WO2022236930A1 - 一种平衡减振齿轮以及用于其的多目标结构优化方法 - Google Patents

一种平衡减振齿轮以及用于其的多目标结构优化方法 Download PDF

Info

Publication number
WO2022236930A1
WO2022236930A1 PCT/CN2021/101969 CN2021101969W WO2022236930A1 WO 2022236930 A1 WO2022236930 A1 WO 2022236930A1 CN 2021101969 W CN2021101969 W CN 2021101969W WO 2022236930 A1 WO2022236930 A1 WO 2022236930A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
weight
balance
web
reducing
Prior art date
Application number
PCT/CN2021/101969
Other languages
English (en)
French (fr)
Inventor
李刚炎
王平俊
包汉伟
刘思睿
Original Assignee
武汉理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉理工大学 filed Critical 武汉理工大学
Publication of WO2022236930A1 publication Critical patent/WO2022236930A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to a balanced damping gear and a multi-objective structure optimization method for it.
  • the second type will The integrated design method of the weight block and the gear body solves the difficulty of high assembly accuracy in the first category, but due to the irregular structure of the weight block, it is easy to appear under the same engine balance performance requirements.
  • the weight-increasing block is too large or too thick. Therefore, the second type of structure still cannot solve the problem of limited assembly space.
  • the technical problem to be solved by the present invention is to provide a balanced damping gear and a multi-objective structure optimization method for it to solve the problem of complicated production process and limited installation space of the balanced damping gear.
  • a balanced damping gear including a gear body, an elastic component, a counterweight component and a weight reduction component, the gear body includes a gear hub 1, a gear web 2 and a gear outer ring 5, and the gear web 2 is sleeved outside the gear hub 1 , the gear outer ring 5 is sheathed outside the gear web 2;
  • the gear web 2 and the gear outer ring 5 are of an integrated structure; the gear hub 1, the gear web 2 and the gear outer ring 5 are all formed by powder metallurgy processing.
  • the elastic component is a rubber ring 3, which is sleeved between the gear hub 1 and the gear web 2, and the gear hub 1, the rubber ring 3 and the gear web 2 are bonded together through a vulcanization process.
  • the weight assembly is a weight-increasing block 4 , and the weight-increasing blocks 4 are symmetrically distributed on the front and rear sides of the gear web 2 .
  • the weighting block 4 is a protruding fan-shaped structure, the outer diameter of the fan-shaped structure of the weighting block 4 is less than or equal to the outer diameter of the gear web 2, and the inner circle of the fan-shaped structure of the weighting block 4 The diameter is equal to or greater than the inner circle diameter of the gear web 2 .
  • the weight reduction assembly includes weight reduction holes 6 and/or weight reduction grooves 7, and the weight reduction holes 6 and/or weight reduction grooves 7 are arranged on the gear web 2 and arranged on the lower side of the counterweight assembly.
  • the weight-reducing groove 7 is a fan-shaped ring, and the outer diameter of the fan-shaped ring structure of the weight-reducing groove 7 is less than or equal to the outer diameter of the gear web 2, and the inner diameter of the fan-shaped structure of the weight-reducing groove 7 Equal to or greater than the diameter of the inner circle of the gear web 2, the diameter of the two semicircular rings of the weight-reducing groove 7 is equal to the difference between the outer ring and the inner diameter of the fan-shaped structure of the weight-reducing groove 7, and the depth of the weight-reducing groove 7 is smaller than that of the gear the thickness of the web 2;
  • a plurality of lightening holes 6 are sequentially arranged at intervals along the arc length direction of the lightening groove 7 .
  • a multi-objective structure optimization method for the above-mentioned balanced damping gear characterized in that it comprises the following steps:
  • S1 analyzes the structure of the balance damping gear, and calculates the addendum height and dedendum height of the balance damping gear according to the basic design parameters of the balance damping gear.
  • the basic design parameters include gear modulus, gear teeth number, addendum height coefficient, pressure
  • S4 selects the key structural parameters of the balance damping gear as the input quantity, takes the mass, moment of inertia, and unbalance of each component as the output quantity, and uses the radial basis function model to establish a mapping function between each key structural parameter and the balance characteristic;
  • mapping model error-relative root mean square error, relative average error, relative maximum error, coefficient of determination verify the key structural parameters and balance performance of balanced vibration-damping gear counterweight components and weight-reducing components
  • the mapping model accuracy of the indicator
  • S6 uses the mass, moment of inertia, and balance characteristic index of each component to reach the target value as the multi-objective function to establish a multi-objective optimization model for the key structural parameters of the balanced vibration-damping gear;
  • S7 obtains the optimal value of the key structural parameters of the weight-increasing component and weight-reducing component of the balanced vibration-reduction gear;
  • S8 simulates the optimized variable values obtained through optimization, and verifies the accuracy of the multi-objective optimization model of the key structural parameters of the balanced damping gear through comparative analysis of relative errors.
  • the elastic component is a rubber ring 3, and the rubber ring 3 is sleeved between the gear hub 1 and the gear web 2;
  • the weight 4 and the weight-increasing block 4 are protruding fan-shaped structures;
  • the weight-reducing assembly includes a weight-reducing hole 6 and a weight-reducing groove 7, and the weight-reducing groove 7 is arranged on the gear web 2, and is arranged on the weight-increasing block of the counterweight assembly
  • the weight reducing groove 7 is a fan-shaped ring, and a plurality of weight reducing holes 6 are arranged at intervals along the arc length direction of the weight reducing groove 7;
  • step S2 the theoretical calculation model expression of the balance characteristic index of the weight-increasing block 4 is:
  • H is the thickness of the weighting block 4
  • I is the arc length of the weighting block 4
  • is the density of the weighting block 4
  • k is the slope of the intercept line at the bottom end of the weighting block 4,
  • the calculation model expression of the balance characteristic index of the lightening hole 6 is:
  • n is the number of 6 weight reducing holes
  • h k is the depth of 6 weight reducing holes
  • d k is the diameter of 6 weight reducing holes
  • L k is the distance from the center of the 6 weight reducing holes to the coordinate axis O;
  • the calculation model expression of the balance characteristic index of the weight reducing tank 7 is:
  • bc is the depth of the weight-reducing groove 7
  • Rc is the radius of the outer ring of the weight-reducing groove 7
  • hc is the thickness of the weight-reducing groove 7
  • is the density of the weight-reducing groove 7
  • ⁇ 0 is the corresponding Expansion angle
  • m c1 is the quality removed by the fan-shaped part of the weight reducing groove 7
  • m c2 is the total mass of the semi-discs on both sides of the weight reducing groove 7;
  • ⁇ x is the density of the rubber ring 3
  • R x is the outer diameter of the rubber ring 3
  • r x is the inner diameter of the rubber ring 3
  • h x is the thickness of the rubber ring 3;
  • m T , J T , U T , m W , J W , U W , m H , J H , U H are the gear outer ring 5, gear web 2, gear hub 1, etc.
  • the mass, moment of inertia and unbalance of the standard structure, m p , J p , U p , m k , J k , m c , U k , J c , U c , m x , J x , U x are balance vibration reduction
  • step S4 the mapping function expression corresponding to the balance characteristic of the balanced damping gear is:
  • step S6 the expression of the multi-objective optimization model for the key structural parameters of the balanced damping gear is:
  • step S8 the relative error expression is:
  • the key structural parameters include the inner circle radius r of the weight-increasing block 4 of the balance damping gear, the distance L from the intersection point of the inner circle and the boundary section line of the weight-increasing block 4 to the X axis, the increase The included angle ⁇ between the boundary section line of the weight block 4 and the X axis, the thickness H of the weight block 4, the diameter d k of the weight reduction hole 6 of the gear web 2 of the balance damping gear, and the clip between the weight reduction holes 6 Angle ⁇ 2 , the width b c of the weight reduction groove 7 of the gear web 2 of the balance damping gear, the depth h c of the weight reduction groove 7 , the angle ⁇ of the weight reduction groove 7 , the outer diameter R x of the rubber ring 3 , and the thickness h x of the rubber ring 3 , and the ranking of the influence degree of key structural parameters on the comprehensive balance characteristic index is: r
  • the balanced vibration-damping gear of the present invention integrates the gear hub, gear web, weight-increasing component, weight-reducing component, and gear outer ring, which can simplify the production process of the balanced vibration-damping gear and solve the problem of complex production process of the balanced vibration-damping gear.
  • the problem of limited installation space improves the generalization ability of the balance damping gear and reduces the manufacturing cost of the balance damping gear. It is especially suitable for automobile three-cylinder engines and improves the assembly accuracy of the engine flywheel side weight-added components.
  • the front and rear sides of the gear web of the balance damping gear of the present invention are symmetrically provided with weight-increasing blocks.
  • the weight-increasing blocks are arranged in a protruding fan-shaped structure, and the fan-shaped structure of the weight-increasing blocks is irregular by cutting two concentric circles with two symmetrical straight lines. Ring shape, and symmetrical about the Y axis, this structure solves the problem of limited installation space of the elastic mating gear;
  • the balance vibration damping gear of the present invention adds a weight reduction component, and sets the weight reduction hole and the weight reduction groove as a general structure,
  • the structure of the weight-increasing block is simplified, and the lightweight design level of the balance damping gear is improved.
  • the multi-objective structural optimization method of the balanced vibration-damping gear of the present invention uses online predictive simulation analysis and optimized structural parameters to solve technical problems such as 100% detection, inaccurate detection and positioning, complex fixture design, and high cost in engineering practice , which effectively improves the structure optimization design efficiency of the balance damping gear, reduces the detection cost of the balance damping gear, and realizes the online analysis and prediction performance of the balance performance index prediction of the balance damping gear.
  • Fig. 1 is a schematic structural view of a balanced damping gear in an embodiment of the present invention
  • Fig. 2 is a flow chart of the multi-objective structure optimization method for the above-mentioned balanced damping gear in the embodiment of the present invention
  • the balanced damping gear in an embodiment of the present invention includes a gear body, an elastic component, a counterweight component and a weight reduction component.
  • the gear body includes a gear hub 1, a gear web 2 and The gear outer ring 5 and the gear web 2 are sleeved outside the gear hub 1, the gear outer ring 5 is sleeved outside the gear web 2; the elastic component is arranged between the gear hub 1 and the gear web 2, and the counterweight assembly and the The heavy component is arranged on the gear web 2 .
  • gear web 2 and the gear outer ring 5 are of an integrated structure; the gear hub 1 , the gear web 2 and the gear outer ring 5 are all formed by powder metallurgy processing.
  • the elastic component is a rubber ring 3, and the rubber ring 3 is sleeved between the gear hub 1 and the gear web 2, and the gear hub 1, the rubber ring 3 and the gear web 2 are bonded together through a vulcanization process; the rubber ring 3
  • the outer diameter of the rubber ring 3 is equal to the inner diameter of the gear web 2, and the inner diameter of the rubber ring 3 is equal to the outer diameter of the gear hub 1.
  • the counterweight assembly is a weight-increasing block 4
  • the weight-increasing blocks 4 are symmetrically distributed on the front and rear sides of the gear web 2 .
  • the weight-increasing block 4 is a protruding fan-shaped structure; the fan-shaped structure of the weight-increasing block 4 is an irregular ring shape obtained by cutting two concentric circles with two symmetrical straight lines, and is symmetrical about the Y axis.
  • the outer circle diameter is smaller than or equal to the outer circle diameter of the gear web 2
  • the inner circle diameter of the fan-shaped structure of the weight block 4 is equal to or greater than the inner circle diameter of the gear web 2 .
  • the weight reduction assembly includes weight reduction holes 6 and/or weight reduction grooves 7, and the weight reduction holes 6 and/or weight reduction grooves 7 are arranged on the gear web 2 and arranged under the weight increasing block 4 of the counterweight assembly. side.
  • the projection shape of the lightening groove 7 on the XOY plane is a fan-shaped ring, which is symmetrical with respect to the Y axis, and the outer diameter of the fan-shaped ring structure of the weight-reducing groove 7 is less than or equal to the outer diameter of the gear web 2, and
  • the diameter of the inner circle of the fan-shaped structure of the weight-reducing groove 7 is equal to or greater than the diameter of the inner circle of the gear web 2, and the diameters of the two semicircular rings of the weight-reducing groove 7 are equal to the diameters of the outer ring and the inner circle of the fan-shaped structure of the weight-reducing groove 7 difference, the depth of the lightening groove 7 is less than the thickness of the gear web 2;
  • a plurality of lightening holes 6 are sequentially arranged at intervals along the arc length direction of the lightening groove 7 .
  • weight reduction holes 6 are sequentially arranged at intervals along the arc length direction of the gear web 2; the weight reduction holes 6 are provided in a through hole structure and are symmetrical with respect to the Y axis , the diameter of the lightening hole 6 is smaller than the difference between the outer and inner diameters of the gear web 2 .
  • the balance damping gear is located on one side of the balance shaft of the engine, and is installed on the flywheel side of the balance shaft by cooperating with the spline on the balance shaft;
  • the inertia moment of the engine due to its own unbalanced structure passes through the transmission gear on the crankshaft and meshes with the balance damping gear on the balance shaft, thereby driving the rotation of the balance shaft and the counterweight structure.
  • the counterweight structure on the shaft and the weight-increasing block 4 on the balance damping gear produce the unbalance in the opposite direction to the unbalance produced by the engine during operation, so the vibration and vibration caused by the engine's own unbalance can be reduced.
  • the elastic force of the rubber ring 3 relieves the impact force during the transmission process from the end of the crankshaft to the balance shaft, ensuring the smooth operation of the engine. 11%, and the assembly structure space has been increased by 26%.
  • a multi-objective structure optimization method for the above-mentioned balance damping gear comprising the following steps:
  • S1 analyzes the structure of the balance damping gear, and calculates the addendum height and dedendum height of the balance damping gear according to the basic design parameters of the balance damping gear.
  • the basic design parameters include gear modulus, gear teeth number, addendum height coefficient, pressure
  • S4 selects the key structural parameters of the balance damping gear as the input quantity, takes the mass, moment of inertia, and unbalance of each component as the output quantity, and uses the radial basis function model to establish a mapping function between each key structural parameter and the balance characteristic;
  • mapping model error-relative root mean square error, relative average error, relative maximum error, coefficient of determination verify the key structural parameters and balance performance of balanced vibration-damping gear counterweight components and weight-reducing components
  • the mapping model accuracy of the indicator
  • S6 uses the mass, moment of inertia, and balance characteristic index of each component to reach the target value as the multi-objective function to establish a multi-objective optimization model for the key structural parameters of the balanced vibration-damping gear;
  • S7 obtains the optimal value of the key structural parameters of the weight-increasing component and weight-reducing component of the balanced vibration-reduction gear;
  • the elastic component is a rubber ring 3, and the rubber ring 3 is sleeved between the gear hub 1 and the gear web 2;
  • the counterweight component is a weight-increasing block 4, and the front and rear sides of the gear web 2 are symmetrically distributed with weight-increasing blocks 4.
  • the weight-increasing block 4 is a protruding fan-shaped structure;
  • the weight-reducing assembly includes a weight-reducing hole 6 and a weight-reducing groove 7.
  • the weight-reducing groove 7 is arranged on the gear web 2 and arranged on the side of the weight-increasing block 4 of the counterweight assembly.
  • the weight reducing groove 7 is a fan-shaped ring, and a plurality of weight reducing holes 6 are arranged at intervals along the arc length direction of the weight reducing groove 7;
  • step S2 the theoretical calculation model expression of the balance characteristic index of the weight-increasing block 4 is:
  • H is the thickness of the weighting block 4
  • I is the arc length of the weighting block 4
  • is the density of the weighting block 4
  • k is the slope of the intercept line at the bottom of the weighting block 4,
  • the calculation model expression of the balance characteristic index of the lightening hole 6 is:
  • n is the number of 6 weight reducing holes
  • h k is the depth of 6 weight reducing holes
  • d k is the diameter of 6 weight reducing holes
  • L k is the distance from the center of the 6 weight reducing holes to the coordinate axis O;
  • the calculation model expression of the balance characteristic index of the weight reducing tank 7 is:
  • bc is the depth of the weight-reducing groove 7
  • Rc is the radius of the outer ring of the weight-reducing groove 7
  • hc is the thickness of the weight-reducing groove 7
  • is the density of the weight-reducing groove 7
  • ⁇ 0 is the corresponding Expansion angle
  • m c1 is the quality removed by the fan-shaped part of the weight reducing groove 7
  • m c2 is the total mass of the semi-discs on both sides of the weight reducing groove 7;
  • ⁇ x is the density of the rubber ring 3
  • R x is the outer diameter of the rubber ring 3
  • r x is the inner diameter of the rubber ring 3
  • h x is the thickness of the rubber ring 3;
  • m T , J T , U T , m W , J W , U W , m H , J H , U H are the gear outer ring 5, gear web 2, gear hub 1, etc.
  • the mass, moment of inertia and unbalance of the standard structure, m p , J p , U p , m k , J k , m c , U k , J c , U c , m x , J x , U x are balance vibration reduction
  • step S4 the mapping function expression corresponding to the balance characteristic of the balanced damping gear is:
  • step S6 the expression of the multi-objective optimization model for the key structural parameters of the balanced damping gear is:
  • step S8 the relative error expression is:
  • the key structural parameters include the radius r of the inner circle of the weighting block 4 of the balanced damping gear, the distance L between the intersection of the inner circle and the boundary section of the weighting block 4 to the X axis, and the distance L of the weighting block 4
  • the order of the influence degree of key structural parameters on comprehensive balance characteristic index is: r> ⁇ >H>b c > ⁇ 2 >d k >L>h x > ⁇ >R x >h c .
  • step S2 the calculation of the balance characteristic index is completed in the space Cartesian coordinate system XYZ, the origin O of the space Cartesian coordinate system is the center of the inner hole of the balance vibration damping gear, the X axis is the axis direction of the inner hole of the balance vibration damping gear, and the Y axis In order to balance the vertical line direction of the vibration damping gear side, the Z axis is the horizontal line direction of the balance vibration damping gear side.
  • step S6 the size constraint of the key parameters of the balance damping gear is the processing error range, and the deviation constraint of the balance characteristic index is the parameter design range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Gears, Cams (AREA)

Abstract

本发明公开了一种平衡减振齿轮以及用于其的多目标结构优化方法,包括齿轮本体、弹性组件、配重组件和减重组件,齿轮本体包括齿轮轮毂、齿轮腹板和齿轮外圈,齿轮腹板套设于齿轮轮毂外,齿轮外圈套设于齿轮腹板外;弹性组件布置于齿轮轮毂与齿轮腹板之间,配重组件和减重组件设置于齿轮腹板上。本发明解决平衡减振齿轮生产工艺复杂、安装空间受限的难题,提升平衡减振齿轮的通用化能力,减低平衡减振齿轮制造成本的特点。

Description

一种平衡减振齿轮以及用于其的多目标结构优化方法 技术领域
本发明涉及一种平衡减振齿轮以及用于其的多目标结构优化方法。
背景技术
为消除发动机的一阶、二阶惯性力所引起的振动和噪声,平衡轴系统在发动机技术领域得到了广泛的应用,其中,承担平衡轴系统动力传递的弹性齿轮成为分析平衡轴系统平衡减振性能的重中之重。
而当前发动机所用弹性齿轮主要有两类,一类是与增重块组合安装在平衡轴的飞轮侧,一类是将增重块与弹性齿轮制为一体,两类结构的共同点为由于增重块的形状不规则性,加大了加工难度,增加了制造成本,不同的第一类的组合方式对弹性齿轮和增重块的安装精度和空间提出了很高的要求,第二类将增重块和齿轮本体制为一体的设计方法,虽然解决了第一类中的装配精度要求较高的难点,但是由于增重块为不规则结构,在相同的发动机平衡性能要求下,易出现增重块过大或者过厚的现象,因此,第二类结构依然不能很好解决装配空间局限性的难题。
发明内容
本发明要解决的技术问题是,针对现有技术存在的上述缺陷,提供了一种平衡减振齿轮以及用于其的多目标结构优化方法,解决平衡减振齿轮生产工艺复杂、安装空间受限的难题,提升平衡减振齿轮的通用化能力,减低平衡减振齿轮制造成本的特点。
本发明为解决上述技术问题所采用的技术方案是:
一种平衡减振齿轮,包括齿轮本体、弹性组件、配重组件和减重组件,齿轮本体包括齿轮轮毂1、齿轮腹板2和齿轮外圈5,齿轮腹板2套设于齿轮轮毂1外,齿轮外圈5套设于齿轮腹板2外;弹性组件布置于齿轮轮毂1与齿轮腹板2之间,配重组件和减重组件设置于齿轮腹板2上。
按照上述技术方案,齿轮腹板2与齿轮外圈5为一体式结构;齿轮轮毂1、齿轮腹板2和齿轮外圈5均采用粉末冶金加工方法成型。
按照上述技术方案,弹性组件为橡胶环3,橡胶环3套设于齿轮轮毂1与齿轮腹板2之间,齿轮轮毂1、橡胶环3和齿轮腹板2通过硫化工艺粘接为一体。
按照上述技术方案,配重组件为增重块4,齿轮腹板2的前后两侧对称分布有增重块4。
按照上述技术方案,增重块4为凸出的扇形结构,增重块4的扇形结构的外圆直径小于或等于齿轮腹板2的外圆直径,且增重块4的扇形结构的内圆直径等于或大于齿轮腹板2的 内圆直径。
按照上述技术方案,减重组件包括减重孔6和/或减重槽7,减重孔6和/或减重槽7设置于齿轮腹板2上,布置于配重组件的下侧。
按照上述技术方案,减重槽7为一个扇形环,减重槽7的扇形环结构的外圆直径小于或等于齿轮腹板2的外圆直径,且减重槽7的扇形结构的内圆直径等于或大于齿轮腹板2的内圆直径,减重槽7的两个半圆环的直径等于减重槽7的扇形结构的外圈与内圆直径之差,减重槽7的深度小于齿轮腹板2的厚度;
多个减重孔6沿减重槽7的弧长方向依次间隔布置。
一种用于以上所述的平衡减振齿轮的多目标结构优化方法,其特征在于,包括以下步骤:
S1分析平衡减振齿轮结构,根据平衡减振齿轮的基本设计参数,计算出平衡减振齿轮的齿顶高、齿根高,基本设计参数包括齿轮模数、齿轮齿数、齿顶高系数、压力角、齿宽,同时,从零件材料和制造工艺方面,分析平衡减振齿轮的齿轮外圈5、齿轮腹板2、齿轮轮毂1、配重组件、减重组件和弹性组件各组成组件材料,确定平衡减振齿轮的齿轮外圈5、齿轮腹板2、齿轮轮毂1、配重组件、减重组件和弹性组件的各组件的密度参数;
S2提取平衡减振齿轮增重组件、减重组件、弹性组件基本参数,应用质量、转动惯量、不平衡量的理论计算基础,构建增重组件、减重组件、弹性组件的结构参数与平衡性能指标的理论计算模型;
S3应用正交实验方法,得到影响平衡减振的关键结构参数,并分析各关键结构参数对平衡减振齿轮平衡性能指标影响的灵敏度;
S4选取平衡减振齿轮关键结构参数为输入量,以各组件的质量、转动惯量、不平衡量为输出量,采用径向基函数模型建立各关键结构参数与平衡特性的映射函数;
S5依据径向基函数响应面映射模型误差的评估指标-相对均方根误差、相对平均误差、相对最大误差、决定系数,验证平衡减振齿轮配重组件、减重组件关键结构参数与平衡性能指标的映射模型精度;
S6以各组件的质量、转动惯量、不平衡量的平衡特性指标达到目标值作为多目标函数,建立平衡减振齿轮关键结构参数的多目标优化模型;
S7基于Pareto的NSGA-II多目标遗传算法,得到平衡减振齿轮增重组件、减重组件关键结构参数的最优值;
S8将优化得到的优化变量数值进行仿真,通过相对误差的比较分析,验证平衡减振齿轮关键结构参数的多目标优化模型的精度。
按照上述技术方案,弹性组件为橡胶环3,橡胶环3套设于齿轮轮毂1与齿轮腹板2之 间;配重组件为增重块4,齿轮腹板2的前后两侧对称分布有增重块4,增重块4为凸出的扇形结构;减重组件包括减重孔6和减重槽7,减重槽7设置于齿轮腹板2上,布置于配重组件的增重块4的下侧,减重槽7为一个扇形环,多个减重孔6沿减重槽7的弧长方向依次间隔布置;
在步骤S2中,增重块4的平衡特性指标理论计算模型表达式为:
Figure PCTCN2021101969-appb-000001
式中,H为增重块4厚度,I为增重块4弧长,ρ为增重块4密度,k为增重块4底端截线斜率,
Figure PCTCN2021101969-appb-000002
减重孔6平衡特性指标的计算模型表达式为:
Figure PCTCN2021101969-appb-000003
式中,n为减重孔6个数,h k为减重孔6深度,d k为减重孔6直径,L k为减重孔6圆心距坐标轴O点距离;
减重槽7平衡特性指标的计算模型表达式为:
Figure PCTCN2021101969-appb-000004
式中,b c为减重槽7深度,R c为减重槽7外圈半径,h c为减重槽7厚度、ρ为减重槽7密度,γ 0为减重槽7扇形部分对应展开角度,m c1为减重槽7扇形部分去除的质量,m c2为减重槽7两边半圆盘的总质量;
橡胶环3的平衡特性指标的计算模型表达式为:
Figure PCTCN2021101969-appb-000005
式中,ρ x为橡胶环3密度,R x为橡胶环3外径、r x为橡胶环3内径、h x为橡胶环3厚度;
平衡减振齿轮中标准结构平衡特性指标的计算模型表达式为:
Figure PCTCN2021101969-appb-000006
式中,m T、J T、U T,m W、J W、U W,m H、J H、U H分别为平衡减振齿轮中齿轮外圈5、齿轮腹板2、齿轮轮毂1等标准结构的质量、转动惯量、不平衡量,m p、J p、U p,m k、J k、m c、U k,J c、U c,m x、J x、U x为平衡减振齿轮增重块4、减重孔6、减重槽7、橡胶环3结构的质量、转动惯量、不平衡量;
在步骤S4中,平衡减振齿轮平衡特性对应的映射函数表达式为:
Figure PCTCN2021101969-appb-000007
在步骤S6中,平衡减振齿轮关键结构参数的多目标优化模型表达式为:
Figure PCTCN2021101969-appb-000008
在步骤S8中,相对误差表达式为:
Figure PCTCN2021101969-appb-000009
按照上述技术方案,在步骤S3和S4中,关键结构参数包括平衡减振齿轮的增重块4的内圆半径r、内圆与增重块4边界截线交点到X轴的距离L、增重块4部分边界截线与X轴之间的夹角θ、增重块4厚度H、平衡减振齿轮的齿轮腹板2的减重孔6直径d k、减重孔6之间的夹角β 2、平衡减振齿轮齿轮腹板2的减重槽7宽度b c、减重槽7深度h c、减重槽7角度γ、橡胶环3外径R x、橡胶环3厚度h x,且关键结构参数对综合平衡特性指标的影响程度排序为:r>θ>H>b c>β 2>d k>L>h x>γ>R x>h c
本发明具有以下有益效果:
1、本发明平衡减振齿轮将齿轮轮毂、齿轮腹板、增重组件、减重组件和齿轮外圈制为一体,能够简化平衡减振齿轮的生产工艺,解决平衡减振齿轮生产工艺复杂、安装空间受限的难题,提升平衡减振齿轮的通用化能力,减低平衡减振齿轮制造成本的特点,尤其适用于汽车三缸发动机,提升发动机飞轮侧增重组件的装配精度。
2、本发明平衡减振齿轮的齿轮腹板前后两侧对称设置增重块,增重块为凸出的扇形结构设置,而且增重块的扇形结构为两对称直线截两同心圆所得不规则圆环形状,并关于Y轴对称,这种结构解决了弹性配种齿轮安装空间受限的问题;本发明平衡减振齿轮增加减重组件,并将减重孔和减重槽设置为通用结构,简化了增重块的结构,提升了平衡减振齿轮的轻量化设计水平。
3、本发明平衡减振齿轮的多目标结构优化方法,应用在线预测仿真分析、优化结构参数的方式,解决了工程实际中的100%检测、检测定位不准确、夹具设计复杂、成本高等技术难 题,有效地提高了平衡减振齿轮结构优化设计效率,降低了平衡减振齿轮检测成本,实现了平衡减振齿轮平衡性能指标预测的在线分析预测性能。
附图说明
图1是本发明实施例中平衡减振齿轮的结构示意图;
图2是本发明实施例中用于以上所述的平衡减振齿轮的多目标结构优化方法的流程图;
图中,1-齿轮轮毂,2-齿轮腹板,3-橡胶环,4-增重块,5-齿轮外圈,6-减重孔,7-减重槽。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
参照图1~图2所示,本发明提供的一个实施例中的平衡减振齿轮,包括齿轮本体、弹性组件、配重组件和减重组件,齿轮本体包括齿轮轮毂1、齿轮腹板2和齿轮外圈5,齿轮腹板2套设于齿轮轮毂1外,齿轮外圈5套设于齿轮腹板2外;弹性组件布置于齿轮轮毂1与齿轮腹板2之间,配重组件和减重组件设置于齿轮腹板2上。
进一步地,齿轮腹板2与齿轮外圈5为一体式结构;齿轮轮毂1、齿轮腹板2和齿轮外圈5均采用粉末冶金加工方法成型。
进一步地,弹性组件为橡胶环3,橡胶环3套设于齿轮轮毂1与齿轮腹板2之间,齿轮轮毂1、橡胶环3和齿轮腹板2通过硫化工艺粘接为一体;橡胶环3的外圆直径等于齿轮腹板2的内圆直径,且橡胶环3的内圆直径等于齿轮轮毂1的外圆直径。
进一步地,配重组件为增重块4,齿轮腹板2的前后两侧对称分布有增重块4。
进一步地,增重块4为凸出的扇形结构;增重块4的扇形结构为两对称直线截两同心圆所得不规则圆环形状,且关于Y轴对称,增重块4的扇形结构的外圆直径小于或等于齿轮腹板2的外圆直径,且增重块4的扇形结构的内圆直径等于或大于齿轮腹板2的内圆直径。
进一步地,减重组件包括减重孔6和/或减重槽7,减重孔6和/或减重槽7设置于齿轮腹板2上,布置于配重组件的增重块4的下侧。
进一步地,减重槽7在XOY平面的投影形状为一个扇形环,且相对于Y轴对称,减重槽7的扇形环结构的外圆直径小于或等于齿轮腹板2的外圆直径,且减重槽7的扇形结构的内圆直径等于或大于齿轮腹板2的内圆直径,减重槽7的两个半圆环的直径等于减重槽7的扇形结构的外圈与内圆直径之差,减重槽7的深度小于齿轮腹板2的厚度;
多个减重孔6沿减重槽7的弧长方向依次间隔布置。
进一步地,当没有减重槽7只有减重孔6时,多个减重孔6沿齿轮腹板2弧长方向依次间隔布置;减重孔6为通孔结构设置,且相对于Y轴对称,减重孔6的直径小于齿轮腹板2 的外圆与内圆直径之差。
本发明中所述的平衡减振齿轮的工作原理:平衡减振齿轮位于发动机用平衡轴的一侧,通过与平衡轴上的花键配合,安装在平衡轴飞轮侧;
当发动机运行时,发动机因自身的不平衡结构所带来的惯性力矩通过曲轴上的传动齿轮,经过与平衡轴上的平衡减振齿轮相啮合,从而带动平衡轴和配重结构的旋转,平衡轴上配重结构和平衡减振齿轮上的增重块4在运行过程中所产生的不平衡量与发动机所产生的不平衡量方向相反,因此,可减少发动机因自身不平衡量所带来的振动和噪声,同时,橡胶环3自身的弹力,缓解了曲轴端向平衡轴运动传递过程中的冲击力,保证了发动机运行的平稳性,较原有分离结构和仅有配重组件结构,质量减轻了11%,装配结构空间提升了26%。
一种用于以上所述的平衡减振齿轮的多目标结构优化方法,包括以下步骤:
S1分析平衡减振齿轮结构,根据平衡减振齿轮的基本设计参数,计算出平衡减振齿轮的齿顶高、齿根高,基本设计参数包括齿轮模数、齿轮齿数、齿顶高系数、压力角、齿宽,同时,从零件材料和制造工艺方面,分析平衡减振齿轮的齿轮外圈5、齿轮腹板2、齿轮轮毂1、配重组件、减重组件和弹性组件各组成组件材料,确定平衡减振齿轮的齿轮外圈5、齿轮腹板2、齿轮轮毂1、配重组件、减重组件和弹性组件的各组件的密度参数;
S2提取平衡减振齿轮增重组件、减重组件、弹性组件基本参数,应用质量、转动惯量、不平衡量的理论计算基础,构建增重组件、减重组件、弹性组件的结构参数与平衡性能指标的理论计算模型;
S3应用正交实验方法,得到影响平衡减振的关键结构参数,并分析各关键结构参数对平衡减振齿轮平衡性能指标影响的灵敏度;
S4选取平衡减振齿轮关键结构参数为输入量,以各组件的质量、转动惯量、不平衡量为输出量,采用径向基函数模型建立各关键结构参数与平衡特性的映射函数;
S5依据径向基函数响应面映射模型误差的评估指标-相对均方根误差、相对平均误差、相对最大误差、决定系数,验证平衡减振齿轮配重组件、减重组件关键结构参数与平衡性能指标的映射模型精度;
S6以各组件的质量、转动惯量、不平衡量的平衡特性指标达到目标值作为多目标函数,建立平衡减振齿轮关键结构参数的多目标优化模型;
S7基于Pareto的NSGA-II多目标遗传算法,得到平衡减振齿轮增重组件、减重组件关键结构参数的最优值;
S8将优化得到的优化变量数值带入到Solidworks软件中进行仿真,通过相对误差的比较分析,验证平衡减振齿轮关键结构参数的多目标优化模型的精度。
进一步地,弹性组件为橡胶环3,橡胶环3套设于齿轮轮毂1与齿轮腹板2之间;配重组件为增重块4,齿轮腹板2的前后两侧对称分布有增重块4,增重块4为凸出的扇形结构;减重组件包括减重孔6和减重槽7,减重槽7设置于齿轮腹板2上,布置于配重组件的增重块4的下侧,减重槽7为一个扇形环,多个减重孔6沿减重槽7的弧长方向依次间隔布置;
在步骤S2中,增重块4的平衡特性指标理论计算模型表达式为:
Figure PCTCN2021101969-appb-000010
式中,H为增重块4厚度,I为增重块4弧长,ρ为增重块4密度,k为增重块4底端截线斜率,
Figure PCTCN2021101969-appb-000011
减重孔6平衡特性指标的计算模型表达式为:
Figure PCTCN2021101969-appb-000012
式中,n为减重孔6个数,h k为减重孔6深度,d k为减重孔6直径,L k为减重孔6圆心距坐标轴O点距离;
减重槽7平衡特性指标的计算模型表达式为:
Figure PCTCN2021101969-appb-000013
式中,b c为减重槽7深度,R c为减重槽7外圈半径,h c为减重槽7厚度、ρ为减重槽7密度,γ 0为减重槽7扇形部分对应展开角度,m c1为减重槽7扇形部分去除的质量,m c2为减重槽7两边半圆盘的总质量;
橡胶环3的平衡特性指标的计算模型表达式为:
Figure PCTCN2021101969-appb-000014
式中,ρ x为橡胶环3密度,R x为橡胶环3外径、r x为橡胶环3内径、h x为橡胶环3厚度;
平衡减振齿轮中标准结构平衡特性指标的计算模型表达式为:
Figure PCTCN2021101969-appb-000015
式中,m T、J T、U T,m W、J W、U W,m H、J H、U H分别为平衡减振齿轮中齿轮外圈5、齿轮腹板2、齿轮轮毂1等标准结构的质量、转动惯量、不平衡量,m p、J p、U p,m k、J k、m c、U k,J c、U c,m x、J x、U x为平衡减振齿轮增重块4、减重孔6、减重槽7、橡胶环3结构的质量、转动惯量、不平衡量;
在步骤S4中,平衡减振齿轮平衡特性对应的映射函数表达式为:
Figure PCTCN2021101969-appb-000016
在步骤S6中,平衡减振齿轮关键结构参数的多目标优化模型表达式为:
Figure PCTCN2021101969-appb-000017
在步骤S8中,相对误差表达式为:
Figure PCTCN2021101969-appb-000018
进一步地,在步骤S3和S4中,关键结构参数包括平衡减振齿轮的增重块4的内圆半径r、内圆与增重块4边界截线交点到X轴的距离L、增重块4部分边界截线与X轴之间的夹角θ、增重块4厚度H、平衡减振齿轮的齿轮腹板2的减重孔6直径d k、减重孔6之间的夹角β 2、平衡减振齿轮齿轮腹板2的减重槽7宽度b c、减重槽7深度h c、减重槽7角度γ、橡胶环3外径R x、橡胶环3厚度h x,且关键结构参数对综合平衡特性指标的影响程度排序为:r>θ>H>b c>β 2>d k>L>h x>γ>R x>h c
在步骤S2中,平衡特性指标计算在空间直角坐标系XYZ中完成,空间直角坐标系的原点O为平衡减振齿轮的内孔圆心,X轴为平衡减振齿轮的内孔轴线方向,Y轴为平衡减振齿轮侧面的竖直线方向,Z轴为平衡减振齿轮侧面的水平线方向。
在步骤S6中,平衡减振齿轮关键参数尺寸约束为加工误差范围,平衡特性指标的偏差约束为参数设计范围。
以上的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等效变化,仍属本发明的保护范围。

Claims (10)

  1. 一种平衡减振齿轮,其特征在于,包括齿轮本体、弹性组件、配重组件和减重组件,齿轮本体包括齿轮轮毂(1)、齿轮腹板(2)和齿轮外圈(5),齿轮腹板(2)套设于齿轮轮毂(1)外,齿轮外圈(5)套设于齿轮腹板(2)外;弹性组件布置于齿轮轮毂(1)与齿轮腹板(2)之间,配重组件和减重组件设置于齿轮腹板(2)上。
  2. 根据权利要求1所述的平衡减振齿轮,其特征在于,齿轮腹板(2)与齿轮外圈(5)为一体式结构;齿轮轮毂(1)、齿轮腹板(2)和齿轮外圈(5)均采用粉末冶金加工方法成型。
  3. 根据权利要求1所述的平衡减振齿轮,其特征在于,弹性组件为橡胶环(3),橡胶环(3)套设于齿轮轮毂(1)与齿轮腹板(2)之间,齿轮轮毂(1)、橡胶环(3)和齿轮腹板(2)通过硫化工艺粘接为一体。
  4. 根据权利要求1所述的平衡减振齿轮,其特征在于,配重组件为增重块(4),齿轮腹板(2)的前后两侧对称分布有增重块(4)。
  5. 根据权利要求4所述的平衡减振齿轮,其特征在于,增重块(4)为凸出的扇形结构,增重块(4)的扇形结构的外圆直径小于或等于齿轮腹板(2)的外圆直径,且增重块(4)的扇形结构的内圆直径等于或大于齿轮腹板(2)的内圆直径。
  6. 根据权利要求1所述的平衡减振齿轮,其特征在于,减重组件包括减重孔(6)和/或减重槽(7),减重孔(6)和/或减重槽(7)设置于齿轮腹板(2)上,布置于配重组件的下侧。
  7. 根据权利要求6所述的平衡减振齿轮,其特征在于,减重槽(7)为一个扇形环,减重槽(7)的扇形环结构的外圆直径小于或等于齿轮腹板(2)的外圆直径,且减重槽(7)的扇形结构的内圆直径等于或大于齿轮腹板(2)的内圆直径,减重槽(7)的两个半圆环的直径等于减重槽(7)的扇形结构的外圈与内圆直径之差,减重槽(7)的深度小于齿轮腹板(2)的厚度;
    多个减重孔(6)沿减重槽(7)的弧长方向依次间隔布置。
  8. 一种用于权利要求1所述的平衡减振齿轮的多目标结构优化方法,其特征在于,包括以下步骤:
    S1分析平衡减振齿轮结构,根据平衡减振齿轮的基本设计参数,计算出平衡减振齿轮的齿顶高、齿根高,基本设计参数包括齿轮模数、齿轮齿数、齿顶高系数、压力角、齿宽,同时,从零件材料和制造工艺方面,分析平衡减振齿轮的齿轮外圈(5)、齿轮腹板(2)、齿轮轮毂(1)、配重组件、减重组件和弹性组件各组成组件材料,确定平衡减振齿轮的齿轮外圈(5)、齿轮腹板(2)、齿轮轮毂(1)、配重组件、减重组件和弹性组件的各组件的密度参数;
    S2提取平衡减振齿轮增重组件、减重组件、弹性组件基本参数,应用质量、转动惯量、 不平衡量的理论计算基础,构建增重组件、减重组件、弹性组件的结构参数与平衡性能指标的理论计算模型;
    S3应用正交实验方法,得到影响平衡减振的关键结构参数,并分析各关键结构参数对平衡减振齿轮平衡性能指标影响的灵敏度;
    S4选取平衡减振齿轮关键结构参数为输入量,以各组件的质量、转动惯量、不平衡量为输出量,采用径向基函数模型建立各关键结构参数与平衡特性的映射函数;
    S5依据径向基函数响应面映射模型误差的评估指标-相对均方根误差、相对平均误差、相对最大误差、决定系数,验证平衡减振齿轮配重组件、减重组件关键结构参数与平衡性能指标的映射模型精度;
    S6以各组件的质量、转动惯量、不平衡量的平衡特性指标达到目标值作为多目标函数,建立平衡减振齿轮关键结构参数的多目标优化模型;
    S7基于Pareto的NSGA-II多目标遗传算法,得到平衡减振齿轮增重组件、减重组件关键结构参数的最优值;
    S8将优化得到的优化变量数值进行仿真,通过相对误差的比较分析,验证平衡减振齿轮关键结构参数的多目标优化模型的精度。
  9. 根据权利要求8所述的多目标结构优化方法,其特征在于,弹性组件为橡胶环(3),橡胶环(3)套设于齿轮轮毂(1)与齿轮腹板(2)之间;配重组件为增重块(4),齿轮腹板(2)的前后两侧对称分布有增重块(4),增重块(4)为凸出的扇形结构;减重组件包括减重孔(6)和减重槽(7),减重槽(7)设置于齿轮腹板(2)上,布置于配重组件的增重块(4)的下侧,减重槽(7)为一个扇形环,多个减重孔(6)沿减重槽(7)的弧长方向依次间隔布置;
    在步骤S2中,增重块(4)的平衡特性指标理论计算模型表达式为:
    Figure PCTCN2021101969-appb-100001
    式中,H为增重块(4)厚度,I为增重块(4)弧长,ρ为增重块(4)密度,k为增重块(4)底端截线斜率,
    Figure PCTCN2021101969-appb-100002
    减重孔(6)平衡特性指标的计算模型表达式为:
    Figure PCTCN2021101969-appb-100003
    式中,n为减重孔(6)个数,h k为减重孔(6)深度,d k为减重孔(6)直径,L k为减重孔(6)圆心距坐标轴O点距离;
    减重槽(7)平衡特性指标的计算模型表达式为:
    Figure PCTCN2021101969-appb-100004
    式中,b c为减重槽(7)深度,R c为减重槽(7)外圈半径,h c为减重槽(7)厚度、ρ为减重槽(7)密度,γ 0为减重槽(7)扇形部分对应展开角度,m c1为减重槽(7)扇形部分去除的质量,m c2为减重槽(7)两边半圆盘的总质量;
    橡胶环(3)的平衡特性指标的计算模型表达式为:
    Figure PCTCN2021101969-appb-100005
    式中,ρ x为橡胶环(3)密度,R x为橡胶环(3)外径、r x为橡胶环(3)内径、h x为橡胶环(3)厚度;
    平衡减振齿轮中标准结构平衡特性指标的计算模型表达式为:
    Figure PCTCN2021101969-appb-100006
    式中,m T、J T、U T,m W、J W、U W,m H、J H、U H分别为平衡减振齿轮中齿轮外圈(5)、 齿轮腹板(2)、齿轮轮毂(1)等标准结构的质量、转动惯量、不平衡量,m p、J p、U p,m k、J k、m c、U k,J c、U c,m x、J x、U x为平衡减振齿轮增重块(4)、减重孔(6)、减重槽(7)、橡胶环(3)结构的质量、转动惯量、不平衡量;
    在步骤S4中,平衡减振齿轮平衡特性对应的映射函数表达式为:
    Figure PCTCN2021101969-appb-100007
    在步骤S6中,平衡减振齿轮关键结构参数的多目标优化模型表达式为:
    目标函数:min[f 1(X i),f 2(X i),f 3(X i)]
    约束条件:
    Figure PCTCN2021101969-appb-100008
    式中,f 1(X i)为平衡减震齿轮质量计算模型函数;f 2(X i)为平衡减震齿轮转动惯量计算模型函数;f 3(X i)为平衡减震齿轮不平衡量计算模型函数;Δm为质量偏差;ΔU为不平衡量偏差;ΔJ为转动惯量偏差;X i为平衡减震齿轮第i个优化变量;δ imin和δ imax为平衡减震齿轮采用相应的加工工艺可以达到的约束下限和约束上限。
    在步骤S8中,相对误差表达式为:
    Figure PCTCN2021101969-appb-100009
  10. 根据权利要求7所述的多目标结构优化方法,其特征在于,在步骤S3、S4和S6中,关键结构参数包括平衡减振齿轮的增重块(4)的内圆半径r、内圆与增重块(4)边界截线交点到X轴的距离L、增重块(4)部分边界截线与X轴之间的夹角θ、增重块(4)厚度H、平衡减振齿轮的齿轮腹板(2)的减重孔(6)直径d k、减重孔(6)之间的夹角β 2、平衡减振齿轮齿轮腹板(2)的减重槽(7)宽度b c、减重槽(7)深度h c、减重槽(7)角度γ、橡胶环(3)外径R x、橡胶环(3)厚度h x,且关键结构参数对综合平衡特性指标的影响程度排序为:r>θ>H>b c>β 2>d k>L>h x>γ>R x>h c
PCT/CN2021/101969 2021-05-08 2021-06-24 一种平衡减振齿轮以及用于其的多目标结构优化方法 WO2022236930A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110500527.0A CN113239488B (zh) 2021-05-08 2021-05-08 一种平衡减振齿轮以及用于其的多目标结构优化方法
CN202110500527.0 2021-05-08

Publications (1)

Publication Number Publication Date
WO2022236930A1 true WO2022236930A1 (zh) 2022-11-17

Family

ID=77132661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101969 WO2022236930A1 (zh) 2021-05-08 2021-06-24 一种平衡减振齿轮以及用于其的多目标结构优化方法

Country Status (2)

Country Link
CN (1) CN113239488B (zh)
WO (1) WO2022236930A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115828473A (zh) * 2023-02-16 2023-03-21 湖南云箭科技有限公司 以多物理参数为目标的机载外挂物壁厚计算方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113653785A (zh) * 2021-08-27 2021-11-16 广西玉柴机器股份有限公司 一种发动机轻量化的减振降噪齿轮

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2648083Y (zh) * 2003-09-17 2004-10-13 重庆宗申技术开发研究有限公司 摩托车发动机的平衡齿轮
CN107177794A (zh) * 2017-05-16 2017-09-19 扬州保来得科技实业有限公司 一种减震粉末冶金齿轮及其制备方法
CN108388726A (zh) * 2018-02-11 2018-08-10 浙江大学 一种考虑多目标多约束性能均衡的机械结构稳健优化设计方法
DE102017217215A1 (de) * 2017-09-27 2019-03-28 Ford Global Technologies, Llc Zahnradkombination mit Ausfallsicherung, insbesondere zur Verwendung für den Antrieb einer Ölpumpe
CN109854711A (zh) * 2019-02-01 2019-06-07 宁波拓普集团股份有限公司 一种平衡轴齿轮
CN110008641A (zh) * 2019-04-25 2019-07-12 苏州市职业大学 一种磁齿轮无刷直流电机的多目标结构优化方法
CN211875052U (zh) * 2020-02-13 2020-11-06 宝鸡吉利发动机有限公司 一种减振齿轮

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3244094B1 (fr) * 2016-05-12 2023-08-16 Rolex Sa Roue d'engrenage pour mouvement horloger
CN108984889B (zh) * 2018-07-06 2020-08-25 武汉理工大学 一种机械式变比转向器齿轮副齿条齿廓数字设计方法
CN110427721B (zh) * 2019-08-09 2022-11-04 西北工业大学 一种低噪声齿轮箱结构拓扑优化设计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2648083Y (zh) * 2003-09-17 2004-10-13 重庆宗申技术开发研究有限公司 摩托车发动机的平衡齿轮
CN107177794A (zh) * 2017-05-16 2017-09-19 扬州保来得科技实业有限公司 一种减震粉末冶金齿轮及其制备方法
DE102017217215A1 (de) * 2017-09-27 2019-03-28 Ford Global Technologies, Llc Zahnradkombination mit Ausfallsicherung, insbesondere zur Verwendung für den Antrieb einer Ölpumpe
CN108388726A (zh) * 2018-02-11 2018-08-10 浙江大学 一种考虑多目标多约束性能均衡的机械结构稳健优化设计方法
CN109854711A (zh) * 2019-02-01 2019-06-07 宁波拓普集团股份有限公司 一种平衡轴齿轮
CN110008641A (zh) * 2019-04-25 2019-07-12 苏州市职业大学 一种磁齿轮无刷直流电机的多目标结构优化方法
CN211875052U (zh) * 2020-02-13 2020-11-06 宝鸡吉利发动机有限公司 一种减振齿轮

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU SIRUI: "Balance Characteristic Calculation and Structure Optimization of Balanced Vibration Reduction Gear in Three-cylinder Engine", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, 15 July 2020 (2020-07-15), CN , XP093003942, ISSN: 1674-0246 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115828473A (zh) * 2023-02-16 2023-03-21 湖南云箭科技有限公司 以多物理参数为目标的机载外挂物壁厚计算方法及系统
CN115828473B (zh) * 2023-02-16 2023-06-09 湖南云箭科技有限公司 以多物理参数为目标的机载外挂物壁厚计算方法及系统

Also Published As

Publication number Publication date
CN113239488A (zh) 2021-08-10
CN113239488B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
WO2022236930A1 (zh) 一种平衡减振齿轮以及用于其的多目标结构优化方法
CN111753410A (zh) 一种发动机扭转减振器的参数优化方法
Ooi et al. Modal and stress analysis of gear train design in portal axle using finite element modeling and simulation
CN111413030B (zh) 基于刚度矢量空间投影极大化的大型高速回转装备测量与神经网络学习调控方法及其装置
CN103399993A (zh) 往复式压缩机曲轴可靠性优化设计方法
CN105279327A (zh) 一种汽车车内振动和噪声的计算机仿真预测方法
Yılmaz et al. A comparative numerical study of forged bi-metal gears: bending strength and dynamic response
CN111709164A (zh) 一种车用增程器轴系扭转振动的分析方法
Muminovic et al. Innovative design of spur gear tooth with infill structure
CN106555811A (zh) 曲轴和平衡曲轴的方法
CN112329173A (zh) 一种用于转子-轴承弯扭耦合系统的参数优化方法
CN110688614A (zh) 一种谐波减速器杯形柔轮多齿啮合复合应力求解方法
CN111982402B (zh) 考虑初始不平衡量的航空发动机转子零件选配优化方法
WO2016160875A1 (en) Torsional vibration damper spoke design
CN112632699A (zh) 一种基于不确定参数的双质量飞轮性能的优化方法
Sonone et al. Design and Analyis of Balancer Shaft for a Four Stroke Single Cylinder Diesel Engine
CN116522702A (zh) 一种适用于平衡轴剪刀齿的齿轮敲击的计算和评价方法
Klarin et al. Numerical investigation in a gear drive of an engine balancing unit with respect to noise, friction and durability
Wramner Torsional vibrations in truck powertraines with dual mass flywheel having piecewise linear stiffness
CN114626266A (zh) 轻度失油状态下直升机中减摩擦动力学确定方法及系统
CN102364158B (zh) 一种减振器
CN117972942B (zh) 一种基于可调惯量飞轮的压缩机轴系扭转振动分析方法
CN113468662A (zh) 采用敲击指数曲面评价变速器齿轮敲击水平的方法
CN116663176B (zh) 一种基于扭振计算匹配发动机减振器的方法及应用
CN114692449B (zh) 一种基于测试的压缩机扭转振动分析优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941499

Country of ref document: EP

Kind code of ref document: A1