WO2022241946A1 - 一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法 - Google Patents

一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法 Download PDF

Info

Publication number
WO2022241946A1
WO2022241946A1 PCT/CN2021/108559 CN2021108559W WO2022241946A1 WO 2022241946 A1 WO2022241946 A1 WO 2022241946A1 CN 2021108559 W CN2021108559 W CN 2021108559W WO 2022241946 A1 WO2022241946 A1 WO 2022241946A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin
cable
rail transit
insulated cable
high wear
Prior art date
Application number
PCT/CN2021/108559
Other languages
English (en)
French (fr)
Inventor
周佳龙
解向前
史梦颖
姜青松
黄伟德
花季华
侯玉婷
Original Assignee
中天科技装备电缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天科技装备电缆有限公司 filed Critical 中天科技装备电缆有限公司
Publication of WO2022241946A1 publication Critical patent/WO2022241946A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2806Protection against damage caused by corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables

Definitions

  • the disclosure relates to the technical field of cables, in particular to a thin-wall insulated cable for high wear-resistant rail transit vehicles and a preparation method thereof.
  • Thin-wall insulated cables for rail transit vehicles are especially suitable for the power supply control system of the internal power distribution cabinets of rolling stock, such as high-speed and ultra-high-speed rolling stock, which are relatively airtight and crowded with people.
  • the cable generally adopts tinned annealed copper conductor and low-smoke halogen-free flame-retardant insulating material. It is produced by thin-wall manufacturing technology. It has the characteristics of small size, light weight, heat resistance, and cold resistance. It can effectively limit the spread of fire and The release of fumes avoids danger to personnel.
  • the insulation materials of thin-walled cables for rail transit vehicles with special fireproof performance on the market mainly include PE, TPE, and PEEK materials.
  • PE materials are more flexible and have poor tensile properties; It is suitable for use as thin-walled cable insulation; PEEK insulating material is expensive and has excessive performance indicators, so it is not suitable to be vigorously promoted in thin-walled insulated cables.
  • XLPO (cross-linked polyolefin) insulation material does not have a large degree of affluence in performance indicators, its electrical properties and mechanical and physical properties can meet the standard requirements.
  • the heat resistance evaluation results show that its long-term heat resistance performance parameters are good. Coupled with its reasonable price, it is an ideal insulating material for thin-walled insulated cables, and it is currently the most used.
  • the cross-linking degree of existing thin-wall radiation cross-linked polyolefin insulated cables is affected by factors such as equipment energy and radiation dose, and the thermal extension index is generally used (according to EU EN 50306 "Thin-wall insulation for rail transit vehicles with special fire performance Control Cable” standard) to evaluate the degree of product cross-linking, but small-sized thin-walled cables are prone to excessive cross-linking due to excessive radiation energy.
  • the molecular structure of the over-cross-linked cable insulation has been decomposed, and the wear resistance and The heat resistance and acid and alkali oil corrosion resistance are significantly reduced, which bury safety hazards for the long-term reliable operation of the cable.
  • the present disclosure provides a thin-wall insulated cable for high wear-resistant rail transit vehicles and a preparation method thereof.
  • the present disclosure provides a method for preparing a thin-wall insulated cable for high wear-resistant rail transit vehicles, including a radiation cross-linking step to form a cross-linked polyolefin insulation layer, and the process conditions of the radiation cross-linking step are based on the pre-obtained low
  • the relationship curve between the radiation dose under energy irradiation and the thermal extension performance of the product is determined.
  • the obtaining of the relationship curve between the radiation dose and the thermal extension performance of the product comprises the following steps:
  • the extruded cables are routed in a figure-eight shape with a combination of large and small rollers, irradiated with an electron beam with an energy of 1.5-2.5MeV and a beam current of 0.5-40mA, and tested the cables under different irradiation cycles.
  • the thermal extension performance of the product calculate the relationship curve between the radiation dose and the thermal extension performance of the product.
  • the conductor of the cable is formed by regular twisting of tinned monofilaments in the manner of 1+6+12+18, the diameter of the tinned monofilaments is 0.16-0.4mm, and the fracture of the tinned monofilaments The elongation is not less than 15%.
  • the preparation method further includes wrapping a coating layer on the outside of the insulating layer, the coating layer is a graphene oxide-polyimide composite material, and its thickness is not more than 0.02mm.
  • the mass fraction of graphene oxide in the graphene oxide-polyimide composite material is 0.1%-0.3%.
  • the coating layer is prepared by dipping or spraying, and the concentricity of the coating layer is not less than 90%.
  • the present disclosure also provides a thin-wall insulated cable for high wear-resistant rail transit vehicles, including:
  • a coating layer the coating layer wrapping the outside of the insulating layer.
  • the insulating layer is a cross-linked polyolefin insulating material with a thickness of 0.18-0.28 mm;
  • the coating layer is a graphene oxide-polyimide composite material, and its thickness is not more than 0.02mm.
  • the conductor is formed by regular twisting of tin-plated monofilaments in the manner of 1+6+12+18, the diameter of the tin-plated monofilaments is 0.16-0.4 mm, and the elongation at break of the tin-plated monofilaments is The rate is not less than 15%.
  • the maximum heat-resistant temperature of the thin-walled insulated cable is 180°C
  • the friction coefficient of the surface of the thin-walled insulated cable does not exceed 0.53
  • the wear rate of the thin-walled insulated cable does not exceed 1.92 ⁇ 10 -5 mm 3 /(N ⁇ m).
  • the disclosure provides a thin-walled insulated cable for high wear-resistant rail transit vehicles and a preparation method thereof.
  • the disclosure improves the irradiation crosslinking step in the preparation process of the thin-walled insulated cable and the design of adding a coating layer.
  • the wear resistance of the cable is enhanced, the reliability of its performance is improved, and it is suitable for dense laying in limited vacancy and narrow space, which satisfies the continuous upgrading of user models and the improvement of Cable installation performance requirements.
  • Fig. 1 is a schematic structural view of a thin-walled insulated cable for a highly wear-resistant rail transit vehicle provided by an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a method for preparing a thin-wall insulated cable for high wear-resistant rail transit vehicles, including a radiation cross-linking step to form a cross-linked polyolefin insulation layer, and the process conditions of the radiation cross-linking step are based on pre-obtained The relationship curve between the radiation dose under the low-energy radiation and the thermal extension performance of the product is determined.
  • the relationship curve between the radiation dose under low-energy irradiation and the thermal extension performance of the product is obtained first, and then the process conditions of radiation crosslinking are determined based on the relationship curve obtained in advance, which can be very accurate. Precisely adjust the irradiation process parameters, so that even for small-sized thin-walled insulated cables, the irradiation dose can be precisely controlled to meet the thermal elongation performance, thereby effectively avoiding excessive cross-linking; it can also improve production efficiency.
  • the relationship curve can be directly used to determine the specific production process in the later stage of actual production, and at the same time improve the insulation wear resistance and heat resistance of the cable , environmental resistance and other performance, improve the reliability of the friction between the cables, the cables and the equipment body or the vehicle body during the vibration process of the vehicle.
  • the obtaining of the relationship curve between the radiation dose and the thermal extension performance of the product comprises the following steps:
  • the extruded cable is routed in a figure-eight manner with a combination of large and small rollers, and is irradiated with an electron beam with an energy of 1.5-2.5MeV, a beam current of 0.5-40mA, and a scanning width of 120cm, and tests different irradiation
  • the thermal extension performance of the cable under the number of running cycles, and the relationship curve between the radiation dose and the thermal extension performance of the product is calculated.
  • the conductor of the cable is formed by regular twisting of tinned monofilaments in the manner of 1+6+12+18, the diameter of the tinned monofilaments is 0.16-0.4mm, and the elongation at break is not less than 15% .
  • the design of the twisted structure of the cable conductor and the way of entering the wire are also critical to the effect of radiation cross-linking. Designing according to the above conditions can increase the flexibility of the cable, and can make the cable not easily deformed during the irradiation process, and the irradiation degree is more uniform, and the safety and reliability of the cable during construction and vehicle operation can be improved.
  • the preparation method of this embodiment also includes wrapping a coating layer on the outside of the insulating layer, and the coating layer is a graphene oxide-polyimide composite material, and its thickness is not More than 0.02mm.
  • the conductivity of the formed graphene oxide is reduced, and the insulation performance is further improved after compounding with polyimide; on the other hand, the resistance of the graphene oxide-polyimide composite coating
  • the grinding effect is better, the smoothness and hardness of the cable surface are improved, and the anti-friction and anti-wear properties of the cable are further enhanced.
  • the cable can achieve scratch resistance
  • the number of grinding times has been increased from an average of 150 times to 500 times
  • the cut-through resistance of the cable insulation has been increased from 60N to 78N
  • the anti-spreading performance of the cable surface notch has been increased from 150V, 1min without breakdown to 300V, 1min without breakdown, and has an anti-corrosion effect on the insulation. Protection against environmental corrosion.
  • the mass fraction of graphene oxide in the graphene oxide-polyimide composite material is 0.1%-0.3%.
  • the coating layer is prepared by dipping or spraying, and the concentricity of the coating layer is not less than 90%.
  • FIG. 1 This embodiment provides a thin-walled insulated cable for highly wear-resistant rail transit vehicles. Its structural diagram is shown in FIG. 1 , which consists of a conductor 1 , an insulating layer 2 and a coating layer 3 .
  • the conductor 1 is formed by normal twisting of tinned monofilaments in the manner of 1+6+12+18, the diameter of the tinned monofilaments is 0.16-0.4mm, and the elongation at break is not less than 15%.
  • the insulating layer 2 is made of low-smoke, halogen-free, flame-retardant cross-linked polyolefin insulating material, wrapped outside the conductor 1, and its thickness is 0.18-0.28mm.
  • the coating layer 3 is made of graphene oxide-polyimide composite material, wrapped outside the insulating layer 2, and its thickness does not exceed 0.02mm.
  • the maximum heat-resistant temperature of thin-walled insulated cables is 180°C, the friction coefficient of the surface of thin-walled insulated cables does not exceed 0.53, and the wear rate of thin-walled insulated cables does not exceed 1.92 ⁇ 10 -5 mm 3 /(N ⁇ m).
  • This embodiment also provides a preparation method for the above-mentioned thin-wall insulated cable for high wear-resistant rail transit vehicles, including a total of 6 processes of wire drawing, annealing, stranding, extrusion, irradiation crosslinking, and coating; the specific steps are as follows:
  • Wire drawing the copper rod of ⁇ 1.2mm can be used to produce the minimum monofilament of ⁇ 0.1mm through the drawing die with gradually changing aperture in the small wire drawing machine;
  • Annealing After the monofilament passes through the high temperature of 580 °C ⁇ 600 °C in the annealing furnace, the broken crystal lattice caused by wire drawing in the monofilament can be reassembled and arranged; After the eye mold is sized, the molten tin layer can be evenly coated on the surface of the monofilament; the elongation at break of the monofilament after annealing and tinning is not less than 30%;
  • Bundle twisting the cable conductor is formed by regular twisting of multiple tinned monofilaments according to the method of 1+6+12+18, the cross-sectional area is 0.5mm 2 ⁇ 2.5mm 2 , the elongation of monofilament ⁇ >15%, and the pitch diameter than 8-12.
  • Appropriate compression is adopted to ensure that the stranded conductor has good flexibility and large curvature.
  • the structure is stable and will not cause plastic deformation of the conductor, which greatly improves the flexibility and stability of the core and is convenient for wires and cables. Manufacturing, installation and laying, especially to avoid the problem of cable rotation during the 8-shaped routing in the irradiation process, ensuring uniform and controllable cable irradiation;
  • Extrusion The insulation process uses an extruder with a screw diameter of ⁇ 35mm to ⁇ 45mm, an aspect ratio of 16 to 25, and a compression ratio of 1 to 1.5 for production; the insulation extrusion temperature is controlled at 150°C to 220°C, and the insulation extrusion is immediately Warm water cooling at 40°C is carried out to avoid stress retention between the conductor and the insulation layer after the insulation is released from the mold and quenched, and cause the problem of insulation shrinkage.
  • Irradiation cross-linking use an electron accelerator with an energy of 1.5-2.5MeV, a beam current of 0.5-40mA, and a scan width of 120cm to irradiate the above-mentioned tightly twisted conductors wrapped with an insulating layer under the irradiation electron beam according to their size.
  • the 8-shaped wire of the drum combination enters the wire, and the thermal extension performance of the product is measured at regular intervals to obtain the relationship between the number of running cycles and the thermal extension performance of the product, so as to further obtain the relationship between the radiation dose and the thermal extension performance of the product. relation.
  • the irradiation cross-linking process parameters under the thermal elongation performance of the product can be controlled more accurately to avoid the occurrence of excessive cross-linking, thereby improving the mechanical strength of the insulating layer, and further improving the scratch resistance of the insulating layer surface It can also improve the heat resistance performance, the maximum heat aging temperature is raised to 180°C, and the stability of acid and alkali environment performance is improved.
  • the insulation layer is coated with graphene oxide-polyimide composite material with a thickness of no more than 0.02mm at a line speed of 200m/min by spraying, and dried and cured in a furnace tube at 80°C , to ensure that the concentricity of the coating layer is not less than 90%.
  • the design of the coating layer in this embodiment improves the insulation performance, friction reduction and anti-wear performance of the cable. Compared with the cable without the coating layer, the number of times the cable is scratch-resistant is increased from an average of 150 times to 500 times.
  • the cable insulation The anti-cut performance is increased from 60N to 78N, and the anti-expansion performance of the cable surface notch is improved from 150V, 1min without breakdown to 300V, 1min without breakdown.
  • the cable obtained in this embodiment changes the current situation of limited laying of EN50306 series thin-wall insulated cables, and meets the requirements for cable installation performance improved by the continuous upgrading of user models.
  • the cable On the premise of satisfying heat resistance and environment resistance, the cable has enhanced wear resistance, improved reliability of performance, and added dense laying function in small space.
  • the cable can meet the use range of rated voltage 300/500V and below, and has high wear resistance. It is suitable for dense laying in limited vacancy and narrow space, avoiding the rewiring of a large number of on-board multi-function equipment in rail transit vehicles due to the failure of wiring. Positioning and installation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Conductors (AREA)
  • Ropes Or Cables (AREA)

Abstract

本公开提供一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法,其中高耐磨轨道交通车辆用薄壁绝缘电缆的制备方法包括辐照交联步骤以形成交联聚烯烃绝缘层,所述辐照交联步骤的工艺条件基于预先获得的低能量辐照下的辐照剂量与产品热延伸性能之间的关系曲线确定。本公开通过该薄壁绝缘电缆制备过程中辐照交联步骤的改进以及增加涂覆层的设计等,在满足耐热、耐环境性能的前提下,强化了该电缆的耐磨性能,提高了其使用性能的可靠性,使其适宜在有限空闲、狭小空间内密集敷设,满足了用户车型不断升级而提高的电缆安装性能要求。

Description

一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法 技术领域
本公开涉及电缆技术领域,尤其涉及一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法。
背景技术
轨道交通车辆用薄壁绝缘电缆特别适用高速和超高速机车车辆等相对密闭、人员集中等环境要求苛刻的机车车辆内部配电柜的供电控制系统。该电缆一般采用镀锡软铜导体和无卤低烟阻燃绝缘材料,运用薄壁制造技术生产,具有体积小、重量轻、耐热、耐寒等特点,在火灾时能有效限制火的传播和烟气的释放,避免对人员造成危险。
目前市场上具有特殊防火性能轨道交通车辆用薄壁电缆的绝缘材料主要包括PE、TPE、PEEK材料。但各种绝缘材料都有其局限性:PE材料柔性有余,抗拉性能较差;TPE绝缘材料长期耐热性参数指标差,在狭小空间内密集敷设后散热条件不理想,使用寿命短,不适宜作为薄壁电缆绝缘使用;PEEK绝缘材料价格昂贵,性能指标富裕过度,不宜在薄壁绝缘电缆中大力推广。而XLPO(交联聚烯烃)绝缘材料虽然性能指标的富裕度不大,但其电气性能和机械物理性能均能够满足标准要求,耐热性评定结果显示,其长期耐热性能参数指标良好,再加上其合适的价格,是薄壁绝缘电缆理想的绝缘材料,目前使用最多。
但是,在大数据和互联网时代中,轨道交通车辆设计制造逐步向智能化、自动化发展,车载设备数量不断增加,控制电缆用量也明显提升,因此,在有限的、甚至狭小的车体空间内,在保证薄壁辐照交联聚烯烃绝缘电缆耐热性能的前提下,对敷设的控制电缆提出了更高耐磨性的要求,以提升在车辆布线及运行振动过程中电缆相互间、电缆与设备本体或与车体之间相互磨擦的可靠性。
现有薄壁辐照交联聚烯烃绝缘电缆交联度受设备能量、辐照剂量等因素的影响,一般采用热延伸指标(依据欧盟EN 50306《具有特殊防火性能的轨道交通车辆用薄壁绝缘控制电缆》标准)评价产品交联程度,但小规格薄壁 电缆很容易出现因辐照能量过高导致电缆过度交联的问题,过度交联电缆绝缘分子结构已分解,产品耐磨性、耐热性、耐酸碱油酯侵蚀均明显下降,为电缆长期可靠运行埋下安全隐患。
发明内容
针对现有技术存在的不足,本公开提供一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法。
本公开采用以下技术方案:
本公开提供一种高耐磨轨道交通车辆用薄壁绝缘电缆的制备方法,包括辐照交联步骤以形成交联聚烯烃绝缘层,所述辐照交联步骤的工艺条件基于预先获得的低能量辐照下的辐照剂量与产品热延伸性能之间的关系曲线确定。
进一步地,所述辐照剂量与产品热延伸性能之间的关系曲线的获得包括以下步骤:
将挤塑成型后的电缆按大小滚筒组合的8字形走线方式进线,使用能量为1.5-2.5MeV、束流为0.5-40mA的电子束进行辐照,测试不同辐照运行圈数下电缆的热延伸性能,计算所述辐照剂量与产品热延伸性能之间的关系曲线。
进一步地,所述电缆的导体由镀锡单丝按照1+6+12+18的方式正规绞合形成,所述镀锡单丝的直径为0.16~0.4mm,所述镀锡单丝的断裂伸长率不小于15%。
进一步地,所述制备方法还包括在所述绝缘层外部包裹涂覆层,所述涂覆层为氧化石墨烯-聚酰亚胺复合材料,其厚度不超过0.02mm。
进一步地,所述氧化石墨烯-聚酰亚胺复合材料中氧化石墨烯的质量分数为0.1%~0.3%。
进一步地,所述涂覆层采用浸渍或喷淋方式制备,所述涂覆层的同心度不低于90%。
另一方面,本公开还提供一种高耐磨轨道交通车辆用薄壁绝缘电缆,包括:
导体;
绝缘层,所述绝缘层包裹在所述导体外部;
涂覆层,所述涂覆层包裹在所述绝缘层外部。
进一步地,所述绝缘层为交联聚烯烃绝缘材料,其厚度为0.18~0.28mm;
所述涂覆层为氧化石墨烯-聚酰亚胺复合材料,其厚度不超过0.02mm。
进一步地,所述导体为镀锡单丝按照1+6+12+18的方式正规绞合形成,所述镀锡单丝的直径为0.16~0.4mm,所述镀锡单丝的断裂伸长率不小于15%。
进一步地,所述薄壁绝缘电缆的最高耐热温度为180℃,所述薄壁绝缘电缆表面的摩擦系数不超过0.53,所述薄壁绝缘电缆的磨损率不超过1.92×10 -5mm 3/(N·m)。
本公开提供了一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法,本公开通过该薄壁绝缘电缆制备过程中辐照交联步骤的改进以及增加涂覆层的设计等,在满足耐热、耐环境性能的前提下,强化了该电缆的耐磨性能,提高了其使用性能的可靠性,使其适宜在有限空闲、狭小空间内密集敷设,满足了用户车型不断升级而提高的电缆安装性能要求。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的高耐磨轨道交通车辆用薄壁绝缘电缆的结构示意图。
附图中涉及的附图标记:
1-导体;2-绝缘层;3-涂覆层。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
为了改变EN50306系列薄壁绝缘电缆敷设受限的现状,满足用户车型不断升级而提高的电缆安装性能要求。
本公开实施例提供一种高耐磨轨道交通车辆用薄壁绝缘电缆的制备方法,包括辐照交联步骤以形成交联聚烯烃绝缘层,所述辐照交联步骤的工艺条件基于预先获得的低能量辐照下的辐照剂量与产品热延伸性能之间的关系曲线确定。
现有的辐照交联步骤中,小规格薄壁电缆很容易出现因辐照能量过高导致电缆过度交联的问题,从而影响薄壁绝缘电缆的性能。本公开实施例采取先获得低能量辐照下的辐照剂量与产品热延伸性能之间的关系曲线,然后基于预先获得的该关系曲线再确定辐照交联的工艺条件,这样既可以很精确地调整辐照工艺参数,使得即使针对小规格的薄壁绝缘电缆,也能精确地控制满足热延伸性能下的辐照剂量,从而有效避免发生交联过度;也可以提高生产效率,针对同一种规格的薄壁绝缘电缆,在前期获得辐照剂量与产品热延伸性能之间的关系曲线后,后期实际生产中可直接利用该关系曲线确定具体生产工艺,同时提高电缆的绝缘耐磨、耐热、耐环境等性能,提升在车辆运行振动过程中电缆相互间、电缆与设备本体或与车体之间相互磨擦的可靠性。
进一步地,所述辐照剂量与产品热延伸性能之间的关系曲线的获得包括以下步骤:
将挤塑成型后的电缆按大小滚筒组合的8字形走线方式进线,使用能量为1.5-2.5MeV、束流为0.5-40mA、扫描宽度为120cm的电子束进行辐照,测试不同辐照运行圈数下电缆的热延伸性能,计算所述辐照剂量与产品热延伸性能之间的关系曲线。
进一步地,所述电缆的导体由镀锡单丝按照1+6+12+18的方式正规绞合形成,所述镀锡单丝的直径为0.16~0.4mm,断裂伸长率不小于15%。
本公开实施例中,电缆导体的绞合结构设计与进线方式等对辐照交联的效果也较为关键。按照上述条件设计,可以增加电缆柔软度,而且可以使电缆在辐照过程中不易变形,受辐照程度更均匀,提高施工及车辆运行期间电缆的安全性、可靠性。
为使电缆更适宜在小空间密集敷设,本实施例的制备方法还包括在所述绝缘层外部包裹涂覆层,所述涂覆层为氧化石墨烯-聚酰亚胺复合材料,其厚 度不超过0.02mm。
一方面,对石墨烯进行氧化处理后,形成的氧化石墨烯导电性能降低,与聚酰亚胺复合后,进一步提升绝缘性能;另一方面,氧化石墨烯-聚酰亚胺复合涂层的抗磨效果更佳,改善电缆表面光滑度及硬度,进一步加强电缆的减摩、抗磨性能,以EN 50306-2 300V 0.5M电缆为例,与不设涂覆层相比较,可实现电缆耐刮磨次数由平均150次提升至500次,电缆绝缘抗切通性能由60N提升至78N,电缆表面切口抗扩展性能由150V,1min不击穿提升为300V,1min不击穿,并对绝缘起到抗环境腐蚀的保护作用。
进一步地,所述氧化石墨烯-聚酰亚胺复合材料中氧化石墨烯的质量分数为0.1%~0.3%。
进一步地,所述涂覆层采用浸渍或喷淋方式制备,所述涂覆层的同心度不低于90%。
实施例1
本实施例提供一种高耐磨轨道交通车辆用薄壁绝缘电缆,其结构示意图如图1所示,由导体1、绝缘层2和涂覆层3组成。其中,导体1由镀锡单丝按照1+6+12+18的方式正规绞合形成,镀锡单丝的直径为0.16~0.4mm,断裂伸长率不小于15%。绝缘层2采用低烟无卤阻燃交联聚烯烃绝缘材料,包裹在导体1外部,其厚度为0.18~0.28mm。涂覆层3采用氧化石墨烯-聚酰亚胺复合材料,包裹在绝缘层2外部,其厚度不超过0.02mm。
薄壁绝缘电缆的最高耐热温度为180℃,薄壁绝缘电缆表面的摩擦系数不超过0.53,薄壁绝缘电缆的磨损率不超过1.92×10 -5mm 3/(N·m)。
本实施例还提供上述高耐磨轨道交通车辆用薄壁绝缘电缆的制备方法,包括拉丝、退火、束绞、挤塑、辐照交联、涂覆共6个工序;具体步骤如下:
拉丝:采用Ф1.2mm的铜杆通过小拉丝机内渐变孔径的拉丝模具最小可生产至Ф0.1mm的单丝;
退火:单丝经过退火炉内580℃~600℃的高温后,单丝内由拉丝引起破碎的晶格得以重新聚集排列;退火单丝在线通过380℃~400℃的锡炉,经过锡炉末端的眼模定径后,熔化的锡层可均匀涂覆在单丝表面;单丝在退火镀锡后断裂伸长率不小于30%;
束绞:电缆导体由多根镀锡单丝按照1+6+12+18的方式正规绞合形成, 截面积为0.5mm 2~2.5mm 2,单丝伸长率δ>15%,节径比8-12。采用适度紧压,确保绞合导体柔软性好、可曲度大,线芯弯曲时结构稳定,不会引起导体的塑性变形,大幅度提高了线芯的柔软性和稳定性,便于电线电缆的加工制造和安装敷设,尤其避免了在辐照工序8字形走线过程中的电缆自转问题,确保了电缆辐照的均匀、可控;
挤塑:绝缘工序使用螺杆直径为ψ35mm~ψ45mm、长径比为16~25、压缩比为1~1.5的挤塑机进行生产;绝缘挤出温度控制在150℃~220℃,绝缘挤出立即进行40℃温水冷却,以避免导体与绝缘层之间因绝缘离模骤冷后出现应力存留,并导致绝缘回缩的问题。
辐照交联:使用能量为1.5-2.5MeV、束流为0.5-40mA、扫描宽度为120cm的电子加速器进行辐照,将上述紧密绞合的包裹绝缘层的导体在辐照电子束下按照大小滚筒组合的8字形走线方式进线,每隔一段时间测定产品的热延伸性能,获取运行圈数与产品热延伸性能之间的关系,从而进一步获得辐照剂量与产品热延伸性能之间的关系。基于上述关系,本实施例中可以更精确地控制产品热延伸性能达标下的辐照交联工艺参数,避免过度交联的发生,从而提高绝缘层的机械强度,进而提升绝缘层表面耐刮磨性能,也能提升耐热性能,最高热老化温度提升至180℃,以及提升耐酸碱性环境性能的稳定性。
涂覆:采用喷淋方式在200m/min的线速度下对绝缘层进行不超过0.02mm厚度的氧化石墨烯-聚酰亚胺复合材料涂覆,并在炉管中经过80℃的烘干固化,确保涂覆层的同心度不低于90%。本实施例中涂覆层的设计提升了电缆的绝缘性能以及减摩、抗磨性能,相较于不设涂覆层的电缆,电缆耐刮磨次数由平均150次提升至500次,电缆绝缘抗切通性能由60N提升至78N,电缆表面切口抗扩展性能由150V,1min不击穿提升为300V,1min不击穿。
本实施例所得电缆改变了EN50306系列薄壁绝缘电缆敷设受限的现状,满足了用户车型不断升级而提高的电缆安装性能要求。该电缆在满足耐热、耐环境性能的前提下,强化了耐磨性能,提高了使用性能的可靠性,并增加了小空间密集敷设功能。该电缆可满足额定电压300/500V及以下的使用范围,同时具有高耐磨性,适宜在有限空闲、狭小空间内密集敷设,避免了轨道交通车辆大量车载多功能设备因无法布线而导致的重新定位与安装。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种高耐磨轨道交通车辆用薄壁绝缘电缆的制备方法,包括辐照交联步骤以形成交联聚烯烃绝缘层,其特征在于,所述辐照交联步骤的工艺条件基于预先获得的低能量辐照下的辐照剂量与产品热延伸性能之间的关系曲线确定。
  2. 根据权利要求1所述的高耐磨轨道交通车辆用薄壁绝缘电缆的制备方法,其特征在于,所述辐照剂量与产品热延伸性能之间的关系曲线的获得包括以下步骤:
    将挤塑成型后的电缆按大小滚筒组合的8字形走线方式进线,使用能量为1.5-2.5MeV、束流为0.5-40mA的电子束进行辐照,测试不同辐照运行圈数下电缆的热延伸性能,计算获得所述辐照剂量与产品热延伸性能之间的关系曲线。
  3. 根据权利要求2所述的高耐磨轨道交通车辆用薄壁绝缘电缆的制备方法,其特征在于,所述电缆的导体由镀锡单丝按照1+6+12+18的方式正规绞合形成,所述镀锡单丝的直径为0.16~0.4mm,所述镀锡单丝的断裂伸长率不小于15%。
  4. 根据权利要求1~3任一项所述的高耐磨轨道交通车辆用薄壁绝缘电缆的制备方法,其特征在于,所述制备方法还包括在所述绝缘层外部包裹涂覆层,所述涂覆层为氧化石墨烯-聚酰亚胺复合材料,其厚度不超过0.02mm。
  5. 根据权利要求4所述的高耐磨轨道交通车辆用薄壁绝缘电缆的制备方法,其特征在于,所述氧化石墨烯-聚酰亚胺复合材料中氧化石墨烯的质量分数为0.1%~0.3%。
  6. 根据权利要求4或5所述的高耐磨轨道交通车辆用薄壁绝缘电缆的制备方法,其特征在于,所述涂覆层采用浸渍或喷淋方式制备,所述涂覆层的同心度不低于90%。
  7. 一种高耐磨轨道交通车辆用薄壁绝缘电缆,其特征在于,包括:
    导体;
    绝缘层,所述绝缘层包裹在所述导体外部;
    涂覆层,所述涂覆层包裹在所述绝缘层外部。
  8. 根据权利要求7所述的高耐磨轨道交通车辆用薄壁绝缘电缆,其特征在于,所述绝缘层为交联聚烯烃绝缘材料,其厚度为0.18~0.28mm;
    所述涂覆层为氧化石墨烯-聚酰亚胺复合材料,其厚度不超过0.02mm。
  9. 根据权利要求7或8所述的高耐磨轨道交通车辆用薄壁绝缘电缆,其特征在于,所述导体为镀锡单丝按照1+6+12+18的方式正规绞合形成,所述镀锡单丝的直径为0.16~0.4mm,所述镀锡单丝的断裂伸长率不小于15%。
  10. 根据权利要求7~9任一项所述的高耐磨轨道交通车辆用薄壁绝缘电缆,其特征在于,所述薄壁绝缘电缆的最高耐热温度为180℃,所述薄壁绝缘电缆表面的摩擦系数不超过0.53,所述薄壁绝缘电缆的磨损率不超过1.92×10 -5mm 3/(N·m)。
PCT/CN2021/108559 2021-05-21 2021-07-27 一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法 WO2022241946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110558903.1A CN113314269B (zh) 2021-05-21 2021-05-21 一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法
CN202110558903.1 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022241946A1 true WO2022241946A1 (zh) 2022-11-24

Family

ID=77374117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108559 WO2022241946A1 (zh) 2021-05-21 2021-07-27 一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法

Country Status (2)

Country Link
CN (1) CN113314269B (zh)
WO (1) WO2022241946A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202126859U (zh) * 2011-06-29 2012-01-25 福建福硕线缆有限公司 一种抗老化电缆线结构
CN103589152A (zh) * 2013-10-21 2014-02-19 江苏大学 一种聚酰亚胺/氧化石墨烯纳米复合薄膜的制备方法
CN105037897A (zh) * 2015-09-02 2015-11-11 严兵 辐照交联电缆被覆材料用母粒及其制备方法
CN108133778A (zh) * 2017-12-11 2018-06-08 无锡鑫宏业特塑线缆有限公司 一种耐磨抗撕裂型耐高温车内高压电缆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877467A (en) * 1978-05-26 1989-10-31 Northern Telecom Limited Electrically insulated wire
CN202167257U (zh) * 2011-08-31 2012-03-14 安徽华菱电缆集团有限公司 一种机车车辆用超薄电缆
CN112652426A (zh) * 2019-10-12 2021-04-13 浙江兆龙互连科技股份有限公司 一种高速机车线缆的制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202126859U (zh) * 2011-06-29 2012-01-25 福建福硕线缆有限公司 一种抗老化电缆线结构
CN103589152A (zh) * 2013-10-21 2014-02-19 江苏大学 一种聚酰亚胺/氧化石墨烯纳米复合薄膜的制备方法
CN105037897A (zh) * 2015-09-02 2015-11-11 严兵 辐照交联电缆被覆材料用母粒及其制备方法
CN108133778A (zh) * 2017-12-11 2018-06-08 无锡鑫宏业特塑线缆有限公司 一种耐磨抗撕裂型耐高温车内高压电缆

Also Published As

Publication number Publication date
CN113314269A (zh) 2021-08-27
CN113314269B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CN104916366A (zh) 一种高强度轻型船用电缆及其制备方法
CN105206346A (zh) 多功能耐火环保型音频信号电缆及其制备工艺
CN105489282A (zh) 一种室外用耐寒抗老化电源线及其生产工艺
CN202189578U (zh) 一种铁路机车用薄壁电缆
CN104167252B (zh) 一种轨道交通车辆用高压动力电缆及其工艺流程
CN102157249A (zh) 一种低烟、高防火性能网络线的生产工艺
WO2022241946A1 (zh) 一种高耐磨轨道交通车辆用薄壁绝缘电缆及其制备方法
CN204348371U (zh) 一种耐高温金属屏蔽型机车车辆电缆
WO2022037264A1 (zh) 一种机车用低卤薄壁绝缘电缆
CN104200899B (zh) 一种小弯曲半径抗冲击轻型光纤电力电缆及其工艺流程
CN105006282A (zh) 一种智慧能源动车组用薄壁电缆及其生产工艺
CN109671523B (zh) 一种耐高温耐磨柔性电缆
CN204991192U (zh) 一种柔软型有源信标电缆
CN104916375A (zh) 超高密度编织方法
CN112652426A (zh) 一种高速机车线缆的制备工艺
CN107610811A (zh) 一种防鼠蚁、高散热光伏电缆及其制备方法
CN112037984B (zh) 一种智慧能源动车组用耐高温无卤阻燃环保电缆及生产工艺
CN205122281U (zh) 一种具有半导电结构的编织屏蔽应答器数据传输电缆
CN201392675Y (zh) 一种高性能机车车辆电缆
CN212010424U (zh) 一种自承重耐腐蚀耐用的软电缆
CN203746491U (zh) 一种铠装抗拉双护套电缆
CN204480700U (zh) 一种抗拉耐磨组合软电缆
CN216671246U (zh) 一种耐弯折耐撕裂的新能源汽车专用多芯电缆
CN220171805U (zh) 一种太阳能发电系统用多芯光伏电缆
CN220065243U (zh) 一种耐油耐腐蚀环保型电力电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940395

Country of ref document: EP

Kind code of ref document: A1