组,第二相绕组为V相绕组,第三相绕组为W相绕组。
在本申请的一些实施例中,A 2k+1至A 3k分布于第二区域302,A 3k+1至A 4k分布于第三区域303;B 2k+1至B 3k分布于第三区域303,B 3k+1至B 4k分布于第二区域302。
本申请可以使第二区域302和第三区域303均存在编号大于3k的导体1021,这样可增大相邻的异相导体的编号之和,从而减小相邻异相导体之间的最大压降,提高定子绕组的绝缘可靠性,降低了电机的内部损耗,提升了电机的能量转换效率。
在本申请的一些实施例中,第一支路U1采用波绕组的形式按多个极 相组的第一区域301、多个极相组的第二区域302和多个极相组的第三区域303的顺序依次绕制。第二支路U2采用波绕组的形式按多个极相组的第一区域301、多个极相组的第三区域303和多个极相组的第二区域302的顺序依次绕制。
通过采用波绕组的形式将第一支路U1以及第二支路U2进行绕接,可减少导体1021之间的连接线,简化定子绕组的绕制工艺。
在本申请的一些实施例中,A 1和B 1位于同一个绕线槽1011。两个支路的进线端设置于同一个绕线槽1011,能便于与汇流排等外部部件连接,提升定子安装的效率。
在本申请的一些实施例中,A 1为绕线槽1011内的L 1层导体1021,B 1为绕线槽内的L n层导体1021。将第一支路U1以及第二支路U2的进线端分别设于同一绕线槽1011的槽底层以及槽口层,便于汇流排的连接。
在本申请的一些实施例中,A 4k为绕线槽1011内的L n层的导体1021;B 4k为绕线槽内的L n层导体1021。将第一支路U1以及第二支路U2的出线端分别设于同一绕线槽1011的槽底层以及槽口层,便于汇流排的连接。
图5为本申请实施例一个相绕组的结构示意图,如图5所示,在本申请的一些实施例中,第一支路U1包括与A 1连接的第一正极引线U1+以及与A 4K连接的第一负极引线U1-。第二支路U2包括与B 1连接的第二正极引线U2+以及与B 4K连接的第二负极引线U2-。第一正极引线U1+、第一负极引线U1-、第二正极引线U2+以及第二负极引线U2-可伸出到绕线槽1011外,能够便于外部部件与第一支路U1以及第二支路U2的连接。
在本申请的一些实施例中,第一支路U1包括多个串联的插接件。各插接件包括至少一个导体1021。
如图6以及图7所示,在本申请的一些实施例中,第一支路U1包括第一单导体插接件1031和多个第一双导体插接件1022,第一单导体插接件1031包括一个导体1021,各第一双导体插接件1022包括两个导体1021。第一单导体插接件1031的导体1021和第一双导体插接件1022的导体1021为第一支路U1中不同的导体。
本申请实施例的第一支路U1采用多种插接件的组合,可以使第一支 路U1的绕制方式更为灵活。
在一些实施例中,第一双导体插接件1022可包括连接部1028,连接部1028连接两个导体1021。
在一些实施例中,两个导体1021还可以通过焊接连接。示例性的,当两个导体1021之间的跨距较小,例如两个导体1021之间间距小于或等于2个绕线槽时,可以通过直接焊接的方式连接两个导体1021。
在一些实施例中,第一双导体插接件1022还包括两个延伸部,一个延伸部从一个导体远离连接部的端部延伸,另一个延伸部从另一个导体远离连接部的端部延伸。两个延伸部伸出绕线槽1011,以便于与其它插接件连接。
示例性地,第一双导体插接件1022可为发卡线圈。在插入绕线槽1011之前,第一双导体插接件1022可包括两个直线边,两个直线边经由定子铁芯的一端插入绕线槽1011,两个直线边的容纳于绕线槽1011的部分分别形成两个导体1021,两个直线边的经由定子铁芯的另一端伸出的部分形成两个延伸部。
两个延伸部分别为第一延伸部1029和第二延伸部1030,第一延伸部1029和第二延伸部1030均设置于定子绕组的焊接端。在将双导体插接件插入定子铁芯后,可以弯折第一延伸部1029和第二延伸部1030,以便于第一延伸部1029和第二延伸部1030与其它的插接件焊接。
在本申请的一些实施例中,第一单导体插接件1031为两个,一个第一单导体插接件1031包括A 1,另一个第一单导体插接件1031包括A 4k。两个第一单导体插件1031能够别分作为进线端导体以及出线端导体,便于第一支路U1与外部部件的汇流排连接。
在本申请的一些实施例中,多个第一双导体插接件1022包括第一插接件、第二插接件和第三插接件。第一插接件的两个导体的跨距等于极距,第二插接件的两个导体1021的跨距小于极距,第三插接件的两个导体1021的跨距大于极距。
多个第一双导体插接件1022可按照跨距的不同分为多种。第一插接件为一个跨距等于极距的第一双导体插接件1022。第二插接件可为一个 跨距小于极距的第一双导体插接件1022。第三插接件可为一个跨距大于极距的第一双导体插接件1022。
设置不同跨距的插接件1022,能适应不同跨距的导体1021之间的连接,适应不同的导体连接方式。可以理解的是,第一插接件、第二插接件和第三插接件的结构均如图6中所示,其区别在于不同插接件中的-两个导体1021之间的跨距不同。
在本申请的一些实施例中,第三插接件的数量为一个,第三插接件包括A 2k和A 2k+1的两个导体1021以及连接两个导体1021的连接部1028。第二插接件的数量为一个,第二插接件包括A 3k和A 3k+1的两个导体1021以及连接两个导体1021的连接部1028。第一插接件的数量为多个,包括依次连接于A 2至A 2k-1、A 2k+2至A 3k-1以及A 3k+2至A 4k之间相邻的两个导体1021,以及连接于相邻两个导体1021之间的多个连接部1028。
在第一支路U1中,从第一区域301跨接到第二区域302时,通过第三插接件进行长距的跨接,从第二区域302和第三区域303之间跨接时,通过第二插接件进行短距的跨接;上述的结构能提升导体插接安装的效率。
如图8及图9所示,在本申请的一些实施例中,第二支路U2包括第二单导体插接件1041和多个第二双导体插接件1042,第二单导体插接件1041包括一个导体1021,各第二双导体插接件1042包括两个导体1021。第二单导体插接件1041的导体1021和第二双导体插接件1042的导体1021为第二支路U2中不同的导体。
在本申请的一些实施例中,第二单导体插接件1041为两个,一个第二单导体插接件1041包括B 1,另一个第二单导体插接件1041包括B 4k
在本申请的一些实施例中,第二双导体插接件包括第四插接件、第五插接件和第六插接件;第四插接件的两个导体1021的跨距等于极距,第六插接件的两个导体1021的跨距小于第五插接件,第五插接件的两个导体1021的跨距小于极距。
可以理解的是,第四插接件、第五插接件和第六插接件的结构均如图8中所示,其区别在于不同插接件中的两个导体1021之间的跨距不同。
多个第二双导体插接件1042可按照跨距的不同分为多种。第四插接件为一个跨距等于极距的第二双导体插接件1042。第五插接件可为一个跨距小于极距的第二双导体插接件1042。第三插接件可为一个跨距小于第五插接件的跨距的第二双导体插接件1042。
在本申请的一些实施例中,第五插接件的数量为一个,第五插接件包括B 2k和B 2k+1的两个导体1021以及连接两个导体1021的连接部1028。第六插接件的数量为一个,第六插接件包括B 3k和B 3k+1的两个导体1021以及连接两个导体1021的连接部1028。第四插接件的数量为多个,包括依次连接于B 2至B 2k-1、B 2k+2至B 3k-1以及B 3k+2至B 4k之间相邻的两个导体1021,以及连接于相邻两个导体1021之间的多个连接部1028。
在第二支路U2中,第二单导体插接件1041能便于第二正极引线U2+以及第二负极引线U2-的焊接,第二双导体插接件1042能够分别设置于两个绕线槽1011中减少占用空间,使得定子10的结构更加紧凑。两个第二单导体插件1041能够别分作为进线端导体以及出线端导体,便于第二支路U2与外部的汇流排连接。设置不同跨距的插接件,能适应不同跨距的导体1021之间的连接,适应不同的导体1021连接方式。
在本申请的一些实施例中,B 2k和B 2k+1为第五插接件的两个导体;B 3k和B 3k+1为第六插接件的两个导体1021。
在第二支路U2中,从第一区域301跨接到第三区域时303,通过第五插接件进行短距的跨接,从第二区域302和第三区域303之间跨接时,通过第六插接件进行短距的跨接;上述的结构能提升导体插接安装的效率。
在本申请的一些实施例中,定子绕组102包括三个相绕组,三个相绕组采用星型连接或三角连接。可选地,三个相绕组采用星型连接。
在本申请的一些实施例中,绕线槽1011的个数为12的倍数。
在本申请的一些实施例中,绕线槽1011的个数为48,n为8,定子10的极数为8。每个磁极对应6个绕线槽1011。
图10为本申请一些实施例提供的定子10的一个相绕组的示意图。示例性地,图10示出了U相绕组。下面以U相绕组为例,详细描述本申请的定子绕组。
如图10所示,U相绕组包括多个支路,多个支路中的两个作为第一支路U1和第二支路U2。
为了便于理解,第一个表格示出了第一支路U1,第二表格示出了第二支路U2,第三个表格示出了U相绕组。
在图10中,U1+表示第一支路U1的第一正极引线,U1-表示第一支路U1的第一负极引线;U2+表示第二支路U2的第二正极引线,U2-表示第二支路U2的第二负极引线。
N和S分别表示定子10的两个磁极。示例性地,定子设有8个磁极,即4个磁极对。
定子铁芯设有多个绕线槽1011,多个绕线槽1011用N极、S极下的一行数字表示。示例性地,定子铁芯101设有48个绕线槽1011。在图10中,48个绕线槽分别用N极、S极下的一行数字表示,即1-48。每个磁极对应6个绕线槽1011。
每个绕线槽1011内容纳有多层导体1021。示例性地,在图7中,每个绕线槽1011内容纳有8个导体1021。8个导体1021分别位于a层、b层、c层、d层、e层、f层、g层和h层。
支路U1包括64个依次连接的导体1021。在图10中,64个导体1021以分布在表格中的64个序号表示。64个导体1021按照序号依次连接。图10中的实线箭头表示64个导体1021在焊接端的连接方式,虚线箭头表示导体1021在插线端的连接方式。
第一正极引线U1+与第1号导体1021连接,第一负极引线U1-与第64号导体1021连接。
在本申请的一些实施例中,第一支路U1的第1-32号导体1021依次串联连接。1、3、5、7号导体1021均为a层导体1021,2、4、6、8号导体1021均为b层导体1021。9、11、13、15号导体1021均为c层导体1021。10、12、14、16号导体1021均为d层导体1021。17、19、21、23号导体1021均为e层导体1021。18、20、22、24号导体1021均为f层导体1021。25、27、29、31号导体1021均为g层导体1021。26、28、30、32号导体1021均为h层导体1021。
在本申请的一些实施例中,第一支路U1的第33-64号导体1021依次串联连接。33、35、37、39号导体1021均为h层导体1021,34、36、38、40号导体1021均为g层导体1021。41、43、45、47号导体1021均为f层导体1021。42、44、46、48号导体1021均为e层导体1021。49、51、53、55号导体1021均为d层导体1021。50、52、54、56号导体1021均为c层导体1021。57、59、61、63号导体1021均为b层导体1021。58、60、62、64号导体1021均为a层导体1021。
在本申请的一些实施例中,第一支路U1的32号导体和33号导体1021均为h层导体。同层连接的导体1021能够平衡支路的槽电势,减少支路间的环流损耗。
在本申请的一些实施例中,与第一正极引线U1+相连的第1号导体1021位于第14号绕线槽,与第一负极引线U1-相连的第64号导体1021位于第9号绕线槽。
在本申请的一些实施例中,与第一正极引线U1+相连的第1号导体1021以及与第一负极引线U1-相连的第64号导体1021均为a层导体1021。本实施例有利于汇流排的布置,便于第一正极引线U1+和第一负极引线U1-与汇流排等部件的连接。
在本申请的一些实施例中,定子包括8个磁极,对应地,相绕组包括8个极相组。第一支路U1的64个导体分布于8个极相组,可以降低由于转子偏心带来的支路电势不平衡。
在本申请的一些实施例中,连接于第一支路U1的第一正极引线U1+的导体1021与连接于第二支路U2的第二正极引线U2+的导体1021之间的跨距小于或等于极距。本申请实施例可以减小两个支路的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。
第二支路U2包括64个导体1021。在图10中,64个导体1021以分布在表格中的64个序号表示。64个导体1021按照序号依次连接。图10中的实线箭头表示64个导体1021在焊接端的连接方式,虚线箭头表示导体1021在插线端的连接方式。
在图10中,U2+表示第二正极引线,U2-表示第二负极引线。
第二正极引线U2+与第二支路U2的第1号导体1021连接,第二负极引线U2-与第二支路U2的第64号导体1021连接。
在本申请的一些实施例中,第二支路U2的第1-32号导体1021依次串联连接。1、3、5、7号导体1021均为h层导体1021,2、4、6、8号导体1021均为g层导体1021。9、11、13、15号导体1021均为f层导体1021。10、12、14、16号导体1021均为e层导体1021。17、19、21、23号导体1021均为d层导体1021。18、20、22、24号导体1021均为c层导体1021。25、27、29、31号导体1021均为b层导体1021。26、28、30、32号导体1021均为a层导体1021。
在本申请的一些实施例中,第二支路U2的第33-64号导体1021依次串联连接。33、35、37、39号导体1021均为a层导体1021,34、36、38、40号导体1021均为b层导体1021。41、43、45、47号导体1021均为c层导体1021。42、44、46、48号导体1021均为d层导体1021。49、51、53、55号导体1021均为e层导体1021。50、52、54、56号导体1021均为f层导体1021。57、59、61、63号导体1021均为g层导体1021。58、60、62、64号导体1021均为h层导体1021。
在本申请的一些实施例中,连接于第一支路U1的第一正极引线U1+的导体1021与连接于第二支路U2的第二正极引线U2+的导体1021设于同一个绕线槽1011。本申请实施例从同一个绕线槽1011内引出两个支路U2的进线端,从而进一步减小两个支路的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。
在本申请的实施例中,第二支路U2的32号导体1021和33号导体1021均为a层导体1021。同层连接的导体1021能够平衡支路的槽电势,减少支路间的环流损耗。
在本申请的一些实施例中,与第二正极引线U2+相连的第1号导体1021位于第14号绕线槽,与第二负极引线U2-相连的第64号导体1021位于第7号绕线槽。
在本申请的一些实施例中,与第二正极引线U2+相连的第1号导体 1021以及与第二负极引线U2-相连的第64号导体1021均为h层导体1021。本实施例有利于汇流排的布置,便于第二正极引线U2+和第二负极引线U2-与外电路的连接。
在本申请的一些实施例中,定子包括8个磁极,对应地,相绕组包括8个极相组。第二支路U2的64个导体1021分布于8个极相组,可以降低由于转子偏心带来的支路电势不平衡。
在本申请的一些实施例中,相绕组的多个支路可串联或并联。示例性地,第一支路U1和第二支路U2可以串联,也可以并联。
如图10所示,第一支路U1的第1号导体1021与第一支路U1的第一正极引线U1+相连,第二支路U2的第1号导体1021与第二支路U2的第二正极引线U2+相连。可选地,第一支路U1的第1号导体1021和第二支路U2的第1号导体1021设于同一个绕线槽,即绕线槽14。从同一个绕线槽内引出两个支路的进线端,从而进一步减小两个支路的进线端的间距,便于实现两个支路的进线端的连接,有利于汇流排的布置和绕组加工工艺的实施。
在一些实施例中,第一支路U1的第1号导体1021和第一支路U1的第64号导体1021均为a层导体1021,第二支路U2的第1号导体1021和第二支路U1的第64号导体1021均为h层导体1021。本实施例有利于汇流排的布置,便于两个进线端(U1+、U2+)和两个出线端(U1-、U2-)与外电路的连接。
在本申请的一些实施例中,定子绕组102包括三个相绕组,三个相绕组采用星型连接。
示例性地,同一绕线槽1011内相邻异相导体1021稳态压降可以按公式[(2*4k-x-y)/4k]*U dc/2进行计算。U dc为母线电压。x和y分别为两个相邻的异相导体1021的编号。4k为第一支路的导体1021的总数。本申请的实施例中同一绕线槽内异相导体1021压降的最大值为0.29U dc
同一绕线槽1011内相邻同相导体1021稳态压降可以按公式[|x-y|/4k]*U dc/1.732进行计算。U dc为母线电压。x和y分别为两个相邻的同相导体1021的编号。
本申请的实施例中同一绕线槽内同相导体1021压降的最大值为0.27U dc
相较于相关技术中的整距绕组与短距绕组的定子,本申请实施例中的槽内同相与异相压降均大幅度降低,这有利于绕线槽内的绝缘设计,提升绝缘可靠性。
综上可知,图10所示的U相绕组,可平衡各支路槽电势,减少了支路间的环流损耗,降低了由于转子偏心带来的支路电动势不平衡,减小槽内导体1021电压应力,同时有利于汇流排的布置与绕组加工工艺的实施。
图11为本申请一些实施例提供的定子的三个相绕组的示意图。图11示出了定子绕组的U相绕组、V相绕组和W相绕组。
示例性地,如图11所示,U相绕组包括第一支路U1和第二支路U2,U1+表示第一支路U1的第一正极引线,U1-表示第一支路U1的第一负极引线;U2+表示第二支路U2的第二正极引线,U2-表示第二支路U2的第二负极引线。
V相绕组包括第一支路V1和第二支路V2,V1+表示第一支路V1的第一正极引线,V1-表示第一支路V1的第一负极引线;V2+表示第二支路V2的第二正极引线,V2-表示第二支路V2的第二负极引线。
W相绕组包括第一支路W1和第二支路W2,W1+表示第一支路W1的第一正极引线,W1-表示第一支路W1的第一负极引线;W2+表示第二支路W2的第二正极引线,W2-表示第二支路W2的第二负极引线。
在一些实施例中,与引线U1+、U1-、U2+、U2-、V1+、V1-、V2+、V2-、W1+、W1-、W2+、W2-相连的12个导体设置于9个绕线槽。
在一些实施例中,与引线U1+、U1-、W1+、W1-、V1+、V1-相连的6个导体均为a层导体。前述引线均靠近定子铁芯沿径向的外端,便于实现焊接。
如图12所示,在一些实施例中,定子绕组102包括三个相绕组,即U相绕组、V相绕组和W相绕组。示例性地,三个相绕组呈三角形连接。
U相绕组包括串联的第一支路U1和第二支路U2。V相绕组包括串联的第一支路V1和第二支路V2。W相绕组包括串联的第一支路W1和第二 支路W2。
如图13所示,在一些实施例中,定子绕组包括三个相绕组,即U相绕组、V相绕组和W相绕组。示例性地,三个相绕组呈星形连接。
U相绕组包括串联的第一支路U1和第二支路U2。V相绕组包括串联的第一支路V1和第二支路V2。W相绕组包括串联的第一支路W1和第二支路W2。
图14为本申请另一些实施例提供的定子的定子绕组的相绕组的连接示意图。
如图14所示,在一些实施例中,定子绕组包括三个相绕组,即U相绕组、V相绕组和W相绕组。示例性地,三个相绕组呈三角形连接。
U相绕组包括并联的第一支路U1和第二支路U2。V相绕组包括并联的第一支路V1和第二支路V2。W相绕组包括并联的第一支路W1和第二支路W2。
图15为本申请再一些实施例提供的定子的定子绕组的相绕组的连接示意图。
如图15所示,在一些实施例中,定子绕组包括三个相绕组,即U相绕组、V相绕组和W相绕组。示例性地,三个相绕组呈星形连接。
U相绕组包括并联的第一支路U1和第二支路U2。V相绕组包括并联的第一支路V1和第二支路V2。W相绕组包括并联的第一支路W1和第二支路W2。
参照图12至图15所示的不同的定子绕组,通过改变相绕组的连接方式以及相绕组的支路的连接方式,可以调整定子绕组相串联匝数,从而适配不同电压与功率等级应用。
本申请实施例还提供了一种电机,其包括前述任一实施例提供的定子。示例性地,电机还包括转子,转子设于定子铁芯的内壁所围设形成的空间中。
本申请实施例的电机,既可以是发电机,也可以是电动机。
本申请实施例还提供一种用电装置,其包括前述任一实施例提供的电机。
在一些实施例中,用电装置包括动力总成,该动力总成包括减速器和上述的电机。电机和减速器传动连接。具体地,电机的驱动轴与减速器的输入轴可通过联轴器等传动件实现传动连接,以将驱动力自电机输出至减速器。
本申请实施例还提供了一种车辆,包括上述的动力总成,上述的动力总成设置于车辆内,并为车辆提供运行动力。具体地,本实施例中,车辆可具体为以电能进行驱动的新能源车辆,比如。其中,新能源车辆具体可以是混合动力电动车辆、纯电动车辆或燃料电池电动车辆等,也可以是采用超级电容器、飞轮电池或飞轮储能器等高效储能器作为电能来源的车辆。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种电机的定子,包括定子铁芯和设置于所述定子铁芯的定子绕组,所述定子铁芯的内壁开设有多个绕线槽,所述定子绕组包括插设于多个所述绕线槽中的导体;
    各所述绕线槽中的所述导体设置为n层,n为正偶数;沿所述绕线槽的槽底指向所述绕线槽的槽口的方向,n层所述导体记为L 1层、L 2层、……和L n层;
    所述定子绕组包括多个相绕组,各所述相绕组包括多个极相组;所述相绕组的每个所述极相组包括第一区域、第二区域和第三区域,所述第二区域和所述第三区域分别位于所述第一区域的两侧;位于所述第一区域的所述导体为L 1层至L n层,位于所述第二区域的所述导体为L n/2+1层至L n层,位于所述第三区域的所述导体为L 1层至L n/2层;
    各所述相绕组包括第一支路和第二支路,所述第一支路包括4k个依次串联的所述导体,k为正整数;所述第一支路的4k个所述导体记为A 1、……、A 2k……和A 4k;所述第二支路包括4k个依次串联的所述导体,所述第二支路的4k个所述导体记为B 1、……、B 2k……和B 4k
    所述A 1至所述A 2k、所述B 1至所述B 2k分布于所述第一区域;所述A 2k+1至所述A 4k中的一部分分布于所述第二区域,所述A 2k+1至所述A 4k中的剩余部分分布于所述第三区域;所述B 2k+1至所述B 4k的一部分分布于所述第二区域,所述B 2k+1至所述B 4k的剩余部分分布于所述第三区域。
  2. 根据权利要求1所述的定子,其中,所述A 2k+1至所述A 3k分布于所述第二区域,所述A 3k+1至所述A 4k分布于所述第三区域;所述B 2k+1至所述B 3k分布于所述第三区域,所述B 3k+1至所述B 4k分布于所述第二区域。
  3. 根据权利要求1或2所述的定子,其中,所述A 1和所述B 1位于同一 个所述绕线槽。
  4. 根据权利要求3所述的定子,其中,所述A 1为所述绕线槽内的L 1层所述导体,所述B 1为所述绕线槽内的L n层所述导体。
  5. 根据权利要求4所述的定子,其中,所述A 4k为所述绕线槽内的L n层的所述导体;所述B 4k为所述绕线槽内的L n层所述导体。
  6. 根据权利要求4或5所述的定子,其中,所述第一支路包括与所述A 1连接的第一正极引线以及与所述A 4K连接的第一负极引线;
    所述第二支路包括与所述B 1连接的第二正极引线以及与所述B 4K连接的第二负极引线。
  7. 根据权利要求1-6任一项所述的定子,其中,所述第一支路包括第一单导体插接件和多个第一双导体插接件,所述第一单导体插接件包括一个所述导体,各所述第一双导体插接件包括两个所述导体。
  8. 根据权利要求7所述的定子,其中,所述第一单导体插接件为两个,一个所述第一单导体插接件包括所述A 1,另一个所述第一单导体插接件包括所述A 4k
  9. 根据权利要求7或8所述的定子,其中,多个所述第一双导体插接件包括第一插接件、第二插接件和第三插接件;
    所述第一插接件的两个所述导体的跨距等于极距,所述第二插接件的两个所述导体的跨距小于所述极距,所述第三插接件的两个所述导体的跨距大于所述极距。
  10. 根据权利要求9所述的定子,其中,所述A 2k和所述A 2k+1为所述第三插接件的两个所述导体;
    所述A 3k和所述A 3k+1为所述第二插接件的两个所述导体。
  11. 根据权利要求1-6任一项所述的定子,其中,所述第二支路包括第二单导体插接件和多个第二双导体插接件,所述第二单导体插接件包括一 个所述导体,各所述第二双导体插接件包括两个所述导体;
    所述第二单导体插接件为两个,一个所述第二单导体插接件包括所述B 1,另一个所述第一单导体插接件包括所述B 4k
    多个所述第二双导体插接件包括第四插接件、第五插接件和第六插接件;
    所述第四插接件的两个所述导体的跨距等于极距,所述第六插接件的两个所述导体的跨距小于所述第五插接件,所述第五插接件的两个所述导体的跨距小于所述极距。
  12. 根据权利要求11所述的定子,其中,所述B 2k和所述B 2k+1为所述第五插接件的两个所述导体;
    所述B 3k和所述B 3k+1为所述第六插接件的两个所述导体。
  13. 根据权利要求1-12任一项所述的定子,其中,所述定子绕组包括三个所述相绕组,三个所述相绕组采用星型连接或三角连接。
  14. 根据权利要求1-13任一项所述的定子,其中,所述绕线槽为12的倍数。
  15. 根据权利要求1-14任一项所述的定子,其中,所述绕线槽的个数为48,所述n为8,所述定子的极数为8。
  16. 一种电机,包括如权利要求1-15任一项所述的定子。
  17. 一种用电装置,包括如权利要求16所述的电机。
PCT/CN2022/120031 2022-09-20 2022-09-20 一种电机及其定子和用电装置 WO2024060038A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/120031 WO2024060038A1 (zh) 2022-09-20 2022-09-20 一种电机及其定子和用电装置
CN202280005833.XA CN118057968A (zh) 2022-09-20 2022-09-20 一种电机及其定子和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120031 WO2024060038A1 (zh) 2022-09-20 2022-09-20 一种电机及其定子和用电装置

Publications (1)

Publication Number Publication Date
WO2024060038A1 true WO2024060038A1 (zh) 2024-03-28

Family

ID=90453761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120031 WO2024060038A1 (zh) 2022-09-20 2022-09-20 一种电机及其定子和用电装置

Country Status (2)

Country Link
CN (1) CN118057968A (zh)
WO (1) WO2024060038A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019205244A (ja) * 2018-05-22 2019-11-28 日立オートモティブシステムズ株式会社 回転電機の固定子
CN110912310A (zh) * 2019-12-31 2020-03-24 重庆宗申电动力科技有限公司 一种并排相绕组、定子及电机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019205244A (ja) * 2018-05-22 2019-11-28 日立オートモティブシステムズ株式会社 回転電機の固定子
CN110912310A (zh) * 2019-12-31 2020-03-24 重庆宗申电动力科技有限公司 一种并排相绕组、定子及电机

Also Published As

Publication number Publication date
CN118057968A (zh) 2024-05-21

Similar Documents

Publication Publication Date Title
TWI815630B (zh) 定子、扁線電機、動力總成和車輛
WO2023124509A1 (zh) 定子、扁线电机、动力总成和车辆
CN110829641B (zh) 发卡扁线电机定子及发卡扁线电机
CN218920099U (zh) 定子、扁线电机、动力总成和车辆
JP2012085533A (ja) 5相ジェネレータ
WO2024032001A1 (zh) 定子、扁线电机、动力总成和车辆
WO2023045599A1 (zh) 一种电机及车辆
CN115765254A (zh) 定子、扁线电机、动力总成和车辆
US20220329125A1 (en) Six-phase flat wire wave winding structure, six-phase motor, powertrain, and vehicle
WO2020192181A1 (zh) 用于电机的绕组结构及电机
WO2022156815A1 (zh) 插针绕组式定子及电机
CN115498794A (zh) 电机定子、扁线电机、动力总成和动力装置
CN115955032A (zh) 定子、扁线电机、动力总成和车辆
WO2024026824A1 (zh) 扁线电机及其定子
CN212278005U (zh) 一种每极每相槽数为3的扁铜线绕组结构及电机
CN218920102U (zh) 定子、扁线电机、动力总成和车辆
WO2024060038A1 (zh) 一种电机及其定子和用电装置
CN113348607B (zh) 扁线电机、动力总成及车辆
WO2024060257A1 (zh) 用电装置、电机及其定子
CN115001182A (zh) 一种电机的双层扁线绕组结构
WO2024007713A1 (zh) 定子、扁线电机、动力总成和车辆
CN112751438A (zh) 一种新型短距绕组的定子及电机
WO2024007709A1 (zh) 定子、扁线电机、动力总成及车辆
WO2024021885A1 (zh) 定子组件、电机和车辆
CN212435461U (zh) 一种短节距电机定子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022959050

Country of ref document: EP

Effective date: 20240425

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959050

Country of ref document: EP

Kind code of ref document: A1