WO2018227839A1 - 一种甲硫氨酸的清洁生产方法 - Google Patents

一种甲硫氨酸的清洁生产方法 Download PDF

Info

Publication number
WO2018227839A1
WO2018227839A1 PCT/CN2017/107645 CN2017107645W WO2018227839A1 WO 2018227839 A1 WO2018227839 A1 WO 2018227839A1 CN 2017107645 W CN2017107645 W CN 2017107645W WO 2018227839 A1 WO2018227839 A1 WO 2018227839A1
Authority
WO
WIPO (PCT)
Prior art keywords
methionine
sodium carbonate
sodium
hydantoin
methylthioethyl
Prior art date
Application number
PCT/CN2017/107645
Other languages
English (en)
French (fr)
Inventor
韦异勇
吴传隆
覃玉芳
秦岭
王绪建
陈松林
廖常福
张建成
马旭东
康建辉
秦主源
张静
唐玉平
Original Assignee
宁夏紫光天化蛋氨酸有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏紫光天化蛋氨酸有限责任公司 filed Critical 宁夏紫光天化蛋氨酸有限责任公司
Publication of WO2018227839A1 publication Critical patent/WO2018227839A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/26Separation; Purification; Stabilisation; Use of additives
    • C07C319/28Separation; Purification

Definitions

  • This application belongs to the field of production of organic compounds and relates to a method for clean production of methionine.
  • Methionine also known as D,L-methionine, is one of the basic units that make up proteins. It is the only amino acid that contains sulfur in essential amino acids, in addition to participating in the transfer of methyl groups in animals, phosphorus metabolism and adrenaline, choline, In addition to the synthesis of creatine, it is also a raw material for the synthesis of proteins and cystine. Methionine is widely used in the fields of medicine, food, feed and cosmetics, and its use as a feed additive is large. The global demand for methionine has reached 1.6 million tons/year. The demand for methionine in China in 2016 exceeded 250,000 tons.
  • methionine by the hydantoin method there are two main ways to prepare methionine by the hydantoin method: one is to replace the traditional sodium cyanide with potassium cyanide or the reaction of potassium cyanide with 3-methylthiopropanal to form cyanohydrin, and then with carbon dioxide and ammonia.
  • the reaction generates hydantoin, potassium carbonate hydrolyzes hydantoin, carbon dioxide neutralizes potassium methionine, separates methionine and potassium hydrogencarbonate, and the methionine-containing potassium hydrogencarbonate mother liquor circulates to the hydantoin hydrolysis step, the whole method
  • the other is based on cyanohydrin, carbon dioxide, ammonia or sodium cyanide, 3 -Methylthiopropanal, carbon dioxide, ammonia as raw materials, preparation of hydantoin, and then hydrolyzed by sodium hydroxide to form sodium saponification solution containing sodium carbonate and sodium methionine, acidified by sulphuric acid, crystallized, respectively Thiosine and sodium sulfate, the biggest disadvantage of this process is the separation and purification of methionine and sodium sulfate and the production of low-
  • the products of thermal decomposition of methionine were determined to be dimethyl disulfide, acrylamine, 3-methylthiopropylamine and carbon dioxide.
  • the mechanism is: When heated, methionine is first decomposed into 3-methylthiopropylamine and carbon dioxide, that is to say, first decarboxylation, 3-methylthiopropylamine continues to be thermally decomposed into dimethyl disulfide and acrylamine, resulting in a foul smell.
  • Methionine has an unpleasant smell; the second is the accumulation of sodium formate and sodium 2-hydroxy-4-methylthiobutyrate in the saponification solution, which affects the quality of the methionine product and will eventually affect The quality of sulfuric acid, sodium sulfate products not only contain methionine but also sodium formate, which affects the use of sodium sulfate, especially containing about 0.5% methionine. All of these lead to the largest methionine production process.
  • the outstanding problem is environmental protection and by-product low-value sodium sulfate (1 to ton of methionine by-product sodium sulfate is 1.2 to 1.8 tons), and the best way to solve environmental problems is to burn, which inevitably consumes more. Energy Increased production costs and the loss of methionine, and for a large number of low-value by-product sodium problem, but can not find a fundamental effective solution.
  • an object of the present application is to provide a method for clean production of methionine.
  • a method for clean production of methionine comprising the following steps:
  • the saponification liquid obtained in the step (1) is subjected to sodium carbonate crystallization, solid-liquid separation and separately collecting sodium carbonate crystals and a crystallization mother liquid; and the obtained crystallization mother liquid is diluted with water to a content of 10 wt% to 20 wt% in terms of methionine. , the sodium carbonate content is less than 6 wt%;
  • step (3) of obtaining a mixture of sodium methionine and sodium carbonate is recycled to the step (2) sodium carbonate crystallization.
  • the aqueous solution of 5-(2-methylthioethyl)-hydantoin is an aqueous solution containing 5-(2-methylthioethyl)-hydantoin ;
  • the aqueous solution of 5-(2-methylthioethyl)-hydantoin is an aqueous solution containing 5-(2-methylthioethyl)-hydantoin and sodium carbonate mixed, wherein 5-( The molar ratio of 2-methylthioethyl)-hydantoin to sodium carbonate is from 1:0.5 to 0.7.
  • the content of 5-(2-methylthioethyl)-hydantoin in the aqueous solution of 5-(2-methylthioethyl)-hydantoin in the step (1) is 10% by weight to 40% by weight. %.
  • the content of 5-(2-methylthioethyl)-hydantoin in the aqueous solution of 5-(2-methylthioethyl)-hydantoin in the step (1) is 12 to 40% by weight. .
  • the added sodium carbonate content is 26 to 99.9 wt%.
  • the molar ratio of 5-(2-methylthioethyl)-hydantoin to sodium carbonate in the hydrolysis reaction system is 1:1.6-3, and the hydrolysis reaction temperature is 140. °C ⁇ 200 ° C, hydrolysis reaction time is 5 ⁇ 60min.
  • the hydrolysis reaction temperature is from 180 ° C to 195 ° C
  • the hydrolysis reaction time is from 8 to 30 min, most preferably from 10 to 20 min.
  • the molar ratio of 5-(2-methylthioethyl)-hydantoin to sodium carbonate in the hydrolysis reaction system is 1:1.6 to 2.5.
  • the molar ratio of 5-(2-methylthioethyl)-hydantoin to sodium carbonate in the hydrolysis reaction system is 1:2 to 2.2.
  • the sodium carbonate of the saponification liquid is crystallized into freeze crystal or evaporative crystal, and the frozen crystal is stirred and crystallized at a cooling temperature of -10 ° C to 5 ° C;
  • the crystals are stirred and stirred at an evaporation temperature of 65 ° C to 90 ° C, and the crystals of evaporation can be taken 1-2 times with sodium carbonate crystals.
  • the acidified crystal is introduced into the carbon dioxide under the conditions of a temperature of 0 ° C to 60 ° C and a pressure of 0.1 to 1.0 MPa.
  • the secondary crystallization mother liquid contains the heating condition of 110 ° C to 200 ° C, and the heating time is 20 to 180 min.
  • the sodium carbonate crystals collected in the step (2) are prepared by circulating an aqueous solution of 27% by weight or more to the 5-(2-methylthioethyl)-hydantoin hydrolysis step (1).
  • the environmentally friendly clean production method of the methionine of the present application can achieve sodium sulfate or sodium chloride which is completely non-produced and low in value, avoiding the energy consumption required for subsequent purification and concentration of sodium sulfate, and the operation is simple, and the result is simple.
  • the purity of methionine can be as high as 99.0% or more, and the method does not need to repeatedly heat and concentrate the mother liquor of methionine-containing sodium sulfate to prevent methionine from being decomposed by heat for a long time to generate malodorous gas.
  • the method has the advantages of low cost, no large amount of acid and odorous waste water discharge, green environmental protection, sodium carbonate circulation to hydrolysis of 5-(2-methylthioethyl)-hydantoin step, no need to add new alkaline substances, It is worthy of industrial production promotion and application.
  • the closed reactor is preheated to a cycle of 80 ° C to 100 ° C; 2320 g of a 30% by mass aqueous solution of 5-(2-methylthioethyl)-hydantoin and containing masses 2292 g of a 37% sodium carbonate aqueous solution was added to the closed reactor, and the temperature was immediately raised to 180 ° C, the pressure was 1.6 MPa, and the temperature was maintained for 15 min.
  • aqueous solution (saponified liquid) 3500 in which sodium carbonate and sodium methionine are mixed is obtained. g, wherein the mass percentage of sodium methionine is 17.0%, the mass percentage of sodium carbonate is 24.23%, and the yield of sodium methionine is 99.9% or more.
  • the saponification liquid obtained above was directly frozen to about -10 ° C, and subjected to freeze crystallization under stirring, and the crystals were suction-filtered, and the crystals were washed with a small amount of water to obtain 3100 g of a mixture of sodium methionate and sodium carbonate, wherein methylthioamide was used.
  • the acidity content was 19.2% by weight, the mass percentage of sodium carbonate was 9.5%, and the removal rate of sodium carbonate was 65%.
  • the extracted sodium carbonate is recycled to the 5-(2-methylthioethyl)-hydantoin aqueous hydrolysis step.
  • the crystallization mother liquid obtained above was diluted with water to a content of 11.11% in terms of methionine, and the sodium carbonate content was 5.5 wt%, and then added to a stirring reactor of 10 L, kept at 45 ° C while being introduced from the bottom of the reactor.
  • the pressure of carbon dioxide and carbon dioxide is 0.2 MPa.
  • the removed suspension is filtered, and the filtrate is washed with a small amount of water.
  • the dried methionine product is 347.8 g, and the purity is 99.4%.
  • the single yield of acid is 58%; the filtrate is subjected to high temperature treatment at 110 ° C to obtain 3200 g of a mixture of sodium carbonate and sodium methionine, and the mass percentage of sodium methionine is 7.8%, and the mass of sodium carbonate is 100%. The fraction is 9.2%.
  • the obtained mixture of sodium carbonate and sodium methionine is decolorized by activated carbon, and the hydrolyzate after filtering the activated carbon is concentrated to a mass percentage of methionine of about 18%, and the mass percentage of sodium carbonate is about 21.2%. It is then recycled to the saponification solution to freeze the crystallization step to obtain sodium carbonate.
  • the closed reactor is preheated to a cycle of 80 ° C to 100 ° C; 3480 g of a 20% by mass aqueous solution of 5-(2-methylthioethyl)-hydantoin and containing masses 852.3 g of anhydrous sodium carbonate 852.3 g was added to the closed reactor, and immediately heated to 180 ° C, the pressure was 1.6 MPa, and the temperature was maintained for 15 min. After the reaction is completed, the pressure is released to normal pressure, and then stripping is performed, and carbon dioxide and ammonia generated by the reaction are removed until no ammonia is detected as the end point of stripping, and an aqueous solution (saponified solution) 3500 in which sodium carbonate and sodium methionine are mixed is obtained. g, wherein the mass percentage of sodium methionine is 17.0%, the mass percentage of sodium carbonate is 24.23%, and the yield of sodium methionine is 99.9% or more.
  • the saponification liquid obtained above was directly frozen to about -6 ° C, and subjected to freeze crystallization under stirring, and the crystals were suction-filtered, and the crystals were washed with a small amount of water to obtain 3100 g of a mixture of sodium methionate and sodium carbonate, wherein methylthioamide was used.
  • the acid content was 19.2% by weight, the mass percentage of sodium carbonate was 8.25%, and the removal rate of sodium carbonate was 70%.
  • the extracted sodium carbonate is recycled to the 5-(2-methylthioethyl)-hydantoin aqueous hydrolysis step.
  • the crystallization mother liquid obtained above is diluted with water to a content of 10.47% by weight in terms of methionine, and the content of sodium carbonate is It is 4.5 wt%, then added to a 10 L stirred reactor, and kept at 40 ° C while introducing carbon dioxide from the bottom of the reactor, and the pressure of carbon dioxide is 0.2 MPa. After the neutralization is completed, the removed suspension is filtered. The filtrate was washed with a small amount of water, and the methionine product obtained by drying was 360.12 g, the purity was 99.3%, and the single yield of methionine was 60%; the filtrate was subjected to high temperature treatment at 110 ° C to obtain sodium carbonate and methyl sulfide.
  • the mixture of sodium sulphate was 3200 g, the mass percentage of sodium methionine was 7.45%, and the mass percentage of sodium carbonate was 7.99%.
  • the obtained mixture of sodium carbonate and sodium methionine is decolorized by activated carbon, and the hydrolyzate after filtering the activated carbon is concentrated to a mass percentage of sodium methionine of about 18%, and the mass percentage of sodium carbonate is about 21.2%. Then, it is recycled to the saponification liquid freezing crystallization step to take sodium carbonate.
  • the closed reactor is preheated to a cycle of 80 ° C to 100 ° C; 1988.6 g, a 35% by mass aqueous solution of 5-(2-methylthioethyl)-hydantoin and containing masses 3117.6 g of a 34% sodium carbonate aqueous solution was added to the closed reactor, and the temperature was immediately raised to 185 ° C, the pressure was 1.8 MPa, and the temperature was maintained for 15 min.
  • the saponification liquid obtained above is directly frozen to about -6 ° C, and freeze-crystallized under stirring, and the crystals are suction-filtered, and the crystals are washed with a small amount of water to obtain 4000 g of a mixture of sodium methionine and sodium carbonate, wherein thiomethine is used.
  • the acid content was 14.9 wt%, the mass percentage of sodium carbonate was 6.6%, and the removal rate of sodium carbonate was 75%.
  • the extracted sodium carbonate is recycled to the 5-(2-methylthioethyl)-hydantoin aqueous hydrolysis step.
  • the crystallization mother liquid obtained above was diluted with water to a content of 11.3 wt% in terms of methionine, and the sodium carbonate content was 5.0 wt%, and then added to a stirred reactor of 10 L, and kept at 40 ° C while passing through the bottom of the reactor.
  • the carbon dioxide is introduced into the carbon dioxide, and the pressure of the carbon dioxide is 0.2 MPa.
  • the removed suspension is filtered, and the filtrate is washed with a small amount of water.
  • the dried methionine product is 300.1 g, and the purity is 99.3%.
  • the single yield of the acid is 50%; the filtrate is treated at 110 ° C to obtain 3980 g of a mixture of sodium carbonate and sodium methionine, and the mass percentage of sodium methionine is 7.5%. The percentage is 6.66%.
  • the obtained mixture of sodium carbonate and sodium methionine is decolorized by activated carbon, and the hydrolyzate after filtering the activated carbon is concentrated to a mass percentage of sodium methionine of about 16%, and the mass percentage of sodium carbonate is about 17%. Then, it is recycled to the saponification liquid freezing crystallization step to take sodium carbonate.
  • the closed reactor is preheated to a cycle of 80 ° C to 100 ° C; 1988.6 g, a 35% by mass aqueous solution of 5-(2-methylthioethyl)-hydantoin and the above examples 2292 g of sodium carbonate decahydrate obtained in 1 to 3 was placed in a closed reactor, and the temperature was immediately raised to 185 ° C, the pressure was 1.8 MPa, and the temperature was kept for 15 minutes.
  • aqueous solution (saponified liquid) 3900 in which sodium carbonate and sodium methionine are mixed is obtained. g, wherein the mass percentage of sodium methionine is 15.3%, the mass percentage of sodium carbonate is 21.74%, and the yield of sodium methionine is 99.9% or more.
  • the saponification liquid obtained above was directly frozen to about -6 ° C, and subjected to freeze crystallization under stirring, and the crystals were suction-filtered, and the crystals were washed with a small amount of water to obtain 3,500 g of a mixture of sodium methionate and sodium carbonate, wherein methylthioamide was used.
  • the acidity content was 17.03% by weight, the mass percentage of sodium carbonate was 7.27%, and the removal rate of sodium carbonate was 70%.
  • the extracted sodium carbonate is recycled to the 5-(2-methylthioethyl)-hydantoin aqueous hydrolysis step.
  • the crystallization mother liquid obtained above was diluted with water to a content of 13.35 wt% in terms of methionine, and the sodium carbonate content was 5.7 wt%, and then added to a stirred reactor of 10 L, and kept at 40 ° C while passing through the bottom of the reactor.
  • the pressure of carbon dioxide is 0.2MPa.
  • the removed suspension is filtered, the filtrate is washed with a small amount of water, and the methionine product obtained after drying is 330.44 g, and the purity is 99.2%.
  • the single yield of amino acid is 55%; the filtrate is treated at 110 ° C to obtain 3680 g of a mixture of sodium carbonate and sodium methionine, and the mass percentage of sodium methionine is 7.3%. The percentage is 6.9%.
  • the obtained mixture of sodium carbonate and sodium methionine is decolorized by activated carbon, and the hydrolyzate after filtering the activated carbon is concentrated to a mass percentage of sodium methionine of about 16%, and the mass percentage of sodium carbonate is about 17%. Then, it is recycled to the saponification liquid freezing crystallization step to take sodium carbonate.
  • the closed reactor is preheated to a temperature of 80 ° C ⁇ 100 ° C; 3480 grams of 5-(2-methylthioethyl)-hydantoin aqueous solution with a mass percentage of 50% sodium carbonate 1704 grams Adding to the closed reactor, the aqueous solution has a mass percentage of 5-(2-methylthioethyl)-hydantoin of 20%, the mass percentage of sodium carbonate is 7.31%; and the temperature is immediately raised to 180 ° C. The pressure is 1.6 MPa and the temperature is kept for 15 minutes.
  • aqueous solution (saponified solution) 3500 in which sodium carbonate and sodium methionine are mixed is obtained. g, wherein the mass percentage of sodium methionine is 17.0%, the mass percentage of sodium carbonate is 24.23%, and the yield of sodium methionine is 99.9% or more.
  • the saponification liquid obtained above is directly heated to about 85 ° C, and then evaporated to crystallize under stirring under a micro-negative pressure condition, and the crystals are suction-filtered, and the crystals can be separated into one or more times to obtain sodium methionate and sodium carbonate.
  • the mixed liquid was 1550 g, wherein the content was 38.4% in terms of methionine, the mass percentage of sodium carbonate was 10.7%, and the removal rate of sodium carbonate was 85%.
  • the extracted sodium carbonate is recycled to the 5-(2-methylthioethyl)-hydantoin aqueous hydrolysis step.
  • the saponification liquid obtained above was diluted to a total sodium content of 3.5%, and then added to a 10 L stirred reactor, and kept at 30 ° C while introducing carbon dioxide from the bottom of the reactor, and the pressure of introducing carbon dioxide was 0.2. After MPa, after the neutralization is completed, the removed suspension is filtered, and the filtrate is washed with a small amount of water.
  • the dried methionine product is 360.12 g, the purity is 99.3%, and the single yield of methionine is 60%.
  • the filtrate was subjected to high temperature treatment at 110 ° C to obtain 3200 g of a mixture of sodium carbonate and sodium methionine, the mass percentage of sodium methionine was 7.45%, and the mass percentage of sodium carbonate was 7.99%.
  • the obtained mixture of sodium carbonate and sodium methionine is decolorized by activated carbon, and the mixed solution after filtering the activated carbon is circulated to a saponification liquid to evaporate and concentrate the sodium carbonate crystallization step to
  • the present invention can achieve the object of the invention under the condition that the molar ratio of 5-(2-methylthioethyl)-hydantoin to sodium carbonate is 1:1.6-3 in the hydrolysis reaction system. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请涉及一种甲硫氨酸的清洁生产方法,用碳酸钠水解5-(2-甲硫基乙基)-乙内酰脲后,再进行碳酸钠结晶,固液分离并分别收集碳酸钠晶体和结晶母液;得到的结晶母液用水稀释至甲硫氨酸含量为10wt%~20wt%,碳酸钠含量为6wt%以内;再通入二氧化碳酸化结晶得甲硫氨酸,二次结晶母液经加热后可循环至碳酸钠结晶步骤;整个生产方法步骤简单,条件温和,完全无副产低价值的硫酸钠或者氯化钠产生,避免含甲硫氨酸的硫酸钠母液反复进行加热浓缩引起的甲硫氨酸受热分解产生的恶臭,产物碳酸钠可循环使用,绿色环保,值得工业化生产推广应用。

Description

一种甲硫氨酸的清洁生产方法
本申请要求于2017年6月13日提交中国专利局、申请号为201710443497.8、发明名称为“一种甲硫氨酸的清洁生产方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于有机化合物的生产领域,涉及一种甲硫氨酸的清洁生产方法。
背景技术
甲硫氨酸又名D,L-蛋氨酸,是构成蛋白质的基本单位之一,是必需氨基酸中唯一含有硫的氨基酸,除了参与动物体内甲基的转移、磷的代谢和肾上腺素、胆碱、肌酸的合成外,还是合成蛋白质和胱氨酸的原料。甲硫氨酸广泛用于医药、食品、饲料和化妆品等领域,其中作为饲料添加剂的用量很大。全球甲硫氨酸的需求量达到了160万吨/年,中国的甲硫氨酸2016年甲硫氨酸的需求量超过了25万吨,但是目前我国除了宁夏紫光化工的10万吨甲硫氨酸和山东新和成5万吨外,我国的甲硫氨酸还需要大量的从国外进,国内的产量不能满足需求。
目前海因法制备甲硫氨酸主要有两种途径:一种是采用氢氰酸代替传统的氰化钠或者氰化钾与3-甲硫基丙醛反应生成氰醇,再与二氧化碳、氨反应生成海因,碳酸钾水解海因,二氧化碳中和甲硫氨酸钾,分离甲硫氨酸与碳酸氢钾,含甲硫氨酸的碳酸氢钾母液循环至海因水解步骤,该方法整个工艺过程中几乎没有大量的废水废渣外排,是一种比较清洁的、低生产成本的甲硫氨酸生产工艺;另一种是以氰醇、二氧化碳、氨为原料或者以氰化钠、3-甲硫基丙醛、二氧化碳、氨为原料,制备海因,然后在氢氧化钠的作用下,水解生成含碳酸钠和甲硫氨酸钠的皂化液,经硫酸酸化、结晶,分别得到甲硫氨酸和硫酸钠,该工艺存在的最大缺点是甲硫氨酸和硫酸钠分离纯化问题以及产生低价值的硫酸钠,即加硫酸酸化至pH=5.0左右时,在40℃左右甲硫氨酸结晶,分离甲硫氨酸,烘干得到甲硫氨酸产品,甲硫氨酸产品中最大的杂质是硫酸钠;含甲硫氨酸的硫酸钠母液再经过高温浓缩,尤其加热至100℃~120℃,然后析出大量的硫酸钠晶体(这时甲硫氨酸的溶解度最大,硫酸钠的溶解度最低),在高温条件下趁热抽滤,滤液再冷却至40℃,甲硫氨酸结晶,水洗,烘干得到甲硫氨酸产品, 但是还有近总量的10%的甲硫氨酸残留在硫酸钠母液中,将该母液循环至皂化液酸化步骤,循环上述步骤,在含甲硫氨酸的硫酸钠母液循环过程中,为了避免甲硫氨酸的损失,尽可能的不外排母液,导致甲硫氨酸在长期的高温蒸煮下,部分甲硫氨酸发生了热分解(申请人甲硫氨酸研究组首次研究了甲硫氨酸热分解机理,通过运用气-质联用首次证实确定了甲硫氨酸热分解的产物为二甲基二硫、丙烯胺、3-甲硫基丙胺以及二氧化碳,其机理是:甲硫氨酸在受热时,首先分解为3-甲硫基丙胺和二氧化碳,也就是说首先脱羧,3-甲硫基丙胺继续受热分解为二甲基二硫和丙烯胺,产生了具有恶臭味的物质二甲基二硫,这种物质会残留在硫酸钠母液中和外排的冷凝水中,导致长时间循环的硫酸钠母液具有恶臭味,硫酸钠车间操作环境恶劣,影响周边环境,并且还导致甲硫氨酸的部分分解,外排的母液COD偏高,难以进行生化处理,含甲硫氨酸的硫酸钠母液长时间循环,导致后续甲硫氨酸的产品质量下降,其下降的原因主要是:其一,甲硫氨酸的分解以及甲硫氨酸的聚合,尤其形成甲硫氨酸的二聚体,并且甲硫氨酸分解后的有机杂质在体系中累计,并且结晶得到的甲硫氨酸具有难闻的气味;二是皂化液中甲酸钠、2-羟基-4-甲硫基丁酸钠的在体系中累计,从而影响了甲硫氨酸产品的质量,最终将会影响硫酸的质量,硫酸钠产品中不仅仅含有甲硫氨酸还含有甲酸钠,从而影响硫酸钠使用,尤其是含有0.5%左右甲硫氨酸。以上这些都导致目前甲硫氨酸生产工艺中最大的突出问题是环保问题和副产低价值的硫酸钠(1吨甲硫氨酸副产硫酸钠为1.2~1.8吨),而目前解决环保问题最好的办法是焚烧,这不可避免的消耗更多的能源、增加甲硫氨酸的损失和生产成本,而针对副产大量低价值的硫酸钠问题,却无法找到根本性有效的解决手段。
基于上述现有的甲硫氨酸生产工艺技术,本申请研究人员致力于开发一种节约能耗、环境友好的甲硫氨酸清洁生产方法。
发明内容
经申请人研究发现,虽然碳酸钠的碱性没有氢氧化钠、碳酸钾、氢氧化钾的碱性强,但是当碳酸钠与5-(2-甲硫基乙基)-乙内酰脲的投料摩尔比控制在一定的适当范围,5-(2-甲硫基乙基)-乙内酰脲在碳酸钠的作用下是完全能够水解的,并且利用碳酸钠与甲硫氨酸钠的溶解度不同,碳酸钠在低温下溶解度非常小,而甲硫氨酸钠在低温条件下的饱和浓度是非常大的,因此,通过降温可以使其皂化液中碳酸钠结晶,从而不仅仅达到控制好皂化液中甲硫氨酸钠与碳酸钠的合适比例,而且还可以将结晶出来的碳酸钠循环至5-(2-甲硫基乙基)-乙内酰脲水解步骤,进一步将去除碳酸钠 结晶后的皂化液控制好甲硫氨酸与碳酸钠的合适比例,采用二氧化碳酸化结晶生产甲硫氨酸产品。有鉴于此,本申请的目的在于提供一种甲硫氨酸的清洁生产方法。
为达到上述目的,本申请提供如下技术方案:
一种甲硫氨酸的清洁生产方法,其中,生产方法包括以下步骤:
(1)5-(2-甲硫基乙基)-乙内酰脲水溶液加入碳酸钠,经水解反应后,得到含甲硫氨酸钠和碳酸钠的皂化液;
(2)将步骤(1)得到的皂化液进行碳酸钠结晶,固液分离并分别收集碳酸钠晶体和结晶母液;得到的结晶母液用水稀释至以甲硫氨酸计含量为10wt%~20wt%,碳酸钠含量为6wt%以内;
(3)向步骤(2)得到的稀释后的结晶母液中通入二氧化碳酸化结晶,固液分离并分别收集甲硫氨酸晶体和二次结晶母液,甲硫氨酸晶体用现有技术处理得到甲硫氨酸,二次结晶母液经加热得到甲硫氨酸钠和碳酸钠的混合液;
(4)将步骤(3)得到甲硫氨酸钠和碳酸钠的混合液循环至步骤(2)碳酸钠结晶。
进一步,所述现有技术为水洗、干燥。
进一步,所述步骤(1)中,所述的5-(2-甲硫基乙基)-乙内酰脲水溶液为含有5-(2-甲硫基乙基)-乙内酰脲的水溶液;
或所述的5-(2-甲硫基乙基)-乙内酰脲水溶液为含有5-(2-甲硫基乙基)-乙内酰脲和碳酸钠混合的水溶液,其中5-(2-甲硫基乙基)-乙内酰脲与碳酸钠的摩尔比为1:0.5~0.7。
进一步,所述步骤(1)中5-(2-甲硫基乙基)-乙内酰脲水溶液中5-(2-甲硫基乙基)-乙内酰脲的含量为10wt%~40wt%。
进一步,所述步骤(1)中5-(2-甲硫基乙基)-乙内酰脲水溶液中5-(2-甲硫基乙基)-乙内酰脲的含量为12~40wt%。
进一步,所述步骤(1)中,所述加入的碳酸钠含量为26~99.9wt%。
进一步,所述步骤(1)中,所述水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与碳酸钠的摩尔比为1:1.6~3,水解反应温度为140℃~200℃,水解反应时间为5~60min。
进一步,所述步骤(1)中,水解反应温度为180℃~195℃,水解反应时间为8~30min,最优选10~20min。
进一步,所述步骤(1)中,所述水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与碳酸钠的摩尔比为1:1.6~2.5。
进一步,所述步骤(1)中,所述水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与碳酸钠的摩尔比为1:2~2.2。
进一步,所述步骤(2)中,所述皂化液的碳酸钠结晶为冷冻结晶或者蒸发结晶,所述的冷冻结晶在冷却温度为-10℃~5℃进行搅拌结晶;所述的蒸发结晶,在蒸发温度为65℃~90℃进行搅拌结晶,蒸发结晶可以取1-2次碳酸钠晶体。
进一步,所述步骤(3)中,所述酸化结晶为温度0℃~60℃、压力0.1~1.0MPa条件通入二氧化碳。
进一步,所述步骤(3)中,所述的二次结晶母液含所述的加热条件为110℃~200℃,加热时间为20~180min。
进一步,所述步骤(2)中收集的碳酸钠晶体配制为27wt%以上的水溶液循环至5-(2-甲硫基乙基)-乙内酰脲水解步骤(1)。
本申请的有益效果在于:本申请甲硫氨酸的环保清洁生产方法可以达到完全无副产低价值的硫酸钠或者氯化钠,避免硫酸钠后续纯化浓缩所需的能耗,操作简单,所得甲硫氨酸纯度可高达99.0%以上,并且本方法不需将含有甲硫氨酸的硫酸钠母液反复进行加热浓缩,可避免甲硫氨酸长时间受热分解而生成恶臭气体。本方法成本低廉、无大量的酸性和臭味废水排放、绿色环保、碳酸钠循环至水解5-(2-甲硫基乙基)-乙内酰脲步骤,无需补加新的碱性物质,值得工业化生产推广应用。
具体实施方式
下面对本申请的优选实施例进行详细的描述,实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
实施例1
开始时,将密闭反应器预热至80℃~100℃循环;将2320克、质量百分含量为30%的5-(2-甲硫基乙基)-乙内酰脲水溶液与含有质量百分含量为37%碳酸钠水溶液2292克加入密闭反应器中,立即升温至180℃,压力为1.6MPa,保温15min。反 应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和甲硫氨酸钠混合的水溶液(皂化液)3500克,其中甲硫氨酸钠质量百分含量为17.0%,碳酸钠质量百分含量为24.23%,甲硫氨酸钠的收率为99.9%以上。
将上述得到的皂化液直接冷冻至-10℃左右,搅拌状态下进行冷冻结晶,抽滤晶体,晶体少量的水洗,得到甲硫氨酸钠和碳酸钠的混合液3100克,其中以甲硫氨酸计含量为19.2wt%,碳酸钠的质量百分含量为9.5%,碳酸钠的取出率为65%。取出的碳酸钠循环至5-(2-甲硫基乙基)-乙内酰脲水溶液水解步骤。
将上述得到的结晶母液用水稀释至以甲硫氨酸计含量为11.11%,碳酸钠含量为5.5wt%,然后加入到10L的搅拌反应器中,保温至45℃,同时从反应器底部通入二氧化碳,通入二氧化碳的压力为0.2MPa,中和完毕后,移除的悬浮液过滤,少量水洗涤过滤物,经过烘干得到的甲硫氨酸产品347.8克,纯度为99.4%,甲硫氨酸的单次收率为58%;滤液经过110℃高温处理,得到碳酸钠和甲硫氨酸钠的混合液3200克,甲硫氨酸钠的质量百分含量为7.8%,碳酸钠质量百分含量为9.2%。得到的碳酸钠和甲硫氨酸钠的混合液进行活性炭脱色,过滤活性炭后的水解液经过浓缩至甲硫氨酸质量百分含量为18%左右,碳酸钠质量百分含量为21.2%左右,然后循环至皂化液冷冻结晶步骤取碳酸钠。
实施例2
开始时,将密闭反应器预热至80℃~100℃循环;将3480克、质量百分含量为20%的5-(2-甲硫基乙基)-乙内酰脲水溶液与含有质量百分含量为99.5%无水碳酸钠852.3克加入密闭反应器中,立即升温至180℃,压力为1.6MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和甲硫氨酸钠混合的水溶液(皂化液)3500克,其中甲硫氨酸钠质量百分含量为17.0%,碳酸钠质量百分含量为24.23%,甲硫氨酸钠的收率为99.9%以上。
将上述得到的皂化液直接冷冻至-6℃左右,搅拌状态下进行冷冻结晶,抽滤晶体,晶体少量的水洗,得到甲硫氨酸钠和碳酸钠的混合液3100克,其中以甲硫氨酸计含量为19.2wt%,碳酸钠的质量百分含量为8.25%,碳酸钠的取出率70%。取出的碳酸钠循环至5-(2-甲硫基乙基)-乙内酰脲水溶液水解步骤。
将上述得到的结晶母液用水稀释至以甲硫氨酸计含量为10.47wt%,碳酸钠含量 为4.5wt%,然后加入到10L的搅拌反应器中,保温至40℃,同时从反应器底部通入二氧化碳,通入二氧化碳的压力为0.2MPa,中和完毕后,移除的悬浮液过滤,少量水洗涤过滤物,经过烘干得到的甲硫氨酸产品360.12克,纯度为99.3%,甲硫氨酸的单次收率为60%;滤液经过110℃高温处理,得到碳酸钠和甲硫氨酸钠的混合液3200克,甲硫氨酸钠的质量百分含量为7.45%,碳酸钠质量百分含量为7.99%。得到的碳酸钠和甲硫氨酸钠的混合液进行活性炭脱色,过滤活性炭后的水解液经过浓缩至甲硫氨酸钠质量百分含量为18%左右,碳酸钠质量百分含量为21.2%左右,然后循环至皂化液冷冻结晶步骤取碳酸钠。
实施例3
开始时,将密闭反应器预热至80℃~100℃循环;将1988.6克、质量百分含量为35%的5-(2-甲硫基乙基)-乙内酰脲水溶液与含有质量百分含量为34%碳酸钠水溶液3117.6克加入密闭反应器中,立即升温至185℃,压力为1.8MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和甲硫氨酸钠混合的水溶液(皂化液)4500克,其中以甲硫氨酸计含量为13.2wt%,碳酸钠质量百分含量为23.56%,甲硫氨酸钠的收率为99.9%以上。
将上述得到的皂化液直接冷冻至-6℃左右,搅拌状态下进行冷冻结晶,抽滤晶体,晶体少量的水洗,得到甲硫氨酸钠和碳酸钠的混合液4000克,其中以甲硫氨酸计含量为14.9wt%,碳酸钠的质量百分含量为6.6%,碳酸钠的取出率为75%。取出的碳酸钠循环至5-(2-甲硫基乙基)-乙内酰脲水溶液水解步骤。
将上述得到的结晶母液用水稀释至以甲硫氨酸计含量为11.3wt%,碳酸钠含量为5.0wt%,然后加入到10L的搅拌反应器中,保温至40℃,同时从反应器底部通入二氧化碳,通入二氧化碳的压力为0.2MPa,中和完毕后,移除的悬浮液过滤,少量水洗涤过滤物,经过烘干得到的甲硫氨酸产品300.1克,纯度为99.3%,甲硫氨酸的单次收率为50%;滤液经过110℃高温处理,得到碳酸钠和甲硫氨酸钠的混合液3980克,甲硫氨酸钠的质量百分含量为7.5%,碳酸钠质量百分含量为6.66%。得到的碳酸钠和甲硫氨酸钠的混合液进行活性炭脱色,过滤活性炭后的水解液经过浓缩至甲硫氨酸钠质量百分含量为16%左右,碳酸钠质量百分含量为17%左右,然后循环至皂化液冷冻结晶步骤取碳酸钠。
实施例4
开始时,将密闭反应器预热至80℃~100℃循环;将1988.6克、质量百分含量为35%的5-(2-甲硫基乙基)-乙内酰脲水溶液与上述实施例1~3得到的十水合碳酸钠2292克加入密闭反应器中,立即升温至185℃,压力为1.8MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和甲硫氨酸钠混合的水溶液(皂化液)3900克,其中甲硫氨酸钠质量百分含量为15.3%,碳酸钠质量百分含量为21.74%,甲硫氨酸钠的收率为99.9%以上。
将上述得到的皂化液直接冷冻至-6℃左右,搅拌状态下进行冷冻结晶,抽滤晶体,晶体少量的水洗,得到甲硫氨酸钠和碳酸钠的混合液3500克,其中以甲硫氨酸计含量为17.03wt%,碳酸钠的质量百分含量为7.27%,碳酸钠的取出率为70%。取出的碳酸钠循环至5-(2-甲硫基乙基)-乙内酰脲水溶液水解步骤。
将上述得到的结晶母液用水稀释至以甲硫氨酸计含量为13.35wt%,碳酸钠含量为5.7wt%,然后加入到10L的搅拌反应器中,保温至40℃,同时从反应器底部通入二氧化碳,通入二氧化碳的压力为0.2MPa,中和完毕后,移除的悬浮液过滤,少量水洗涤过滤物,经过烘干得到的甲硫氨酸产品330.44克,纯度为99.2%,甲硫氨酸的单次收率为55%;滤液经过110℃高温处理,得到碳酸钠和甲硫氨酸钠的混合液3680克,甲硫氨酸钠的质量百分含量为7.3%,碳酸钠质量百分含量为6.9%。得到的碳酸钠和甲硫氨酸钠的混合液进行活性炭脱色,过滤活性炭后的水解液经过浓缩至甲硫氨酸钠质量百分含量为16%左右,碳酸钠质量百分含量为17%左右,然后循环至皂化液冷冻结晶步骤取碳酸钠。
实施例5
开始时,将密闭反应器预热至80℃~100℃循环;将3480克5-(2-甲硫基乙基)-乙内酰脲水溶液与含有质量百分含量为50%碳酸钠1704克加入密闭反应器中,所述水溶液中5-(2-甲硫基乙基)-乙内酰脲质量百分含量为20%,碳酸钠的质量百分含量为7.31%;立即升温至180℃,压力为1.6MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和甲硫氨酸钠混合的水溶液(皂化液)3500克,其中甲硫氨酸钠质量百分含量为17.0%,碳酸钠质量百分含量为24.23%,甲硫氨酸钠的收率为99.9%以上。
将上述得到的皂化液直接加热至85℃左右,然后在微负压条件下搅拌状态下进行蒸发结晶,抽滤晶体,取晶体可以分为一次或者多次,得到甲硫氨酸钠和碳酸钠的 混合液1550克,其中以甲硫氨酸计含量为38.4%,碳酸钠的质量百分含量为10.7%,碳酸钠的取出率为85%。取出的碳酸钠循环至5-(2-甲硫基乙基)-乙内酰脲水溶液水解步骤。
将上述得到的皂化液稀释至总钠的质量百分含量为3.5%,然后加入到10L的搅拌反应器中,保温至30℃,同时从反应器底部通入二氧化碳,通入二氧化碳的压力为0.2MPa,中和完毕后,移除的悬浮液过滤,少量水洗涤过滤物,经过烘干得到的甲硫氨酸产品360.12克,纯度为99.3%,甲硫氨酸的单次收率为60%;滤液经过110℃高温处理,得到碳酸钠和甲硫氨酸钠的混合液3200克,甲硫氨酸钠的质量百分含量为7.45%,碳酸钠质量百分含量为7.99%。得到的碳酸钠和甲硫氨酸钠的混合液进行活性炭脱色,过滤活性炭后的混合液循环至皂化液蒸发浓缩碳酸钠结晶步骤取碳酸钠。
除上述实施例以外,本技术方案在水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与碳酸钠的摩尔比为1:1.6~3的条件下均可以实现发明目的。
最后说明的是,以上优选实施例仅用以说明本申请的技术方案而非限制,尽管通过上述优选实施例已经对本申请进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本申请权利要求书所限定的范围。

Claims (10)

  1. 一种甲硫氨酸的清洁生产方法,其中,生产方法包括以下步骤:
    (1)5-(2-甲硫基乙基)-乙内酰脲水溶液加入碳酸钠,经水解反应后,得到含甲硫氨酸钠和碳酸钠的皂化液;
    (2)将步骤(1)得到的皂化液进行碳酸钠结晶,固液分离并分别收集碳酸钠晶体和结晶母液;得到的结晶母液用水稀释至以甲硫氨酸计含量为10wt%~20wt%,碳酸钠含量为6wt%以内;
    (3)向步骤(2)得到的稀释后的结晶母液中通入二氧化碳酸化结晶,固液分离并分别收集甲硫氨酸晶体和二次结晶母液,甲硫氨酸晶体用现有技术处理得到甲硫氨酸,二次结晶母液经加热得到甲硫氨酸钠和碳酸钠的混合液;
    (4)将步骤(3)得到甲硫氨酸钠和碳酸钠的混合液循环至步骤(2)碳酸钠结晶。
  2. 根据权利要求1所述的甲硫氨酸的清洁生产方法,其中,所述步骤(1)中,所述的5-(2-甲硫基乙基)-乙内酰脲水溶液为含有5-(2-甲硫基乙基)-乙内酰脲的水溶液;
    或所述的5-(2-甲硫基乙基)-乙内酰脲水溶液为含有5-(2-甲硫基乙基)-乙内酰脲和碳酸钠混合的水溶液,其中5-(2-甲硫基乙基)-乙内酰脲与碳酸钠的摩尔比为1:0.5~0.7。
  3. 根据权利要求2所述的甲硫氨酸的清洁生产方法,其中,所述步骤(1)中5-(2-甲硫基乙基)-乙内酰脲水溶液中5-(2-甲硫基乙基)-乙内酰脲的含量为10wt%~40wt%。
  4. 根据权利要求1所述的甲硫氨酸的清洁生产方法,其中,所述步骤(1)中,所述加入的碳酸钠含量为26~99.9wt%。
  5. 根据权利要求1所述的甲硫氨酸的清洁生产方法,其中,所述步骤(1)中,所述水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与碳酸钠的摩尔比为1:1.6~3,水解反应温度为140℃~200℃,水解反应时间为5~60min。
  6. 根据权利要求5所述的甲硫氨酸的清洁生产方法,其中,所述步骤(1)中,所述水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与碳酸钠的摩尔比为1:2~2.2。
  7. 根据权利要求1所述的甲硫氨酸的清洁生产方法,其中,所述步骤(2)中,所述皂化液的碳酸钠结晶为冷冻结晶或者蒸发结晶,所述的冷冻结晶在冷却 温度为-10℃~5℃进行搅拌结晶;所述的蒸发结晶,在蒸发温度为65℃~90℃进行搅拌结晶,蒸发结晶可以取1-2次碳酸钠晶体。
  8. 根据权利要求1所述的甲硫氨酸的清洁生产方法,其中,所述步骤(3)中,所述酸化结晶为温度0℃~60℃、压力0.1~1.0MPa条件通入二氧化碳。
  9. 根据权利要求1所述的甲硫氨酸的清洁生产方法,其中,所述步骤(3)中,所述的二次结晶母液含所述的加热条件为110℃~200℃,加热时间为20~180min。
  10. 根据权利要求1所述的甲硫氨酸的清洁生产方法,其中,所述步骤(2)中收集的碳酸钠晶体配制为27wt%以上的水溶液循环至5-(2-甲硫基乙基)-乙内酰脲水解步骤(1)。
PCT/CN2017/107645 2017-06-13 2017-10-25 一种甲硫氨酸的清洁生产方法 WO2018227839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710443497.8A CN108658819A (zh) 2017-06-13 2017-06-13 一种甲硫氨酸的清洁生产方法
CN201710443497.8 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018227839A1 true WO2018227839A1 (zh) 2018-12-20

Family

ID=63783959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107645 WO2018227839A1 (zh) 2017-06-13 2017-10-25 一种甲硫氨酸的清洁生产方法

Country Status (2)

Country Link
CN (1) CN108658819A (zh)
WO (1) WO2018227839A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679401B (zh) * 2020-12-30 2022-12-09 天宝动物营养科技股份有限公司 一种用于制备d,l-蛋氨酸的碳酸钾全循环工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391987A (en) * 1981-02-12 1983-07-05 Degussa Aktiengesellschaft Process for the production of aqueous sodium methioninate solutions
CN1181378A (zh) * 1996-10-31 1998-05-13 住友化学工业株式会社 生产蛋氨酸的方法
CN1274717A (zh) * 1999-05-21 2000-11-29 住友化学工业株式会社 蛋氨酸的制备方法
CN103342671A (zh) * 2013-07-24 2013-10-09 重庆紫光化工股份有限公司 一种利用乙酰化的皂化液制备l-蛋氨酸的方法
CN103664719A (zh) * 2013-08-28 2014-03-26 重庆紫光化工股份有限公司 利用粗氢氰酸连续生产d,l-甲硫氨酸的方法及装置
CN105017111A (zh) * 2015-07-14 2015-11-04 重庆紫光化工股份有限公司 蛋氨酸钠的制备方法
CN105037230A (zh) * 2015-07-14 2015-11-11 重庆紫光化工股份有限公司 水解5-(2-甲硫基乙基)-乙内酰脲的方法
CN106432018A (zh) * 2016-09-14 2017-02-22 宁夏紫光天化蛋氨酸有限责任公司 一种d,l‑蛋氨酸的环保清洁生产方法
CN106432020A (zh) * 2016-09-14 2017-02-22 宁夏紫光天化蛋氨酸有限责任公司 一种d,l‑蛋氨酸的分离纯化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547236A1 (de) * 1995-12-18 1997-07-03 Degussa Verfahren zur Herstellung von D,L-Methionin oder dessen Salz
FR3035400B1 (fr) * 2015-04-21 2017-04-07 Adisseo France Sas Procede de fabrication de methionine
CN104910055A (zh) * 2015-06-30 2015-09-16 西安蓝晓科技新材料股份有限公司 一种蛋氨酸提取的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391987A (en) * 1981-02-12 1983-07-05 Degussa Aktiengesellschaft Process for the production of aqueous sodium methioninate solutions
CN1181378A (zh) * 1996-10-31 1998-05-13 住友化学工业株式会社 生产蛋氨酸的方法
CN1274717A (zh) * 1999-05-21 2000-11-29 住友化学工业株式会社 蛋氨酸的制备方法
CN103342671A (zh) * 2013-07-24 2013-10-09 重庆紫光化工股份有限公司 一种利用乙酰化的皂化液制备l-蛋氨酸的方法
CN103664719A (zh) * 2013-08-28 2014-03-26 重庆紫光化工股份有限公司 利用粗氢氰酸连续生产d,l-甲硫氨酸的方法及装置
CN105017111A (zh) * 2015-07-14 2015-11-04 重庆紫光化工股份有限公司 蛋氨酸钠的制备方法
CN105037230A (zh) * 2015-07-14 2015-11-11 重庆紫光化工股份有限公司 水解5-(2-甲硫基乙基)-乙内酰脲的方法
CN106432018A (zh) * 2016-09-14 2017-02-22 宁夏紫光天化蛋氨酸有限责任公司 一种d,l‑蛋氨酸的环保清洁生产方法
CN106432020A (zh) * 2016-09-14 2017-02-22 宁夏紫光天化蛋氨酸有限责任公司 一种d,l‑蛋氨酸的分离纯化方法

Also Published As

Publication number Publication date
CN108658819A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN108658821B (zh) D,l-蛋氨酸的清洁生产方法及其产品
CN106349131B (zh) 一种蛋氨酸的分离纯化方法
CN106432020A (zh) 一种d,l‑蛋氨酸的分离纯化方法
CN105693559B (zh) 一种制备牛磺酸及联产碳酸氢盐的方法
CN104693082A (zh) 一种制备蛋氨酸的方法
CN109232339B (zh) 一种d,l-蛋氨酸、d,l-蛋氨酸羟基类似物及其钙盐联产的清洁工艺
WO2018227840A1 (zh) 减少副产硫酸钠的蛋氨酸生产方法
CN106145450B (zh) Mma生产工艺中硫酸铵结晶清母液废水资源化处理方法
CN106045879B (zh) 一种制备氰乙酸的方法
CN107033035B (zh) 一种高纯度n-氨甲酰谷氨酸的合成及其后处理方法
CN103467348A (zh) 大颗粒晶型高堆积密度2-羟基-4-甲硫基丁酸钙的制备方法
CN104926709B (zh) 一种l‑色氨酸的精制方法
RU2649012C2 (ru) Метод разделения и очистки гидроксианалога метионина, полученного путем гидролиза циангидринов
CN106865851B (zh) 染料中间体例如2-萘酚生产废水处理与资源化利用方法
WO2018227839A1 (zh) 一种甲硫氨酸的清洁生产方法
CN104557517B (zh) 一种废柠檬酸钠母液综合处理工艺
CN104262216A (zh) 一种2-羟基-4-甲硫基丁酸的制备方法
CN104119243A (zh) 一种亚氨基二乙酸的节能清洁生产方法
CN104844485B (zh) 蛋氨酸的清洁生产方法
CN102633699A (zh) Dl-甲硫氨酸的制备装置及方法
CN109970082A (zh) 一种利用制酸烟气制备高纯无水亚硫酸钠的方法
CN109574893A (zh) 一种硫代碳酸钠合成巯基乙胺盐酸盐的方法
CN112521344A (zh) 一种灭草松生产方法
CN102659697B (zh) 一种三氮唑钠制备方法
CN106831513A (zh) 硫代乙酸钾的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913135

Country of ref document: EP

Kind code of ref document: A1