WO2022246863A1 - 安赛蜜废液的处理方法 - Google Patents

安赛蜜废液的处理方法 Download PDF

Info

Publication number
WO2022246863A1
WO2022246863A1 PCT/CN2021/097011 CN2021097011W WO2022246863A1 WO 2022246863 A1 WO2022246863 A1 WO 2022246863A1 CN 2021097011 W CN2021097011 W CN 2021097011W WO 2022246863 A1 WO2022246863 A1 WO 2022246863A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
waste liquid
reaction
acesulfame potassium
neutralization
Prior art date
Application number
PCT/CN2021/097011
Other languages
English (en)
French (fr)
Inventor
周睿
丁震
陈永旭
郑仁峰
杨峰宝
Original Assignee
安徽金禾实业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽金禾实业股份有限公司 filed Critical 安徽金禾实业股份有限公司
Priority to CN202180001408.9A priority Critical patent/CN113474327B/zh
Priority to PCT/CN2021/097011 priority patent/WO2022246863A1/zh
Publication of WO2022246863A1 publication Critical patent/WO2022246863A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Definitions

  • the invention belongs to the technical field of fine chemicals, and in particular relates to a treatment method for acesulfame potassium waste liquid.
  • Acesulfame potassium also known as AK sugar
  • AK sugar is a widely used sugar substitute food additive. Its appearance is white crystalline powder.
  • As an organic synthetic salt its taste is similar to sugarcane, and it is easily soluble in water. , Slightly soluble in alcohol, its chemical properties are stable, and it is not easy to break down and fail; it does not participate in the body's metabolism and does not provide energy; it has high sweetness and low price; it has no cariogenicity; it has good stability to heat and acid.
  • the diketene-sulfur trioxide method is widely used.
  • the specific reaction steps include: reacting sulfamic acid with amine to form amine sulfamic acid salt, and then reacting amine sulfamic acid with diketene , forming acetylacetamide salt; in the presence of sulfur trioxide, acetylacetamide salt undergoes a cyclization reaction to form a cyclic sulfur trioxide adduct; the cyclic compound is hydrolyzed to obtain a hydrolyzate; subsequent treatment with potassium hydroxide for hydrolysis The product is thus obtained as acesulfame potassium (ASK).
  • ASK acesulfame potassium
  • the present application is proposed in order to provide a method for treating waste acesulfame potassium that overcomes the above problems or at least partially solves the above problems.
  • acesulfame potassium waste liquid is the waste liquid produced by adopting diketene-sulfur trioxide method to prepare acesulfame potassium, comprising:
  • the first neutralization step adding the first liquid ammonia to the waste liquid of acesulfame potassium, and carrying out neutralization reaction under preset conditions in a closed reactor to obtain the first material;
  • the first separation step separating the first material into a first organic phase and a first water phase, evaporating the first water phase until the water content reaches a preset water content, and obtaining a second material;
  • the second neutralization step adding the second liquid ammonia to the second material, and performing a neutralization reaction in a closed reactor under preset conditions to obtain a third material;
  • Second separation step separating the third material into a second organic phase and a second aqueous phase
  • the product recovery step the first organic phase and the second organic phase are recovered as a crude product of triethylamine; the second aqueous phase is subjected to solid-liquid separation to obtain a crude product of ammonium sulfate and a residual liquid.
  • the acesulfame potassium waste liquid includes: 10-30wt% sulfuric acid, 5-20wt% triethylamine sulfate and 3-5wt% impurity organic matter.
  • the molar ratio of the total amount of the first liquid ammonia and the second liquid ammonia to the sulfate radical in the waste liquid of acesulfame potassium is 2.5-4:1.
  • the ratio of the first liquid ammonia to the second liquid ammonia is 3-4:1-2.
  • the first neutralization step further includes: after the neutralization reaction is completed, distilling the obtained first material to remove excess ammonia;
  • the second neutralization step further includes: after the neutralization reaction is completed, distilling the obtained second material to remove excess ammonia gas.
  • the preset water content is 50-70wt%, preferably 60wt%.
  • the preset conditions are: the reaction temperature is set to 105-120° C., and the reaction time is set to 2-10 min.
  • the second aqueous phase is subjected to solid-liquid separation to obtain ammonium sulfate crude product and residual liquid including:
  • Sulfuric acid is used to adjust the pH value of the aqueous phase to 6-8;
  • the first neutralization step before the first neutralization step, it also includes:
  • Solvent distillation step Distill the acesulfame potassium waste liquid to remove the solvent therein.
  • the above method also includes:
  • Residual liquid recovery step mixing the residual liquid generated in the product recovery step into the acesulfame waste liquid.
  • this application divides the liquid ammonia into two parts, adds them to the waste liquid of acesulfame potassium step by step, and reacts with the sulfate and sulfuric acid in the waste liquid in a closed environment, and recovers a large amount of ammonia in the first step.
  • Amine the second step adjusts the concentration of the aqueous solution and continues to react with liquid ammonia and unreacted sulfate and sulfuric acid, thereby more effectively recovering the amine.
  • the method of the present application reacts quickly, compared with other methods in the prior art ,
  • the conversion rate of triethylamine sulfate is high, and the reaction is carried out more thoroughly; and the acesulfame waste liquid treatment process is greatly simplified, the treatment time is shortened, and the recovery efficiency of amine is significantly improved.
  • the idea of the present application is to provide a treatment method for acesulfame potassium waste liquid, aiming at the problems of complex acesulfame waste liquid treatment process, long time consumption and low amine recovery efficiency in the prior art. It is divided into two parts, and reacts step by step with the amine sulfate and sulfuric acid in the waste liquid in a closed environment. The first step recovers a large amount of amine, and the second step adjusts the concentration of the aqueous solution to continue the reaction, thus significantly shortening the reaction time. time, reducing the complexity of the treatment process and improving the recovery efficiency of amines.
  • the treatment method of acesulfame-K waste liquid provided by this application includes at least step S110 to step S150:
  • the first neutralization step S110 adding the first liquid ammonia to the acesulfame waste liquid, and performing neutralization reaction in a closed reactor under preset conditions to obtain the first material.
  • the acesulfame potassium waste liquid in this application is the waste liquid produced by the preparation of acesulfame potassium by diketene-sulfur trioxide method. Taking triethylamine as a catalyst, there is a sulfate of triethylamine in the acesulfame potassium waste liquid , sulfuric acid, impurity organic matter, such as triethylamine, and water.
  • triethylamine exists as a catalyst. In the whole preparation process, the amount of triethylamine is not consumed. At the end of the reaction, triethylamine is almost completely converted into triethylamine sulfate, and there is A very small amount of triethylamine remained in the reaction solution.
  • the acesulfame potassium waste liquid is placed in a closed reactor, and the total liquid ammonia that is expected to be added is divided into two parts.
  • the first liquid ammonia is added to the acesulfame potassium waste liquid, and the The neutralization reaction is carried out under preset conditions to obtain the first material.
  • the first separation step S120 separating the first material into a first organic phase and a first water phase, and evaporating the first water phase until the water content reaches a preset water content to obtain a second material.
  • the sulfate of triethylamine, sulfuric acid, impurity organic matter and water etc. mainly exist in the waste liquid of acesulfame potassium.
  • Liquid ammonia reacts with triethylamine sulfate to generate triethylamine and ammonium sulfate, and reacts with sulfuric acid to generate ammonium sulfate.
  • the medium mainly contains solvent and triethylamine
  • the inorganic phase mainly contains ammonium sulfate, sulfuric acid, triethylamine sulfate, water, and a small amount of triethylamine dissolved in water, and the ammonium sulfate can be filtered.
  • the first material can be left to stand for stratification, so as to separate the organic phase and the inorganic phase, which are recorded as the first organic phase and the first water phase, and the first organic phase will not be treated temporarily.
  • the first water phase is evaporated first, and the water content is evaporated to the preset water content, and then the second material is obtained.
  • the material is used as the raw material for the second neutralization reaction to carry out the next step reaction.
  • the evaporation process can refer to any one of the prior art, such as atmospheric distillation, vacuum distillation and the like.
  • the application does not limit the water evaporation temperature.
  • the acesulfame potassium waste liquid in order to evaporate the water as soon as possible, can be evaporated in a boiling state.
  • the water evaporation step can be ended.
  • the presence of a large amount of water will reduce the probability of the combination between ions, so evaporating the water can significantly increase the reaction rate; on the other hand, in this application , both liquid ammonia and triethylamine sulfate need to be dissolved in water, therefore, the reaction needs water as the "carrier" of the neutralization reaction, so water must exist, the water cannot be completely evaporated, and the water content is not too high The lower the better.
  • the inventor has found through a large number of experimental studies that when the water content reaches a certain preset water content, the reaction speed is better promoted.
  • the total mass of acesulfame potassium waste liquid As a benchmark, the preset water content is 50-70wt%, and in other embodiments of the present application, the preset water content is 60wt%.
  • the second neutralization step S130 adding the second liquid ammonia to the second material, and performing a neutralization reaction in a closed reactor under preset conditions to obtain a third material;
  • the second liquid ammonia is added to the first material, and the second liquid ammonia is the balance of the estimated total liquid ammonia minus the first liquid ammonia.
  • the neutralization reaction is also carried out in a closed reactor under preset conditions, and the preset conditions in this step can be the same as or different from the preset conditions in the first neutralization step, preferably the same.
  • triethylamine sulphate almost all converts, generates triethylamine and ammonium sulfate
  • in the 3rd material mainly also exist the ammonium sulfate that sulfuric acid and liquid ammonia generate, solvent, Water, etc.; among them, most of the triethylamine and the solvent remain in the organic phase, and the rest remain in the water phase.
  • Second separation step S140 separating the third material into a second organic phase and a second aqueous phase.
  • And product recovery step S150 recovering the first organic phase and the second organic phase as a crude product of triethylamine; performing solid-liquid separation on the second aqueous phase to obtain a crude product of ammonium sulfate and a residual liquid.
  • the first organic phase is mixed with the second organic phase, reclaims as triethylamine crude product;
  • the obtained triethylamine in order to obtain For triethylamine with higher purity, can be distilled, specifically, the organic phase is cooled to 80-85° C. and then subjected to atmospheric distillation, and the distillate is recovered as a crude triethylamine product.
  • the second water phase can be subjected to solid-liquid separation to obtain ammonium sulfate crude product and residual liquid.
  • the water phase product mainly includes ammonium sulfate and the residual liquid. There is a very small amount of triethylamine dissolved in the residual liquid, and some other impurities. Ammonium sulfate is solid, so the aqueous phase is separated from the solid and liquid, namely Ammonium sulfate crude product and residual liquid can be obtained.
  • the above residual liquid can also be mixed into the waste liquid of acesulfame potassium for recycling treatment, in order to further improve the recovery rate of triethylamine.
  • the treatment method of the present application there are few other reagents or reactants introduced in the reaction, and the particles in the waste liquid can be completely recovered, so the residual liquid generated can be recycled.
  • a solvent distillation step distilling the acesulfame potassium waste liquid to remove the solvent therein.
  • the solvent distillation step can be performed before the first neutralization step, that is, the solvent is removed before the treatment.
  • the reaction rate is improved, and on the other hand, the waste liquid treatment is completed.
  • the finally obtained organic phase does not contain solvent, which reduces the trouble of post-processing.
  • the acesulfame waste liquid can be distilled to remove the solvent therein, and the distillation temperature can be determined according to the solvent type.
  • the source of acesulfame-K waste liquid is that the factory adopts the diketene-sulfur trioxide method in the prior art to prepare acesulfame-K.
  • the acesulfame potassium waste liquid includes 10-30wt% sulfuric acid, 5-20wt% triethylamine sulfate and 3-5wt% impurity organic matter, and the rest is water.
  • Liquid ammonia reacts with the sulfate radical of acesulfame-K waste liquid. In order to make the sulfate radical transform completely, liquid ammonia is usually excessive. In some embodiments of the application, the total consumption of liquid ammonia is the same as that of The molar ratio of sulfate radicals is 2.5-4:1, that is, the molar ratio of the total amount of the first liquid ammonia and the second liquid ammonia to the sulfate radicals in the waste liquid of acesulfame potassium is 2.5-4:1. This ensures the complete transformation of the sulfate radical.
  • the liquid ammonia has been converted into ammonia, and there will be an excessive amount of unreacted ammonia in the reaction system. This part of the excess ammonia can be removed by distillation. Specifically, after the first neutralization reaction is completed, the obtained first material is distilled to remove excess ammonia; after the second neutralization reaction is completed, the obtained second material is distilled to remove excess ammonia gas. Ammonia.
  • the dosage ratio of the first liquid ammonia and the second liquid ammonia is the dosage ratio of the first liquid ammonia and the second liquid ammonia
  • This application does not limit the amount ratio of the first liquid ammonia to the second liquid ammonia.
  • the amount of the first liquid ammonia is more than that of the second liquid as a whole.
  • the amount of ammonia specifically, in some embodiments, the ratio of the amount of the first liquid ammonia to the second liquid ammonia is 3-4:1-2.
  • the neutralization reaction conditions are not limited.
  • the preset conditions of the first neutralization reaction and the second neutralization reaction can be the same or different, preferably same.
  • the preset conditions are: the reaction temperature is set at 105-120° C., and the reaction time is set at 2-10 minutes.
  • the reaction temperature is 105-120° C. and the entire reaction system is in a boiling state
  • the boiling state is conducive to the rapid progress of the reaction and improves the recovery rate of triethylamine.
  • the reaction does not take a long time, and can be completely carried out within 2-10 minutes.
  • the treatment of the aqueous phase can refer to the following method, using sulfuric acid to adjust the pH value of the second aqueous phase to 6-8; Adding an oxidizing agent to the two aqueous phases to carry out an oxidation reaction to reduce the residual ammonia nitrogen content in the second aqueous phase; and performing evaporation and crystallization on the aqueous phase after the oxidation reaction to obtain a crude product of ammonium sulfate.
  • the second water phase there are also liquid ammonia and a small amount of solvent and impurity organic matter, including a small amount of triethylamine, solvent, side reaction products, etc.
  • sulfuric acid to adjust the pH value of the second water phase to 6-8 , to neutralize liquid ammonia.
  • an oxidizing agent such as hydrogen peroxide and other oxidizing agents, to reduce the ammonia nitrogen content of the reaction solution, and dissolve the inorganic ammonium in water.
  • an oxidizing agent such as hydrogen peroxide and other oxidizing agents
  • acesulfame potassium is prepared by diketene-sulfur trioxide method, and the aqueous phase and organic phase are separated after the salt-forming step, wherein the aqueous phase is the waste liquid that needs to be treated in this application.
  • the mass of sulfuric acid The fraction is 10-30%
  • the mass fraction of triethylamine sulfate is 5-20%
  • the mass fraction of impurity organic components is 3-5%
  • the balance is water, wherein the triethylamine:sulfate molar ratio is 2:4 -1.
  • the waste acesulfame potassium used was obtained by this method, and if otherwise specified, it was obtained according to the instructions.
  • Embodiment 1 ⁇ 5 implement comparative example 6,7
  • the first neutralization step put the acesulfame potassium waste liquid in a closed reactor, add the first liquid ammonia, seal the closed reactor, and carry out neutralization reaction under preset conditions to obtain the first material.
  • the first separation step separating the first material into a first organic phase and a first water phase, evaporating the first water phase until the water content reaches a preset water content, and obtaining a second material.
  • the second neutralization step adding the second liquid ammonia to the second material, and continuing the neutralization reaction in the closed reactor under preset conditions to obtain the third material.
  • Second separation step separating the third material into a second organic phase and a second aqueous phase.
  • the product recovery step the first organic phase and the second organic phase are recovered as a crude product of triethylamine; the second aqueous phase is subjected to solid-liquid separation to obtain a crude product of ammonium sulfate and a residual liquid.
  • the calculation method of the recovery rate of triethylamine the percentage of the molar amount of triethylamine recovered and the molar amount of triethylamine in the acesulfame waste liquid measured before treatment.
  • Neutralization reaction steps put the acesulfame potassium waste liquid in the reaction kettle, add the estimated amount of liquid ammonia to the reaction kettle at one time, seal the reaction kettle, and keep it at room temperature for a period of time, the specific reaction conditions and liquid ammonia and sulfuric acid Please refer to Table 2 for the molar ratio of roots to obtain the second material.
  • Product separation step after the neutralization reaction is completed, the second material is distilled under normal pressure to distill off excess ammonia and the solvent remaining in the second material; then the second material is separated into an organic phase and an aqueous phase; wherein , the organic phase is recovered as the crude product of triethylamine; the aqueous phase is filtered to separate the solid and liquid to obtain the crude product of ammonium sulfate and the residual liquid.
  • Comparative example 2 (comprising comparative example 2A, comparative example 2B, comparative example 2C)
  • Water evaporation step In the reaction kettle, the acesulfame waste liquid was heated until the water content in the waste liquid reached the preset water content.
  • Comparative Example 2 please refer to Table 2 for the specific water content to obtain the first material.
  • Neutralization reaction step put the first material in the reaction kettle, add the pre-measured liquid ammonia to the reaction kettle at one time, seal the reaction kettle, and maintain it at the preset reaction temperature for a period of time.
  • Product separation step after the neutralization reaction is finished, cool to normal temperature (if necessary), distill the second material under normal pressure, steam excess ammonia and the solvent remaining in the second material; then separate the second material into An organic phase and an aqueous phase; wherein, the organic phase is recovered as a crude product of triethylamine; the aqueous phase is filtered to separate the solid and liquid to obtain the crude product of ammonium sulfate and a residual liquid.
  • Comparative Example 1A Comparative Example 1A, Comparative Example 1C and Comparative Example 1B, it can be seen that in the state of boiling, the reaction speed can be greatly improved, so that the conversion of triethylamine sulfate in a short period of time (3min) can be significantly promoted.
  • Example 4 and Example 5 Comparing Example 4 and Example 5 with Examples 1-3, it can be seen that under other conditions being equal, increasing the reaction temperature from 105°C to 120°C can greatly shorten the reaction time and reduce The reaction time was shortened to 3min, and the recovery rate of triethylamine also increased slightly.
  • Example Comparative Example 6 and Example Comparative Example 7 From Example Comparative Example 6 and Example Comparative Example 7, it can be seen that under the conditions of 140°C and 160°C, the recovery rate of triethylamine has no obvious change, which shows that on the basis of 120°C, the reaction temperature is further increased. Not only can not bring beneficial effects, but also cause waste of energy, thereby increasing the cost of waste liquid treatment.
  • the reaction time of disposable liquid ammonia at room temperature is long, and the conversion rate of reaction products is relatively low. Heating under airtight conditions, adding liquid ammonia in two steps, the reaction speed is fast, the conversion rate is high, and triethylamine can be recovered effectively. On the one hand, the recovery of triethylamine reflects a high economic value, and on the other hand, it reduces the difficulty of subsequent treatment of organic waste; after the separation of triethylamine, the remaining waste liquid continues to be recycled, reducing the final waste liquid discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了一种安赛蜜废液的处理方法,包括:在安赛蜜废液中加入第一液氨,于密闭反应器中在预设条件下进行中和反应,得到第一物料;将第一物料分离为第一有机相和第一水相,将第一水相进行蒸发至水含量达到预设水含量,得到第二物料;在第二物料中加入第二液氨,于密闭反应器中在预设条件下进行中和反应,得到第三物料;将第三物料分离为第二有机相和第二水相;将第一有机相与第二有机相作为三乙胺粗产品回收;将第二水相进行固液分离,得到硫酸铵粗产品和余液。本申请的方法反应快速,三乙胺硫酸盐转化率高,反应进行得更加彻底;简化了安赛蜜废液处理工艺,缩短了处理时间,提高了胺的回收效率。

Description

安赛蜜废液的处理方法 技术领域
本发明属于精细化工技术领域,具体涉及一种安赛蜜废液的处理方法。
发明背景
乙酰磺胺酸钾(安赛蜜)又称AK糖,是一种广泛使用的代糖食品添加剂,外观为白色结晶性粉末,它作为一种有机合成盐,其口味与甘蔗相似,易溶于水,微溶于酒精,其化学性质稳定,不易出现分解失效现象;不参与机体代谢,不提供能量;甜度较高,价格便宜;无致龋齿性;对热和酸稳定性好。
目前在安赛蜜的合成中,普遍采用双乙烯酮-三氧化硫法,其具体的反应步骤包括:使氨基磺酸与胺反应以形成氨基磺酸胺盐,然后将氨基磺酸胺盐与双乙烯酮反应,形成乙酰基乙酰胺盐;在三氧化硫存在下,乙酰基乙酰胺盐发生环化反应,形成环状三氧化硫加合物;将环状化合物水解获得水解产物;随后用氢氧化钾处理水解产物从而获得乙酰磺胺酸钾(ASK)。
上述生产过程中在将氨基磺酸和双乙烯酮进行加合反应的时候,会使用胺尤其是三乙胺作为反应催化剂,获得最终产物ASK后,剩余的废水中主要含有胺的硫酸盐、硫酸、杂质有机物(包括三乙胺)、溶剂等,这部分废水可以经过处理后排放;但是一方面这会产生大量的处理费用,另一方面在废水中的胺具有较高经济价值,排放掉造成了资源的浪费。
现有技术中,存在着使用氨(氨气、液氨等)与胺的硫酸盐、硫酸反应,从而生成硫酸铵并回收胺的处理方法,如中国专利CN103097297A、中国专利CN111630039A以及中国专利CN112142602A等,但是这些方法均存在着反应工艺复杂,过程长,回收效率低的问题。
发明内容
鉴于上述问题,提出了本申请以便提供一种克服上述问题或者至少部分地解决上述问题的一种安赛蜜废液的处理方法。
根据本申请的一方面,提供了一种安赛蜜废液的处理方法,安赛蜜废液为采用双乙烯酮-三氧化硫法制备安赛蜜产生的废液,包括:
第一中和步骤:在安赛蜜废液中加入第一液氨,于密闭反应器中在预设条件下 进行中和反应,得到第一物料;
第一分离步骤:将第一物料分离为第一有机相和第一水相,将第一水相进行蒸发至水含量达到预设水含量,得到第二物料;
第二中和步骤:在第二物料中加入第二液氨,于密闭反应器中在预设条件下进行中和反应,得到第三物料;
第二分离步骤:将第三物料分离为第二有机相和第二水相;和
产物回收步骤:将第一有机相与第二有机相作为三乙胺粗产品回收;将第二水相进行固液分离,得到硫酸铵粗产品和余液。
可选的,在上述方法中,以安赛蜜废液的总质量为基准,安赛蜜废液包括:10~30wt%的硫酸、5~20wt%的三乙胺硫酸盐和3-5wt%的杂质有机物。
可选的,在上述方法中,第一液氨与第二液氨的总量与安赛蜜废液中的硫酸根的摩尔比为2.5-4:1。
可选的,在上述方法中,第一液氨与第二液氨的比为3-4:1-2。
可选的,在上述方法中,第一中和步骤还包括:在中和反应结束后,对得到的第一物料进行蒸馏,以去除过量的氨气;
第二中和步骤还包括:在中和反应结束后,对得到的第二物料进行蒸馏,以去除过量的氨气。
可选的,在上述方法中,在第一分离步骤中,以安赛蜜废液的总质量为基准,预设水含量为50-70wt%,优选60wt%。
可选的,在上述方法中,在第一中和步骤与第二中和步骤中,预设条件均为:反应温度设为105-120℃,反应时间设为2-10min。
可选的,在上述方法中,在产物回收步骤中,将第二水相进行固液分离,得到硫酸铵粗产品和余液包括:
采用硫酸对水相的pH值进行调节至6-8;
向调节pH值后的水相中加入氧化剂进行氧化反应,以将水相中的残留氨氮含量降低,其中氧化剂为双氧水等;和
对氧化反应结束后的水相进行蒸发结晶,得到硫酸铵粗产品。
可选的,在上述方法中,在第一中和步骤之前还包括:
溶剂蒸馏步骤:对安赛蜜废液进行蒸馏,以去除其中的溶剂。
可选的,上述方法还包括:
余液回收步骤:将产物回收步骤中产生的余液混入所述安赛蜜废液中。
综上所述,本申请通过将液氨分为两部分,分步加入至安赛蜜废液中,与废液中的硫酸盐及硫酸在密闭环境中进行反应,第一步回收较多量的胺,第二步对水溶液浓度进行调整后继续采用液氨与未反应的硫酸盐及硫酸进行反应,从而更为有效地回收胺,本申请的方法反应快速,相对于现有技术中的其他方法,三乙胺硫酸盐转化率高,反应进行得更加彻底;且极大程度上简化了安赛蜜废液处理工艺,缩短了处理时间,显著提高了胺的回收效率。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
实施本发明的方式
下面将更详细地描述本申请的示例性实施例。应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。
本申请的构思在于,针对现有技术中,安赛蜜废液处理工艺复杂、耗时长、胺回收效率低下的问题,提供了一种安赛蜜废液的处理方法,该方法通过将液氨分为两部分,分步与废液中胺的硫酸盐及硫酸在密闭环境中进行反应,第一步回收较多量的胺,第二步对水溶液浓度进行调整后继续反应,从而显著缩短了反应时间,降低了处理工艺复杂度,提高了胺的回收效率。
本申请提供的安赛蜜废液的处理方法至少包括步骤S110~步骤S150:
第一中和步骤S110:在安赛蜜废液中加入第一液氨,于密闭反应器中在预设条件下进行中和反应,得到第一物料。
在本申请中,出现“第一”、“第二”的描述,这里的第一”、“第二”仅作为区分标记使用,不具有任何意义。
本申请中的安赛蜜废液为采用双乙烯酮-三氧化硫法制备安赛蜜产生的废液,以三乙胺作为催化剂为例,在安赛蜜废液中存在着三乙胺的硫酸盐、硫酸、杂质有机物,如三乙胺,和水等。
在制备安赛蜜的过程中,三乙胺是作为催化剂存在的,整个制备过程,三乙胺的量是不消耗的,在反应结束,三乙胺几乎全部转化为三乙胺硫酸盐,有极少量的 三乙胺留在反应液中。
使用液氨处理安赛蜜废液的过程中,整体反应体系中存在多个平衡反应过程,胺的硫酸盐在水溶液浓度很大的情况下,下一次反应无法较为彻底地转化成为胺。因此本申请使用了两步处理法,并通过控制废液中的含水量来实现反应速率的提高。
首先,将安赛蜜废液置于密闭反应器中,将预期加入的总液氨分为两部分,在第一中和步骤中,向安赛蜜废液中加入第一液氨,并在预设条件下进行中和反应,得到第一物料。
第一分离步骤S120:将第一物料分离为第一有机相和第一水相,将第一水相进行蒸发至水含量达到预设水含量,得到第二物料。
在第一中和反应过程中,在安赛蜜废液中主要存在着三乙胺的硫酸盐、硫酸、杂质有机物和水等。液氨与三乙胺的硫酸盐反应生成三乙胺和硫酸铵,且与硫酸反应,也生成硫酸铵,因此中和反应结束后,在第一物料中存在着有机相和无机相,有机相中主要包含溶剂和三乙胺,无机相主要包含硫酸铵、硫酸、三乙胺硫酸盐、水,以及溶解在水中少量的三乙胺,可将硫酸铵过滤。
可以将第一物料静置分层,从而将有机相和无机相分离,记为第一有机相和第一水相,对第一有机相暂时不做处理。
为了保障后续液氨能够与废液中的三乙胺硫酸盐和硫酸快速反应,首先对第一水相进行蒸发,将水含量蒸发到预设水含量后结束,得到第二物料,将第二物料作为第二中和反应的原料,进行下一步反应。
蒸发过程可以参考现有技术中的任意一种,如常压蒸馏、减压蒸馏等。
对应水分蒸发的温度,本申请不做限制,在本申请的一些实施例中,为了使水分尽快蒸发,可以使安赛蜜废液在沸腾状态下进行蒸发。
在水含量达到预设水含量的情况下,即可结束水分蒸发步骤。在本申请中,由于废液中的一部分离子已经被消耗掉,水的大量存在会降低离子之间的结合的概率,因此将水分进行蒸发能够显著提高反应速率;另一方面,在本申请中,液氨和三乙胺的硫酸盐都需要溶解在水中,因此,反应需要水作为中和反应的“载体”,因此水是必须存在的,不能将水分完全蒸发掉,且水含量也不是越低越好。据此,发明人通过大量实验研究发现,水含量达到一定的预设水含量时,对反应速度有比较好的促进作用,在本申请的一些实施例中,以安赛蜜废液的总质量为基准,预设水 含量为50-70wt%,在本申请的另一些实施例中,预设水含量为60wt%。
第二中和步骤S130:在第二物料中加入第二液氨,于密闭反应器中在预设条件下进行中和反应,得到第三物料;
同第一中和步骤,在第一物料中加入第二液氨,第二液氨是预计总液氨减去第一液氨的余量。同样在密闭反应器中在预设条件下进行中和反应,该步骤中预设条件可以与第一中和步骤的预设条件相同,也可以不同,最好相同。反应后得到第三物料,在第三物料中,三乙胺硫酸盐几乎全部转化,生成三乙胺和硫酸铵,在第三物料中,主要还存在硫酸与液氨生成的硫酸铵、溶剂、水等;其中,绝大部分三乙胺和溶剂留存于有机相中,其余留存于水相中。
第二分离步骤S140:将第三物料分离为第二有机相和第二水相。
包括但限于将第三物料静置分层,从而将有机相和无机相分离,记为第二有机相和第二水相。
和产物回收步骤S150:将第一有机相与第二有机相作为三乙胺粗产品回收;将第二水相进行固液分离,得到硫酸铵粗产品和余液。
几乎全部的三乙胺都留存在第一有机相与第二有机相中,将第一有机相与第二有机相混合,作为三乙胺粗产品回收;在本申请的一些实施例中,为了得到纯度更高的三乙胺,可对得到的三乙胺进行蒸馏,具体地,将有机相冷却至80-85℃后进行常压蒸馏,将蒸余液作为三乙胺粗产品回收。
对于水相的处理,可对第二水相进行固液分离,得到硫酸铵粗产品和余液。水相产物中主要包括硫酸铵以及余液,在余液中存在着极少量的溶解于其中的三乙胺,还有一些其他杂质,硫酸铵为固体,因此将水相进行固液分离,即可得到硫酸铵粗产品和余液。
在本申请的一些实施例中,还可以将上述余液混入安赛蜜废液中,循环处理,以期进一步提高三乙胺的回收率。由于在本申请的处理方法中,反应引入的其他试剂或反应物少,废液中的粒子基本上可以完全回收,因此产生的余液能够循环处理。
可选的,在上述方法中,在第一中和步骤之前还包括:溶剂蒸馏步骤:对安赛蜜废液进行蒸馏,以去除其中的溶剂。在本申请的一些实施例中,为了进一步提高反应速率,可在第一中和步骤前执行溶剂蒸馏步骤,即处理之前就将溶剂去除,一方面提高了反应速率,另一方面废液处理完成后得到的有机相中不含溶剂,减轻了后处理的麻烦。具体的,可以对安赛蜜废液进行蒸馏,以去除其中的溶剂,蒸馏温 度可根据溶剂种类确定。
安赛蜜废液来源以及其中各成分含量
安赛蜜废液来源为工厂采用现有技术中的双乙烯酮-三氧化硫法制备安赛蜜产生。通常以安赛蜜废液的总质量为基准,安赛蜜废液中包括10-30wt%的硫酸、5-20wt%的三乙胺硫酸盐和3-5wt%的杂质有机物,其余为水分。
液氨的用量
液氨是与安赛蜜废液的硫酸根进行反应,为了使得硫酸根转化彻底,液氨通常是过量的,在本申请的一些实施例中,液氨总用量与安赛蜜废液中的硫酸根的摩尔比为2.5-4:1,即第一液氨与第二液氨的总量与安赛蜜废液中的硫酸根的摩尔比为2.5-4:1。这样保障了硫酸根的完全转化,在中和反应结束后,液氨已经转化为氨气,在反应体系中会存在着过量的未反应的氨气,可通过蒸馏将这部分过量的氨气,具体的,在第一中和反应结束后,对得到的第一物料进行蒸馏,以去除过量的氨气;在第二中和反应结束后,对得到的第二物料进行蒸馏,以去除过量的氨气。
第一液氨与第二液氨的用量比
本申请对第一液氨与第二液氨的用量比不作限制,在第一中和反应中,会回收大部分三乙胺,因此,整体上第一液氨的量要多于第二液氨的量,具体的,在一些实施例中,第一液氨与第二液氨的用量比为3-4:1-2。
中和反应条件
在本申请中,对中和反应条件不作限制,在本申请的一些实施例中,第一中和反应的预设条件与第二中和反应的预设条件可以相同,也可以不同,最好相同。在本申请的一些实施例中,在第一中和步骤与第二中和步骤中,预设条件均为:反应温度设为105-120℃,反应时间设为2-10min。
在反应温度为105-120℃,整个反应体系处于沸腾的状态下,沸腾的状态有利于反应的快速进行,且提高三乙胺的回收率。在这种状态下,反应无需很长时间,在2-10min中之内即可进行彻底。
在本申请的一些实施例中,在产物分离步骤中,对水相的处理可参考下述方法,采用硫酸对第二水相的pH值进行调节至6-8;向调节pH值后的第二水相中加入氧化剂进行氧化反应,以将第二水相中的残留的氨氮含量降低;和对氧化反应结束后的水相进行蒸发结晶,得到硫酸铵粗产品。
在第二水相中还存在着液氨和少量的溶剂和杂质有机物,包括少量三乙胺、溶 剂、副反应产物等,首先,采用硫酸将第二水相的pH值进行调节至6-8,即将液氨中和掉。然后向其中加入氧化剂,如双氧水等氧化剂,从而将反应液的氨氮含量降低,无机铵溶于水中,在后续的蒸发结晶过程中,随着水分被蒸发掉,得到纯度较高的硫酸铵晶体。
废液的获取:采用双乙烯酮-三氧化硫法制备安赛蜜,在成盐步骤后分离水相和有机相,其中水相即为本申请所需要处理的废液,在废液中,硫酸的质量分数为10-30%,三乙胺硫酸盐的质量分数为5-20%,杂质有机物成分的质量分数为3-5%,余量为水,其中三乙胺:硫酸根摩尔比2:4-1。在下述各实施例或对比例中,如无特殊说明,使用的安赛蜜废液均采取该方法获得,如有特殊说明,依据说明取得。
需要说明的是,安赛蜜废液中三乙胺和硫酸根含量的测定方法,均可参考现有技术或者国家标准,如GB/T23964和GB/T23835.7,本申请不作限制,在以下各实施例和对比例中不再赘述。
实施例1~5、实施对比例6、7
第一中和步骤:将安赛蜜废液置于密闭反应器中,加入第一液氨,将密闭反应器密封中,在预设条件下进行中和反应,得到第一物料。
第一分离步骤:将第一物料分离为第一有机相和第一水相,将第一水相进行蒸发至水含量达到预设水含量,得到第二物料。
第二中和步骤:在第二物料中加入第二液氨,继续在密闭反应器中在预设条件下进行中和反应,得到第三物料。
第二分离步骤:将第三物料分离为第二有机相和第二水相。
产物回收步骤:将第一有机相与第二有机相作为三乙胺粗产品回收;将第二水相进行固液分离,得到硫酸铵粗产品和余液。
实施例1~5、实施对比例6、7的步骤是一致的,不同之处在于实验的预设条件的设置,具体请参见表1。
表1:
Figure PCTCN2021097011-appb-000001
Figure PCTCN2021097011-appb-000002
注:三乙胺回收率的计算方法:回收的三乙胺的摩尔量与处理前测定的安赛蜜废液中三乙胺的摩尔量的百分比。
对比例1
中和反应步骤:将安赛蜜废液置于反应釜内,向反应釜中一次性加入预计量液氨,将反应釜密闭,在常温下,维持一段时间,具体反应条件以及液氨与硫酸根的摩尔比请参考表2,得到第二物料。
产物分离步骤:中和反应结束后,在常压下对第二物料进行蒸馏,蒸出过量氨气以及留存于第二物料中的溶剂;然后将第二物料分离为有机相和水相;其中,将有机相作为三乙胺粗产品回收;对水相进行过滤,以使固液分离,得到硫酸铵粗产品和余液。
对比例2(包括对比例2A、对比例2B、对比例2C)
水分蒸发步骤:在反应釜中,对安赛蜜废液进行加热,直至废液中的水含量达到预设水含量,对比例2中,水分具体含量请参见表2,得到第一物料。
中和反应步骤:将第一物料置于反应釜内,向反应釜中一次性加入预计量液氨,将反应釜密闭,在预设反应温度下,维持一段时间,具体反应条件以及液氨与硫酸根的摩尔比请参考表2,得到第二物料。
产物分离步骤:中和反应结束后冷却至常温(如需),在常压下对第二物料进行蒸馏,蒸出过量氨气以及留存于第二物料中的溶剂;然后将第二物料分离为有机相和水相;其中,将有机相作为三乙胺粗产品回收;对水相进行过滤,以使固液分离,得到硫酸铵粗产品和余液。
表2:
Figure PCTCN2021097011-appb-000003
Figure PCTCN2021097011-appb-000004
从对比例1可以看出,在不对水分进行蒸发且在常温的条件下,对安赛蜜废液进行处理,在经历很久的反应时间(300min),三乙胺也很难达到比较理想的回收效果(55%)。
从实施例1~5中与对比例1B可以看出,将液氨分两步,能够显著提高三乙胺的回收率,从83%提高到97%或以上。
比较对比例1A、对比例1C和对比例1B可以看出,在反应在沸腾的状态下,能够使反应速度大幅度提升,使得显著促进三乙胺硫酸盐在短时间内(3min)的转化。
将实施例4、实施例5与实施例1-3进行对比,可以看出,在其他条件同等的状态下,将反应温度从105℃提高至120℃,能够极大程度上缩短反应时间,将反应时间缩短至3min,且三乙胺的回收率也略有增加。
从实施例对比例6、实施例对比例7可以看出,在140℃和160℃的条件下,三乙胺的回收率没有明显变化,这说明在120℃的基础上,进一步提高反应温度,不仅不能带来有益效果,还会造成能源的浪费,从而增加废液处理成本。
综上所述,常温下一次性液氨的反应时间长,反应产物转化率相对较低。在密闭情况下加热,将液氨分两步加入,反应速度快,转化率高,能够有效的回收三乙胺。三乙胺的回收一方面体现出较高的经济价值,另外一方面是减轻后续处理有机废物的难度;在分离三乙胺后,剩余废液继续循环处理,降低了最终废液排放量。
以上所述,仅为本申请的具体实施方式,在本申请的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本申请的目的,本申请的保护范围应以权利要求的保护范围为准。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。

Claims (10)

  1. 一种安赛蜜废液的处理方法,所述安赛蜜废液为采用双乙烯酮-三氧化硫法制备安赛蜜产生的废液,其特征在于,包括:
    第一中和步骤:在所述安赛蜜废液中加入第一液氨,于密闭反应器中在预设条件下进行中和反应,得到第一物料;
    第一分离步骤:将所述第一物料分离为第一有机相和第一水相,将所述第一水相进行蒸发至水含量达到预设水含量,得到第二物料;
    第二中和步骤:在所述第二物料中加入第二液氨,于密闭反应器中在预设条件下进行中和反应,得到第三物料;
    第二分离步骤:将所述第三物料分离为第二有机相和第二水相;和
    产物回收步骤:将第一有机相与第二有机相作为三乙胺粗产品回收;将第二水相进行固液分离,得到硫酸铵粗产品和余液。
  2. 根据权利要求1所述的方法,其特征在于,以所述安赛蜜废液的总质量为基准,所述安赛蜜废液包括:10~30wt%的硫酸、5~20wt%的三乙胺硫酸盐和3-5wt%的杂质有机物。
  3. 根据权利要求2所述的方法,其特征在于,所述第一液氨与所述第二液氨的总量与所述安赛蜜废液中的硫酸根的摩尔比为2.5-4:1。
  4. 根据权利要求3所述的方法,其特征在于,所述第一液氨与所述第二液氨的比为3-4:1-2。
  5. 根据权利要求3所述的方法,其特征在于,所述第一中和步骤还包括:在中和反应结束后,对得到的第一物料进行蒸馏,以去除过量的氨气;
    所述第二中和步骤还包括:在中和反应结束后,对得到的第二物料进行蒸馏,以去除过量的氨气。
  6. 根据权利要求2所述的方法,其特征在于,在所述第一分离步骤中,以所述安赛蜜废液的总质量为基准,所述预设水含量为50-70wt%,优选60wt%。
  7. 根据权利要求1所述的方法,其特征在于,在所述第一中和步骤与所述第二中和步骤中,所述预设条件均为:反应温度设为105-120℃,反应时间设为2-10min。
  8. 根据权利要求1所述的方法,其特征在于,在所述产物回收步骤中,所述 将第二水相进行固液分离,得到硫酸铵粗产品和余液包括:
    采用硫酸对所述水相的pH值进行调节至6-8;
    向调节pH值后的水相中加入氧化剂进行氧化反应;和
    对氧化反应结束后的水相进行蒸发结晶,得到硫酸铵粗产品。
  9. 根据权利要求1所述的方法,其特征在于,在所述第一中和步骤之前还包括:
    溶剂蒸馏步骤:对所述安赛蜜废液进行蒸馏,以去除其中的溶剂。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    余液回收步骤:将所述产物回收步骤中产生的余液混入所述安赛蜜废液中。
PCT/CN2021/097011 2021-05-28 2021-05-28 安赛蜜废液的处理方法 WO2022246863A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001408.9A CN113474327B (zh) 2021-05-28 2021-05-28 安赛蜜废液的处理方法
PCT/CN2021/097011 WO2022246863A1 (zh) 2021-05-28 2021-05-28 安赛蜜废液的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097011 WO2022246863A1 (zh) 2021-05-28 2021-05-28 安赛蜜废液的处理方法

Publications (1)

Publication Number Publication Date
WO2022246863A1 true WO2022246863A1 (zh) 2022-12-01

Family

ID=77864669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097011 WO2022246863A1 (zh) 2021-05-28 2021-05-28 安赛蜜废液的处理方法

Country Status (2)

Country Link
CN (1) CN113474327B (zh)
WO (1) WO2022246863A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545196A1 (de) * 1985-12-20 1987-06-25 Hoechst Ag Verfahren zur aufarbeitung von abfallschwefelsaeure
CN102834352A (zh) * 2010-04-19 2012-12-19 国际人造丝公司 制备硫酸铵组合物的方法
CN105906026A (zh) * 2016-06-08 2016-08-31 浙江奇彩环境科技股份有限公司 一种含小分子有机物的废水的处理方法
CN112142602A (zh) * 2019-06-27 2020-12-29 南通醋酸化工股份有限公司 一种乙酰磺胺酸钾废酸连续处理方法
CN112194293A (zh) * 2020-09-26 2021-01-08 安徽金禾实业股份有限公司 一种安赛蜜生产中外排母液的回收利用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2380869B1 (en) * 2010-04-19 2013-10-23 Celanese International Corporation Method to recover organic tertiary amines from waste sulfuric acid
CN104193625B (zh) * 2014-09-27 2015-12-09 安徽金禾实业股份有限公司 乙酰磺胺酸钾生产中催化剂三乙胺的回收方法
CN105152446B (zh) * 2015-09-25 2017-10-17 浙江奇彩环境科技股份有限公司 一种安赛蜜生产废水的处理工艺
WO2019141369A1 (en) * 2018-01-18 2019-07-25 Chemadvice Gmbh Process for the preparation of an acesulfame with sulphuric acid processing
CN112010758A (zh) * 2020-09-26 2020-12-01 安徽金禾实业股份有限公司 一种三乙胺回收方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545196A1 (de) * 1985-12-20 1987-06-25 Hoechst Ag Verfahren zur aufarbeitung von abfallschwefelsaeure
CN102834352A (zh) * 2010-04-19 2012-12-19 国际人造丝公司 制备硫酸铵组合物的方法
CN105906026A (zh) * 2016-06-08 2016-08-31 浙江奇彩环境科技股份有限公司 一种含小分子有机物的废水的处理方法
CN112142602A (zh) * 2019-06-27 2020-12-29 南通醋酸化工股份有限公司 一种乙酰磺胺酸钾废酸连续处理方法
CN112194293A (zh) * 2020-09-26 2021-01-08 安徽金禾实业股份有限公司 一种安赛蜜生产中外排母液的回收利用方法

Also Published As

Publication number Publication date
CN113474327A (zh) 2021-10-01
CN113474327B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
EA027269B1 (ru) Извлечение карбоновой кислоты из ее магниевых солей путем осаждения с применением хлористо-водородной кислоты, пригодное для выделения продукта реакции из ферментативного бульона
CN105271143A (zh) 盐酸羟胺母液的回收处理工艺
JP4426104B2 (ja) ヒドロキシメチルチオ酪酸の製造方法
WO2022246863A1 (zh) 安赛蜜废液的处理方法
AU2017325967A1 (en) Method for producing potassium sulfate from potassium chloride and sulfuric acid
WO2022246864A1 (zh) 安赛蜜废液的处理方法
CN112645357B (zh) 一种硫酸钠母液的后处理方法
CN112375007B (zh) 一种制备甘氨酸乙酯盐酸盐过程中产生的脚料的处理工艺
CN114735724A (zh) 一种从废水中回收低含水量溴化钠的方法
US3947496A (en) Process for recovering glycine from sodium sulfate solutions
US3985801A (en) Process for recovering glycine from sodium chloride solutions
CN110436520A (zh) 利用钒酸钠清洁制备钒产品的方法
EP0253740B1 (fr) Procédé de préparation d'une solution aqueuse du sel de sodium de la méthionine
CN112159016A (zh) 一种合成金刚烷胺时产生的废酸水的回收处理方法
CN112409196A (zh) 一种基于德尔宾反应的氨甲苯酸的制备工艺
CN111689520B (zh) 一种二段真空制备十水合仲钨酸铵的方法
WO2022246866A1 (zh) 安赛蜜废液的处理方法
CN111592449A (zh) 一种安息香的生产工艺
CA1038886A (en) Recovery of guanidine carbonate from aqueous solutions
US4394364A (en) Separation of boric acid from mixtures thereof with sulphuric acid
CN114105763B (zh) 一种无水甲酸的制备方法
CN109503332B (zh) 一种利用水杨酸残渣分解回收苯酚钠的方法
WO2018227839A1 (zh) 一种甲硫氨酸的清洁生产方法
JP2011126794A (ja) メチオニンの製造方法
JPS60340B2 (ja) スルファミン酸グアニジンの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942434

Country of ref document: EP

Kind code of ref document: A1