WO2018227840A1 - 减少副产硫酸钠的蛋氨酸生产方法 - Google Patents

减少副产硫酸钠的蛋氨酸生产方法 Download PDF

Info

Publication number
WO2018227840A1
WO2018227840A1 PCT/CN2017/107646 CN2017107646W WO2018227840A1 WO 2018227840 A1 WO2018227840 A1 WO 2018227840A1 CN 2017107646 W CN2017107646 W CN 2017107646W WO 2018227840 A1 WO2018227840 A1 WO 2018227840A1
Authority
WO
WIPO (PCT)
Prior art keywords
methionine
sodium
sodium carbonate
hydantoin
methylthioethyl
Prior art date
Application number
PCT/CN2017/107646
Other languages
English (en)
French (fr)
Inventor
韦异勇
吴传隆
覃玉芳
秦岭
陈松林
王绪建
廖常福
张建成
马旭东
康建辉
秦主源
张静
唐玉平
Original Assignee
宁夏紫光天化蛋氨酸有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏紫光天化蛋氨酸有限责任公司 filed Critical 宁夏紫光天化蛋氨酸有限责任公司
Publication of WO2018227840A1 publication Critical patent/WO2018227840A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups

Definitions

  • This application belongs to the field of production of organic compounds and relates to a method for producing methionine which reduces by-product sodium sulfate.
  • D, L-methionine also known as methionine
  • methionine is one of the basic units that constitute a protein. It is the only amino acid that contains sulfur in essential amino acids, in addition to participating in the transfer of methyl groups in animals, phosphorus metabolism and adrenaline, choline, In addition to the synthesis of creatine, it is also a raw material for the synthesis of proteins and cystine.
  • Methionine is widely used in the fields of medicine, food, feed, and cosmetics, and its use as a feed additive is large.
  • the global demand for methionine reached 1.6 million tons/year, and the demand for methionine in China exceeded 250,000 tons in 2016. However, in China, except for 100,000 tons of methionine in Ningxia Ziguang Chemical and 50,000 tons in Shandong Xinhecheng, China Methionine also needs a large amount of foreign imports, and domestic production cannot meet the demand.
  • methionine is prepared by using cyanohydrin, carbon dioxide, ammonia or sodium cyanide, 3-methylthiopropanal, carbon dioxide and ammonia as raw materials to prepare hydantoin, and then hydrolyzed to form sodium carbonate and methionine under the action of sodium hydroxide.
  • the saponification solution of sodium is acidified and crystallized by sulfuric acid to obtain methionine and sodium sulfate respectively.
  • the mother liquor In the process of circulating the methionine-containing sodium sulfate mother liquor, in order to avoid the loss of methionine, the mother liquor is not discharged as much as possible, and the methionine is thermally decomposed under long-term high-temperature cooking, and the product of thermal decomposition of methionine is two.
  • Methyl disulfide, acrylamine, 3-methylthiopropylamine and carbon dioxide the mechanism is: when heated, methionine is first decomposed into 3-methylthiopropylamine and carbon dioxide, that is, first decarboxylation, 3-Methylthiopropylamine continues to be thermally decomposed into dimethyl disulfide and acrylamine, producing a malodorous substance, dimethyl disulfide, which remains in the mother liquor of sodium sulfate and in the effluent water discharged.
  • the sodium sulfate mother liquor which causes long-term circulation has a foul odor.
  • the operating environment of the sodium sulfate workshop is bad, affecting the surrounding environment, and also causes partial decomposition of methionine.
  • the mother liquor of the efflux is high in COD, and it is difficult to carry out biochemical treatment.
  • Sodium sulfate containing methionine The long-term circulation of the mother liquor leads to a decrease in the quality of the subsequent methionine product.
  • the main reasons for the decrease are: first, the decomposition of methionine and the polymerization of methionine, especially the formation of a dimer of methionine, and the accumulation of organic impurities after methionine decomposition in the system.
  • the methionine obtained by crystallization has an unpleasant odor; the second is the accumulation of sodium formate and sodium 2-hydroxy-4-methylthiobutyrate in the saponification solution, which affects the quality of the methionine product and will eventually affect the sulfuric acid.
  • sodium sulphate product contains not only methionine but also sodium formate, which affects the use of sodium sulphate, especially containing 0.5% About methionine.
  • All of the above-mentioned outstanding problems in the methionine production process are environmental problems and by-product low-value sodium sulfate (1 to ton of methionine by-product sodium sulfate is 1.2 to 1.8 tons), and the best way to solve environmental problems is to incinerate. Inevitably consume more energy, increase the loss of methionine and production costs, but can not find a fundamental and effective solution to the problem of a large number of low-value sodium sulfate by-product.
  • the sodium carbonate and sodium methionate are present.
  • the sodium carbonate can be crystallized in the saponification liquid by lowering the temperature in the relative range, thereby reducing the sodium ion in the saponification liquid, thereby reducing the by-product low-value sodium sulfate, and the frozen sodium carbonate can be recycled to 5-(2-
  • the methylthioethyl)-hydantoin hydrolysis step reduces the amount of base which hydrolyzes 5-(2-methylthioethyl)-hydantoin.
  • an object of the present application is to provide a method for producing methionine which reduces sodium by-produced sodium sulfate.
  • a method for reducing methionine production by-product sodium sulfate comprising the following steps:
  • the saponification liquid obtained in the step (1) is subjected to sodium carbonate crystallization, solid-liquid separation and separately collecting sodium carbonate crystals and a crystallization mother liquid;
  • the aqueous solution of 5-(2-methylthioethyl)-hydantoin is an aqueous solution containing 5-(2-methylthioethyl)-hydantoin ;
  • the aqueous solution of 5-(2-methylthioethyl)-hydantoin is an aqueous solution containing 5-(2-methylthioethyl)-hydantoin and sodium carbonate mixed, wherein 5-( The molar ratio of 2-methylthioethyl)-hydantoin to sodium carbonate is from 1:0.5 to 0.7.
  • the content of 5-(2-methylthioethyl)-hydantoin in the aqueous solution of 5-(2-methylthioethyl)-hydantoin in the step (1) is 10% by weight to 40% by weight. %.
  • the added sodium carbonate content is 26 wt% to 99.9 wt%.
  • the molar ratio of 5-(2-methylthioethyl)-hydantoin to sodium ion in the hydrolysis reaction system is 1:1.6-6, and the hydrolysis reaction temperature is 140. °C ⁇ 200 ° C, hydrolysis reaction time is 5 ⁇ 60min.
  • the molar ratio of 5-(2-methylthioethyl)-hydantoin to sodium ion in the hydrolysis reaction system is 1:1.6-5;
  • the molar ratio of 5-(2-methylthioethyl)-hydantoin to sodium ion in the hydrolysis reaction system is 1:2 to 4.5.
  • the hydrolysis reaction temperature is from 180 ° C to 195 ° C
  • the hydrolysis reaction time is from 8 to 30 min, most preferably from 10 to 20 min.
  • the sodium carbonate of the saponification liquid is crystallized into freeze crystal or evaporative crystal, and the frozen crystal is stirred and crystallized at a cooling temperature of -10 ° C to 5 ° C;
  • the crystals are stirred and stirred at an evaporation temperature of 65 ° C to 90 ° C, and the crystals of evaporation can be taken 1-2 times with sodium carbonate crystals.
  • the prior art described in the step (3) is: acidifying the mother liquor with sulfuric acid to obtain methionine or a mother liquor of crystallization to obtain methionine through an ion exchange resin.
  • the specific step of obtaining the methionine by the crystallization mother liquid through the ion exchange resin is: diluting the crystallization mother liquid Released to methionine sodium content of 6.5% ⁇ 7.5%, the ion exchange resin obtained methionine-containing separation liquid, the obtained separation liquid was cooled to 10 ° C crystallization, and then solid-liquid separation to obtain methionine crystals, after drying to obtain methionine.
  • the ion exchange resin is a weakly acidic ion exchange resin.
  • the method for reducing methionine production by-product sodium sulfate further comprises the following steps: the sodium carbonate crystals collected in the step (2) are prepared by circulating an aqueous solution of 27 wt% or more to 5-(2-methylthioethyl)-B.
  • the endoylurea hydrolysis step (1) is the endoylurea hydrolysis step (1).
  • the methionine production method of the present application can reduce the problem of by-product sodium sulfate and reduce the problem of hydrolysis of 5-(2-methylthioethyl)-hydantoin with a base, and the operation is simple, and the obtained methionine purity It can be as high as 99.0% or more.
  • This application can prevent methionine from being decomposed by heat for a long time to generate malodorous gas, and the method has low cost, no large amount of acid and odorous wastewater discharge, green environmental protection, and precipitated sodium carbonate can be recycled to hydrolysis 5-( The 2-methylthioethyl)-hydantoin step is worthy of marketing application.
  • the pressure is released to normal pressure, and then stripping is performed, and the carbon dioxide and ammonia produced by the reaction are removed until no ammonia is detected as the end point of the stripping, and 3,500 g of an aqueous solution (saponified solution) of sodium carbonate and sodium methionate is obtained, wherein The mass percentage of sodium methionine was 17.0%, the mass percentage of sodium carbonate was 24.23%, and the yield of sodium methioninate was 99.9% or more.
  • the saponification liquid obtained above is directly frozen to about -4 ° C, and freeze-crystallized under stirring, and the crystals are suction-filtered, and the crystals are washed with a small amount of water to obtain 3100 g of a mixture of sodium methionate and sodium carbonate, wherein the mass percentage of sodium methionate is It was 19.2%, the mass percentage of sodium carbonate was 9.5%, and the precipitation rate of sodium carbonate was 65%.
  • the precipitated sodium carbonate can be recycled to the 5-(2-methylthioethyl)-hydantoin aqueous hydrolysis step.
  • the saponification liquid obtained above is acidified by adding 98% concentrated sulfuric acid to a pH of about 5.5, and then cooled to a temperature of 35 ° C to 40 ° C for crystallization, suction-filtered crystals, washed with a small amount of water, and dried to obtain 576.8 g of a methionine product with a purity of 99.2%.
  • the yield of methionine was 96% (based on 2-hydroxy-4-methylthiobutyronitrile), and the filtrate was concentrated under high temperature to obtain sodium sulfate crystals which were dried to give a weight of 397 g.
  • the pressure is released to normal pressure, and then stripping is performed, and the carbon dioxide and ammonia produced by the reaction are removed until no ammonia is detected as the end point of the stripping, and 2500 g of an aqueous solution (saponified solution) of sodium carbonate and sodium methionate is obtained, wherein The mass percentage of sodium methionine was 23.84%, the mass percentage of sodium carbonate was 20.32%, and the yield of sodium methioninate was 99.9% or more.
  • the saponification liquid obtained above is directly frozen to about -4 ° C, and freeze-crystallized under stirring, and the crystals are filtered under suction, and the crystals are washed with a small amount of water to obtain 2100 g of a mixture of sodium methionate and sodium carbonate, wherein the mass percentage of sodium methionate is It is 28.4%, the mass percentage of sodium carbonate is 4.85%, and the precipitation rate of sodium carbonate is 70%.
  • the precipitated sodium carbonate can be recycled to the 5-(2-methylthioethyl)-hydantoin aqueous hydrolysis step.
  • the saponification liquid obtained above is diluted to 7% by weight of methionine, and then passed through a weakly acidic ion exchange resin to obtain an effluent having a methionine mass percentage of 6%, and then cooled to 10 ° C for crystallization, suction filtration, and drying.
  • the methionine product was 582.2 g, the main content was 99.3%, and the yield was 97% (based on 2-hydroxy-4-methylthiobutyronitrile).
  • the resin was regenerated with 29% sulfuric acid, and the regenerated liquid was neutralized with sodium hydroxide, concentrated and crystallized, and dried to obtain 136.32 g of by-product sodium sulfate.
  • the closed reactor is preheated to a cycle of 80 ° C to 100 ° C; 3977 g of 5-(2-methylthioethyl)-hydantoin aqueous solution, of which 5-(2-methylthioethyl) ) - hydantoin mass percentage is 17.5%, sodium carbonate mass percentage is 5.33%, and anhydrous sodium carbonate 340.9 g and 5% gram of sodium hydroxide solution containing 99.5% by mass Add to the closed reactor, immediately raise the temperature to 180 ° C, the pressure is 1.6 MPa, and keep warm for 15 min.
  • the pressure is released to normal pressure, and then stripping is performed, and the carbon dioxide and ammonia produced by the reaction are removed until no ammonia is detected as the end point of the stripping, and 2500 g of an aqueous solution (saponified solution) of sodium carbonate and sodium methionate is obtained, wherein The mass percentage of sodium methionine was 23.84%, the mass percentage of sodium carbonate was 20.32%, and the yield of sodium methioninate was 99.9% or more.
  • the saponification liquid obtained above is directly frozen to about -10 ° C, and freeze-crystallized under stirring to extract crystals.
  • the crystals were washed with a small amount of crystals to obtain 2100 g of a mixture of sodium methionate and sodium carbonate.
  • the mass percentage of sodium methionate was 28.4%
  • the mass percentage of sodium carbonate was 7.96%
  • the precipitation rate of sodium carbonate was 70%.
  • the precipitated sodium carbonate is recycled to the 5-(2-methylthioethyl)-hydantoin aqueous hydrolysis step.
  • the saponification liquid obtained above is acidified by adding 98% concentrated sulfuric acid to a pH of about 5.5, and then cooled to a temperature of 35 ° C to 40 ° C for crystallization, suction-filtered crystals, washed with a small amount of water, and dried to obtain 576.8 g of a methionine product with a purity of 99.2%.
  • the methionine yield is 96% (based on 2-hydroxy-4-methylthiobutyronitrile), and the methionine-containing sodium sulfate filtrate is desalted by continuous chromatography, and the obtained sodium sulfate aqueous solution is concentrated, crystallized, suction filtered, and dried. Dry obtained 224.1 g of sodium sulfate by-product.
  • the closed reactor is preheated to a cycle of 80 ° C to 100 ° C; 3977 g of 5-(2-methylthioethyl)-hydantoin aqueous solution, of which 5-(2-methylthioethyl) )--hydantoin mass percentage was 17.5%, sodium carbonate mass percentage was 5.33%, and 681.8 g of anhydrous sodium carbonate containing 99.5% by mass was added to the closed reactor, and the temperature was immediately raised to 180 ° C, the pressure is 1.6 MPa, and kept for 15 min.
  • the pressure is released to normal pressure, and then stripping is performed, and the carbon dioxide and ammonia produced by the reaction are removed until no ammonia is detected as the end point of the stripping, and 3,500 g of an aqueous solution (saponified solution) of sodium carbonate and sodium methionate is obtained, wherein The mass percentage of sodium methionine was 17.0%, the mass percentage of sodium carbonate was 25.72%, and the yield of sodium methioninate was 99.9% or more.
  • the saponification liquid obtained above is directly frozen to about -4 ° C, and freeze-crystallized under stirring, and the crystals are suction-filtered, and the crystals are washed with a small amount of water to obtain 3100 g of a mixture of sodium methionate and sodium carbonate, wherein the mass percentage of sodium methionate is It was 19.2%, the mass percentage of sodium carbonate was 8.7%, and the precipitation rate of sodium carbonate was 70%.
  • the precipitated sodium carbonate is recycled to the 5-(2-methylthioethyl)-hydantoin aqueous hydrolysis step.
  • the saponification liquid obtained above is diluted to 7% by weight of methionine, and then passed through a weakly acidic ion exchange resin to obtain an effluent having a methionine mass percentage of 6%, and then cooled to 10 ° C for crystallization, suction filtration, and drying.
  • the methionine product was 582.2 g, the main content was 99.3%, and the yield was 97% (based on 2-hydroxy-4-methylthiobutyronitrile).
  • the resin was regenerated with 29% sulfuric acid, and the regenerated liquid was neutralized with sodium hydroxide, concentrated and crystallized, and dried to obtain 361.3 g of by-product sodium sulfate.
  • the closed reactor is preheated to a cycle of 80 ° C to 100 ° C; 3480 g of an aqueous solution of 5-(2-methylthioethyl)-hydantoin, wherein 5-(2-methylthioethyl) ) - hydantoin mass percentage is 20%, sodium carbonate mass percentage is 7.31%, and containing 1704 g of 50% sodium carbonate in mass percentage
  • the temperature was immediately raised to 180 ° C, the pressure was 1.6 MPa, and the temperature was kept for 15 minutes.
  • the pressure is released to normal pressure, and then stripping is performed, and the carbon dioxide and ammonia produced by the reaction are removed until no ammonia is detected as the end point of the stripping, and 3,500 g of an aqueous solution (saponified solution) of sodium carbonate and sodium methionate is obtained, wherein The mass percentage of sodium methionine was 17.0%, the mass percentage of sodium carbonate was 24.23%, and the yield of sodium methioninate was 99.9% or more.
  • the saponification liquid obtained above is directly heated to about 85 ° C, and then evaporated to crystallize under stirring under a micro-negative pressure condition, and the crystals are suction-filtered, and the crystals can be divided into one or more times to obtain a mixture of sodium methionate and sodium carbonate. 1550 g, wherein the mass percentage of sodium methionate is 38.4%, the mass percentage of sodium carbonate is 10.7%, and the precipitation rate of sodium carbonate is 85%.
  • the precipitated sodium carbonate is recycled to the 5-(2-methylthioethyl)-hydantoin aqueous hydrolysis step.
  • the saponification liquid obtained above is diluted to 7% by weight of methionine, and then passed through a weakly acidic ion exchange resin to obtain an effluent having a methionine mass percentage of 6%, and then cooled to 10 ° C for crystallization, suction filtration, and drying.
  • the methionine product was 582.2 g, the main content was 99.3%, and the yield was 97% (based on 2-hydroxy-4-methylthiobutyronitrile).
  • the resin was regenerated with 29% sulfuric acid, and the regenerated liquid was neutralized with sodium hydroxide, concentrated and crystallized, and dried to obtain 362.5 g of by-product sodium sulfate.
  • sodium methionate in the crystallization mother liquor after sodium carbonate crystallization can also be converted into a free acid by other prior art techniques to prepare methionine.
  • the pressure is released to normal pressure, and then stripping is performed, and the carbon dioxide and ammonia produced by the reaction are removed until no ammonia is detected as the end point of the stripping, and 3,500 g of an aqueous solution (saponified solution) of sodium carbonate and sodium methionate is obtained, wherein The mass percentage of sodium methionine was 17.0%, the mass percentage of sodium carbonate was 24.23%, and the yield of sodium methioninate was 99.9% or more.
  • the saponification liquid obtained above is acidified by adding 98% concentrated sulfuric acid to a pH of about 5.5, and then cooled to a temperature of 35 ° C to 40 ° C for crystallization, suction-filtered crystals, washed with a small amount of water, and dried to obtain 576.8 g of a methionine product with a purity of 99.2%.
  • the yield of methionine was 96% (based on 2-hydroxy-4-methylthiobutyronitrile), and the filtrate was concentrated under high temperature to obtain sodium sulfate crystals. The sodium sulfate was dried to give a weight of 1136 g.
  • the pressure is released to normal pressure, and then stripping is performed, and the carbon dioxide and ammonia produced by the reaction are removed until no ammonia is detected as the end point of the stripping, and 2500 g of an aqueous solution (saponified solution) of sodium carbonate and sodium methionate is obtained, wherein The mass percentage of sodium methionate was 23.84%, the mass percentage of sodium carbonate was 13.57%, and the yield of sodium methioninate was 99.9% or more.
  • the saponification liquid obtained above is diluted to 7% by weight of methionine, and then passed through a weakly acidic ion exchange resin to obtain an effluent having a methionine mass percentage of 6%, and then cooled to 10 ° C for crystallization, suction filtration, and drying.
  • the methionine product was 582.2 g, the main content was 99.3%, and the yield was 97% (based on 2-hydroxy-4-methylthiobutyronitrile).
  • the resin was regenerated with 29% sulfuric acid, and the regenerated liquid was neutralized with sodium hydroxide, concentrated and crystallized, and dried to obtain 746.92 g of by-product sodium sulfate.
  • the pressure is released to normal pressure, and then stripping is performed, and the carbon dioxide and ammonia produced by the reaction are removed until no ammonia is detected as the end point of the stripping, and 3,500 g of an aqueous solution (saponified solution) of sodium carbonate and sodium methionate is obtained, wherein The mass percentage of sodium methionine was 17.0%, the mass percentage of sodium carbonate was 25.72%, and the yield of sodium methioninate was 99.9% or more.
  • the saponification liquid obtained above is diluted to 7% by weight of methionine, and then passed through a weakly acidic ion exchange resin to obtain an effluent having a methionine mass percentage of 6%, and then cooled to 10 ° C for crystallization, suction filtration, and drying.
  • the methionine product was 582.2 g, the main content was 99.3%, and the yield was 97% (based on 2-hydroxy-4-methylthiobutyronitrile).
  • the resin was regenerated with 29% sulfuric acid, and the regenerated liquid was neutralized with sodium hydroxide, concentrated and crystallized, and dried to obtain 1205.9 g of by-product sodium sulfate.

Abstract

本申请涉及一种减少副产硫酸钠的蛋氨酸生产方法,5-(2-甲硫基乙基)-乙内酰脲水溶液加入碳酸钠或者加入碳酸钠和氢氧化钠混合物,经过水解反应后再气提,得到含蛋氨酸钠和碳酸钠的皂化液,再通过结晶的方式将碳酸钠析出,分离出的结晶母液用硫酸酸化得蛋氨酸或者经过离子交换树脂得蛋氨酸。由此生产方法制备的蛋氨酸纯度高,副产物硫酸钠产量小,而产物碳酸钠可循环使用,绿色环保,值得工业化生产推广应用。

Description

减少副产硫酸钠的蛋氨酸生产方法
本申请要求于2017年6月13日提交中国专利局、申请号为201710443509.7、发明名称为“减少副产硫酸钠的蛋氨酸生产方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于有机化合物的生产领域,涉及减少副产硫酸钠的蛋氨酸生产方法。
背景技术
D,L-蛋氨酸又名甲硫氨酸,是构成蛋白质的基本单位之一,是必需氨基酸中唯一含有硫的氨基酸,除了参与动物体内甲基的转移、磷的代谢和肾上腺素、胆碱、肌酸的合成外,还是合成蛋白质和胱氨酸的原料。蛋氨酸广泛用于医药、食品、饲料和化妆品等领域,其中作为饲料添加剂的用量很大。全球蛋氨酸的需求量达到了160万吨/年,中国的蛋氨酸2016年需求量超过了25万吨,但是目前我国除了宁夏紫光化工的10万吨蛋氨酸和山东新和成5万吨外,我国的蛋氨酸还需要大量的从国外进,国内的产量不能满足需求。
目前制备蛋氨酸以氰醇、二氧化碳、氨或者以氰化钠、3-甲硫基丙醛、二氧化碳、氨为原料,制备海因,然后在氢氧化钠的作用下,水解生成含碳酸钠和蛋氨酸钠的皂化液,经硫酸酸化、结晶,分别得到蛋氨酸和硫酸钠,该工艺存在的最大缺点是蛋氨酸和硫酸钠分离纯化问题以及产生低价值的硫酸钠,即加硫酸酸化至pH=5.0左右时,在40℃左右蛋氨酸结晶,分离蛋氨酸,烘干得到蛋氨酸产品,蛋氨酸产品中最大的杂质是硫酸钠;含蛋氨酸的硫酸钠母液再经过高温浓缩,尤其加热至100℃~120℃,然后析出大量的硫酸钠晶体(这时蛋氨酸的溶解度最大,硫酸钠的溶解度最低),在高温条件下趁热抽滤,滤液再冷却至40℃,蛋氨酸结晶,水洗,烘干得到蛋氨酸产品,但是还有近总量的10%的蛋氨酸残留在硫酸钠母液中,将该母液循环至皂化液酸化步骤,循环上述步骤,在含蛋氨酸的硫酸钠母液循环过程中,为了避免蛋氨酸的损失,尽可能的不外排母液,导致蛋氨酸在长期的高温蒸煮下,部分蛋氨酸发生了热分解,蛋氨酸热分解的产物为二甲基二硫、丙烯胺、3-甲硫基丙胺以及二氧化碳,其机理是:蛋氨酸在受热时,首先分解为3-甲硫基丙胺和二氧化碳,也就是说首先脱羧, 3-甲硫基丙胺继续受热分解为二甲基二硫和丙烯胺,产生了具有恶臭味的物质二甲基二硫,这种物质会残留在硫酸钠母液中和外排的冷凝水中,导致长时间循环的硫酸钠母液具有恶臭味,硫酸钠车间操作环境恶劣,影响周边环境,并且还导致蛋氨酸的部分分解,外排的母液COD偏高,难以进行生化处理,含蛋氨酸的硫酸钠母液长时间循环,导致后续蛋氨酸的产品质量下降,其下降的原因主要是:其一,蛋氨酸的分解以及蛋氨酸的聚合,尤其形成蛋氨酸的二聚体,并且蛋氨酸分解后的有机杂质在体系中累计,并且结晶得到的蛋氨酸具有难闻的气味;二是皂化液中甲酸钠、2-羟基-4-甲硫基丁酸钠的在体系中累计,从而影响了蛋氨酸产品的质量,最终将会影响硫酸的质量,硫酸钠产品中不仅仅含有蛋氨酸还含有甲酸钠,从而影响硫酸钠使用,尤其是含有0.5%左右蛋氨酸。以上这些都导致蛋氨酸生产工艺最大的突出问题是环保问题和副产低价值的硫酸钠(1吨蛋氨酸副产硫酸钠为1.2~1.8吨),而目前解决环保问题最好的办法是焚烧,这不可避免的消耗更多的能源、增加蛋氨酸的损失和生产成本,而针对副产大量低价值的硫酸钠问题,却无法找到根本性有效的解决手段。
基于上述现有蛋氨酸生产技术,本申请研究人员致力于开发一种节约能耗、环境友好的蛋氨酸清洁生产工艺,该工艺旨在减少5-(2-甲硫基乙基)-乙内酰脲水解用碱量以及减少副产低价值的硫酸钠产品。
发明内容
经申请人研究团队发现,虽然碳酸钠的碱性没有氢氧化钠、碳酸钾、氢氧化钾的碱性强,但是当碳酸钠与5-(2-甲硫基乙基)-乙内酰脲的反应摩尔比控制在一定的适当范围,5-(2-甲硫基乙基)-乙内酰脲在碳酸钠的作用下是完全能够水解的,并且所生成的皂化液中碳酸钠与蛋氨酸钠含量在适当的范围,可利用碳酸钠与蛋氨酸钠的溶解度不同,碳酸钠在低温下溶解度非常小,而蛋氨酸钠在低温条件下的饱和浓度是比较大的,因此,在碳酸钠与蛋氨酸钠含量相对范围内通过降温可以使其皂化液中碳酸钠结晶,从而减少皂化液中的钠离子,达到降低副产低价值硫酸钠的目的,并且冷冻得到的碳酸钠可以循环至5-(2-甲硫基乙基)-乙内酰脲水解步骤,从而降低水解5-(2-甲硫基乙基)-乙内酰脲的碱的用量。
有鉴于此,本申请的目的在于提供一种减少副产硫酸钠的蛋氨酸生产方法。
为达到上述目的,本申请提供如下技术方案:
减少副产硫酸钠的蛋氨酸生产方法,其中,生产方法包括以下步骤:
(1)5-(2-甲硫基乙基)-乙内酰脲水溶液加入碳酸钠或者加入摩尔比为0.1~2:1的碳酸钠和氢氧化钠混合物,经过水解反应后,得到含蛋氨酸钠和碳酸钠的皂化液;
(2)将步骤(1)得到的皂化液进行碳酸钠结晶,固液分离并分别收集碳酸钠晶体和结晶母液;
(3)将步骤(2)得到的结晶母液中蛋氨酸钠按现有技术制备得蛋氨酸。
进一步,所述步骤(1)中,所述的5-(2-甲硫基乙基)-乙内酰脲水溶液为含有5-(2-甲硫基乙基)-乙内酰脲的水溶液;
或所述的5-(2-甲硫基乙基)-乙内酰脲水溶液为含有5-(2-甲硫基乙基)-乙内酰脲和碳酸钠混合的水溶液,其中5-(2-甲硫基乙基)-乙内酰脲与碳酸钠的摩尔比为1:0.5~0.7。
进一步,所述步骤(1)中5-(2-甲硫基乙基)-乙内酰脲水溶液中5-(2-甲硫基乙基)-乙内酰脲的含量为10wt%~40wt%。
进一步,所述步骤(1)中,所述加入的碳酸钠含量为26wt%~99.9wt%。
进一步,所述步骤(1)中,所述水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与钠离子的摩尔比为1:1.6~6,水解反应温度为140℃~200℃,水解反应时间为5~60min。
优选的,所述步骤(1)中,所述水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与钠离子的摩尔比为1:1.6~5;
更优选的,所述步骤(1)中,所述水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与钠离子的摩尔比为1:2~4.5。
优选的,所述步骤(1)中,水解反应温度为180℃~195℃,水解反应时间为8~30min,最优选10~20min。
进一步,所述步骤(2)中,所述皂化液的碳酸钠结晶为冷冻结晶或者蒸发结晶,所述的冷冻结晶在冷却温度为-10℃~5℃进行搅拌结晶;所述的蒸发结晶,在蒸发温度为65℃~90℃进行搅拌结晶,蒸发结晶可以取1-2次碳酸钠晶体。
进一步,步骤(3)所述现有技术为:用硫酸酸化结晶母液得蛋氨酸或者结晶母液经过离子交换树脂得蛋氨酸。
进一步,所述结晶母液经过离子交换树脂得蛋氨酸的具体步骤为:将结晶母液稀 释至蛋氨酸钠含量为6.5%~7.5%,过离子交换树脂得含蛋氨酸的离交液,将得到的离交液冷却至10℃结晶,再固液分离得蛋氨酸晶体,烘干后得蛋氨酸。
进一步,所述离子交换树脂为弱酸性离子交换树脂。
进一步,减少副产硫酸钠的蛋氨酸生产方法还包括以下步骤:所述步骤(2)中收集的碳酸钠晶体配制为27wt%以上的水溶液循环至5-(2-甲硫基乙基)-乙内酰脲水解步骤(1)。
本申请的有益效果在于:本申请的蛋氨酸生产方法可以减少副产硫酸钠的问题以及减少水解5-(2-甲硫基乙基)-乙内酰脲用碱问题,操作简单,所得蛋氨酸纯度可高达99.0%以上,本申请可避免蛋氨酸长时间受热分解而生成恶臭气体,并且本方法成本低廉、无大量的酸性和臭味废水排放、绿色环保、析出的碳酸钠可循环至水解5-(2-甲硫基乙基)-乙内酰脲步骤,值得市场推广应用。
具体实施方式
下面对本申请的优选实施例进行详细的描述,实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
实施例1
开始时,先将5-(2-甲硫基乙基)-乙内酰脲的水溶液3977克,其中5-(2-甲硫基乙基)-乙内酰脲质量百分含量为17.5%,碳酸钠的质量百分含量为5.33%,与含有质量百分含量为37%碳酸钠水溶液2292克加入密闭反应器中,立即升温至180℃,压力为1.6MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和蛋氨酸钠混合的水溶液(皂化液)3500克,其中蛋氨酸钠质量百分含量为17.0%,碳酸钠质量百分含量为24.23%,蛋氨酸钠的收率为99.9%以上。
将上述得到的皂化液直接冷冻至-4℃左右,搅拌状态下进行冷冻结晶,抽滤晶体,晶体少量的水洗,得到蛋氨酸钠和碳酸钠的混合液3100克,其中蛋氨酸钠的质量百分含量为19.2%,碳酸钠的质量百分含量为9.5%,碳酸钠的析出率为65%。析出的碳酸钠循环可至5-(2-甲硫基乙基)-乙内酰脲水溶液水解步骤。
将上述得到的皂化液加入98%的浓硫酸酸化至pH为5.5左右,然后冷却至温度35℃~40℃结晶,抽滤晶体,少量水洗,烘干,得到蛋氨酸产品576.8克,纯度为99.2%, 蛋氨酸收率为96%(以2-羟基-4-甲硫基丁腈计),滤液在高温条件下浓缩取硫酸钠晶体,硫酸钠经过烘干得到重量为397克。
实施例2
开始时,将5-(2-甲硫基乙基)-乙内酰脲的水溶液3977克,其中5-(2-甲硫基乙基)-乙内酰脲质量百分含量为17.5%,与含有质量百分含量为50%碳酸钠水溶液840克和质量百分含量为50%的氢氧化钠水溶液320克加入密闭反应器中,立即升温至180℃,压力为1.6MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和蛋氨酸钠混合的水溶液(皂化液)2500克,其中蛋氨酸钠质量百分含量为23.84%,碳酸钠质量百分含量为20.32%,蛋氨酸钠的收率为99.9%以上。
将上述得到的皂化液直接冷冻至-4℃左右,搅拌状态下进行冷冻结晶,抽滤晶体,晶体少量的水洗,得到蛋氨酸钠和碳酸钠的混合液2100克,其中蛋氨酸钠的质量百分含量为28.4%,碳酸钠的质量百分含量为4.85%,碳酸钠的析出率为70%。析出的碳酸钠循环可至5-(2-甲硫基乙基)-乙内酰脲水溶液水解步骤。
将上述得到的皂化液稀释至蛋氨酸重量百分含量为7%,然后经过弱酸性离子交换树脂,得到蛋氨酸质量百分数为6%的离交液,然后冷却至10℃结晶,抽滤,烘干得到蛋氨酸产品582.2克,主含量为99.3%,收率为97%(以2-羟基-4-甲硫基丁腈计)。树脂用29%的硫酸进行再生,再生液用氢氧化钠中和,浓缩结晶、烘干得到副产品硫酸钠136.32克。
实施例3
开始时,先将密闭反应器预热至80℃~100℃循环;将3977克5-(2-甲硫基乙基)-乙内酰脲水溶液,其中5-(2-甲硫基乙基)-乙内酰脲质量百分含量为17.5%,碳酸钠的质量百分含量为5.33%,与含有质量百分含量为99.5%的无水碳酸钠340.9克和50%氢氧化钠水溶液256克加入密闭反应器中,立即升温至180℃,压力为1.6MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和蛋氨酸钠混合的水溶液(皂化液)2500克,其中蛋氨酸钠质量百分含量为23.84%,碳酸钠质量百分含量为20.32%,蛋氨酸钠的收率为99.9%以上。
将上述得到的皂化液直接冷冻至-10℃左右,搅拌状态下进行冷冻结晶,抽滤晶 体,晶体少量的水洗,得到蛋氨酸钠和碳酸钠的混合液2100克,其中蛋氨酸钠的质量百分含量为28.4%,碳酸钠的质量百分含量为7.96%,碳酸钠的析出率为70%。析出的碳酸钠循环至5-(2-甲硫基乙基)-乙内酰脲水溶液水解步骤。
将上述得到的皂化液加入98%的浓硫酸酸化至pH为5.5左右,然后冷却至温度35℃~40℃结晶,抽滤晶体,少量水洗,烘干,得到蛋氨酸产品576.8克,纯度为99.2%,蛋氨酸收率为96%(以2-羟基-4-甲硫基丁腈计),含蛋氨酸的硫酸钠滤液用连续色谱进行脱盐处理,得到的硫酸钠水溶液经过浓缩、结晶、抽滤、烘干得到硫酸钠副产品224.1克。
实施例4
开始时,先将密闭反应器预热至80℃~100℃循环;将3977克5-(2-甲硫基乙基)-乙内酰脲水溶液,其中5-(2-甲硫基乙基)-乙内酰脲质量百分含量为17.5%,碳酸钠的质量百分含量为5.33%,与含有质量百分含量为99.5%的无水碳酸钠681.8克加入密闭反应器中,立即升温至180℃,压力为1.6MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和蛋氨酸钠混合的水溶液(皂化液)3500克,其中蛋氨酸钠质量百分含量为17.0%,碳酸钠质量百分含量为25.72%,蛋氨酸钠的收率为99.9%以上。
将上述得到的皂化液直接冷冻至-4℃左右,搅拌状态下进行冷冻结晶,抽滤晶体,晶体少量的水洗,得到蛋氨酸钠和碳酸钠的混合液3100克,其中蛋氨酸钠的质量百分含量为19.2%,碳酸钠的质量百分含量为8.7%,碳酸钠的析出率为70%。析出的碳酸钠循环至5-(2-甲硫基乙基)-乙内酰脲水溶液水解步骤。
将上述得到的皂化液稀释至蛋氨酸重量百分含量为7%,然后经过弱酸性离子交换树脂,得到蛋氨酸质量百分数为6%的离交液,然后冷却至10℃结晶,抽滤,烘干得到蛋氨酸产品582.2克,主含量为99.3%,收率为97%(以2-羟基-4-甲硫基丁腈计)。树脂用29%的硫酸进行再生,再生液用氢氧化钠中和,浓缩结晶、烘干得到副产品硫酸钠361.3克。
实施例5
开始时,先将密闭反应器预热至80℃~100℃循环;将3480克5-(2-甲硫基乙基)-乙内酰脲水溶液,其中5-(2-甲硫基乙基)-乙内酰脲质量百分含量为20%,碳酸钠的质量百分含量为7.31%,与含有质量百分含量为50%碳酸钠1704克加入密闭 反应器中,立即升温至180℃,压力为1.6MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和蛋氨酸钠混合的水溶液(皂化液)3500克,其中蛋氨酸钠质量百分含量为17.0%,碳酸钠质量百分含量为24.23%,蛋氨酸钠的收率为99.9%以上。
将上述得到的皂化液直接加热至85℃左右,然后在微负压条件下搅拌状态下进行蒸发结晶,抽滤晶体,取晶体可以分为一次或者多次,得到蛋氨酸钠和碳酸钠的混合液1550克,其中蛋氨酸钠的质量百分含量为38.4%,碳酸钠的质量百分含量为10.7%,碳酸钠的析出率为85%。析出的碳酸钠循环至5-(2-甲硫基乙基)-乙内酰脲水溶液水解步骤。
将上述得到的皂化液稀释至蛋氨酸重量百分含量为7%,然后经过弱酸性离子交换树脂,得到蛋氨酸质量百分数为6%的离交液,然后冷却至10℃结晶,抽滤,烘干得到蛋氨酸产品582.2克,主含量为99.3%,收率为97%(以2-羟基-4-甲硫基丁腈计)。树脂用29%的硫酸进行再生,再生液用氢氧化钠中和,浓缩结晶、烘干得到副产品硫酸钠362.5克。
以上技术方案碳酸钠结晶后的结晶母液中蛋氨酸钠也可以利用其他现有技术将其转化为游离酸制备得蛋氨酸。
对比实施例1
开始时,将5-(2-甲硫基乙基)-乙内酰脲的水溶液3977克,其中5-(2-甲硫基乙基)-乙内酰脲质量百分含量为17.5%,与含有质量百分含量为37%碳酸钠水溶液2292克加入密闭反应器中,立即升温至180℃,压力为1.6MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和蛋氨酸钠混合的水溶液(皂化液)3500克,其中蛋氨酸钠质量百分含量为17.0%,碳酸钠质量百分含量为24.23%,蛋氨酸钠的收率为99.9%以上。
将上述得到的皂化液加入98%的浓硫酸酸化至pH为5.5左右,然后冷却至温度35℃~40℃结晶,抽滤晶体,少量水洗,烘干,得到蛋氨酸产品576.8克,纯度为99.2%,蛋氨酸收率为96%(以2-羟基-4-甲硫基丁腈计),滤液在高温条件下浓缩取硫酸钠晶体,硫酸钠经过烘干得到重量为1136克。
对比实施例2
开始时,将5-(2-甲硫基乙基)-乙内酰脲的水溶液3977克,其中5-(2-甲硫基乙基)-乙内酰脲质量百分含量为17.5%,与含有质量百分含量为50%氢氧化钠水溶液512克加入密闭反应器中,立即升温至180℃,压力为1.6MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和蛋氨酸钠混合的水溶液(皂化液)2500克,其中蛋氨酸钠质量百分含量为23.84%,碳酸钠质量百分含量为13.57%,蛋氨酸钠的收率为99.9%以上。
将上述得到的皂化液稀释至蛋氨酸重量百分含量为7%,然后经过弱酸性离子交换树脂,得到蛋氨酸质量百分数为6%的离交液,然后冷却至10℃结晶,抽滤,烘干得到蛋氨酸产品582.2克,主含量为99.3%,收率为97%(以2-羟基-4-甲硫基丁腈计)。树脂用29%的硫酸进行再生,再生液用氢氧化钠中和,浓缩结晶、烘干得到副产品硫酸钠746.92克。
对比实施例3
开始时,将5-(2-甲硫基乙基)-乙内酰脲的水溶液3977克,其中5-(2-甲硫基乙基)-乙内酰脲质量百分含量为17.5%,碳酸钠的质量百分含量为5.33%,与含有质量百分含量为99.5%的无水碳酸钠681.8克加入密闭反应器中,立即升温至180℃,压力为1.6MPa,保温15min。反应结束后泄压至常压,然后进行气提,将反应产生的二氧化碳和氨除掉直至未检测到氨为气提终点,得到碳酸钠和蛋氨酸钠混合的水溶液(皂化液)3500克,其中蛋氨酸钠质量百分含量为17.0%,碳酸钠质量百分含量为25.72%,蛋氨酸钠的收率为99.9%以上。
将上述得到的皂化液稀释至蛋氨酸重量百分含量为7%,然后经过弱酸性离子交换树脂,得到蛋氨酸质量百分数为6%的离交液,然后冷却至10℃结晶,抽滤,烘干得到蛋氨酸产品582.2克,主含量为99.3%,收率为97%(以2-羟基-4-甲硫基丁腈计)。树脂用29%的硫酸进行再生,再生液用氢氧化钠中和,浓缩结晶、烘干得到副产品硫酸钠1205.9克。
通过实施例1-5和对比实施例1-3所得副产品硫酸钠平均值的比较,可以看出采用本技术方案比常规技术减少了72%硫酸钠生成,避免为解决硫酸钠而消耗更多的能源、增加蛋氨酸的损失和生产成本,从而达到一定的环保效果,充分展示绿色生产,而且生产方法简单,条件温和,值得工业化生产推广应用。
最后说明的是,以上优选实施例仅用以说明本申请的技术方案而非限制,尽管通 过上述优选实施例已经对本申请进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本申请权利要求书所限定的范围。

Claims (10)

  1. 减少副产硫酸钠的蛋氨酸生产方法,其中,生产方法包括以下步骤:
    (1)5-(2-甲硫基乙基)-乙内酰脲水溶液加入碳酸钠或者加入摩尔比为0.1~2:1的碳酸钠和氢氧化钠混合物,经过水解反应后,得到含蛋氨酸钠和碳酸钠的皂化液;
    (2)将步骤(1)得到的皂化液进行碳酸钠结晶,固液分离并分别收集碳酸钠晶体和结晶母液;
    (3)将步骤(2)得到的结晶母液中蛋氨酸钠按现有技术制备得蛋氨酸。
  2. 根据权利要求1所述的减少副产硫酸钠的蛋氨酸生产方法,其中,所述步骤(1)中,所述的5-(2-甲硫基乙基)-乙内酰脲水溶液为含有5-(2-甲硫基乙基)-乙内酰脲的水溶液;
    或所述的5-(2-甲硫基乙基)-乙内酰脲水溶液为含有5-(2-甲硫基乙基)-乙内酰脲和碳酸钠混合的水溶液,其中5-(2-甲硫基乙基)-乙内酰脲与碳酸钠的摩尔比为1:0.5~0.7。
  3. 根据权利要求2所述的减少副产硫酸钠的蛋氨酸生产方法,其中,所述步骤(1)中5-(2-甲硫基乙基)-乙内酰脲水溶液中5-(2-甲硫基乙基)-乙内酰脲的含量为10wt%~40wt%。
  4. 根据权利要求1所述的减少副产硫酸钠的蛋氨酸生产方法,其中,所述步骤(1)中,所述加入的碳酸钠含量为26wt%~99.9wt%。
  5. 根据权利要求1所述的减少副产硫酸钠的蛋氨酸生产方法,其中,所述步骤(1)中,所述水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与钠离子的摩尔比为1:1.6~6,水解反应温度为140℃~200℃,水解反应时间为5~60min。
  6. 根据权利要求5所述的减少副产硫酸钠的蛋氨酸生产方法,其中,所述步骤(1)中,所述水解反应体系中5-(2-甲硫基乙基)-乙内酰脲与钠离子的摩尔比为1:2~4.5。
  7. 根据权利要求1所述的减少副产硫酸钠的蛋氨酸生产方法,其中,所述步骤(2)中,所述皂化液的碳酸钠结晶为冷冻结晶或者蒸发结晶,所述的冷冻结晶在冷却温度为-10℃~5℃进行搅拌结晶;所述的蒸发结晶,在蒸发温度为65℃~90℃进行搅拌结晶,蒸发结晶可以取1-2次碳酸钠晶体。
  8. 根据权利要求1所述的减少副产硫酸钠的蛋氨酸生产方法,其中,步骤(3)所述现有技术为:用硫酸酸化结晶母液得蛋氨酸或者结晶母液经过离子交 换树脂得蛋氨酸。
  9. 根据权利要求8所述的减少副产硫酸钠的蛋氨酸生产方法,其中,所述结晶母液经过离子交换树脂得蛋氨酸的具体步骤为:将结晶母液稀释至蛋氨酸钠含量为6.5%~7.5%,过离子交换树脂得含蛋氨酸的离交液,将得到的离交液冷却至10℃结晶,再固液分离得蛋氨酸晶体,烘干后得蛋氨酸。
  10. 根据权利要求1所述的减少副产硫酸钠的蛋氨酸生产方法,其中,生产方法还包括以下步骤:所述步骤(2)中收集的碳酸钠晶体配制为27wt%以上的水溶液循环至5-(2-甲硫基乙基)-乙内酰脲水解步骤(1)。
PCT/CN2017/107646 2017-06-13 2017-10-25 减少副产硫酸钠的蛋氨酸生产方法 WO2018227840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710443509.7 2017-06-13
CN201710443509.7A CN108658820A (zh) 2017-06-13 2017-06-13 减少副产硫酸钠的蛋氨酸生产方法

Publications (1)

Publication Number Publication Date
WO2018227840A1 true WO2018227840A1 (zh) 2018-12-20

Family

ID=63783950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107646 WO2018227840A1 (zh) 2017-06-13 2017-10-25 减少副产硫酸钠的蛋氨酸生产方法

Country Status (2)

Country Link
CN (1) CN108658820A (zh)
WO (1) WO2018227840A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679397B (zh) * 2020-12-21 2023-08-01 宁夏紫光天化蛋氨酸有限责任公司 一种dl-蛋氨酸的制备方法
CN112661682B (zh) * 2020-12-21 2023-08-01 宁夏紫光天化蛋氨酸有限责任公司 一种生产dl-蛋氨酸的方法
CN112661683A (zh) * 2020-12-22 2021-04-16 宁夏紫光天化蛋氨酸有限责任公司 一种无外排废水的dl-蛋氨酸生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391987A (en) * 1981-02-12 1983-07-05 Degussa Aktiengesellschaft Process for the production of aqueous sodium methioninate solutions
US4391988A (en) * 1981-02-12 1983-07-05 Degussa Aktiengesellschaft Process for the production of aqueous sodium methioninate solutions
CN1376671A (zh) * 1995-12-18 2002-10-30 底古萨股份公司 制备甲硫氨酸或其碱金属盐的方法
CN103342671A (zh) * 2013-07-24 2013-10-09 重庆紫光化工股份有限公司 一种利用乙酰化的皂化液制备l-蛋氨酸的方法
CN103772246A (zh) * 2014-03-03 2014-05-07 重庆紫光化工股份有限公司 离子交换酸化蛋氨酸盐制备蛋氨酸的方法及专用设备
CN105017111A (zh) * 2015-07-14 2015-11-04 重庆紫光化工股份有限公司 蛋氨酸钠的制备方法
CN105037230A (zh) * 2015-07-14 2015-11-11 重庆紫光化工股份有限公司 水解5-(2-甲硫基乙基)-乙内酰脲的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3035400B1 (fr) * 2015-04-21 2017-04-07 Adisseo France Sas Procede de fabrication de methionine
CN104910055A (zh) * 2015-06-30 2015-09-16 西安蓝晓科技新材料股份有限公司 一种蛋氨酸提取的方法
CN106432018A (zh) * 2016-09-14 2017-02-22 宁夏紫光天化蛋氨酸有限责任公司 一种d,l‑蛋氨酸的环保清洁生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391987A (en) * 1981-02-12 1983-07-05 Degussa Aktiengesellschaft Process for the production of aqueous sodium methioninate solutions
US4391988A (en) * 1981-02-12 1983-07-05 Degussa Aktiengesellschaft Process for the production of aqueous sodium methioninate solutions
CN1376671A (zh) * 1995-12-18 2002-10-30 底古萨股份公司 制备甲硫氨酸或其碱金属盐的方法
CN103342671A (zh) * 2013-07-24 2013-10-09 重庆紫光化工股份有限公司 一种利用乙酰化的皂化液制备l-蛋氨酸的方法
CN103772246A (zh) * 2014-03-03 2014-05-07 重庆紫光化工股份有限公司 离子交换酸化蛋氨酸盐制备蛋氨酸的方法及专用设备
CN105017111A (zh) * 2015-07-14 2015-11-04 重庆紫光化工股份有限公司 蛋氨酸钠的制备方法
CN105037230A (zh) * 2015-07-14 2015-11-11 重庆紫光化工股份有限公司 水解5-(2-甲硫基乙基)-乙内酰脲的方法

Also Published As

Publication number Publication date
CN108658820A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN108658821B (zh) D,l-蛋氨酸的清洁生产方法及其产品
US20150210633A1 (en) Process for the production of taurine from ethanol
CN106349131B (zh) 一种蛋氨酸的分离纯化方法
CN106432020B (zh) 一种d,l-蛋氨酸的分离纯化方法
WO2018227840A1 (zh) 减少副产硫酸钠的蛋氨酸生产方法
CN104693082A (zh) 一种制备蛋氨酸的方法
CN109232339B (zh) 一种d,l-蛋氨酸、d,l-蛋氨酸羟基类似物及其钙盐联产的清洁工艺
CN112661682B (zh) 一种生产dl-蛋氨酸的方法
CN103159610B (zh) 一种合成苯氧羧酸类除草剂原药的方法
CN103467348A (zh) 大颗粒晶型高堆积密度2-羟基-4-甲硫基丁酸钙的制备方法
CN104926709B (zh) 一种l‑色氨酸的精制方法
CN108530271A (zh) 一种联产1-萘酚和2-萘酚的萘磺化方法
RU2649012C2 (ru) Метод разделения и очистки гидроксианалога метионина, полученного путем гидролиза циангидринов
JP4426104B2 (ja) ヒドロキシメチルチオ酪酸の製造方法
CN104844485B (zh) 蛋氨酸的清洁生产方法
WO2013159742A1 (zh) Dl-甲硫氨酸的制备装置及方法
CN105037230A (zh) 水解5-(2-甲硫基乙基)-乙内酰脲的方法
WO2018227839A1 (zh) 一种甲硫氨酸的清洁生产方法
CN106083672B (zh) 一种β-巯基丙酸的合成方法
CN110642765A (zh) 一种d-对甲砜基苯丝氨酸乙酯的合成方法
CN109574893A (zh) 一种硫代碳酸钠合成巯基乙胺盐酸盐的方法
CN113173844A (zh) 一种2-甲基-4-氯苯氧乙酸的制备方法
CN111285781B (zh) 一种西司他丁钠关键中间体的制备方法
CN109053622A (zh) 一种高效制备半叶素的合成方法
CN111004137B (zh) 一种混旋苯甘氨酸的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913650

Country of ref document: EP

Kind code of ref document: A1