WO2022242292A1 - 苯并环丁烯类单体、苯并环丁烯树脂及其制备方法、低介电材料和半导体器件 - Google Patents

苯并环丁烯类单体、苯并环丁烯树脂及其制备方法、低介电材料和半导体器件 Download PDF

Info

Publication number
WO2022242292A1
WO2022242292A1 PCT/CN2022/081757 CN2022081757W WO2022242292A1 WO 2022242292 A1 WO2022242292 A1 WO 2022242292A1 CN 2022081757 W CN2022081757 W CN 2022081757W WO 2022242292 A1 WO2022242292 A1 WO 2022242292A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzocyclobutene
group
hydrogen atom
monomer
methyl
Prior art date
Application number
PCT/CN2022/081757
Other languages
English (en)
French (fr)
Inventor
常同鑫
蔡黎
高峰
杨军校
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022242292A1 publication Critical patent/WO2022242292A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/44Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with a bicyclo ring system containing eight carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals

Definitions

  • the application relates to the field of low dielectric materials, in particular to a benzocyclobutene monomer and its preparation method, a benzocyclobutene resin and its preparation method, and a low dielectric material using the benzocyclobutene resin and semiconductor devices.
  • benzocyclobutene resin As a thermosetting resin, benzocyclobutene resin has the following advantages: thermally curable and does not produce any small molecules during the curing process, the cured product has extremely excellent heat resistance, low thermal expansion coefficient, high mechanical strength, and at the same time It has both extremely low water absorption and extremely low dielectric loss, making it widely concerned in related fields such as electricity, heat, and light.
  • benzocyclobutene resin has been widely used in aviation, aerospace, microelectronic packaging, electrical insulation, photoresist and other fields. Typical application scenarios include interlayer insulation materials used in the field of microelectronic packaging, negative photoresists, electronic packaging, underfill materials, radar wave-transparent materials, high-density interconnection circuit boards, etc.
  • the synthesis process of benzocyclobutene resins is usually complicated and costly.
  • the first aspect of the embodiment of the present application provides a benzocyclobutene monomer, the structural formula is:
  • two R 1 are independently selected from hydrogen atom, methyl, methoxyl group, ethyl group, ester group respectively;
  • R 2 is selected from hydrogen atom, methyl, methoxy, ester group
  • R3 is selected from phenyl, naphthyl, biphenyl, aralkyl, and aliphatic chains containing 1 to 10 carbon atoms;
  • R is selected from hydrogen atom, methyl, methoxy, ethyl, ester group
  • R 5 is selected from a hydrogen atom, a methyl group, and a methoxy group.
  • the second aspect of the embodiment of the present application provides a benzocyclobutene resin, the structural formula is:
  • co in structural formula (2) represents monomer Copolymerize with monomer M2 ;
  • Two R 1 are independently selected from a hydrogen atom, a methyl group, a methoxyl group, an ethyl group, and an ester group;
  • R 2 is selected from hydrogen atom, methyl, methoxy, ester group
  • R3 is selected from phenyl, naphthyl, biphenyl, aralkyl, and aliphatic chains containing 1 to 10 carbon atoms;
  • R is selected from hydrogen atom, methyl, methoxy, ethyl, ester group
  • R is selected from a hydrogen atom, a methyl group, a methoxy group ;
  • n is selected from an integer of ⁇ 1 and ⁇ 1000;
  • n is selected from an integer of ⁇ 0 and ⁇ 1000; and m+n ⁇ 2.
  • M2 is selected from styrene, methylstyrene, distyrene, naphthalene vinyl, divinylbenzene, divinylbiphenyl, methacrylate, acrylates, maleimide , maleic anhydride, butadiene, isoprene, ethylene, propylene, norbornene, and ethylidene norbornene.
  • n is selected from integers ⁇ 2 and ⁇ 200
  • m is selected from integers ⁇ 100.
  • the end of the initiator is one of naphthalene ring, n-butyl, tert-butyl, benzoyl peroxide, cumyloxy and tert-butoxy.
  • the third aspect of the embodiment of the present application provides a low dielectric material, including at least one of benzocyclobutene monomer and benzocyclobutene resin, the structural formula of the benzocyclobutene monomer is for:
  • R in structural formula ( 1 ) and structural formula (2) are independently selected from hydrogen atom, methyl group, methoxyl group, ethyl group, ester group respectively;
  • R 2 is selected from hydrogen atom, methyl, methoxy, ester group
  • R3 is selected from phenyl, naphthyl, biphenyl, aralkyl, and aliphatic chains containing 1 to 10 carbon atoms;
  • R is selected from hydrogen atom, methyl, methoxy, ethyl, ester group
  • R is selected from a hydrogen atom, a methyl group, a methoxy group ;
  • Co in structural formula (2) represents monomer Copolymerize with monomer M2 ;
  • n is selected from an integer of ⁇ 1 and ⁇ 1000;
  • n is selected from an integer of ⁇ 0 and ⁇ 1000; and m+n ⁇ 2.
  • M2 is selected from styrene, methylstyrene, distyrene, naphthalene vinyl, divinylbenzene, divinylbiphenyl, methacrylate, acrylate, maleimide, At least one of butadiene, isoprene, ethylene, propylene, norbornene, and ethylidene norbornene.
  • n is selected from integers ⁇ 2 and ⁇ 200
  • m is selected from integers ⁇ 100.
  • the low dielectric material also includes fillers, dyes, antioxidants, photosensitizers, glass fiber cloth, thermal initiators, light stabilizers, plasticizers, flame retardants, antistatic agents, mold release agents at least one of the agents.
  • the fourth aspect of the embodiment of the present application provides a semiconductor device, which includes the cured product of the above-mentioned low dielectric material.
  • the fifth aspect of the embodiment of the present application provides a preparation method of benzocyclobutene resin, comprising:
  • two R 1 are independently selected from hydrogen atom, methyl, methoxyl group, ethyl group, ester group respectively;
  • R 2 is selected from hydrogen atom, methyl, methoxy, ester group
  • R3 is selected from phenyl, naphthyl, biphenyl, aralkyl, and aliphatic chains containing 1 to 10 carbon atoms;
  • R is selected from hydrogen atom, methyl, methoxy, ethyl, ester group
  • R is selected from a hydrogen atom, a methyl group, a methoxy group ;
  • the benzocyclobutene monomer is polymerized or copolymerized with other monomers to form a prepolymer.
  • the preparation of benzocyclobutene-based monomers includes: under the protection of anhydrous, oxygen-free and inert gas, using divinyl-containing compounds and 4-bromobenzocyclobutene as reaction raw materials, and Add tri(o-methylphenyl)phosphorus as ligand, catalyst and acid-binding agent, wherein the molar ratio of the divinyl-containing compound to the 4-bromobenzocyclobutene is 1:5-5: 1.
  • the addition amount of the catalyst is 1 ⁇ 5 ⁇ of the moles of 4-bromobenzocyclobutene.
  • the catalyst is selected from one of palladium acetate, palladium chloride, tetrakis (triphenylphosphine) palladium, Pd/C, and diphenylphosphinoferrocene palladium dichloride;
  • the acid-binding agent is selected from one of triethylamine, diethylamine, potassium carbonate, sodium carbonate, pyridine and imidazole.
  • the reaction temperature is 40-70° C.
  • the reaction time is 20-60 hours.
  • the polymerization is anionic polymerization
  • the reaction temperature during the anionic polymerization is -20° C. to -78° C.
  • the reaction time is 5 to 8 hours.
  • the polymerization is free radical polymerization
  • the reaction temperature during the free radical polymerization is 40° C. to 80° C.
  • the reaction time is 3 to 20 hours.
  • the benzocyclobutene monomer is copolymerized with other monomers, and the other monomers are selected from styrene, methylstyrene, distyryne, naphthalene vinyl, divinyl Benzene, divinylbiphenyl, methacrylate, acrylate, maleic anhydride, maleimide, butadiene, isoprene, ethylene, propylene, norbornene, ethylidene norbornene at least one monomer.
  • the other monomers are selected from styrene, methylstyrene, distyryne, naphthalene vinyl, divinyl Benzene, divinylbiphenyl, methacrylate, acrylate, maleic anhydride, maleimide, butadiene, isoprene, ethylene, propylene, norbornene, ethylidene norbornene at least one monomer.
  • the sixth aspect of the embodiment of the present application provides a method for preparing benzocyclobutene monomers, including:
  • a divinyl-containing compound and 4-bromobenzocyclobutene are used as reaction raw materials, and tri(o-methylphenyl)phosphorus is added as a ligand, a catalyst and a binding agent.
  • the catalyst is selected from one of palladium acetate, palladium chloride, tetrakis (triphenylphosphine) palladium, Pd/C, and diphenylphosphinoferrocene palladium dichloride;
  • the acid-binding agent is selected from one of triethylamine, diethylamine, potassium carbonate, sodium carbonate, pyridine, and imidazole; the reaction temperature is 40-70°C, and the reaction time is 20-60h.
  • Fig. 1 is a flow chart for the preparation of a benzocyclobutene resin according to an embodiment of the present application.
  • the present application provides a benzocyclobutene-based monomer and its prepolymer (benzocyclobutene resin) with low preparation cost, warm synthesis conditions and excellent dielectric properties, as well as a preparation method thereof.
  • two R 1 are independently selected from a hydrogen atom, a methyl group, a methoxyl group, an ethyl group, and an ester group, and the two R 1 can be different;
  • R 2 is selected from hydrogen atom, methyl, methoxy, ester group
  • R3 is selected from phenyl, naphthyl, biphenyl, aralkyl, and aliphatic chains containing 1 to 10 carbon atoms;
  • R is selected from hydrogen atom, methyl, methoxy, ethyl, ester group
  • R 5 is selected from a hydrogen atom, a methyl group, and a methoxy group.
  • the benzocyclobutene monomer has multifunctionality; its preparation conditions are mild, easy to prepare, and low in cost.
  • R 1 , R 2 , R 4 , and R 5 in the structural formula (1) are all hydrogen atoms, and R 3 is a phenyl group, then the benzocyclobutene monomer is a benzocyclobutene monosubstituted divinyl group,
  • the structural formula is:
  • R 1 , R 2 , R 4 , and R 5 in the structural formula (1) are all hydrogen atoms, and R 3 is a biphenyl group
  • the benzocyclobutene monomer is benzocyclobutene monosubstituted divinyl Biphenyl, the structural formula is:
  • R 1 , R 2 , R 4 , and R 5 in the structural formula (1) are all hydrogen atoms, and R 3 is an aliphatic chain containing 5 carbon atoms, then the benzocyclobutene monomer is benzocyclobutene Monosubstituted decadiene, the structural formula is:
  • the benzocyclobutene monomers can be prepolymerized by chain polymerization to form benzocyclobutene resins, so as to meet the different viscosity requirements of resins in different scenarios.
  • the benzocyclobutene resin has high cross-linking density, excellent heat resistance, extremely low coefficient of thermal expansion, and extremely low dielectric loss.
  • the present application also provides a benzocyclobutene resin, which is obtained by polymerizing the benzocyclobutene monomer of the above structural formula (1) or copolymerizing the benzocyclobutene monomer of the structural formula (1) with other monomers
  • the prepolymer that forms, structural formula is:
  • co in structural formula (2) represents monomer Copolymerize with monomer M2
  • the copolymerization method includes but not limited to random copolymerization, block copolymerization, etc.;
  • Two R 1 are independently selected from hydrogen atom, methyl, methoxy, ethyl, ester group, two R 1 can be different;
  • R 2 is selected from hydrogen atom, methyl, methoxy, ester group
  • R3 is selected from divalent phenyl, naphthyl, biphenyl, aralkyl, and aliphatic chains containing 1 to 10 carbon atoms;
  • R is selected from hydrogen atom, methyl, methoxy, ethyl, ester group
  • R is selected from a hydrogen atom, a methyl group, a methoxy group ;
  • n is selected from an integer of ⁇ 1 and ⁇ 1000, preferably an integer of ⁇ 2 and ⁇ 200, more preferably an integer of ⁇ 2 and ⁇ 100;
  • n is selected from an integer of ⁇ 0 and ⁇ 1000, preferably an integer of ⁇ 0 and ⁇ 100, more preferably an integer of ⁇ 0 and ⁇ 50; and m+n ⁇ 2.
  • M2 is selected from monomers capable of copolymerization, such as styrene, methylstyrene, distyrene, naphthalene vinyl, divinylbenzene, divinylbiphenyl, methacrylate, acrylate, maleic anhydride , maleimide, butadiene, isoprene, ethylene, propylene, norbornene, and ethylidene norbornene.
  • monomers capable of copolymerization such as styrene, methylstyrene, distyrene, naphthalene vinyl, divinylbenzene, divinylbiphenyl, methacrylate, acrylate, maleic anhydride , maleimide, butadiene, isoprene, ethylene, propylene, norbornene, and ethylidene norbornene.
  • the benzocyclobutene resin of the structural formula (2) is a prepolymerized product of the polymerization of the benzocyclobutene monomer of the structural formula (1).
  • M 1 represents the monomer on the left side of co in structural formula (2)
  • n M 1 and m M 2 are randomly arranged on the molecular chain , with a random distribution.
  • n and m are both equal to 2
  • monomer M 1 and monomer M 2 in structural formula (2) are randomly copolymerized, then the arrangement on the molecular chain can be M 1 M 2 M 2 M 1 , M 1 M 2 M 1 Various random arrangements such as M 2 .
  • An initiator is a substance that initiates the polymerization of monomers.
  • the polymerization active centers of unsaturated monomers are free radical, anionic, cationic and coordination compounds.
  • the benzocyclobutene-based monomer can be chain extended by anionic polymerization, free radical polymerization, or the like.
  • benzocyclobutene monomer of the structural formula (1) is copolymerized with another monomer M2 containing a double bond, so that various aspects such as the performance and cost of the prepolymer can be customized according to requirements. Flexible adjustment space.
  • the benzocyclobutene resin has multiple cross-linking sites, and the product obtained by curing it has a large cross-linking density, so it has excellent heat resistance, mechanical properties and extremely low thermal expansion coefficient, and at the same time has excellent electrical properties. On the one hand, it has a lower dielectric constant and dielectric loss, and is a material with excellent comprehensive properties.
  • the benzocyclobutene resin is a prepolymer polymerized from monomers of the structural formula (1)
  • R 1 , R 2 , R 4 , R 5 are hydrogen atoms
  • R 3 is a phenyl group
  • the benzocyclobutene resin is a prepolymer polymerized from monomers of structural formula (1-A)
  • one of the two R 6 is The other is a hydrogen atom
  • the specific structural formula of the benzocyclobutene resin is:
  • the benzocyclobutene resin is a prepolymer formed by copolymerizing monomers of the structural formula (1) and other monomers M 2 , and when R 1 , R 2.
  • R 4 and R 5 are both hydrogen atoms
  • R 3 is phenyl
  • M 2 is styrene
  • the benzocyclobutene resin is copolymerized by the monomer of the structural formula (1-A) and the monomer styrene and one of the two R 6 is The other is a hydrogen atom
  • the specific structural formula of the benzocyclobutene resin is:
  • the molecular weight of the prepolymer (benzocyclobutene resin) of the present application is controllable, and the molecular weight can be effectively adjusted, for example, it can be used to meet the glue filling requirement in the preparation process of printed circuit boards.
  • the cured product of the benzocyclobutene resin has an extremely low dielectric loss compared to conventional hydrocarbon resins (such as styrene-butadiene rubber, dielectric loss ⁇ 0.003@10GHz, thermal expansion coefficient is 70 ⁇ 80ppm) (0.0003@10GHz), high heat resistance, can effectively reduce the insertion loss of the circuit board, at the same time, it has a lower thermal expansion coefficient (30ppm) than the BT resin (Df 0.008@10GHz, thermal expansion coefficient of 45ppm) commonly used in the carrier board ), it is also very beneficial to improve the matching of the thermal expansion coefficient of the circuit board and the chip.
  • conventional hydrocarbon resins such as styrene-butadiene rubber, dielectric loss ⁇ 0.003@10GHz, thermal expansion coefficient is 70 ⁇ 80ppm) (0.0003@10GHz)
  • high heat resistance can effectively reduce the insertion loss of the circuit board, at the same time, it has a lower thermal expansion coefficient (30ppm) than the BT resin (D
  • BT resin refers to the thermosetting resin formed by using bismaleimide and triazine as the main resin components, and adding epoxy resin, polyphenylene ether resin or allyl compound as modification components.
  • the embodiment of the present application also provides a low dielectric material, which includes at least one of the above-mentioned benzocyclobutene monomer and the above-mentioned benzocyclobutene resin.
  • the low dielectric material can also optionally include other functional components, such as fillers, dyes, antioxidants, photosensitizers, glass fiber cloth, thermal initiators, light stabilizers, plasticizers, flame retardants, antistatic agent, release agent at least one.
  • the present application also provides a semiconductor device, which includes the cured product of the above-mentioned low dielectric material.
  • the cured product of the low dielectric material may be an interlayer dielectric layer material.
  • the semiconductor device further includes a chip, and the cured product of the low dielectric material is located between the chips.
  • the cured product of the low dielectric material can also be used in fields such as printed circuit boards as an insulating resin material.
  • the preparation method of the benzocyclobutene monomer comprises: under the protection of anhydrous, oxygen-free and inert gas, with a divinyl-containing compound, such as divinylbenzene (meta-position, para-position, meta-position para-position mixing), divinylbiphenyl, decadiene, etc., and 4-bromobenzocyclobutene as reaction raw materials, and add tri(o-methylphenyl)phosphorus as ligand, catalyst, acid-binding agent, wherein the molar ratio of the divinyl-containing compound to the 4-bromobenzocyclobutene is 1:5 to 5:1, and the amount of the catalyst added is 4-bromobenzocyclobutene 1 ⁇ 5 ⁇ , preferably 3 ⁇ of 4-bromobenzocyclobutene moles.
  • a divinyl-containing compound such as divinylbenzene (meta-position, para-position, meta-position para-position mixing), divinylbiphenyl, de
  • the inert gas is nitrogen or argon.
  • the catalyst is selected from one of palladium acetate, palladium chloride, tetrakis(triphenylphosphine)palladium, palladium-carbon (Pd/C), and diphenylphosphinoferrocenepalladium dichloride.
  • the acid-binding agent is selected from one of triethylamine, diethylamine, potassium carbonate, sodium carbonate, pyridine and imidazole.
  • the step of preparing the benzocyclobutene monomer also adds an organic solvent, the organic solvent is selected from toluene, acetonitrile, tetrahydrofuran, dioxane, N,N-dimethylformamide, N,N-di One or more of methyl acetamide.
  • the reaction temperature is 40-70°C, preferably 57-60°C, and the reaction time is 20-60h, preferably 45-48h.
  • the preparation process of the benzocyclobutene monomer is vacuumized in the reaction flask to achieve anhydrous and oxygen-free conditions, and an inert gas (such as nitrogen) is introduced as a protective gas, Then react at a certain reaction temperature for several hours, such as 58 ° C for 48 hours, and the reaction product is successively filtered, rotary evaporated, suction filtered (such as silica gel suction filtration), multiple distillations (such as successively vacuum distillation of the filtrate, 90 ° C short-range distillation, 150°C short-path distillation) to obtain the benzocyclobutene monomer.
  • an inert gas such as nitrogen
  • Filtration is used to remove palladium black, rotary evaporation is used to concentrate the filtrate to remove solvent, suction filtration is used to remove inorganic salts, vacuum distillation is used to remove unreacted raw materials in the filtrate, and short path distillation is used to purify the obtained monomer.
  • the divinyl-containing compound such as divinylbenzene and 4-bromobenzocyclobutene
  • the Heck reaction is a kind of coupling reaction, also known as coupling reaction, coupling reaction, and oxidative coupling. It is a process in which two organic chemical units perform a certain chemical reaction to obtain an organic molecule.
  • the benzocyclobutene resin is a prepolymer obtained by polymerizing the above-mentioned benzocyclobutene monomer.
  • the preparation method of described benzocyclobutene resin comprises:
  • the benzocyclobutene monomer is polymerized or copolymerized with other monomers to form a prepolymer.
  • the reaction temperature during anionic polymerization is -20°C to -78°C, and from the perspective of application, -40°C is the best, and the reaction time is 5-8h (preferably about 7h).
  • An initiator is added during the anionic polymerization, and the initiator can be: n-butyllithium, tert-butyllithium, sodium naphthalene, and the like.
  • An organic solvent is added during the anionic polymerization, and the solvent is selected from one or more of tetrahydrofuran and methyl tetrahydrofuran.
  • the other monomers are copolymerizable monomers selected from styrene, methylstyrene, methacrylate, acrylate, maleimide, butadiene, isoprene, ethylene, propylene , at least one monomer in norbornene.
  • the reaction temperature during free radical polymerization is 40°C-80°C
  • the initiator can be selected from free radical initiators such as azobisisobutyronitrile and azobenzene, and the reaction time is 3-20h.
  • a reaction terminator such as methanol
  • the product is precipitated to obtain the benzocyclobutene resin.
  • the unreacted double bond connected to the benzene ring of the benzocyclobutene monomer can be reacted to achieve chain growth and pre-polymerization of the monomer.
  • the molecular weight of the prepolymer can be controlled by controlling the reaction conditions to adapt to different scenarios. Different requirements for resin viscosity.
  • the benzocyclobutene monomer can be selectively copolymerized with other polymerizable monomers to obtain a prepolymer with good performance and cost control space.
  • the polymerization is prepolymerization, and the obtained prepolymer needs to be cured, for example, cured by heating, when it is finally used.
  • the double bond participating in the home reaction can undergo Diels-Alder reaction (Diels-Alder) with the o-dimethenone intermediate produced by the decomposition of benzocyclobutene to produce a six-membered ring structure, thereby increasing the crosslinking density of the cured product, enhancing the heat resistance of the cured resin, increasing the glass transition temperature (Tg), and reducing the thermal expansion coefficient.
  • Diels-Alder reaction also known as diene synthesis, is a reaction in which a conjugated diene reacts with an alkene or alkyne to form a six-membered ring. It is one of the very important means of forming carbon-carbon bonds in organic chemical synthesis reactions. One of the most commonly used reactions in modern organic synthesis.
  • the embodiment of the present application effectively solves the high technical problem of the cost of the existing synthesis process by reducing the consumption of catalyst (such as palladium acetate), and at the same time, only one vinyl group is connected to benzocyclobutene on divinylbenzene, which further reduces the The consumption of raw material benzocyclobutene and catalyst palladium acetate, adopt vacuum distillation to reclaim unreacted raw material simultaneously, reach the purpose of reducing cost.
  • catalyst such as palladium acetate
  • the synthesis method has a relatively high yield and less waste of raw materials, and at the same time, the amount of the catalyst (such as palladium acetate) is about 3 ⁇ of the mole of 4-bromobenzocyclobutene, which can effectively save costs in large-scale industrial production.
  • the monomer structure contains a benzene ring rigid group, which can further improve thermal stability.
  • it also contains a vinyl group, which has multiple crosslinkable sites, and can be crosslinked and polymerized by heating.
  • the embodiment of the present application effectively solves the technical problem that the cost of the existing synthesis process is higher by reducing the amount of catalyst (such as palladium acetate), and at the same time, only one vinyl group is connected to benzocyclobutene on the divinyl biphenyl, further reducing The amount of raw material benzocyclobutene and catalyst palladium acetate is reduced, and unreacted raw materials are recovered by vacuum distillation to achieve the purpose of reducing costs.
  • catalyst such as palladium acetate
  • the synthesis method has a relatively high yield and less waste of raw materials, and at the same time, the amount of the catalyst (such as palladium acetate) is about 3 ⁇ of the mole of 4-bromobenzocyclobutene, which can effectively save costs in large-scale industrial production.
  • the monomer structure contains a biphenyl rigid group, which can further improve thermal stability.
  • the benzocyclobutene group it also contains two kinds of vinyl groups, which have multiple crosslinkable sites, and can be heated through A cross-linking reaction occurs to obtain a material with a high degree of cross-linking.
  • the embodiment of the present application effectively solves the technical problem that the cost of the existing synthesis process is higher by reducing the amount of catalyst (such as palladium acetate).
  • catalyst such as palladium acetate.
  • the consumption of benzocyclobutene and catalyzer palladium acetate adopts vacuum distillation to reclaim unreacted raw material simultaneously, reaches the purpose of reducing cost.
  • the synthesis method has a relatively high yield and less waste of raw materials, and at the same time, the amount of the catalyst (such as palladium acetate) is about 3 ⁇ of the mole of 4-bromobenzocyclobutene, which can effectively save costs in large-scale industrial production.
  • the monomer structure contains a long alkyl chain structure, which can further improve the toughness of the material after curing.
  • the benzocyclobutene group it also contains two kinds of vinyl groups, which have multiple crosslinkable sites and can A cross-linking reaction occurs by heating to obtain a material with a high degree of cross-linking.
  • the polymerization reaction formula is as follows:
  • the cured product of the benzocyclobutene resin has only C and H elements, no polar chemical bonds, and does not contain side groups and side chains that are easy to relax, and the side chain double bonds and Benzocyclobutene is cured to form a six-membered ring cross-linked structure, which ensures extremely low dielectric loss of the final product.
  • the monomer can be copolymerized with other monomers, such as non-polar styrene, butadiene, etc., which can effectively regulate the cost, flexibility, and cost of the prepolymer according to actual needs. Viscosity, glass transition temperature, etc., are extremely industrially feasible.
  • the polymerization reaction formula is as follows:
  • the cured product of the benzocyclobutene resin has only C and H elements, no polar chemical bonds, and does not contain side groups and side chains that are easy to relax, and the side chain double bonds and Benzocyclobutene is cured to form a six-membered ring cross-linked structure, which ensures extremely low dielectric loss of the final product.
  • the monomer can be copolymerized with other monomers, such as non-polar styrene, butadiene, etc., which can effectively regulate the cost, flexibility, and cost of the prepolymer according to actual needs. Viscosity, glass transition temperature, etc., are extremely industrially feasible.
  • the polymerization reaction formula is as follows:
  • the cured product of the benzocyclobutene resin has only C and H elements, no polar chemical bonds, and does not contain side groups and side chains that are easy to relax, and the side chain double bonds and Benzocyclobutene is cured to form a six-membered ring cross-linked structure, which ensures extremely low dielectric loss of the final product.
  • the monomer can be copolymerized with other monomers, such as non-polar styrene, butadiene, etc., which can effectively regulate the cost, flexibility, viscosity, and cost of the prepolymer according to actual needs. Glass transition temperature, etc., are extremely industrially feasible.

Abstract

本申请提供一种苯并环丁烯类单体,结构式为:(I),其中,两个R1分别独立选自氢原子、甲基、甲氧基、乙基、酯基;R2选自氢原子、甲基、甲氧基、酯基;R3选自苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;R4选自氢原子、甲基、甲氧基、乙基、酯基;R5选自氢原子、甲基、甲氧基。本申请还提供苯并环丁烯类单体的制备方法、苯并环丁烯树脂及其制备方法、低介电复合材料及半导体器件。苯并环丁烯类单体具有多官能度;制备条件温和、易于制备、且成本低。所述苯并环丁烯类单体通过预聚合形成苯并环丁烯树脂,所述苯并环丁烯树脂具有高的交联密度、优异的耐热性、极低的热膨胀系数、极低的介电损耗。

Description

苯并环丁烯类单体、苯并环丁烯树脂及其制备方法、低介电材料和半导体器件
相关申请的交叉引用
本申请要求在2021年5月21日提交中国专利局、申请号为202110560450.6、申请名称为“苯并环丁烯类单体、苯并环丁烯树脂及其制备方法、低介电材料和半导体器件”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及低介电材料领域,尤其涉及一种苯并环丁烯类单体及其制备方法、苯并环丁烯树脂及其制备方法、应用该苯并环丁烯树脂的低介电材料和半导体器件。
背景技术
作为一种热固性树脂,苯并环丁烯类树脂具有以下优点:热可固化且固化过程不产生任何小分子、固化物具有极其优异的耐热性能、低的热膨胀系数、高的力学强度、同时兼具极低的吸水率、极低的介电损耗,使其在电、热、光等相关领域均受到广泛关注。目前苯并环丁烯树脂,已广泛被用于航空、航天、微电子封装、电工电器绝缘、光刻胶等领域。典型的应用场景包括微电子封装领域用的层间绝缘材料、负性光刻胶、电子封装、底部填充胶(underfill)材料、雷达透波材料、高密度互连电路板等。然而,苯并环丁烯类树脂的合成工艺通常较复杂,成本较高。
发明内容
本申请实施例第一方面提供了一种苯并环丁烯类单体,结构式为:
Figure PCTCN2022081757-appb-000001
其中,两个R 1分别独立选自氢原子、甲基、甲氧基、乙基、酯基;
R 2选自氢原子、甲基、甲氧基、酯基;
R 3选自苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;
R 4选自氢原子、甲基、甲氧基、乙基、酯基;
R 5选自氢原子、甲基、甲氧基。
本申请实施例第二方面提供了一种苯并环丁烯树脂,结构式为:
Figure PCTCN2022081757-appb-000002
其中,结构式(2)中的co代表单体
Figure PCTCN2022081757-appb-000003
与单体M 2共聚;
两个R 1分别独立选自氢原子、甲基、甲氧基、乙基、酯基;
R 2选自氢原子、甲基、甲氧基、酯基;
R 3选自苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;
R 4选自氢原子、甲基、甲氧基、乙基、酯基;
R 5选自氢原子、甲基、甲氧基;
当形成所述苯并环丁烯树脂使用了引发剂引发聚合,则两个R 6其中一个为所述引发剂的末端,另一个为氢原子;当形成所述苯并环丁烯树脂未使用引发剂聚合,则两个R 6其中一个为
Figure PCTCN2022081757-appb-000004
另一个为氢原子;
n选自≥1且≤1000的整数;
m选自≥0且≤1000的整数;且m+n≥2。
本申请实施方式中,M 2选自苯乙烯、甲基苯乙烯、联苯乙烯、萘乙烯、二乙烯基苯、二乙烯基联苯、甲基丙烯酸酯、丙烯酸酯类、马来酰亚胺、马来酸酐、丁二烯、异戊二烯、乙烯、丙烯、降冰片烯、乙叉降冰片烯中的至少一种。
本申请实施方式中,n选自≥2且≤200的整数,m选自≤100的整数。
本申请实施方式中,所述引发剂的末端为萘环、正丁基、叔丁基、过氧化苯甲酰、异丙苯氧基、叔丁氧基中的一种。
本申请实施例第三方面提供了一种低介电材料,包括苯并环丁烯类单体和苯并环丁烯树脂中的至少一种,所述苯并环丁烯类单体的结构式为:
Figure PCTCN2022081757-appb-000005
所述苯并环丁烯树脂的结构式为:
Figure PCTCN2022081757-appb-000006
其中,结构式(1)和结构式(2)中两个R 1分别独立选自氢原子、甲基、甲氧基、乙基、酯基;
R 2选自氢原子、甲基、甲氧基、酯基;
R 3选自苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;
R 4选自氢原子、甲基、甲氧基、乙基、酯基;
R 5选自氢原子、甲基、甲氧基;
结构式(2)中的co代表单体
Figure PCTCN2022081757-appb-000007
与单体M 2共聚;
当形成结构式(2)所述的苯并环丁烯树脂使用引发剂引发聚合,则结构式(2)中两个R 6其中一个为所述引发剂的末端,另一个为氢原子;当形成结构式(2)所述的所述苯并环丁烯树脂未使用引发剂聚合,则结构式(2)中两个R 6其中一个为
Figure PCTCN2022081757-appb-000008
另一个为氢原子;
n选自≥1且≤1000的整数;
m选自≥0且≤1000的整数;且m+n≥2。
本申请实施方式中,M 2选自苯乙烯、甲基苯乙烯、联苯乙烯、萘乙烯、二乙烯基苯、二乙烯基联苯、甲基丙烯酸酯、丙烯酸酯、马来酰亚胺、丁二烯、异戊二烯、乙烯、丙烯、降冰片烯、乙叉降冰片烯中的至少一种。
本申请实施方式中,n选自≥2且≤200的整数,m选自≤100的整数。
本申请实施方式中,所述低介电材料还包括填料、染料、抗氧化剂、光敏剂、玻璃纤维布、热引发剂、光稳定剂、增塑剂、阻燃剂、抗静电剂、脱模剂中的至少一种。
本申请实施例第四方面提供了一种半导体器件,其包括上述的低介电材料的固化产物。
本申请实施例第五方面提供了一种苯并环丁烯树脂的制备方法,包括:
制备苯并环丁烯类单体,所述苯并环丁烯类单体的结构式为:
Figure PCTCN2022081757-appb-000009
其中,两个R 1分别独立选自氢原子、甲基、甲氧基、乙基、酯基;
R 2选自氢原子、甲基、甲氧基、酯基;
R 3选自苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;
R 4选自氢原子、甲基、甲氧基、乙基、酯基;
R 5选自氢原子、甲基、甲氧基;
将所述苯并环丁烯类单体进行聚合或与其他的单体共聚形成预聚物。
本申请实施方式中,制备苯并环丁烯类单体包括:在无水无氧以及惰性气体的保护下,以含有二乙烯基的化合物与4-溴苯并环丁烯作为反应原料,并添加三(邻甲基苯基)磷作为配体、催化剂和缚酸剂,其中所述含有二乙烯基的化合物与所述4-溴苯并环丁烯的摩尔比为1:5~5:1,所述催化剂的加入量为4-溴苯并环丁烯摩尔的1‰~5‰。
本申请实施方式中,所述的催化剂选自醋酸钯、氯化钯、四(三苯基膦)钯、Pd/C、二苯基膦二茂铁二氯化钯中的一种;所述缚酸剂选自三乙胺、二乙胺、碳酸钾、碳酸钠、吡啶、咪唑中的一种。
本申请实施方式中,制备所述苯并环丁烯类单体的步骤,反应温度为40~70℃,反应时间为20~60h。
本申请实施方式中,所述聚合为阴离子聚合,阴离子聚合时的反应温度为-20℃~-78℃,反应时间为5~8h。
本申请实施方式中,所述聚合为自由基聚合,自由基聚合时的反应温度为40℃~80℃,反应时间为3~20h。
本申请实施方式中,将所述苯并环丁烯类单体与其他的单体共聚,所述其他的单体选自苯乙烯、甲基苯乙烯、联苯乙烯、萘乙烯、二乙烯基苯、二乙烯基联苯、甲基丙烯酸酯、丙烯酸酯、马来酸酐、马来酰亚胺、丁二烯、异戊二烯、乙烯、丙烯、降冰片烯、乙叉降冰片烯中的至少一种单体。
本申请实施例第六方面提供了一种苯并环丁烯类单体的制备方法,包括:
在无水无氧以及惰性气体的保护下,以含有二乙烯基的化合物与4-溴苯并环丁烯作为反应原料,并添加三(邻甲基苯基)磷作为配体、催化剂和缚酸剂,其中所述含有二乙烯基的化合物与所述4-溴苯并环丁烯的摩尔比为1:5~5:1,所述催化剂的加入量为4-溴苯并环丁烯摩尔的1‰~5‰。
本申请实施方式中,所述的催化剂选自醋酸钯、氯化钯、四(三苯基膦)钯、Pd/C、二苯基膦二茂铁二氯化钯中的一种;所述缚酸剂选自三乙胺、二乙胺、碳酸钾、碳酸钠、吡啶、咪唑中的一种;反应温度为40~70℃,反应时间为20~60h。
附图说明
图1是本申请一实施例的苯并环丁烯树脂的制备流程图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
当前苯并环丁烯树脂的合成步骤繁琐、反应条件苛刻、工艺复杂。
本申请提供一种制备成本低、合成条件温、且具有优良的介电性能的苯并环丁烯类单体及其预聚物(苯并环丁烯树脂)以及它们的制备方法。
本申请实施例的苯并环丁烯类单体,结构式为:
Figure PCTCN2022081757-appb-000010
其中,两个R 1分别独立选自氢原子、甲基、甲氧基、乙基、酯基中的一种,两个R 1可不相同;
R 2选自氢原子、甲基、甲氧基、酯基;
R 3选自苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;
R 4选自氢原子、甲基、甲氧基、乙基、酯基;
R 5选自氢原子、甲基、甲氧基。
所述苯并环丁烯类单体具有多官能度;其制备条件温和、易于制备、且成本低。
当结构式(1)中的R 1、R 2、R 4、R 5均为氢原子,R 3为苯基,则苯并环丁烯类单体为苯并环丁烯单取代二乙烯基,结构式为:
Figure PCTCN2022081757-appb-000011
当结构式(1)中的R 1、R 2、R 4、R 5均为氢原子,R 3为联苯基,则苯并环丁烯类单体为苯并环丁烯单取代二乙烯基联苯,结构式为:
Figure PCTCN2022081757-appb-000012
当结构式(1)中的R 1、R 2、R 4、R 5均为氢原子,R 3为含有5个碳原子的脂肪链,则苯并环丁烯类单体为苯并环丁烯单取代癸二烯,结构式为:
Figure PCTCN2022081757-appb-000013
所述苯并环丁烯类单体可通过连锁聚合方式进行预聚形成苯并环丁烯树脂,以适应不同场景下对于树脂的不同粘度需求。所述苯并环丁烯树脂具有高的交联密度、优异的耐热性、极低的热膨胀系数、极低的介电损耗。
本申请还提供一种苯并环丁烯树脂,为上述结构式(1)的苯并环丁烯类单体聚合或者结构式(1)的苯并环丁烯类单体与其他的单体共聚而形成的预聚物,结构式为:
Figure PCTCN2022081757-appb-000014
其中,结构式(2)中的co代表单体
Figure PCTCN2022081757-appb-000015
与单体M 2共聚,共聚方式包括但不限于无规共聚、嵌段共聚等;
两个R 1分别独立选自氢原子、甲基、甲氧基、乙基、酯基,两个R 1可不相同;
R 2选自氢原子、甲基、甲氧基、酯基;
R 3选自二价的苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;
R 4选自氢原子、甲基、甲氧基、乙基、酯基;
R 5选自氢原子、甲基、甲氧基;
当形成结构式(2)所述的苯并环丁烯树脂使用了引发剂引发聚合,则两个R 6其中一个为所述引发剂的末端(引发剂分解产生的引发基元),另一个为氢原子;引发剂的种类有多种,两个R 6其中一个依据引发剂种类的不同而不同,例如可为萘环、正丁基、叔丁基、过氧化苯甲酰、异丙苯氧基、叔丁氧基等。当形成结构式(2)所述的苯并环丁烯树脂未使用引发剂引发聚合,所述单体本身引发聚合,则一个R 6
Figure PCTCN2022081757-appb-000016
另一个为氢原子。
n选自≥1且≤1000的整数,优选≥2且≤200的整数,更优选≥2且≤100的整数;
m选自≥0且≤1000的整数,优选≥0且≤100的整数,更优选≥0且≤50的整数;且m+n≥2。
M 2选自能够进行共聚合的单体,如苯乙烯、甲基苯乙烯、联苯乙烯、萘乙烯、二乙烯基苯、二乙烯基联苯、甲基丙烯酸酯、丙烯酸酯、马来酸酐、马来酰亚胺、丁二烯、异戊二烯、乙烯、丙烯、降冰片烯、乙叉降冰片烯中的至少一种。
当m=0,则结构式(2)的苯并环丁烯树脂为结构式(1)的苯并环丁烯类单体聚合的预聚产物。
当以M 1代表结构式(2)中的co左边的单体,则当单体M 1与单体M 2无规共聚时,即n个M 1与m个M 2在分子链上无规排列,呈随机分布。例如当n和m均等于2,结构式(2)中单体M 1与单体M 2无规共聚,则分子链上的排列可为M 1M 2M 2M 1、M 1M 2M 1M 2等各种无规则的排布。
引发剂是能引发单体进行聚合反应的物质。不饱和单体聚合活性中心有自由基型、阴离 子型、阳离子型和配位化合物等。本申请中,该苯并环丁烯类单体可选用阴离子聚合、自由基聚合等进行链增长。
可以理解的,所述结构式(1)的苯并环丁烯类单体与含有双键的另外的单体M 2共聚合,从而提供预聚物的性能、成本等各个方面可以根据需求定制的弹性调节空间。
该苯并环丁烯树脂中具有多个可交联位点,将其固化得到的产物的交联密度大,因此具有优异的耐热性能、力学性能和极低的热膨胀系数,同时在电学性能方面具有较低的介电常数和介电损耗,是综合性能优异的材料。
当结构式(2)中m=0时,即所述苯并环丁烯树脂为由结构式(1)的单体聚合而成的预聚物,且当R 1、R 2、R 4、R 5均为氢原子,R 3为苯基,即所述苯并环丁烯树脂为由结构式(1-A)的单体聚合而成的预聚物,且两个R 6其中一个为
Figure PCTCN2022081757-appb-000017
另一个为氢原子,则所述苯并环丁烯树脂具体结构式为:
Figure PCTCN2022081757-appb-000018
当结构式(2)中m大于0时,即所述苯并环丁烯树脂为由结构式(1)的单体与其他的单体M 2共聚而成的预聚物,且当R 1、R 2、R 4、R 5均为氢原子,R 3为苯基,M 2为苯乙烯,即所述苯并环丁烯树脂为由结构式(1-A)的单体与单体苯乙烯共聚而成,且两个R 6其中一个为
Figure PCTCN2022081757-appb-000019
另一个为氢原子,则所述苯并环丁烯树脂具体结构式为:
Figure PCTCN2022081757-appb-000020
本申请的预聚物(苯并环丁烯树脂)的分子量可控,能够有效地调控分子量,例如可用以适配印制电路板制备过程中的填胶需求。同时所述苯并环丁烯树脂的固化产物,相比于常 规的碳氢树脂(如丁苯橡胶类,介电损耗~0.003@10GHz,热膨胀系数为70~80ppm)具有极低的介电损耗(0.0003@10GHz),高的耐热性,能够有效降低电路板的插入损耗,同时,其具有比载板常用的BT树脂(Df 0.008@10GHz,热膨胀系数为45ppm)更低的热膨胀系数(30ppm),对于改善电路板和芯片的热膨胀系数匹配性也非常有益。这些特性使所述苯并环丁烯树脂能够支撑低插入损耗高可靠性的电路板的开发,在提升系统整体电性能的同时,还可以提升系统的可靠性。其中,BT树脂是指以双马来酰亚胺和三嗪为主树脂成份,并加入环氧树脂、聚苯醚树脂或烯丙基化合物等作为改性组分,所形成的热固性树脂。
本申请实施例还提供一种低介电材料,其包括上述的苯并环丁烯类单体和上述的苯并环丁烯树脂中的至少一种。所述低介电材料还可选择性地包括其他功能组分,例如填料、染料、抗氧化剂、光敏剂、玻璃纤维布、热引发剂、光稳定剂、增塑剂、阻燃剂、抗静电剂、脱模剂中的至少一种。
本申请还提供一种半导体器件,其包括上述的低介电材料的固化产物。所述低介电材料的固化产物可为层间介质层材料。例如,所述半导体器件还包括芯片,所述低介电材料的固化产物位于芯片与芯片之间。所述低介电材料的固化产物还可用于印制电路板等领域,作为绝缘树脂材料。
所述苯并环丁烯类单体的制备方法,包括:在无水无氧以及惰性气体的保护下,以含有二乙烯基的化合物,例如二乙烯基苯(间位、对位、间位对位混合均可)、二乙烯基联苯、癸二烯等,与4-溴苯并环丁烯作为反应原料,并添加三(邻甲基苯基)磷作为配体、催化剂、缚酸剂,其中所述含有二乙烯基的化合物与所述4-溴苯并环丁烯的摩尔比为1:5~5:1,所述催化剂的加入量为4-溴苯并环丁烯摩尔的1‰~5‰,优选为4-溴苯并环丁烯摩尔的3‰。
所述的惰性气体为氮气或氩气。所述的催化剂选自醋酸钯、氯化钯、四(三苯基膦)钯、钯炭(Pd/C)、二苯基膦二茂铁二氯化钯中的一种。所述缚酸剂选自三乙胺、二乙胺、碳酸钾、碳酸钠、吡啶、咪唑中的一种。
制备所述苯并环丁烯类单体的步骤还添加有机溶剂,所述有机溶剂选自甲苯、乙腈、四氢呋喃、二氧六环、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中的一种或多种。制备苯并环丁烯类单体的步骤,反应温度为40~70℃,优选为57~60℃,反应时间为20~60h,优选为45~48h。
如图1所示,所述苯并环丁烯类单体的制备工艺流程,在反应瓶中进行抽真空以达到无水无氧的条件,并通入惰性气体(例如氮气)作为保护气体,然后在一定的反应温度下反应若干时间,例如58℃反应48h,反应产物依次经过滤、旋蒸、抽滤(例如硅胶抽滤)、多次蒸馏(例如依次经滤液减压蒸馏、90℃短程蒸馏、150℃短程蒸馏),得到所述苯并环丁烯类单体。其中过滤用以除去钯黑,旋蒸用以浓缩滤液去除溶剂,抽滤用以除去无机盐,减压蒸馏用以除去滤液中未反应的原料,短程蒸馏用以将得到的单体提纯。
所述苯并环丁烯类单体的制备过程中,通过控制合适反应条件使含有二乙烯基的化合物,例如二乙烯基苯与4-溴苯并环丁烯发生Heck反应,二乙烯基苯的苯环连接的其中一个双键键合上苯并环丁烯基元,另一个双键保留,从而制备得到单取代的苯并环丁烯单体。其中,Heck反应是偶联反应中的一种,也作偶连反应、耦联反应、氧化偶联,是由两个有机化学单位进行某种化学反应而得到一个有机分子的过程。
本申请中,含有二乙烯基的化合物与4-溴苯并环丁烯发生Heck反应,催化剂(例如醋酸钯)用量约为4-溴苯并环丁烯摩尔的1‰~5‰,大规模工业生产时能节约成本。
所述苯并环丁烯树脂为将上述的苯并环丁烯类单体进行聚合而得到的预聚物。所述苯并环丁烯树脂的制备方法,包括:
制备所述苯并环丁烯类单体;
将所述苯并环丁烯类单体进行聚合或与其他的单体共聚形成预聚物。
当将所述苯并环丁烯类单体进行聚合,且选用阴离子聚合时,阴离子聚合时的反应温度为-20℃~-78℃,从应用的角度看-40℃最佳,反应时间为5~8h(优选7h左右)。所述阴离子聚合时添加有引发剂,所述引发剂可为:正丁基锂、叔丁基锂、萘钠等。
所述阴离子聚合时添加有有机溶剂,所述溶剂选自四氢呋喃、甲基四氢呋喃中的一种或多种。
所述其他的单体是能够进行共聚的单体,选自苯乙烯、甲基苯乙烯、甲基丙烯酸酯、丙烯酸酯、马来酰亚胺、丁二烯、异戊二烯、乙烯、丙烯、降冰片烯中的至少一种单体。
当聚合为自由基聚合,自由基聚合时的反应温度为40℃~80℃,引发剂可以选择自偶氮二异丁腈、偶氮苯等自由基引发剂,反应时间为3~20h。
如图1所示,聚合反应结束后,可加入反应终止剂(例如甲醇)终止反应,然后对产物进行沉淀,得到所述苯并环丁烯树脂。
所述苯并环丁烯类单体的苯环连接的未反应的双键可反应实现链增长,实现单体的预聚合,同时通过控制反应条件可以控制预聚物分子量,以适配不同场景对于树脂粘度的不同需求。同时所述苯并环丁烯类单体可以选择性地与其他可聚合的单体进行共聚合,得到性能、成本具有良好调控空间的预聚物。
本实施例中,所述聚合为预聚合,得到的预聚物最终使用时需要固化,例如加热固化。
在预聚物的热固化过程中,参与heck反应的双键可以和苯并环丁烯分解产生的邻二甲烯醌中间体发生狄尔斯-阿尔德反应(Diels-Alder)产生六元环结构,从而提升固化物的交联密度,增强树脂固化物的耐热性、提升玻璃转化温度(Tg),降低热膨胀系数。其中,Diels-Alder反应,又名双烯合成,由共轭双烯与烯烃或炔烃反应生成六元环的反应,是有机化学合成反应中非常重要的形成碳碳键的手段之一,也是现代有机合成里常用的反应之一。
由于作为反应原料的所述苯并环丁烯类单体中只引入一个苯并环丁烯基元,减少了苯并环丁烯原料使用,相较于现有技术方案,极大地降低了苯并环丁烯树脂的成本。
下面通过具体实施例对本申请实施例技术方案进行进一步的说明。
苯并环丁烯类单体合成
实施例1
苯并环丁烯单取代二乙烯基单体的制备:
(a)5L的反应釜,抽真空通氮气反复3次后加入4-溴苯并环丁烯(2.5mol)、二乙烯基苯(7.5mol)、醋酸钯(0.0075mol)、三(邻甲基苯基)磷(0.03mol)、三乙胺(2.63mol)、干燥乙腈(2L),体系再用氮气置换一次后水浴升温至58℃,48h后结束反应,期间点板监控反应程度,待体系恢复至室温后有大量盐析出。
二乙烯基苯与4-溴苯并环丁烯发生偶联(Heck)反应,具体的反应式如下:
Figure PCTCN2022081757-appb-000021
(b)抽滤除去固体及钯黑,滤液旋蒸浓缩除去溶剂后再用硅胶抽滤,将此次抽滤得到的滤液在80~90℃条件下用油泵减压蒸馏除去未反应的原料,得到棕黄色液体(冷却后凝固)。
(c)然后使用短程蒸馏装置在90℃条件下用油泵减压蒸馏进一步除去原料。
(d)最后再次使用短程蒸馏装置在150℃条件下用油泵减压蒸馏得到纯度较高的苯并环丁烯单取代二乙烯基苯单体。
本申请实施例通过降低催化剂(例如醋酸钯)的用量有效解决现有合成工艺的成本较高的技术问题,同时二乙烯基苯上只有一个乙烯基团接入苯并环丁烯,进一步降低了原料苯并环丁烯与催化剂醋酸钯的用量,同时采用减压蒸馏将未反应的原料回收,来达到降低成本的目的。
该合成方法产率相高,原料浪费少,同时催化剂(例如醋酸钯)用量约为4-溴苯并环丁烯摩尔的3‰,在大规模工业生产时能有效节约成本。同时该单体结构中含有苯环刚性基团,能进一步提升热稳定性,此外还含有乙烯基团,具有多个可交联位点,能够通过加热发生交联聚合。
实施例2
苯并环丁烯单取代二乙烯基联苯单体的制备:
(a)5L的反应釜,抽真空通氮气反复3次后加入4-溴苯并环丁烯(2.5mol)、二乙烯基联苯(7.5mol)、醋酸钯(0.0075mol)、三(邻甲基苯基)磷(0.03mol)、三乙胺(2.63mol)、干燥乙腈(2L),体系再用氮气置换一次后水浴升温至58℃,48h后结束反应,期间点板监控反应程度,待体系恢复至室温后有大量盐析出。
二乙烯基联苯与4-溴苯并环丁烯发生偶联(Heck)反应,具体的反应式如下:
Figure PCTCN2022081757-appb-000022
(b)抽滤除去固体及钯黑,滤液旋蒸浓缩除去溶剂后再用硅胶抽滤,将此次抽滤得到的滤液在80~90℃条件下用油泵减压蒸馏除去未反应的原料,得到棕黄色液体(冷却后凝固)。
(c)然后使用短程蒸馏装置在90℃条件下用油泵减压蒸馏进一步除去原料。
(d)最后再次使用重结晶方法得到纯度较高的苯并环丁烯单取代二乙烯基联苯单体。
本申请实施例通过降低催化剂(例如醋酸钯)的用量有效解决现有合成工艺的成本较高的技术问题,同时二乙烯基联苯上只有一个乙烯基团接入苯并环丁烯,进一步降低了原料苯并环丁烯与催化剂醋酸钯的用量,同时采用减压蒸馏将未反应的原料回收,来达到降低成本的目的。
该合成方法产率相高,原料浪费少,同时催化剂(例如醋酸钯)用量约为4-溴苯并环丁烯摩尔的3‰,在大规模工业生产时能有效节约成本。同时该单体结构中含有联苯刚性基团, 能进一步提升热稳定性,除苯并环丁烯基团外,还含有两种乙烯基团,具有多个可交联位点,能够通过加热发生交联反应得到高交联度的材料。
实施例3
苯并环丁烯单取代癸二烯单体的制备:
(a)5L的反应釜,抽真空通氮气反复3次后加入4-溴苯并环丁烯(2.5mol)、癸二烯(7.5mol)、醋酸钯(0.0075mol)、三(邻甲基苯基)磷(0.03mol)、三乙胺(2.63mol)、干燥乙腈(2L),体系再用氮气置换一次后水浴升温至58℃,48h后结束反应,期间点板监控反应程度,待体系恢复至室温后有大量盐析出。
癸二烯与4-溴苯并环丁烯发生偶联(Heck)反应,具体的反应式如下:
Figure PCTCN2022081757-appb-000023
(b)抽滤除去固体及钯黑,滤液旋蒸浓缩除去溶剂后再用硅胶抽滤,将此次抽滤得到的滤液在80~90℃条件下用油泵减压蒸馏除去未反应的原料,得到棕黄色液体(冷却后凝固)。
(c)然后使用短程蒸馏装置在90-130℃条件下用油泵减压蒸馏进一步除去原料。
(d)最后再次使用重结晶方法除去杂质得到纯度较高的苯并环丁烯单取代癸二烯单体。
本申请实施例通过降低催化剂(例如醋酸钯)的用量有效解决现有合成工艺的成本较高的技术问题,同时癸二烯上只有一个乙烯基团接入苯并环丁烯,进一步降低了原料苯并环丁烯与催化剂醋酸钯的用量,同时采用减压蒸馏将未反应的原料回收,来达到降低成本的目的。
该合成方法产率相高,原料浪费少,同时催化剂(例如醋酸钯)用量约为4-溴苯并环丁烯摩尔的3‰,在大规模工业生产时能有效节约成本。同时该单体结构中含有长烷基链结构,能进一步提升材料固化后的韧性,除苯并环丁烯基团外,还含有两种乙烯基团,具有多个可交联位点,能够通过加热发生交联反应得到高交联度的材料。
预聚物合成实施例
实施例1
苯并环丁烯树脂的制备(预聚):
(a)50ml的单颈瓶,加入实施例1制得的苯并环丁烯单取代二乙烯基苯单体(0.025mol),盖上橡胶塞。
(b)抽真空通氮气反复3次后注射加入四氢呋喃或甲基四氢呋喃(22ml),在-60℃~-40℃条件下加入正丁基锂(0.026mol)作为引发剂,反应7h。
(c)加入甲醇终止反应,体系变为黄色,然后用甲醇沉淀,反复3次,得到白色粉末。
聚合反应式如下:
Figure PCTCN2022081757-appb-000024
本实施例所述的苯并环丁烯树脂的优势为:
(1)成本低:苯并环丁烯类单体合成工艺复杂,是苯并环丁烯类单体成本高的一个关键因素,本申请通过控制反应条件,得到的苯并环丁烯类单体中只含有一个苯并环丁烯基元,极大地降低了单体成本。
(2)介电性能优异:该苯并环丁烯树脂的固化产物中只有C和H元素,无极性的化学键,而且不含有易于松弛的侧基侧链等,且固化时侧链双键和苯并环丁烯固化生成六元环交联结构,保证最终产物的极低介电损耗。
(3)耐热性能优异:虽只有一个苯并环丁烯基元,但利用一个双键实现了苯并环丁烯类单体的聚合,另外一个双键进行固化反应,该苯并环丁烯类单体也是一个高官能化的单体,能够实现高密度的树脂固化物的制备,保证最终产品的高耐热性能、极低的热膨胀系数。
(4)性能和成本调控空间大:该单体可以和其他单体共聚,如非极性的苯乙烯、丁二烯等,能够有效地根据实际需求,调控预聚物的成本、柔韧性、粘度、玻璃化转变温度等,极具工业可实现性。
实施例2
苯并环丁烯树脂的制备(预聚):
(a)50ml的单颈瓶,加入实施例1制得的苯并环丁烯单取代二乙烯基苯单体(0.025mol),盖上橡胶塞。
(b)抽真空通氮气反复3次后注射加入甲苯(22ml),在100℃条件下进行热聚合,反应10h。
(c)冷却至室温中止反应,然后用甲醇沉淀,反复3次,得到白色粉末。
聚合反应式如下:
Figure PCTCN2022081757-appb-000025
本实施例所述的苯并环丁烯树脂的优势为:
(1)成本低:苯并环丁烯类单体合成工艺复杂,是苯并环丁烯类单体成本高的一个关键因素,本申请通过控制反应条件,得到的苯并环丁烯类单体中只含有一个苯并环丁烯基元,极大地降低了单体成本。
(2)介电性能优异:该苯并环丁烯树脂的固化产物中只有C和H元素,无极性的化学键,而且不含有易于松弛的侧基侧链等,且固化时侧链双键和苯并环丁烯固化生成六元环交联结构,保证最终产物的极低介电损耗。
(3)耐热性能优异:虽只有一个苯并环丁烯基元,但利用一个双键实现了苯并环丁烯类单体的聚合,另外一个双键进行固化反应,该苯并环丁烯类单体也是一个高官能化的单体,能够实现高密度的树脂固化物的制备,保证最终产品的高耐热性能、极低的热膨胀系数。
(4)性能和成本调控空间大:该单体可以和其他单体共聚,如非极性的苯乙烯、丁二烯等,能够有效地根据实际需求,调控预聚物的成本、柔韧性、粘度、玻璃化转变温度等,极具工业可实现性。
实施例3
苯并环丁烯树脂的制备(预聚):
(a)50ml的单颈瓶,加入实施例1制得的苯并环丁烯单取代二乙烯基苯单体(0.025mol),苯乙烯单体(0.025mol),盖上橡胶塞。
(b)抽真空通氮气反复3次后注射加入甲苯(22ml),在100℃条件下热聚合,搅拌反应10h。
(c)冷却至室温中止反应,然后用甲醇沉淀,反复3次,得到白色粉末。
聚合反应式如下:
Figure PCTCN2022081757-appb-000026
本实施例所述的苯并环丁烯树脂的优势为:
(1)成本低:苯并环丁烯类单体合成工艺复杂,是苯并环丁烯类单体成本高的一个关键因素,本申请通过控制反应条件,得到的苯并环丁烯类单体中只含有一个苯并环丁烯基元,极大地降低了单体成本。
(2)介电性能优异:该苯并环丁烯树脂的固化产物中只有C和H元素,无极性的化学键,而且不含有易于松弛的侧基侧链等,且固化时侧链双键和苯并环丁烯固化生成六元环交联结构,保证最终产物的极低介电损耗。
(3)耐热性能优异:虽只有一个苯并环丁烯基元,但利用一个双键实现了苯并环丁烯类单体的聚合,另外一个双键进行固化反应,该苯并环丁烯类单体也是一个高官能化的单体,能够实现高密度的树脂固化物的制备,保证最终产品的高耐热性能、极低的热膨胀系数。
(4)性能调控空间大:该单体可以和其他单体共聚,如非极性的苯乙烯、丁二烯等,能够有效地根据实际需求,调控预聚物的成本、柔韧性、粘度、玻璃化转变温度等,极具工业 可实现性。
需要说明的是,以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种苯并环丁烯类单体,其特征在于,所述苯并环丁烯类单体的结构式为:
    Figure PCTCN2022081757-appb-100001
    其中,两个R 1分别独立选自氢原子、甲基、甲氧基、乙基、酯基;
    R 2选自氢原子、甲基、甲氧基、酯基;
    R 3选自苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;
    R 4选自氢原子、甲基、甲氧基、乙基、酯基;
    R 5选自氢原子、甲基、甲氧基。
  2. 一种苯并环丁烯树脂,其特征在于,所述苯并环丁烯树脂的结构式为:
    Figure PCTCN2022081757-appb-100002
    其中,结构式(2)中的co代表单体
    Figure PCTCN2022081757-appb-100003
    与单体M 2共聚;
    两个R 1分别独立选自氢原子、甲基、甲氧基、乙基、酯基;
    R 2选自氢原子、甲基、甲氧基、酯基;
    R 3选自苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;
    R 4选自氢原子、甲基、甲氧基、乙基、酯基;
    R 5选自氢原子、甲基、甲氧基;
    当形成所述苯并环丁烯树脂使用引发剂引发聚合,则两个R 6其中一个为所述引发剂的末端,另一个为氢原子;当形成所述苯并环丁烯树脂未使用引发剂聚合,则两个R 6其中一个为
    Figure PCTCN2022081757-appb-100004
    另一个为氢原子;
    n选自≥1且≤1000的整数;
    m选自≥0且≤1000的整数;且m+n≥2。
  3. 根据权利要求2所述的苯并环丁烯树脂,其特征在于,M 2选自苯乙烯、甲基苯乙烯、联苯乙烯、萘乙烯、二乙烯基苯、二乙烯基联苯、甲基丙烯酸酯、丙烯酸酯类、马来酰亚胺、马来酸酐、丁二烯、异戊二烯、乙烯、丙烯、降冰片烯、乙叉降冰片烯中的至少一种。
  4. 根据权利要求2所述的苯并环丁烯树脂,其特征在于,n选自≥2且≤200的整数,m选自≤100的整数。
  5. 根据权利要求2所述的苯并环丁烯树脂,其特征在于,所述引发剂的末端为萘环、正丁基、叔丁基、过氧化苯甲酰、异丙苯氧基、叔丁氧基中的一种。
  6. 一种低介电材料,包括苯并环丁烯类单体和苯并环丁烯树脂中的至少一种,其特征在于,所述苯并环丁烯类单体的结构式为:
    Figure PCTCN2022081757-appb-100005
    所述苯并环丁烯树脂的结构式为:
    Figure PCTCN2022081757-appb-100006
    其中,
    结构式(1)和结构式(2)中两个R 1分别独立选自氢原子、甲基、甲氧基、乙基、酯基;
    R 2选自氢原子、甲基、甲氧基、酯基;
    R 3选自苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;
    R 4选自氢原子、甲基、甲氧基、乙基、酯基;
    R 5选自氢原子、甲基、甲氧基;
    结构式(2)中的co代表单体
    Figure PCTCN2022081757-appb-100007
    与单体M 2共聚;
    当形成结构式(2)所述的苯并环丁烯树脂使用引发剂引发聚合,则结构式(2)中两个R 6其中一个为所述引发剂的末端,另一个为氢原子;当形成结构式(2)所述的苯并环丁烯 树脂未使用引发剂聚合,则结构式(2)中两个R 6其中一个为
    Figure PCTCN2022081757-appb-100008
    另一个为氢原子;
    n选自≥1且≤1000的整数;
    m选自≥0且≤1000的整数;且m+n≥2。
  7. 根据权利要求6所述的低介电材料,其特征在于,M 2选自苯乙烯、甲基苯乙烯、联苯乙烯、萘乙烯、二乙烯基苯、二乙烯基联苯、甲基丙烯酸酯、丙烯酸酯、马来酰亚胺、丁二烯、异戊二烯、乙烯、丙烯、降冰片烯、乙叉降冰片烯中的至少一种。
  8. 根据权利要求6所述的低介电材料,其特征在于,n选自≥5且≤200的整数,m选自≤100的整数。
  9. 根据权利要求6所述的低介电材料,其特征在于,所述低介电材料还包括填料、染料、抗氧化剂、光敏剂、玻璃纤维布、热引发剂、光稳定剂、增塑剂、阻燃剂、抗静电剂、脱模剂中的至少一种。
  10. 一种半导体器件,其特征在于,其包括权利要求6至9中任一项所述的低介电材料的固化产物。
  11. 一种苯并环丁烯树脂的制备方法,其特征在于,包括:
    制备苯并环丁烯类单体,所述苯并环丁烯类单体的结构式为:
    Figure PCTCN2022081757-appb-100009
    其中,两个R 1分别独立选自氢原子、甲基、甲氧基、乙基、酯基;
    R 2选自氢原子、甲基、甲氧基、酯基;
    R 3选自苯基、萘基、联苯基、芳香烷基、含有1~10个碳原子的脂肪链;
    R 4选自氢原子、甲基、甲氧基、乙基、酯基;
    R 5选自氢原子、甲基、甲氧基;
    将所述苯并环丁烯类单体进行聚合或与其他的单体共聚形成预聚物。
  12. 根据权利要求11所述的苯并环丁烯树脂的制备方法,其特征在于,制备苯并环丁烯类单体包括:在无水无氧以及惰性气体的保护下,以含有二乙烯基的化合物与4-溴苯并环丁烯作为反应原料,并添加三(邻甲基苯基)磷作为配体、催化剂和缚酸剂,其中所述含有二乙烯基的化合物与所述4-溴苯并环丁烯的摩尔比为1:5~5:1,所述催化剂的加入量为4-溴苯并环丁烯摩尔的1‰~5‰。
  13. 根据权利要求11或12所述的苯并环丁烯树脂的制备方法,其特征在于,所述的催化剂选自醋酸钯、氯化钯、四(三苯基膦)钯、Pd/C、二苯基膦二茂铁二氯化钯中的一种;所述缚酸剂选自三乙胺、二乙胺、碳酸钾、碳酸钠、吡啶、咪唑中的一种。
  14. 根据权利要求11至13中任一项所述的苯并环丁烯树脂的制备方法,其特征在于,制备所述苯并环丁烯类单体的步骤,反应温度为40~70℃,反应时间为20~60h。
  15. 根据权利要求11至14中任一项所述的苯并环丁烯树脂的制备方法,其特征在于,所述聚合为阴离子聚合,阴离子聚合时的反应温度为-20℃~-78℃,反应时间为5~8h。
  16. 根据权利要求11至14中任一项所述的苯并环丁烯树脂的制备方法,其特征在于,所述聚合为自由基聚合,自由基聚合时的反应温度为40℃~80℃,反应时间为3~20h。
  17. 根据权利要求11至16中任一项所述的苯并环丁烯树脂的制备方法,其特征在于,将所述苯并环丁烯类单体与其他的单体共聚,所述其他的单体选自苯乙烯、甲基苯乙烯、联苯乙烯、萘乙烯、二乙烯基苯、二乙烯基联苯、甲基丙烯酸酯、丙烯酸酯、马来酸酐、马来酰亚胺、丁二烯、异戊二烯、乙烯、丙烯、降冰片烯、乙叉降冰片烯的至少一种单体。
  18. 一种苯并环丁烯类单体的制备方法,其特征在于,包括:
    在无水无氧以及惰性气体的保护下,以含有二乙烯基的化合物与4-溴苯并环丁烯作为反应原料,并添加三(邻甲基苯基)磷作为配体、催化剂和缚酸剂,其中所述含有二乙烯基的化合物与所述4-溴苯并环丁烯的摩尔比为1:5~5:1,所述催化剂的加入量为4-溴苯并环丁烯摩尔的1‰~5‰。
  19. 根据权利要求18所述的苯并环丁烯类单体的制备方法,其特征在于,所述的催化剂选自醋酸钯、氯化钯、四(三苯基膦)钯、Pd/C、二苯基膦二茂铁二氯化钯中的一种;所述缚酸剂选自三乙胺、二乙胺、碳酸钾、碳酸钠、吡啶、咪唑中的一种;反应温度为40~70℃,反应时间为20~60h。
PCT/CN2022/081757 2021-05-21 2022-03-18 苯并环丁烯类单体、苯并环丁烯树脂及其制备方法、低介电材料和半导体器件 WO2022242292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110560450 2021-05-21
CN202110560450.6 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022242292A1 true WO2022242292A1 (zh) 2022-11-24

Family

ID=82278086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081757 WO2022242292A1 (zh) 2021-05-21 2022-03-18 苯并环丁烯类单体、苯并环丁烯树脂及其制备方法、低介电材料和半导体器件

Country Status (2)

Country Link
CN (1) CN114736096B (zh)
WO (1) WO2022242292A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141157A (zh) * 2022-06-27 2022-10-04 佳化化学科技发展(上海)有限公司 一种异氰脲酸三丙烯酸酯及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505359B (zh) * 2022-08-17 2023-11-21 山东金宝电子有限公司 一种覆铜板胶液及其制备方法、覆铜板
CN115433451A (zh) * 2022-09-19 2022-12-06 郴州功田电子陶瓷技术有限公司 一种高速低损耗树脂组合物及其应用
CN115286917B (zh) * 2022-09-19 2024-02-02 郴州功田电子陶瓷技术有限公司 一种含苯并环丁烯树脂的高速低耗树脂组合物及其应用
CN115991808B (zh) * 2022-12-28 2023-11-03 武汉迪赛环保新材料股份有限公司 一种含烯键的苯并环丁烯树脂及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766180A (en) * 1985-12-23 1988-08-23 Shell Oil Company Crosslinked elastomers containing benzocyclobutene derivatives as crosslinking agents
EP0227124B2 (en) * 1985-12-23 1996-01-31 Shell Internationale Researchmaatschappij B.V. Olefinic benzocyclobutene polymers and processes for the preparation thereof
WO2004073061A1 (en) * 2003-02-05 2004-08-26 Dow Global Technologies Inc. Sacrificial benzocyclobutene copolymers for making air gap semiconductor devices
CN101463042B (zh) * 2007-12-21 2012-01-11 中国科学院化学研究所 一种含硅苯并环丁烯树脂及其中间体与它们的制备方法
CN103012298B (zh) * 2012-12-28 2015-04-01 中国科学院上海有机化学研究所 一种含三嗪环的苯并环丁烯单体、制备方法和应用
US20160096932A1 (en) * 2014-10-01 2016-04-07 Coleen Pugh Room temperature polymer crosslinking using 1-functionalized benzocyclobutene
CN106397085B (zh) * 2016-09-18 2019-02-15 绵阳高新区达高特科技有限公司 4-乙烯基苯并环丁烯的合成方法
CN106957433B (zh) * 2017-03-16 2020-05-19 西南科技大学 可光/热双重交联的超支化聚碳硅烷苯并环丁烯树脂及其制备方法
CN109180492B (zh) * 2018-10-12 2021-02-19 中国林业科学研究院林产化学工业研究所 一种可自由基聚合的松香苯并环丁烯单体、其制备方法及其应用
CN111635626B (zh) * 2020-06-30 2021-09-07 瑞声科技(南京)有限公司 树脂组合物、半固化片、层压片、半固化片的制备方法、层压片的制备方法及其应用
CN112679936B (zh) * 2020-12-23 2022-08-16 广东生益科技股份有限公司 一种热固性树脂组合物及包含其的树脂胶液、预浸料、层压板、覆铜板和印刷电路板

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG, NING: "Synthesis of Vinyl-Bridged Bis-Benzocyclobutene", JOURNAL OF SOUTH-CENTRAL COLLEGE FOR NATIONALITIES(NATURAL SCIENCES), vol. 24, no. 1, 30 March 2005 (2005-03-30), pages 24 - 27, XP093008658, ISSN: 1672-4321 *
YANG, JUN-XIAO: "Studies on the Synthesis of Benzocyclobutene and Bisbenzocyclobutenes", CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY, no. 2, 15 December 2002 (2002-12-15), pages 1 - 58, XP093008654, ISSN: 1671-6779 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141157A (zh) * 2022-06-27 2022-10-04 佳化化学科技发展(上海)有限公司 一种异氰脲酸三丙烯酸酯及其制备方法和应用

Also Published As

Publication number Publication date
CN114736096A (zh) 2022-07-12
CN114736096B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2022242292A1 (zh) 苯并环丁烯类单体、苯并环丁烯树脂及其制备方法、低介电材料和半导体器件
KR101840486B1 (ko) 열경화성 조성물
CN109810468B (zh) 一种热固性树脂组合物及应用其制备的半固化片和层压板
JP4467816B2 (ja) 低誘電正接樹脂組成物、硬化性フィルム、硬化物およびそれを用いた電気部品とその製法
TWI606076B (zh) 寡聚物、包含其之組成物及複合材料
CN109810467B (zh) 一种热固性树脂组合物及应用其制备的半固化片和层压板
KR101670087B1 (ko) 열경화성 수지, 이를 포함한 수지 조성물, 및 이를 이용하여 제조된 인쇄회로기판
CN109867912B (zh) 一种热固性树脂组合物及应用其制备的半固化片和层压板
CN109943047B (zh) 一种热固性树脂组合物及应用其制备的半固化片和层压板
US20200347168A1 (en) Block copolymers and uses thereof
CN109971175B (zh) 改性马来酰亚胺树脂组合物及其制备的半固化片和层压板
WO2013083062A1 (zh) 一种环氧基改质聚苯醚树脂、树脂组合物及其应用
JP2023098855A (ja) コポリマー、樹脂、および複合材料
CN112088190A (zh) 树脂组合物、树脂片、树脂固化物和树脂基板
CN116003687A (zh) 马来酰亚胺树脂预聚物及其制备方法、树脂组合物和应用
JPWO2018199157A1 (ja) マレイミド樹脂組成物、プリプレグ及びその硬化物
TWI754743B (zh) 含甲基烯丙基之樹脂、硬化性樹脂組成物及其硬化物
JP7191275B1 (ja) 熱硬化性樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、多層プリント配線板、封止用材料、繊維強化複合材料、接着剤及び半導体装置
JP7437253B2 (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
KR102499841B1 (ko) 열경화성 수지 조성물 및 이의 경화물
WO2024101056A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP6935402B2 (ja) マレイミド樹脂組成物、プリプレグ、その硬化物及び半導体装置
WO2022075325A1 (ja) 硬化性化合物製品
WO2022075324A1 (ja) 硬化性化合物製品
WO2021124938A1 (ja) 硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE