WO2022235134A1 - 가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 및 상기 분리막을 구비한 리튬 이차전지 - Google Patents

가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 및 상기 분리막을 구비한 리튬 이차전지 Download PDF

Info

Publication number
WO2022235134A1
WO2022235134A1 PCT/KR2022/006578 KR2022006578W WO2022235134A1 WO 2022235134 A1 WO2022235134 A1 WO 2022235134A1 KR 2022006578 W KR2022006578 W KR 2022006578W WO 2022235134 A1 WO2022235134 A1 WO 2022235134A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin polymer
porous
cross
separator
support
Prior art date
Application number
PCT/KR2022/006578
Other languages
English (en)
French (fr)
Inventor
한성재
이주성
문성식
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280040282.0A priority Critical patent/CN117426012A/zh
Priority to EP22799177.5A priority patent/EP4329080A1/en
Priority to JP2023568577A priority patent/JP2024518945A/ja
Publication of WO2022235134A1 publication Critical patent/WO2022235134A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous olefin polymer support having a crosslinked structure, a separator containing a crosslinked structure for a lithium secondary battery comprising the same, and a lithium secondary battery having the separator.
  • a lithium secondary battery is a battery that can best meet these needs, and research on it is being actively conducted.
  • This lithium secondary battery consists of a positive electrode, a negative electrode, an electrolyte, and a separator, of which the separator has high ionic conductivity to increase lithium ion permeability based on insulation and high porosity to separate and electrically insulate the positive and negative electrodes. is required
  • An olefin polymer separator is widely used as such a separator.
  • ethylene polymer (PE) separator which is a representative olefin polymer separator
  • Tm melting point
  • a melt-down phenomenon may occur, which may cause ignition and explosion, and due to its material properties and manufacturing process characteristics, the separator exhibits extreme thermal contraction behavior at high temperatures, etc. It has safety issues.
  • the problem to be solved by the present invention is to provide a porous olefin polymer support having a crosslinked structure with improved high temperature stability.
  • Another object to be solved by the present invention is to provide a separator containing a cross-linked structure for a lithium secondary battery including the porous olefin polymer support having a cross-linked structure, and a lithium secondary battery having the separator.
  • porous olefin polymer support having a crosslinked structure of the following embodiments.
  • the present invention relates to a porous olefin polymer support having a crosslinked structure, characterized in that the first peak is detected at a g value of 2.010 to 2.030 when the electron spin resonance method is measured by irradiating 500 W of ultraviolet light.
  • the second peak may be further detected at a g value of 1.990 to 2.009.
  • a third embodiment according to the second embodiment,
  • the ratio of the area of the first peak to the area of the second peak may be 10% to 200%.
  • a fourth embodiment according to any one of the first to third embodiments,
  • the abscissa axis is the frequency (rad/s) converted to log scale, and the ordinate axis is the frequency converted to log scale storage stress (G', storage modulus) (A) and loss stress (G", loss modulus) (B). - In the loss storage stress curve,
  • the storage stress (G', storage modulus) (A) with respect to the loss stress (G ", loss modulus) (B) of the porous olefin polymer support containing the cross-linked structure ) may have a ratio (A/B) of 2 or more.
  • a fifth embodiment according to any one of the first to fourth embodiments,
  • the abscissa axis is the frequency (rad/s) converted to log scale, and the ordinate axis is the frequency converted to log scale storage stress (G', storage modulus) (A) and loss stress (G", loss modulus) (B). - In the loss storage stress curve,
  • the slope of the storage stress (G', storage modulus) (A) curve of the porous olefin polymer support having a cross-linked structure with respect to the frequency is 0.05 to 0.4 days
  • the storage stress may have a value of 1.0x10 5 to 1.0x10 7 Pa.
  • a seventh embodiment according to the fourth or fifth embodiment,
  • the value of the loss stress may be 3.0x10 5 Pa or less.
  • a separator containing a cross-linked structure for a lithium secondary battery of the following embodiments there is provided a separator containing a cross-linked structure for a lithium secondary battery of the following embodiments.
  • It relates to a separator containing a cross-linked structure for a lithium secondary battery, comprising the porous olefin polymer support having a cross-linked structure according to any one of the first to seventh embodiments.
  • the cross-linked structure-containing separator for lithium secondary batteries is positioned on at least one surface of the cross-linked structure-containing olefin polymer porous support and may further include an inorganic hybrid pore layer including an inorganic filler and a binder polymer.
  • the cross-linked structure-containing separator for lithium secondary batteries is positioned on at least one surface of the cross-linked structure-containing olefin polymer porous support, and an inorganic material hybrid pore layer including an inorganic filler and a first binder polymer;
  • a porous adhesive layer positioned on the inorganic hybrid pore layer and including a second binder polymer; may further include.
  • the melt-down temperature of the separator containing a cross-linked structure for a lithium secondary battery may be 160° C. or higher.
  • a shutdown temperature of the separator containing a cross-linked structure for a lithium secondary battery may be 145° C. or less.
  • a lithium secondary battery of the following embodiments In order to solve the above problems, according to one aspect of the present invention, there is provided a lithium secondary battery of the following embodiments.
  • the separator for a lithium secondary battery is a separator containing a cross-linked structure for a lithium secondary battery according to any one of the eighth to twelfth embodiments.
  • the porous olefin polymer support having a crosslinked structure according to an embodiment of the present invention has excellent heat resistance.
  • the separator containing a cross-linked structure for a lithium secondary battery comprising a porous olefin polymer support having a cross-linked structure may have excellent heat resistance by including the porous olefin polymer support having a cross-linked structure having excellent heat resistance.
  • FIG. 1 is a diagram schematically showing a separator containing a cross-linked structure for a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing a separator containing a cross-linked structure for a lithium secondary battery according to another embodiment of the present invention.
  • FIG. 3 shows electron spin resonance spectrums when the porous olefin polymer support having a crosslinked structure prepared in Example 1 was irradiated with ultraviolet light of 500 W (A) and before irradiation with ultraviolet light (B).
  • FIG. 4 shows electron spin resonance spectrums when the porous olefin polymer support having a crosslinked structure prepared in Example 2 was irradiated with 500 W of ultraviolet (A) and before (B) ultraviolet ray irradiation.
  • FIG. 5 shows electron spin resonance spectrums when the porous olefin polymer support having a crosslinked structure prepared in Example 3 was irradiated with ultraviolet light of 500 W (A) and before irradiation with ultraviolet light (B).
  • FIG. 6 shows electron spin resonance spectrums when the porous olefin polymer support having a crosslinked structure prepared in Comparative Example 1 was irradiated with ultraviolet light of 500 W (A) and before irradiation with ultraviolet light (B).
  • FIG. 7 shows electron spin resonance spectrums when the porous olefin polymer support having a crosslinked structure prepared in Comparative Example 2 was irradiated with 500 W of UV (A) and before (B) UV irradiation.
  • FIG. 8 shows electron spin resonance spectra when the porous olefin polymer support having a cross-linked structure prepared in Comparative Example 3 was irradiated with ultraviolet light of 500 W (A) and before irradiation with ultraviolet light (B).
  • the electron spin resonance method Electron Spin Resonance
  • the first peak is detected at a g value of 2.010 to 2.030.
  • the 'crosslinked structure directly connected between polymer chains' refers to a polymer chain substantially made of an olefin polymer, more preferably a polymer chain made only of an olefin polymer, by the addition of a Type 2 photoinitiator. It refers to a state in which the chains are directly cross-linked with each other. Therefore, the crosslinking reaction that occurs between the crosslinking agents by adding an additional crosslinking agent does not correspond to the 'crosslinking structure in which polymer chains are directly connected' as referred to in the present invention.
  • crosslinking reaction that occurs between the additional crosslinking agent and the polymer chain is the 'directly connected crosslinking structure between the polymer chains' referred to in the present invention, even if the polymer chain is substantially composed of an olefin polymer or only an olefin polymer. does not apply
  • crosslinking between the Type 2 photoinitiator may occur or the Type 2 photoinitiator and the polymer chain may be crosslinked with each other.
  • This crosslinked structure has a lower reaction enthalpy than the crosslinked structure between the polymer chains in the olefin polymer porous support, so it is decomposed during charging and discharging of the battery. There is a risk of causing side reactions.
  • the crosslinked structure-containing porous olefin polymer support may include only a crosslinked structure directly connected between polymer chains, and may not include a crosslinked structure directly connected between the Type 2 photoinitiator and the polymer chains.
  • the crosslinked structure-containing porous olefin polymer support includes only a crosslinked structure directly connected between polymer chains, and does not include a crosslinked structure directly connected between the Type 2 photoinitiator and the polymer chains.
  • the crosslinking degree of the crosslinked structure-containing olefin polymer porous support is 10% to 45%, or 15% to 40%, or 20% to 35%.
  • the crosslinking structure-containing porous olefin polymer support has a degree of crosslinking within the above-mentioned range, it may have a desired level of heat resistance and may more easily increase the modulus.
  • the crosslinking degree of the porous olefin polymer support having a crosslinked structure is 20% or more, it may be easier because the melt-down temperature of the separator including the porous olefin polymer support having a crosslinked structure is 170° C. or more.
  • the degree of crosslinking is calculated by measuring the weight remaining after soaking the olefin polymer porous support containing the crosslinked structure in a xylene solution at 135°C according to ASTM D 2765 and boiling it for 12 hours, and calculating as a percentage of the remaining weight compared to the initial weight. do.
  • a double bond may be generated in the olefin polymer chain by a crosslinking reaction using a Type 2 photoinitiator.
  • the number of double bonds present in the olefin polymer chain as measured by H-NMR is 0.01 to 0.6, or 0.02 to 0.5 per 1000 carbon atoms.
  • H-NMR can be a dog
  • the crosslinked structure-containing porous olefin polymer support has the above-described number of double bonds, a portion in which a side reaction may occur may be minimized.
  • the number of double bonds present in the olefin polymer chain excluding the terminal of the crosslinked structure-containing porous olefin polymer support may be 0.005 to 0.59 per 1000 carbon atoms.
  • the term "double bond present in the olefin polymer chain except for the terminal” refers to a double bond present throughout the olefin polymer chain except for the end of the olefin polymer chain.
  • the term “terminal” refers to a position of a carbon atom connected to both ends of the olefin polymer chain.
  • the crosslinked structure-containing porous olefin polymer support may be a porous film.
  • the olefin polymer is an ethylene polymer; propylene polymer; butylene polymer; pentene polymer; hexene polymer; octene polymer; copolymers of two or more of ethylene, propylene, butene, pentene, 4-methylpentene, hexene, and octene; or mixtures thereof.
  • Non-limiting examples of the ethylene polymer include low-density ethylene polymer (LDPE), linear low-density ethylene polymer (LLDPE), high-density ethylene polymer (HDPE), etc., wherein the ethylene polymer has a high crystallinity and a high melting point of the resin. In this case, it may be easier to increase the modulus while having a desired level of heat resistance.
  • LDPE low-density ethylene polymer
  • LLDPE linear low-density ethylene polymer
  • HDPE high-density ethylene polymer
  • the weight average molecular weight of the olefin polymer may be 200,000 to 1,500,000, or 220,000 to 1,000,000, or 250,000 to 800,000.
  • the weight average molecular weight of the olefin polymer is within the above range, a separator having excellent strength and heat resistance can be finally obtained while ensuring the uniformity and film forming processability of the porous olefin polymer support having a crosslinked structure.
  • the weight average molecular weight may be measured by gel permeation chromatography (GPC, PL GPC220, Agilent Technologies) under the following conditions.
  • the crosslinked structure-containing porous olefin polymer support may have a thickness of 3 ⁇ m to 16 ⁇ m, or 5 ⁇ m to 12 ⁇ m.
  • the thickness of the crosslinked structure-containing porous olefin polymer support is within the above-described range, it is possible to prevent a problem that the separator may be easily damaged during battery use, and it may be easy to secure energy density.
  • the first peak is detected at a g value of 2.010 to 2.030. do.
  • the first peak means that the cross-linked structure-containing olefin polymer porous support forms radicals by light absorption. That is, as a result of applying ultraviolet rays, it means that radicals were formed in the polymer chains in the porous olefin polymer support having a crosslinked structure.
  • a second peak when the electron spin resonance method (Electron Spin Resonance) is measured by irradiating 500 W of ultraviolet light, in addition to the first peak, a second peak can be further detected at a g value of 1.990 to 2.009. .
  • the second peak means the presence of a single electron or an electron exhibiting a behavior similar to that of a single electron due to ultraviolet rays applied in the process of measuring the spectrum according to the electron spin resonance method.
  • the second peak may have an upward convex peak and a downward convex peak symmetrically.
  • the crosslinked structure-containing porous olefin polymer support may include a photoinitiator, specifically, a Type 2 photoinitiator. This may be one that cross-links between polymer chains and remains in the porous support. When the Type 2 photoinitiator remains in the porous support and is irradiated with UV of 500 W, the second peak may be detected.
  • a photoinitiator specifically, a Type 2 photoinitiator. This may be one that cross-links between polymer chains and remains in the porous support.
  • the Type 2 photoinitiator remains in the porous support and is irradiated with UV of 500 W, the second peak may be detected.
  • the ratio of the area of the first peak to the area of the second peak is 10% to 200 %, or from 10% to 180%.
  • the ratio of the area of the first peak to the area of the second peak is the area of the second peak when 30 mg to 40 mg of the crosslinked structure-containing olefin polymer porous support is added to the electron spin resonance measurement equipment. It may be a ratio of the area of the first peak.
  • the porous olefin polymer support having a cross-linked structure may include a cross-linked structure in which polymer chains are directly connected, thereby improving heat resistance.
  • the pore structure of the porous olefin polymer support may be substantially maintained as before cross-linking.
  • the abscissa axis is the frequency (rad/s) converted to log scale, and the ordinate axis is the frequency converted to log scale storage stress (G', storage modulus) (A) and loss stress (G", loss modulus) (B). - In the loss storage stress curve,
  • the storage stress (G', storage modulus) (A) with respect to the loss stress (G ", loss modulus) (B) of the porous olefin polymer support containing the cross-linked structure ) may have a ratio (A/B) of 2 or more.
  • the present inventors have studied to invent a porous support for olefin polymers containing a crosslinked structure that is secure even at high temperatures. As a means to solve this problem, the viscosity of the porous olefin polymer support containing a crosslinked structure at high temperature is lowered, while the elasticity of the porous support of the olefin polymer containing a crosslinked structure is increased, thereby improving the safety at high temperature.
  • the viscosity of the porous olefin polymer support containing a crosslinked structure is lowered at high temperature while increasing the elasticity, the strength of the porous olefin polymer support containing a crosslinked structure is maintained at high temperature and the flowability of the porous support of the olefin polymer containing a crosslinked structure is maintained at high temperature. Since this does not occur, a short circuit between the positive and negative electrodes can be prevented, and as a result, the safety of the crosslinked structure-containing porous olefin polymer support can be improved.
  • G' storage modulus
  • the value of G' is larger than G'', specifically, when it is 2 or more, safety is improved
  • the viscosity is greater than the elasticity of the cross-linked porous olefin polymer support having a cross-linked structure.
  • the storage stress (G', storage modulus) refers to the ability of a material to store energy, and it can be expressed as Equation 1.
  • the storage stress may be measured using dynamic mechanical analysis.
  • the storage stress is measured using a dynamic mechanical analysis (Dynamic Mechanical Analysis) by a temperature sweep test method in a temperature range of 180 to 220 °C and a frequency of 1 rad/s.
  • a dynamic mechanical analysis Dynamic Mechanical Analysis
  • the value of the storage stress is 1.0x10 5 to 1.0x10 7 Pa, or 1.2x10 5 to 5.0x10 6 Pa, or 1.5 in a temperature range of 190° C. and a frequency of 1 rad/s. x10 5 to 2.0x10 6 Pa, or 1.7x10 5 to 1.0x10 6 Pa, or 1.9x10 5 to 3.8x10 5 Pa.
  • the value of the storage stress is within the numerical range, it is advantageous in terms of maintaining the strength of the porous olefin polymer support having a crosslinked structure at a high temperature.
  • the loss stress (G", loss modulus) refers to the ability of a material to lose energy due to deformation, and it can be expressed as Equation 2.
  • the loss stress may be measured using dynamic mechanical analysis.
  • the loss stress is measured using a dynamic mechanical analysis using a temperature sweep test method in a temperature range of 180 to 220 °C and a frequency of 1 rad/s.
  • the value of the loss stress is 3.0x10 5 Pa or less, 1.0x10 4 to 3.0x10 5 Pa, or 2.0x10 4 to 1.5 in a temperature range of 190° C. and a frequency of 1 rad/s x10 5 Pa, or 5.0x10 4 to 1.2x10 5 Pa, or 7.0x10 4 to 1.1x10 5 Pa.
  • the value of the loss stress is within the numerical range, it is advantageous in that flowability of the porous olefin polymer support containing a crosslinked structure does not occur.
  • the ratio (A/B) of the storage stress (G', storage modulus) (A) to the loss stress (G", loss modulus) (B) of the crosslinked structure-containing olefin polymer porous support (A/B) means viscosity It is a relative measure of the elastic contribution to the contribution.
  • the ratio when the ratio is 1 or more, properties similar to a solid are exhibited, and when the ratio is 1 or less, properties similar to a liquid are exhibited.
  • A/B is used as a relative measure to determine the uniformity and flowability of the extruded sheet in the casting and stretching process.
  • A/B is A high ratio is preferable, and in the present invention, a case of 2 or more is particularly preferable.
  • the ratio (A/B) of (G', storage modulus) (A) may be 2 or more, or 2 to 7, or 2 to 5, or 2.1 to 4.7, or 2.18 to 4.68.
  • the ratio of A/B is In the above case, it is advantageous in that the separation membrane including the cross-linked structure-containing porous olefin polymer support can maintain the isolation function while maintaining the strength of the porous olefin polymer support having a cross-linked structure at a high temperature.
  • the abscissa axis is the frequency (rad/s) converted to log scale
  • the ordinate axis is the log scale converted storage stress (G', storage modulus) (A) and loss stress (G", In the frequency-loss storage stress curve with loss modulus (B),
  • the slope of the storage stress (G', storage modulus) (A) curve of the porous olefin polymer support having a cross-linked structure with respect to the frequency is 0.05 to 0.4 days
  • the storage stress and the loss stress may be borrowed as described above.
  • the frequency of the crosslinked structure-containing porous olefin polymer support is in the range of 10 -1 to 1 rad/s
  • the storage stress (G', storage modulus) (A) for the frequency ) the slope of the curve may be from 0.05 to 0.4, alternatively from 0.07 to 0.35, alternatively from 0.1 to 0.3, alternatively from 0.12 to 0.28, alternatively from 0.133 to 0.267.
  • the separation membrane including the crosslinked structure-containing olefin polymer porous support can maintain the isolation function at high temperature.
  • porous olefin polymer support having a crosslinked structure may be used as a separator containing a crosslinked structure for a lithium secondary battery.
  • the separator containing a cross-linked structure for a lithium secondary battery according to an embodiment of the present invention may include the cross-linked structure-containing olefin polymer porous support according to an embodiment of the present invention.
  • the separator containing a crosslinked structure for a lithium secondary battery includes the porous olefin polymer support having a crosslinked structure having the above-described number of double bonds, the performance of the battery is deteriorated at high temperature and/or high voltage may be easy to prevent.
  • the separator containing a cross-linked structure for a lithium secondary battery according to an embodiment of the present invention may be made of a cross-linked structure-containing olefin polymer porous support according to an embodiment of the present invention.
  • the separator containing a cross-linked structure for a lithium secondary battery according to another embodiment of the present invention is located on at least one surface of the cross-linked structure-containing olefin polymer porous support, and may further include an inorganic hybrid pore layer comprising an inorganic filler and a binder polymer. . This is shown in FIG. 1 .
  • the cross-linked structure-containing separator (1) for a lithium secondary battery includes a cross-linked structure-containing olefin polymer porous support (10); and an inorganic hybrid pore layer 20 positioned on at least one surface of the crosslinked structure-containing porous olefin polymer support 10 and including an inorganic filler and a binder polymer.
  • the inorganic hybrid pore layer 20 may be formed on one side or both sides of the crosslinked structure-containing olefin polymer porous support 10 .
  • the inorganic hybrid pore layer 20 includes an inorganic filler and a binder polymer that attaches them to each other (that is, the binder polymer connects and fixes between the inorganic fillers) so that the inorganic fillers can maintain a state in which they are bound to each other, It is possible to maintain the state in which the inorganic filler and the crosslinked structure-containing porous olefin polymer support 10 are bound by the binder polymer.
  • the inorganic hybrid pore layer 20 prevents the cross-linked olefin polymer porous support 10 from exhibiting extreme heat shrinkage behavior at high temperature by an inorganic filler, thereby improving the safety of the separation membrane.
  • the thermal contraction rate of the separator in the machine direction and the transverse direction measured after being left at 120° C. for 30 minutes is 20% or less, or 2% to 15%, or 2% to 10%, respectively.
  • 'Machine Direction' refers to a longitudinal direction in which the length of the separator is long in the progress direction when the separator is continuously produced
  • 'Transverse Direction' is the transverse direction of the machine direction, that is, , refers to a direction perpendicular to the longitudinal direction in which the separation membrane is long in the direction perpendicular to the progress direction when the separation membrane is continuously produced.
  • the inorganic filler is not particularly limited as long as it is electrochemically stable. That is, the inorganic filler that can be used in the present invention is not particularly limited as long as the oxidation and/or reduction reaction does not occur in the operating voltage range of the applied electrochemical device (eg, 0 to 5V based on Li/Li + ).
  • the ionic conductivity of the electrolyte can be improved by contributing to an increase in the degree of dissociation of an electrolyte salt, such as a lithium salt, in a liquid electrolyte.
  • the inorganic filler may include a high dielectric constant inorganic filler having a dielectric constant of 5 or more, preferably 10 or more.
  • inorganic fillers having a dielectric constant of 5 or more include BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, 0 ⁇ x ⁇ 1) , 0 ⁇ y ⁇ 1), Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, Mg( OH) 2 , NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , AlOOH, Al(OH) 3 , SiC, TiO 2 , or
  • an inorganic filler having lithium ion transport capability that is, an inorganic filler containing elemental lithium but not storing lithium and having a function of moving lithium ions may be used.
  • Non-limiting examples of inorganic fillers having lithium ion transport ability include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 (LiAlTiP) x O y series glass such as O 5 (0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 13), lithium lanthanide titanate (Li x La y TiO 3 , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3) Lithium germanium thiophosphate (Li x Ge y P z S w , 0 ⁇ x ⁇ 4 , 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ w ⁇ 5
  • Lithium nitride Li x N y , 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 2
  • Li 3 PO 4 -Li 2 S-SiS 2 SiS 2 series glass Li x Si P 2 S 5 series glass, such as y S z , 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 4)
  • LiI-Li 2 SP 2 S 5 etc.
  • the average particle diameter of the inorganic filler may be 0.01 ⁇ m to 1.5 ⁇ m.
  • the average particle diameter of the inorganic filler satisfies the above-mentioned range, the formation of the inorganic hybrid pore layer 20 having a uniform thickness and appropriate porosity can be facilitated, and the dispersion of the inorganic filler is good and desired. It can provide energy density.
  • the average particle diameter of the inorganic filler means a D 50 particle diameter
  • “D 50 particle diameter” means a particle diameter at 50% of the cumulative distribution of the number of particles according to the particle diameter.
  • the particle size may be measured using a laser diffraction method. Specifically, after dispersing the powder to be measured in the dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (eg Microtrac S3500) to measure the diffraction pattern difference according to the particle size when the particles pass through the laser beam to measure the particle size distribution to calculate The D50 particle diameter can be measured by calculating the particle diameter at the point used as 50% of the particle number cumulative distribution according to the particle diameter in a measuring apparatus.
  • a laser diffraction particle size measuring device eg Microtrac S3500
  • the binder polymer may have a glass transition temperature (Tg) of -200 to 200°C. When the glass transition temperature of the binder polymer satisfies the aforementioned range, mechanical properties such as flexibility and elasticity of the finally formed inorganic hybrid pore layer 20 may be improved.
  • the binder polymer may have an ion conductive ability. When the binder polymer has ion conducting ability, the performance of the battery may be further improved.
  • the binder polymer is poly (vinylidene fluoride-hexafluoropropylene) (poly (vinylidene fluoride-co-hexafluoropropylene)), poly (vinylidene fluoride-chlorotrifluoroethylene) ( poly(vinylidene fluoride-co-chlorotrifluoroethylene)), poly(vinylidene fluoride-tetrafluoroethylene) (poly(vinylidene fluoride-co-tetrafluoroethylene)), poly(vinylidene fluoride-trichloroethylene) (poly(vinylidene) fluoride-co-trichlorethylene)), acrylic copolymer, styrene-butadiene copolymer, poly(acrylic acid), poly(methylmethacrylate) (poly(methylmethacrylate)), poly(butyl acrylate) (poly(butylacrylate)), poly(vinylacrylate)
  • the acrylic copolymer is ethyl acrylate-acrylic acid-N,N-dimethylacrylamide copolymer, ethyl acrylate-acrylic acid-2-(dimethylamino)ethyl acrylate copolymer, ethyl acrylate-acrylic acid-N,N-di ethylacrylamide copolymer, ethyl acrylate-acrylic acid-2-(diethylamino)ethyl acrylate copolymer, or two or more thereof.
  • the weight ratio of the inorganic filler and the binder polymer is determined in consideration of the thickness, pore size and porosity of the finally prepared inorganic hybrid pore layer 20, but 50:50 to 99.9:0.1, or 60:40 to 99.5:0.5.
  • the weight ratio of the inorganic filler and the binder polymer is within the above range, it may be easy to secure the pore size and porosity of the inorganic hybrid pore layer 20 by sufficiently securing an empty space formed between the inorganic fillers. In addition, it may be easy to secure the adhesive force between the inorganic fillers.
  • the inorganic hybrid pore layer 20 may further include an additive such as a dispersant and/or a thickener.
  • the additive is polyvinylpyrrolidone (poly(vinylpyrrolidone), PVP), hydroxy ethyl cellulose (HEC), hydroxy propyl cellulose (hydroxy propyl cellulose, HPC), ethylhydroxy ethyl cellulose (EHEC), methyl cellulose (MC), carboxymethyl cellulose (CMC), hydroxyalkyl methyl cellulose ), cyanoethylene polyvinyl alcohol, or two or more of these.
  • the inorganic hybrid pore layer 20 is bound to each other by the binder polymer in a state in which the inorganic fillers are filled and in contact with each other, thereby interstitial volume between the inorganic fillers. volumes) are formed, and the interstitial volume between the inorganic fillers becomes an empty space and may have a structure forming pores.
  • the inorganic hybrid pore layer 20 includes a plurality of nodes including the inorganic filler and a binder polymer covering at least a portion of the inorganic filler surface; and the binder of the node. It includes one or more filaments formed in the shape of a thread from a polymer, wherein the filaments have a node connecting portion extending from the node to connect other nodes, and the node connecting portion is derived from the binder polymer It may have a structure in which the plurality of filaments cross each other to form a three-dimensional network structure.
  • the average pore size of the inorganic hybrid pore layer 20 may be 0.001 ⁇ m to 10 ⁇ m.
  • the average pore size of the inorganic hybrid pore layer 20 may be measured according to a capillary flow porometry method.
  • the capillary flow pore diameter measurement method is a method in which the diameter of the smallest pore in the thickness direction is measured. Therefore, in order to measure the average pore size of only the inorganic hybrid pore layer 20 by the capillary flow pore size measurement method, the inorganic hybrid pore layer 20 is separated from the crosslinked structure-containing olefin polymer porous support 10 and separated. It should be measured in a state wrapped in a nonwoven fabric capable of supporting the inorganic hybrid pore layer 20 , in which case the pore size of the nonwoven fabric should be much larger than the pore size of the inorganic hybrid pore layer 20 .
  • the porosity of the inorganic hybrid pore layer 20 is 5% to 95%, or 10% to 95%, or 20% to 90%, or 30% to 80%.
  • the porosity is the volume calculated by the thickness, width, and length of the inorganic hybrid pore layer 20, and the volume converted to the weight and density of each component of the inorganic hybrid pore layer 20 is subtracted. corresponds to one value.
  • the porosity of the inorganic hybrid pore layer 20 was measured using a scanning electron microscope (SEM) image, a mercury porosimeter, or a porosimetry analyzer (Bell Japan Inc, Belsorp-II mini) using nitrogen. It can measure by the BET 6-point method by the gas adsorption flow method.
  • the thickness of the inorganic hybrid pore layer 20 may be 1.5 ⁇ m to 5.0 ⁇ m on one side of the crosslinked structure-containing olefin polymer porous support 10 .
  • the thickness of the inorganic hybrid pore layer 20 satisfies the above-described range, the cell strength of the battery may be easily increased while excellent adhesion to the electrode.
  • a separator containing a cross-linked structure for a lithium secondary battery includes an inorganic hybrid pore layer positioned on at least one surface of the cross-linked structure-containing olefin polymer porous support and comprising an inorganic filler and a first binder polymer; and a porous adhesive layer positioned on the inorganic hybrid pore layer and including a second binder polymer. This is shown in FIG. 2 .
  • the cross-linked structure-containing separator (1') for a lithium secondary battery includes a cross-linked structure-containing olefin polymer porous support (10') having a cross-linked structure in which polymer chains are directly connected; an inorganic hybrid pore layer (20') positioned on at least one surface of the crosslinked structure-containing olefin polymer porous support (10') and comprising an inorganic filler and a first binder polymer; and a porous adhesive layer 30 ′ positioned on the inorganic hybrid pore layer 20 ′ and including a second binder polymer.
  • the inorganic hybrid pore layer 20' may be formed on one or both surfaces of the crosslinked structure-containing olefin polymer porous support 10'.
  • the inorganic hybrid pore layer 20' is a first binder polymer that attaches the inorganic filler and the inorganic filler to each other (that is, the first binder polymer connects and fixes between the inorganic fillers) so that the inorganic fillers can maintain a binding state to each other. Including, it is possible to maintain a state in which the inorganic filler and the crosslinked structure-containing porous olefin polymer support 10' by the first binder polymer are bound.
  • the inorganic hybrid pore layer 20' prevents the porous olefin polymer support 10' containing a cross-linked structure from exhibiting extreme heat shrinkage behavior at high temperatures by an inorganic filler, thereby improving the safety of the separation membrane.
  • the thermal contraction rate of the separator in the machine direction and the transverse direction measured after leaving at 150° C. for 30 minutes is 20% or less, or 2% to 15%, or 2% to 10%, respectively can be
  • the first binder polymer may have a glass transition temperature (Tg) of -200 to 200°C. When the glass transition temperature of the first binder polymer satisfies the above range, mechanical properties such as flexibility and elasticity of the finally formed inorganic hybrid pore layer 20 ′ may be improved.
  • the first binder polymer may have an ion conductive ability. When the first binder polymer has an ion conductive ability, the performance of the battery may be further improved.
  • the first binder polymer may be a binder polymer having excellent heat resistance.
  • heat resistance properties of the inorganic hybrid pore layer may be further improved.
  • the thermal contraction rate of the separator in the machine direction and the transverse direction measured after leaving at 150° C. for 30 minutes is 20% or less, or 2% to 15%, or 2% to 10%, respectively , or 2% to 5%, or 0% to 5%, or 0% to 2%.
  • the first binder polymer is an acrylic polymer, polyacrylic acid, styrene butadiene rubber, It may include carboxymethylcellulose, polyvinyl alcohol, or two or more of these.
  • the acrylic polymer may include an acrylic homopolymer obtained by polymerizing only an acrylic monomer, or may include a copolymer of an acrylic monomer and another monomer.
  • the acrylic polymer is a copolymer of ethylhexyl acrylate and methyl methacrylate, poly(methylmethacrylate), and polyethylhexyl acrylate (poly(ethylexyl acrylate)).
  • poly(butylacrylate) polyacrylonitrile (poly(acrylonitrile)), a copolymer of butyl acrylate and methyl methacrylate, or two or more of these.
  • the first binder polymer may be in the form of particles.
  • the weight ratio of the inorganic filler to the first binder polymer may be 95:5 to 99.9:0.1, or 96:4 to 99.5:0.5, or 97:3 to 99:1.
  • the content of the inorganic filler distributed per unit area of the separator is large, so that the thermal stability of the separator at high temperature may be improved.
  • the thermal contraction rate of the separator in the machine direction and the transverse direction measured after leaving at 150° C. for 30 minutes is 20% or less, or 2% to 15%, or 2% to 10%, respectively , or 2% to 5%, or 0% to 5%, or 0% to 2%.
  • the characteristics of the inorganic hybrid pore layer 20 and other inorganic hybrid pore layers 20' will be described. do.
  • the inorganic hybrid pore layer 20 ′ is bound to each other by the first binder polymer in a state in which the inorganic fillers are filled and in contact with each other, thereby interstitial between the inorganic fillers.
  • An interstitial volume is formed, and the interstitial volume between the inorganic fillers becomes an empty space and may have a structure forming pores.
  • the porous adhesive layer 30' includes a second binder polymer so that the separator including the inorganic hybrid pore layer 20' can secure adhesion to the electrode.
  • the porous adhesive layer 30 ′ has pores, it is possible to prevent an increase in the resistance of the separator.
  • the porous adhesive layer 30' may prevent the second binder polymer from penetrating into the surface and/or inside of the porous olefin polymer support 10' containing a cross-linked structure, so that the resistance of the separator is increased. phenomenon can be minimized.
  • the second binder polymer may be a binder polymer commonly used to form an adhesive layer.
  • the second binder polymer may have a glass transition temperature (Tg) of -200 to 200°C. When the glass transition temperature of the second binder polymer satisfies the aforementioned range, mechanical properties such as flexibility and elasticity of the finally formed adhesive layer may be improved.
  • the second binder polymer may have an ion conductive ability. When a binder polymer having ion conductivity is used as the second binder polymer, the performance of the battery can be further improved.
  • the second binder polymer is polyvinylidene fluoride (poly(vinylidene fluoride)), poly(vinylidene fluoride-hexafluoropropylene) (poly(vinylidene fluoride-co-hexafluoropropylene)) , poly(vinylidene fluoride-co-trichlorethylene)), poly(vinylidene fluoride-tetrafluoroethylene) (poly(vinylidene fluoride-co-tetrafluoroethylene)), poly( vinylidene fluoride-trifluoroethylene (poly(vinylidene fluoride-co-trifluoroethylene)), polymethylmethacrylate, polyethylhexyl acrylate, polybutylacrylate, poly Acrylonitrile, polyvinylpyrrolidone, polyvinylacetate, copolymer of ethylhexyl acrylate and
  • the porous adhesive layer 30 ′ may have a pattern including at least one adhesive part including the second binder polymer and at least one uncoated part in which the adhesive part is not formed.
  • the pattern may be dot-shaped, stripe-shaped, oblique, wavy, triangular, square, or semi-circular.
  • the thickness of the porous adhesive layer 30 ′ may be 0.5 ⁇ m to 1.5 ⁇ m, or 0.6 ⁇ m to 1.2 ⁇ m, or 0.6 ⁇ m to 1.0 ⁇ m.
  • adhesion to the electrode is excellent, and as a result, the cell strength of the battery may be increased.
  • the separator containing a cross-linked structure for a lithium secondary battery according to an embodiment of the present invention includes the cross-linked structure-containing olefin polymer porous support according to an embodiment of the present invention having a cross-linked structure in which polymer chains are directly connected, thus high temperature stability This can be excellent.
  • the melt-down temperature of the separator containing the cross-linked structure for a lithium secondary battery may be increased compared to the melt-down temperature of the separator including the non-cross-linked olefin polymer porous support.
  • the melt down (melt down) temperature of the separator may be 160 °C or higher, or 170 °C or higher, or 180 °C to 230 °C.
  • the term "separation membrane comprising a non-crosslinked porous olefin polymer support” refers to a separation membrane made of a non-crosslinked porous olefin polymer support having a non-crosslinked structure; Or a separation membrane comprising a non-crosslinked porous olefin polymer support without a crosslinked structure, and an inorganic hybrid pore layer located on at least one surface of the porous olefinic polymer support not containing a crosslinked structure and containing an inorganic filler and a binder polymer; Or a non-cross-linked porous olefin polymer support without a cross-linked structure, an inorganic hybrid pore layer positioned on at least one surface of the porous olefin polymer support not containing a cross-linked structure and comprising an inorganic filler and a first binder polymer, and the inorganic hybrid pore layer It is located on the, and refers to a separator including a por
  • the melt-down temperature may be measured by thermomechanical analysis (TMA). For example, after taking samples in the machine direction and the transverse direction, respectively, a sample having a width of 4.8 mm x a length of 8 mm was put in a TMA equipment (TA Instrument, Q400) and a tension of 0.01 N was applied. While changing the temperature from 30°C to 220°C at a temperature increase rate of 5°C/min in the state, the temperature at which the length is rapidly increased and the sample breaks can be measured as the melt-down temperature.
  • TMA thermomechanical analysis
  • the shutdown temperature may not increase significantly, and the rate of change thereof may also be small, compared to a separator including a non-crosslinked olefin polymer porous support.
  • the melt-down temperature of the separator increases as compared to a separator including an uncross-linked olefin polymer porous support, whereas the shutdown temperature does not significantly increase, so the shutdown temperature Overcharge safety can be ensured by the
  • the separator containing a cross-linked structure for a lithium secondary battery may have a shutdown temperature of 145°C or less, or 140°C or less, or 133°C to 140°C.
  • a shutdown temperature of 145°C or less, or 140°C or less, or 133°C to 140°C.
  • the shutdown temperature was measured by measuring the time (sec) it takes for 100 ml of air to pass through the separator at a constant pressure of 0.05 Mpa when the temperature was raised by 5° C. per minute using reciprocating air permeability equipment. It can be measured by measuring the temperature.
  • the separator containing a crosslinked structure for a lithium secondary battery according to an embodiment of the present invention has air permeability, basis weight, tensile strength, tensile elongation, puncture strength, electrical resistance, etc. of the olefin polymer prior to crosslinking
  • the air permeability, basis weight, tensile strength, tensile elongation, puncture strength, electrical resistance, etc. of the separator including the porous support may not be significantly deteriorated, and the rate of change may also be small. have.
  • the separator containing a cross-linked structure for a lithium secondary battery according to an embodiment of the present invention has a change in air permeability of 10% or less, 0% to 10%, 0% to 5%, or 0%, compared to the separator for lithium secondary battery before crosslinking. to 3%.
  • the rate of change of air permeability can be calculated by the following formula.
  • the "separator containing crosslinked structure for lithium secondary batteries after crosslinking" refers to a separator made of a porous olefin polymer support containing a crosslinked structure; or a cross-linked structure-containing porous olefin polymer support, and a separation membrane comprising an inorganic hybrid pore layer including an inorganic filler and a binder polymer positioned on at least one surface of the cross-linked structure-containing porous olefin polymer support; Or a cross-linked structure-containing olefin polymer porous support, an inorganic material hybrid pore layer including an inorganic filler and a first binder polymer located on at least one surface of the cross-linked structure-containing olefin polymer porous support body, and located on the upper surface of the inorganic material hybrid pore layer It refers to a separator including a porous adhesive layer including a second binder polymer.
  • Gurley The air permeability (Gurley) may be measured by the ASTM D726-94 method. Gurley, as used herein, is the resistance to the flow of air, measured by a Gurley densometer. The air permeability values described herein are expressed in terms of the time (in seconds) it takes for 100 ml of air to pass through the cross section of 1 in 2 of the sample porous support under a pressure of 12.2 inH 2 O, that is, the aeration time.
  • the separator containing a crosslinked structure for a lithium secondary battery according to an embodiment of the present invention may have a change in basis weight of 5% or less or 0% to 5%.
  • the change rate of the basis weight can be calculated by the following formula.
  • the basis weight (g/m 2 ) is indicated by preparing a sample having a width and length of 1 m, respectively, and measuring the weight thereof.
  • the separator having a cross-linked structure for a lithium secondary battery according to an embodiment of the present invention has a change rate of tensile strength in the machine direction and perpendicular direction of 20% or less, or 0% to 20%, compared with the separator for lithium secondary battery before crosslinking, or 0% to 10%, or 0% to 9%, or 0% to 8%, or 0% to 7.53%.
  • the change rate of tensile strength can be calculated by the following formula.
  • the tensile strength is measured in accordance with ASTM D882 when the specimen is pulled in the machine direction and transverse direction at a speed of 50 mm/min using Universal Testing Systems (Instron® 3345), respectively. This may mean the strength at the time of breaking.
  • the separator containing a cross-linked structure for a lithium secondary battery according to an embodiment of the present invention has a change in tensile elongation in the machine direction and perpendicular direction of 20% or less, or 0% to 20%, compared with the separator for lithium secondary battery before crosslinking can
  • the rate of change of tensile elongation can be calculated by the following formula.
  • the tensile elongation was obtained when the specimen was pulled in the machine direction and transverse direction at a speed of 50 mm/min using Universal Testing Systems (Instron® 3345) in accordance with ASTM D882, respectively. It can be calculated using the following formula by measuring the maximum elongated length until fracture.
  • the change in puncture strength is 10% or less, or 0.5% to 10%, or 1% to 9%, compared with the separator for lithium secondary battery before crosslinking, or 1.18% to 8.71%.
  • the rate of change of the puncture strength can be calculated by the following formula.
  • the puncture strength can be measured according to ASTM D2582. Specifically, after a round tip of 1 mm is set to operate at a speed of 120 mm/min, the puncture strength can be measured according to ASTM D2582.
  • the separator containing a cross-linked structure for a lithium secondary battery according to an embodiment of the present invention may have a change in electrical resistance of 15% or less, or 2% to 10%, or 2% to 5%, compared to the separator for lithium secondary battery before crosslinking have.
  • the rate of change of electrical resistance can be calculated by the following formula.
  • the electrical resistance can be obtained by measuring the separator resistance by an impedance measurement method after leaving the coin cell prepared including the separator sample at room temperature for 1 day.
  • porous olefin polymer support having a crosslinked structure according to the present invention may be prepared by the following method, but is not limited thereto.
  • UV light irradiating ultraviolet (UV) light to the olefin polymer porous support.
  • a porous olefin polymer support including a Type 2 photoinitiator is prepared.
  • the Type 2 photoinitiator directly photocrosslinks the polymer chain in the porous olefin polymer support.
  • a Type 2 photoinitiator may be introduced into the surface of the porous olefin polymer support to crosslink the porous olefin polymer support upon UV irradiation.
  • the "surface of the porous olefin polymer support” refers to the surface of the polymer chains of several to several tens of nm constituting the porous olefin polymer support.
  • the Type 1 photoinitiator used to photocrosslink the olefin polymer porous support is generally used together with a crosslinking agent. After absorbing light, the Type 1 photoinitiator was subjected to unimolecular bond cleavage to become a reactive compound species. The photoinitiator or crosslinking agent was combined with the polymer chain in the olefin polymer porous support, resulting in photocrosslinking.
  • the Type 2 photoinitiator can crosslink the olefin polymer porous support by the photoinitiator alone, without a crosslinking agent or other components such as a co-initiator or a synergist.
  • the Type 2 photoinitiator becomes a reactive compound, and this Type 2 photoinitiator forms a radical in the polymer chain in the olefin polymer porous support to form a polymer chain
  • the polymer chains can be directly linked to each other and photocrosslinked.
  • hydrogen separation reaction by the Type 2 photoinitiator is possible in a small amount of double bond structure or branch structure present in the olefin polymer. can be formed
  • radicals can be generated in the polymer chains in the porous olefin polymer support by using the Type 2 photoinitiator, so that the crosslinking between the polymer chains is directly connected structure can be formed.
  • the Type 2 photoinitiator is stabilized and no longer generates radicals from the polymer chain in the olefin polymer porous support. Accordingly, the finally prepared porous olefin polymer support having a cross-linked structure also does not have an activated radical.
  • the ultraviolet rays activate the Type 2 photoinitiator again, and the activated Type 2 photoinitiator forms radicals again from the polymer chain in the olefin polymer porous support.
  • the first peak is detected at a g value of 2.010 to 2.030.
  • the Type 2 photoinitiator may include thioxanthone (TX: Thioxanthone), a thioxanthone derivative, benzophenone (BPO: Benzophenone), a benzophenone derivative, or two or more of these.
  • TX Thioxanthone
  • BPO benzophenone
  • the thioxanthone derivative is, for example, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2-dodecylthioxanthone, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 1- Methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, 3-(2-methoxyethoxycarbonyl)-thioxanthone, 4-butoxycarbonyl-thioxanthone, 3-butoxycarbonyl -7-methylthioxanthone, 1-cyano-3-chlorothioxanthone, 1-ethoxycarbonyl-3-chlorothioxanthone, 1-ethoxycarbonyl-3-ethoxythioxanthone, 1- Ethoxy-carbonyl-3-aminothioxanthone, 1-ethoxycarbonyl-3-phenylsulfurylthioxanth
  • the benzophenone derivative is, for example, 4-phenylbenzophenone, 4-methoxybenzophenone, 4,4'-dimethoxy-benzophenone, 4,4'-dimethylbenzophenone, 4,4'-dichlorobenzophenone, 4 ,4'-dimethylaminobenzophenone, 4,4'-diethylaminobenzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, 4-(4-methylthiophenyl)-benzophenone, 3 ,3'-Dimethyl-4-methoxy-benzophenone, methyl-2-benzoyl benzoate, 4-(2-hydroxyethylthio)-benzophenone, 4-(4-tolylthio)benzophenone, 4-benzoyl -N,N,N-trimethylbenzenemethanaminium chloride, 2-hydroxy-3-(4-benzoylphenoxy)-N,N,N-trimethyl-propanaminium
  • the Type 2 photoinitiator includes 2-Isopropyl thioxanthone (ITX)
  • ITX 2-Isopropyl thioxanthone
  • the melting point of ITX is low to approximately 70° C. to 80° C.
  • the photocrosslinking temperature condition is 80° C. to 100° C.
  • the mobility of ITX occurs in the porous olefin polymer support, so that the crosslinking efficiency can be increased. It may be easy to prevent a change in physical properties of the member.
  • the content of the Type 2 photoinitiator is 0.015 parts by weight to 0.36 parts by weight, or 0.015 parts by weight to 0.09 parts by weight, or 0.03 parts by weight to 0.07 parts by weight, based on 100 parts by weight of the olefin polymer porous support, or 0.036 parts by weight to 0.073 parts by weight.
  • the content of the Type 2 photoinitiator satisfies the above-mentioned range, crosslinking occurs only between the polymer chains in which radicals are formed, and the Type 2 photoinitiator is not crosslinked with the polymer chains. Due to this, it may be easier to prevent a problem in which a side reaction occurs.
  • the crosslinked structure When crosslinking between Type 2 photoinitiators occurs or when Type 2 photoinitiators and polymer chains are crosslinked with each other, the crosslinked structure has a lower reaction enthalpy than the crosslinked structure between the polymer chains in the olefin polymer porous support, so there is a risk of decomposition and side reactions.
  • the melting temperature of the olefin polymer chain may be lowered, thereby deteriorating properties such as the shutdown temperature.
  • the porous olefin polymer support can be crosslinked by irradiation with ultraviolet light at an amount of light that can secure mass production productivity (ie, less light than conventional ones).
  • the content of the Type 2 photoinitiator relative to 100 parts by weight of the porous olefin polymer support can be obtained by measuring the content of the Type 2 photoinitiator filling the entire pore volume of the porous olefin polymer support. For example, assuming that the solvent described below fills 100% of the total pore volume of the porous olefin polymer support, and there is no solvent present on the surface of the porous olefin polymer support, the total pores of the porous olefin polymer support can be calculated from the density of the solvent. The weight of the solvent contained in the volume can be obtained, and the content of the Type 2 photoinitiator relative to 100 parts by weight of the olefin polymer porous support can be obtained from the content of the Type 2 photoinitiator contained in the solvent.
  • the porous olefin polymer support is a conventional method known in the art, for example, a wet method using a solvent, a diluent or a pore former, or a dry method using a stretching method in order to secure excellent air permeability and porosity from the above-mentioned olefin polymer material. It can be prepared by forming pores through
  • the number of double bonds present in the olefin polymer chain as measured by H-NMR is 0.01 per 1000 carbon atoms. to 0.5, or from 0.01 to 0.3, or from 0.01 to 0.2.
  • the porous olefin polymer support has the number of double bonds in the above range, it is possible to control radicals formed by the hydrogen separation reaction by the Type 2 photoinitiator from the double bond structure present in the olefin polymer chain, so that the porous olefin polymer paper While it is possible to effectively crosslink the retardation, it is possible to minimize the occurrence of side reactions due to excessive generation of radicals.
  • the double bond present in the olefin polymer chain except for the terminal may affect the crosslinking between the polymer chains.
  • the number of double bonds present in the olefin polymer chain excluding the terminal of the crosslinked structure-containing porous olefin polymer support may be 0.005 to 0.49 per 1000 carbon atoms.
  • the number of double bonds present in the chain of the olefin polymer can be adjusted by controlling the type, purity, addition of a linker, etc. of the catalyst during the synthesis of the olefin polymer.
  • the porous olefin polymer support has a BET specific surface area of 10 m 2 /g to 27 m 2 /g, 13 m 2 /g to 25 m 2 /g, or 15 m 2 /g to 23 m 2 /g.
  • the BET specific surface area of the porous olefin polymer support satisfies the above range, the surface area of the porous olefin polymer support increases, so that the crosslinking efficiency of the porous olefin polymer support is increased even with a small amount of Type 2 photoinitiator. It could be easier.
  • the BET specific surface area of the porous olefin polymer support can be measured by the BET method. Specifically, the BET specific surface area of inorganic particles can be calculated from the amount of nitrogen gas adsorbed under liquid nitrogen temperature (77 K) using BELSORP-mino II manufactured by BEL Japan.
  • the olefin polymer porous support may further include an antioxidant.
  • the antioxidant can control the crosslinking reaction between the polymer chains by controlling the radicals formed in the olefin polymer chains.
  • Antioxidants are oxidized instead of polymer chains to prevent oxidation of polymer chains or to absorb generated radicals to control crosslinking reactions between polymer chains.
  • the content of the antioxidant may be 500 ppm to 20000 ppm, or 1000 ppm to 15000 ppm, or 2000 ppm to 13000 ppm based on the content of the olefin polymer porous support.
  • the content of the antioxidant satisfies the above-mentioned range, it is possible to sufficiently control radicals generated excessively by the antioxidant, so that it can be easy to prevent the problem of side reactions, and the surface of the olefin polymer porous support becomes non-uniform. may be easy to prevent.
  • antioxidants are largely divided into radical scavengers that react with radicals generated in olefin polymers to stabilize olefin polymers, and peroxide decomposers that decompose peroxides generated by radicals into stable molecules. can be classified.
  • the radical scavenger releases hydrogen to stabilize the radical and becomes a radical itself, but may remain in a stable form through a resonance effect or rearrangement of electrons.
  • the peroxide decomposing agent may exhibit a more excellent effect when used in combination with the radical scavenger.
  • the antioxidant may comprise a first antioxidant that is a radical scavenger and a second antioxidant that is a peroxide decomposer. Since the first antioxidant and the second antioxidant have different working mechanisms, the antioxidant includes the first antioxidant that is a radical scavenger and the second antioxidant that is a peroxide decomposer at the same time, so that unnecessary radicals due to the synergistic effect of the antioxidants Production inhibition may be easier.
  • the content of the first antioxidant and the second antioxidant may be the same or different.
  • the first antioxidant may include a phenolic antioxidant, an amine antioxidant, or a mixture thereof.
  • the phenolic antioxidant is 2,6-di-t-butyl-4-methylphenol, 4,4'-thiobis(2-t-butyl-5-methylphenol), 2,2'-thiodiethyl Bis-[3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate], pentaerythritol-tetrakis-[3-(3,5-di-t-butyl-4) -Hydroxyphenyl)-propionate] (Pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), 4,4'-thiobis (2-methyl-6-t- Butylphenol), 2,2'-thiobis(6-t-butyl-4-methylphenol), octadecyl-[3-(3,5-di-t-butyl-4-hydroxyphenyl)-propio nate], triethylenegly
  • the content of the first antioxidant may be 500 ppm to 10000 ppm, or 1000 ppm to 12000 ppm, or 1000 ppm to 10000 ppm based on the content of the olefin polymer porous support. have.
  • the content of the first antioxidant satisfies the above-mentioned range, it may be easier to prevent a problem in which a side reaction occurs due to excessive generation of radicals.
  • the second antioxidant may include a phosphorus-based antioxidant, a sulfur-based antioxidant, or a mixture thereof.
  • the phosphorus-based antioxidant decomposes peroxide to form alcohol, which is converted into phosphate.
  • the phosphorus-based antioxidant is 3,9-bis(2,6-di-t-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5,5 ]Undecane (3,9-Bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane), bis(2, 6-dicumylphenyl)pentaerythritol diphosphite (Bis(2,4-dicumylphenyl) pentaerythritol diphosphate), 2,2'-methylenebis(4,6-di-t-butylphenyl) 2-ethylhexyl phosphite (2 ,2'-Methylenebis(4,6-di-tert-buty
  • the sulfur-based antioxidant is 3,3'-thiobis-1,1'-didodecyl ester (3,3'-thiobis-1,1'-didodecyl ester), dimethyl 3, 3'-thiodipropionate ( Dimethyl 3,3'-Thiodipropionate), dioctadecyl 3,3'-thiodipropionate (Dioctadecyl 3,3'-thiodipropionate), 2,2-bis ⁇ [3- (dodecylthio)-1- Oxopropoxy]methyl ⁇ propane-1,3-diyl-bis[3-(dodecylthio)propionate](2,2-Bis ⁇ [3-(dodecylthio)-1-oxopropoxy]methyl ⁇ propane- 1,3-diyl bis[3-(dodecylthio)propionate]), or two or more of these.
  • the content of the second antioxidant may be 500 ppm to 10000 ppm, or 1000 ppm to 12000 ppm, or 1000 ppm to 10000 ppm based on the content of the olefin polymer porous support.
  • the content of the second antioxidant satisfies the above-mentioned range, it may be easier to prevent a problem in which a side reaction occurs due to excessive generation of radicals.
  • the antioxidant when the antioxidant simultaneously includes a first antioxidant that is a radical scavenger and a second antioxidant that is a peroxide decomposer, the content of the first antioxidant
  • the content of the olefin polymer porous support may be 500 ppm to 10000 ppm, and the content of the second antioxidant may be 500 ppm to 10000 ppm based on the content of the olefin polymer porous support.
  • the Type 2 photoinitiator in the step of preparing the olefin polymer porous support including the Type 2 photoinitiator, when the olefin polymer composition for forming the olefin polymer porous support is extruded, the Type 2 photoinitiator is used in an extruder. It may include the step of preparing an olefin polymer porous support by adding a.
  • the step of preparing the porous olefin polymer support includes coating and drying the composition for photocrosslinking comprising the Type 2 photoinitiator and the solvent on the outside of the porous olefin polymer support can do.
  • the term “coating and drying on the outside” refers not only to coating and drying the composition for photocrosslinking on the surface of the porous olefin polymer support, but also to forming another layer on the porous olefin polymer support and then the other layer Including cases in which the composition for photocrosslinking is coated and dried on the surface of the.
  • the porous olefin polymer support may be corona-discharged before coating the photoinitiator solution on the porous olefin polymer support.
  • the corona discharge treatment may be performed by applying a high frequency, high voltage output generated by a predetermined driving circuit unit between a predetermined discharge electrode provided in the corona discharge processor and a treatment roll.
  • the surface of the porous olefin polymer support is modified through the corona discharge treatment, so that the wettability of the porous olefin polymer support to the composition for photocrosslinking can be further improved. Accordingly, crosslinking of the olefin polymer porous support can be performed more efficiently even if the same amount of the Type 2 photoinitiator is included.
  • the corona discharge treatment may be performed by an atmospheric pressure plasma method.
  • the solvent is cyclic aliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; acetone, ethylmethyl ketone, diisopropyl ketone, cyclohexa Ketones such as non, methylcyclohexane, and ethylcyclohexane; Chlorine-based aliphatic hydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride; Esters such as ethyl acetate, butyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone; acetonitrile, propio Acylnitriles such as nitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol,
  • the content of the Type 2 photoinitiator in the composition for photocrosslinking is 0.015 parts by weight to 0.36 parts by weight relative to 100 parts by weight of the olefin polymer porous support, and at the same time 0.01 to 0.5 parts by weight based on 100 parts by weight of the solvent parts, or 0.02 parts by weight to 0.45 parts by weight, or 0.25 parts by weight to 0.4 parts by weight.
  • the content of the Type 2 photoinitiator satisfies the above-mentioned range, it may be easier to prevent side reactions from occurring due to excessive radical generation while crosslinking the olefin polymer porous support.
  • the content of the Type 2 photoinitiator in the composition for photocrosslinking is 0.015 parts by weight to 0.36 parts by weight based on 100 parts by weight of the porous olefin polymer support, and at the same time, the specific surface area of the porous olefin polymer support Based on 0.01 mg/m 2 to 1.0 mg/m 2 , or 0.03 mg/m 2 to 0.8 mg/m 2 , or 0.06 mg/m 2 to 0.7 mg/m 2 may be.
  • the content of the Type 2 photoinitiator satisfies the above-mentioned range, it may be easier to prevent side reactions from occurring due to excessive radical generation while crosslinking the olefin polymer porous support.
  • the content of the Type 2 photoinitiator based on the specific surface area of the olefin polymer porous support can be measured through NMR analysis.
  • the composition for photocrosslinking may be a photoinitiator solution composed of the Type 2 photoinitiator and the solvent.
  • Non-limiting examples of a method for coating the photoinitiator solution on the olefin polymer porous support include a dip coating method, a die coating method, a roll coating method, a comma coating method, a micro Gravure (Microgravure) coating method, doctor blade coating method, reverse roll coating method, Mayer bar ( Mayer Bar) coating method, direct roll coating method and the like.
  • the drying step after coating the photoinitiator solution on the porous olefin polymer support may use a method known in the art, and use an oven or a heated chamber in a temperature range in consideration of the vapor pressure of the solvent used, batchwise or continuously possible in this way
  • the drying is to almost remove the solvent present in the photoinitiator solution, which is preferably as fast as possible in consideration of productivity and the like, and may be carried out for, for example, 1 minute or less or 30 seconds or less.
  • the composition for photocrosslinking may be a slurry for forming an inorganic hybrid pore layer comprising an inorganic filler, a binder polymer, the Type 2 photoinitiator, and the solvent.
  • the Type 2 photoinitiator is introduced to the surface of the porous olefin polymer support while the composition for photocrosslinking is coated on the porous olefin polymer support, and the olefin polymer is irradiated with UV light. It is possible to crosslink the porous support and at the same time form an inorganic hybrid pore layer on at least one surface of the porous olefin polymer support.
  • a cross-linked structure-containing separator for lithium secondary batteries comprising a cross-linked structure-containing porous olefin polymer support, and an inorganic hybrid pore layer positioned on at least one surface of the cross-linked structure-containing olefin polymer porous support and containing an inorganic filler and a binder polymer can be manufactured.
  • a facility for directly applying the Type 2 photoinitiator to the porous olefin polymer support for example, a solution containing the Type 2 photoinitiator is applied to the porous olefin polymer support. It is possible to crosslink the olefin polymer porous support by using the inorganic hybrid pore layer forming process without requiring additional equipment for direct coating and drying.
  • the slurry for forming the inorganic hybrid pore layer does not require other monomers other than the Type 2 photoinitiator to directly crosslink the polymer chains in the olefin polymer porous support, so that the Type 2 photoinitiator is an inorganic material together with an inorganic filler and a binder polymer. Even when included in the slurry for forming the hybrid pore layer, the type 2 photoinitiator does not prevent the Type 2 photoinitiator from reaching the surface of the porous olefin polymer support, and thus the Type 2 photoinitiator can be sufficiently introduced to the surface of the porous olefin polymer support.
  • the porous olefin polymer support itself and the inorganic filler have a high UV blocking effect, and then irradiating UV rays after forming the inorganic hybrid pore layer including the inorganic filler, the amount of UV irradiation light reaching the porous olefin polymer support can be reduced.
  • the polymer chains in the olefin polymer porous support can be directly cross-linked.
  • the solvent may serve as a solvent for dissolving the binder polymer depending on the type of the binder polymer, or may serve as a dispersion medium for dispersing the binder polymer without dissolving it. At the same time, the solvent can dissolve the Type 2 photoinitiator.
  • the solvent has a solubility index similar to that of the binder polymer to be used, and a low boiling point may be used. In this case, uniform mixing and subsequent removal of the solvent may be easy. For a non-limiting example of such a solvent, see the above-mentioned solvent.
  • the binder polymer may be dissolved in the solvent depending on the type of the binder polymer, or may be dispersed without being dissolved in the solvent.
  • the Type 2 photoinitiator when the composition for photocrosslinking is the slurry for forming the inorganic hybrid pore layer, the Type 2 photoinitiator may include 2-isopropyl thioxanthone, thioxanthone, or a mixture thereof. have. 2-isopropyl thioxanthone or thioxanthone can be optically crosslinked even at a long wavelength with high transmittance. Accordingly, even if the Type 2 photoinitiator is included in the slurry for forming an inorganic hybrid pore layer including an inorganic filler and a binder polymer, crosslinking of the olefin polymer porous support may be easy.
  • the slurry for forming the inorganic hybrid pore layer may be prepared by dissolving or dispersing the binder polymer in the solvent, then adding the inorganic filler and dispersing it.
  • the inorganic fillers may be added in a crushed state to have a predetermined average particle diameter in advance, or after adding the inorganic filler to a slurry in which the binder polymer is dissolved or dispersed, the inorganic filler is subjected to a predetermined value using a ball mill method or the like. It may be crushed and dispersed while controlling to have an average particle size. At this time, crushing may be performed for 1 to 20 hours, and the average particle diameter of the crushed inorganic filler may be as described above. As the crushing method, a conventional method may be used, and a ball mill method may be used.
  • the solid content of the slurry for forming the inorganic hybrid pore layer may be 5 wt% to 60 wt%, or 30 wt% to 50 wt%.
  • the content of the solid content of the slurry for forming the inorganic hybrid pore layer is in the above-mentioned range, it may be easy to ensure coating uniformity, and it will be easy to prevent the slurry from flowing and non-uniformity occurring or taking a lot of energy to dry the slurry.
  • a phase separation process may be performed after the composition for photocrosslinking is coated on the porous olefin polymer support.
  • the phase separation may be performed in a humidified phase separation or immersion phase separation method.
  • the humidified phase separation may be carried out at a temperature in the range of 15 ° C. to 70 ° C. or at a temperature in the range of 20 ° C. to 50 ° C. and a relative humidity in the range of 15% to 80% or relative humidity in the range of 30% to 50%.
  • the slurry for forming the inorganic hybrid pore layer is dried, it may have a phase change characteristic by a phase separation phenomenon known in the art (vapor-induced phase separation).
  • a non-solvent for the binder polymer may be introduced in a gaseous state.
  • the non-solvent for the binder polymer is not particularly limited as long as it does not dissolve the binder polymer and has partial compatibility with the solvent, for example, those having a solubility of the binder polymer of less than 5 wt% at 25°C may be used.
  • the non-solvent for the binder polymer may be water, methanol, ethanol, isopropanol, butanol, butanediol, ethylene glycol, propylene glycol, tripropylene glycol, or two or more of these.
  • the slurry for forming the inorganic hybrid pore layer on the outside of the olefin polymer porous support After coating the slurry for forming the inorganic hybrid pore layer on the outside of the olefin polymer porous support, it is immersed in a coagulating solution containing a non-solvent for the binder polymer for a predetermined time. Accordingly, a phase separation phenomenon is induced in the coated inorganic material hybrid pore layer slurry and the binder polymer is solidified. In this process, a porous inorganic compound hybrid pore layer is formed. Thereafter, the coagulation liquid is removed by washing with water and dried. The drying may be performed using a method known in the art, and may be performed in a batch or continuous manner using an oven or a heated chamber in a temperature range in consideration of the vapor pressure of the solvent used. The drying is to almost remove the solvent present in the slurry, which is preferably as fast as possible in consideration of productivity and the like, and may be carried out for,
  • the coagulating solution only a non-solvent for the binder polymer may be used, or a mixed solvent of a non-solvent for the binder polymer and the solvent as described above may be used.
  • the content of the non-solvent for the binder polymer is 50 wt % compared to 100 wt % of the coagulating solution from the viewpoint of forming a good porous structure and improving productivity may be more than
  • the step of coating and drying the optical crosslinking composition comprising the Type 2 photoinitiator and the solvent on the outside of the olefin polymer porous support,
  • an inorganic hybrid pore layer by coating and drying a slurry for forming an inorganic hybrid pore layer comprising an inorganic filler, a first binder polymer, and a dispersion medium on at least one surface of the olefin polymer porous support;
  • a second binder polymer, the Type 2 photoinitiator, and the step of coating and drying a coating solution for forming a porous adhesive layer comprising the solvent on the upper surface of the inorganic hybrid pore layer; may include.
  • the cross-linked structure-containing olefin polymer porous support the inorganic hybrid pore layer located on at least one surface of the cross-linked structure-containing olefin polymer porous support and comprising an inorganic filler and a first binder polymer, and a second binder polymer
  • a separator containing a cross-linked structure for a lithium secondary battery including a porous adhesive layer may be manufactured.
  • the dispersion medium may serve as a solvent for dissolving the first binder polymer depending on the type of the first binder polymer, or may serve as a dispersion medium for dispersing the first binder polymer without dissolving it.
  • the dispersion medium has a solubility index similar to that of the first binder polymer to be used, and a low boiling point may be used. In this case, it may be easy to uniformly mix and then remove the dispersion medium.
  • the dispersion medium may be an aqueous dispersion medium.
  • the dispersion medium is an aqueous dispersion medium, it is environmentally friendly and does not require an excessive amount of heat to form and dry the inorganic hybrid pore layer, and additional explosion-proof facilities are not required, so it may be easier than forming the inorganic hybrid pore layer.
  • the first binder polymer may not be dissolved in the solvent and the nonsolvent for the second binder polymer to be described later.
  • the first binder polymer is not dissolved even when a coating solution to be described later is applied to form the porous adhesive layer after forming the inorganic hybrid pore layer, so the first binder polymer dissolved in the solvent and/or the nonsolvent for the second binder polymer It may be easy to prevent the phenomenon of clogging the pores.
  • the first binder polymer may be an aqueous binder polymer.
  • the first binder polymer may be dissolved in an aqueous solvent or dispersed by an aqueous dispersion medium.
  • the first binder polymer may be in the form of particles.
  • the drying of the slurry for forming the inorganic hybrid pore layer may be dried by a drying method when manufacturing a conventional separator.
  • drying of the coated slurry may be performed by air for 10 seconds to 30 minutes, or 30 seconds to 20 minutes, or 3 minutes to 10 minutes.
  • the drying time is performed within the above range, it may have the effect of removing the residual solvent without impairing productivity.
  • the solvent may be to dissolve the second binder polymer in 5 wt% or more, or 15 wt% or more, or 25 wt% or more at 25°C.
  • the solvent may be a non-solvent for the first binder polymer.
  • the solvent may be one that dissolves the first binder polymer in an amount of less than 5% by weight at 25°C.
  • the second binder polymer is 3 based on 100% by weight of the coating solution for forming the porous adhesive layer It may be included in an amount of from 5% to 30% by weight, or from 5% to 25% by weight.
  • the Type 2 photoinitiator is included in the coating solution for forming the porous adhesive layer, when the coating solution for forming the porous adhesive layer is coated on the upper surface of the inorganic hybrid pore layer, the Type 2 photoinitiator can be introduced onto the surface of the olefin polymer porous support and at the same time the porous adhesive layer can form.
  • the solvent wets the porous olefin polymer support.
  • the Type 2 photoinitiator contained in the coating solution for forming the porous adhesive layer is introduced onto the surface of the porous olefin polymer support and when irradiated with UV light.
  • the porous olefin polymer support may be photocrosslinked by the Type 2 photoinitiator present on the surface of the porous olefin polymer support.
  • the method for producing a separator containing a cross-linked structure for a lithium secondary battery is a facility for directly applying a Type 2 photoinitiator to the porous olefin polymer support in order to photocross-link the porous olefin polymer support, such as Type 2
  • a Type 2 photoinitiator to the porous olefin polymer support in order to photocross-link the porous olefin polymer support, such as Type 2
  • the porous olefin polymer support can be photocrosslinked using the porous adhesive layer forming process without additional equipment such as directly coating and drying the solution containing the photoinitiator on the porous olefin support support, The process can be simplified.
  • the method for producing a separator containing a cross-linked structure for a lithium secondary battery according to an embodiment of the present invention requires other components such as a monomer for forming radicals in addition to the Type 2 photoinitiator in order to directly cross-link the polymer chains in the olefin polymer porous support. Therefore, even if the Type 2 photoinitiator is added to the coating solution for forming the porous adhesive layer, other components do not prevent the Type 2 photoinitiator from reaching the surface of the porous olefin polymer support, so that the Type 2 photoinitiator is sufficiently applied to the surface of the porous olefin polymer support. can be introduced.
  • the porous olefin polymer support itself and the inorganic filler have a high UV blocking effect, and UV irradiation after forming the inorganic hybrid pore layer and the porous adhesive layer, the amount of UV irradiation light reaching the porous olefin polymer support can be reduced.
  • crosslinking is possible even with a small amount of ultraviolet irradiation, and even after the inorganic hybrid pore layer and the porous adhesive layer are formed, even when irradiated with ultraviolet rays, the polymer chains in the olefin polymer porous support are crosslinked and can be directly connected.
  • the coating solution for forming the porous coating layer may include 2-isopropyl thioxanthone, thioxanthone, or a mixture thereof as the Type 2 photoinitiator.
  • 2-isopropyl thioxanthone or thioxanthone can be optically crosslinked even at a long wavelength with high transmittance. Accordingly, even after the inorganic material-forming pore layer and the porous adhesive layer are formed, crosslinking of the olefin polymer porous support can be easily irradiated with ultraviolet rays.
  • the finally prepared porous adhesive layer may form a pattern.
  • a phase separation process may be performed after the coating solution for forming the porous adhesive layer is coated on the upper surface of the inorganic hybrid pore layer.
  • the phase separation may be performed by an immersion phase separation method.
  • the coating solution for forming the porous adhesive layer on the upper surface of the inorganic hybrid pore layer After coating the coating solution for forming the porous adhesive layer on the upper surface of the inorganic hybrid pore layer, it is immersed in a coagulation solution containing a non-solvent for the second binder polymer for a predetermined time. Accordingly, a phase separation phenomenon is induced in the coating solution for forming the coated porous adhesive layer, and the second binder polymer is solidified. In this process, a porous adhesive layer is formed. Thereafter, the coagulation liquid is removed by washing with water and dried. The drying may be performed using a method known in the art, and may be performed in a batch or continuous manner using an oven or a heated chamber in a temperature range in consideration of the vapor pressure of the solvent used. The drying is to almost remove the solvent present in the coating solution for forming the porous adhesive layer, which is preferably as fast as possible in consideration of productivity and the like, and may be carried out for, for example, 1 minute or less or 30
  • the coagulation solution only a non-solvent for the second binder polymer may be used, or a mixed solvent of a non-solvent for the second binder polymer and the solvent as described above may be used.
  • a mixed solvent of a nonsolvent and a solvent for the second binder polymer the content of the nonsolvent for the second binder polymer relative to 100% by weight of the coagulation solution from the viewpoint of forming a good porous structure and improving productivity This may be 50% by weight or more.
  • a phenomenon in which the second binder polymer is condensed in the process of solidifying the second binder polymer, thereby preventing the penetration of the second binder polymer into the surface and/or inside of the olefin polymer porous support, thereby increasing the resistance of the separator can prevent
  • the resistance of the separator may be improved by making the adhesive layer including the second binder polymer porous.
  • the non-solvent for the second binder polymer may have a solubility in the second binder polymer at 25° C. of less than 5% by weight.
  • the nonsolvent for the second binder polymer may also be a nonsolvent for the first binder polymer.
  • the nonsolvent for the second binder polymer may have a solubility of less than 5% by weight in the first binder polymer at 25°C.
  • the non-solvent for the second binder polymer may include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, tripropylene glycol, or two or more of these. have.
  • the immersion may be made for 3 seconds to 1 minute.
  • the immersion time satisfies the above-mentioned range, it may be easy to prevent the detachment of the adhesive layer from occurring because the adhesion between the inorganic hybrid pore layer and the porous adhesive layer is ensured due to proper phase separation.
  • the drying of the coating solution for forming the porous adhesive layer may be dried by a drying method in manufacturing a conventional separator. For example, it may be carried out by air for 10 seconds to 30 minutes, or 30 seconds to 20 minutes, or 3 minutes to 10 minutes. When the drying time is performed within the above range, it may have the effect of removing the residual dispersion medium without impairing productivity.
  • the porous adhesive layer may be formed in various forms. For example, it may be easier to form the porous adhesive layer in the form of a pattern.
  • the olefin polymer porous support is irradiated with ultraviolet rays.
  • UV light is irradiated, the polymer chains in the porous olefin polymer support are crosslinked to obtain a porous olefin polymer support having a crosslinked structure.
  • UV irradiation is carried out by using a UV crosslinking device, and by appropriately adjusting the UV irradiation time and the amount of irradiation light in consideration of conditions such as the content ratio of the Type 2 photoinitiator.
  • the ultraviolet irradiation time and the amount of irradiation light are set as conditions such that the polymer chains in the olefin polymer porous support are sufficiently crosslinked to ensure the desired heat resistance, and the separation membrane is not damaged by the heat generated by the ultraviolet lamp.
  • the UV lamp used in the UV crosslinking device can be appropriately selected and used from a high-pressure mercury lamp, a metal lamp, a gallium lamp, etc. depending on the Type 2 photoinitiator used, and the emission wavelength and capacity of the UV lamp can be appropriately selected according to the process.
  • the polymer chain in the porous olefin polymer support can be photocrosslinked with only a significantly lower amount of UV irradiation compared to the amount of light used for general photocrosslinking. It is possible to increase the applicability of the mass production process.
  • the amount of irradiation light of the ultraviolet rays is 10 to 2000 mJ/cm 2 , or 50 to 1000 mJ/cm 2 , or 150 to 500 mJ/cm 2 .
  • the irradiation amount of the ultraviolet light may be measured using a portable light quantity meter called a Miltec H type UV bulb and UV power puck.
  • a portable light quantity meter called a Miltec H type UV bulb and UV power puck.
  • Miltec H type UV bulb there are three types of wavelength values for each wavelength: UVA, UVB, and UVC.
  • the ultraviolet of the present invention corresponds to UVA.
  • the UV power puck is passed on a conveyor under a light source under the same conditions as the sample, and the UV light quantity displayed on the UV power puck is referred to as 'ultraviolet irradiation light quantity'.
  • a lithium secondary battery may be manufactured by interposing the separator containing a cross-linked structure for a lithium secondary battery according to an embodiment of the present invention between the positive electrode and the negative electrode.
  • the lithium secondary battery may have various shapes such as a cylindrical shape, a prismatic shape, or a pouch shape.
  • the lithium secondary battery may include a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the electrode to be applied together with the separator containing the cross-linked structure for a lithium secondary battery of the present invention is not particularly limited, and the electrode active material layer including the electrode active material, the conductive material, and the binder is bound to the current collector according to a conventional method known in the art. It can be prepared in the form
  • a conventional negative electrode active material that can be used in the negative electrode of a conventional lithium secondary battery can be used, and in particular, lithium metal or lithium alloy, carbon, petroleum coke, activated carbon, A lithium adsorbent material such as graphite or other carbons may be used.
  • Non-limiting examples of the positive current collector include a foil made of aluminum, nickel, or a combination thereof
  • non-limiting examples of the negative current collector include copper, gold, nickel, or a copper alloy or a combination thereof. There are manufactured foils and the like.
  • the conductive material used in the negative electrode and the positive electrode may each independently be added in an amount of 1 wt % to 30 wt % based on the total weight of the active material layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and server black
  • conductive fibers such as carbon fibers and metal fibers
  • carbon fluoride such as aluminum and nickel powder
  • metal powders such as aluminum and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the binder used in the negative electrode and the positive electrode is each independently a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is typically 1% by weight based on the total weight of the active material layer. to 30% by weight.
  • binders examples include polyvinylidene fluoride (PVdF), polyacrylic acid (PAA), polyvinyl alcohol, carboxyl methyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro roethylene, polyethylene, polypropylene, ethylene-propylene-dienter polymer (EPDM), sulfonated EPDM, styrene butadiene rubber, fluororubber, various copolymers, and the like.
  • PVdF polyvinylidene fluoride
  • PAA polyacrylic acid
  • CMC carboxyl methyl cellulose
  • EPDM ethylene-propylene-dienter polymer
  • EPDM ethylene-propylene-dienter polymer
  • EPDM ethylene-propylene-dienter polymer
  • sulfonated EPDM styrene butadiene rubber
  • fluororubber
  • the lithium secondary battery may include an electrolyte, and the electrolyte may include an organic solvent and a lithium salt.
  • the electrolyte may include an organic solvent and a lithium salt.
  • an organic solid electrolyte or an inorganic solid electrolyte may be used as the electrolyte.
  • organic solvent examples include N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, 1,2-dimethoxyethane , tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid Triester, trimethoxymethane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-ibidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl pyropionate, ethyl propionate
  • An aprotic organic solvent such as these may be used.
  • the lithium salt is a material soluble in the organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate, imide, etc. can be used. have.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide
  • Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, aluminum trichloride, etc. may be added.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, polyagitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, A polymer containing an ionic dissociation group or the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates, etc. of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 and the like may be used.
  • the electrolyte injection may be performed at an appropriate stage in the battery manufacturing process according to the manufacturing process and required physical properties of the final product. That is, it may be applied before assembling the battery or in the final stage of assembling the battery.
  • the separator containing the cross-linked structure for a lithium secondary battery in addition to the general process of winding, lamination, stack, and folding processes of the separator and the electrode are possible do.
  • the separator containing a cross-linked structure for a lithium secondary battery may be interposed between the positive electrode and the negative electrode of the lithium secondary battery, and when a plurality of cells or electrodes are assembled to form an electrode assembly, adjacent cells or electrodes may be interposed between them.
  • the electrode assembly may have various structures such as a simple stack type, a jelly-roll type, a stack-folding type, and a lamination-stack type.
  • the number of double bonds in the polymer chain is 0.2 per 1000 carbon atoms as measured by H-NMR, and 3000 ppm of Irganox1010 and 2000 ppm of Irgafos168 are added as antioxidants.
  • Ethylene polymer with a thickness of 9 ⁇ m A porous film (Senior, weight average molecular weight: 600,000, porosity: 50%) was prepared.
  • 2-isopropyl thioxanthone (Sigma Aldrich) was prepared.
  • a high-pressure mercury lamp (Litgen high-pressure mercury lamp, LH-250 / 800-A) was prepared as a UV light source.
  • the photoinitiator was dissolved in an acetone solvent to prepare a composition for photocrosslinking containing 0.1 parts by weight of the photoinitiator based on 100 parts by weight of acetone.
  • UV was irradiated to the upper surface of the olefin polymer porous support coated with the composition for photocrosslinking, so that the accumulated light amount, that is, the amount of UV irradiation light was 500 mJ/cm 2 .
  • the UV irradiation intensity was UV It was set as 80% of the light source.
  • the porous olefin polymer support prepared above is immersed in the composition for photocrosslinking, and then taken out.
  • An olefin polymer porous support containing a crosslinked structure was obtained.
  • a composition for photocrosslinking was prepared by adding benzophenone (Sigma Aldrich) as a photoinitiator so as to be 0.1 parts by weight based on 100 parts by weight of acetone.
  • benzophenone Sigma Aldrich
  • the content of the photoinitiator was 0.073 parts by weight based on 100 parts by weight of the olefin polymer porous support while cutting the coating solution using a bar so that the composition for photocrosslinking does not remain on the surface of the known support.
  • An olefin polymer porous support containing a crosslinked structure was obtained.
  • an ethylene polymer porous film with a thickness of 9 ⁇ m in which the number of double bonds in the polymer chain is 0.2 per 1000 carbon atoms (Senior, weight average molecular weight: 600,000, porosity: 50%) were not subjected to any treatment.
  • An olefin polymer porous support was prepared in the same manner as in Example 1, except that phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (Irgacure 819) was used as a photoinitiator instead of 2-isopropyl thioxanthone. obtained.
  • phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (Irgacure 819) was used in place of 2-isopropyl thioxanthone so as to be 0.1 parts by weight based on 100 parts by weight of acetone, and tris(2-acryloxy Ethyl) isocyanurate (TEICTA, Sigma Aldrich) was added to 0.3 parts by weight based on 100 parts by weight of acetone to prepare a composition for photocrosslinking, and then the prepared porous olefin polymer support was immersed in the composition for photocrosslinking.
  • TEICTA tris(2-acryloxy Ethyl) isocyanurate
  • the content of the phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide is 100 weight of the olefin polymer porous support.
  • An olefin polymer porous support was obtained in the same manner as in Example 1, except that 0.073 parts by weight and 0.219 parts by weight of tris(2-acryloxyethyl)isocyanurate were present.
  • the electron spin resonance method spectrum at the time of UV irradiation of 500 W was measured under the following conditions.
  • the first peak at a g value of 2.010 to 2.030 was could be confirmed to be detected.
  • the second peak was detected at a g value of 1.990 to 2.009.
  • the ratio of the area of the first peak obtained by integrating the area of the first peak to the area of the second peak obtained by integrating the area of the second peak was 10% to 200%.
  • the air permeability was measured by the ASTM D726-94 method. Gurley, as used herein, is the resistance to the flow of air, measured by a Gurley densometer. The air permeability value described here is expressed as the time (seconds) it takes for 100 ml of air to pass through the cross section of 1 in 2 of the olefin polymer porous support under a pressure of 12.2 inH 2 O, that is, the ventilation time.
  • the porosity is calculated by measuring the width/length/thickness of the olefin polymer porous support to determine the volume, then measuring the weight, and calculating the volume as a ratio to the weight when the olefin polymer porous support occupies 100%. and measured.
  • Porosity (%) 100 x (1 - Sample weight of porous olefin polymer support / (width of sample of porous olefin polymer support (50 mm) x length (50 mm) x thickness x density of separator))
  • the basis weight (g/m 2 ) was evaluated by preparing a sample in which the width and length of the olefin polymer porous support were 1 m, respectively, and measuring the weight thereof.
  • the change rate of the basis weight can be calculated by the following formula.
  • coin cells were manufactured using the porous olefin polymer support prepared in Examples 1 to 3 and Comparative Examples 1 to 3 as a separator, and the coin cell was left at room temperature for 1 day, followed by the porous olefin polymer support. was measured by the impedance measurement method.
  • the coin cell was manufactured as follows.
  • the negative electrode slurry was coated on a copper current collector with a loading amount of 3.8 mAh/cm 2 and dried to prepare a negative electrode.
  • LiCoO 2 as a positive electrode active material, Denka Black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder were added to N-methylpyrrolidone (NMP) as a solvent in a weight ratio of 85:5:10 to prepare a positive electrode active material slurry prepared.
  • NMP N-methylpyrrolidone
  • the cathode active material slurry was coated on a sheet-shaped aluminum current collector and dried to form a cathode active material layer such that the final cathode loading amount was 3.3 mAh/cm 2 .
  • the olefin polymer porous support prepared in Examples and Comparative Examples was interposed as a separator, and a non-aqueous electrolyte (1M LiPF 6 , ethylene carbonate (EC)/propylene carbonate (PC)/di Ethyl carbonate (DEC)) (volume ratio: 3:3:4) was injected to prepare a coin cell.
  • a non-aqueous electrolyte (1M LiPF 6 , ethylene carbonate (EC)/propylene carbonate (PC)/di Ethyl carbonate (DEC)
  • the degree of crosslinking was measured by measuring the weight remaining after soaking the olefin polymer porous support prepared in Examples 1 to 3 and Comparative Examples 1 to 3 in a xylene solution at 135° C. according to ASTM D 2765 and boiling it for 12 hours. Calculated as a percentage of weight.
  • the meltdown temperature was measured by thermomechanical analysis (TMA) after taking a sample in the machine direction (MD) of the porous olefin polymer support. Specifically, a sample of width 4.8 mm x length 8 mm was put into TMA equipment (TA Instrument, Q400), and the temperature was changed from 30 °C to 220 °C at a temperature increase rate of 5 °C/min while a tension of 0.01 N was applied. As the temperature increased, a change in the length of the sample was accompanied, and the temperature at which the sample was cut in the machine direction (Machine direction, MD) was measured as the length was rapidly increased, and this was used as the meltdown temperature.
  • TMA thermomechanical analysis
  • the melt-down temperature was 160° C. or higher. This is because, by using Type 2 photoinitiators such as 2-isopropyl thioxanthone and benzophenone, direct photocrosslinking of the polymer chains in the porous olefin polymer support was possible.
  • the melt-down temperature did not reach 160°C. This is because direct photocrosslinking of the polymer chain in the olefin polymer porous support was hardly performed because the Type 2 photoinitiator was not used.
  • Table 3 shows the measurement results of storage stress and loss stress of the porous olefin polymer support prepared in Examples 1, 2, and Comparative Example 1.
  • the crosslinked structures prepared in Examples 1 and 2 in which the ratio (A/B) of (A) is 2 or more or the slope of the storage stress (G', storage modulus) (A) curve with respect to the frequency satisfies 0.05 to 0.4 Since the porous olefin polymer support containing the olefin polymer exhibited a significantly higher coating temperature than the porous olefin polymer support of Comparative Example 1, it can be seen that the thermal stability was significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 고분자 사슬 사이가 직접적으로 연결된 가교구조를 포함하고, 500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 2.010 내지 2.030의 g 값에서 제1 피크가 검출되는 가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 및 상기 분리막을 구비한 리튬 이차전지에 관한 것이다. 본 발명에 따른 가교구조 함유 올레핀고분자 다공지지체는 내열성이 우수하다.

Description

가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 및 상기 분리막을 구비한 리튬 이차전지
본 출원은 2021년 5월 7일에 출원된 한국특허출원 제10-2021-0059583호에 기초한 우선권을 주장한다.
본 발명은 가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 및 상기 분리막을 구비한 리튬 이차전지에 관한 것이다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
이러한 리튬 이차전지는 양극, 음극, 전해액, 분리막으로 구성되어 있으며, 이 중 분리막은 양극과 음극을 분리하여 전기적으로 절연시키기 위한 절연성과 높은 기공도를 바탕으로 리튬 이온의 투과성을 높이기 위하여 높은 이온 전도도가 요구된다.
이러한 분리막으로써 올레핀고분자 분리막이 널리 사용되고 있는데, 대표적인 올레핀고분자 분리막인 에틸렌고분자(PE) 분리막의 경우, 융점(Tm)이 낮으므로 전지 오사용 환경에서 전지의 온도가 에틸렌고분자의 융점 이상으로 상승하는 경우 멜트-다운(melt-down) 현상이 발생하여 발화 및 폭발을 야기할 수 있고, 이의 재료적 특성 및 제조 공정상의 특성으로 인하여 고온 등의 상황에서 분리막이 극심한 열 수축 거동을 보임으로써 내부 단락 등의 안전성 문제를 갖고 있다.
따라서, 고온에서 안전성을 확보할 수 있는 분리막에 대한 필요성이 여전히 높다.
따라서 본 발명이 해결하고자 하는 과제는, 고온 안전성이 개선된 가교구조 함유 올레핀고분자 다공지지체를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 상기 가교구조 함유 올레핀고분자 다공지지체를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 및 상기 분리막을 구비한 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예들의 가교구조 함유 올레핀고분자 다공지지체가 제공된다.
제1 구현예는,
고분자 사슬 사이가 직접적으로 연결된 가교구조를 포함하고,
500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 2.010 내지 2.030의 g 값에서 제1 피크가 검출되는 것을 특징으로 하는 가교구조 함유 올레핀고분자 다공지지체에 관한 것이다.
제2 구현예는, 제1 구현예에 있어서,
500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 1.990 내지 2.009의 g 값에서 제2 피크가 더 검출될 수 있다.
제3 구현예는, 제2 구현예에 있어서,
500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 상기 제2 피크의 면적에 대한 상기 제1 피크의 면적의 비율이 10% 내지 200%일 수 있다.
제4 구현예는, 제1 구현예 내지 제3 구현예 중 어느 한 구현예에 있어서,
횡축은 로그스케일로 변환된 진동수(rad/s)이며, 종축은 로그스케일로 변환된 저장 응력(G', storage modulus)(A) 및 손실 응력(G", loss modulus)(B)으로 하는 진동수-손실저장응력 곡선에 있어서,
상기 진동수가 1 rad/s 이하를 나타내는 범위에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 상기 손실 응력(G", loss modulus)(B)에 대한 상기 저장 응력(G', storage modulus)(A)의 비(A/B)가 2 이상일 수 있다.
제5 구현예는, 제1 구현예 내지 제4 구현예 중 어느 한 구현예에 있어서,
횡축은 로그스케일로 변환된 진동수(rad/s)이며, 종축은 로그스케일로 변환된 저장 응력(G', storage modulus)(A) 및 손실 응력(G", loss modulus)(B)으로 하는 진동수-손실저장응력 곡선에 있어서,
상기 진동수가 10-1 내지 1 rad/s 를 나타내는 범위에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 상기 진동수에 대한 저장 응력(G', storage modulus)(A) 곡선의 기울기가 0.05 내지 0.4일 수 있다.
제6 구현예는, 제4 구현예 또는 제5 구현예에 있어서,
상기 저장 응력의 값은 1.0x105 내지 1.0x107 Pa일 수 있다.
제7 구현예는, 제4 구현예 또는 제5 구현예에 있어서,
상기 손실 응력의 값은 3.0x105 Pa 이하일 수 있다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예들의 리튬 이차전지용 가교구조 함유 분리막이 제공된다.
제8 구현예는,
제1 구현예 내지 제7 구현예 중 어느 한 구현예에 따른 가교구조 함유 올레핀고분자 다공지지체를 포함하는 것을 특징으로 하는 리튬 이차전지용 가교구조 함유 분리막에 관한 것이다.
제9 구현예는, 제8 구현예에 있어서,
상기 리튬 이차전지용 가교구조 함유 분리막이 상기 가교구조 함유 올레핀고분자 다공지지체의 적어도 일면에 위치하며 무기 필러 및 바인더 고분자를 포함하는 무기물 혼성 공극층을 더 포함할 수 있다.
제10 구현예는, 제9 구현예에 있어서,
상기 리튬 이차전지용 가교구조 함유 분리막이 상기 가교구조 함유 올레핀고분자 다공지지체의 적어도 일면에 위치하며, 무기 필러 및 제1 바인더 고분자를 포함하는 무기물 혼성 공극층; 및
상기 무기물 혼성 공극층 상에 위치하고, 제2 바인더 고분자를 포함하는 다공성 접착층;을 더 포함할 수 있다.
제11 구현예는, 제8 구현예 내지 제10 구현예 중 어느 한 구현예에 있어서,
상기 리튬 이차전지용 가교구조 함유 분리막의 멜트 다운 온도가 160℃ 이상일 수 있다.
제12 구현예는, 제8 구현예 내지 제11 구현예 중 어느 한 구현예에 있어서,
상기 리튬 이차전지용 가교구조 함유 분리막의 셧다운 온도(shutdown temperature)가 145℃ 이하일 수 있다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예의 리튬 이차전지가 제공된다.
제13 구현예는,
양극, 음극, 및 상기 양극과 음극 사이에 개재된 리튬 이차전지용 분리막을 포함하고,
상기 리튬 이차전지용 분리막이 제8 구현예 내지 제12 구현예 중 어느 한 구현예에 따른 리튬 이차전지용 가교구조 함유 분리막인 것을 특징으로 하는 리튬 이차전지에 관한 것이다.
본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체는 우수한 내열성을 갖는다.
본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체를 포함하는 리튬 이차전지용 가교구조 함유 분리막은 내열성이 우수한 가교구조 함유 올레핀고분자 다공지지체를 포함하여 우수한 내열성을 가질 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막을 개략적으로 나타낸 도이다.
도 2는, 본 발명의 다른 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막을 개략적으로 나타낸 도이다.
도 3은, 실시예 1에서 제조한 가교구조 함유 올레핀고분자 다공지지체에 500 W의 자외선을 조사하였을 때(A)와 자외선을 조사하기 전(B)의 전자 스핀 공명법 스펙트럼을 나타낸 것이다.
도 4은, 실시예 2에서 제조한 가교구조 함유 올레핀고분자 다공지지체에 500 W의 자외선을 조사하였을 때(A)와 자외선을 조사하기 전(B)의 전자 스핀 공명법 스펙트럼을 나타낸 것이다.
도 5은, 실시예 3에서 제조한 가교구조 함유 올레핀고분자 다공지지체에 500 W의 자외선을 조사하였을 때(A)와 자외선을 조사하기 전(B)의 전자 스핀 공명법 스펙트럼을 나타낸 것이다.
도 6은, 비교예 1에서 제조한 가교구조 함유 올레핀고분자 다공지지체에 500 W의 자외선을 조사하였을 때(A)와 자외선을 조사하기 전(B)의 전자 스핀 공명법 스펙트럼을 나타낸 것이다.
도 7은, 비교예 2에서 제조한 가교구조 함유 올레핀고분자 다공지지체에 500 W의 자외선을 조사하였을 때(A)와 자외선을 조사하기 전(B)의 전자 스핀 공명법 스펙트럼을 나타낸 것이다.
도 8은, 비교예 3에서 제조한 가교구조 함유 올레핀고분자 다공지지체에 500 W의 자외선을 조사하였을 때(A)와 자외선을 조사하기 전(B)의 전자 스핀 공명법 스펙트럼을 나타낸 것이다.
이하, 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서의 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 명세서에서, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로서, 각 구성요소가 상기 용어들에 의해 제한되는 것은 아니다.
본 발명의 일 양태에 따른 가교구조 함유 올레핀고분자 다공지지체는,
고분자 사슬 사이가 직접적으로 연결된 가교구조를 포함하고,
500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 2.010 내지 2.030의 g 값에서 제1 피크가 검출되는 것을 특징으로 한다.
본원 명세서에서 '고분자 사슬 사이가 직접적으로 연결된 가교구조'라 함은 실질적으로 올레핀고분자로 이루어진 고분자 사슬, 보다 바람직하게는 올레핀고분자만으로 이루어진 고분자 사슬이 Type 2 광개시제의 첨가에 의해 반응성을 갖게 되어, 고분자 사슬이 서로 직접적으로 가교 결합을 이룬 상태를 의미한다. 따라서, 추가적인 가교제가 투입되어 가교제 사이에 일어난 가교 반응은 본 발명에서 지칭하는 '고분자 사슬 사이가 직접적으로 연결된 가교구조'에 해당하지 않는다. 또한, 추가적인 가교제와 고분자 사슬 사이에 일어난 가교 반응은, 상기 고분자 사슬이 실질적으로 올레핀고분자로 이루어지거나 혹은 올레핀고분자만으로 이루어졌다고 하더라도, 본 발명에서 지칭하는 '고분자 사슬 사이가 직접적으로 연결된 가교구조'에 해당하지 않는다.
또한, Type 2 광개시제 간의 가교가 일어나거나 Type 2 광개시제와 고분자 사슬이 서로 가교될 수 있는데, 이러한 가교구조는 올레핀고분자 다공지지체 내의 고분자 사슬 간의 가교구조보다 반응 엔탈피가 더 낮아 전지 충방전 시 분해되어 부반응을 일으킬 우려가 있다. 상기 가교구조 함유 올레핀고분자 다공지지체는 고분자 사슬 사이가 직접적으로 연결된 가교구조만을 포함할 수 있고, Type 2 광개시제와 고분자 사슬 사이가 직접적으로 연결된 가교구조는 포함하지 않을 수 있다.
본 발명의 일 실시양태에서, 상기 가교구조 함유 올레핀고분자 다공지지체는 고분자 사슬 사이가 직접적으로 연결된 가교구조만을 포함하고, Type 2 광개시제와 고분자 사슬 사이가 직접적으로 연결된 가교구조는 포함하지 않는다.
본 발명의 일 실시양태에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 가교도는 10% 내지 45%, 또는 15% 내지 40%, 또는 20% 내지 35%일 수 있다. 상기 가교구조 함유 올레핀고분자 다공지지체가 전술한 범위의 가교도를 갖는 경우, 목적하는 수준의 내열성을 가질 수 있으면서 모듈러스(modulus)가 커지기 더욱 용이할 수 있다. 예컨대, 상기 가교구조 함유 올레핀고분자 다공지지체의 가교도가 20% 이상인 경우, 가교구조 함유 올레핀고분자 다공지지체를 포함하는 분리막의 멜트 다운 온도가 170℃ 이상이 되기에 더욱 용이할 수 있다.
이 때, 가교도는 가교구조 함유 올레핀고분자 다공지지체를 ASTM D 2765에 따라 135℃의 자일렌(xylene) 용액에 담가 12 시간 동안 끓인 후 남은 무게를 측정하여, 최초 무게 대비 남은 무게의 백분율로 계산한다.
본 발명의 일 실시양태에서, 상기 가교구조 함유 올레핀고분자 다공지지체는 Type 2 광개시제에 의한 가교 반응에 의해 올레핀고분자 사슬에 이중 결합이 생성될 수 있다.
본 발명의 일 실시양태에서, 상기 가교구조 함유 올레핀고분자 다공지지체는 H-NMR 측정 시 올레핀고분자 사슬에 존재하는 이중 결합의 개수가 1000개의 탄소 원자당 0.01개 내지 0.6개, 또는 0.02개 내지 0.5개일 수 있다. 상기 가교구조 함유 올레핀고분자 다공지지체가 전술한 이중 결합 개수를 가지는 경우, 부반응이 일어날 수 있는 부분이 최소화될 수 있다.
본 발명의 일 실시양태에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 말단을 제외한 올레핀고분자 사슬에 존재하는 이중 결합의 개수가 1000개의 탄소 원자당 0.005개 내지 0.59개일 수 있다. 본 명세서에서, "말단을 제외한 올레핀고분자 사슬에 존재하는 이중 결합"이란, 올레핀고분자 사슬의 말단을 제외한 올레핀고분자 사슬 전반에 존재하는 이중 결합을 지칭한다. 여기서, "말단"이란 올레핀고분자 사슬의 양쪽 가장 끝에 각각 연결되어 있는 탄소원자 위치를 의미한다.
본 발명의 일 실시양태에서, 상기 가교구조 함유 올레핀고분자 다공지지체는 다공성 필름일 수 있다.
본 발명의 일 실시양태에서, 상기 올레핀고분자는 에틸렌고분자; 프로필렌고분자; 부틸렌고분자; 펜텐고분자; 헥센고분자; 옥텐고분자; 에틸렌, 프로필렌, 부텐, 펜텐, 4-메틸펜텐, 헥센, 및 옥텐 중 2종 이상의 공중합체; 또는 이들의 혼합물을 포함할 수 있다.
상기 에틸렌고분자의 비제한적인 예로는 저밀도 에틸렌고분자(LDPE), 선형 저밀도 에틸렌고분자(LLDPE), 고밀도 에틸렌고분자(HDPE) 등이 있으며, 상기 에틸렌고분자가 결정도가 높고 수지의 용융점이 높은 고밀도 에틸렌고분자인 경우, 목적하는 수준의 내열성을 가질 수 있으면서 모듈러스(modulus)가 커지기 더욱 용이할 수 있다.
본 발명의 일 실시양태에서, 상기 올레핀고분자의 중량평균분자량은 200,000 내지 1,500,000, 또는 220,000 내지 1,000,000, 또는 250,000 내지 800,000일 수 있다. 상기 올레핀고분자의 중량평균분자량이 전술한 범위인 경우, 가교구조 함유 올레핀고분자 다공지지체의 균일성 및 제막 공정성을 확보하면서 최종적으로 강도 및 내열성이 우수한 분리막을 얻을 수 있다.
상기 중량평균분자량은 겔 투과 크로마토그래피(GPC: gel permeation chromatography, PL GPC220, Agilent Technologies)로 하기의 조건에서 측정한 것일 수 있다.
- 컬럼: PL Olexis(Polymer Laboratories 社)
- 용매: TCB(Trichlorobenzene)
- 유속: 1.0 ml/min
- 시료농도: 1.0 mg/ml
- 주입량: 200 ㎕
- 컬럼온도: 160℃
- Detector: Agilent High Temperature RI detector
- Standard: Polystyrene (3차 함수로 보정)
본 발명의 일 실시양태에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 두께는 3 ㎛ 내지 16 ㎛, 또는 5 ㎛ 내지 12 ㎛일 수 있다. 상기 가교구조 함유 올레핀고분자 다공지지체의 두께가 전술한 범위인 경우, 전지 사용 중 분리막이 쉽게 손상될 수 있는 문제를 방지할 수 있으면서도 에너지 밀도를 확보하기 용이할 수 있다.
본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체는 500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 2.010 내지 2.030의 g 값에서 제1 피크가 검출된다. 상기 제1 피크는 상기 가교구조 함유 올레핀고분자 다공지지체가 광흡수에 의해 라디칼을 형성함을 의미한다. 즉, 자외선을 가해준 결과, 가교구조 함유 올레핀고분자 다공지지체 내의 고분자 사슬에서 라디칼이 형성되었음을 의미한다.
본 발명의 일 실시양태에서, 500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 상기 제1 피크 외에 1.990 내지 2.009의 g 값에서 제2 피크가 더 검출될 수 있다. 상기 제2 피크는 상기 전자 스핀 공명법에 따른 스펙트럼을 측정하는 과정에서 가해주는 자외선으로 인해 단전자(single electron) 또는 단전자에 준하는 거동을 보이는 전자의 존재를 의미한다. 상기 제2 피크는 위로 볼록한 피크와 아래로 볼록한 피크가 대칭적으로 나타날 수 있다.
본 발명의 일 실시양태에서, 상기 가교구조 함유 올레핀고분자 다공지지체는 광개시제, 구체적으로 Type 2 광개시제를 포함할 수 있다. 이는 고분자 사슬 사이를 가교시키고 다공지지체 내에 잔류하는 것일 수 있다. 상기 Type 2 광개시제가 다공지지체 내에 잔류하여 500 W의 자외선을 조사하는 경우, 상기 제2 피크가 검출되는 것일 수 있다.
상기 제2 피크의 면적에 대한 상기 제1 피크의 면적이 증가할수록 가교구조 함유 올레핀고분자 다공지지체 내의 고분자 사슬로부터 라디칼이 더욱 잘 형성됨을 의미한다.
본 발명의 일 실시양태에서, 500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 상기 제2 피크의 면적에 대한 상기 제1 피크의 면적의 비율이 10% 내지 200%, 또는 10% 내지 180%일 수 있다.
상기 제2 피크의 면적에 대한 상기 제1 피크의 면적의 비율은 가교구조 함유 올레핀고분자 다공지지체 30 mg 내지 40 mg을 전자 스핀 공명법 측정 장비에 투입하였을 때의 상기 제2 피크의 면적에 대한 상기 제1 피크의 면적의 비율일 수 있다.
본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체는 고분자 사슬 사이가 직접적으로 연결된 가교구조를 포함하여 내열성이 개선될 수 있다.
본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체는 가교 이후에도 올레핀고분자 다공지지체의 기공 구조가 실질적으로 가교 이전 그대로 유지될 수 있다.
횡축은 로그스케일로 변환된 진동수(rad/s)이며, 종축은 로그스케일로 변환된 저장 응력(G', storage modulus)(A) 및 손실 응력(G", loss modulus)(B)으로 하는 진동수-손실저장응력 곡선에 있어서,
상기 진동수가 1 rad/s 이하를 나타내는 범위에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 상기 손실 응력(G", loss modulus)(B)에 대한 상기 저장 응력(G', storage modulus)(A)의 비(A/B)가 2 이상일 수 있다.
본 발명자들은 고온에서도 안전성이 확보된 가교구조 함유 올레핀고분자 다공지지체를 발명하고자 연구하였다. 이를 해결하기 위한 수단으로 고온에서 가교구조 함유 올레핀고분자 다공지지체의 점성은 낮추고 반면 가교구조 함유 올레핀고분자 다공지지체의 탄성을 높임으로써 결과적으로 고온 안전성을 개선시키고자 한다.
구체적으로, 고온에서 가교구조 함유 올레핀고분자 다공지지체의 점성을 낮추고 반면 탄성을 높이는 경우, 고온에서 가교구조 함유 올레핀고분자 다공지지체의 강도가 유지되고 가교구조 함유 올레핀고분자 다공지지체 자체의 흐름성이 발생하지 않아 양/음극 간 단락을 방지할 수 있어 결과적으로 가교구조 함유 올레핀고분자 다공지지체의 안전성이 개선될 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 횡축을 로그스케일로 변환된 진동수(rad/s)로, 종축을 로그스케일로 변환된 가교구조 함유 올레핀고분자 다공지지체의 저장 응력(G', storage modulus)(A) 및 손실 응력(G", loss modulus)(B)으로 하는 진동수-손실저장응력 곡선에 있어서, G'의 값이 G''에 비해 큰 경우, 구체적으로는 2 이상인 경우에 안전성이 향상된 가교구조 함유 올레핀고분자 다공지지체를 제공할 수 있다.
G' 값에 비해 G'' 값이 큰 경우에는, 가교구조 함유 올레핀고분자 다공지지체의 탄성에 비해 점성이 크게 나타나게 되어, 고온에서 가교구조 함유 올레핀고분자 다공지지체의 기공이 빠르게 폐색되는 문제가 있다.
한편, G''에 대한 G'의 값이 2 미만인 경우에는, 가교구조 함유 올레핀고분자 다공지지체의 흐름성이 발생하고 가교구조 함유 올레핀고분자 다공지지체를 포함하는 분리막에 의한 격리 기능이 상실되는 문제가 있어, 적절하지 못하다.
본 발명에서 저장 응력(G', storage modulus)이란 에너지를 저장하는 물질의 능력을 의미하는 것으로, 식 1과 같이 나타낼 수 있다.
[식 1]
G' = (stress/ strain)cosδ
본 발명에서 상기 저장 응력은 동적 기계적 분석(Dynamic Mechanical Analysis)를 사용하여 측정할 수 있다.
본 발명에서, 상기 저장 응력은 180 내지 220 ℃의 온도 범위 및 1 rad/s 의 진동수에서 Temperature sweep test 방법으로 동적 기계적 분석(Dynamic Mechanical Analysis)를 사용하여 측정한 것이다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 저장 응력의 값은 190 ℃의 온도 범위 및 1 rad/s 의 진동수에서 1.0x105 내지 1.0x107 Pa, 또는 1.2x105 내지 5.0x106 Pa, 또는 1.5x105 내지 2.0x106 Pa, 또는 1.7x105 내지 1.0x106 Pa, 또는 1.9x105 내지 3.8x105 Pa 일 수 있다. 상기 저장 응력의 값이 상기 수치범위인 경우 고온에서의 가교구조 함유 올레핀고분자 다공지지체의 강도를 유지할 수 있는 측면에서 유리하다.
본 발명에서 손실 응력(G", loss modulus)이란 변형으로 에너지를 잃어버리는 물질의 능력을 의미하는 것으로, 식 2와 같이 나타낼 수 있다.
[식 2]
G'' = (stress/ strain)sinδ
본 발명에서 상기 손실 응력은 동적 기계적 분석(Dynamic Mechanical Analysis)를 사용하여 측정할 수 있다.
본 발명에서, 상기 손실 응력은 180 내지 220 ℃의 온도 범위 및 1 rad/s 의 진동수에서 Temperature sweep test 방법으로 동적 기계적 분석(Dynamic Mechanical Analysis)를 사용하여 측정한 것이다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 손실 응력의 값은 190 ℃의 온도 범위 및 1 rad/s 의 진동수에서 3.0x105 Pa 이하, 1.0x104 내지 3.0x105 Pa, 또는 2.0x104 내지 1.5x105 Pa, 또는 5.0x104 내지 1.2x105 Pa, 또는 7.0x104 내지 1.1x105 Pa 일 수 있다. 상기 손실 응력의 값이 상기 수치범위인 경우 가교구조 함유 올레핀고분자 다공지지체의 흐름성이 발생하지 않는 측면에서 유리하다.
본 발명에서 가교구조 함유 올레핀고분자 다공지지체의 손실 응력(G", loss modulus)(B)에 대한 저장 응력(G', storage modulus)(A)의 비(A/B)가 의미하는 것은 점성 기여 대비 탄성 기여의 상대적인 척도이다.
구체적으로, 상기 비율이 1 이상인 경우에는 고체와 유사한 특성을 나타내고, 상기 비율이 1 이하인 경우에는 액체와 유사한 특성을 보인다.
반면, 상기 A/B는 캐스팅 및 연신 공정에 있어서는 압출 시트의 균일성 및 흐름성을 결정하는 상대적인 척도로 사용된다.
따라서, 가교구조 함유 올레핀고분자 다공지지체의 제조 공정에 있어서는 공정이 원활하게 진행되도록 하기 위하여, A/B의 값이 낮은 것이 바람직하다, 최종 가교구조 함유 올레핀고분자 다공지지체에 있어서는 A/B의 비가 높은 것이 바람직하며, 본 발명에서는 특히 2 이상인 경우가 바람직하다.
본 발명의 구체적인 일 실시양태에 있어서, 진동수가 1 rad/s 이하를 나타내는 범위에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 상기 손실 응력(G", loss modulus)(B)에 대한 상기 저장 응력(G', storage modulus)(A)의 비(A/B)가 2 이상, 또는 2 내지 7, 또는 2 내지 5, 또는 2.1 내지 4.7, 또는 2.18 내지 4.68일 수 있다. 상기 A/B의 비가 상기와 같을 때 고온에서 상기 가교구조 함유 올레핀고분자 다공지지체의 강도를 유지하면서 상기 가교구조 함유 올레핀고분자 다공지지체를 포함하는 분리막이 격리 기능을 유지할 수 있다는 측면에서 유리하다.
본 발명의 일 실시양태에 있어서, 횡축은 로그스케일로 변환된 진동수(rad/s)이며, 종축은 로그스케일로 변환된 저장 응력(G', storage modulus)(A) 및 손실 응력(G", loss modulus)(B)으로 하는 진동수-손실저장응력 곡선에 있어서,
상기 진동수가 10-1 내지 1 rad/s 를 나타내는 범위에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 상기 진동수에 대한 저장 응력(G', storage modulus)(A) 곡선의 기울기가 0.05 내지 0.4일 수 있다.
이 때, 저장 응력 및 손실 응력은 전술한 바를 차용할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 가교구조 함유 올레핀고분자 다공지지체의 진동수가 10-1 내지 1 rad/s 를 나타내는 범위에서, 상기 진동수에 대한 저장 응력(G', storage modulus)(A) 곡선의 기울기가 0.05 내지 0.4, 또는 0.07 내지 0.35, 또는 0.1 내지 0.3, 또는 0.12 내지 0.28, 또는 0.133 내지 0.267 일 수 있다. 상기 A/B의 비가 상기와 같을 때 고온에서 가교구조 함유 올레핀고분자 다공지지체를 포함하는 분리막이 격리 기능을 유지할 수 있다는 측면에서 유리하다.
본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체는 리튬 이차전지용 가교구조 함유 분리막으로 사용될 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체를 포함할 수 있다.
본 발명의 일 실시양태에서, 상기 리튬 이차전지용 가교구조 함유 분리막이 전술한 이중 결합 개수를 가지는 가교구조 함유 올레핀고분자 다공지지체를 포함하는 경우, 고온 및/또는 고전압에서 전지의 성능이 열화되는 문제를 방지하기 용이할 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체로 이루어질 수 있다.
본 발명의 또 다른 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 상기 가교구조 함유 올레핀고분자 다공지지체의 적어도 일면에 위치하고, 무기 필러 및 바인더 고분자를 포함하는 무기물 혼성 공극층을 더 포함할 수 있다. 이를 도 1에 나타내었다.
도 1을 참조하면, 본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막(1)은 가교구조 함유 올레핀고분자 다공지지체(10); 및 상기 가교구조 함유 올레핀고분자 다공지지체(10)의 적어도 일면에 위치하고, 무기 필러 및 바인더 고분자를 포함하는 무기물 혼성 공극층(20)을 포함할 수 있다.
상기 무기물 혼성 공극층(20)은 상기 가교구조 함유 올레핀고분자 다공지지체(10)의 일면 또는 양면에 형성될 수 있다. 상기 무기물 혼성 공극층(20)은 무기 필러와 상기 무기 필러들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착(즉, 바인더 고분자가 무기 필러들 사이를 연결 및 고정)시키는 바인더 고분자를 포함하며, 상기 바인더 고분자에 의해 무기 필러와 가교구조 함유 올레핀고분자 다공지지체(10)가 결착된 상태를 유지할 수 있다. 상기 무기물 혼성 공극층(20)은 무기 필러에 의해 가교구조 함유 올레핀고분자 다공지지체(10)가 고온에서 극심한 열 수축 거동을 보이는 것을 방지하여 분리막의 안전성을 향상시킬 수 있다. 예컨대, 120℃에서 30분간 방치한 후 측정한 기계방향(Machine Direction) 및 직각 방향(Transverse Direction)에서의 분리막의 열수축률이 각각 20% 이하, 또는 2% 내지 15%, 또는 2% 내지 10%일 수 있다.
본 명세서 전체에서, '기계방향(Machine Direction)'은 분리막이 연속 생산될 때의 진행방향으로 분리막의 길이가 긴 길이 방향을 지칭하고, '직각 방향(Transverse Direction)'은 기계방향의 횡방향 즉, 분리막이 연속 생산될 때의 진행방향과 수직인 방향으로 분리막의 길이가 긴 길이 방향과 수직인 방향을 지칭한다.
상기 무기 필러는 전기 화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기 필러는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 무기 필러로서 유전율이 높은 무기 필러를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 본 발명의 일 실시양태에서, 상기 무기 필러는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기 필러를 포함할 수 있다. 유전율 상수가 5 이상인 무기 필러의 비제한적인 예로는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3(PLZT, 0<x<1, 0<y<1), Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, Mg(OH)2, NiO, CaO, ZnO, ZrO2, SiO2, Y2O3, Al2O3, AlOOH, Al(OH)3, SiC, TiO2 또는 이들의 혼합체 등이 있다.
또한, 본 발명의 다른 실시양태에서, 상기 무기 필러로는 리튬 이온 전달 능력을 갖는 무기 필러, 즉 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기 필러를 사용할 수 있다. 리튬 이온 전달 능력을 갖는 무기 필러의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0<x<4, 0<y<13), 리튬란탄티타네이트(LixLayTiO3, 0<x<2, 0<y<3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w< 5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0<x<4, 0<y<2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0<x<3, 0<y<2, 0<z<4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass(LixPySz, 0<x< 3, 0<y<3, 0<z<7), 또는 이들의 혼합물 등이 있다.
본 발명의 일 실시양태에서, 상기 무기 필러의 평균 입경은 0.01 ㎛ 내지 1.5 ㎛일 수 있다. 상기 무기 필러의 평균 입경이 전술한 범위를 만족하는 경우, 균일한 두께 및 적절한 기공도를 가지는 무기물 혼성 공극층(20)의 형성이 용이할 수 있고, 무기 필러의 분산성이 양호하고 소망하고자 하는 에너지 밀도를 제공할 수 있다.
이 때, 상기 무기 필러의 평균 입경은 D50 입경을 의미하며, "D50 입경"은, 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경을 의미한다. 상기 입경은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출한다. 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 50%가 되는 지점에서의 입자 직경을 산출함으로써, D50 입경을 측정할 수 있다.
상기 바인더 고분자는 유리 전이 온도(glass transition temperature, Tg)가 -200 내지 200℃일 수 있다. 상기 바인더 고분자의 유리 전이 온도가 전술한 범위를 만족하는 경우, 최종적으로 형성되는 무기물 혼성 공극층(20)의 유연성 및 탄성 등과 같은 기계적 물성이 향상될 수 있다. 상기 바인더 고분자는 이온 전도 능력을 가지는 것일 수 있다. 상기 바인더 고분자가 이온 전도 능력을 가지는 경우, 전지의 성능을 더욱 향상시킬 수 있다. 상기 바인더 고분자는 유전율 상수가 1.0 내지 100 (측정 주파수 = 1 kHz), 또는 10 내지 100일 수 있다. 상기 바인더 고분자의 유전율 상수가 전술한 범위를 만족하는 경우, 전해액에서의 염 해리도를 향상시킬 수 있다.
본 발명의 일 실시양태에서, 상기 바인더 고분자는 폴리(비닐리덴 플루오라이드-헥사플루오로프로필렌) (poly(vinylidene fluoride-co-hexafluoropropylene)), 폴리(비닐리덴 플루오라이드-클로로트리플루오로에틸렌) (poly(vinylidene fluoride-co-chlorotrifluoroethylene)), 폴리(비닐리덴 플루오라이드-테트라플루오로에틸렌) (poly(vinylidene fluoride-co-tetrafluoroethylene)), 폴리(비닐리덴 플루오라이드-트리클로로에틸렌) (poly(vinylidene fluoride-co-trichloroethylene)), 아크릴계 공중합체, 스티렌-부타디엔 공중합체, 폴리(아크릴산)(poly(acrylic acid)), 폴리(메틸메타크릴레이트) (poly(methylmethacrylate)), 폴리(부틸아크릴레이트) (poly(butylacrylate)), 폴리(아크릴로니트릴) (poly(acrylonitrile)), 폴리(비닐피롤리돈) (poly(vinylpyrrolidone)), 폴리(비닐알콜) (poly(vinylalcohol)), 폴리(비닐아세테이트) (poly(vinylacetate)), 에틸렌 비닐 아세테이트 공중합체 (poly(ethylene-co-vinyl acetate)), 폴리(에틸렌옥사이드) (poly(ethylene oxide)), 폴리(아릴레이트) (poly(arylate)), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부티레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 또는 이들 중 2 이상을 포함할 수 있다.
상기 아크릴계 공중합체는 에틸 아크릴레이트-아크릴산-N,N-디메틸아크릴아마이드 공중합체, 에틸 아크릴레이트-아크릴산-2-(디메틸아미노)에틸 아크릴레이트 공중합체, 에틸 아크릴레이트-아크릴산-N,N-디에틸아크릴아마이드 공중합체, 에틸 아크릴레이트-아크릴산-2-(디에틸아미노)에틸 아크릴레이트 공중합체, 또는 이들 중 2 이상을 포함할 수 있으나, 이에 제한되지는 않는다.
본 발명의 일 실시양태에서, 상기 무기 필러와 바인더 고분자의 중량비는 최종 제조되는 무기물 혼성 공극층(20)의 두께, 기공 크기 및 기공도를 고려하여 결정하되, 50:50 내지 99.9:0.1, 또는 60:40 내지 99.5:0.5일 수 있다. 상기 무기 필러와 바인더 고분자의 중량비가 전술한 범위일 경우 무기 필러들 사이에 형성되는 빈 공간을 충분히 확보하여 무기물 혼성 공극층(20)의 기공 크기 및 기공도를 확보하기 용이할 수 있다. 또한, 무기 필러 사이의 접착력도 확보하기 용이할 수 있다.
본 발명의 일 실시양태에서, 상기 무기물 혼성 공극층(20)은 분산제 및/또는 증점제와 같은 첨가제를 더 포함할 수 있다. 본 발명의 일 실시양태에서, 상기 첨가제는 폴리비닐피롤리돈(poly(vinylpyrrolidone), PVP), 히드록시 에틸 셀룰로우즈(Hydroxy ethyl cellulose, HEC), 히드록시 프로필 셀룰로우즈(hydroxy propyl cellulose, HPC), 에틸히드록시 에틸 셀룰로오즈(ethylhydroxy ethyl cellulose, EHEC), 메틸 셀룰로우즈(methyl cellulose, MC), 카르복시메틸 셀룰로우즈(carboxymethyl cellulose, CMC), 히드록시 알킬 메틸 셀룰로우즈(hydroxyalkyl methyl cellulose), 시아노에틸렌 폴리비닐알콜, 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 일 실시양태에서, 상기 무기물 혼성 공극층(20)은 상기 무기 필러들이 충전되어 서로 접촉된 상태에서 상기 바인더 고분자에 의해 서로 결착되고, 이로 인해 무기 필러들 사이에 인터스티셜 볼륨(interstitial volumes)이 형성되고, 상기 무기 필러들 사이의 인터스티셜 볼륨은 빈 공간이 되어 기공을 형성하는 구조를 구비할 수 있다.
본 발명의 다른 실시양태에서, 상기 무기물 혼성 공극층(20)은 상기 무기 필러 및 상기 무기 필러 표면의 적어도 일부를 피복하는 바인더 고분자를 포함하는 복수 개의 노드(node);와, 상기 노드의 상기 바인더 고분자에서 실(thread) 모양으로 형성되어 나온 하나 이상의 필라멘트를 포함하며, 상기 필라멘트는 상기 노드로부터 연장되어 다른 노드를 연결하는 노드 연결 부분;을 구비하고, 상기 노드 연결 부분은, 상기 바인더 고분자에서 유래된 복수의 필라멘트들이 서로 교차하여 3차원 망상 구조체를 이루는 구조를 구비할 수 있다.
본 발명의 일 실시양태에서, 상기 무기물 혼성 공극층(20)의 평균 기공 크기는 0.001 ㎛ 내지 10 ㎛일 수 있다. 상기 무기물 혼성 공극층(20)의 평균 기공 크기는 캐필러리 흐름 기공경 측정 방법(Capillary flow porometry) 방법에 따라 측정할 수 있다. 캐필러리 흐름 기공경 측정 방법은 두께 방향으로 가장 작은 기공의 직경이 측정되는 방식이다. 따라서, 캐필러리 흐름 기공경 측정 방법에 의해 무기물 혼성 공극층(20)만의 평균 기공 크기를 측정하기 위해서는 무기물 혼성 공극층(20)을 가교구조 함유 올레핀고분자 다공지지체(10)에서 분리하여 분리된 무기물 혼성 공극층(20)을 지지할 수 있는 부직포로 감싼 상태에서 측정하여야 하며, 이때 상기 부직포의 기공 크기는 무기물 혼성 공극층(20)의 기공 크기에 비해 훨씬 커야 한다.
본 발명의 일 실시양태에서, 상기 무기물 혼성 공극층(20)의 기공도(porosity)는 5% 내지 95%, 또는 10% 내지 95%, 또는 20% 내지 90%, 또는 30% 지 80%일 수 있다. 상기 기공도는 상기 무기물 혼성 공극층(20)의 두께, 가로, 및 세로로 계산한 부피에서, 상기 무기물 혼성 공극층(20)의 각 구성성분의 무게와 밀도로 환산한 부피를 차감(subtraction)한 값에 해당한다.
상기 무기물 혼성 공극층(20)의 기공도는 주사 전자 현미경(SEM) 이미지, 수은 포로시미터(Mercury porosimeter), 또는 기공 분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-II mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6 점법으로 측정할 수 있다.
본 발명의 일 실시양태에서, 상기 무기물 혼성 공극층(20)의 두께는 가교구조 함유 올레핀고분자 다공지지체(10)의 일면에서 1.5 ㎛ 내지 5.0 ㎛일 수 있다. 상기 무기물 혼성 공극층(20)의 두께가 전술한 범위를 만족하는 경우, 전극과의 접착력이 우수하면서 전지의 셀 강도가 증가되기 용이할 수 있다.
본 발명의 다른 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 상기 가교구조 함유 올레핀고분자 다공지지체의 적어도 일면에 위치하고, 무기 필러 및 제1 바인더 고분자를 포함하는 무기물 혼성 공극층; 및 상기 무기물 혼성 공극층 상에 위치하고, 제2 바인더 고분자를 포함하는 다공성 접착층;을 더 포함할 수 있다. 이를 도 2에 나타내었다.
도 2를 참조하면, 본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막(1')은 고분자 사슬 사이가 직접적으로 연결된 가교구조를 가지는 가교구조 함유 올레핀고분자 다공지지체(10'); 상기 가교구조 함유 올레핀고분자 다공지지체(10')의 적어도 일면에 위치하고, 무기 필러 및 제1 바인더 고분자를 포함하는 무기물 혼성 공극층(20'); 및 상기 무기물 혼성 공극층(20') 상에 위치하고, 제2 바인더 고분자를 포함하는 다공성 접착층(30');을 포함할 수 있다.
상기 무기물 혼성 공극층(20')은 상기 가교구조 함유 올레핀고분자 다공지지체(10')의 일면 또는 양면에 형성될 수 있다. 상기 무기물 혼성 공극층(20')은 무기 필러와 상기 무기 필러들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착(즉, 제1 바인더 고분자가 무기 필러들 사이를 연결 및 고정)시키는 제1 바인더 고분자를 포함하며, 상기 제1 바인더 고분자에 의해 무기 필러와 가교구조 함유 올레핀고분자 다공지지체(10')가 결착된 상태를 유지할 수 있다. 상기 무기물 혼성 공극층(20')은 무기 필러에 의해 가교구조 함유 올레핀고분자 다공지지체(10')가 고온에서 극심한 열 수축 거동을 보이는 것을 방지하여 분리막의 안전성을 향상시킬 수 있다. 예컨대, 150℃에서 30분간 방치한 후 측정한 기계방향(Machine Direction) 및 직각 방향(Transverse Direction)에서의 분리막의 열수축률이 각각 20% 이하, 또는 2% 내지 15%, 또는 2% 내지 10%일 수 있다.
상기 무기 필러에 대해서는 전술한 내용을 참조한다.
상기 제1 바인더 고분자는 유리 전이 온도(glass transition temperature, Tg)가 -200 내지 200℃일 수 있다. 상기 제1 바인더 고분자의 유리 전이 온도가 전술한 범위를 만족하는 경우, 최종적으로 형성되는 무기물 혼성 공극층(20')의 유연성 및 탄성 등과 같은 기계적 물성이 향상될 수 있다. 상기 제1 바인더 고분자는 이온 전도 능력을 가지는 것일 수 있다. 상기 제1 바인더 고분자가 이온 전도 능력을 가지는 경우, 전지의 성능을 더욱 향상시킬 수 있다. 상기 제1 바인더 고분자는 유전율 상수가 1.0 내지 100 (측정 주파수 = 1 kHz), 또는 10 내지 100일 수 있다. 상기 제1 바인더 고분자의 유전율 상수가 전술한 범위를 만족하는 경우, 전해액에서의 염 해리도를 향상시킬 수 있다.
본 발명의 일 실시양태에서, 상기 제1 바인더 고분자는 내열성이 우수한 바인더 고분자일 수 있다. 상기 제1 바인더 고분자가 내열성이 우수한 경우, 무기물 혼성 공극층의 내열 특성이 더욱 향상될 수 있다. 예컨대, 150℃에서 30분간 방치한 후 측정한 기계방향(Machine Direction) 및 직각 방향(Transverse Direction)에서의 분리막의 열수축률이 각각 20% 이하, 또는 2% 내지 15%, 또는 2% 내지 10%, 또는 2% 내지 5%, 또는 0% 내지 5%, 또는 0% 내지 2%일 수 있다.본 발명의 일 실시양태에서, 상기 제1 바인더 고분자는 아크릴계 중합체, 폴리아크릴산, 스타이렌 부타디엔 고무, 카복시메틸셀룰로오스, 폴리비닐알코올, 또는 이들 중 2 이상을 포함할 수 있다.
구체적으로, 상기 아크릴계 중합체는 아크릴계 단량체만을 중합한 아크릴계 단독중합체를 포함할 수 있고, 아크릴계 단량체와 다른 단량체의 공중합체를 포함할 수도 있다. 예컨대, 상기 아크릴계 중합체는 에틸헥실아크릴레이트(ethylhexyl acrylate)와 메틸메타크릴레이트(methyl methacrylate)의 공중합체, 폴리메틸메타크릴레이트(poly(methylmethacrylate)), 폴리에틸헥실아크릴레이트(poly(ethylexyl acrylate)), 폴리부틸아크릴레이트(poly(butylacrylate)), 폴리아크릴로니트릴 (poly(acrylonitrile)), 부틸아크릴레이트와 메틸메타크릴레이트의 공중합체, 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 일 실시양태에서, 상기 제1 바인더 고분자는 입자 형태일 수 있다.
본 발명의 일 실시양태에서, 상기 무기 필러와 제1 바인더 고분자의 중량비가 95:5 내지 99.9:0.1, 또는 96:4 내지 99.5:0.5, 또는 97:3 내지 99:1일 수 있다. 상기 무기 필러와 제1 바인더 고분자의 중량비가 전술한 범위인 경우, 분리막의 단위 면적당 분포하는 무기 필러의 함량이 많아 고온에서 분리막의 열적 안전성이 개선될 수 있다. 예컨대, 150℃에서 30분간 방치한 후 측정한 기계방향(Machine Direction) 및 직각 방향(Transverse Direction)에서의 분리막의 열수축률이 각각 20% 이하, 또는 2% 내지 15%, 또는 2% 내지 10%, 또는 2% 내지 5%, 또는 0% 내지 5%, 또는 0% 내지 2%일 수 있다.이하에서는 전술한 무기물 혼성 공극층(20)과 다른 무기물 혼성 공극층(20')의 특징만을 기재한다.
본 발명의 일 실시양태에서, 상기 무기물 혼성 공극층(20')은 상기 무기 필러들이 충전되어 서로 접촉된 상태에서 상기 제1 바인더 고분자에 의해 서로 결착되고, 이로 인해 무기 필러들 사이에 인터스티셜 볼륨(interstitial volumes)이 형성되고, 상기 무기 필러들 사이의 인터스티셜 볼륨은 빈 공간이 되어 기공을 형성하는 구조를 구비할 수 있다.
상기 다공성 접착층(30')은 제2 바인더 고분자를 포함하여 상기 무기물 혼성 공극층(20')을 구비하는 분리막이 전극과 접착력을 확보할 수 있게 한다. 또한, 상기 다공성 접착층(30')은 기공이 형성되어 있어 분리막의 저항이 높아지는 것을 방지할 수 있다.
본 발명의 일 실시양태에서, 상기 다공성 접착층(30')은 가교구조 함유 올레핀고분자 다공지지체(10')의 표면 및/또는 내부로 제2 바인더 고분자가 침투하지 않을 수 있어 분리막의 저항이 높아지는 현상을 최소화할 수 있다.
상기 제2 바인더 고분자는 접착층 형성에 통상적으로 사용되는 바인더 고분자일 수 있다. 상기 제2 바인더 고분자는 유리 전이 온도(glass transition temperature, Tg)가 -200 내지 200℃일 수 있다. 상기 제2 바인더 고분자의 유리 전이 온도가 전술한 범위를 만족하는 경우, 최종적으로 형성되는 접착층의 유연성 및 탄성 등과 같은 기계적 물성이 향상될 수 있다. 상기 제2 바인더 고분자는 이온 전도 능력을 가지는 것일 수 있다. 이온 전도 능력을 갖는 바인더 고분자를 제2 바인더 고분자로 사용할 경우 전지의 성능을 더욱 향상시킬 수 있다. 상기 제2 바인더 고분자는 유전율 상수가 1.0 내지 100 (측정 주파수 = 1 kHz), 또는 10 내지 100일 수 있다. 상기 제2 바인더 고분자의 유전율 상수가 전술한 범위를 만족하는 경우, 전해액에서의 염 해리도를 향상시킬 수 있다.
본 발명의 일 실시양태에서, 상기 제2 바인더 고분자는 폴리비닐리덴 플루오라이드(poly(vinylidene fluoride)), 폴리(비닐리덴 플루오라이드-헥사플루오로프로필렌)(poly(vinylidene fluoride-co-hexafluoropropylene)), 폴리(비닐리덴 플루오라이드-트리클로로에틸렌)(poly(vinylidene fluoride-co-trichloroethylene)), 폴리(비닐리덴 플루오라이드-테트라플루오로에틸렌)(poly(vinylidene fluoride-co-tetrafluoroethylene)), 폴리(비닐리덴 플루오라이드-트리플루오로에틸렌)(poly(vinylidene fluoride-co-trifluoroethylene)), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리에틸헥실아크릴레이트(polyetylexyl acrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸헥실아크릴레이트(ethylhexyl acrylate)와 메틸메타크릴레이트(methyl methacrylate)의 공중합체, 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 일 실시양태에서, 상기 다공성 접착층(30')은 상기 제2 바인더 고분자를 포함하는 하나 이상의 접착부와 상기 접착부가 형성되지 않은 하나 이상의 무지부를 포함하는 패턴을 갖는 것일 수 있다. 상기 패턴은 도트형, 스트라이프형, 사선형, 물결형, 삼각형, 사각형, 또는 반원형일 수 있다. 상기 다공성 접착층이 패턴을 갖는 경우, 분리막의 저항이 개선될 수 있고, 다공성 접착층이 형성되지 않은 무지부(non-coating region)을 통해 전해액이 함침될 수 있어, 분리막의 전해액 함침성이 개선될 수 있다.
본 발명의 일 실시양태에서, 상기 다공성 접착층(30')의 두께는 0.5 ㎛ 내지 1.5 ㎛, 또는 0.6 ㎛ 내지 1.2 ㎛, 또는 0.6 ㎛ 내지 1.0 ㎛일 수 있다. 상기 다공성 접착층의 두께가 전술한 범위인 경우, 전극과의 접착력이 우수하고 그 결과 전지의 셀 강도가 증가될 수 있다. 또한, 전지의 사이클 특성 및 저항 특성의 측면에서 유리할 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 고분자 사슬 사이가 직접적으로 연결된 가교구조를 구비하는 본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체를 포함함에 따라 고온 안전성이 우수할 수 있다. 예컨대, 상기 리튬 이차전지용 가교구조 함유 분리막의 멜트 다운 온도가 가교되지 않은 올레핀고분자 다공지지체를 포함하는 분리막의 멜트 다운 온도에 비해 증가될 수 있다. 예컨대, 분리막의 멜트 다운(melt down) 온도가 160℃ 이상, 또는 170℃ 이상, 또는 180℃ 내지 230℃일 수 있다.
본 명세서에서, "가교되지 않은 올레핀고분자 다공지지체를 포함하는 분리막"이란, 가교되지 않은 가교구조 미함유 올레핀고분자 다공지지체로 이루어진 분리막; 또는 가교되지 않은 가교구조 미함유 올레핀고분자 다공지지체, 및 상기 가교구조 미함유 올레핀고분자 다공지지체의 적어도 일면에 위치하고 무기 필러 및 바인더 고분자를 포함하는 무기물 혼성 공극층을 포함하는 분리막; 또는 가교되지 않은 가교구조 미함유 올레핀고분자 다공지지체, 상기 가교구조 미함유 올레핀고분자 다공지지체의 적어도 일면에 위치하고 무기 필러 및 제1 바인더 고분자를 포함하는 무기물 혼성 공극층, 및 상기 무기물 혼성 공극층 상에 위치하고, 제2 바인더 고분자를 포함하는 다공성 접착층을 포함하는 분리막을 지칭한다.
상기 멜트 다운 온도는 열기계적 분석방법(Thermomechanical Analysis, TMA)으로 측정할 수 있다. 예컨대, 기계 방향(Machine direction)과 직각 방향(Transverse direction)에서의 샘플을 각각 채취한 후, TMA 장비(TA Instrument, Q400)에 폭 4.8mm x 길이 8 mm의 샘플을 넣고 0.01 N의 장력을 가한 상태에서 승온 속도 5℃/min으로 온도를 30℃에서 220℃까지 변화시키면서, 길이가 급격하게 늘어나 샘플이 끊어지는 온도를 멜트 다운 온도로 측정할 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 가교되지 않은 올레핀고분자 다공지지체를 포함하는 분리막과 비교하여, 셧다운 온도(shutdown temperature)가 크게 증가하지 않을 수 있고, 그 변화율 또한 작을 수 있다. 본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 가교되지 않은 올레핀고분자 다공지지체를 포함하는 분리막과 비교하여 분리막의 멜트 다운 온도는 증가하는 반면, 셧다운 온도는 크게 증가하지 않아 셧다운 온도에 의한 과충전 안전성을 확보할 수 있으면서 분리막의 고온 안전성이 크게 증가할 수 있다.
본 발명의 일 실시양태에서, 상기 리튬 이차전지용 가교구조 함유 분리막은 셧다운 온도(shutdown temperature)가 145℃ 이하, 또는 140℃ 이하, 또는 133℃ 내지 140℃일 수 있다. 상기 리튬 이차전지용 가교구조 함유 분리막이 전술한 셧다운 온도를 가지는 경우, 과충전에 따른 안전성을 확보할 수 있으면서 전지 조립 시의 고온, 가압 공정에서 가교구조 함유 올레핀고분자 다공지지체의 기공이 손상되어 저항이 상승하는 문제를 방지하기 용이할 수 있다.
상기 셧다운 온도는 왕연식 통기도 장비를 이용하여 1분에 5℃씩 승온시켰을 때 0.05 Mpa의 일정한 압력으로 100 ml의 공기가 분리막을 통과하는데 걸리는 시간(sec)을 측정하여 분리막의 통기도가 급격하게 증가하는 온도를 측정하여 측정할 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 통기도, 평량, 인장 강도(tensile strength), 인장 신율(tensile elongation), 천공 강도(puncture strength), 전기 저항 등이 가교 이전의 올레핀고분자 다공지지체를 포함하는 분리막의 통기도, 평량, 인장 강도(tensile strength), 인장 신율(tensile elongation), 천공 강도(puncture strength), 전기 저항 등과 비교하여 크게 열화되지 않을 수 있고, 그 변화율 또한 작을 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 가교 이전의 리튬 이차전지용 분리막과 비교할 때, 통기도의 변화율이 10% 이하, 0% 내지 10%, 0% 내지 5%, 또는 0% 내지 3%일 수 있다.
통기도의 변화율은 하기 식으로 계산할 수 있다.
통기도의 변화율(%) = [(가교 이후의 리튬 이차전지용 가교구조 함유 분리막의 통기도) - (가교 이전의 리튬 이차전지용 분리막의 통기도)]/(가교 이전의 리튬 이차전지용 분리막의 통기도) X 100
본 명세서 전체에서, 상기 "가교 이후의 리튬 이차전지용 가교구조 함유 분리막"은 가교구조 함유 올레핀고분자 다공지지체로 이루어진 분리막; 또는 가교구조 함유 올레핀고분자 다공지지체, 및 상기 가교구조 함유 올레핀고분자 다공지지체의 적어도 일면에 위치한, 무기 필러 및 바인더 고분자를 포함하는 무기물 혼성 공극층을 포함하는 분리막; 또는 가교구조 함유 올레핀고분자 다공지지체, 상기 가교구조 함유 올레핀고분자 다공지지체의 적어도 일면에 위치한, 무기 필러 및 제1 바인더 고분자를 포함하는 무기물 혼성 공극층, 및 상기 무기물 혼성 공극층의 상면에 위치하고 제2 바인더 고분자를 포함하는 다공성 접착층을 포함하는 분리막을 지칭한다.
상기 통기도(걸리)는 ASTM D726-94 방법에 의해 측정할 수 있다. 여기서 사용된 걸리는, 공기의 흐름에 대한 저항으로서, 걸리 덴소미터(densometer)에 의해 측정된다. 여기서 설명된 통기도 값은 100 ml의 공기가 12.2 inH2O의 압력하에서, 샘플 다공지지체 1 in2의 단면을 통과하는 데 걸리는 시간(초), 즉 통기시간으로 나타낸다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 가교 이전의 리튬 이차전지용 분리막과 비교할 때, 평량의 변화율이 5% 이하 또는 0% 내지 5%일 수 있다.
평량의 변화율은 하기 식으로 계산할 수 있다.
평량의 변화율(%) = [(가교 이후의 리튬 이차전지용 가교구조 함유 분리막의 평량) - (가교 이전의 리튬 이차전지용 분리막의 평량)]/(가교 이전의 리튬 이차전지용 분리막의 평량) X 100
상기 평량(g/m2)은 가로 및 세로가 각각 1 m인 샘플을 준비하여, 이의 무게를 측정하여 나타낸다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 가교 이전의 리튬 이차전지용 분리막과 비교할 때, 기계 방향 및 직각 방향에서의 인장 강도의 변화율이 20% 이하, 또는 0% 내지 20%, 또는 0% 내지 10%, 또는 0% 내지 9%, 또는 0% 내지 8%, 또는 0% 내지 7.53%일 수 있다.
인장 강도의 변화율은 하기 식으로 계산할 수 있다.
기계 방향에서의 인장 강도의 변화율(%) = [(가교 이전의 리튬 이차전지용 분리막의 기계 방향에서의 인장 강도) - (가교 이후의 리튬 이차전지용 가교구조 함유 분리막의 기계 방향에서의 인장 강도)]/(가교 이전의 리튬 이차전지용 분리막의 기계 방향에서의 인장 강도) X 100
직각 방향에서의 인장 강도의 변화율(%) = [(가교 이전의 리튬 이차전지용 분리막의 직각 방향에서의 인장 강도) - (가교 이후의 리튬 이차전지용 가교구조 함유 분리막의 직각 방향에서의 인장 강도)]/(가교 이전의 리튬 이차전지용 분리막의 직각 방향에서의 인장 강도) X 100
상기 인장 강도는 ASTM D882에 의거하여 상기 시편을 Universal Testing Systems (Instron® 3345)을 이용하여 50 mm/min의 속도로 기계 방향(machine direction) 및 직각 방향(transverse direction)으로 각각 당겼을 때, 시편이 파단되는 시점의 강도를 의미할 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 가교 이전의 리튬 이차전지용 분리막과 비교할 때, 기계 방향 및 직각 방향에서의 인장 신율의 변화율이 20% 이하, 또는 0% 내지 20%일 수 있다.
인장 신율의 변화율은 하기 식으로 계산할 수 있다.
기계 방향에서의 인장 신율의 변화율(%) = [(가교 이전의 리튬 이차전지용 분리막의 기계 방향에서의 인장 신율) - (가교 이후의 리튬 이차전지용 가교구조 함유 분리막의 기계 방향에서의 인장 신율)]/(가교 이전의 리튬 이차전지용 분리막의 기계 방향에서의 인장 신율) X 100
직각 방향에서의 인장 신율의 변화율(%) = [(가교 이전의 리튬 이차전지용 분리막의 직각 방향에서의 인장 신율) - (가교 이후의 리튬 이차전지용 가교구조 함유 분리막의 직각 방향에서의 인장 신율)]/(가교 이전의 리튬 이차전지용 분리막의 직각 방향에서의 인장 신율) X 100
상기 인장 신율은 ASTM D882에 의거하여 상기 시편을 Universal Testing Systems (Instron® 3345)을 이용하여 50 mm/min의 속도로 기계 방향(machine direction) 및 직각 방향(transverse direction)으로 각각 당겼을 때, 시편이 파단될 때까지 늘어간 최대 길이를 측정하고 하기 식을 사용하여 계산할 수 있다.
기계 방향(machine direction)에서의 인장 신율(%) = (파단 직전 시편의 기계 방향 길이- 신장 전 시편의 기계 방향 길이)/(신장 전 시편의 기계 방향 길이) X 100
직각 방향(transverse direction)에서의 인장 신율(%) = (파단 직전 시편의 직각 방향 길이- 신장 전 시편의 직각 방향 길이)/(신장 전 시편의 직각 방향 길이) X 100
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 가교 이전의 리튬 이차전지용 분리막과 비교할 때, 천공 강도의 변화율이 10% 이하, 또는 0.5% 내지 10%, 또는 1% 내지 9%, 또는 1.18% 내지 8.71%일 수 있다.
천공 강도의 변화율은 하기 식으로 계산할 수 있다.
천공 강도의 변화율(%) = [(가교 이전의 리튬 이차전지용 분리막의 천공 강도) - (가교 이후의 리튬 이차전지용 가교구조 함유 분리막의 천공 강도)]/(가교 이전의 리튬 이차전지용 분리막의 천공 강도) X 100
상기 천공 강도는 ASTM D2582에 따라 측정할 수 있다. 구체적으로, 1 mm의 라운드 팁이 120 mm/min의 속도로 작동하도록 설정한 후, ASTM D2582에 따라 상기 천공 강도를 측정할 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막은 가교 이전의 리튬 이차전지용 분리막과 비교할 때, 전기 저항의 변화율이 15% 이하, 또는 2% 내지 10% 또는 2% 내지 5%일 수 있다.
전기 저항의 변화율은 하기 식으로 계산할 수 있다.
전기 저항의 변화율(%) = [(가교 이후의 리튬 이차전지용 가교구조 함유 분리막의 전기 저항) - (가교 이전의 리튬 이차전지용 분리막의 전기 저항)]/(가교 이전의 리튬 이차전지용 분리막의 전기 저항) X 100
전기 저항은 분리막 샘플을 포함하여 제작된 코인셀을 상온에서 1일간 방치한 후에 분리막 저항을 임피던스 측정법으로 측정하여 구할 수 있다.
본 발명에 따른 가교구조 함유 올레핀고분자 다공지지체는 하기의 방법으로 제조될 수 있으나, 이에 한정되지는 않는다.
본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체의 제조 방법은,
Type 2 광개시제를 포함하는 올레핀고분자 다공지지체를 준비하는 단계; 및
상기 올레핀고분자 다공지지체에 자외선(UV)을 조사하는 단계;를 포함하는 것을 특징으로 한다.
이하에서는 본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체의 제조 방법을 주요 부분 위주로 살펴본다.
우선, Type 2 광개시제를 포함하는 올레핀고분자 다공지지체를 준비한다.
상기 Type 2 광개시제는 올레핀고분자 다공지지체 내의 고분자 사슬을 직접적으로 광가교시킨다. 본 발명에서, 올레핀고분자 다공지지체의 표면에 Type 2 광개시제가 도입되어 자외선 조사 시에 올레핀고분자 다공지지체가 가교될 수 있다. 여기서, 상기 "올레핀고분자 다공지지체의 표면"은 올레핀고분자 다공지지체를 구성하고 있는 수 내지 수십 nm의 고분자 사슬의 표면을 지칭한다.
종래 올레핀고분자 다공지지체를 광가교시키기 위하여 사용된 Type 1 광개시제는 가교제를 함께 사용하는 것이 일반적이다. Type 1 광개시제는 빛을 흡수한 후에 단분자 절단(unimolecular bond cleavage)되어 반응성 화합물종이 되어 광개시제 또는 가교제가 올레핀고분자 다공지지체 내의 고분자 사슬과 결합되어 광가교가 발생하였다.
반면, 상기 Type 2 광개시제는 가교제, 또는 공개시제나 상승제 등의 다른 구성요소 없이, 광개시제 단독으로 올레핀고분자 다공지지체를 가교시킬 수 있다. 광흡수만으로 수소 분리반응(hydrogen abstraction)에 의해 Type 2 광개시제 내의 수소원자가 제거되면서 Type 2 광개시제가 반응성 화합물이 되고, 이러한 Type 2 광개시제가 올레핀고분자 다공지지체 내의 고분자 사슬에 라디칼을 형성하여 고분자 사슬을 반응성으로 만들어, 고분자 사슬이 서로 직접 연결되어 광가교될 수 있게 한다. 예컨대, 올레핀고분자 내에 존재하는 소량의 이중 결합 구조 또는 가지(branch) 구조에서 상기 Type 2 광개시제에 의한 수소 분리반응이 가능하여, 광흡수만으로 수소 분리반응에 의해 올레핀고분자 사슬로부터 수소원자가 제거되면서 라디칼을 형성할 수 있다.
본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체의 제조 방법은 상기 Type 2 광개시제를 사용함에 따라 올레핀고분자 다공지지체 내의 고분자 사슬에 라디칼 생성이 가능하여 고분자 사슬 사이가 직접적으로 연결된 가교구조를 형성할 수 있다.
또한, Type 2 광개시제를 사용함으로써 Type 1 광개시제나 기타 가교제를 이용하는 경우보다 더 적은 광량으로 가교가 가능하여 양산 측면에서 보다 유리할 수 있다.
고분자 사슬에 라디칼을 형성하고 나면, Type 2 광개시제는 안정화되어 더 이상 올레핀고분자 다공지지체 내의 고분자 사슬로부터 라디칼을 생성하지 않는다. 이에 따라 최종적으로 제조된 가교구조 함유 올레핀고분자 다공지지체 역시 활성화된 라디칼을 가지지 않는다.
그러나, 전자 스핀 공명법에 따른 스펙트럼을 측정하는 과정에서 자외선을 가해주면, 이러한 자외선이 Type 2 광개시제를 다시 활성화시키게 되고, 활성화된 Type 2 광개시제가 올레핀고분자 다공지지체 내의 고분자 사슬로부터 다시 라디칼을 형성하게 된다. 이에 따라, 2.010 내지 2.030의 g 값에서 제1 피크가 검출된다.
본 발명의 일 실시양태에서, 상기 Type 2 광개시제는 티옥산톤(TX: Thioxanthone), 티옥산톤 유도체, 벤조페논(BPO: Benzophenone), 벤조페논 유도체, 또는 이들 중 2 이상을 포함할 수 있다.
상기 티옥산톤 유도체는 예컨대 2-이소프로필티옥산톤, 2-클로로티옥산톤, 2-도데실티옥산톤, 2,4-디에틸티옥산톤, 2,4-디메틸티옥산톤, 1-메톡시카보닐티옥산톤, 2-에톡시카보닐티옥산톤, 3-(2-메톡시에톡시카보닐)-티옥산톤, 4-부톡시카보닐-티옥산톤, 3-부톡시카보닐-7-메틸티옥산톤, 1-시아노-3-클로로티옥산톤, 1-에톡시카보닐-3-클로로티옥산톤, 1-에톡시카보닐-3-에톡시티옥산톤, 1-에톡시-카보닐-3-아미노티옥산톤, 1-에톡시카보닐-3-페닐설푸릴티옥산톤, 3,4-디[2-(2-메톡시에톡시)에톡시카보닐]티옥산톤, 1-에톡시카보닐-3-(1-메틸-1-모르폴리노-에틸)-티옥산톤, 2-메틸-6-디메톡시메틸-티옥산톤, 2-메틸-6-(1,1-디메톡시-벤질)-티옥산톤, 2-모르폴리노메틸티옥산톤, 2-메틸-6-모르폴리노메틸-티옥산톤, N-알릴티옥산톤-3,4-디카복스이미드, N-옥틸티옥산톤-3,4-디카복스이미드, N-(1,1,3,3-테트라메틸부틸)-티옥산톤-3,4-디카복스이미드, 1-페녹시티옥산톤, 6-에톡시카보닐-2-메톡시티옥산톤, 6-에톡시카보닐-2-메틸티옥산톤, 티옥산톤-2-폴리에틸렌 글리콜 에스테르, 2-하이드록시-3-(3,4-디메틸-9-옥소-9H-티옥산톤-2-일옥시)-N,N,N-트리메틸-1-프로판아미늄 클로라이드 등을 포함할 수 있으나, 이로 제한되는 것은 아니다.
상기 벤조페논 유도체는 예컨대, 4-페닐벤조페논, 4-메톡시벤조페논, 4,4'-디메톡시-벤조페논, 4,4'-디메틸벤조페논, 4,4'-디클로로벤조페논, 4,4'-디메틸아미노벤조페논, 4,4'-디에틸아미노벤조페논, 4-메틸벤조페논, 2,4,6-트리메틸벤조페논, 4-(4-메틸티오페닐)-벤조페논, 3,3'-디메틸-4-메톡시-벤조페논, 메틸-2-벤조일 벤조에이트, 4-(2-하이드록시에틸티오)-벤조페논, 4-(4-톨릴티오)벤조페논, 4-벤조일-N,N,N-트리메틸벤젠메탄아미늄 클로라이드, 2-하이드록시-3-(4-벤조일페녹시)-N,N,N-트리메틸-프로판아미늄 클로라이드 일수화물, 4-하이드록시 벤조페논, 4-(13-아크릴로일-1,4,7,10,13-펜타옥사트리데실)-벤조페논, 4-벤조일-N,N-디메틸-N-[2-(1-옥소-2-프로페닐)옥시]에틸-벤젠메탄아미늄 클로라이드 등을 포함할 수 있으나, 이로 제한되는 것은 아니다.
특히, 2-이소프로필 티옥산톤, 또는 티옥산톤은 자외선에 대한 반응성이 더 뛰어나서 상기 Type 2 광개시제가 2-이소프로필 티옥산톤, 티옥산톤, 또는 이들의 혼합물을 포함하는 경우, 벤조페논 등을 포함하는 경우보다 더 적은 광량, 예컨대 500 mJ/cm2 수준으로도 올레핀고분자 다공지지체의 광가교가 가능하여 양산 측면에서 보다 유리할 수 있다. 이에 따라, 500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 상기 제2 피크의 면적에 대한 상기 제1 피크의 면적의 비율이 벤조페논 등을 포함하는 경우보다 더 클 수 있다.
또한, 상기 Type 2 광개시제가 2-이소프로필 티옥산톤(2-Isopropyl thioxanthone: ITX)를 포함하는 경우, ITX의 융점이 대략 70℃ 내지 80℃로 낮아, 광가교 온도 조건을 80℃ 내지 100℃으로 조절하는 경우에 올레핀고분자 다공지지체 표면의 ITX가 녹으면서 상기 올레핀고분자 다공지지체 내로 ITX의 이동성(mobility)이 발생하여 가교 효율이 증가할 수 있고, 최종 제조되는 가교구조 함유 올레핀고분자 다공지지체의 물성 변화를 방지하기 용이할 수 있다.
본 발명의 일 실시양태에서, 상기 Type 2 광개시제의 함량은 올레핀고분자 다공지지체 100 중량부 대비 0.015 중량부 내지 0.36 중량부, 또는 0.015 중량부 내지 0.09 중량부, 또는 0.03 중량부 내지 0.07 중량부, 또는 0.036 중량부 내지 0.073 중량부일 수 있다. 상기 Type 2 광개시제의 함량이 전술한 범위를 만족하는 경우, 라디칼이 형성된 고분자 사슬 간에만 가교가 일어나고, Type 2 광개시제는 고분자 사슬과 가교되지 않아 Type 2 광개시제와 고분자 사슬 간의 가교로 인한 과량의 라디칼로 인해 부반응이 발생하는 문제를 방지하기 더욱 용이할 수 있다. Type 2 광개시제 간의 가교가 일어나거나 Type 2 광개시제와 고분자 사슬이 서로 가교되는 경우, 이러한 가교구조는 올레핀고분자 다공지지체 내의 고분자 사슬 간의 가교구조보다 반응 엔탈피가 더 낮아 분해되어 부반응을 일으킬 우려가 있다. 또한, Type 2 광개시제와 고분자 사슬이 서로 가교되면 올레핀고분자 사슬의 용융온도를 저하시켜 셧다운 온도와 같은 특성을 열화시킬 수 있다.
또한, 상기 Type 2 광개시제의 함량이 전술한 범위를 만족하는 경우, 라디칼이 형성된 고분자 사슬 간에만 가교가 일어날 수 있는 수준으로 라디칼이 형성되어 급격한 가교 반응에 의해 가교구조 함유 올레핀고분자 다공지지체가 수축되거나 올레핀고분자의 주 사슬 절단(main chain scission) 등이 발생하여 가교구조 함유 올레핀고분자 다공지지체의 기계적 강도 등의 다른 물성이 희생되는 것을 방지하기 용이할 수 있다. Type 2 광개시제가 전술한 범위로 포함되어도, 양산 생산성을 확보할 수 있는 광량 (즉, 종래보다 적은 광량)의 자외선 조사에 의해 올레핀고분자 다공지지체를 가교시킬 수 있다.
올레핀고분자 다공지지체 100 중량부 대비 상기 Type 2 광개시제의 함량은 올레핀고분자 다공지지체의 전체 기공 부피를 채우고 있는 Type 2 광개시제의 함량을 측정하여 구할 수 있다. 예컨대, 올레핀고분자 다공지지체의 전체 기공 부피를 후술하는 용제가 100% 채우고 있고, 올레핀고분자 다공지지체의 표면에 존재하는 용제는 없다고 가정하였을 때, 용제의 밀도로부터 올레핀고분자 다공지지체의 전체 기공 부피 내에 포함된 용제의 무게를 구하고, 용제에 포함된 Type 2 광개시제의 함량으로부터 올레핀고분자 다공지지체 100 중량부 대비 Type 2 광개시제의 함량을 구할 수 있다.
상기 올레핀고분자 다공지지체는 전술한 올레핀고분자 물질로부터 우수한 통기성 및 공극률을 확보하기 위해 당업계에 공지되어 있는 통상적인 방법, 예컨대 용매, 희석제 또는 기공형성제를 사용하는 습식법 또는 연신방식을 사용하는 건식법을 통하여 기공을 형성함으로써 제조될 수 있다.
본 발명의 일 실시양태에서, 상기 올레핀고분자 다공지지체는 H-NMR 측정 시 올레핀고분자 사슬에 존재하는 이중 결합의 개수가 1000개의 탄소 원자당 0.01개 내지 0.5개, 또는 0.01개 내지 0.3개, 또는 0.01개 내지 0.2개일 수 있다. 상기 올레핀고분자 다공지지체가 전술한 범위의 이중 결합 개수를 가지는 경우, 올레핀고분자 사슬에 존재하는 이중 결합 구조로부터 Type 2 광개시제에 의한 수소 분리반응에 의해 형성되는 라디칼의 조절이 가능하여 올레핀고분자 다공지지체를 효과적으로 가교시킬 수 있으면서 라디칼이 과도하게 생성되어 부반응이 발생하는 것을 최소화할 수 있다.
올레핀고분자 사슬에 존재하는 이중 결합들 중 말단을 제외한 올레핀고분자 사슬에 존재하는 이중 결합이 고분자 사슬 간의 가교에 영향을 미칠 수 있다. 본 발명의 일 실시양태에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 말단을 제외한 올레핀고분자 사슬에 존재하는 이중 결합의 개수가 1000개의 탄소 원자당 0.005개 내지 0.49개일 수 있다.
본 발명의 일 실시양태에서, 상기 올레핀고분자 사슬에 존재하는 이중 결합의 개수는 올레핀고분자 합성 시 촉매의 종류, 순도, 연결제 첨가 등을 조절하여 조절할 수 있다.
본 발명의 일 실시양태에서, 상기 올레핀고분자 다공지지체는 BET 비표면적이 10 m2/g 내지 27 m2/g, 13 m2/g 내지 25 m2/g, 또는 15 m2/g 내지 23 m2/g일 수 있다. 상기 올레핀고분자 다공지지체의 BET 비표면적이 전술한 범위를 만족하는 경우, 올레핀고분자 다공지지체의 표면적이 증가하여 적은 양의 Type 2 광개시제를 사용하여도 올레핀고분자 다공지지체의 가교 효율이 증가되기 더욱 용이할 수 있다.
상기 올레핀고분자 다공지지체의 BET 비표면적은 BET 법에 의해 측정할 수 있다. 구체적으로, BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 무기물 입자의 BET 비표면적을 산출할 수 있다.
본 발명의 일 실시양태에서, 상기 올레핀고분자 다공지지체는 산화방지제를 더 포함할 수 있다. 산화방지제는 올레핀고분자 사슬에 형성된 라디칼을 제어함으로써, 고분자 사슬 간의 가교 반응을 조절할 수 있다. 산화방지제가 고분자 사슬 대신 산화되어 고분자 사슬의 산화를 막거나 생성된 라디칼을 흡수하여 고분자 사슬 간의 가교 반응을 조절할 수 있다.
본 발명의 일 실시양태에서, 상기 산화방지제의 함량은 상기 올레핀고분자 다공지지체 함량 기준으로 500 ppm 내지 20000 ppm, 또는 1000 ppm 내지 15000 ppm, 또는 2000 ppm 내지 13000 ppm일 수 있다. 산화방지제의 함량이 전술한 범위를 만족하는 경우, 산화방지제가 과도하게 생성되는 라디칼을 충분히 제어할 수 있어 부반응이 발생하는 문제를 방지하기 용이할 수 있으면서도 올레핀고분자 다공지지체의 표면이 불균일해지는 현상을 방지하기 용이할 수 있다.
이러한 산화방지제는 크게 올레핀고분자에 생성된 라디칼과 반응하여 올레핀고분자를 안정화시키는 라디칼 소거제(radical scavenger)와, 라디칼에 의해 생성되는 과산화물을 안정된 형태의 분자로 분해하는 과산화물 분해제(peroxide decomposer)로 분류될 수 있다. 상기 라디칼 소거제는 수소를 방출하여 라디칼을 안정화시키고 그 자신이 라디칼이 되지만, 공명효과 또는 전자의 재배열을 통하여 안정한 형태로 잔류할 수 있다. 상기 과산화물 분해제는 상기 라디칼 소거제와 병용할 때 더욱 우수한 효과를 발휘할 수 있다.
본 발명의 일 실시양태에서, 상기 산화방지제가 라디칼 소거제(radical scavenger)인 제1 산화방지제 및 과산화물 분해제(peroxide decomposer)인 제2 산화방지제를 포함할 수 있다. 상기 제1 산화방지제와 제2 산화방지제는 그 작동 기작이 상이하므로 상기 산화방지제가 라디칼 소거제인 제1 산화방지제 및 과산화물 분해제인 제2 산화방지제를 동시에 포함함으로써 상기 산화방지제들의 시너지 효과로 인하여 불필요한 라디칼 생성 억제가 더욱 용이할 수 있다.
상기 제1 산화방지제와 제2 산화방지제의 함량은 동일할 수도 있고, 상이할 수도 있다.
본 발명의 일 실시양태에서, 상기 제1 산화방지제가 페놀계 산화방지제, 아민계 산화방지제, 또는 이들의 혼합물을 포함할 수 있다.
상기 페놀계 산화방지제는, 2,6-디-t-부틸-4-메틸페놀, 4,4'-티오비스(2-t-부틸-5-메틸페놀), 2,2'-티오 디에틸비스-[3-(3,5-디-t-부틸-4-하이드록시페닐)-프로피오네이트], 펜타에리트리톨-테트라키스-[3-(3,5-디-t-부틸-4-하이드록시페닐)-프로피오네이트](Pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate), 4,4'-티오비스(2-메틸-6-t-부틸페놀), 2,2'-티오비스(6-t-부틸-4-메틸페놀), 옥타데실-[3-(3,5-디-t-부틸-4-하이드록시페닐)-프로피오네이트], 트리에틸렌글리콜-비스-[3-(3-t-부틸-4-하이드록시-5-메틸페놀)프로피오네이트], 티오디에틸렌 비스[3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트], 6,6'-디-t-부틸-2,2'-티오디-p-크레졸, 1,3,5-트리스(4-t-부틸-3-하이드록시-2,6-크실릴)메틸-1,3,5-트리아진-2,4,6-(1H,3H,5H)-트리온, 디옥타데실 3,3'-티오디프로피오네이트, 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 일 실시양태에서, 상기 제1 산화방지제의 함량이 상기 올레핀고분자 다공지지체 함량 기준으로 500 ppm 내지 10000 ppm, 또는 1000 ppm 내지 12000 ppm, 또는 1000 ppm 내지 10000 ppm일 수 있다. 상기 제1 산화방지제의 함량이 전술한 범위를 만족하는 경우, 라디칼이 과도하게 생성되어 부반응이 발생하는 문제를 방지하기 더욱 용이할 수 있다.
본 발명의 일 실시양태에서, 상기 제2 산화방지제가 인계 산화방지제, 황계 산화방지제, 또는 이들의 혼합물을 포함할 수 있다.
상기 인계 산화방지제는 과산화물을 분해하여 알코올을 만들고, 포스페이트로 변화한다. 상기 인계 산화방지제는, 3,9-비스(2,6-디-t-4-메틸페녹시)-2,4,8,10-테트라옥사-3,9-디포스파스파이로[5,5]운데칸(3,9-Bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane), 비스(2,6-디쿠밀페닐)펜타에리스리톨 디포스파이트(Bis(2,4-dicumylphenyl) pentaerythritol diphosphate), 2,2'-메틸렌비스(4,6-디-t-부틸페닐) 2-에틸헥실 포스파이트(2,2'-Methylenebis(4,6-di-tert-butylphenyl) 2-ethylhexyl phosphite), 비스(2,4-디-t-부틸-6-메틸페닐)-에틸-포스파이트(bis(2,4-di-tert-butyl-6-methylphenyl)-ethyl-phosphite), 비스(2,6-디-t-부틸-4-메틸페닐) 펜타에리스리톨 디포스파이트, 비스(2,4-디-t-부틸페닐)펜타에리스리톨 디포스파이트(bis(2,4-di-t-butylphenyl)Pentaerythritol Diphosphite), 비스(2,4-디쿠밀페닐)펜타에리스리톨디포스파이트, 디스테아릴 펜타에리스리톨 디포스파이트, 트리스(2,4-디-t-부틸페닐) 포스파이트 또는 이들 중 2 이상을 포함할 수 있다.
상기 황계 산화방지제는 3,3'-싸이오비스- 1,1'-디도데실 에스터(3,3'-thiobis- 1,1'-didodecyl ester), 디메틸 3, 3'-싸이오디프로피오네이트(Dimethyl 3,3'-Thiodipropionate), 디옥타데실 3,3'-싸이오디프로피오네이트(Dioctadecyl 3,3'-thiodipropionate), 2,2-비스{[3-(도데실싸이오)-1-옥소프로폭시]메틸}프로페인-1,3디일-비스[3-(도데실싸이오)프로피오네이트](2,2-Bis{[3-(dodecylthio)-1-oxopropoxy]methyl}propane-1,3-diyl bis[3-(dodecylthio)propionate]), 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 일 실시양태에서, 상기 제2 산화방지제의 함량이 상기 올레핀고분자 다공지지체 함량 기준으로 500 ppm 내지 10000 ppm, 또는 1000 ppm 내지 12000 ppm, 또는 1000 ppm 내지 10000 ppm일 수 있다. 상기 제2 산화방지제의 함량이 전술한 범위를 만족하는 경우, 라디칼이 과도하게 생성되어 부반응이 발생하는 문제를 방지하기 더욱 용이할 수 있다.
본 발명의 일 실시양태에서, 상기 산화방지제가 라디칼 소거제(radical scavenger)인 제1 산화방지제 및 과산화물 분해제(peroxide decomposer)인 제2 산화방지제를 동시에 포함하는 경우, 상기 제1 산화방지제의 함량이 상기 올레핀고분자 다공지지체 함량 기준으로 500 ppm 내지 10000 ppm이고, 상기 제2 산화방지제의 함량이 상기 올레핀고분자 다공지지체 함량 기준으로 500 ppm 내지 10000 ppm일 수 있다.
본 발명의 일 실시양태에서, 상기 Type 2 광개시제를 포함하는 올레핀고분자 다공지지체를 준비하는 단계가, 상기 올레핀고분자 다공지지체를 형성하기 위한 올레핀고분자 조성물을 압출할 때에, 압출기에 상기 Type 2 광개시제를 첨가하여 올레핀고분자 다공지지체를 준비하는 단계를 포함할 수 있다.
본 발명의 다른 실시양태에서, 상기 올레핀고분자 다공지지체를 준비하는 단계가, 상기 Type 2 광개시제 및 용제를 포함하는 광가교용 조성물을 상기 올레핀고분자 다공지지체의 외측에 코팅 및 건조하는 단계를 포함할 수 있다.
본 명세서에서, "외측에 코팅 및 건조하는 단계"란 올레핀고분자 다공지지체의 표면에 광가교용 조성물을 코팅 및 건조하는 경우뿐만 아니라, 올레핀고분자 다공지지체 상에 다른 층이 형성된 후 상기 다른 층의 표면에 광가교용 조성물이 코팅 및 건조되는 경우를 포함한다.
본 발명의 일 실시양태에서, 상기 광개시제 용액을 상기 올레핀고분자 다공지지체에 코팅하기 전에 올레핀고분자 다공지지체를 코로나 방전 처리할 수 있다. 상기 코로나 방전 처리는 코로나 방전 처리기에 구비된 소정의 방전 전극과 처리 롤 사이에 소정의 구동회로부에 의해 발생하는 고주파, 고전압 출력을 인가하여 수행될 수 있다. 상기 코로나 방전 처리를 통해 올레핀고분자 다공지지체의 표면이 개질되어 광가교용 조성물에 대한 올레핀고분자 다공지지체의 젖음성이 더욱 개선될 수 있다. 이에 따라, 같은 함량의 Type 2 광개시제가 포함되더라도 올레핀고분자 다공지지체의 가교가 더욱 효율적으로 수행될 수 있다. 상기 코로나 방전 처리는 상압 플라즈마 방식에 의해 수행될 수 있다.
본 발명의 일 실시양태에서, 상기 용제는 시클로펜탄, 시클로헥산 등의 고리형 지방족 탄화수소류; 톨루엔, 자일렌, 에틸벤젠 등의 방향족 탄화수소류; 아세톤, 에틸메틸케톤, 디이소프로필케톤, 시클로헥사논, 메틸시클로헥산, 에틸시클로헥산 등의 케톤류; 메틸렌클로라이드, 클로로포름, 사염화탄소 등 염소계 지방족 탄화수소; 아세트산에틸, 아세트산 부틸, γ-부티로락톤, ε-카프로락톤 등의 에스테르류; 아세토니트릴, 프로피오니트릴 등의 아실로니트릴류; 테트라하이드로푸란, 에틸렌글리콜디에틸에테르 등의 에테르류: 메탄올, 에탄올, 이소프로판올, 에틸렌글리콜, 에틸렌글리콜모노메틸에테르 등의 알코올류; N-메틸피롤리돈, N,N-디메틸포름아미드 등의 아미드류; 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 일 실시양태에서, 상기 광가교용 조성물 내의 Type 2 광개시제의 함량은 올레핀고분자 다공지지체 100 중량부 대비 0.015 중량부 내지 0.36 중량부이면서, 동시에 상기 용제 100 중량부 기준으로 0.01 내지 0.5 중량부, 또는 0.02 중량부 내지 0.45 중량부, 또는 0.25 중량부 내지 0.4 중량부일 수 있다.
상기 Type 2 광개시제의 함량이 전술한 범위를 만족하는 경우, 올레핀고분자 다공지지체를 가교시킬 수 있으면서 과도한 라디칼 생성으로 부반응이 발생하는 것을 방지하기 더욱 용이할 수 있다.
또한, 본 발명의 일 실시양태에서, 상기 광가교용 조성물 내의 Type 2 광개시제의 함량은 올레핀고분자 다공지지체 100 중량부 대비 0.015 중량부 내지 0.36 중량부이면서, 동시에 상기 올레핀고분자 다공지지체의 비표면적 기준으로 0.01 mg/m2 내지 1.0 mg/m2, 또는 0.03 mg/m2 내지 0.8 mg/m2, 또는 0.06 mg/m2 내지 0.7 mg/m2일 수 있다. 상기 Type 2 광개시제의 함량이 전술한 범위를 만족하는 경우, 올레핀고분자 다공지지체를 가교시킬 수 있으면서 과도한 라디칼 생성으로 부반응이 발생하는 것을 방지하기 더욱 용이할 수 있다.
상기 올레핀고분자 다공지지체의 비표면적을 기준으로 한 Type 2 광개시제의 함량은 NMR 분석을 통해 측정할 수 있다.
본 발명의 일 실시양태에서, 상기 광가교용 조성물이 상기 Type 2 광개시제 및 상기 용제로 이루어진 광개시제 용액일 수 있다.
상기 광개시제 용액을 상기 올레핀고분자 다공지지체에 코팅하는 방법의 비제한적인 예로는, 딥(Dip) 코팅법, 다이(Die) 코팅법, 롤(roll) 코팅법, 콤마(comma) 코팅법, 마이크로그라비아 (Microgravure) 코팅법, 닥터 블레이드 코팅법, 리버스롤 코팅법, 메이어 바 (Mayer Bar) 코팅법, 다이렉트롤 코팅법 등이 있다.
상기 광개시제 용액을 상기 올레핀고분자 다공지지체에 코팅한 후의 건조 단계는 당업계에 공지되어 있는 방법을 사용할 수 있으며, 사용된 용제의 증기압을 고려한 온도 범위에서 오븐 또는 가열식 챔버를 사용하여 배치식 또는 연속식으로 가능하다. 상기 건조는 상기 광개시제 용액 내에 존재하는 용제를 거의 제거하는 것이며, 이는 생산성 등을 고려하여 가능한 빠른 것이 바람직하며, 예컨대 1분 이하 또는 30초 이하의 시간 동안 실시될 수 있다.
본 발명의 또 다른 실시양태에서, 상기 광가교용 조성물이 무기 필러, 바인더 고분자, 상기 Type 2 광개시제, 및 상기 용제를 포함하는 무기물 혼성 공극층 형성용 슬러리일 수 있다.
상기 광가교용 조성물이 상기 무기물 혼성 공극층 형성용 슬러리인 경우, 상기 광가교용 조성물이 올레핀고분자 다공지지체에 코팅되면서 Type 2 광개시제가 올레핀고분자 다공지지체 표면에 도입되어 자외선 조사 시에 올레핀고분자 다공지지체를 가교시킬 수 있으면서, 동시에 올레핀고분자 다공지지체의 적어도 일면에 무기물 혼성 공극층을 형성할 수 있다. 이에 따라, 가교구조 함유 올레핀고분자 다공지지체, 및 상기 가교구조 함유 올레핀고분자 다공지지체의 적어도 일면에 위치하며 무기 필러 및 바인더 고분자를 포함하는 무기물 혼성 공극층을 포함하는 리튬 이차전지용 가교구조 함유 분리막을 제조할 수 있다.
상기 광가교용 조성물로 무기물 혼성 공극층 형성용 슬러리를 사용하는 경우, 상기 Type 2 광개시제를 올레핀고분자 다공지지체에 직접 적용하기 위한 설비, 예컨대 상기 Type 2 광개시제를 포함하는 용액을 올레핀고분자 다공지지체에 직접 코팅 및 건조하기 위한 설비 등을 추가로 필요로 하지 않으면서 무기물 혼성 공극층 형성 공정을 이용하여 올레핀고분자 다공지지체를 가교시킬 수 있다.
또한, 상기 무기물 혼성 공극층 형성용 슬러리는 올레핀고분자 다공지지체 내의 고분자 사슬을 직접 가교시키기 위하여 상기 Type 2 광개시제 외에 다른 모노머 등을 필요로 하지 않아, Type 2 광개시제가 무기 필러 및 바인더 고분자와 함께 무기물 혼성 공극층 형성용 슬러리 내에 포함되어도 모노머 등이 Type 2 광개시제가 올레핀고분자 다공지지체의 표면에 도달하는 것을 방해하지 않아 Type 2 광개시제가 올레핀고분자 다공지지체의 표면에 충분히 도입될 수 있다.
일반적으로 올레핀고분자 다공지지체 자체 및 무기 필러가 높은 자외선 차단 효과를 가져서 무기 필러를 포함하는 무기물 혼성 공극층을 형성한 후에 자외선을 조사하게 되면 올레핀고분자 다공지지체에 닿는 자외선 조사 광량이 감소할 수 있는데, 본 발명에서는 무기물 혼성 공극층이 형성된 후에 자외선을 조사하여도 올레핀고분자 다공지지체 내의 고분자 사슬 사이가 직접적으로 가교될 수 있다.
상기 용제는 바인더 고분자의 종류에 따라서 바인더 고분자를 용해시키는 용매 역할을 할 수도 있고, 바인더 고분자를 용해시키지는 않고 분산시키는 분산매 역할을 할 수도 있다. 동시에 상기 용제는 상기 Type 2 광개시제를 용해시킬 수 있다. 상기 용제는 사용하고자 하는 바인더 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것을 사용할 수 있다. 이 경우, 균일한 혼합과 이후 용제의 제거가 용이할 수 있다. 이러한 용제의 비제한적인 예로는 전술한 용제에 관한 내용을 참조한다.
상기 무기 필러 및 바인더 고분자에 대해서는 전술한 내용을 참조한다.
상기 바인더 고분자는 바인더 고분자의 종류에 따라서 상기 용제에 용해되는 것일 수도 있고, 상기 용제에 용해되지는 않고 분산되는 것일 수 있다.
본 발명의 일 실시양태에서, 상기 광가교용 조성물이 상기 무기물 혼성 공극층 형성용 슬러리일 때, 상기 Type 2 광개시제로 2-이소프로필 티옥산톤, 티옥산톤, 또는 이들의 혼합물을 포함할 수 있다. 2-이소프로필 티옥산톤 또는 티옥산톤은 투과율이 높은 장파장에서도 광가교가 가능하다. 이에 따라, 무기 필러와 바인더 고분자 등을 포함하는 무기물 혼성 공극층 형성용 슬러리에 Type 2 광개시제가 포함되어도, 올레핀고분자 다공지지체의 가교가 용이할 수 있다.
상기 무기물 혼성 공극층 형성용 슬러리는 상기 바인더 고분자를 상기 용제에 용해 또는 분산시킨 다음 상기 무기 필러를 첨가하고 이를 분산시켜 제조할 수 있다. 상기 무기 필러들은 미리 소정의 평균 입경을 갖도록 파쇄된 상태에서 첨가될 수 있으며, 또는 상기 바인더 고분자가 용해 또는 분산된 슬러리에 상기 무기 필러를 첨가한 후 상기 무기 필러를 볼밀법 등을 이용하여 소정의 평균 입경을 갖도록 제어하면서 파쇄하여 분산시킬 수도 있다. 이 때, 파쇄는 1 내지 20 시간 동안 수행될 수 있으며, 파쇄된 무기 필러의 평균 입경은 전술한 바와 같을 수 있다. 파쇄 방법으로는 통상적인 방법을 사용할 수 있으며, 볼밀(ball mill) 법이 사용될 수 있다.
본 발명의 일 실시양태에서, 상기 무기물 혼성 공극층 형성용 슬러리의 고형분 함량은 5 중량% 내지 60 중량%, 또는 30 중량% 내지 50 중량%일 수 있다. 상기 무기물 혼성 공극층 형성용 슬러리의 고형분의 함량이 전술한 범위인 경우, 코팅 균일성 확보가 용이할 수 있고 슬러리가 흘러 불균일이 발생하거나 슬러리를 건조시키는 데에 많은 에너지가 드는 것을 방지하기 용이할 수 있다.
본 발명의 일 실시양태에서, 상기 광가교용 조성물이 상기 무기물 혼성 공극층 형성용 슬러리인 경우, 상기 광가교용 조성물을 상기 올레핀고분자 다공지지체에 코팅한 후, 상분리 과정이 수행될 수 있다. 상기 상분리는 가습 상분리 혹은 침지 상분리 방식으로 진행될 수 있다.
상기 상분리 중 가습 상분리에 대해 설명하면 다음과 같다.
먼저, 가습 상분리는 15℃ 내지 70℃ 범위의 온도 또는 20℃ 내지 50℃ 범위의 온도 및 15% 내지 80% 범위의 상대습도 또는 30% 내지 50% 범위의 상대습도의 조건에서 실시할 수 있다. 상기 무기물 혼성 공극층 형성용 슬러리가 건조 과정을 거치면서 당업계에 공지되어 있는 상분리(vapor-induced phase separation) 현상에 의해 상전이 특성을 갖게 될 수 있다.
상기 가습 상분리를 위해 상기 바인더 고분자에 대한 비용매가 기체 상태로 도입될 수 있다. 상기 바인더 고분자에 대한 비용매는, 바인더 고분자를 용해시키지 않고, 상기 용제와 부분 상용성이 있는 것이면 특별히 제한되지는 않으며, 예컨대, 25℃ 조건에서 바인더 고분자의 용해도가 5 중량% 미만인 것이 사용될 수 있다. 예를 들어, 상기 바인더 고분자에 대한 비용매는 물, 메탄올, 에탄올, 이소프로판올, 부탄올, 부탄디올, 에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜, 또는 이들 중 2 이상일 수 있다.
상기 상분리 중 침지 상분리에 대해 설명하면 다음과 같다.
상기 무기물 혼성 공극층 형성용 슬러리를 상기 올레핀고분자 다공지지체의 외측에 코팅한 후, 상기 바인더 고분자에 대한 비용매를 포함하는 응고액에 소정 시간 침지한다. 이에 따라, 코팅된 무기물 혼성 공극층 슬러리에서 상분리 현상이 유발되면서 바인더 고분자를 고화시킨다. 이 공정에서 다공화된 무기물 혼성 공극층이 형성된다. 그 후, 수세(水洗)함으로써 응고액을 제거하고, 건조한다. 상기 건조는 당업계에 공지되어 있는 방법을 사용할 수 있으며, 사용된 용제의 증기압을 고려한 온도 범위에서 오븐 또는 가열식 챔버를 사용하여 배치식 또는 연속식으로 가능하다. 상기 건조는 상기 슬러리 내에 존재하는 용제를 거의 제거하는 것이며, 이는 생산성 등을 고려하여 가능한 빠른 것이 바람직하며, 예컨대 1분 이하 또는 30초 이하의 시간 동안 실시될 수 있다.
상기 응고액으로는 상기 바인더 고분자에 대한 비용매만을 사용하거나 또는 상기 바인더 고분자에 대한 비용매와 전술한 바와 같은 용제의 혼합 용매를 사용할 수 있다. 상기 바인더 고분자에 대한 비용매와 용제의 혼합 용매를 사용하는 경우에는 양호한 다공 구조를 형성하고, 생산성을 향상시키는 관점에서, 응고액 100 중량% 대비 상기 바인더 고분자에 대한 비용매의 함량이 50 중량% 이상일 수 있다.
본 발명의 다른 실시양태에서, 상기 상기 Type 2 광개시제 및 용제를 포함하는 광가교용 조성물을 상기 올레핀고분자 다공지지체의 외측에 코팅 및 건조하는 단계가,
무기 필러, 제1 바인더 고분자, 및 분산매를 포함하는 무기물 혼성 공극층 형성용 슬러리를 상기 올레핀고분자 다공지지체의 적어도 일면에 코팅 및 건조하여 무기물 혼성 공극층을 형성하는 단계; 및
제2 바인더 고분자, 상기 Type 2 광개시제, 및 상기 용제를 포함하는 다공성 접착층 형성용 코팅액을 상기 무기물 혼성 공극층의 상면에 코팅 및 건조하는 단계;를 포함할 수 있다.
이에 따라, 가교구조 함유 올레핀고분자 다공지지체, 상기 가교구조 함유 올레핀고분자 다공지지체의 적어도 일면에 위치하며 무기 필러 및 제1 바인더 고분자를 포함하는 무기물 혼성 공극층, 및 제2 바인더 고분자를 포함하는 다공성 접착층을 포함하는 리튬 이차전지용 가교구조 함유 분리막을 제조할 수 있다.
상기 무기 필러에 대해서는 전술한 내용을 참조한다.
상기 분산매는 제1 바인더 고분자의 종류에 따라서 제1 바인더 고분자를 용해시키는 용매 역할을 할 수도 있고, 제1 바인더 고분자를 용해시키지는 않고 분산시키는 분산매 역할을 할 수도 있다. 상기 분산매는 사용하고자 하는 제1 바인더 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것을 사용할 수 있다. 이 경우, 균일한 혼합과 이후 분산매의 제거가 용이할 수 있다.
본 발명의 일 실시양태에서, 상기 분산매는 수계 분산매일 수 있다. 상기 분산매가 수계 분산매인 경우, 환경친화적이고 무기물 혼성 공극층을 형성하고 건조함에 있어 과도한 열량이 요구되지 않으며, 추가적인 방폭 시설이 요구되지 않아 무기물 혼성 공극층을 형성하기 보다 수월할 수 있다.
본 발명의 일 실시양태에서, 상기 제1 바인더 고분자는 상기 용제 및 후술하는 상기 제2 바인더 고분자에 대한 비용매에 용해되지 않는 것일 수 있다. 이 경우, 무기물 혼성 공극층을 형성한 후에 다공성 접착층 형성을 위해 후술하는 코팅액을 도포하더라도 제1 바인더 고분자가 용해되지 않아, 용제 및/또는 제2 바인더 고분자에 대한 비용매에 용해된 제1 바인더 고분자가 기공을 막는 현상을 방지하기 용이할 수 있다.
본 발명의 일 실시양태에서, 상기 제1 바인더 고분자는 수계 바인더 고분자일 수 있다. 이 때, 상기 제1 바인더 고분자는 수계 용매에 용해되거나 수계 분산매에 의해 분산되는 것일 수 있다. 상기 제1 바인더 고분자가 수계 분산매에 의해 분산되는 것인 경우, 상기 제1 바인더 고분자는 입자 형태일 수 있다.
상기 무기물 혼성 공극층 형성용 슬러리에 대해서는 전술한 내용을 참조한다.
상기 무기물 혼성 공극층 형성용 슬러리의 건조는 통상의 분리막 제조 시 건조 방법에 의해 건조되는 것일 수 있다. 예를 들어, 상기 코팅된 슬러리의 건조는 공기에 의해 10초 내지 30분, 또는 30초 내지 20분, 또는 3분 내지 10분 동안 수행될 수 있다. 건조 시간이 상기 범위 내로 수행되는 경우에 생산성을 저해하지 않으면서도 잔류 용제를 제거할 수 있는 효과를 가질 수 있다.
상기 제2 바인더 고분자에 대해서는 전술한 내용을 참조한다.
상기 용제는 25℃에서 상기 제2 바인더 고분자를 5 중량% 이상, 또는 15 중량% 이상, 또는 25 중량% 이상 용해시키는 것일 수 있다.
상기 용제는 상기 제1 바인더 고분자에 대한 비용매일 수 있다. 예컨대, 상기 용제는 25℃에서 상기 제1 바인더 고분자를 5 중량% 미만으로 용해시키는 것일 수 있다.
상기 용제의 종류에 대해서는 전술한 내용을 참조한다.
본 발명의 일 실시양태에 있어서, 상기 제2 바인더 고분자는 상기 다공성 접착층 형성용 코팅액 100 중량% 기준으로 3 중량% 내지 30 중량%, 또는 5 중량% 내지 25 중량%으로 포함될 수 있다.
상기 Type 2 광개시제가 다공성 접착층 형성용 코팅액에 포함됨에 따라 다공성 접착층 형성용 코팅액을 상기 무기물 혼성 공극층의 상면에 코팅할 때, Type 2 광개시제가 올레핀고분자 다공지지체 표면에 도입될 수 있으면서 동시에 다공성 접착층을 형성할 수 있다.
다공성 접착층 형성용 코팅액을 코팅하는 과정에서 상기 용제가 올레핀고분자 다공지지체를 적시는데, 이 때 상기 다공성 접착층 형성용 코팅액에 포함된 Type 2 광개시제가 올레핀고분자 다공지지체 표면에 도입되어 자외선 조사 시에 올레핀고분자 다공지지체 표면에 존재하는 Type 2 광개시제에 의해 올레핀고분자 다공지지체가 광가교될 수 있다.
이에 따라, 본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막의 제조 방법은 올레핀고분자 다공지지체를 광가교시키기 위하여 올레핀고분자 다공지지체에 Type 2 광개시제를 직접 적용하기 위한 설비, 예컨대 Type 2 광개시제를 포함하는 용액을 올레핀고분자 다공지지체에 직접 코팅 및 건조하기 위한 설비 등을 추가로 필요로 하지 않으면서 다공성 접착층 형성 공정을 이용하여 올레핀고분자 다공지지체를 광가교시킬 수 있다는 점에서, 공정을 단순화할 수 있다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막의 제조 방법은 올레핀고분자 다공지지체 내의 고분자 사슬을 직접 가교시키기 위하여 Type 2 광개시제 외에 라디칼을 형성하기 위한 모노머 등의 다른 구성 요소를 필요로 하지 않아, Type 2 광개시제가 다공성 접착층 형성용 코팅액에 첨가되어도 다른 구성요소가 Type 2 광개시제가 올레핀고분자 다공지지체의 표면에 도달하는 것을 방해하지 않아 Type 2 광개시제가 올레핀고분자 다공지지체의 표면에 충분히 도입될 수 있다.
또한, 일반적으로 올레핀고분자 다공지지체 자체 및 무기 필러가 높은 자외선 차단 효과를 가져서 무기물 혼성 공극층 및 다공성 접착층을 형성한 후에 자외선을 조사하게 되면 올레핀고분자 다공지지체에 닿는 자외선 조사 광량이 감소할 수 있으나, 본 발명에서는 적은 자외선 조사 광량으로도 가교가 가능하여, 무기물 혼성 공극층 및 다공성 접착층이 형성된 후에 자외선을 조사하여도 올레핀고분자 다공지지체 내의 고분자 사슬 사이가 가교되어 직접적으로 연결될 수 있다.
본 발명의 일 실시양태에서, 상기 다공성 코팅층 형성용 코팅액이 상기 Type 2 광개시제로 2-이소프로필 티옥산톤, 티옥산톤, 또는 이들의 혼합물을 포함할 수 있다. 2-이소프로필 티옥산톤 또는 티옥산톤은 투과율이 높은 장파장에서도 광가교가 가능하다. 이에 따라, 무기물 형성 공극층 및 다공성 접착층이 형성된 후에 자외선을 조사하여도 올레핀고분자 다공지지체의 가교가 용이할 수 있다.
본 발명의 일 실시양태에서, 상기 다공성 접착층 형성용 코팅액을 상기 무기물 혼성 공극층의 상면에 패턴 코팅함으로써, 최종적으로 제조되는 다공성 접착층이 패턴을 형성할 수 있다.
본 발명의 일 실시양태에서, 상기 다공성 접착층 형성용 코팅액이 무기물 혼성 공극층의 상면에 코팅된 후, 상분리 과정이 수행될 수 있다. 상기 상분리는 침지 상분리 방식으로 진행될 수 있다.
상기 다공성 접착층 형성용 코팅액을 상기 무기물 혼성 공극층의 상면에 코팅한 후, 상기 제2 바인더 고분자에 대한 비용매를 포함하는 응고액에 소정 시간 침지한다. 이에 따라, 코팅된 다공성 접착층 형성용 코팅액에서 상분리 현상이 유발되면서 제2 바인더 고분자를 고화시킨다. 이 공정에서 다공성 접착층이 형성된다. 그 후, 수세(水洗)함으로써 응고액을 제거하고, 건조한다. 상기 건조는 당업계에 공지되어 있는 방법을 사용할 수 있으며, 사용된 용제의 증기압을 고려한 온도 범위에서 오븐 또는 가열식 챔버를 사용하여 배치식 또는 연속식으로 가능하다. 상기 건조는 상기 다공성 접착층 형성용 코팅액 내에 존재하는 용제를 거의 제거하는 것이며, 이는 생산성 등을 고려하여 가능한 빠른 것이 바람직하며, 예컨대 1분 이하 또는 30초 이하의 시간 동안 실시될 수 있다.
상기 응고액으로는 상기 제2 바인더 고분자에 대한 비용매만을 사용하거나 또는 상기 제2 바인더 고분자에 대한 비용매와 전술한 바와 같은 용제의 혼합 용매를 사용할 수 있다. 상기 제2 바인더 고분자에 대한 비용매와 용제의 혼합 용매를 사용하는 경우에는 양호한 다공 구조를 형성하고, 생산성을 향상시키는 관점에서, 응고액 100 중량% 대비 상기 제2 바인더 고분자에 대한 비용매의 함량이 50 중량% 이상일 수 있다.
제2 바인더 고분자가 고화되는 과정에서 제2 바인더 고분자가 응축되고, 그에 따라 올레핀고분자 다공지지체의 표면 및/또는 내부에 제2 바인더 고분자가 침투하는 것을 방지할 수 있어 분리막의 저항이 증가하는 현상을 방지할 수 있다. 또한, 제2 바인더 고분자를 포함하는 접착층이 다공화됨으로써 분리막의 저항이 개선될 수 있다.
상기 제2 바인더 고분자에 대한 비용매는 25℃에서 제2 바인더 고분자에 대한 용해도가 5중량% 미만일 수 있다.
상기 제2 바인더 고분자에 대한 비용매는 상기 제1 바인더 고분자에 대해서도 비용매일 수 있다. 예컨대, 상기 제2 바인더 고분자에 대한 비용매는 25℃에서 제1 바인더 고분자에 대한 용해도가 5중량% 미만일 수 있다.
본 발명의 일 실시양태에서, 상기 제2 바인더 고분자에 대한 비용매는 물, 메탄올, 에탄올, 프로필알코올, 부틸알코올, 부탄디올, 에틸렌글리콜, 프로필렌글리콜, 트리프로필렌글리콜, 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 일 실시양태에서, 상기 침지는 3초 내지 1분 동안 이루어질 수 있다. 침지 시간이 전술한 범위를 만족하는 경우, 상분리가 적절하게 일어나 무기물 혼성 공극층과 다공성 접착층 간의 접착력이 확보되어 접착층의 탈리가 발생하는 것을 방지하기 용이할 수 있다.
본 발명의 일 실시양태에서, 다공성 접착층 형성용 코팅액의 건조는 통상의 분리막 제조 시 건조 방법에 의해 건조되는 것일 수 있다. 예를 들어, 공기에 의해 10초 내지 30분, 또는 30초 내지 20분, 또는 3분 내지 10분 동안 수행될 수 있다. 건조 시간이 상기 범위 내로 수행되는 경우에 생산성을 저해하지 않으면서도 잔류 분산매를 제거할 수 있는 효과를 가질 수 있다.
상기 제조 방법에 따라, 무기물 혼성 공극층과 다공성 접착층이 별도의 단계를 거쳐 형성됨에 따라 다공성 접착층을 다양한 형태로 형성할 수 있다. 예컨대, 다공성 접착층을 패턴 형태로 형성하기 더욱 용이할 수 있다.
그 다음, 상기 올레핀고분자 다공지지체에 자외선을 조사한다. 자외선이 조사됨에 따라 올레핀고분자 다공지지체 내의 고분자 사슬이 가교되어 가교구조 함유 올레핀고분자 다공지지체를 얻을 수 있다.
자외선 조사는 자외선 가교 장치를 이용하며, 상기 Type 2 광개시제의 함량비와 같은 조건을 고려하여 자외선 조사 시간 및 조사 광량을 적절히 조절하여 수행될 수 있다. 예를 들어, 상기 자외선 조사 시간 및 조사 광량은 올레핀고분자 다공지지체 내의 고분자 사슬이 충분히 가교되어 목적하는 내열성을 확보할 수 있으면서, 자외선 램프에서 발생하는 열에 의해 분리막이 손상되지 않도록 하는 조건으로 설정될 수 있다. 또한, 상기 자외선 가교 장치에 사용되는 자외선 램프는 사용하는 Type 2 광개시제에 따라 고압 수은 램프, 메탈 램프, 갈륨 램프 등에서 적절하게 선택하여 사용할 수 있으며, 자외선 램프의 발광 파장 및 용량은 공정에 맞게 적절히 선택할 수 있다.
본 발명의 일 실시양태에 따른 가교구조 함유 올레핀고분자 다공지지체의 제조 방법은 일반적인 광가교에 사용되는 광량에 비해 현저하게 적은 자외선 조사 광량만으로도 올레핀고분자 다공지지체 내 고분자 사슬을 광가교시킬 수 있어 양산 공정 적용성을 높일 수 있다. 예컨대, 상기 자외선의 조사 광량이 10 내지 2000 mJ/cm2, 또는 50 내지 1000 mJ/cm2, 또는 150 내지 500 mJ/cm2일 수 있다.
본 발명의 일 실시양태에서, 상기 자외선의 조사 광량은 Miltec사의 H type UV bulb 및 UV power puck이라고 불리우는 휴대용 광량측정기를 사용하여 측정될 수 있다. Miltec사의 H type UV bulb를 이용하여 광량을 측정하는 경우 파장별로 UVA, UVB, UVC 3종류의 파장 값이 나오는데, 본 발명의 자외선은 UVA에 해당한다.
본 발명에서 상기 자외선의 조사 광량의 측정 방법은 UV power puck을 샘플과 동일한 조건으로 광원 하에 컨베이어 상에서 통과시키고, 이 때 UV power puck에 표시되는 자외선 광량 수치를 '자외선의 조사 광량'이라고 지칭한다.
본 발명의 일 실시양태에 따른 리튬 이차전지용 가교구조 함유 분리막을 양극과 음극 사이에 개재하여 리튬 이차전지를 제조할 수 있다.
상기 리튬 이차전지는 원통형, 각형, 또는 파우치형 등의 다양한 형상일 수 있다.
상기 리튬 이차전지는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함할 수 있다.
본 발명의 리튬 이차전지용 가교구조 함유 분리막과 함께 적용될 전극은 특별히 제한되지는 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질, 도전재, 및 바인더를 포함하는 전극 활물질층이 전류집전체에 결착된 형태로 제조할 수 있다.
상기 전극활물질 중 양극활물질의 비제한적인 예로는 리튬 코발트 복합산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 하나 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x = 0~0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O5, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고, x = 0.01~0.3)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta이고, x = 0.01~0.1) 또는 Li2Mn3MO5 (여기서, M = Fe, Co, Ni, Cu 또는 Zn)으로 표현되는 리튬 망간 복합 산화물; 화학식 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
음극활물질의 비제한적인 예로는 종래 리튬 이차전지의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 사용될 수 있다.
양극 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
본 발명의 일 실시양태에서, 음극 및 양극에서 사용되는 도전재는 각각 독립적으로 통상적으로 활물질층 전체 중량을 기준으로 1 중량% 내지 30 중량%으로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서버 블랙 등의 카본 블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
본 발명의 일 실시양태에서, 음극 및 양극에서 사용되는 바인더는 각각 독립적으로 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 활물질층 전체 중량을 기준으로 1 중량% 내지 30 중량%으로 첨가될 수 있다. 이러한 바인더의 예로는, 폴리불화비닐리덴(PVdF), 폴리아크릴산(PAA), 폴리비닐알코올, 카르복실 메틸 셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
본 발명의 일 실시양태에서, 상기 리튬 이차전지는 전해액을 포함하며, 상기 전해액은 유기 용매와 리튬염을 포함하는 것일 수 있다. 또한, 상기 전해액으로 유기 고체 전해질, 또는 무기 고체 전해질 등이 사용될 수 있다.
상기 유기 용매로는, 예를 들어, N-메틸-2-피롤리돈, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 포름아미드, 디메틸포름아미드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이비다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 리튬염은 상기 유기 용매에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 상기 전해액에 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.
본 발명의 일 실시양태에서, 상기 리튬 이차전지용 가교구조 함유 분리막을 전지에 적용하는 공정으로는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
본 발명의 일 실시양태에서, 상기 리튬 이차전지용 가교구조 함유 분리막은 리튬 이차전지의 양극과 음극 사이에 개재될 수 있고, 복수의 셀 또는 전극을 집합시켜 전극조립체를 구성할 때 인접하는 셀 또는 전극 사이에 개재될 수 있다. 상기 전극조립체는 단순 스택형, 젤리-롤형, 스택-폴딩형, 라미네이션-스택형 등의 다양한 구조를 가질 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
올레핀고분자 다공지지체로서 H-NMR 측정 시 고분자 사슬에 존재하는 이중 결합의 개수가 1000개의 탄소 원자당 0.2개이고, 산화방지제로 Irganox1010이 3000 ppm, Irgafos168이 2000 ppm 첨가된, 두께 9 ㎛의 에틸렌고분자 다공성 필름(시니어社, 중량평균분자량: 60만, 기공도: 50%)을 준비하였다.
광개시제로서 2-이소프로필 티옥산톤 (Sigma Aldrich社)을 준비하였다.
UV 광원으로는 고압 수은 램프(리트젠 고압수은램프, LH-250 / 800-A)를 준비하였다.
상기 광개시제를 아세톤 용매에 용해시켜 아세톤 100 중량부 기준으로 광개시제가 0.1 중량부 포함된 광가교용 조성물을 준비하였다.
상기 제조한 올레핀고분자 다공지지체를 상기 광가교용 조성물에 침지시킨 후에 꺼내어, 다공지지체 표면에 광가교용 조성물이 남아있지 않도록 bar를 이용하여 코팅액을 커팅해주면서 상기 광개시제의 함량이 올레핀고분자 다공지지체 100 중량부 대비 0.073 중량부 존재하도록 하고, 건조하였다.
이어서, 상기 광가교용 조성물이 코팅된 올레핀고분자 다공지지체의 상면에, 적산 광량, 즉 UV의 조사 광량이 500 mJ/cm2이 되도록 UV를 조사하였으며, 이 때 UV 조사 강도(intensity)는 UV 광원의 80%로 하였다.
이로써, 고분자 사슬 사이가 직접적으로 연결된 가교구조를 가지는 가교구조 함유 올레핀고분자 다공지지체를 수득하였다.
실시예 2
광개시제로서 2-이소프로필 티옥산톤을 아세톤 100 중량부 기준으로 0.05 중량부가 되도록 첨가하여 광가교용 조성물을 준비한 후 상기 제조한 올레핀고분자 다공지지체를 상기 광가교용 조성물에 침지시킨 후에 꺼내어, 다공지지체 표면에 광가교용 조성물이 남아있지 않도록 bar를 이용하여 코팅액을 커팅해주면서 상기 광개시제의 함량이 올레핀고분자 다공지지체 100 중량부 대비 0.036 중량부 존재하도록 한 것을 제외하고, 실시예 1과 동일하게 가교구조 함유 올레핀고분자 다공지지체를 수득하였다.
실시예 3
광개시제로서 벤조페논(Sigma Aldrich社)을 아세톤 100 중량부 기준으로 0.1 중량부가 되도록 첨가하여 광가교용 조성물을 준비한 후 상기 제조한 올레핀고분자 다공지지체를 상기 광가교용 조성물에 침지시킨 후에 꺼내어, 다공지지체 표면에 광가교용 조성물이 남아있지 않도록 bar를 이용하여 코팅액을 커팅해주면서 상기 광개시제의 함량이 올레핀고분자 다공지지체 100 중량부 대비 0.073 중량부 존재하도록 한 것을 제외하고 실시예 1과 동일한 방법으로 가교구조 함유 올레핀고분자 다공지지체를 수득하였다.
비교예 1
올레핀고분자 다공지지체로서 H-NMR 측정 시 고분자 사슬에 존재하는 이중 결합의 개수가 1000개의 탄소 원자당 0.2개인 두께 9 ㎛의 에틸렌고분자 다공성 필름(시니어社, 중량평균분자량: 60만, 기공도: 50%)을 어떠한 처리도 하지 않았다.
비교예 2
광개시제로서 2-이소프로필 티옥산톤 대신에 페닐비스(2,4,6-트리메틸벤조일)포스핀 옥사이드 (이르가큐어819)를 사용한 것을 제외하고, 실시예 1과 동일하게 올레핀고분자 다공지지체를 수득하였다.
비교예 3
광개시제로서 2-이소프로필 티옥산톤 대신에 페닐비스(2,4,6-트리메틸벤조일)포스핀 옥사이드 (이르가큐어819)가 아세톤 100 중량부 기준으로 0.1 중량부가 되도록 하고 트리스 (2-아크릴옥시에틸)이소시아누레이트 (TEICTA, Sigma Aldrich社)가 아세톤 100 중량부 기준으로 0.3 중량부가 되도록 첨가하여 광가교용 조성물을 준비한 후 상기 제조한 올레핀고분자 다공지지체를 상기 광가교용 조성물에 침지시킨 후에 꺼내어, 다공지지체 표면에 광가교용 조성물이 남아있지 않도록 bar를 이용하여 코팅액을 커팅해주면서 상기 페닐비스(2,4,6-트리메틸벤조일)포스핀 옥사이드의 함량이 올레핀고분자 다공지지체 100 중량부 대비 0.073 중량부, 트리스 (2-아크릴옥시에틸)이소시아누레이트가 0.219 중량부 존재하도록 한 것을 제외하고 실시예 1과 동일하게 올레핀고분자 다공지지체를 수득하였다.
평가예 1: 올레핀고분자 다공지지체의 전자 스핀 공명법(ESR; Electon Spin Resonance) 스펙트럼 피크 평가
실시예 1 내지 실시예 3, 및 비교예 1 내지 비교예 3에서 제조한 올레핀고분자 다공지지체의 자외선을 조사하지 않은 경우와, 500 W의 자외선 조사 시의 전자 스핀 공명법 스펙트럼을 각각 하기 도 3 내지 도 8에 나타내었다.
도 3 내지 도 8에서 올레핀고분자 다공지지체 30 mg을 500 W의 자외선 조사하였을 때의 전자 스핀 공명법 스펙트럼을 A로, 분리막에 자외선을 조사하지 않은 경우를 (B)로 나타내었다.
또한, 실시예 1 내지 실시예 3에서 제조한 가교구조 함유 올레핀고분자 다공지지체의 전자 스핀 공명법 스펙트럼에 대해 하기 표 1에 나타내었다.
500 W의 자외선 조사 시의 전자 스핀 공명법 스펙트럼은 하기의 조건으로 측정하였다.
측정 장비: Jeol ESR JES-FA100 / frequency 9215 MHz / power 0.998 mW / sweep time 30 sec
Figure PCTKR2022006578-appb-img-000001
도 3 내지 도 5에서 확인할 수 있듯이, 실시예 1 내지 실시예 3에서 제조한 가교구조 함유 올레핀고분자 다공지지체의 경우, 500 W의 자외선을 조사한 경우, 2.010 내지 2.030의 g 값에서 제1 피크가 검출됨을 확인할 수 있었다. 또한, 1.990 내지 2.009의 g 값에서 제2 피크가 검출됨을 확인할 수 있었다. 제2 피크의 면적을 적분하여 구한 제2 피크의 면적에 대한 제1 피크의 면적을 적분하여 구한 제1 피크의 면적의 비율은 10% 내지 200%였다.
이로부터, 실시예 1 내지 3에서 제조한 가교구조 함유 올레핀고분자 다공지지체는 올레핀고분자 다공지지체 내의 고분자 사슬로부터 라디칼이 형성되었음을 확인할 수 있었다.
반면, 도 6에서 확인할 수 있듯이, 비교예 1의 올레핀고분자 다공지지체는 피크가 발생하지 않았다.
도 7 및 도 8에서 확인할 수 있듯이, 비교예 2 내지 3에서 제조한 올레핀고분자 다공지지체는 500 W의 자외선을 조사한 경우, 1.990 내지 2.009의 g 값에서 피크가 검출되었지만, 2.010 내지 2.030의 g 값에서는 피크가 검출되지 않음을 확인할 수 있었다.
이로부터, 비교예 1 내지 3에서 제조한 올레핀고분자 다공지지체는 올레핀고분자 다공지지체 내의 고분자 사슬로부터 라디칼이 형성되지 않았음을 확인할 수 있었다.
평가예 2: 올레핀고분자 다공지지체의 물성 평가
실시예 1 내지 실시예 3, 및 비교예 1 내지 비교예 3에서 제조한 올레핀고분자 다공지지체의 통기도, 기공도, 평량의 변화율, 전기 저항, 가교도, 및 멜트 다운 온도를 측정한 결과를 표 2에 나타내었다.
(1) 통기도 평가
통기도(걸리)는 ASTM D726-94 방법에 의해 측정하였다. 여기서 사용된 걸리는, 공기의 흐름에 대한 저항으로서, 걸리 덴소미터(densometer)에 의해 측정되었다. 여기서 설명된 통기도 값은 100 ml의 공기가 12.2 inH2O의 압력하에서, 올레핀고분자 다공지지체 1 in2의 단면을 통과하는 데 걸리는 시간(초), 즉 통기시간으로 나타낸다.
(2) 기공도 평가
기공도(porosity)는 올레핀고분자 다공지지체의 가로/세로/두께를 측정하여 부피를 구하고, 무게를 측정하여, 그 부피가 올레핀고분자 다공지지체가 100% 차지하고 있을 때의 무게에 대한 비율로 계산하여 측정하였다.
기공도 (%) = 100 x (1 - 올레핀고분자 다공지지체의 샘플 무게 / (올레핀고분자 다공지지체의 샘플 가로 (50 mm) x 세로 (50 mm) x 두께 x 분리막의 밀도))
(3) 평량의 변화율 평가
평량(g/m2)은 올레핀고분자 다공지지체의 가로 및 세로 각각이 1 m가 되도록 한 샘플을 준비하여, 이의 무게를 측정하여 평가하였다.
평량의 변화율은 하기 식으로 계산할 수 있다.
평량의 변화율(%) = [(가교 이후의 올레핀고분자 다공지지체의 평량) - (가교 이전의 올레핀고분자 다공지지체의 평량)]/(가교 이전의 올레핀고분자 다공지지체의 평량) X 100
여기서, 비교예 1의 경우, 가교가 이루어진 바가 없으므로, 평량의 변화율이 0%인 것을 기준으로 한다.
(4) 전기 저항 평가
전기저항은 실시예 1 내지 3 및 비교예 1 내지 3에서 제조한 올레핀고분자 다공지지체를 분리막으로 사용하여 코인셀을 제작하고, 상기 코인셀을 상온에서 1일간 방치한 후에 상기 올레핀고분자 다공지지체의 저항을 임피던스 측정법으로 측정하였다. 코인셀은 하기와 같이 제작하였다.
음극의 제조
음극활물질로 인조흑연, 도전재로 덴카블랙(carbon black), 바인더로 폴리비닐리덴 플루오라이드(PVdF)를 각각 75:5:20의 중량비로 혼합하고, 용매인 N-메틸피롤리돈(NMP)을 첨가하여 음극 슬러리를 제조하였다.
상기 음극 슬러리를 3.8 mAh/cm2의 로딩량으로 구리 집전체에 코팅 및 건조하여 음극을 준비하였다.
양극의 제조
양극 활물질로서 LiCoO2, 도전재로 덴카블랙 및 바인더로 폴리비닐리덴 플루오라이드(PVdF)를 85:5:10의 중량비로 용매인 N-메틸피롤리돈(NMP)에 첨가하여, 양극 활물질 슬러리를 준비하였다. 상기 양극 활물질 슬러리를 시트 형상의 알루미늄 집전체 위에 코팅하고 건조시켜서 최종 양극 로딩양이 3.3 mAh/cm2이 되도록 양극 활물질층을 형성하였다.
코인셀의 제조
상기와 같이 제작된 음극과 양극 사이에 상기 실시예 및 비교예에서 제조한 올레핀고분자 다공지지체를 분리막으로 개재시키고, 비수전해액 (1M LiPF6, 에틸렌 카보네이트(EC)/프로필렌 카보네이트(PC)/디에틸 카보네이트(DEC))(부피비: 3:3:4)을 주입하여 코인셀을 제작하였다.
(5) 가교도 평가
가교도는 실시예 1 내지 3 및 비교예 1 내지 3에서 제조한 올레핀고분자 다공지지체를 ASTM D 2765에 따라 135℃의 자일렌 용액에 담가 12 시간 동안 끓인 후 남은 무게를 측정하여, 최초 무게 대비 남은 무게의 백분율로 계산하였다.
(6) 멜트 다운 온도 평가
멜트 다운 온도는 올레핀고분자 다공지지체의 기계 방향(Machine direction, MD)에서의 샘플을 채취한 후 열기계적 분석방법(Thermomechanical Analysis, TMA)으로 측정하였다. 구체적으로, TMA 장비(TA Instrument, Q400)에 폭 4.8 mm x 길이 8 mm의 샘플을 넣고 0.01 N의 장력을 가한 상태에서 승온 속도 5℃/min으로 온도를 30℃에서 220℃까지 변화시켰다. 온도가 상승함에 따라 샘플의 길이 변화가 수반되었으며, 길이가 급격하게 늘어나 기계 방향(Machine direction, MD)에서 각각 샘플이 끊어지는 온도를 측정하여 이를 멜트 다운 온도로 하였다.
Figure PCTKR2022006578-appb-img-000002
상기 표 2에서 확인할 수 있듯이, 실시예 1 내지 실시예 3에서 제조한 가교구조 함유 올레핀고분자 다공지지체의 경우, 멜트 다운 온도가 160℃ 이상이었다. 이는 2-이소프로필 티옥산톤과 벤조페논과 같은 Type 2 광개시제를 사용하여, 올레핀고분자 다공지지체 내 고분자 사슬의 직접적인 광가교가 가능하였기 때문이다.
반면, 비교예 1의 경우, 올레핀고분자 다공지지체 내 고분자 사슬 간의 직접적인 광가교가 일어나지 않아 멜트 다운 온도가 채 150℃가 되지 못하였다.
비교예 2 내지 3에서 제조한 올레핀고분자 다공지지체의 경우, 멜트 다운 온도가 160℃가 되지 못하였다. 이는 Type 2 광개시제를 사용하지 않아 올레핀고분자 다공지지체 내 고분자 사슬의 직접적인 광가교가 거의 이루어지지 않았기 때문이다.
평가예 3: 올레핀고분자 다공지지체의 저장 응력 및 손실 응력 측정
실시예 1, 실시예 2, 및 비교예 1에서 제조한 올레핀고분자 다공지지체의 저장 응력 및 손실 응력 측정 결과를 표 3에 나타내었다.
실시예 1, 실시예 2, 및 비교예 1에서 제조한 올레핀고분자 다공지지체를 이용하여 직경 25mm Х 두께 1mm의 원형의 패러렐 플레이트(parallel plate) 형테로 샘플을 준비하였다. 준비된 샘플로 유변물성측정장비(ARES-G2, TA Instrument)를 이용하여 190℃ 온도 조건에서 주파수 스윕(frequency sweep) 테스트를 진행하여, 올레핀고분자 다공지지체를 구성하는 올레핀고분자에 대한 1) 진동수 1 rad/s에서의 저장 응력 (G', storage modulus), 2) 1 rad/s에서의 손실 응력(G", loss modulus) 및 3) 진동수 10-1 내지 1 rad/s 범위에서의 저장 응력 (G', storage modulus) 기울기를 각각 측정하였다. 그 결과를 하기 표 2에 나타내었다. 측정된 올레핀고분자 다공지지체를 구성하는 올레핀고분자의 G', G''으로부터, 이러한 올레핀고분자로 구성된 올레핀고분자 다공지지체의 흐름성을 확인할 수 있다.
Figure PCTKR2022006578-appb-img-000003
상기 표 3을 참조하면, 올레핀고분자 다공지지체의 진동수가 1 rad/s 이하를 나타내는 범위에서, 상기 손실 응력(G", loss modulus)(B)에 대한 상기 저장 응력(G', storage modulus)(A)의 비(A/B)가 2 이상 또는 상기 진동수에 대한 저장 응력(G', storage modulus)(A) 곡선의 기울기가 0.05 내지 0.4를 만족하는 실시예 1 및 2에서 제조된 가교구조 함유 올레핀고분자 다공지지체가 비교예 1의 올레핀고분자 다공지지체 대비 현저히 높은 피막 온도를 나타내고 있는 바, 열적 안정성이 크게 향상되었음을 알 수 있다.

Claims (13)

  1. 고분자 사슬 사이가 직접적으로 연결된 가교구조를 포함하고,
    500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 2.010 내지 2.030의 g 값에서 제1 피크가 검출되는 것을 특징으로 하는 가교구조 함유 올레핀고분자 다공지지체.
  2. 제1항에 있어서,
    500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 1.990 내지 2.009의 g 값에서 제2 피크가 더 검출되는 것을 특징으로 하는 가교구조 함유 올레핀고분자 다공지지체.
  3. 제2항에 있어서,
    500 W의 자외선을 조사하여 전자 스핀 공명법(Electron Spin Resonance)을 측정하였을 때, 상기 제2 피크의 면적에 대한 상기 제1 피크의 면적의 비율이 10% 내지 200%인 것을 특징으로 하는 가교구조 함유 올레핀고분자 다공지지체.
  4. 제1항에 있어서,
    횡축은 로그스케일로 변환된 진동수(rad/s)이며, 종축은 로그스케일로 변환된 저장 응력(G', storage modulus)(A) 및 손실 응력(G", loss modulus)(B)으로 하는 진동수-손실저장응력 곡선에 있어서,
    상기 진동수가 1 rad/s 이하를 나타내는 범위에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 상기 손실 응력(G", loss modulus)(B)에 대한 상기 저장 응력(G', storage modulus)(A)의 비(A/B)가 2 이상인 것을 특징으로 하는 가교구조 함유 올레핀고분자 다공지지체.
  5. 제1항에 있어서,
    횡축은 로그스케일로 변환된 진동수(rad/s)이며, 종축은 로그스케일로 변환된 저장 응력(G', storage modulus)(A) 및 손실 응력(G", loss modulus)(B)으로 하는 진동수-손실저장응력 곡선에 있어서,
    상기 진동수가 10-1 내지 1 rad/s 를 나타내는 범위에서, 상기 가교구조 함유 올레핀고분자 다공지지체의 상기 진동수에 대한 저장 응력(G', storage modulus)(A) 곡선의 기울기가 0.05 내지 0.4인 것을 특징으로 하는 가교구조 함유 올레핀고분자 다공지지체.
  6. 제4항 또는 제5항에 있어서,
    상기 저장 응력의 값은 1.0x105 내지 1.0x107 Pa인 것을 특징으로 하는 가교구조 함유 올레핀고분자 다공지지체.
  7. 제4항 또는 제5항에 있어서,
    상기 손실 응력의 값은 3.0x105 Pa 이하인 것을 특징으로 하는 가교구조 함유 올레핀고분자 다공지지체.
  8. 제1항에 따른 가교구조 함유 올레핀고분자 다공지지체를 포함하는 것을 특징으로 하는 리튬 이차전지용 가교구조 함유 분리막.
  9. 제8항에 있어서,
    상기 리튬 이차전지용 가교구조 함유 분리막이 상기 가교구조 함유 올레핀고분자 다공지지체의 적어도 일면에 위치하며 무기 필러 및 바인더 고분자를 포함하는 무기물 혼성 공극층을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 가교구조 함유 분리막.
  10. 제8항에 있어서,
    상기 리튬 이차전지용 가교구조 함유 분리막이 상기 가교구조 함유 올레핀고분자 다공지지체의 적어도 일면에 위치하며, 무기 필러 및 제1 바인더 고분자를 포함하는 무기물 혼성 공극층; 및
    상기 무기물 혼성 공극층 상에 위치하고, 제2 바인더 고분자를 포함하는 다공성 접착층;을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 가교구조 함유 분리막.
  11. 제8항에 있어서,
    상기 리튬 이차전지용 가교구조 함유 분리막의 멜트 다운 온도가 160℃ 이상인 것을 특징으로 하는 리튬 이차전지용 가교구조 함유 분리막.
  12. 제8항에 있어서,
    상기 리튬 이차전지용 가교구조 함유 분리막의 셧다운 온도(shutdown temperature)가 145℃ 이하인 것을 특징으로 하는 리튬 이차전지용 가교구조 함유 분리막.
  13. 양극, 음극, 및 상기 양극과 음극 사이에 개재된 리튬 이차전지용 분리막을 포함하고,
    상기 리튬 이차전지용 분리막이 제8항에 따른 리튬 이차전지용 가교구조 함유 분리막인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2022/006578 2021-05-07 2022-05-09 가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 및 상기 분리막을 구비한 리튬 이차전지 WO2022235134A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280040282.0A CN117426012A (zh) 2021-05-07 2022-05-09 含交联结构的聚烯烃多孔支撑体、包括其的含交联结构的锂二次电池用分隔件、以及包括该分隔件的锂二次电池
EP22799177.5A EP4329080A1 (en) 2021-05-07 2022-05-09 Cross-linked structure-containing olefin polymer porous support, cross-linked structure-containing separator for lithium secondary battery comprising same, and lithium secondary battery having same separator
JP2023568577A JP2024518945A (ja) 2021-05-07 2022-05-09 架橋構造含有ポリオレフィン多孔支持体、それを含むリチウム二次電池用架橋構造含有分離膜、及び該分離膜を備えるリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210059583A KR20220152082A (ko) 2021-05-07 2021-05-07 가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 및 상기 분리막을 구비한 리튬 이차전지
KR10-2021-0059583 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022235134A1 true WO2022235134A1 (ko) 2022-11-10

Family

ID=83932290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006578 WO2022235134A1 (ko) 2021-05-07 2022-05-09 가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 및 상기 분리막을 구비한 리튬 이차전지

Country Status (5)

Country Link
EP (1) EP4329080A1 (ko)
JP (1) JP2024518945A (ko)
KR (1) KR20220152082A (ko)
CN (1) CN117426012A (ko)
WO (1) WO2022235134A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110106827A (ko) * 2010-03-23 2011-09-29 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR20130092245A (ko) * 2012-02-10 2013-08-20 주식회사 엘지화학 높은 전극 접착력을 갖는 세퍼레이터 및 이의 제조방법
JP2013180431A (ja) * 2012-02-29 2013-09-12 Dainippon Printing Co Ltd 積層体およびその製造方法
KR20150071378A (ko) * 2013-12-18 2015-06-26 한화토탈 주식회사 수지 조성물과, 이를 이용하여 제조된 이차전지용 분리막 및 상기 분리막을 적용한 이차전지
KR20200125870A (ko) * 2019-04-26 2020-11-05 더블유씨피 주식회사 가교 폴리올레핀 분리막 및 그 제조방법
KR20210059583A (ko) 2019-11-15 2021-05-25 설동열 스마트 표지병 및 이를 이용한 서비스 제공 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110106827A (ko) * 2010-03-23 2011-09-29 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR20130092245A (ko) * 2012-02-10 2013-08-20 주식회사 엘지화학 높은 전극 접착력을 갖는 세퍼레이터 및 이의 제조방법
JP2013180431A (ja) * 2012-02-29 2013-09-12 Dainippon Printing Co Ltd 積層体およびその製造方法
KR20150071378A (ko) * 2013-12-18 2015-06-26 한화토탈 주식회사 수지 조성물과, 이를 이용하여 제조된 이차전지용 분리막 및 상기 분리막을 적용한 이차전지
KR20200125870A (ko) * 2019-04-26 2020-11-05 더블유씨피 주식회사 가교 폴리올레핀 분리막 및 그 제조방법
KR20210059583A (ko) 2019-11-15 2021-05-25 설동열 스마트 표지병 및 이를 이용한 서비스 제공 시스템

Also Published As

Publication number Publication date
CN117426012A (zh) 2024-01-19
JP2024518945A (ja) 2024-05-08
KR20220152082A (ko) 2022-11-15
EP4329080A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2020055217A1 (ko) 전기화학소자용 세퍼레이터 및 이의 제조방법
WO2021242072A1 (ko) 전기화학소자용 세퍼레이터 및 이를 구비한 전기화학소자
WO2019240427A1 (ko) 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법
WO2019151812A1 (ko) 분리막, 상기 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법
WO2021141376A1 (ko) 선분산제 조성물, 이를 포함하는 전극 및 이차전지
WO2020117001A1 (ko) 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지
WO2020171483A1 (ko) 전기화학 소자 및 이의 제조방법
WO2016053064A1 (ko) 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2022015026A1 (ko) 이차전지용 세퍼레이터, 이의 제조방법 및 상기 세퍼레이터를 구비한 이차전지
WO2020167017A1 (ko) 전기화학 소자 및 이의 제조방법
WO2016053065A1 (ko) 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2020167022A1 (ko) 전기화학 소자 및 이의 제조방법
WO2020167021A1 (ko) 전기화학 소자 및 이의 제조방법
WO2021025521A1 (ko) 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지
WO2021086088A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 리튬이차전지용 분리막을 포함하는 리튬이차전지
WO2019135624A1 (ko) 겔 폴리머 전해질 조성물, 이에 의해 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2022086142A1 (ko) 분리막 및 이를 포함하는 리튬 이차 전지
WO2021091330A1 (ko) 가교 폴리올레핀을 포함하는 리튬이차전지용 가교 분리막 및 이의 제조방법
WO2022235134A1 (ko) 가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 및 상기 분리막을 구비한 리튬 이차전지
WO2022235136A1 (ko) 가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막, 이의 제조 방법, 및 상기 분리막을 구비한 리튬 이차전지
WO2022235138A1 (ko) 가교구조 함유 올레핀고분자 다공지지체, 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막 및 이의 제조 방법, 및 상기 분리막을 구비한 리튬 이차전지
WO2022235137A1 (ko) 리튬 이차전지용 가교구조 함유 분리막, 이의 제조 방법, 및 상기 분리막을 구비한 리튬 이차전지
WO2022235139A1 (ko) 리튬 이차전지용 가교구조 함유 분리막의 제조 방법, 이에 따라 제조된 리튬 이차전지용 가교구조 함유 분리막, 및 이를 포함하는 리튬 이차전지
WO2022131878A1 (ko) 가교구조 함유 폴리올레핀 다공성 기재, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지용 가교구조 함유 분리막
WO2022235135A1 (ko) 리튬 이차전지용 가교구조 함유 분리막, 이의 제조 방법, 및 상기 분리막을 구비한 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22799177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023568577

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022799177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280040282.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022799177

Country of ref document: EP

Effective date: 20231122