WO2022246899A1 - 一种显示面板及其制备方法 - Google Patents

一种显示面板及其制备方法 Download PDF

Info

Publication number
WO2022246899A1
WO2022246899A1 PCT/CN2021/098328 CN2021098328W WO2022246899A1 WO 2022246899 A1 WO2022246899 A1 WO 2022246899A1 CN 2021098328 W CN2021098328 W CN 2021098328W WO 2022246899 A1 WO2022246899 A1 WO 2022246899A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
undercut
island
undercut structure
display panel
Prior art date
Application number
PCT/CN2021/098328
Other languages
English (en)
French (fr)
Inventor
程立昆
孙亮
易士娟
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/432,890 priority Critical patent/US20230403889A1/en
Publication of WO2022246899A1 publication Critical patent/WO2022246899A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the island region includes: a flexible base layer; thin film transistors distributed on a side of the flexible base layer facing the sub-pixels.
  • FIG. 1 is a schematic cross-sectional view of a display panel provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of a closed-loop first undercut structure provided by an embodiment of the present application
  • Fig. 3 is a schematic cross-sectional view of an undercut structure provided in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an open-loop first undercut structure provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a method for manufacturing a display panel provided by an embodiment of the present application.
  • Embodiments of the present application provide a display panel and a manufacturing method thereof, which will be described in detail below with reference to the accompanying drawings.
  • the display panel provided by the embodiment of the present application includes an island area 101 and a chain area 102 , the chain area 102 is connected to the island area 101 and extends to the outside of the island area 101 .
  • the array substrate 1 includes several sub-pixels 300 corresponding to several display units 100 . That is, each display unit 100 is provided with a sub-pixel 300 , and the plurality of undercut structures 2 are provided around the sub-pixel 300 , as shown in FIG. 2 .
  • the glass substrate 11 is a rigid substrate, which acts as a support and a substrate.
  • the flexible base layer 12 is disposed on one side of the glass substrate 11 .
  • the material of the flexible base layer 12 is polyimide material, and its thickness is 5 microns to 10 microns. In this embodiment, the thickness of the flexible base layer 12 is preferably 6 microns.
  • the gate insulating layer 14 is arranged on the side of the active layer away from the flexible base layer 12, and the material of the gate insulating layer 14 is an inorganic material, and the inorganic material includes silicon oxide or silicon nitrogen. compound or a multi-layer thin film structure, the gate insulating layer 14 is disposed opposite to the active layer, and the gate insulating layer 14 plays an insulating role to prevent short circuits between the lines inside the display panel.
  • the array substrate 1 also includes a gate layer (not shown), the gate layer is provided on the side of the gate insulating layer 14 away from the active layer, and the material of the gate layer is metal material, the metal material includes molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), etc., or an alloy, or a multi-layer film structure, and the gate layer is used to access the Scanning signal in display panel circuit.
  • the gate layer is provided on the side of the gate insulating layer 14 away from the active layer, and the material of the gate layer is metal material, the metal material includes molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), etc., or an alloy, or a multi-layer film structure, and the gate layer is used to access the Scanning signal in display panel circuit.
  • the organic filling layer 16 is located in the chain region 102, and a deep hole is formed after removing the dielectric layer 15, the gate insulating layer 14, the buffer layer 13 and other film layers in the chain region 102 , the organic filling layer 16 is formed after the deep hole is filled with organic matter, and the organic filling layer 16 also plays an insulating role.
  • the source-drain layer 17 is arranged on the side of the dielectric layer 15 and the organic filling layer 16 away from the flexible base layer 12, and the material of the source-drain layer 17 includes a metal material, and the metal material Including molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), etc., or alloys, or multi-layer film structures. Part of the metal material is disposed in the through hole, and the source and drain layers 17 are electrically connected to the active layer (not shown in the figure) through the through hole to form a circuit conduction.
  • Mo molybdenum
  • Al aluminum
  • Cu copper
  • Ti titanium
  • the first organic layer 18 is arranged on the side of the source-drain layer 17 away from the flexible base layer 12.
  • the first organic layer 18 can make the surface of the film layer smooth, which is beneficial to the lamination of subsequent film layers and prevents Disengagement occurs.
  • the first organic layer 18 is a flat layer, and the first organic layer 18 is provided with grooves 23 , as shown in FIG. 3 .
  • the inorganic layer 19 is disposed on the side of the first organic layer 18 away from the source-drain layer 17, and the inorganic layer 19 is provided with a first through hole 21, and the first through hole 21 corresponds to The groove 23.
  • the material of the inorganic layer 19 includes silicon oxide material.
  • the inorganic layer 19 is a passivation layer in this embodiment, and the passivation layer plays the role of insulation and isolation of external water and oxygen.
  • the second organic layer 110 is disposed on the side of the inorganic layer 19 away from the first organic layer 18.
  • the second organic layer 110 is a pixel definition layer for defining the light-emitting area. size
  • a via hole is provided on the second organic layer 110, the via hole is set opposite to the anode layer (not shown) on the upper surface of the inorganic layer 19, and the via hole is used to set the sub-pixel 300, that is, film layers such as the hole transport layer, the hole injection layer, the luminescent material, the electron injection layer, and the electron transport layer are all disposed in the via holes.
  • the second organic layer 110 is provided with a second through hole 22, the second through hole 22 corresponds to the groove 23 and the first through hole 21, and the second through hole, the first through hole A through hole and the groove 23 are connected up and down to form an undercut structure 2 , that is, the undercut structure 2 is a groove structure.
  • the plurality of undercut structures 2 include a first undercut structure 201 and a second undercut structure 202 .
  • first undercut structure 201 includes the first through hole 21 , the second through hole 22 and the groove 23 as shown in FIG. 3 .
  • second undercut structure 202 also includes the first through hole 21 , the second through hole 22 and the groove 23 as shown in FIG. 3 .
  • the island area 101 is provided with a pixel circuit
  • the chain area 102 is provided with a connection circuit
  • the chain area 102 is located between two adjacent island areas 101 for connecting two adjacent island areas 101
  • the chain region 102 has a straight portion and a curved portion; the straight portion is connected to the island region 101; the curved portion is connected to the straight portion, and the curved portion is a stretchable portion.
  • the first undercut structure 201 is located in the island region 101, the first undercut structure 201 is a ring structure, surrounds each of the sub-pixels 300, and the periphery of each of the sub-pixels 300 can be provided with One or more first undercut structures 201 .
  • the first undercut structure 201 in the island region 101 is annular, and the annular first undercut structure 201 is a closed annular structure or an open annular structure.
  • the first undercut structure 201 is a closed-loop structure (see FIG. 2 ), which is an optimal embodiment and can completely isolate the cathode layer into the island region 101 .
  • the first undercut structure 201 is an open-loop structure (see FIG. 4 ), because part of the straight portion will extend into the island region 101.
  • the The straight part is in an open state, and the organic material there is hollowed out, leaving only the inorganic material, so as to prevent the organic material from absorbing water and oxygen, thereby affecting the waterproof performance of the display panel.
  • the plurality of undercut structures 2 include two or more first undercut structures 201 , and the two or more first undercut structures 201 have a better blocking effect.
  • the inner diameter of the groove 23 located in the first organic layer 18 is larger than the inner diameters of the first through hole 21 and the second through hole 22, because The difference in the manufacturing process is that the first through hole 21 and the second through hole 22 are prepared first, and then the groove 23 located in the first organic layer 18 is prepared.
  • the corrosive gas will spread to the side wall of the first organic layer 18, and also give the cathode layer 3 more accommodation space, preventing excess cathode material from affecting the ring formed by the first undercut structure 201.
  • the second undercut structure 202 is located in the chain region 102, the second undercut structure 202 is a strip structure, the number of the second undercut structure 202 can be one or more, and can be arranged in The straight portion near the island region 101 may also be disposed on the curved portion.
  • the second undercut structure 202 is an undercut film layer in the area where the connection circuit 400 is located, and the second undercut structure 202 can effectively prevent cracks from appearing in the chain area 102 from extending to the island area.
  • the 101 spread problem improves the stretchability of the display panel.
  • the cathode layer 3 is disposed on a side of the second organic layer 110 in the island region 101 away from the inorganic layer 19 , and partially extends into the first undercut structure 201 . That is to say, a part of the cathode layer 3 is disposed at the bottom of the first undercut structure 201 .
  • the cathode layer 3 can be confined in the corresponding first undercut structure 201, without affecting the sub-pixels 300 in the first undercut structure 201, so that Each sub-pixel 300 emits light independently, and does not affect the light emission of adjacent sub-pixels 300 , and color cross-color mixing does not occur between adjacent sub-pixels 300 .
  • precise coating can also be performed through a mask to avoid the problem of coating deviation.
  • the undercut structure 2, especially the first undercut structure 201 can enable the cathode layer 3 to be accurately coated, and at the same time prevent cracks that occur during bending and other processes from propagating into the sub-pixel 300, The tensile performance of the display panel is improved to ensure that each film layer of the sub-pixel 300 is not affected and emits light independently, thereby improving the luminous performance of the display panel.
  • the encapsulation layer 4 is located in the island region 101 and the chain region 102, is provided on the upper surface of the second organic layer 110 and the cathode layer 3, and is filled into the undercut structure 2, completely The cathode layer 3 is wrapped, and the sub-pixel 300 is completely packaged to ensure that the sub-pixel 300 is not intruded by external water and oxygen.
  • the undercut structure 2 is provided on the top of the array substrate 1, without digging deep holes from the top to the flexible base layer 12, so as to avoid the interference of the etching gas on both sides during the etching process, and at the same time ,
  • the shallower channel is also beneficial to avoid interference to the film layer during the flow of exhaust gas, speed up the etching speed, and improve the etching efficiency.
  • the second undercut structure 202 is also set synchronously in the chain area 102 on the periphery of the island area 101, which can effectively prevent the cracks generated in the bending process from spreading into the sub-pixel 300, and improve the display panel. stretchability, and protect each film layer in the sub-pixel 300 to ensure the luminous effect of the sub-pixel 300.
  • the embodiment of the present application also includes a method for manufacturing a display panel, including steps S1 to S4.
  • S1 forms an array substrate 1, wherein a first organic layer 18 is formed on a flexible base layer 12; the array substrate 1 is divided into an island region 101 and a chain region 102; sub-pixels 300 are formed in the island region 101, and in the chain region A connecting circuit 400 is formed in the area 102 , the chain area 102 is connected to the island area 101 and extends to the outside of the island area 101 .
  • a glass substrate 11 including preparing a glass substrate 11, a flexible base layer 12, a buffer layer 13, a gate insulating layer 14, a dielectric layer 15, an organic filling layer 16, a source-drain layer 17, a first organic layer 18, an inorganic layer 19 and the second organic layer 110 .
  • a glass substrate 11 is provided, and the glass substrate 11 is a rigid substrate, which serves as a support and a substrate.
  • a layer of inorganic material is deposited on the upper surface of the flexible base layer 12, and the buffer layer 13 is prepared to play a buffer role.
  • the inorganic material includes a single layer of silicon oxide or silicon nitride, or more layer structure.
  • a layer of semiconductor material is coated on the upper surface of the buffer layer 13, and an active layer is formed after patterning treatment.
  • the semiconductor material includes indium gallium zinc oxide (IGZO), indium gallium titanium oxide (IZTO), indium gallium At least one of zinc titanium oxide (IGZTO).
  • the active layer provides circuit support for the display panel.
  • a layer of inorganic material is deposited on the upper surface of the active layer to form a gate insulating layer 14.
  • the inorganic material includes silicon oxide or silicon nitride or a multi-layer thin film structure.
  • the layer 14 is disposed opposite to the active layer, and the gate insulating layer 14 functions as an insulation to prevent short circuits between the circuits inside the display panel.
  • a layer of metal material is sputtered on the upper surface of the gate insulating layer 14 to form the gate layer, and the metal material includes molybdenum (Mo), aluminum (Al), copper (Cu), titanium (Ti), etc. , or an alloy, or a multi-layer film structure, the gate layer is used as a scanning signal connected to the display panel circuit.
  • Mo molybdenum
  • Al aluminum
  • Cu copper
  • Ti titanium
  • the gate layer is used as a scanning signal connected to the display panel circuit.
  • a deep hole is formed after removing the dielectric layer 15, the gate insulating layer 14 and the buffer layer 13 in the chain region 102, and a deep hole is formed in the deep hole
  • the organic filling layer 16 is formed after being filled with organic substances, and the organic filling layer 16 also functions as insulation.
  • the second organic layer 110 is prepared on the upper surface of the inorganic layer 19 to define the size of the island region 101, and a via hole is set on the second organic layer 110, and the via hole and the inorganic layer
  • the anode layer (not shown) on the upper surface of 19 is arranged oppositely, and the via hole is used to set up the sub-pixel 300, that is, the hole transport layer, hole injection layer, luminescent material, electron injection layer, electron transport layer and other films layers are all disposed within the vias.
  • a second through hole 22 is provided at the second organic layer 110 above the first through hole 21, and the second through hole 22 is a terraced structure, that is, the bottom of the second through hole 22
  • the inner diameter is smaller than the inner diameter of the top of the second through hole 22 .
  • S2 forms a plurality of undercut structures 2 on the array substrate 1, wherein the plurality of undercut structures 2 include a first undercut structure 201 and a second undercut structure 202, and the first undercut structure 201 is located at the In the island region 101 , the second undercut structure 202 is located in the chain region 102 .
  • the specific preparation steps are as follows:
  • the organic material at the opening of the first undercut structure 201 needs to be hollowed out to prevent the organic material from absorbing water and oxygen and causing the seal failure of the display panel.
  • the inner diameter of the groove 23 located in the first organic layer 18 is larger than the inner diameters of the first through hole 21 and the second through hole 22. Due to the difference in the preparation process, the first through hole 21 is prepared first. and the second through hole 22, and then prepare the groove 23 located in the first organic layer 18, because the etching method is used, the etching gas will spread to the side wall of the first organic layer 18 , and also provide more accommodating space for the cathode layer 3 to prevent subsequent excess cathode material from affecting the film layers inside and outside the circle of the ring structure surrounded by the first undercut structure 201 .
  • the cathode layer 3 is formed on the bottom of the first undercut structure 201 and on the second organic layer 110 .
  • the cathode layer 3 formed on the film layer in the via hole and the film layers below it form a sub-pixel 300, and the sub-pixel 300 is used for emitting light.
  • the cathode layer 3 can be confined in the corresponding first undercut structure 201, without affecting the sub-pixels 300 in the first undercut structure 201, so that Each sub-pixel 300 emits light independently, and does not affect the light emission of adjacent sub-pixels 300 , and color cross-color mixing does not occur between adjacent sub-pixels 300 .
  • precise coating can also be performed through a mask to avoid the problem of coating deviation.
  • the first undercut structure 201 is located in the island region 101, the first undercut structure 201 is a ring structure, surrounds each of the sub-pixels 300, and the periphery of each of the sub-pixels 300 can be provided with One or more first undercut structures 201 .
  • a plurality of the first undercut structures 201 can ensure that the first undercut structures 201 have a good blocking effect.
  • the second undercut structure 202 is located in the chain area 102, the second undercut structure 202 is a strip structure, and the electrical signal in the island area 101 where each sub-pixel 300 is located passes through the chain area 102.
  • the connection circuit 400 in the region 102 is transmitted to the outside, and realizes the transmission of electrical signals with other sub-pixels 300 .
  • S4 forms an encapsulation layer 4 covering the plurality of undercut structures 2 and the array substrate 1, and encapsulates the sub-pixels 300, only one encapsulation process is required, because the first undercut structure 201 in the island region 101
  • the existence of the encapsulation layer formed in the first undercut structure 201 is equivalent to encapsulating each sub-pixel 300 individually, that is, the effect of individual encapsulation can be achieved in one process, and the distance between adjacent sub-pixels 300 is reduced.
  • the gap is beneficial to increase the pixel density of the display panel.
  • the undercut structure 2 can enable the cathode layer 3 to be accurately coated, and at the same time prevent cracks that occur during bending and other processes from spreading into the sub-pixel 300, ensuring that each film layer of the sub-pixel 300 does not Affected, and light is emitted separately, improving the luminous performance of the display panel.
  • An undercut structure 2 is provided on the top of the array substrate 1, without digging a deep hole from the top to the flexible base layer 12, so as to avoid the interference of the etching gas on both sides during the etching process, and at the same time, relatively
  • the shallow channel is also beneficial to avoid interference to the film layer during the flow of exhaust gas, speed up the etching speed, and improve the etching efficiency.
  • the second undercut structure 202 is also set synchronously in the chain area 102 on the periphery of the island area 101, effectively preventing the cracks generated in the bending process from spreading into the sub-pixel 300, and improving the performance of the display panel. Stretch performance, and protect each film layer in the sub-pixel 300 to ensure the luminous effect of the sub-pixel 300.
  • the technical effect of the manufacturing method of the display panel described in this embodiment is that the undercut structure 2 is provided in the island region 101 and the chain region 102 in the display unit 100, and the first undercut structure 201 in the island region 101
  • the cathode layer 3 is prepared, and then packaged as a whole. There is no need to package each sub-pixel separately. Due to the limitation of the mask plate of the packaging process, there will inevitably be a blank area for packaging, and only one mask plate is needed for one package. , there is only one package blank area without multiple package blank areas, the gap between adjacent sub-pixels 300 can be further reduced, and the pixel density of the display panel can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请公开了一种显示面板及其制备方法,所述显示面板具有若干显示单元,所述显示单元包括岛区以及围绕所述岛区的链区,在至少其中一个显示单元中,所述显示面板包括:阵列基板、多个底切结构以及封装层;所述底切结构包括第一底切结构和第二底切结构,所述第一底切结构设于所述岛区内;所述第二底切结构设于所述链区内。

Description

一种显示面板及其制备方法 技术领域
本申请涉及显示领域,具体涉及一种显示面板及其制备方法。
背景技术
现行的可伸缩面板(Stretchable Panel)中,为了便于拉伸应变,柔性衬底呈岛屿状分散开,其中像素电路分布在该柔性岛屿上,连接子像素的线路则分布于位于该柔性岛屿外围的带状铰链区域上,为了提升面板的拉伸性能,这些柔性岛屿需要单独封装。
在可伸缩面板电路中,子像素电路分布在柔性岛屿上,为了避免水氧等外界不良因素侵害,每个子像素岛屿都需要单独封装。
然而,当前的封装技术受限于阴极精密掩膜板(FMM)的张网工艺,无法应对高像素分布密度条件的情况,同时也限制了OLED 可伸缩面板的像素密度提升。
因此,针对现有技术存在的问题,急需改进。
技术问题
本发明的目的在于,提供一种显示面板及其制备方法,可以解决现有的显示面板封装子像素时仍需单独封装、封装制程中空白边框区域较大、封装后的子像素之间的间距较大、像素密度不高等技术问题。
技术解决方案
为实现上述目的,本申请提供一种显示面板,包括岛区以及链区,所述链区连接至所述岛区,且延伸至所述岛区的外侧;所述显示面板包括:阵列基板,形成有至少一子像素;所述阵列基板包括第一有机层;多个底切结构,设于所述阵列基板上,且凹入所述阵列基板的第一有机层中;封装层,覆盖所述阵列基板,且填充于每一底切结构中;所述多个底切结构包括:第一底切结构,设于所述岛区内,且包围所述子像素;以及第二底切结构,设于所述链区内。
进一步地,所述阵列基板还包括:无机层,设于所述第一有机层的一侧;以及第二有机层,设于所述无机层远离所述无机层的一侧;每一底切结构依次贯穿所述第二有机层以及所述无机层,并凹入所述第一有机层,所述底切结构为凹槽结构。
进一步地,所述阵列基板还包括阴极层,所述阴极层设于所述第二有机层的一侧,一部分所述阴极层设于所述第一底切结构的底部;所述封装层完全包覆所述阴极层。
进一步地,所述岛区包括:柔性基层;薄膜晶体管,分布于所述柔性基层朝向所述子像素的一侧。
进一步地,所述链区包括:柔性基层;有机填充层,设于所述柔性基层朝向所述第二底切结构的一侧;以及连接电路,沿着所述链区的延伸方向而分布,且一端电连接至所述岛区。
进一步地,所述链区位于两个相邻的岛区之间,用以连接两个相邻的岛区;所述链区具有平直部和弯曲部;所述平直部连接至所述岛区;所述弯曲部连接至所述平直部,所述弯曲部为可拉伸部分;所述第二底切结构为条状结构,设于所述链区内,且横跨于所述链区的连接电路上。
进一步地,所述岛区内的第一底切结构呈环状;所述环状的第一底切结构为封闭式环形结构或开口式环形结构;一个或多个所述第一底切结构设置于所述岛区内,且位于所述岛区靠近所述链区的边缘处;当设置有多个第一底切结构时,每一第一底切结构与其相邻的另一第一底切结构形成回字形结构。
进一步地,所述连接电路连接至所述岛区的一端所对应的第一底切结构为开口式的或是封闭式的。
为实现上述目的,本申请还提供一种显示面板的制备方法,包括以下步骤:形成阵列基板,其中在柔性基层上形成第一有机层;所述阵列基板分为岛区与链区;在所述岛区内形成子像素,在所述链区内形成连接电路,所述链区连接至所述岛区,且延伸至所述岛区的外侧;在所述阵列基板上形成多个底切结构,其中所述多个底切结构包括:第一底切结构和第二底切结构,所述第一底切结构位于所述岛区内,所述第二底切结构位于所述链区内;形成封装层覆盖所述多个底切结构以及所述阵列基板。
进一步地,所述形成阵列基板的步骤包括以下步骤:在所述第一有机层上形成无机层,图案化处理后形成第一通孔;在所述无机层上形成第二有机层,图案化处理后,在所述第一通孔的上方形成第二通孔;在所述阵列基板上形成多个底切结构的步骤包括:向所述第二通孔以及所述第一通孔内通入刻蚀气体,蚀刻所述第一有机层,在所述第一有机层内形成一凹槽;所述凹槽、所述第一通孔以及所述第二通孔形成所述底切结构,所述底切结构为凹槽结构。
有益效果
本发明的技术效果在于,在显示单元内的岛区和链区内设置底切结构,在所述岛区内的第一底切结构内制备阴极层,再进行整体封装,无需对每一子像素进行单独封装,能进一步减小相邻子像素之间的间隙,进一步提高显示面板的像素密度,同时提高显示面板的拉伸性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的显示面板的截面示意图;
图2是本申请实施例提供的具有闭环第一底切结构的示意图;
图3是本申请实施例提供的底切结构的截面示意图;
图4是本申请实施例提供的具有开环第一底切结构的示意图;
图5是本申请实施例提供的显示面板的制备方法的流程图。
附图标记说明:
100、显示单元;101、岛区;102、链区;300、子像素;400、连接电路;
1、阵列基板;2、底切结构;3、阴极层;4、封装层;
11、玻璃基板;12、柔性基层;13、缓冲层;14、栅极绝缘层;15、介电层;16、有机填充层;17、源漏极层;18、第一有机层;19、无机层;110、第二有机层;
21、第一通孔;22、第二通孔;23、凹槽;
201、第一底切结构;202、第二底切结构。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请实施例提供一种显示面板及其制备方法,以下参照附图分别进行详细说明。
如图1至图3所示,本申请实施例提供的显示面板包括岛区101以及链区102,所述链区102连接至所述岛区101,且延伸至所述岛区101的外侧。
在显示单元100中,所述显示面板包括阵列基板1、多个底切结构2、以及封装层4。所述阵列基板1形成有至少一子像素300;所述多个底切结构2设于所述阵列基板1上,且凹入所述阵列基板1中;所述封装层4覆盖所述阵列基板1,且填充于每一底切结构2中;所述多个底切结构2包括:第一底切结构201和第二底切结构202。所述第一底切结构201设于所述岛区101内,且包围所述子像素300;所述第二底切结构202设于所述链区102内。
需要说明的是,在图1、图2中仅表现出一个显示单元100和一个子像素300的情况。但是在其中一实施例中,所述阵列基板1包括若干个所述子像素300,以对应若干个显示单元100。亦即,每个显示单元100均设置有一个子像素300,且在所述子像素300的周围设置有所述多个底切结构2,如图2所示。
下面将以一个显示单元100为例详细描述在其中一实施例中的所述显示面板的结构。
所述阵列基板1包括玻璃基板11、柔性基层12、缓冲层13、栅极绝缘层14、介电层15、有机填充层16、源漏极层17、第一有机层18、无机层19、第二有机层110以及阴极层3。
所述玻璃基板11为硬质基板,起到支撑作用以及衬底作用。
所述柔性基层12设于所述玻璃基板11的一侧。所述柔性基层12的材质为聚酰亚胺材料,其厚度为5微米~10微米,在本实施例中,所述柔性基层12的厚度优选为6微米。
所述缓冲层13设于所述柔性基层12的远离所述玻璃基板11的一侧,起到缓冲的作用,所述缓冲层13的材质为无机材料,所述无机材料包括单层的硅的氧化物或硅的氮化物,或是多层结构。
所述阵列基板1还包括有源层(图未示),所述有源层设于所述缓冲层13的远离所述柔性基层12的一侧,所述有源层的材质为半导体材料,所述半导体材料包括铟镓锌氧化物(IGZO)、铟镓钛氧化物(IZTO),铟镓锌钛氧化物(IGZTO)中的至少一种。所述有源层给所述显示面板提供电路支持。
所述栅极绝缘层14设于所述有源层远离所述柔性基层12的一侧,所述栅极绝缘层14的材质为无机材料,所述无机材料包括硅的氧化物或硅的氮化物或是多层薄膜结构,所述栅极绝缘层14与所述有源层相对设置,所述栅极绝缘层14起到绝缘的作用,防止所述显示面板内部的各线路之间短路。
所述阵列基板1还包括栅极层(图未示),所述栅极层设于所述栅极绝缘层14的远离所述有源层的一侧,所述栅极层的材质为金属材料,所述金属材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)等,或者是合金,或者是多层薄膜结构,所述栅极层用作接入所述显示面板电路中的扫描信号。
所述介电层15设于所述栅极层、所述栅极绝缘层14、所述有源层及所述缓冲层13的远离所述柔性基层12的一侧,所述介电层15为层间绝缘层,所述介电层15的材质为无机材料,所述无机材料包括硅的氧化物或硅的氮化物或是多层薄膜结构,起到绝缘作用,防止电路短路。在所述有源层的上方设有通孔,所述通孔便于所述源漏极层17等电极层与所述有源层之间的电性连接。
所述有机填充层16位于所述链区102内,去除所述链区102内的所述介电层15、所述栅极绝缘层14和所述缓冲层13等膜层之后形成一深孔,在所述深孔内填充有机物后形成所述有机填充层16,所述有机填充层16也是起到绝缘的作用。
所述源漏极层17设于所述介电层15和所述有机填充层16的远离所述柔性基层12的一侧,所述源漏极层17的材质包括金属材料,所述金属材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)等,或者是合金,或者是多层薄膜结构。部分金属材料设于所述通孔内,所述源漏极层17通过所述通孔电连接至所述有源层(图未示),形成电路导通。
所述第一有机层18设于所述源漏极层17的远离所述柔性基层12的一侧,所述第一有机层18能使得膜层表面平整,利于后续膜层的贴合,防止出现脱离的现象。在本申请其中一实施例中,所述第一有机层18为平坦层,所述第一有机层18上设有凹槽23,如图3所示。
所述无机层19设于所述第一有机层18的远离所述源漏极层17的一侧,所述无机层19上设有第一通孔21,所述第一通孔21对应于所述凹槽23。在其中一实施例中,所述无机层19的材质包括硅的氧化物材料。所述无机层19在本实施例中为钝化层,所述钝化层起到绝缘作用及隔绝外界水氧的作用。
所述第二有机层110设于所述无机层19的远离所述第一有机层18的一侧,在本实施例中所述第二有机层110为像素定义层,用以定义发光区的大小,在所述第二有机层110上设有过孔,所述过孔与所述无机层19上表面的阳极层(图未示)相对设置,所述过孔用以设置所述子像素300,即空穴传输层、空穴注入层、发光材料、电子注入层、电子传输层等膜层均设于所述过孔内。所述第二有机层110上设有第二通孔22,所述第二通孔22对应于所述凹槽23和所述第一通孔21,并且所述第二通孔、所述第一通孔以及所述凹槽23均上下连通构成一个底切结构2,即所述底切结构2为一个凹槽结构。
更进一步的讲,每个底切结构2设于所述显示单元100内,且设于所述阵列基板1的朝向所述封装层4的一侧,且凹入所述阵列基板1的第一有机层18、无机层19以及第二有机层110中,具体地,每个底切结构2为贯穿一层有机层和一层无机层,并刻蚀一层膜层所形成的结构,在本实施例中,每个底切结构2包括所述第一通孔21、所述第二通孔22以及所述凹槽23(参见图3),即所述底切结构2为一个凹槽结构。
如图1、图2所示,所述多个底切结构2包括第一底切结构201和第二底切结构202。可以理解的是,所述第一底切结构201包括如图3所示的所述第一通孔21、所述第二通孔22以及所述凹槽23。同理,所述第二底切结构202也包括如图3所示的所述第一通孔21、所述第二通孔22以及所述凹槽23。
一个或多个所述第一底切结构201设置于所述岛区101内,且位于所述岛区101靠近所述链区102的边缘处;当设置有多个第一底切结构201时,每一第一底切结构201与其相邻的另一第一底切结构201形成回字形结构(参见图2或图4),即一个第一底切结构201环套在另一个第一底切结构201的外围。所述第一底切结构201的形状可为菱形、方形、圆形等多种环状结构,在本实施例中优选为菱形或方形,因此,更确切地讲,位于外围的所述第一底切结构201的每一条边长到其内部的所述第一底切结构201的相对应的边长的最短距离均相同。
所述岛区101内设有像素电路,所述链区102内设有连接电路,所述链区102位于两个相邻的岛区101之间,用以连接两个相邻的岛区101;所述链区102具有平直部和弯曲部;所述平直部连接至所述岛区101;所述弯曲部连接至所述平直部,所述弯曲部为可拉伸部分。
所述第一底切结构201位于所述岛区101内,所述第一底切结构201为环状结构,围绕每一所述子像素300,每一所述子像素300的外围可设有一个或多个所述第一底切结构201。
所述岛区101内的第一底切结构201呈环状,所述环状的第一底切结构201为封闭式环形结构或开口式环形结构。
所述连接电路连接至所述岛区101的一端所对应的第一底切结构201为开口式的或是封闭式的。
在其中一个实施例中,所述第一底切结构201为闭环结构(参见图2),该闭环结构为最优实施例,能将阴极层完全隔绝至所述岛区101内。
在其他实施例中,所述第一底切结构201为开环结构(参见图4),因为所述平直部的部分会延伸至所述岛区101内,在该开环结构中,所述平直部处为开口状态,该处的有机材料被挖空,只留下无机材料,防止有机材料会吸收水氧进而影响显示面板的防水性能。
在其中一个实施例中,所述多个底切结构2包括两个或多个第一底切结构201,两个或多个所述第一底切结构201具有更佳的阻断效果。
可以注意的是,针对所述第一底切结构201,位于所述第一有机层18内的凹槽23的内径大于所述第一通孔21和所述第二通孔22的内径,由于制备制程的差异,先制备出所述第一通孔21和所述第二通孔22,然后再制备位于所述第一有机层18内的凹槽23,因为是采用刻蚀的方式,刻蚀气体会蔓延至所述第一有机层18的侧壁,也给所述阴极层3更多的容置空间,防止多余的阴极材料影响所述第一底切结构201所围成的环状结构的圈内与圈外的各膜层。
所述第二底切结构202位于所述链区102内,所述第二底切结构202为条状结构,所述第二底切结构202的个数可为一个或多个,可设置于靠近所述岛区101处的平直部上,也可设置于所述弯曲部上。
在所述子像素300所在的岛区101的电信号通过位于所述链区102内的连接电路400向外传递,与其他子像素300实现电信号的传递。也就是说,在其中一实施例中,所述第二底切结构202位于所述链区102内,且位于相邻两个岛区101之间的链接区域。
所述第二底切结构202是底切于所述连接电路400所在区域的膜层,所述第二底切结构202可以有效避免所述链区102出现裂纹问题时,裂纹向所述岛区101蔓延的问题,提高所述显示面板的拉伸性能。
所述阴极层3设于所述岛区101内的所述第二有机层110的远离所述无机层19的一侧,且部分延伸至所述第一底切结构201内。也就是说,一部分所述阴极层3设于所述第一底切结构201的底部。
因为所述第一底切结构201的存在,所述阴极层3可限位于对应的所述第一底切结构201内,不会影响所述第一底切结构201内的子像素300,使得每一子像素300单独发光,也不会影响相邻子像素300的发光,相邻子像素300之间不会发生串色混色的现象。同时,在所述阴极层3的制备过程中,也能通过掩膜板精准涂布,避免出现涂布偏差的问题。
所述底切结构2,尤其是所述第一底切结构201可以使得所述阴极层3能精准涂布,同时能防止在弯折等制程中出现的裂纹向所述子像素300内蔓延,提高显示面板的拉伸性能,保证所述子像素300的各膜层不受影响,且单独出光,提高显示面板的发光性能。
所述封装层4位于所述岛区101以及所述链区102内,设于所述第二有机层110以及所述阴极层3的上表面,且填充至所述底切结构2内,完全包裹所述阴极层3,对所述子像素300进行完整封装,保证所述子像素300不受外界水氧的入侵。
在所述阵列基板1的顶部设置所述底切结构2,无需从顶部至所述柔性基层12处挖深孔,避免在刻蚀过程中的刻蚀气体对两侧众多膜层的干扰,同时,较浅的沟道也有利于避免废气流动过程中对膜层产生干扰,加快蚀刻的速度,提高蚀刻效率。
在所述岛区101外围的所述链区102内也同步设置第二底切结构202,能够有效防止在弯折等制程中产生的裂纹向所述子像素300内蔓延,提升所述显示面板的拉伸性能,且保护所述子像素300内的各膜层,保证所述子像素300的发光效果。
如图5所示,本申请实施例还包括一种显示面板的制备方法,包括步骤S1~S4。
S1形成阵列基板1,其中在柔性基层12上形成第一有机层18;所述阵列基板1分为岛区101与链区102;在所述岛区101内形成子像素300,在所述链区102内形成连接电路400,所述链区102连接至所述岛区101,且延伸至所述岛区101的外侧。具体地,包括制备出玻璃基板11、柔性基层12、缓冲层13、栅极绝缘层14、介电层15、有机填充层16、源漏极层17、第一有机层18、无机层19以及第二有机层110。
提供一玻璃基板11,所述玻璃基板11为硬质基板,起到支撑作用以及衬底作用。
在所述玻璃基板11的上表面涂布一层聚酰亚胺材料,制备出所述柔性基层12,起到支撑作用。所述柔性基层12的厚度为5微米~10微米,在本实施例中,所述柔性基层12的厚度优选为6微米。
在所述柔性基层12的上表面沉积一层无机材料,制备出所述缓冲层13,起到缓冲的作用,所述无机材料包括单层的硅的氧化物或硅的氮化物,或是多层结构。
在所述缓冲层13的上表面涂布一层半导体材料,图案化处理后形成有源层,所述半导体材料包括铟镓锌氧化物(IGZO)、铟镓钛氧化物(IZTO),铟镓锌钛氧化物(IGZTO)中的至少一种。所述有源层给所述显示面板提供电路支持。
在所述有源层的上表面沉积一层无机材料,形成一层栅极绝缘层14,所述无机材料包括硅的氧化物或硅的氮化物或是多层薄膜结构,所述栅极绝缘层14与所述有源层相对设置,所述栅极绝缘层14起到绝缘的作用,防止所述显示面板内部的各线路之间短路。
在所述栅极绝缘层14的上表面溅镀一层金属材料,形成所述栅极层,所述金属材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)等,或者是合金,或者是多层薄膜结构,所述栅极层用作接入所述显示面板电路中的扫描信号。
在所述栅极层、所述栅极绝缘层14、所述有源层及所述缓冲层13的上表面沉积一层无机材料,形成介电层15,所述介电层15为层间绝缘层,所述无机材料包括硅的氧化物或硅的氮化物或是多层薄膜结构,起到绝缘作用,防止电路短路。在所述有源层的上方设有通孔,所述通孔便于所述源漏极层17等电极层与所述有源层之间的电性连接。
在所述链区102内,去除所述链区102内的所述介电层15、所述栅极绝缘层14和所述缓冲层13等膜层之后形成一深孔,在所述深孔内填充有机物后形成所述有机填充层16,所述有机填充层16也是起到绝缘的作用。
在所述介电层15和所述有机填充层16的上表面溅镀一层金属材料,形成所述有机填充层16,所述金属材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)等,或者是合金,或者是多层薄膜结构。部分金属材料设于所述通孔内,所述源漏极层17通过所述通孔电连接至所述有源层(图未示),形成电路导通。
在所述源漏极层17的上表面制备出第一有机层18,所述第一有机层18能使得膜层表面平整,利于后续膜层的贴合,防止出现脱离的现象。
在所述第一有机层18的上表面沉积一层硅的氧化物材料,制备出所述无机层19,在所述无机层19上设置第一通孔21。所述无机层19起到绝缘作用及隔绝外界水氧的作用。
在所述无机层19的上表面制备出所述第二有机层110,用以定义岛区101的大小,在所述第二有机层110上设置过孔,所述过孔与所述无机层19上表面的阳极层(图未示)相对设置,所述过孔用以设置所述子像素300,即空穴传输层、空穴注入层、发光材料、电子注入层、电子传输层等膜层均设于所述过孔内。在所述第一通孔21的上方的所述第二有机层110处设置第二通孔22,所述第二通孔22为一台状结构,即所述第二通孔22的底部的内径小于所述第二通孔22的顶部的内径。
S2在所述阵列基板1上形成多个底切结构2,其中所述多个底切结构2包括第一底切结构201和第二底切结构202,所述第一底切结构201位于所述岛区101内,所述第二底切结构202位于所述链区102内。
所形成的第一底切结构201为闭环结构或者是开环结构。
当所述第一底切结构201为闭环结构时,具体制备步骤如下:
向所述第二通孔22以及所述第一通孔21内通入刻蚀气体,蚀刻所述第一有机层18,在所述第一有机层18内形成一凹槽23,所述凹槽23、所述第一通孔21以及所述第二通孔22形成底切结构2。
当所述第一底切结构201为开环结构时,需要将所述第一底切结构201的开口处的有机材料挖空,防止有机材料吸收水氧造成显示面板的密封失效。
位于所述第一有机层18内的凹槽23的内径大于所述第一通孔21和所述第二通孔22的内径,由于制备制程的差异,先制备出所述第一通孔21和所述第二通孔22,然后再制备位于所述第一有机层18内的凹槽23,因为是采用刻蚀的方式,刻蚀气体会蔓延至所述第一有机层18的侧壁,也给所述阴极层3更多的容置空间,防止后续多余的阴极材料影响所述第一底切结构201所围成的环状结构的圈内与圈外的各膜层。
S3制备出阴极层3,所述阴极层3形成于所述第一底切结构201的底部以及所述第二有机层110上。
形成于所述过孔内的膜层上的阴极层3与其下方的各膜层形成子像素300,所述子像素300用于发光。
因为所述第一底切结构201的存在,所述阴极层3可限位于对应的所述第一底切结构201内,不会影响所述第一底切结构201内的子像素300,使得每一子像素300单独发光,也不会影响相邻子像素300的发光,相邻子像素300之间不会发生串色混色的现象。同时,在所述阴极层3的制备过程中,也能通过掩膜板精准涂布,避免出现涂布偏差的问题。
所述第一底切结构201位于所述岛区101内,所述第一底切结构201为环状结构,围绕每一所述子像素300,每一所述子像素300的外围可设有一个或多个所述第一底切结构201。多个所述第一底切结构201可确保所述第一底切结构201具有良好的阻断效果。所述第二底切结构202位于所述链区102内,所述第二底切结构202为条状结构,在每一所述子像素300所在的岛区101的电信号通过位于所述链区102内的连接电路400向外传递,与其他子像素300实现电信号的传递。
所述第二底切结构202是底切于所述连接电路400所在区域的膜层,所述第二底切结构202可以有效避免所述链区102出现裂纹问题时,裂纹向所述岛区101蔓延的问题,提高所述显示面板的拉伸性能。阴极材料被限制在红框内后,封装区域瞄准所述底切结构2即可,不必再考虑因阴极偏移而导致的额外扩大,因此封装设计将得以简化。
S4形成封装层4覆盖所述多个底切结构2以及所述阵列基板1,对所述子像素300进行封装,只需一次封装制程,因为所述岛区101内的第一底切结构201的存在,在所述第一底切结构201内形成的封装层相当于是将每一子像素300进行单独封装,即一次制程即可实现单独封装的效果,且减少相邻子像素300之间的间隙,有利于提高显示面板的像素密度。
所述底切结构2可以使得所述阴极层3能精准涂布,同时能防止在弯折等制程中出现的裂纹向所述子像素300内蔓延,保证所述子像素300的各膜层不受影响,且单独出光,提高显示面板的发光性能。
在所述阵列基板1的顶部设置底切结构2,无需从顶部至所述柔性基层12处挖深孔,避免在刻蚀过程中的刻蚀气体对两侧众多膜层的干扰,同时,较浅的沟道也有利于避免废气流动过程中对膜层产生干扰,加快蚀刻的速度,提高蚀刻效率。
在所述岛区101外围的所述链区102内也同步设置第二底切结构202,有效防止在弯折等制程中产生的裂纹向所述子像素300内蔓延,提升所述显示面板的拉伸性能,且保护所述子像素300内的各膜层,保证所述子像素300的发光效果。
本实施例所述显示面板的制备方法的技术效果在于,在显示单元100内的岛区101和链区102内设置底切结构2,在所述岛区101内的第一底切结构201内制备阴极层3,再进行整体封装,无需对每一子像素进行单独封装,受限于封装制程的掩膜板的限制,不可避免的会存在封装空白区,一次封装只需一张掩膜板,只有一个封装空白区,无需多个封装空白区,能进一步减小相邻子像素300之间的间隙,进一步提高显示面板的像素密度。
以上对本申请实施例所提供的一种显示面板及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种显示面板,包括岛区以及链区,所述链区连接至所述岛区,且延伸至所述岛区的外侧;其中,所述显示面板包括:
    阵列基板,形成有至少一子像素;所述阵列基板包括第一有机层;
    多个底切结构,设于所述阵列基板上,且凹入所述阵列基板的第一有机层中;
    封装层,覆盖所述阵列基板,且填充于每一底切结构中;
    所述多个底切结构包括:
    第一底切结构,设于所述岛区内,且包围所述子像素;以及
    第二底切结构,设于所述链区内。
  2. 如权利要求1所述的显示面板,其中,
    所述阵列基板还包括:
    无机层,设于所述第一有机层的一侧;以及
    第二有机层,设于所述无机层远离所述无机层的一侧;
    每一底切结构依次贯穿所述第二有机层以及所述无机层,并凹入所述第一有机层,所述底切结构为凹槽结构。
  3. 如权利要求2所述的显示面板,其中,
    所述阵列基板还包括阴极层,所述阴极层设于所述第二有机层的一侧,一部分所述阴极层设于所述第一底切结构的底部;
    所述封装层完全包覆所述阴极层。
  4. 如权利要求2所述的显示面板,其中,所述岛区包括:
    柔性基层;
    薄膜晶体管,分布于所述柔性基层朝向所述子像素的一侧。
  5. 如权利要求1所述的显示面板,其中,所述链区包括:
    柔性基层;
    有机填充层,设于所述柔性基层朝向所述第二底切结构的一侧;以及
    连接电路,沿着所述链区的延伸方向而分布,且一端电连接至所述岛区。
  6. 如权利要求5所述的显示面板,其中,
    所述链区位于两个相邻的岛区之间,用以连接两个相邻的岛区;
    所述链区具有平直部和弯曲部;
    所述平直部连接至所述岛区;
    所述弯曲部连接至所述平直部,所述弯曲部为可拉伸部分;
    所述第二底切结构为条状结构,设于所述链区内,且横跨于所述链区的连接电路上。
  7. 如权利要求6所述的显示面板,其中,
    所述岛区内的第一底切结构呈环状;
    所述环状的第一底切结构为封闭式环形结构或开口式环形结构;
    一个或多个所述第一底切结构设置于所述岛区内,且位于所述岛区靠近所述链区的边缘处;
    当设置有多个第一底切结构时,每一第一底切结构与其相邻的另一第一底切结构形成回字形结构。
  8. 如权利要求7所述的显示面板,其中,
    所述连接电路连接至所述岛区的一端所对应的第一底切结构为开口式的或是封闭式的。
  9. 一种显示面板的制备方法,其包括以下步骤:
    形成阵列基板,其中在柔性基层上形成第一有机层;所述阵列基板分为岛区与链区;在所述岛区内形成子像素,在所述链区内形成连接电路,所述链区连接至所述岛区,且延伸至所述岛区的外侧;
    在所述阵列基板上形成多个底切结构,其中所述多个底切结构包括:第一底切结构和第二底切结构,所述第一底切结构位于所述岛区内,所述第二底切结构位于所述链区内;
    形成封装层覆盖所述多个底切结构以及所述阵列基板。
  10. 如权利要求9所述的显示面板的制备方法,其中,所述形成阵列基板的步骤包括以下步骤:
    在所述第一有机层上形成无机层,图案化处理后形成第一通孔;
    在所述无机层上形成第二有机层,图案化处理后,在所述第一通孔的上方形成第二通孔;在所述阵列基板上形成多个底切结构的步骤包括:
    向所述第二通孔以及所述第一通孔内通入刻蚀气体,蚀刻所述第一有机层,在所述第一有机层内形成一凹槽;
    所述凹槽、所述第一通孔以及所述第二通孔形成所述底切结构,所述底切结构为凹槽结构。
PCT/CN2021/098328 2021-05-27 2021-06-04 一种显示面板及其制备方法 WO2022246899A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/432,890 US20230403889A1 (en) 2021-05-27 2021-06-04 Display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110585366.XA CN113270467B (zh) 2021-05-27 2021-05-27 一种显示面板及其制备方法
CN202110585366.X 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022246899A1 true WO2022246899A1 (zh) 2022-12-01

Family

ID=77233167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098328 WO2022246899A1 (zh) 2021-05-27 2021-06-04 一种显示面板及其制备方法

Country Status (3)

Country Link
US (1) US20230403889A1 (zh)
CN (1) CN113270467B (zh)
WO (1) WO2022246899A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203734B (zh) * 2021-12-11 2023-08-22 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491929A (zh) * 2019-09-05 2019-11-22 京东方科技集团股份有限公司 显示基板、制备方法及显示装置
US10490164B2 (en) * 2018-10-10 2019-11-26 Intel Corporation Stretchable display with fixed pixel density
CN111799392A (zh) * 2020-07-17 2020-10-20 京东方科技集团股份有限公司 一种显示面板、显示装置和制作方法
CN112510070A (zh) * 2020-11-30 2021-03-16 京东方科技集团股份有限公司 一种可拉伸阵列基板、可拉伸显示面板以及制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244322B (zh) * 2020-01-17 2022-04-26 京东方科技集团股份有限公司 显示基板及其制作方法、和显示装置
CN111370454B (zh) * 2020-03-18 2023-12-29 京东方科技集团股份有限公司 可拉伸显示器件的制造方法及可拉伸显示器件
CN111653595B (zh) * 2020-06-15 2023-01-24 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示面板
CN112563308B (zh) * 2020-11-06 2024-03-01 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490164B2 (en) * 2018-10-10 2019-11-26 Intel Corporation Stretchable display with fixed pixel density
CN110491929A (zh) * 2019-09-05 2019-11-22 京东方科技集团股份有限公司 显示基板、制备方法及显示装置
CN111799392A (zh) * 2020-07-17 2020-10-20 京东方科技集团股份有限公司 一种显示面板、显示装置和制作方法
CN112510070A (zh) * 2020-11-30 2021-03-16 京东方科技集团股份有限公司 一种可拉伸阵列基板、可拉伸显示面板以及制作方法

Also Published As

Publication number Publication date
CN113270467B (zh) 2023-10-17
US20230403889A1 (en) 2023-12-14
CN113270467A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
KR20210123389A (ko) 디스플레이 패널, 그 제조 방법 및 디스플레이 장치
WO2020191875A1 (zh) 显示面板及显示装置
WO2022057515A1 (zh) 显示基板及其制备方法、显示装置
WO2020124894A1 (zh) 显示面板及制作方法、显示装置
CN112490272B (zh) 一种显示基板及其制备方法、显示装置
US20220328789A1 (en) Display substrate and display device
US20200212370A1 (en) Manufacturing method of a display screen
CN109873085B (zh) 底发射白光有机发光二极管显示面板及其制作方法、显示装置
CN110246879A (zh) 一种有机发光显示面板及装置
WO2020239071A1 (zh) 显示基板及其制作方法、显示面板和显示装置
CN109037304B (zh) 有机发光二极管显示器及其制作方法
KR102649202B1 (ko) 비표시 영역 상으로 연장하는 유기 발광층을 포함하는 유기 발광 표시 장치
CN110391350A (zh) 显示面板以及显示装置
WO2021017243A1 (zh) 显示面板母板和显示面板母板的制备方法
US20170345880A1 (en) Organic Light-Emitting Display Device Having an Organic Insulating Layer
CN111900260A (zh) 一种显示面板及其制备方法、显示装置
KR20170068656A (ko) 유기 발광 표시 장치 및 이의 제조 방법
WO2021088129A1 (zh) Oled显示面板、显示装置及制备方法
WO2023015627A1 (zh) 显示面板和显示装置
CN111370366A (zh) 一种双面显示面板及制作方法
KR20150071318A (ko) 유기 발광 표시 장치의 제조 방법
WO2022016679A1 (zh) 一种阵列基板及其制备方法
WO2022246899A1 (zh) 一种显示面板及其制备方法
WO2021253500A1 (zh) 显示面板及其制备方法
WO2022088794A1 (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942469

Country of ref document: EP

Kind code of ref document: A1