WO2022239740A1 - グラスライニング製品 - Google Patents

グラスライニング製品 Download PDF

Info

Publication number
WO2022239740A1
WO2022239740A1 PCT/JP2022/019699 JP2022019699W WO2022239740A1 WO 2022239740 A1 WO2022239740 A1 WO 2022239740A1 JP 2022019699 W JP2022019699 W JP 2022019699W WO 2022239740 A1 WO2022239740 A1 WO 2022239740A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fluororesin
glass
glass lining
primer
Prior art date
Application number
PCT/JP2022/019699
Other languages
English (en)
French (fr)
Inventor
光信 岡井
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Priority to DE112022002508.5T priority Critical patent/DE112022002508T5/de
Publication of WO2022239740A1 publication Critical patent/WO2022239740A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers

Definitions

  • the present invention relates to glass lined products.
  • Fluororesins are superior to general resins in heat resistance and chemical resistance.
  • a fluororesin layer is provided on the surface of the base material.
  • Most of the fluororesins have a high melting point and are insoluble in solvents, so it is difficult to form a fluororesin layer with few defects such as pinholes. Therefore, a glass lining layer is provided between the fluororesin layer and the base material (see Patent Document 2 below).
  • an object of the present invention is to further suppress peeling of the fluororesin layer in a glass lined product.
  • the present invention for solving the above problems is A base material, a glass lining layer laminated on the base material, and a fluororesin layer laminated on the glass lining layer, The surface of the glass lining layer on which the fluororesin layer is laminated is coated with a primer, A glass-lined product is provided, wherein the glass-lined layer is a low-alkali glass-lined layer.
  • FIG. 1 is a schematic diagram showing a storage device with a glass lined product according to one embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the cross-sectional structure of the inner wall of the tank body, which is a glass-lined product.
  • glass lined product An embodiment of the present invention will be described below using a storage device used for reactions of liquid substances as an example.
  • specific examples of the glass lined product will be given as examples of the members constituting the storage device, but the specific uses of the glass lined product in the present embodiment are limited to the following examples. is not.
  • glass-lined products are generally used for storage, chemical reaction, extraction, crystallization, distillation, aggregation, heat exchange, and the like in the chemical, pharmaceutical, and brewing industries, for example.
  • the glass lined product of the present embodiment can be used for these purposes and other purposes.
  • the storage device 1 of this embodiment includes a storage tank 10 that stores an object to be stored, and a stirring device 20 that stirs the object stored in the storage tank 10 .
  • the storage device 1 further includes a baffle 30 for disturbing the flow of the stored material generated by stirring in the stirring device 20 to improve stirring performance.
  • the storage tank 10 includes a tank body 11 having an opening 111 for introducing an object to be stored into the storage tank 10 , and a lid 12 for opening and closing the opening 111 of the tank body 11 .
  • the tank main body 11 has an inner wall 112 that forms an inner surface 11a that contacts the stored object, and an outer wall 113 that covers the inner wall 112 from the outside, and a heat medium can flow between the inner wall 112 and the outer wall 113. space portion 11c. That is, the tank main body 11 of the present embodiment is provided with a jacket structure so that a heat medium for transferring hot and cold heat is circulated in the space 11c so that the object to be stored can be cooled and heated. It's becoming
  • the tank main body 11 has an opening (discharge port 114) at the bottom for discharging the stored object to the outside.
  • the storage tank 10 of this embodiment has an on-off valve 13 that opens and closes the discharge port 114 .
  • the on-off valve 13 is composed of a valve element 131 and a valve seat 132 .
  • the tank main body 11, the lid 12, and the like are glass lined products in which a glass lining layer is laminated on the surface of a metal base material.
  • the stirring device 20 of this embodiment has a stirring blade 21 for stirring the contained object within the tank body 11 .
  • the stirring blades 21 are provided so as to extend in the vertical direction in the housing space of the tank body 11 and rotate around a rotating shaft 21a, and the stirring blades are fixed to the rotating shaft 21a and rotate together with the rotating shaft. 21b.
  • the stirring blade 21 is also a glass lined product in which a glass lining layer is laminated on the surface of a metal base material.
  • the inner wall 112 of the tank body 11 has a laminated structure in which a plurality of layers are laminated in the thickness direction.
  • the inner wall 112 has a base layer BL made of a base material on the outermost side.
  • a glass lining layer GL is laminated inside the base layer BL of the inner wall 112 .
  • the inner surface of the glass lining layer GL (the surface opposite to the surface in contact with the base layer BL) is coated with a primer.
  • a fluororesin layer FL is laminated inside the glass lining layer GL via a primer coating PL.
  • each layer constituting the inner wall 112 may itself be a single layer or may be divided into a plurality of layers.
  • a laminated structure is provided in which a plurality of layers are laminated on the glass lining layer GL and the fluororesin layer FL.
  • the glass lining layer GL is a layer made of a glass composition.
  • the glass lining layer GL in the present embodiment includes a first layer (hereinafter also referred to as “undercoating glass layer GLL”) in contact with the base layer BL, and a side of the undercoating glass layer GLL opposite to the base layer BL. It has a two-layer structure with a second layer (hereinafter also referred to as “upper glass layer GLU”) in contact with the glass layer.
  • the glass lining layer GL may have a laminated structure of three or more layers. GLU constitutes the surface of the glass lining layer GL.
  • the primer coating PL in this embodiment is provided on the surface of the overcoated glass layer GLU.
  • the primer coating PL is provided so as to come into contact with the upper glass layer GLU from the side opposite to the undercoat glass layer GLL.
  • the fluororesin layer FL is a layer made of a resin composition containing a fluororesin.
  • the fluororesin layer FL of the present embodiment includes a first layer in contact with the primer coating PL (hereinafter also referred to as “first fluororesin layer FL1”) and a side opposite to the primer coating PL on the first fluororesin layer FL1. It has a two-layer structure with a second layer (hereinafter also referred to as “second fluororesin layer FL2”) in contact with the second layer.
  • the fluororesin layer FL may have a laminated structure of three or more layers, but in the present embodiment, the second fluororesin layer FL2 is provided as the outermost layer in the The resin layer FL2 constitutes the surface of the fluororesin layer FL (the inner surface 11a of the tank body 11).
  • the primer coating PL in this embodiment is provided so as to generate a high adhesive force between the glass lining layer GL and the fluororesin layer FL.
  • the primer coating PL in this embodiment does not contain resins such as inorganic primers containing chromic acid, phosphoric acid, and salts thereof; coupling agent-based primers such as organic titanate compounds and organic silicate compounds; It may be composed of a primer (hereinafter also referred to as a "non-resin primer"), a fluororesin having a functional group, or a fluororesin primer containing a fluororesin and another resin.
  • the primer coating PL may be composed of a mixture of a non-resin primer and a fluororesin primer.
  • the inorganic primer examples include chromic acid, chromate, phosphoric acid, and chromium phosphate.
  • the organic titanate compound an alkoxytitanium having a structure containing a Ti—O—C bond formed by Ti(IV) or Ti(III) and a compound having an alcoholic hydroxyl group, a phenolic hydroxyl group, or a carboxyl group , titanium acylate, titanium chelate, polymer titanium, and the like.
  • alkoxytitanium examples include tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, tetrakis(2-ethylhexyloxy)titanium, and tetrastearyloxytitanium.
  • titanium acylate examples include tri-n-butoxy titanium monostearate, titanium stearate, diisopropoxy titanium distearate and the like.
  • Titanium chelates include, for example, diisopropoxytitanium bis(acetylacetonato), di-n-butoxybis(triethanolamine)titanium, titanium isopropoxyoctylene glycolate, dihydroxybis(lactato)titanium ammonium salt, dihydroxybis(lactato ) titanium, propanedioxytitanium bis(ethylacetoacetate), and the like.
  • Polymer titanium includes, for example, tetra-normal-butoxy titanium polymer and tetraisopropoxy titanium polymer.
  • silane coupling agent can be used as the organic silicate compound.
  • silane coupling agent examples include vinylsilane coupling agents, epoxysilane coupling agents, styrylsilane coupling agents, methacryloxysilane coupling agents, acryloxysilane coupling agents, aminosilane coupling agents, and ureidosilane coupling agents. agents, chloropropylsilane coupling agents, mercaptosilane coupling agents, sulfide silane coupling agents, isocyanate silane coupling agents, and the like.
  • fluororesin-based primer examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/hexafluoropropylene copolymer (FEP), polychlorotri Fluoropolymers such as fluoroethylene (PCTFE), tetrafluoroethylene-ethylene copolymer (ETFE), polyvinylidene fluoride (PVdF) and the like may be included.
  • the fluororesin may be one in which some of the fluorine atoms bonded to the carbon atoms of the main chain or side chain are substituted with reactive functional groups.
  • Examples of reactive functional groups include -COOR (R represents -H, -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 H 9 or -C 5 H 11 ), - CH 2 COOR (R represents —H, —CH 3 , —C 2 H 5 , —C 3 H 7 , —C 4 H 9 or —C 5 H 11 ), —COF, —CONH 2 , —CH 2OH, -OH, -CN, -CH2O(CO) NH2 , -CH2OCN , -CH2OP (O) ( OH) 2 , CH2P ( O) Cl2 , -SO4H , -SO 3 H, -SO 2 F and the like.
  • fluororesin primer examples include polyimide (PI), polyamide (PA), polyamideimide (PAI), polyethersulfone (PES), polyetherimide (PEI), polyetheretherketone (PEEK), aromatic Resins other than fluororesins, such as polyester (PET, PEN%), polyarylene sulfide (PAS), and epoxy resins, can be contained.
  • the ratio of the fluororesin to the total amount of the fluororesin and other resins in the fluororesin-based primer can be 50% by mass or more and 95% by mass or less.
  • the ratio may be 90% by mass or less, or 85% by mass or less.
  • the ratio may be 55% by mass or more, or 60% by mass or more.
  • non-resin primer and the fluororesin primer When used together, their ratio can be selected from the range of 1:99 to 50:50 (non-resin primer: fluororesin primer, mass ratio).
  • the ratio of the non-resin primer to the total amount of the non-resin primer and the fluororesin primer may be 2% by mass or more, or 3% by mass or more.
  • the ratio may be 5% by mass or more, or 10% by mass or more.
  • the primer coating PL can be formed, for example, to have a thickness of 1 ⁇ m or more and 250 ⁇ m or less.
  • the glass lining layer GL contains a large amount of alkali metal ions, the elution of the alkali metal ions may reduce the function of the primer coating PL.
  • a low-alkali glass lining layer is employed in order to prevent the fluororesin layer FL from easily peeling off due to the lowering of the function of the primer coating PL.
  • the low-alkali glass lining layer is a glass lining layer containing low-alkali glass and having a small amount of eluted alkali metal ions.
  • the glass lining layer GL is a low alkali glass lining layer can be determined based on the amount of alkali metal ions eluted when pure water is brought into contact with the surface for 120 hours at a temperature of 50°C.
  • the area of the portion of the surface of the glass lining layer GL that is brought into contact with the pure water for elution of alkali metal ions is "S (cm 2 )"
  • the amount of the pure water is the area (S (cm 2 )) (5 ⁇ S (mL)).
  • a glass lining layer having an elution amount (E) of, for example, 12 (mg/m 2 ) or less can be determined to be a low alkali glass lining layer.
  • the total elution amount "X (mg)” is obtained by obtaining the lithium ion elution amount "XLi (mg)", the sodium ion elution amount "XNa (mg)", and the potassium ion elution amount "XK (mg)”. can be calculated by summing them.
  • ultrapure water for example, water having a specific resistance of 18 M ⁇ cm or more
  • ultrapure water for example, water having a specific resistance of 18 M ⁇ cm or more
  • Each of the lithium ion elution amount “XLi (mg)”, the sodium ion elution amount “XNa (mg)” and the potassium ion elution amount “XK (mg)” is determined by ICP (inductively coupled plasma mass spectrometry). be able to.
  • a substitute specimen may be prepared for measurement.
  • the specimen may be, for example, a steel round bar (low-carbon steel) having a length of 13 mm ⁇ 80 mm, on which a glass lining layer having the same thickness as that of the tank body 11 is formed.
  • the test can be carried out, for example, by putting ultrapure water in a PTFE container and heating the specimen immersed in the ultrapure water together with the PTFE container at a temperature of 50° C. for 120 hours.
  • the elution amount (E) after 120 hours using pure water at 50° C. is preferably 11 (mg/m 2 ) or less, more preferably 10 (mg/m 2 ) or less. , more preferably 9 (mg/m 2 ) or less, and particularly preferably 8 (mg/m 2 ) or less.
  • the elution amount of sodium ions per unit area “ENa (mg/m 2 )” is preferably 6 (mg/m 2 ) or less, and 5 (mg/ m 2 ) or less, more preferably 4 (mg/m 2 ) or less, and particularly preferably 3 (mg/m 2 ) or less.
  • the glass lining layer GL may be made of a glass composition having a low alkali metal ion content.
  • sodium is a component useful for adjusting the coefficient of linear expansion of the glass lining layer GL. That is, in terms of bringing the coefficient of linear expansion close to that of the base material, it is desirable that at least the undercoating glass layer GLL contains alkali metal ions to some extent. Therefore, in the present embodiment, different glass compositions may be used for the overcoating glass layer GLU and the undercoating glass layer GLL.
  • the glass composition constituting the overcoating glass layer GLU (hereinafter also referred to as the "undercoating glass composition") is the glass composition constituting the undercoating glass layer GLL (hereinafter also referred to as the "undercoating glass composition").
  • the content of alkali metal ions may be lower than that of . That is, the low-alkali glass having an alkali metal ion elution amount of 12 (mg/m 2 ) or less may be used so as to constitute only the surface on which the fluororesin layer FL is laminated.
  • the glass lining layer GL at least the surface layer of which is made of low-alkali glass and whose surface is coated with a primer, has excellent adhesiveness to the fluororesin layer FL.
  • the elution amount of alkali metal ions in the glass constituting at least the surface layer portion of the glass lining layer GL is preferably 10 (mg/m 2 ) or less, and is 8 (mg/m 2 ) or less. is more preferable, and 6 (mg/m 2 ) or less is particularly preferable.
  • Examples of the undercoat glass composition include 58 mol % to 70 mol % SiO 2 , 3 mol % to 8 mol % Al 2 O 3 , 13 mol % to 17 mol % B 2 O 3 , 12 mol% to 18 mol% of Na 2 O, 2 mol% to 7 mol% of K 2 O, 1 mol% to 7 mol% of CaF 2 as essential components, and optionally 0 mol% to 3 mol % CaO, 0 mol % to 0.5 mol % CoO, 0 mol % to 0.7 mol % MnO 2 , 0 mol % to 0.8 mol % NiO can be used.
  • overcoating glass composition examples include 60 mol % to 75 mol % SiO 2 , 2 mol % to 10 mol % ZrO 2 , and 10 mol % to 22 mol % R 2 O (where "R ” represents Li, Na, K, Cs), and 2 mol % to 12 mol % of R′O (wherein R′ represents Mg, Ca, Sr, Ba).
  • the overcoating glass composition may further contain, for example, one or more selected from the group consisting of TiO 2 , Al 2 O 3 , La 2 O 3 , B 2 O 3 and ZnO.
  • the overcoating glass composition has a TiO 2 content of 0.1 mol % to 4 mol %, an Al 2 O 3 content of 0.1 mol % to 4 mol %, a La 2
  • the content of O3 is in the range of 0.1 mol% to 4 mol%
  • the content of B2O3 is in the range of 0.1 mol% to 4 mol%
  • the content of ZnO is in the range of 0.1 mol% to 4 mol%. and the total content thereof may be 5 mol % or less.
  • the overcoating glass composition may be substantially free of Na as an alkali component.
  • Japanese Patent Application Laid-Open No. 58-101770 describes heat-resistant synthetic resins such as polyamideimide resins, polyimide resins, polyethersulfone resins, polysulfone resins, polyoxybenzoyl polyester resins, epoxy resins and silicone resins; colloidal silica; silicate compounds such as amine silicate and lithium polysilicate; organotitanium/zirconium compounds such as tetrabutyl titanate, tetrapropyl titanate and tetrabutyl zirconate; and phosphate compounds such as reaction products of aluminum hydroxide and orthophosphoric acid.
  • silicate compounds such as amine silicate and lithium polysilicate
  • organotitanium/zirconium compounds such as tetrabutyl titanate, tetrapropyl titanate and tetrabutyl zirconate
  • phosphate compounds such as reaction products of aluminum hydroxide and orthophosphoric acid.
  • the corrosion resistance of the glass lining layer may be lowered.
  • the amount of the adhesion aid added is preferably 100 parts by volume or less.
  • the amount of the adhesion aid added may be 70 parts by volume or less, or may be 40 parts by volume or less.
  • the amount of the adhesion aid added is more preferably 10 parts by volume or less, and even more preferably 5 parts by volume or less.
  • the total content of the heat-resistant synthetic resin in the overcoating glass composition to which the adhesion aid is added is preferably 1% by mass or less. More preferably, substantially no heat-resistant synthetic resin is contained.
  • the total content of silicate compounds is preferably 80% by mass or less, more preferably 75% by mass or less.
  • the total content of the organic titanium/zirconium compound is preferably 30% by mass or less, more preferably 20% by mass or less.
  • the total content of reaction products of aluminum hydroxide and orthophosphoric acid is preferably 20% by mass or less, more preferably 10% by mass or less.
  • the thickness of the undercoating glass layer GLL may be made thinner than that of the overcoating glass layer GLU.
  • the thickness of the undercoating glass layer GLL may be, for example, 2/3 or less of the thickness of the overcoating glass layer GLU, or may be 1/2 or less.
  • the thickness of the undercoating glass layer GLL can be, for example, 1/10 or more of the thickness of the overcoating glass layer GLU.
  • the total thickness of the glass lining layer GL in this embodiment (the total thickness of the undercoating glass layer GLL and the overcoating glass layer GLU) is, for example, 0.5 mm or more and 5 mm or less.
  • each layer of the glass lining layer GL and the thickness of each layer of the fluororesin layer FL in this embodiment can be calculated by averaging thicknesses obtained at several locations (eg, 10 locations).
  • a composition containing sodium is used as the overcoating glass composition.
  • the surface of the glass lining layer GL is brought into contact with an acid solution to remove the alkali metal in the layer. Treatment may be performed to extract the ions or to extract the alkali metal ions by electrophoresis by contacting the surface with a liquid capable of taking in the alkali metal ions. Even with such a method, the surface of the glass lining layer GL is composed of low alkali glass. Even with such a method, the glass lining layer GL is a low-alkali glass lining layer, so that good adhesion with the fluororesin layer FL can be maintained for a long period of time.
  • the following method may be used.
  • ⁇ A paste of SiO 2 , ZrO 2 , and Cr 2 O 3 in an ammonium sulfate aqueous solution is applied to the glass lining layer, and heat-treated at 300° C. to 600° C. to remove alkali metals in the GL layer by thermal diffusion.
  • the glass lining layer is dealkalized and then silica-coated by a sol-gel method.
  • the fluororesin constituting the first fluororesin layer FL1 and the second fluororesin layer FL2 may be the same or different.
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 may be composed of a single fluororesin, or may be composed of a mixed resin containing two or more kinds of fluororesins.
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 may contain a small amount of resin other than the fluororesin.
  • the content of such other resins is, for example, less than 50% by mass when the total content of all resins in each layer is 100% by mass.
  • the content of other resins may be less than 30% by mass, less than 10% by mass, or less than 1% by mass.
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 may contain an inorganic substance such as an inorganic filler.
  • the content of inorganic substances in the first fluororesin layer FL1 and the second fluororesin layer FL2 is, for example, 40% by mass or less.
  • the content of the inorganic substance may be 30% by mass or less, or may be 20% by mass or less.
  • the content of the inorganic substance may be 10% by mass or less, or may be 5% by mass or less.
  • fluororesin contained in the first fluororesin layer FL1 and the second fluororesin layer FL2 examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/ Hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-ethylene copolymer (ETFE), polyvinylidene fluoride (PVdF) and the like are included.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene/ Hexafluoropropylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ETFE tetrafluoroethylene-ethylene copolymer
  • PVdF polyvinylidene
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 may be composed of, for example, PFA having different mass average molecular weights.
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 may be made of PFA having different molar ratios (mass ratios) of tetrafluoroethylene and perfluoroalkyl vinyl ether, for example.
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 of the present embodiment are made of different kinds of fluororesins, which is advantageous in that they have individual functions.
  • the fluororesin layer FL at least one of the first fluororesin layer FL1 and the second fluororesin layer FL2 contains a low melting point fluororesin in order to prevent problems such as pinholes. is preferred.
  • the fluororesin contained in the first fluororesin layer FL1 is the first fluororesin and the fluororesin contained in the second fluororesin layer FL2 is the second fluororesin, the first fluororesin and the second fluororesin It is preferable that either the resin is a low-melting fluororesin.
  • the fluororesin contained in the first fluororesin layer FL1 can be substantially composed only of the first fluororesin.
  • the fluororesin contained in the second fluororesin layer FL2 may be substantially composed of only the second fluororesin.
  • the ratio of the first fluororesin and the second fluororesin to the fluororesin contained in each layer may be, for example, 95% by mass or more. The proportion may be, for example, 90% by mass or more.
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 may contain a resin other than the fluororesin, but the ratio of the resin other than the fluororesin to the total amount of the fluororesin is, for example, 20% by mass or less. can be The ratio may be 15% by mass or less, or 10% by mass or less. The ratio may be 5% by mass or less, or 2% by mass or less.
  • the inorganic filler can be used to improve the strength and wear resistance of the first fluororesin layer FL1 and the second fluororesin layer FL2. Moreover, when using a low-melting fluororesin as described above, an inorganic filler having an excellent thickening effect may be used in order to improve the melt viscosity.
  • the inorganic filler include titanium oxide, zinc oxide, aluminum oxide, silicon oxide, silicon carbide, silicon nitride, aluminum nitride and calcium carbonate.
  • Plate-like inorganic particles such as glass flakes, graphite, talc, mica, and bentonite; needle-like inorganic particles such as silicon carbide whiskers;
  • a high thickening effect can be expected for inorganic fillers having a large specific surface area, such as fillers having a median diameter (D50) of less than 1 ⁇ m.
  • Inorganic particles having a plate-like structure can also be expected to have gas barrier properties.
  • a filler that can be used as a thickener may be an organic filler instead of an inorganic filler.
  • the organic filler for example, PTFE or PFA fine powder (D50: 100 to 800 ⁇ m) can be used.
  • the melting point difference between the first fluororesin and the second fluororesin is too large, a special technique may be required to form the fluororesin layer FL.
  • the difference is preferably within 120°C.
  • the difference in melting point between the first fluororesin and the second fluororesin may be within 100°C or within 80°C.
  • the melting point of the fluororesin can be measured by a differential scanning calorimeter (DSC), for example, with a sample amount of about 5 mg, alumina as a reference, and a heating rate of 10° C./min.
  • DSC differential scanning calorimeter
  • At least one of the first fluororesin layer FL1 and the second fluororesin layer FL2 contains either polychlorotrifluoroethylene (PCTFE) or tetrafluoroethylene-hexafluoropropylene copolymer (FEP). preferably included. That is, either the first fluororesin or the second fluororesin is polychlorotrifluoroethylene (PCTFE) or tetrafluoroethylene-hexafluoropropylene copolymer (FEP). preferable.
  • PCTFE polychlorotrifluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the first fluororesin preferably has a lower melting point than the second fluororesin. That is, it is preferable to include either polychlorotrifluoroethylene (PCTFE) or tetrafluoroethylene-hexafluoropropylene copolymer (FEP) in the first fluororesin layer FL1.
  • PCTFE polychlorotrifluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PCTFE and FEP have a relatively low melting point, so they are easy to bake at a temperature that exhibits good fluidity, and it is easy to prevent defects such as pinholes.
  • PCTFE is also excellent in gas barrier properties. The reason for this is not clear, but it is believed that PCTFE has bulky chlorine atoms in its molecular structure, but has a density similar to that of PTFE, so it has excellent cohesiveness in which molecules attract each other. . Therefore, by adopting such a resin as the first fluororesin, the first fluororesin layer FL1 can have a dense layer structure without defects such as voids. As a result, it is possible to suppress permeation of water and water vapor from the inside of the tank to the side of the primer coating PL.
  • the first fluororesin layer FL1 with high gas (water vapor) barrier properties and water barrier properties, the above functions can be exhibited more remarkably.
  • the second fluororesin is, for example, polytetrafluoroethylene (PTFE) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA). It is preferable that
  • the content of the inorganic filler (thickener) in the first fluororesin layer FL1 is By adjusting the melt viscosities of the first fluororesin layer FL1 and the second fluororesin layer FL2 so that they are close to each other, The fluororesin layer FL can be easily formed by a baking method or the like.
  • the fluororesin layer FL In order for the fluororesin layer FL to exhibit excellent strength and gas barrier properties, it is preferable that the fluororesin is sufficiently crystallized. Fluororesins crystallize at a slower rate than common crystalline polymers. Therefore, when the fluororesin layer is formed by firing, it is desirable to cool slowly after firing.
  • the degree of crystallization of the fluororesin in the fluororesin layer FL can be confirmed by measuring a sample taken from the fluororesin layer FL with DSC. The degree of crystallization of the fluororesin was determined by heating the sample with a DSC and measuring the heat of fusion (Q1 (J/g)), then slowly cooling the sample to sufficiently crystallize it, and heating it again.
  • the heat of fusion Q2 (J/g)
  • the heat of fusion (Q1 (J/g)) observed in the first DSC measurement is the same as the heat of fusion (Q2 (J/g)) in the second measurement, it is contained in the fluororesin layer FL. It can be determined that the crystallinity of the fluororesin is 100%.
  • the degree of crystallinity ((Q1/Q2) ⁇ 100%) of the fluororesin in the fluororesin layer FL is preferably 80% or more, more preferably 90% or more, and further preferably 95% or more. preferable.
  • the temperature increase rate during heating can be set to 10° C./min, for example.
  • the cooling rate during slow cooling can be set to, for example, 5° C./min.
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 can be formed so that the average thickness of the fluororesin layer is 0.3 mm or more and 3 mm or less.
  • the average thickness of the fluororesin layer can be obtained as an arithmetic mean value of the thickness from the surface of the glass lining layer to the surface of the fluororesin layer.
  • the first fluororesin layer FL1 may be thinner than the second fluororesin layer FL2.
  • the thickness of the first fluororesin layer FL1 may be, for example, 2/3 or less, or 1/2 or less of the thickness of the second fluororesin layer FL2.
  • the thickness of the first fluororesin layer FL1 can be, for example, 1/10 or more of the thickness of the second fluororesin layer FL2.
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 are formed by employing a method of depositing resin powder on the glass lining layer GL coated with the primer coating PL by powder coating and then baking the layer. can be done. Moreover, the first fluororesin layer FL1 and the second fluororesin layer FL2 can also be formed by a method of spraying a dispersion liquid in which resin powder is dispersed in a liquid dispersion medium, followed by firing. In powder coating, it is easy to avoid residual components such as a dispersion medium.
  • first fluororesin layer FL1 and the second fluororesin layer FL2 may be formed by powder coating, and the other may be formed by a dispersion liquid spraying method.
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 may be formed by firing at the same time, and after the first fluororesin layer FL1 is fired, the powder coating of the second fluororesin layer FL2 may Firing may also be performed.
  • the first fluororesin layer FL1 and the second fluororesin layer FL2 are formed by preparing a fluororesin film having a two-layer structure in advance, and then bonding this fluororesin film to the glass lining layer GL coated with the primer coating PL. It may also be formed by heat-sealing.
  • the fluororesin layer laminated to the primer-coated glass lining layer contains polychlorotrifluoroethylene (PCTFE).
  • the fluororesin layer containing polychlorotrifluoroethylene (PCTFE) is not only suitable for low-alkali glass lining layers, but also for ordinary glass lining layers with an alkali metal ion elution amount exceeding 12 (mg/m 2 ). It is also effective for forming a layer having excellent corrosion resistance with few defects such as pinholes.
  • a glass lining product in which a fluororesin layer is formed so that polychlorotrifluoroethylene (PCTFE) is in contact with the surface of the primer-coated glass lining layer is excellent in corrosion resistance and chemical resistance.
  • the fluorine resin layer contains polychlorotrifluoroethylene (PCTFE), and preferably the glass lining layer is a low-alkaline glass lining layer has excellent corrosion resistance and chemical resistance. It is preferable that at least the surface layer portion of the low-alkali glass lining layer coated with a primer is a barrier glass layer.
  • PCTFE polychlorotrifluoroethylene
  • the tank main body 11 is exemplified as a glass lined product provided with the fluororesin layer FL, but the lid 12, the stirring blade 21, the baffle 30, etc. are also provided with a low-alkali glass lining like the tank main body 11. Layers, primer coatings and fluoroplastic layers may be provided.
  • the lid 12, the stirring blade 21, the baffle 30, etc. are provided with the same structure as the tank main body 11, it is not necessary to share the thickness of each layer, the number of layers, and the forming material among them. can be different.
  • the present invention can also be a glass lined product other than the constituent members of the storage device as described above. That is, the present invention is by no means limited to the above examples, and various modifications are possible within the scope that does not significantly impair the technical significance of the present invention.
  • a glass lined product is prepared in which a fluororesin layer is not formed and the glass lining layer is not a low-alkali glass lining layer. Then, an ion exchange treatment is performed to change the glass lining layer of this glass lining product into a low alkali glass lining layer. In the ion exchange treatment, sodium ions, lithium ions, potassium ions, etc. on the surface layer of the glass lining layer are exchanged for hydrogen ions. The ion exchange treatment is performed by treating the surface of the glass lining layer with an acid.
  • the glass lined product is subjected to an ion exchange treatment so that the amount of alkali metal ions eluted from the surface of the glass lining layer is 12 (mg/m 2 ) or less.
  • an ion exchange treatment so that the amount of alkali metal ions eluted from the surface of the glass lining layer is 12 (mg/m 2 ) or less.
  • a fluororesin primer containing a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) is used as the primer.
  • the fluororesin-based primer is in the form of an aqueous dispersion with a solid content of about 20 mass % to 55 mass %, and a viscosity of 10 mPa ⁇ s to 900 mPa ⁇ s at room temperature.
  • the primer coats the entire area where the fluororesin layer is to be provided.
  • the surface of the glass lining layer is roughened by sandblasting, and the roughened surface of the glass lining layer is washed with a solvent. After the solvent has dried sufficiently, the primer is sprayed on the surface of the glass lining layer and dried at a temperature of 100° C. for about 10 minutes.
  • a fluororesin layer is formed.
  • the fluororesin layer is formed, for example, by powder-coating tetrafluoroethylene-hexafluoropropylene copolymer (FEP) on the surface of the primer-coated glass lining layer and baking the powder.
  • the heating temperature for firing is 340° C. to 380° C., and the heating time is about 15 minutes to 30 minutes.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the heating temperature for firing is 340° C. to 380° C., and the heating time is about 15 minutes to 30 minutes.
  • the glass lined product in which the fluororesin layer is strongly bonded to the glass lining layer can be obtained.
  • the glass lining layer is a low-alkaline glass lining layer, so that good adhesion between the fluororesin layer and the glass lining layer is maintained for a long period of time. Become.
  • the effectiveness of the present invention can also be

Landscapes

  • Laminated Bodies (AREA)

Abstract

母材と、該母材に積層されたグラスライニング層と、該グラスライニング層に積層されたフッ素樹脂層とを備え、該フッ素樹脂層の積層されている前記グラスライニング層の表面にはプライマーがコーティングされており、前記グラスライニング層が低アルカリグラスライニング層であるグラスライニング製品を提供する。

Description

グラスライニング製品
(関連出願の相互参照)
 本願は、日本国特願2021-079771号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。
 本発明はグラスライニング製品に関する。
 従来、貯槽や配管類などの多くは、鉄鋼などの金属材料で構成されている。
 貯槽などに蓄えられる収容物が、腐食性のものであったり、金属材料からの溶出物の混入を嫌うものであったりするような場合には、母材となる金属製品の表面にグラスライニング層を備えたグラスライニング製品が貯槽や配管類を構成する部材として用いられている(下記特許文献1参照)。
 フッ素樹脂は、一般的な樹脂に比べて耐熱性や耐薬品性に優れる。
 母材の腐食を防いだり、母材からの溶出を防いだりする目的から母材の表面にフッ素樹脂層を設けることも行われている。尚、フッ素樹脂の多くは融点が高く、溶剤にも不溶であるためにピンホールなどの欠陥が少ないフッ素樹脂層を形成することが難しい。そこで、フッ素樹脂層と母材との間にグラスライニング層を設けることも行われている(下記特許文献2参照)。
 特許文献2に記載されているようにフッ素樹脂層を直接的にグラスライニング層に積層するとフッ素樹脂層が剥離し易い。そのため、フッ素樹脂層を積層する前にグラスライニング層の表面にプライマーをコーティングすることが行われている。
日本国特開2005-060746号公報 日本国特開昭58-101770号公報
 プライマーをコーティングしたグラスライニング層にフッ素樹脂層が積層されているグラスライニング製品でもフッ素樹脂層の剥離が十分に抑制されているとはいえないような場合がある。そこでフッ素樹脂層の剥離をこれまで以上に抑制することが要望されている。そこで本発明は、グラスライニング製品におけるフッ素樹脂層の剥離をさらに抑制することを課題としている。
 上記課題を解決するための本発明は、
 母材と、該母材に積層されたグラスライニング層と、該グラスライニング層に積層されたフッ素樹脂層とを備え、
 該フッ素樹脂層の積層されている前記グラスライニング層の表面にはプライマーがコーティングされており、
 前記グラスライニング層は、低アルカリグラスライニング層である、グラスライニング製品、を提供する。
図1は、一実施形態のグラスライニング製品を備えた収容装置を示した概略図である。 図2は、グラスライニング製品である槽本体の内壁の断面構造を示した概略断面図である。
 以下に、本発明の一実施の形態について液状物の反応等に利用される収容装置を例に説明する。尚、以下においてはグラスライニング製品の具体的な例として収容装置を構成する部材を例示するが、本実施形態でのグラスライニング製品の具体的な用途は、以下のような例示に限定されるものではない。また、一般にグラスライニング製品は、例えば、化学業界や医薬工業、醸造工業の分野で、貯蔵、化学反応、抽出、晶析、留去、凝集、熱交換などの目的で使用される。本実施形態のグラスライニング製品は、これらの目的や、これら以外の目的で用いることができる。
 図1に示すように本実施形態の収容装置1は、被収容物を収容する収容槽10と、該収容槽10に収容された被収容物を攪拌するための攪拌装置20と、を備える。収容装置1は、該攪拌装置20での攪拌によって生じる前記被収容物の流れを乱して攪拌性能の向上を図るためのバッフル30を更に備えている。
 前記収容槽10は、被収容物を収容槽10内に導入するための開口部111を上部に備えた槽本体11と、該槽本体11の前記開口部111を開閉するための蓋体12とを備える。前記槽本体11は、被収容物に接する内面11aを構成する内壁112と、該内壁112を外側から覆う外壁113とを備えており、該内壁112と外壁113との間に熱媒を流通可能な空間部11cを備えている。即ち、本実施形態の槽本体11にはジャケット構造が備えられていて、前記空間部11cに温熱や冷熱を伝達するための熱媒を流通させて被収容物の冷却や加熱を行い得るようになっている。
 前記槽本体11は、被収容物を外部に排出するための開口部(排出口114)を底部に有している。本実施形態の収容槽10は、この排出口114を開閉する開閉弁13を有している。該開閉弁13は、弁体131と、弁座132とによって構成されている。
 本実施形態では前記槽本体11や前記蓋体12などが金属製の母材の表面にグラスライニング層が積層されたグラスライニング製品となっている。
 本実施形態の前記攪拌装置20は、前記槽本体11内で前記被収容物を攪拌するための攪拌翼21を有している。前記攪拌翼21は、槽本体11の収容空間において上下方向に延びるように設けられているとともに軸周りに回転される回転軸21aと、該回転軸21aに固定されて回転軸とともに回転する攪拌羽根21bとを備えている。そして、本実施形態においては前記攪拌翼21も金属製の母材の表面にグラスライニング層が積層されたグラスライニング製品となっている。
 前記槽本体11での前記内壁112は、図2に示すように、厚さ方向に複数の層が積層された積層構造を有する。前記内壁112は、最も外側に母材で構成された基体層BLを有する。前記内壁112の前記基体層BLの内側には、グラスライニング層GLが積層されている。該グラスライニング層GLの内側の表面(前記基体層BLに接している面とは反対側の面)にはプライマーがコーティングされている。該グラスライニング層GLの内側にはプライマーコーティングPLを介してフッ素樹脂層FLが積層されている。
 本実施形態では、前記内壁112を構成する各層のそれぞれは、それ自身が単層であっても、複数の層に分かれていてもよい。本実施形態では、前記グラスライニング層GLと前記フッ素樹脂層FLとに複数の層が積層された積層構造が備えられている。
 前記グラスライニング層GLは、ガラス組成物で構成された層である。本実施形態での前記グラスライニング層GLは、前記基体層BLに接する第1層(以下「下引きガラス層GLL」ともいう)と、該下引きガラス層GLLに前記基体層BLとは反対側から接する第2層(以下「上引きガラス層GLU」ともいう)との2層構造を有している。前記グラスライニング層GLは、3層以上の積層構造を有していてもよいが、本実施形態では上引きガラス層GLUがグラスライニング層GLでの最表層に設けられており、上引きガラス層GLUがグラスライニング層GLの表面を構成している。
 本実施形態での前記プライマーコーティングPLは、前記上引きガラス層GLUの表面に設けられている。前記プライマーコーティングPLは、前記下引きガラス層GLLとは反対側から前記上引きガラス層GLUに接するように設けられている。
 前記フッ素樹脂層FLは、フッ素樹脂を含む樹脂組成物で構成された層である。本実施形態の前記フッ素樹脂層FLは、前記プライマーコーティングPLに接する第1層(以下「第1フッ素樹脂層FL1」ともいう)と該第1フッ素樹脂層FL1に前記プライマーコーティングPLとは反対側から接する第2層(以下「第2フッ素樹脂層FL2」ともいう)との2層構造を有している。前記フッ素樹脂層FLは、3層以上の積層構造を有していてもよいが、本実施形態では第2フッ素樹脂層FL2がフッ素樹脂層FLでの最表層に設けられており、第2フッ素樹脂層FL2がフッ素樹脂層FLの表面(槽本体11の内面11a)を構成している。
 本実施形態での前記プライマーコーティングPLは、前記グラスライニング層GLと前記フッ素樹脂層FLとの間に高い接着力が発生するように設けられる。本実施形態でのプライマーコーティングPLは、クロム酸やリン酸、及び、それらの塩を含む無機系プライマー;有機チタネート化合物、有機シリケート化合物のようなカップリング剤系プライマー;などといった樹脂を含んでいないプライマー(以下「非樹脂系プライマー」ともいう)、並びに、官能基を有するフッ素樹脂やフッ素樹脂と他の樹脂とを含むようなフッ素樹脂系プライマーなどにより構成され得る。プライマーコーティングPLは、非樹脂系プライマーとフッ素樹脂系プライマーとの混合物で構成されてもよい。
 前記無機系プライマーとしては、クロム酸、クロム酸塩、リン酸、リン酸クロムなどが挙げられる。前記有機チタネート化合物としては、Ti(IV)又はTi(III)と、アルコール性水酸基、フェノール性水酸基もしくはカルボキシル基を有する化合物とによって形成されるTi-O-C結合を含む構造を備えたアルコキシチタン、チタンアシレート、チタンキレート、ポリマーチタンなどが挙げられる。アルコキシチタンとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、テトラブトキシチタン、テトラキス(2-エチルヘキシルオキシ)チタン、テトラステアリルオキシチタンなどが挙げられる。チタンアシレートとしては、例えば、トリノルマルブトキシチタンモノステアレート、チタンステアレート、ジイソプロポキシチタンジステアレートなどが挙げられる。チタンキレートとしては、例えば、ジイソプロポキシチタンビス(アセチルアセトナト)、ジノルマルブトキシビス(トリエタノールアミナト)チタン、チタンイソプロポキシオクチレングリコレート、ジヒドロキシビス(ラクタト)チタンアンモニウム塩、ジヒドロキシビス(ラクタト)チタン、プロパンジオキシチタンビス(エチルアセトアセテート)などが挙げられる。ポリマーチタンとしては、例えば、テトラノルマルブトキシチタン重合体、テトライソプロポキシチタン重合体などが挙げられる。
 前記有機シリケート化合物としては、いわゆるシランカップリング剤を用いることができる。前記シランカップリング剤としては、例えば、ビニルシランカップリング剤、エポキシシランカップリング剤、スチリルシランカップリング剤、メタクリロキシシランカップリング剤、アクリロキシシランカップリング剤、アミノシランカップリング剤、ウレイドシランカップリング剤、クロロプロピルシランカップリング剤、メルカプトシランカップリング剤、スルファイドシランカップリング剤、イソシアネートシランカップリング剤などが挙げられる。
 前記フッ素樹脂系プライマーには、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVdF)などのフッ素樹脂が含まれ得る。該フッ素樹脂は、主鎖や側鎖の炭素原子に結合しているフッ素原子の一部が、反応性官能基に置換されたものであってもよい。
 反応性官能基としては、例えば、-COOR(Rは-H、-CH、-C、-C、-C、又は-C11を表す)、-CHCOOR(Rは-H、-CH、-C、-C、-C、又は-C11を表す)、-COF、-CONH、-CHOH、-OH、-CN、-CHO(CO)NH、-CHOCN、-CHOP(O)(OH)、CHP(O)Cl、-SOH、-SOH、-SOFなどが挙げられる。
 前記フッ素樹脂系プライマーには、例えば、ポリイミド(PI)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、芳香族ポリエステル(PET,PEN・・・)、ポリアリレンサルファイド(PAS)、エポキシ樹脂などのフッ素樹脂以外の樹脂を含有することができる。
 前記フッ素樹脂系プライマーでのフッ素樹脂とその他の樹脂との合計量に占めるフッ素樹脂の割合は、50質量%以上95質量%以下とされ得る。該割合は、90質量%以下であってもよく85質量%以下であってもよい。前記割合は、55質量%以上であってもよく60質量%以上であってもよい。
 前記非樹脂系プライマーと前記フッ素樹脂系プライマーとを併用する場合、これらの比率は、1:99~50:50(非樹脂系プライマー:フッ素樹脂系プライマー、質量比)の範囲から選択され得る。非樹脂系プライマーとフッ素樹脂系プライマーとの合計量に占める非樹脂系プライマーの割合は、2質量%以上であっても、3質量%以上であってもよい。該割合は、5質量%以上であっても、10質量%以上であってもよい。
 前記プライマーコーティングPLは、例えば、1μm以上250μm以下の厚さとなるように形成され得る。
 前記グラスライニング層GLにアルカリ金属イオンが多く含まれると該アルカリ金属イオンの溶出によって前記プライマーコーティングPLの機能が低下してしまうおそれがある。本実施形態においては、前記プライマーコーティングPLの機能が低下してフッ素樹脂層FLが剥離し易い状態になってしまうことを防止するために低アルカリグラスライニング層が採用される。低アルカリグラスライニング層とは、低アルカリガラスを含むグラスライニング層であり、アルカリ金属イオンの溶出量が少ないグラスライニング層である。
 前記グラスライニング層GLが低アルカリグラスライニング層であるかどうかは、50℃の温度条件下で純水を表面に120時間接触させた時のアルカリ金属イオンの溶出量に基づいて判断できる。前記グラスライニング層GLの表面の内、アルカリ金属イオンを溶出させるために前記純水を接触させる部分の面積を「S(cm)」とした場合、前記純水の量は、この面積(S(cm))の5倍(5×S(mL))とすることができる。即ち、溶出量は、前記表面の面積を「S(cm)」、前記純水の量を「V(mL)」として両者の比率が「5」となる条件(V/S=5)で行うことができる。前記グラスライニング層GLが低アルカリグラスライニング層であるかどうかは、前記グラスライニング層GLの前記表面に前記純水を接触させてアルカリ金属イオンの合計溶出量「X(mg)」を求め、該合計溶出量(X)を前記面積(S)で除して単位面積当たりのアルカリ金属イオンの前記純水へ溶出量「E(mg/m)」(=X/S×10,000)を求めることで判断できる。該溶出量(E)が、例えば、12(mg/m)以下となるグラスライニング層は、当該グラスライニング層が低アルカリグラスライニング層であると判断できる。
 アルカリ金属イオンの合計溶出量「X(mg)」については、ルビジウムやセシウムなどは、ガラスの成分として利用されるケースが少なく、仮にこれらを含んでいてもイオン半径が大きくてこれらの溶出は通常考えられず、それらの溶出が見られたとしても極めて微量で無視できる程度にとどまると見られる。そのため合計溶出量「X(mg)」は、リチウムイオンの溶出量「XLi(mg)」、ナトリウムイオンの溶出量「XNa(mg)」及びカリウムイオンの溶出量「XK(mg)」をそれぞれ求めてそれらを合計することで算出することができる。尚、アルカリ金属イオンの溶出には、超純水(例えば、比抵抗が18MΩ・cm以上の水)を用いることができる。リチウムイオンの溶出量「XLi(mg)」、ナトリウムイオンの溶出量「XNa(mg)」及びカリウムイオンの溶出量「XK(mg)」のそれぞれは、ICP(誘導結合プラズマ質量分析法)によって求めることができる。
 尚、実際の槽本体11を使ってアルカリ金属イオンの溶出量を測定することが困難な場合、代わりとなる試験体を作製して測定を行ってもよい。該試験体は、例えば、13mmφ×80mm長さの鋼製丸棒(低炭素鋼)の全面に槽本体11と同様の厚さでグラスライニング層を形成させたものであってもよい。試験は、例えば、PTFE製容器に超純水を入れ、該超純水に浸漬させた試験体をPTFE製容器ごと120時間、50℃温度で加熱することで実施できる。このとき、グラスライニング層を形成した後の試験体の太さが、例えば、直径16mmであった場合、試験体の両端面の合計面積は、概ね[0.8cm×0.8cm×π×2]となり、約4cmとなる。また、試験体の側面の面積は、概ね、[1.6cm×π×8cm]となり、約40cmとなる。従って、このような場合は、PTFE製容器へは、約220mL(S≒44cm、V/S=5)の超純水を収容して試験を行うこととなる。また、PTFE製容器の加熱は温水バスなどを用いて実施することができる。
 グラスライニング層GLの表面に移行したアルカリ金属イオンは、当該表面におけるpH値を上昇させてガラスを侵食するおそれがある。アルカリ金属イオンは、プライマーとガラスとの化学的な結合を破壊したり、プライマーに含まれるポリマーを分解したりするおそれがある。そのため、50℃の純水を使った120時間での前記溶出量(E)は、11(mg/m)以下であることが好ましく、10(mg/m)以下であることがより好ましく、9(mg/m)以下であることがさらに好ましく、8(mg/m)以下であることがとりわけ好ましい。
 アルカリ金属イオンのなかでもナトリウムイオンは溶出し易い点でその影響が大きく表れ得る。したがって、ナトリウムイオンの単位面積当たりの溶出量「ENa(mg/m)」(=XNa/S×10,000)は、6(mg/m)以下であることが好ましく、5(mg/m)以下であることがより好ましく、4(mg/m)以下であることがさらに好ましく、3(mg/m)以下であることがとりわけ好ましい。
 グラスライニング層GLを上記のような低アルカリグラスライニング層とするには、当該グラスライニング層GLをアルカリ金属イオンの含有量が少ないガラス組成物で構成すればよい。しかしながら、ナトリウムは、グラスライニング層GLの線膨張係数を調整するのに有用な成分である。即ち、線膨張係数を母材に近付けるという意味では、少なくとも下引きガラス層GLLにはある程度アルカリ金属イオンを含有させることが望ましい。そこで、本実施形態においては、上引きガラス層GLUと下引きガラス層GLLとで用いるガラス組成物を異ならせてもよい。上引きガラス層GLUを構成するガラス組成物(以下「上引き用ガラス組成物」ともいう)は、下引きガラス層GLLを構成するガラス組成物(以下「下引き用ガラス組成物」ともいう)に比べてアルカリ金属イオンの含有量が低いものであってもよい。即ち、アルカリ金属イオンの溶出量が12(mg/m)以下となる低アルカリガラスは、前記フッ素樹脂層FLの積層される表面のみを構成するように用いられてもよい。少なくとも表層部が低アルカリガラスで構成され、プライマーが表面にコーティングされているグラスライニング層GLは、フッ素樹脂層FLとの接着性に優れる。グラスライニング層GLの少なくとも表層部を構成するガラスでのアルカリ金属イオンの溶出量の溶出量は、10(mg/m)以下であることが好ましく、8(mg/m)以下であることがさらに好ましく、6(mg/m)以下であることがとりわけ好ましい。
 前記下引き用ガラス組成物としては、例えば、58モル%~70モル%のSiO、3モル%~8モル%のAl、13モル%~17モル%のB、12モル%~18モル%のNaO、2モル%~7モル%のKO、1モル%~7モル%のCaFを必須成分として含み、さらに、任意成分として0モル%~3モル%のCaO、0モル%~0.5モル%のCoO、0モル%~0.7モル%のMnO、0モル%~0.8モル%のNiOを含む物が用いられ得る。
 前記上引き用ガラス組成物としては、例えば、60モル%~75モル%のSiO、2モル%~10モル%のZrO、10モル%~22モル%のRO(ただし、「R」はLi、Na、K、Csを示す)、及び、2モル%~12モル%のR’O(ただし、R’はMg、Ca、Sr、Baを示す)を含むものが挙げられる。該上引き用ガラス組成物は、例えば、TiO、Al、La、B及びZnOからなる群から選ばれる1種以上をさらに含有してもよい。より具体的には、上引き用ガラス組成物は、TiOの含有量が0.1モル%~4モル%、Alの含有量が0.1モル%~4モル%、Laの含有量が0.1モル%~4モル%、Bの含有量が0.1モル%~4モル%、ZnOの含有量が0.1モル%~4モル%の範囲内で含まれ、且つ、これらの合計含有量が5モル%以下となるように含まれていてもよい。なお、上引き用ガラス組成物は、アルカリ成分としてNaを実質的に含まないものであってもよい。
 日本国特開昭58-101770号公報には、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリオキシベンゾイルポリエステル樹脂、エポキシ樹脂、シリコーン樹脂などの耐熱性合成樹脂;コロイド状シリカ、アミンシリケート、リチウムポリシリケートなどの珪酸塩化合物;テトラブチルチタネート、テトラプロピルチタネート、テトラブチルジルコネートなどの有機チタン・ジルコニウム化合物;水酸化アルミニウムとオルト燐酸との反応生成物などの燐酸塩化合物から選ばれる1種又は2種以上を含む接着助剤を上引き用ガラス組成物に追加することでフッ素樹脂層の剥離を抑制できると記載されている。しかしながらそのような場合は、グラスライニング層の耐食性を低下させることにもなりかねない。前記のような上引き用ガラス組成物の体積を100体積部とした場合、前記接着助剤の添加量は100体積部以下とすることが好ましい。前記接着助剤の添加量は、70体積部以下であってもよく、40体積部以下であってもよい。前記接着助剤の添加量は、10体積部以下であることがより好ましく、5体積部以下であることがさらに好ましい。
 前記接着助剤が添加された後の上引き用ガラス組成物での耐熱性合成樹脂の合計含有量は、1質量%以下であることが好ましい。耐熱性合成樹脂は、実質的に含まれていないことがより好ましい。珪酸塩化合物の合計含有量は、80質量%以下であることが好ましく、75質量%以下であることがより好ましい。有機チタン・ジルコニウム化合物の合計含有量は、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。水酸化アルミニウムとオルト燐酸との反応生成物の合計含有量は、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
 グラスライニング層GL全体でのアルカリ金属イオンの含有量を少なくするという意味では、前記下引きガラス層GLLの厚さを上引きガラス層GLUよりも薄くしてもよい。前記下引きガラス層GLLの厚さは、例えば、上引きガラス層GLUの厚さの2/3以下であってもよく、1/2以下であってもよい。前記下引きガラス層GLLの厚さは、例えば、上引きガラス層GLUの厚さの1/10以上とすることができる。
 本実施形態でのグラスライニング層GLの全体厚さ(下引きガラス層GLLの厚さと上引きガラス層GLUの厚さとの合計厚さ)は、例えば、0.5mm以上5mm以下とされる。
 本実施形態におけるグラスライニング層GLの各層の厚さやフッ素樹脂層のFLの各層の厚さについては、数か所(例えば、10箇所)で求めた厚さを平均して算出することができる。
 本実施形態においては、上引き用ガラス組成物としてナトリウムを含有するものを採用し、例えば、前記プライマーコーティングPLを施す前にグラスライニング層GLの表面に酸性溶液を接触させて層中のアルカリ金属イオンを抽出したり、アルカリ金属イオンを取り込み可能な液を表面に接触させたりして電気泳動によりアルカリ金属イオンを抽出するような処置を施してもよい。このような方法であってもグラスライニング層GLの表面は低アルカリガラスで構成される。このような方法であっても、グラスライニング層GLが低アルカリグラスライニング層とされることで前記フッ素樹脂層FLとの良好な接着性が長期持続的に発揮され得る。グラスライニング層GLからのアルカリ金属イオンの溶出量を前記のような範囲内に低減させる方法としては、下記のような方法であってもよい。
・無機ポリシラザンをグラスライニング層の上に塗布し、200℃以上の温度で焼成することによりガラス保護膜を製造する方法。
・グラスライニング層にSiO、ZrO、Crを硫酸アンモニウム水溶液でペースト状としたものを塗布し、300℃~600℃で熱処理することにより、GL層中のアルカリ金属を熱拡散除去する方法。
・グラスライニング層を脱アルカリ処理した後、ゾルゲル法によりシリカコーティング処理する方法。
・SiO、ZrO等をベースとしたペースト(スラリー)をグラスライニング層に塗布し、300℃~600℃で加熱処理する方法。
 即ち、低アルカリグラスライニング層は、上引きガラス層GLUの表面に上記のようにアルカリ金属イオンをバリアするバリアガラス層を備えていてもよい。
 第1フッ素樹脂層FL1や第2フッ素樹脂層FL2は、それぞれを構成するフッ素樹脂が共通していてもよく異なっていてもよい。第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、単独のフッ素樹脂で構成されても、2種類以上のフッ素樹脂を含む混合樹脂で構成されてもよい。第1フッ素樹脂層FL1や第2フッ素樹脂層FL2は、フッ素樹脂以外の他の樹脂を少量含んでもよい。そのような他の樹脂の含有量は、例えば、各層における全ての樹脂の合計含有量を100質量%とした際に50質量%未満とされる。他の樹脂の含有量は、30質量%未満であってもよく、10質量%未満であってもよく、1質量%未満であってもよい。また、第1フッ素樹脂層FL1や第2フッ素樹脂層FL2は、無機フィラーなどの無機物を含んでもよい。第1フッ素樹脂層FL1や第2フッ素樹脂層FL2での無機物の含有量は、例えば、それぞれ40質量%以下とされる。該無機物の含有量は、30質量%以下であってもよく、20質量%以下であってもよい。該無機物の含有量は、10質量%以下であってもよく、5質量%以下であってもよい。
 第1フッ素樹脂層FL1や第2フッ素樹脂層FL2に含有させるフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVdF)などが挙げられる。
 第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、例えば、質量平均分子量の異なるPFAで構成されてもよい。第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、例えば、それぞれがテトラフルオロエチレンとパーフルオロアルキルビニルエーテとのモル比(質量比)の異なるPFAで構成されてもよい。
 本実施形態の第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、種類の異なるフッ素樹脂で構成されることでそれぞれに個別の機能を持たせる上で有利となる。前記フッ素樹脂層FLは、ピンホールなどの問題を防止する上で、第1フッ素樹脂層FL1と第2フッ素樹脂層FL2との内の少なくとも一方には低融点のフッ素樹脂が含まれていることが好ましい。第1フッ素樹脂層FL1に含まれるフッ素樹脂を第1のフッ素樹脂とし、第2フッ素樹脂層FL2に含まれるフッ素樹脂を第2のフッ素樹脂とした場合、第1のフッ素樹脂と第2のフッ素樹脂との何れかが低融点のフッ素樹脂であることが好ましい。第1フッ素樹脂層FL1に含まれるフッ素樹脂は、実質的に第1のフッ素樹脂のみで構成され得る。第2フッ素樹脂層FL2に含まれるフッ素樹脂も実質的に第2のフッ素樹脂のみで構成され得る。尚、第1のフッ素樹脂と第2のフッ素樹脂とがそれぞれの層に含まれるフッ素樹脂に占める割合は、例えば、95質量%以上であってもよい。該割合は、例えば、90質量%以上とされてもよい。第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、フッ素樹脂以外の樹脂を含んでもよいが、フッ素樹脂以外の樹脂がフッ素樹脂との合計量に占める割合は、例えば、20質量%以下とされ得る。該割合は、15質量%以下であってもよく、10質量%以下であってもよい。該割合は、5質量%以下であってもよく、2質量%以下であってもよい。
 前記無機フィラーは、第1フッ素樹脂層FL1や第2フッ素樹脂層FL2での強度や耐摩耗性の改善などに利用され得る。また、上記のように低融点のフッ素樹脂を利用する場合は、その溶融粘度を向上する意味で、増粘効果に優れた無機フィラーを用いてもよい。該無機フィラーとしては、例えば、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ケイ素、炭化ケイ素、窒化ケイ素、窒化アルミニウム、炭酸カルシウムなどが挙げられる。ガラスフレーク、グラファイト、タルク、雲母、ベントナイトなどの板状構造を有する無機物粒子、炭化ケイ素ウィスカーなどの針状構造を有する無機粒子、ヒュームドシリカなどのナノフィラー(レーザー回折散乱法で求められる体積基準での中位径(D50)が1μm未満のフィラー)などの比表面積の大きな無機フィラーについては、高い増粘効果を期待できる。尚、板状構造を有する無機物粒子については、ガスバリア性の効果も期待できる。増粘剤として利用可能なフィラーは、無機フィラーでなくても有機フィラーであってもよい。該有機フィラーとしては、例えば、PTFEやPFAのファインパウダー(D50:100~800μm)などが利用可能である。
 前記第1のフッ素樹脂と、前記第2のフッ素樹脂との融点の差が過度に開いているとフッ素樹脂層FLの形成に特別な手法を要することにもなりかねないため、これらの融点の差は120℃以内であることが好ましい。前記第1のフッ素樹脂と、前記第2のフッ素樹脂との融点の差は、100℃以内であってもよく、80℃以内であってもよい。フッ素樹脂の融点は、示差走査熱量計(DSC)で測定でき、例えば、試料量を約5mgとし、リファレンスとしてアルミナを採用し、昇温速度を10℃/minとした測定により求めることができる。
 第1フッ素樹脂層FL1と第2フッ素樹脂層FL2との内の少なくとも一方には、ポリクロロトリフルオロエチレン(PCTFE)か、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)かの何れかが含まれていることが好ましい。即ち、前記第1のフッ素樹脂と、前記第2のフッ素樹脂との何れかは、ポリクロロトリフルオロエチレン(PCTFE)か、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)かであることが好ましい。
 前記第1のフッ素樹脂と、前記第2のフッ素樹脂とでは、第1のフッ素樹脂の方が第2のフッ素樹脂よりも低融点であることが好ましい。即ち、ポリクロロトリフルオロエチレン(PCTFE)か、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)かの何れかは、第1フッ素樹脂層FL1に含有させることが好ましい。
 PCTFEやFEPは、融点が比較的低いことで良好な流動性を示す温度での焼成が容易であり、ピンホールなどの欠陥ができることを防ぎ易い。また、PCTFEは、ガスバリア性にも優れる。その理由は定かではないが、PCTFEでは分子構造中に嵩高い塩素原子を有していながらPTFEと同程度の密度を有することから分子どうしが引き付け合う凝集性に優れているためであると考えられる。そのため、第1のフッ素樹脂としてこのような樹脂を採用することで第1フッ素樹脂層FL1をボイドなどの欠陥のない緻密な層構造とすることができる。そのことで、槽内側から前記プライマーコーティングPLの側に水や水蒸気が透過することを抑制できる。本実施形態においては、グラスライニング層GLからのアルカリ金属イオンの溶出が抑制されていることでプライマーコーティングPLとグラスライニング層GLとの界面にpHの高いアルカリ水が形成されることが抑制されているが、第1フッ素樹脂層FL1に高いガス(水蒸気)バリア性や水バリア性が備えられることで上記のような機能がより顕著に発揮され得る。
 フッ素樹脂層FLに高い耐熱性を発揮させる観点から、前記第2のフッ素樹脂は、例えば、ポリテトラフルオロエチレン(PTFE)か、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)かの何れかであることが好ましい。
 第2フッ素樹脂層FL2で用いられるフッ素樹脂よりも低融点なPCTFEやFEPを第1フッ素樹脂層FL1に含有させる場合、第1フッ素樹脂層FL1における無機フィラー(増粘剤)の含有量を第2フッ素樹脂層FL2よりも多く(例えば、1.2倍~3倍)して、第1フッ素樹脂層FL1と第2フッ素樹脂層FL2との溶融粘度の値が接近するように調整することでフッ素樹脂層FLが焼成法などによって形成し易くなり得る。
 フッ素樹脂層FLに優れた強度や優れたガスバリア性を発揮させる上ではフッ素樹脂が十分に結晶化していることが好ましい。フッ素樹脂は、一般的な結晶性ポリマーに比べると結晶化する速度が遅い。そのため、焼成によってフッ素樹脂層を形成する場合、焼成後は、ゆっくり冷却する方が望ましい。フッ素樹脂層FLでのフッ素樹脂の結晶化の程度は、フッ素樹脂層FLから採取した試料をDSCで測定して確かめることができる。フッ素樹脂の結晶化の程度は、DSCで前記試料を加熱して融解熱量(Q1(J/g))を測定した後に、該試料を徐冷することで十分に結晶化させ、再び加熱して融解熱量(Q2(J/g))を測定することで確かめることができる。このDSCでの測定で1回目に観測される融解熱量(Q1(J/g))が二回目の融解熱量(Q2(J/g))と同じであればフッ素樹脂層FLに含まれているフッ素樹脂の結晶化度が100%であると判断することができる。フッ素樹脂層FLにおけるフッ素樹脂の結晶化度((Q1/Q2)×100%)は、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましい。尚、DSCでの測定では、加熱時の昇温速度を、例えば、10℃/minとすることができる。また、DSCでの測定では、徐冷時の冷却速度を、例えば、5℃/minとすることができる。
 前記第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、前記フッ素樹脂層の平均厚さが0.3mm以上3mm以下となるように形成され得る。前記フッ素樹脂層の平均厚さは、前記グラスライニング層の表面から前記フッ素樹脂層の表面までの厚さの算術平均値として求めることができる。前記第1フッ素樹脂層FL1は、第2フッ素樹脂層FL2よりも厚さが薄くてもよい。第1フッ素樹脂層FL1は、例えば、第2フッ素樹脂層FL2の厚さの2/3以下であってもよく、1/2以下であってもよい。前記第1フッ素樹脂層FL1の厚さは、例えば、第2フッ素樹脂層FL2の厚さの1/10以上とすることができる。
 前記第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、プライマーコーティングPLの施されたグラスライニング層GLに樹脂粉末を粉体塗装により堆積させた後に焼成する方法を採用して形成させることができる。また、前記第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、樹脂粉末を液状の分散媒に分散させた分散液を吹き付けた後に焼成する方法によっても形成可能である。粉体塗装では、分散媒などの余分な成分の残留を回避し易い。分散液吹付法では、分散媒が揮発する過程で樹脂粒子同士が接近して凝集し易いため、樹脂粒子間の空隙を減少させることができてボイドの形成回避が図られ得る。前記第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、何れか一方を粉体塗装で形成させ、他方を分散液吹付法で形成してもよい。前記第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、一度に焼成を行って形成してもよく、第1フッ素樹脂層FL1を焼成した後に第2フッ素樹脂層FL2の粉体塗装と焼成とを行って形成してもよい。前記第1フッ素樹脂層FL1と第2フッ素樹脂層FL2とは、予め2層構造のフッ素樹脂フィルムを作製した上で、このフッ素樹脂フィルムをプライマーコーティングPLの施されたグラスライニング層GLに貼り合せて熱融着させるようにして形成してもよい。
 上記の開示において、プライマーがコーティングされているグラスライニング層に積層するフッ素樹脂層はポリクロロトリフルオロエチレン(PCTFE)を含むことが特に好ましい。ポリクロロトリフルオロエチレン(PCTFE)を含むフッ素樹脂層は、低アルカリグラスライニング層だけでなく、アルカリ金属イオンの溶出量が12(mg/m)を超えるような通常のグラスライニング層に対してもピンホール等の欠陥が少ない耐食性に優れた層を形成するのに有効である。プライマーがコーティングされているグラスライニング層の表面にポリクロロトリフルオロエチレン(PCTFE)が接するようにフッ素樹脂層の形成されているグラスライニング製品は、耐食性と耐薬品性とに優れる。即ち、母材と、該母材に積層されたグラスライニング層と、該グラスライニング層に積層されたフッ素樹脂層とを備え、該フッ素樹脂層の積層されている前記グラスライニング層の表面にはプライマーがコーティングされており、前記フッ素樹脂層がポリクロロトリフルオロエチレン(PCTFE)を含み、好ましくは前記グラスライニング層が低アルカリグラスライニング層であるグラスライニング製品は耐食性、耐薬品性に優れる。前記低アルカリグラスライニング層は、少なくともプライマーがコーティングされる表層部がバリアガラス層であることが好ましい。
 本実施形態においては、フッ素樹脂層FLを設けるグラスライニング製品として、槽本体11を例示しているが、蓋体12、攪拌翼21、バッフル30などにも槽本体11と同様に低アルカリグラスライニング層、プライマーコーティング、及び、フッ素樹脂層を設けてもよい。蓋体12、攪拌翼21、バッフル30などにも槽本体11と同様の構成を備えさせる場合、それぞれの間で各層の形成厚さや層数、形成材料が共通している必要はなく、それらが異なっていてもよい。
 上記の例示は、あくまで本発明の一例であり、本発明は、上記のような収容装置の構成部材とは別のグラスライニング製品でもあり得る。即ち、本発明は、上記例示に何等限定されるものではなく、その技術的意義が著しく損なわれることがない範囲において各種変更が可能である。
 次にグラスライニング製品の製造例を示してより詳細に説明するが本発明は次に示すようなものにも限定されるものではない。
 まず、フッ素樹脂層の形成されておらず、グラスライニング層が低アルカリグラスライニング層ではないグラスライニング製品を用意する。
 次いで、このグラスライニング製品のグラスライニング層を低アルカリグラスライニング層へと変化させるためのイオン交換処理を実施する。
 イオン交換処理では、グラスライニング層の表層部のナトリウムイオン、リチウムイオン、カリウムイオンなどを水素イオンに交換する。
 イオン交換処理は、グラスライニング層の表面を酸で処理して実施する。
 このとき、グラスライニング製品には、グラスライニング層の表面でのアルカリ金属イオンの溶出量が12(mg/m)以下となるようにイオン交換処理が施される。
 このイオン交換処理後のグラスライニング製品にプライマーをコーティングし、フッ素樹脂層を形成することでフッ素樹脂層がグラスライニング層に対して良好に接着したグラスライニング製品が得られる。
 プライマーには、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)を含むフッ素樹脂系プライマーを用いる。
 フッ素樹脂系プライマーは、固形分が20質量%~55質量%程度の水系ディスパージョンの形態のもので、常温での粘度が10mPa・s~900mPa・sのものを用いる。
 プライマーは、フッ素樹脂層を設ける範囲全域にコーティングする。
 尚、プライマーをコーティングする前には、グラスライニング層の表面をサンドブラストで粗化し、粗化したグラスライニング層の表面を溶剤で洗浄する。
 溶剤が十分に乾いたところでプライマーをグラスライニング層の表面にスプレーし、100℃の温度で10分程度乾燥する。
 次にフッ素樹脂層を形成する。
 フッ素樹脂層は、例えば、プライマーがコーティングされているグラスライニング層の表面にテトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)を粉体塗装して焼成を行うことで形成する。
 焼成のための加熱温度は340℃~380℃とし、加熱時間は15分~30分程度とする。
 このようにしてフッ素樹脂層がグラスライニング層に強く接着したグラスライニング製品を得ることができる。
 そして、そのようにして得られるグラスライニング製品は、グラスライニング層が低アルカリグラスライニング層であることでフッ素樹脂層とグラスライニング層との良好な接着状態が長期間に亘って維持されることになる。
 上記のような事例からも本発明の有効性を確認することができる。
1:収容装置、10:収容槽、11:槽本体、11a:内面、11c:空間部、12:蓋体、13:開閉弁、20:攪拌装置、21:攪拌翼、21a:回転軸、21b:攪拌羽根、30:バッフル、111:開口部、112:内壁、113:外壁、114:排出口、131:弁体、132:弁座、BL:基体層、FL:フッ素樹脂層、FL1:第1フッ素樹脂層、FL2:第2フッ素樹脂層、GL:グラスライニング層、GLL:下引きガラス層、GLU:上引きガラス層、PL:プライマーコーティング

Claims (6)

  1.  母材と、該母材に積層されたグラスライニング層と、該グラスライニング層に積層されたフッ素樹脂層とを備え、
     該フッ素樹脂層の積層されている前記グラスライニング層の表面にはプライマーがコーティングされており、
     前記グラスライニング層は、低アルカリグラスライニング層である、グラスライニング製品。
  2.  前記フッ素樹脂層には、ポリクロロトリフルオロエチレン(PCTFE)が含まれている請求項1記載のグラスライニング製品。
  3.  前記フッ素樹脂層には、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)が含まれている請求項1又は2記載のグラスライニング製品。
  4.  前記フッ素樹脂層には、前記グラスライニング層に接する第1層と、該第1層に前記グラスライニング層とは反対側から接する第2層とが含まれている請求項1乃至3の何れか1項に記載のグラスライニング製品。
  5.  前記第1層には第1のフッ素樹脂が含まれ、
     前記第2層には第2のフッ素樹脂が含まれており、
     前記第1のフッ素樹脂と、前記第2のフッ素樹脂との融点の差が120℃以内である請求項4記載のグラスライニング製品。
  6.  前記フッ素樹脂層の平均厚さが0.3mm以上3mm以下である請求項1乃至5の何れか1項に記載のグラスライニング製品。
PCT/JP2022/019699 2021-05-10 2022-05-09 グラスライニング製品 WO2022239740A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022002508.5T DE112022002508T5 (de) 2021-05-10 2022-05-09 Emailliertes Produkt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079771 2021-05-10
JP2021079771A JP7299941B2 (ja) 2021-05-10 2021-05-10 グラスライニング製品

Publications (1)

Publication Number Publication Date
WO2022239740A1 true WO2022239740A1 (ja) 2022-11-17

Family

ID=84029609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019699 WO2022239740A1 (ja) 2021-05-10 2022-05-09 グラスライニング製品

Country Status (4)

Country Link
JP (1) JP7299941B2 (ja)
DE (1) DE112022002508T5 (ja)
TW (1) TW202306763A (ja)
WO (1) WO2022239740A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4717635B1 (ja) * 1967-10-17 1972-05-23
JPS52121685A (en) * 1976-04-07 1977-10-13 Matsushita Electric Ind Co Ltd Article coated with fluorine resin
JPS56150467A (en) * 1980-04-25 1981-11-20 Ejiri Horo Kk Coating of enameled surface with fluorine-containing resin
JPS59131452A (ja) * 1983-01-17 1984-07-28 日立化成工業株式会社 積層板
JPH03203640A (ja) * 1989-12-29 1991-09-05 Nippon Carbide Ind Co Inc 新規な複合体
JPH0596235A (ja) * 1991-10-09 1993-04-20 Sumitomo Electric Ind Ltd 弗素樹脂被覆物
US20060093830A1 (en) * 2004-11-02 2006-05-04 Solutia, Inc. Polymer sheets comprising a fluoropolymer
JP2009197252A (ja) * 2008-02-19 2009-09-03 Kobelco Eco-Solutions Co Ltd 低溶出性グラスライニング及びその製造方法、並びに低溶出性グラスライニング製構造物
JP2010115831A (ja) * 2008-11-12 2010-05-27 Asahi Glass Co Ltd 積層シートの製造方法
CN102787669A (zh) * 2012-09-12 2012-11-21 杨明 一种通过复合高密度复合膜增强保温性能的防火保温材料
JP2013155421A (ja) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd グラスライニング表面からのアルカリ金属溶出を抑制する処理方法、アルカリ金属溶出抑制グラスライニング、及びグラスライニング構造物
JP2015515433A (ja) * 2012-02-28 2015-05-28 コーニング インコーポレイテッド 低摩擦コーティングを備えるガラス製物品
WO2015118985A1 (ja) * 2014-02-06 2015-08-13 旭硝子株式会社 ガラスロール
JP2019181735A (ja) * 2018-04-04 2019-10-24 Agc株式会社 積層体の製造方法及び基材の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101770A (ja) 1981-12-14 1983-06-17 Daikin Ind Ltd フツ素樹脂被覆のための下地処理方法
JP4326860B2 (ja) 2003-08-20 2009-09-09 株式会社神鋼環境ソリューション グラスライニング反応槽
JP7384621B2 (ja) * 2019-10-29 2023-11-21 株式会社神鋼環境ソリューション グラスライニング製品の補修構造および補修方法
JP7284071B2 (ja) 2019-11-18 2023-05-30 株式会社デンソーワイパシステムズ ワイパーブレードとワイパーアームの結合構造

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4717635B1 (ja) * 1967-10-17 1972-05-23
JPS52121685A (en) * 1976-04-07 1977-10-13 Matsushita Electric Ind Co Ltd Article coated with fluorine resin
JPS56150467A (en) * 1980-04-25 1981-11-20 Ejiri Horo Kk Coating of enameled surface with fluorine-containing resin
JPS59131452A (ja) * 1983-01-17 1984-07-28 日立化成工業株式会社 積層板
JPH03203640A (ja) * 1989-12-29 1991-09-05 Nippon Carbide Ind Co Inc 新規な複合体
JPH0596235A (ja) * 1991-10-09 1993-04-20 Sumitomo Electric Ind Ltd 弗素樹脂被覆物
US20060093830A1 (en) * 2004-11-02 2006-05-04 Solutia, Inc. Polymer sheets comprising a fluoropolymer
JP2009197252A (ja) * 2008-02-19 2009-09-03 Kobelco Eco-Solutions Co Ltd 低溶出性グラスライニング及びその製造方法、並びに低溶出性グラスライニング製構造物
JP2010115831A (ja) * 2008-11-12 2010-05-27 Asahi Glass Co Ltd 積層シートの製造方法
JP2013155421A (ja) * 2012-01-31 2013-08-15 Kobelco Eco-Solutions Co Ltd グラスライニング表面からのアルカリ金属溶出を抑制する処理方法、アルカリ金属溶出抑制グラスライニング、及びグラスライニング構造物
JP2015515433A (ja) * 2012-02-28 2015-05-28 コーニング インコーポレイテッド 低摩擦コーティングを備えるガラス製物品
CN102787669A (zh) * 2012-09-12 2012-11-21 杨明 一种通过复合高密度复合膜增强保温性能的防火保温材料
WO2015118985A1 (ja) * 2014-02-06 2015-08-13 旭硝子株式会社 ガラスロール
JP2019181735A (ja) * 2018-04-04 2019-10-24 Agc株式会社 積層体の製造方法及び基材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Pyrex (Glass Code 7740) | Product information", 14 June 2020 (2020-06-14), pages 1 - 6, XP093003136, Retrieved from the Internet <URL:http://www.hiraoka-sg.co.jp/products/img/tainetsu.pdf> [retrieved on 20221129] *

Also Published As

Publication number Publication date
TW202306763A (zh) 2023-02-16
DE112022002508T5 (de) 2024-03-28
JP2022173815A (ja) 2022-11-22
JP7299941B2 (ja) 2023-06-28

Similar Documents

Publication Publication Date Title
JP5099931B2 (ja) フッ素樹脂複合材料及び該フッ素樹脂複合材料から得ることができるライニング被膜並びに該ライニング被膜を有する被膜体
TWI523924B (zh) A coating composition, a method for producing the same, and a film
WO2012001981A1 (ja) 耐食性および耐アルカリ性に優れた塗装鋼板
CN113604114A (zh) 一种高耐腐蚀性的氟树脂粉末涂料组合物
TW200946567A (en) Powder coating material and fluorine-containing laminate
Hu et al. A robust quasi‐superhydrophobic ceria coating prepared using air‐plasma spraying
JP2005288440A (ja) 耐透過性etfe組成物のコーテイング
JP4825001B2 (ja) スーパーエンプラ積層膜の溶射成膜法
WO2022239740A1 (ja) グラスライニング製品
JP6198779B2 (ja) 耐食性および耐アルカリ性に優れた塗装鋼板
TW200415215A (en) Coating composition, fluorine-containing laminate and resin composition
WO1981002161A1 (en) Composition for coating fluoroplastics
US20210269909A1 (en) Article/part comprising a polymeric component and a metallic coating
JP5658536B2 (ja) 塗装アルミニウムめっき鋼板
JP2011202033A (ja) 塗料組成物、それを用いた被膜製造方法および被膜体
JP4227190B1 (ja) プライマー組成物及び該プライマー組成物からなるプライマー層並びに該プライマー層を用いた皮膜体
JP4243806B2 (ja) 耐熱非粘着塗装鋼板
JP2007070682A (ja) フッ素樹脂被覆鋼板およびその製造方法
JPWO2003068499A1 (ja) Etfeライニング部材
JPWO2018186474A1 (ja) 塗膜の耐傷付き性及び耐吸湿性が良好で端面赤錆耐食性に優れるプレコート鋼板
JP2002338882A (ja) 化学プラント機器
JPS63243177A (ja) 塗装用樹脂組成物
JP2005186288A (ja) 耐熱非粘着塗装鋼板
JPH11106699A (ja) テトラフルオロエチレン共重合体組成物で被覆された鋼製物品
TW202003120A (zh) 電子物品、以及對電子物品的成膜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202347083064

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 112022002508

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807441

Country of ref document: EP

Kind code of ref document: A1