WO2022234864A1 - N-置換アミノ酸残基を含む環状化合物の製造方法 - Google Patents
N-置換アミノ酸残基を含む環状化合物の製造方法 Download PDFInfo
- Publication number
- WO2022234864A1 WO2022234864A1 PCT/JP2022/019606 JP2022019606W WO2022234864A1 WO 2022234864 A1 WO2022234864 A1 WO 2022234864A1 JP 2022019606 W JP2022019606 W JP 2022019606W WO 2022234864 A1 WO2022234864 A1 WO 2022234864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- compound
- solvent
- reaction
- methf
- Prior art date
Links
- 125000000539 amino acid group Chemical class 0.000 title claims description 108
- 238000004519 manufacturing process Methods 0.000 title description 41
- 150000001923 cyclic compounds Chemical class 0.000 title description 2
- 239000002904 solvent Substances 0.000 claims abstract description 291
- 150000001875 compounds Chemical class 0.000 claims abstract description 281
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 225
- 102000001189 Cyclic Peptides Human genes 0.000 claims abstract description 113
- 108010069514 Cyclic Peptides Proteins 0.000 claims abstract description 113
- 125000001433 C-terminal amino-acid group Chemical group 0.000 claims abstract description 21
- 125000000729 N-terminal amino-acid group Chemical group 0.000 claims abstract description 21
- 150000002170 ethers Chemical class 0.000 claims abstract description 16
- 239000013078 crystal Substances 0.000 claims description 321
- 238000000034 method Methods 0.000 claims description 260
- 239000012453 solvate Substances 0.000 claims description 87
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 45
- 150000003839 salts Chemical class 0.000 claims description 45
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 31
- 229910052799 carbon Inorganic materials 0.000 claims description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 21
- 238000002425 crystallisation Methods 0.000 claims description 12
- 230000008025 crystallization Effects 0.000 claims description 12
- 239000007791 liquid phase Substances 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 161
- 238000006243 chemical reaction Methods 0.000 description 257
- -1 N-substituted amino Chemical group 0.000 description 232
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 203
- 239000000243 solution Substances 0.000 description 201
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 189
- 238000004128 high performance liquid chromatography Methods 0.000 description 129
- 238000003756 stirring Methods 0.000 description 114
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 112
- 239000012044 organic layer Substances 0.000 description 107
- 239000011541 reaction mixture Substances 0.000 description 107
- 239000007788 liquid Substances 0.000 description 105
- 238000005406 washing Methods 0.000 description 96
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 85
- 150000001413 amino acids Chemical class 0.000 description 84
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 83
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 82
- 208000012839 conversion disease Diseases 0.000 description 79
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 77
- 239000007864 aqueous solution Substances 0.000 description 77
- 239000000203 mixture Substances 0.000 description 77
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 75
- 239000010410 layer Substances 0.000 description 74
- 229940125904 compound 1 Drugs 0.000 description 71
- 230000002829 reductive effect Effects 0.000 description 69
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 66
- 229910052757 nitrogen Inorganic materials 0.000 description 63
- 125000000217 alkyl group Chemical group 0.000 description 57
- 238000005259 measurement Methods 0.000 description 57
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 56
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 55
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 54
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 54
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 51
- 230000014759 maintenance of location Effects 0.000 description 48
- 239000000523 sample Substances 0.000 description 46
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 45
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical group [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 44
- 238000000926 separation method Methods 0.000 description 44
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 43
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 43
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 43
- 239000003153 chemical reaction reagent Substances 0.000 description 42
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 42
- 238000005464 sample preparation method Methods 0.000 description 42
- 229940011051 isopropyl acetate Drugs 0.000 description 41
- 238000004364 calculation method Methods 0.000 description 38
- 238000003860 storage Methods 0.000 description 38
- 229910052739 hydrogen Inorganic materials 0.000 description 35
- 239000001257 hydrogen Substances 0.000 description 35
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 33
- 239000000047 product Substances 0.000 description 33
- 229910000029 sodium carbonate Inorganic materials 0.000 description 31
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 30
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 28
- 125000003277 amino group Chemical group 0.000 description 28
- 230000015572 biosynthetic process Effects 0.000 description 28
- 238000003786 synthesis reaction Methods 0.000 description 27
- 102000004196 processed proteins & peptides Human genes 0.000 description 26
- 125000001325 propanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 26
- 125000006239 protecting group Chemical group 0.000 description 26
- WSNDAYQNZRJGMJ-UHFFFAOYSA-N 2,2,2-trifluoroethanone Chemical compound FC(F)(F)[C]=O WSNDAYQNZRJGMJ-UHFFFAOYSA-N 0.000 description 25
- 239000003795 chemical substances by application Substances 0.000 description 25
- 238000002360 preparation method Methods 0.000 description 25
- PAQZWJGSJMLPMG-UHFFFAOYSA-N 2,4,6-tripropyl-1,3,5,2$l^{5},4$l^{5},6$l^{5}-trioxatriphosphinane 2,4,6-trioxide Chemical compound CCCP1(=O)OP(=O)(CCC)OP(=O)(CCC)O1 PAQZWJGSJMLPMG-UHFFFAOYSA-N 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 24
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 23
- 238000005070 sampling Methods 0.000 description 23
- 125000001424 substituent group Chemical group 0.000 description 23
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 22
- 235000011114 ammonium hydroxide Nutrition 0.000 description 22
- 125000003118 aryl group Chemical group 0.000 description 22
- JXHZRQHZVYDRGX-UHFFFAOYSA-M sodium;hydrogen sulfate;hydrate Chemical compound [OH-].[Na+].OS(O)(=O)=O JXHZRQHZVYDRGX-UHFFFAOYSA-M 0.000 description 22
- 238000010511 deprotection reaction Methods 0.000 description 21
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 20
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 20
- 125000003342 alkenyl group Chemical group 0.000 description 20
- 238000004458 analytical method Methods 0.000 description 20
- 125000003710 aryl alkyl group Chemical group 0.000 description 20
- 238000000691 measurement method Methods 0.000 description 20
- 238000011282 treatment Methods 0.000 description 20
- 125000004122 cyclic group Chemical group 0.000 description 19
- 239000000126 substance Substances 0.000 description 19
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- 230000008859 change Effects 0.000 description 18
- 239000000706 filtrate Substances 0.000 description 18
- 239000000543 intermediate Substances 0.000 description 18
- 238000010647 peptide synthesis reaction Methods 0.000 description 18
- OVARTBFNCCXQKS-UHFFFAOYSA-N propan-2-one;hydrate Chemical compound O.CC(C)=O OVARTBFNCCXQKS-UHFFFAOYSA-N 0.000 description 18
- 239000002994 raw material Substances 0.000 description 18
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 18
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 17
- 125000000304 alkynyl group Chemical group 0.000 description 17
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 17
- 238000006482 condensation reaction Methods 0.000 description 17
- 125000000753 cycloalkyl group Chemical group 0.000 description 17
- 125000001072 heteroaryl group Chemical group 0.000 description 17
- 125000004433 nitrogen atom Chemical group N* 0.000 description 17
- OVRKATYHWPCGPZ-UHFFFAOYSA-N 4-methyloxane Chemical compound CC1CCOCC1 OVRKATYHWPCGPZ-UHFFFAOYSA-N 0.000 description 16
- BQXUPNKLZNSUMC-YUQWMIPFSA-N CCN(CCCCCOCC(=O)N[C@H](C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H](C)c1ccc(cc1)-c1scnc1C)C(C)(C)C)CCOc1ccc(cc1)C(=O)c1c(sc2cc(O)ccc12)-c1ccc(O)cc1 Chemical compound CCN(CCCCCOCC(=O)N[C@H](C(=O)N1C[C@H](O)C[C@H]1C(=O)N[C@@H](C)c1ccc(cc1)-c1scnc1C)C(C)(C)C)CCOc1ccc(cc1)C(=O)c1c(sc2cc(O)ccc12)-c1ccc(O)cc1 BQXUPNKLZNSUMC-YUQWMIPFSA-N 0.000 description 16
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 16
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 16
- 239000000725 suspension Substances 0.000 description 16
- 239000003643 water by type Substances 0.000 description 16
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 15
- ABJSOROVZZKJGI-OCYUSGCXSA-N (1r,2r,4r)-2-(4-bromophenyl)-n-[(4-chlorophenyl)-(2-fluoropyridin-4-yl)methyl]-4-morpholin-4-ylcyclohexane-1-carboxamide Chemical compound C1=NC(F)=CC(C(NC(=O)[C@H]2[C@@H](C[C@@H](CC2)N2CCOCC2)C=2C=CC(Br)=CC=2)C=2C=CC(Cl)=CC=2)=C1 ABJSOROVZZKJGI-OCYUSGCXSA-N 0.000 description 15
- 229940126657 Compound 17 Drugs 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 15
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 15
- 238000010926 purge Methods 0.000 description 15
- 239000003381 stabilizer Substances 0.000 description 15
- 239000007858 starting material Substances 0.000 description 15
- 229940126639 Compound 33 Drugs 0.000 description 14
- RRSNDVCODIMOFX-MPKOGUQCSA-N Fc1c(Cl)cccc1[C@H]1[C@@H](NC2(CCCCC2)[C@@]11C(=O)Nc2cc(Cl)ccc12)C(=O)Nc1ccc(cc1)C(=O)NCCCCCc1cccc2C(=O)N(Cc12)C1CCC(=O)NC1=O Chemical compound Fc1c(Cl)cccc1[C@H]1[C@@H](NC2(CCCCC2)[C@@]11C(=O)Nc2cc(Cl)ccc12)C(=O)Nc1ccc(cc1)C(=O)NCCCCCc1cccc2C(=O)N(Cc12)C1CCC(=O)NC1=O RRSNDVCODIMOFX-MPKOGUQCSA-N 0.000 description 14
- PNUZDKCDAWUEGK-CYZMBNFOSA-N Sitafloxacin Chemical compound C([C@H]1N)N(C=2C(=C3C(C(C(C(O)=O)=CN3[C@H]3[C@H](C3)F)=O)=CC=2F)Cl)CC11CC1 PNUZDKCDAWUEGK-CYZMBNFOSA-N 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 239000002253 acid Substances 0.000 description 14
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 14
- 238000001914 filtration Methods 0.000 description 14
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 14
- 238000010966 qNMR Methods 0.000 description 14
- 238000007363 ring formation reaction Methods 0.000 description 14
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 14
- 150000002148 esters Chemical class 0.000 description 13
- 125000000623 heterocyclic group Chemical group 0.000 description 13
- 238000012982 x-ray structure analysis Methods 0.000 description 13
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 238000001514 detection method Methods 0.000 description 12
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 12
- 238000010828 elution Methods 0.000 description 12
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 12
- 239000003960 organic solvent Substances 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- 229910000027 potassium carbonate Inorganic materials 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 11
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 11
- 229940126142 compound 16 Drugs 0.000 description 11
- 239000012535 impurity Substances 0.000 description 11
- 238000002955 isolation Methods 0.000 description 11
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- 238000001308 synthesis method Methods 0.000 description 11
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 11
- HVFQJWGYVXKLTE-UHFFFAOYSA-N 3,5-bis(trifluoromethyl)benzoic acid Chemical compound OC(=O)C1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1 HVFQJWGYVXKLTE-UHFFFAOYSA-N 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 10
- SMNRFWMNPDABKZ-WVALLCKVSA-N [[(2R,3S,4R,5S)-5-(2,6-dioxo-3H-pyridin-3-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4S,5R,6R)-4-fluoro-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)C2C=CC(=O)NC2=O)[C@H](O)[C@@H](F)[C@@H]1O SMNRFWMNPDABKZ-WVALLCKVSA-N 0.000 description 10
- 125000003545 alkoxy group Chemical group 0.000 description 10
- 125000004429 atom Chemical group 0.000 description 10
- 238000009835 boiling Methods 0.000 description 10
- 239000006227 byproduct Substances 0.000 description 10
- 238000004455 differential thermal analysis Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000003495 polar organic solvent Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 9
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 9
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 9
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 9
- 239000013076 target substance Substances 0.000 description 9
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 9
- 238000002411 thermogravimetry Methods 0.000 description 9
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 8
- RDWDVLFMPFUBDV-PXMDEAMVSA-N [(e)-(1-cyano-2-ethoxy-2-oxoethylidene)amino]oxy-tripyrrolidin-1-ylphosphanium;hexafluorophosphate Chemical compound F[P-](F)(F)(F)(F)F.C1CCCN1[P+](N1CCCC1)(O/N=C(C(=O)OCC)\C#N)N1CCCC1 RDWDVLFMPFUBDV-PXMDEAMVSA-N 0.000 description 8
- 210000004899 c-terminal region Anatomy 0.000 description 8
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 8
- 230000005494 condensation Effects 0.000 description 8
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 8
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 8
- 125000004430 oxygen atom Chemical group O* 0.000 description 8
- 238000007086 side reaction Methods 0.000 description 8
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical group [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 8
- 239000013638 trimer Substances 0.000 description 8
- FTVLMFQEYACZNP-UHFFFAOYSA-N trimethylsilyl trifluoromethanesulfonate Chemical compound C[Si](C)(C)OS(=O)(=O)C(F)(F)F FTVLMFQEYACZNP-UHFFFAOYSA-N 0.000 description 8
- 125000003774 valeryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 8
- WWTBZEKOSBFBEM-SPWPXUSOSA-N (2s)-2-[[2-benzyl-3-[hydroxy-[(1r)-2-phenyl-1-(phenylmethoxycarbonylamino)ethyl]phosphoryl]propanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)O)C(=O)C(CP(O)(=O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1C=CC=CC=1)CC1=CC=CC=C1 WWTBZEKOSBFBEM-SPWPXUSOSA-N 0.000 description 7
- 125000001313 C5-C10 heteroaryl group Chemical group 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 125000004104 aryloxy group Chemical group 0.000 description 7
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 7
- 238000004440 column chromatography Methods 0.000 description 7
- 229940125810 compound 20 Drugs 0.000 description 7
- 229940126208 compound 22 Drugs 0.000 description 7
- 238000009833 condensation Methods 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 7
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- 230000000670 limiting effect Effects 0.000 description 7
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- UAOUIVVJBYDFKD-XKCDOFEDSA-N (1R,9R,10S,11R,12R,15S,18S,21R)-10,11,21-trihydroxy-8,8-dimethyl-14-methylidene-4-(prop-2-enylamino)-20-oxa-5-thia-3-azahexacyclo[9.7.2.112,15.01,9.02,6.012,18]henicosa-2(6),3-dien-13-one Chemical compound C([C@@H]1[C@@H](O)[C@@]23C(C1=C)=O)C[C@H]2[C@]12C(N=C(NCC=C)S4)=C4CC(C)(C)[C@H]1[C@H](O)[C@]3(O)OC2 UAOUIVVJBYDFKD-XKCDOFEDSA-N 0.000 description 6
- GLGNXYJARSMNGJ-VKTIVEEGSA-N (1s,2s,3r,4r)-3-[[5-chloro-2-[(1-ethyl-6-methoxy-2-oxo-4,5-dihydro-3h-1-benzazepin-7-yl)amino]pyrimidin-4-yl]amino]bicyclo[2.2.1]hept-5-ene-2-carboxamide Chemical compound CCN1C(=O)CCCC2=C(OC)C(NC=3N=C(C(=CN=3)Cl)N[C@H]3[C@H]([C@@]4([H])C[C@@]3(C=C4)[H])C(N)=O)=CC=C21 GLGNXYJARSMNGJ-VKTIVEEGSA-N 0.000 description 6
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 6
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 6
- KQZLRWGGWXJPOS-NLFPWZOASA-N 1-[(1R)-1-(2,4-dichlorophenyl)ethyl]-6-[(4S,5R)-4-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-5-methylcyclohexen-1-yl]pyrazolo[3,4-b]pyrazine-3-carbonitrile Chemical compound ClC1=C(C=CC(=C1)Cl)[C@@H](C)N1N=C(C=2C1=NC(=CN=2)C1=CC[C@@H]([C@@H](C1)C)N1[C@@H](CCC1)CO)C#N KQZLRWGGWXJPOS-NLFPWZOASA-N 0.000 description 6
- FPIRBHDGWMWJEP-UHFFFAOYSA-N 1-hydroxy-7-azabenzotriazole Chemical compound C1=CN=C2N(O)N=NC2=C1 FPIRBHDGWMWJEP-UHFFFAOYSA-N 0.000 description 6
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 6
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- LJOOWESTVASNOG-UFJKPHDISA-N [(1s,3r,4ar,7s,8s,8as)-3-hydroxy-8-[2-[(4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-7-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl] (2s)-2-methylbutanoate Chemical compound C([C@H]1[C@@H](C)C=C[C@H]2C[C@@H](O)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)CC1C[C@@H](O)CC(=O)O1 LJOOWESTVASNOG-UFJKPHDISA-N 0.000 description 6
- GPDHNZNLPKYHCN-DZOOLQPHSA-N [[(z)-(1-cyano-2-ethoxy-2-oxoethylidene)amino]oxy-morpholin-4-ylmethylidene]-dimethylazanium;hexafluorophosphate Chemical compound F[P-](F)(F)(F)(F)F.CCOC(=O)C(\C#N)=N/OC(=[N+](C)C)N1CCOCC1 GPDHNZNLPKYHCN-DZOOLQPHSA-N 0.000 description 6
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 6
- 229940125758 compound 15 Drugs 0.000 description 6
- 229940127204 compound 29 Drugs 0.000 description 6
- 229940125877 compound 31 Drugs 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 238000012916 structural analysis Methods 0.000 description 6
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- BMTZEAOGFDXDAD-UHFFFAOYSA-M 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholin-4-ium;chloride Chemical compound [Cl-].COC1=NC(OC)=NC([N+]2(C)CCOCC2)=N1 BMTZEAOGFDXDAD-UHFFFAOYSA-M 0.000 description 5
- 241000209094 Oryza Species 0.000 description 5
- 235000007164 Oryza sativa Nutrition 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 125000002723 alicyclic group Chemical group 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 125000000000 cycloalkoxy group Chemical group 0.000 description 5
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 5
- 239000000539 dimer Substances 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- BXRNXXXXHLBUKK-UHFFFAOYSA-N piperazine-2,5-dione Chemical compound O=C1CNC(=O)CN1 BXRNXXXXHLBUKK-UHFFFAOYSA-N 0.000 description 5
- 239000008213 purified water Substances 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 235000009566 rice Nutrition 0.000 description 5
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 5
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 5
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000011550 stock solution Substances 0.000 description 5
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 5
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 4
- BWZVCCNYKMEVEX-UHFFFAOYSA-N 2,4,6-Trimethylpyridine Chemical compound CC1=CC(C)=NC(C)=C1 BWZVCCNYKMEVEX-UHFFFAOYSA-N 0.000 description 4
- 230000035502 ADME Effects 0.000 description 4
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 4
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 239000012448 Lithium borohydride Substances 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 4
- KPFBUSLHFFWMAI-HYRPPVSQSA-N [(8r,9s,10r,13s,14s,17r)-17-acetyl-6-formyl-3-methoxy-10,13-dimethyl-1,2,7,8,9,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-17-yl] acetate Chemical compound C1C[C@@H]2[C@](CCC(OC)=C3)(C)C3=C(C=O)C[C@H]2[C@@H]2CC[C@](OC(C)=O)(C(C)=O)[C@]21C KPFBUSLHFFWMAI-HYRPPVSQSA-N 0.000 description 4
- 125000003302 alkenyloxy group Chemical group 0.000 description 4
- 125000005092 alkenyloxycarbonyl group Chemical group 0.000 description 4
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 4
- 235000019270 ammonium chloride Nutrition 0.000 description 4
- 125000002393 azetidinyl group Chemical group 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 210000000692 cap cell Anatomy 0.000 description 4
- 125000003739 carbamimidoyl group Chemical group C(N)(=N)* 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- 229960004106 citric acid Drugs 0.000 description 4
- 229940125797 compound 12 Drugs 0.000 description 4
- 229940126086 compound 21 Drugs 0.000 description 4
- 229940125833 compound 23 Drugs 0.000 description 4
- 125000004663 dialkyl amino group Chemical group 0.000 description 4
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 238000007327 hydrogenolysis reaction Methods 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 4
- 229940095102 methyl benzoate Drugs 0.000 description 4
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 4
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 4
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 4
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 4
- 125000004434 sulfur atom Chemical group 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- 238000002076 thermal analysis method Methods 0.000 description 4
- 238000010626 work up procedure Methods 0.000 description 4
- FBNFRRNBFASDKS-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-oxo-4-prop-2-enoxybutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(=O)OCC=C)C(=O)O)C3=CC=CC=C3C2=C1 FBNFRRNBFASDKS-IBGZPJMESA-N 0.000 description 3
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 3
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- XBNGYFFABRKICK-UHFFFAOYSA-N 2,3,4,5,6-pentafluorophenol Chemical compound OC1=C(F)C(F)=C(F)C(F)=C1F XBNGYFFABRKICK-UHFFFAOYSA-N 0.000 description 3
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 3
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 3
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 3
- PBCJIPOGFJYBJE-UHFFFAOYSA-N acetonitrile;hydrate Chemical compound O.CC#N PBCJIPOGFJYBJE-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 3
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 150000001718 carbodiimides Chemical group 0.000 description 3
- 239000007810 chemical reaction solvent Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 229960002303 citric acid monohydrate Drugs 0.000 description 3
- 229940125773 compound 10 Drugs 0.000 description 3
- 229940125782 compound 2 Drugs 0.000 description 3
- 229940125846 compound 25 Drugs 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 description 3
- 125000001188 haloalkyl group Chemical group 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 125000005114 heteroarylalkoxy group Chemical group 0.000 description 3
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 3
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 3
- 125000002950 monocyclic group Chemical group 0.000 description 3
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 3
- 235000019799 monosodium phosphate Nutrition 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229940126701 oral medication Drugs 0.000 description 3
- NIEHEMAZEULEKB-UHFFFAOYSA-N ortho-ethylanisole Natural products CCC1=CC=CC=C1OC NIEHEMAZEULEKB-UHFFFAOYSA-N 0.000 description 3
- 238000011085 pressure filtration Methods 0.000 description 3
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 3
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- 125000005500 uronium group Chemical group 0.000 description 3
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 2
- 125000004739 (C1-C6) alkylsulfonyl group Chemical group 0.000 description 2
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- LKUDPHPHKOZXCD-UHFFFAOYSA-N 1,3,5-trimethoxybenzene Chemical compound COC1=CC(OC)=CC(OC)=C1 LKUDPHPHKOZXCD-UHFFFAOYSA-N 0.000 description 2
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 2
- TVTJUIAKQFIXCE-HUKYDQBMSA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynyl-1H-purine-6,8-dione Chemical compound NC=1NC(C=2N(C(N(C=2N=1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C)=O TVTJUIAKQFIXCE-HUKYDQBMSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 2
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 2
- TZCYLJGNWDVJRA-UHFFFAOYSA-N 6-chloro-1-hydroxybenzotriazole Chemical compound C1=C(Cl)C=C2N(O)N=NC2=C1 TZCYLJGNWDVJRA-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 101100096578 Arabidopsis thaliana SQD2 gene Proteins 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 2
- HAXDROBSVMVYJR-QMOZSOIISA-N CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C([C@H](C1CCCC1)N(C)C(C1(CCCC1)NC([C@H](CCC1)N1C(OCC1=CC=CC=C1)=O)=O)=O)=O)=O Chemical compound CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C([C@H](C1CCCC1)N(C)C(C1(CCCC1)NC([C@H](CCC1)N1C(OCC1=CC=CC=C1)=O)=O)=O)=O)=O HAXDROBSVMVYJR-QMOZSOIISA-N 0.000 description 2
- RRIFASWYZYDUAI-FIXSFTCYSA-N CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C([C@H](C1CCCC1)N(C)C(C1(CCCC1)NC([C@H]1NCCC1)=O)=O)=O)=O Chemical compound CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C([C@H](C1CCCC1)N(C)C(C1(CCCC1)NC([C@H]1NCCC1)=O)=O)=O)=O RRIFASWYZYDUAI-FIXSFTCYSA-N 0.000 description 2
- IPFNOZHROXMQOI-GMAHTHKFSA-N CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C([C@H](C1CCCC1)N(C)C(OCC1=CC=CC=C1)=O)=O)=O Chemical compound CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C([C@H](C1CCCC1)N(C)C(OCC1=CC=CC=C1)=O)=O)=O IPFNOZHROXMQOI-GMAHTHKFSA-N 0.000 description 2
- MMWVEYPOPZWWLF-WTSNHHJOSA-N CC[C@H](C)[C@@H](C(N(C)[C@@H](C)C(N(CC1)[C@@H]1C(N(CC)[C@@H](CC1=CC=C(C)C=C1)C(N(C)CC(OC(C)(C)C)=O)=O)=O)=O)=O)NC(OCC1=CC=CC=C1)=O Chemical compound CC[C@H](C)[C@@H](C(N(C)[C@@H](C)C(N(CC1)[C@@H]1C(N(CC)[C@@H](CC1=CC=C(C)C=C1)C(N(C)CC(OC(C)(C)C)=O)=O)=O)=O)=O)NC(OCC1=CC=CC=C1)=O MMWVEYPOPZWWLF-WTSNHHJOSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 238000003109 Karl Fischer titration Methods 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 2
- 125000005082 alkoxyalkenyl group Chemical group 0.000 description 2
- 125000004688 alkyl sulfonyl alkyl group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 125000004103 aminoalkyl group Chemical group 0.000 description 2
- 125000005097 aminocarbonylalkyl group Chemical group 0.000 description 2
- 125000006598 aminocarbonylamino group Chemical group 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- IYYIVELXUANFED-UHFFFAOYSA-N bromo(trimethyl)silane Chemical compound C[Si](C)(C)Br IYYIVELXUANFED-UHFFFAOYSA-N 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 2
- 125000005708 carbonyloxy group Chemical group [*:2]OC([*:1])=O 0.000 description 2
- 125000004181 carboxyalkyl group Chemical group 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 229940126543 compound 14 Drugs 0.000 description 2
- 229940125851 compound 27 Drugs 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000004966 cyanoalkyl group Chemical group 0.000 description 2
- 125000004858 cycloalkoxyalkyl group Chemical group 0.000 description 2
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 2
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- AJDPNPAGZMZOMN-UHFFFAOYSA-N diethyl (4-oxo-1,2,3-benzotriazin-3-yl) phosphate Chemical compound C1=CC=C2C(=O)N(OP(=O)(OCC)OCC)N=NC2=C1 AJDPNPAGZMZOMN-UHFFFAOYSA-N 0.000 description 2
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000532 dioxanyl group Chemical group 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000004438 haloalkoxy group Chemical group 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 150000002440 hydroxy compounds Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 125000002632 imidazolidinyl group Chemical group 0.000 description 2
- 125000001841 imino group Chemical group [H]N=* 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 125000003965 isoxazolidinyl group Chemical group 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 125000000160 oxazolidinyl group Chemical group 0.000 description 2
- 125000003566 oxetanyl group Chemical group 0.000 description 2
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 125000004193 piperazinyl group Chemical group 0.000 description 2
- 125000003386 piperidinyl group Chemical group 0.000 description 2
- ARUTTWGGCKHWDR-UHFFFAOYSA-M potassium;hydrogen sulfate;hydrate Chemical compound O.[K+].OS([O-])(=O)=O ARUTTWGGCKHWDR-UHFFFAOYSA-M 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- 125000003072 pyrazolidinyl group Chemical group 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 230000006340 racemization Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 2
- 125000006296 sulfonyl amino group Chemical group [H]N(*)S(*)(=O)=O 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000001302 tertiary amino group Chemical group 0.000 description 2
- 125000001984 thiazolidinyl group Chemical group 0.000 description 2
- 125000002053 thietanyl group Chemical group 0.000 description 2
- 125000002813 thiocarbonyl group Chemical group *C(*)=S 0.000 description 2
- 125000003396 thiol group Chemical class [H]S* 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- CSRZQMIRAZTJOY-UHFFFAOYSA-N trimethylsilyl iodide Substances C[Si](C)(C)I CSRZQMIRAZTJOY-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- LHEDVFJRPCODKM-NSHDSACASA-N (2,3,4,5,6-pentafluorophenyl) (2S)-4-methyl-2-[methyl(2-trimethylsilylethoxycarbonyl)amino]pentanoate Chemical compound CC(C)C[C@@H](C(OC(C(F)=C(C(F)=C1F)F)=C1F)=O)N(C)C(OCC[Si](C)(C)C)=O LHEDVFJRPCODKM-NSHDSACASA-N 0.000 description 1
- HTDWMNDUFNXBIA-FQEVSTJZSA-N (2S)-2-[9H-fluoren-9-ylmethoxycarbonyl(methyl)amino]-4-oxo-4-prop-2-enoxybutanoic acid Chemical compound C1=C2C3=CC=CC=C3C(COC(=O)N(C)[C@@H](CC(=O)OCC=C)C(=O)O)C2=CC=C1 HTDWMNDUFNXBIA-FQEVSTJZSA-N 0.000 description 1
- JXGVXCZADZNAMJ-NSHDSACASA-N (2s)-1-phenylmethoxycarbonylpyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCCN1C(=O)OCC1=CC=CC=C1 JXGVXCZADZNAMJ-NSHDSACASA-N 0.000 description 1
- 125000006619 (C1-C6) dialkylamino group Chemical group 0.000 description 1
- 125000002733 (C1-C6) fluoroalkyl group Chemical group 0.000 description 1
- 125000004737 (C1-C6) haloalkoxy group Chemical group 0.000 description 1
- 125000000171 (C1-C6) haloalkyl group Chemical group 0.000 description 1
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 1
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- 125000005919 1,2,2-trimethylpropyl group Chemical group 0.000 description 1
- 125000005918 1,2-dimethylbutyl group Chemical group 0.000 description 1
- CZSRXHJVZUBEGW-UHFFFAOYSA-N 1,2-thiazolidine Chemical group C1CNSC1 CZSRXHJVZUBEGW-UHFFFAOYSA-N 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N 1,3,5-Me3C6H3 Natural products CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical group C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004066 1-hydroxyethyl group Chemical group [H]OC([H])([*])C([H])([H])[H] 0.000 description 1
- JQCSUVJDBHJKNG-UHFFFAOYSA-N 1-methoxy-ethyl Chemical group C[CH]OC JQCSUVJDBHJKNG-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- LJCZNYWLQZZIOS-UHFFFAOYSA-N 2,2,2-trichlorethoxycarbonyl chloride Chemical compound ClC(=O)OCC(Cl)(Cl)Cl LJCZNYWLQZZIOS-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000004778 2,2-difluoroethyl group Chemical group [H]C([H])(*)C([H])(F)F 0.000 description 1
- PDELQDSYLBLPQO-UHFFFAOYSA-N 2,3,3a,4,5,6,7,7a-octahydro-1h-indole Chemical group C1CCCC2NCCC21 PDELQDSYLBLPQO-UHFFFAOYSA-N 0.000 description 1
- BYPZMCUQTKOUOT-UHFFFAOYSA-N 2,3,5,6-tetrahydro-1h-pyrrolo[1,2-c]imidazole Chemical compound C1NCC2=CCCN21 BYPZMCUQTKOUOT-UHFFFAOYSA-N 0.000 description 1
- NXRGKFVQYZGDIY-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1.CC1=CC=CC(C)=N1 NXRGKFVQYZGDIY-UHFFFAOYSA-N 0.000 description 1
- CVZZCSSUWFIRCO-UHFFFAOYSA-N 2-(dimethylamino)-4-oxobutanoic acid Chemical compound CN(C)C(C(=O)O)CC=O CVZZCSSUWFIRCO-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- GGDYAKVUZMZKRV-UHFFFAOYSA-N 2-fluoroethanol Chemical compound OCCF GGDYAKVUZMZKRV-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000006479 2-pyridyl methyl group Chemical group [H]C1=C([H])C([H])=C([H])C(=N1)C([H])([H])* 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- HJBLUNHMOKFZQX-UHFFFAOYSA-N 3-hydroxy-1,2,3-benzotriazin-4-one Chemical compound C1=CC=C2C(=O)N(O)N=NC2=C1 HJBLUNHMOKFZQX-UHFFFAOYSA-N 0.000 description 1
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- WDBQJSCPCGTAFG-QHCPKHFHSA-N 4,4-difluoro-N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclohexane-1-carboxamide Chemical compound FC1(CCC(CC1)C(=O)N[C@@H](CCN1CCC(CC1)N1C(=NN=C1C)C(C)C)C=1C=NC=CC=1)F WDBQJSCPCGTAFG-QHCPKHFHSA-N 0.000 description 1
- 125000004042 4-aminobutyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])N([H])[H] 0.000 description 1
- VRJHQPZVIGNGMX-UHFFFAOYSA-N 4-piperidinone Chemical group O=C1CCNCC1 VRJHQPZVIGNGMX-UHFFFAOYSA-N 0.000 description 1
- RGLXLXXMVNSEFE-FQEVSTJZSA-N 9H-fluoren-9-ylmethyl (4S)-5-oxo-4-(2-oxo-2-prop-2-enoxyethyl)-1,3-oxazolidine-3-carboxylate Chemical compound C=CCOC(=O)C[C@@H]1N(COC1=O)C(=O)OCC1c2ccccc2-c2ccccc12 RGLXLXXMVNSEFE-FQEVSTJZSA-N 0.000 description 1
- 125000006577 C1-C6 hydroxyalkyl group Chemical group 0.000 description 1
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 description 1
- 125000005865 C2-C10alkynyl group Chemical group 0.000 description 1
- 125000003320 C2-C6 alkenyloxy group Chemical group 0.000 description 1
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 1
- JMEZGAXVERGWBR-HNNXBMFYSA-N CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C(OCC1=CC=CC=C1)=O)=O Chemical compound CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C(OCC1=CC=CC=C1)=O)=O JMEZGAXVERGWBR-HNNXBMFYSA-N 0.000 description 1
- KPKGPMGPEURORY-ICSRJNTNSA-N CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C([C@H](C1CCCC1)N(C)C(C1(CCCC1)NC(C(F)(F)F)=O)=O)=O)=O Chemical compound CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C([C@H](C1CCCC1)N(C)C(C1(CCCC1)NC(C(F)(F)F)=O)=O)=O)=O KPKGPMGPEURORY-ICSRJNTNSA-N 0.000 description 1
- BQOGHFAUYFKDRY-HOCLYGCPSA-N CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C([C@H](C1CCCC1)NC)=O)=O Chemical compound CC(C)(C)OC(C[C@@H](C(N(C)C)=O)N(C)C([C@H](C1CCCC1)NC)=O)=O BQOGHFAUYFKDRY-HOCLYGCPSA-N 0.000 description 1
- LIARVBDWDAVULW-QMMMGPOBSA-N CC(C)(C)OC(C[C@@H](C(N(C)C)=O)NC)=O Chemical compound CC(C)(C)OC(C[C@@H](C(N(C)C)=O)NC)=O LIARVBDWDAVULW-QMMMGPOBSA-N 0.000 description 1
- CKGOZCGETDOUAS-QHCPKHFHSA-N CCN([C@@H](CC1=CC=C(C)C=C1)C(N(C)CC(OC(C)(C)C)=O)=O)C(OCC1=CC=CC=C1)=O Chemical compound CCN([C@@H](CC1=CC=C(C)C=C1)C(N(C)CC(OC(C)(C)C)=O)=O)C(OCC1=CC=CC=C1)=O CKGOZCGETDOUAS-QHCPKHFHSA-N 0.000 description 1
- MHNIFBOUSXKMGJ-BVSLBCMMSA-N CCN([C@@H](CC1=CC=C(C)C=C1)C(N(C)CC(OC(C)(C)C)=O)=O)C([C@H](CC1)N1C([C@H](C)NC)=O)=O Chemical compound CCN([C@@H](CC1=CC=C(C)C=C1)C(N(C)CC(OC(C)(C)C)=O)=O)C([C@H](CC1)N1C([C@H](C)NC)=O)=O MHNIFBOUSXKMGJ-BVSLBCMMSA-N 0.000 description 1
- BZNQHZZSFZQMIA-OALUTQOASA-N CCN([C@@H](CC1=CC=C(C)C=C1)C(N(C)CC(OC(C)(C)C)=O)=O)C([C@H]1NCC1)=O Chemical compound CCN([C@@H](CC1=CC=C(C)C=C1)C(N(C)CC(OC(C)(C)C)=O)=O)C([C@H]1NCC1)=O BZNQHZZSFZQMIA-OALUTQOASA-N 0.000 description 1
- RBRYYQOSQKWZDR-INIZCTEOSA-N CCN[C@@H](CC1=CC=C(C)C=C1)C(N(C)CC(OC(C)(C)C)=O)=O Chemical compound CCN[C@@H](CC1=CC=C(C)C=C1)C(N(C)CC(OC(C)(C)C)=O)=O RBRYYQOSQKWZDR-INIZCTEOSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 229940124785 KRAS inhibitor Drugs 0.000 description 1
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 1
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical group C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 108010049175 N-substituted Glycines Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical compound CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 229910019020 PtO2 Inorganic materials 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical group C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 239000012317 TBTU Substances 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 241000289690 Xenarthra Species 0.000 description 1
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 1
- DGYIJVNZSDYBOE-UHFFFAOYSA-N [CH2]C1=CC=NC=C1 Chemical group [CH2]C1=CC=NC=C1 DGYIJVNZSDYBOE-UHFFFAOYSA-N 0.000 description 1
- CLZISMQKJZCZDN-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium Chemical compound C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 CLZISMQKJZCZDN-UHFFFAOYSA-N 0.000 description 1
- MNOILHPDHOHILI-UHFFFAOYSA-O [dimethylamino(sulfanyl)methylidene]-dimethylazanium Chemical compound CN(C)C(S)=[N+](C)C MNOILHPDHOHILI-UHFFFAOYSA-O 0.000 description 1
- HBQDCKPPSIWZLY-UHFFFAOYSA-M [dimethylamino-(2-oxopyridin-1-yl)oxymethylidene]-dimethylazanium;trifluoroborane;fluoride Chemical compound [F-].FB(F)F.CN(C)C(=[N+](C)C)ON1C=CC=CC1=O HBQDCKPPSIWZLY-UHFFFAOYSA-M 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000006323 alkenyl amino group Chemical group 0.000 description 1
- 125000005089 alkenylaminocarbonyl group Chemical group 0.000 description 1
- 125000005090 alkenylcarbonyl group Chemical group 0.000 description 1
- 125000005091 alkenylcarbonylamino group Chemical group 0.000 description 1
- 125000005193 alkenylcarbonyloxy group Chemical group 0.000 description 1
- 125000005137 alkenylsulfonyl group Chemical group 0.000 description 1
- 125000005108 alkenylthio group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 1
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004471 alkyl aminosulfonyl group Chemical group 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 125000003806 alkyl carbonyl amino group Chemical group 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- 125000005130 alkyl carbonyl thio group Chemical group 0.000 description 1
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 description 1
- 125000004656 alkyl sulfonylamino group Chemical group 0.000 description 1
- 125000004691 alkyl thio carbonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 125000006319 alkynyl amino group Chemical group 0.000 description 1
- 125000005095 alkynylaminocarbonyl group Chemical group 0.000 description 1
- 125000005087 alkynylcarbonyl group Chemical group 0.000 description 1
- 125000005088 alkynylcarbonylamino group Chemical group 0.000 description 1
- 125000005198 alkynylcarbonyloxy group Chemical group 0.000 description 1
- 125000005133 alkynyloxy group Chemical group 0.000 description 1
- 125000005225 alkynyloxycarbonyl group Chemical group 0.000 description 1
- 125000005139 alkynylsulfonyl group Chemical group 0.000 description 1
- 125000005109 alkynylthio group Chemical group 0.000 description 1
- 125000005336 allyloxy group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940125644 antibody drug Drugs 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000005140 aralkylsulfonyl group Chemical group 0.000 description 1
- 125000005098 aryl alkoxy carbonyl group Chemical group 0.000 description 1
- 125000005125 aryl alkyl amino carbonyl group Chemical group 0.000 description 1
- 125000001691 aryl alkyl amino group Chemical group 0.000 description 1
- 125000005126 aryl alkyl carbonyl amino group Chemical group 0.000 description 1
- 125000005099 aryl alkyl carbonyl group Chemical group 0.000 description 1
- 125000004659 aryl alkyl thio group Chemical group 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000005100 aryl amino carbonyl group Chemical group 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000005141 aryl amino sulfonyl group Chemical group 0.000 description 1
- 125000004658 aryl carbonyl amino group Chemical group 0.000 description 1
- 125000005129 aryl carbonyl group Chemical group 0.000 description 1
- 125000005199 aryl carbonyloxy group Chemical group 0.000 description 1
- 125000005162 aryl oxy carbonyl amino group Chemical group 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000004657 aryl sulfonyl amino group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- XRWSZZJLZRKHHD-WVWIJVSJSA-N asunaprevir Chemical compound O=C([C@@H]1C[C@H](CN1C(=O)[C@@H](NC(=O)OC(C)(C)C)C(C)(C)C)OC1=NC=C(C2=CC=C(Cl)C=C21)OC)N[C@]1(C(=O)NS(=O)(=O)C2CC2)C[C@H]1C=C XRWSZZJLZRKHHD-WVWIJVSJSA-N 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 150000001576 beta-amino acids Chemical class 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- YHNUDLCUIKMNSN-UHFFFAOYSA-N bis(1,2,4-triazol-1-yl)methanone Chemical compound C1=NC=NN1C(=O)N1C=NC=N1 YHNUDLCUIKMNSN-UHFFFAOYSA-N 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 229940125961 compound 24 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000006310 cycloalkyl amino group Chemical group 0.000 description 1
- 125000006254 cycloalkyl carbonyl group Chemical group 0.000 description 1
- 125000005167 cycloalkylaminocarbonyl group Chemical group 0.000 description 1
- 125000005145 cycloalkylaminosulfonyl group Chemical group 0.000 description 1
- 125000005169 cycloalkylcarbonylamino group Chemical group 0.000 description 1
- 125000005201 cycloalkylcarbonyloxy group Chemical group 0.000 description 1
- 125000005170 cycloalkyloxycarbonyl group Chemical group 0.000 description 1
- 125000005144 cycloalkylsulfonyl group Chemical group 0.000 description 1
- 125000005366 cycloalkylthio group Chemical group 0.000 description 1
- 125000004850 cyclobutylmethyl group Chemical group C1(CCC1)C* 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000004851 cyclopentylmethyl group Chemical group C1(CCCC1)C* 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000011903 deuterated solvents Substances 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 125000005131 dialkylammonium group Chemical group 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 125000004852 dihydrofuranyl group Chemical group O1C(CC=C1)* 0.000 description 1
- 125000005043 dihydropyranyl group Chemical group O1C(CCC=C1)* 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- WSFMFXQNYPNYGG-UHFFFAOYSA-M dimethyl-octadecyl-(3-trimethoxysilylpropyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCC[Si](OC)(OC)OC WSFMFXQNYPNYGG-UHFFFAOYSA-M 0.000 description 1
- 125000005879 dioxolanyl group Chemical group 0.000 description 1
- JMPVESVJOFYWTB-UHFFFAOYSA-N dipropan-2-yl carbonate Chemical compound CC(C)OC(=O)OC(C)C JMPVESVJOFYWTB-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 1
- LCFXLZAXGXOXAP-QPJJXVBHSA-N ethyl (2e)-2-cyano-2-hydroxyiminoacetate Chemical compound CCOC(=O)C(=N\O)\C#N LCFXLZAXGXOXAP-QPJJXVBHSA-N 0.000 description 1
- 125000000031 ethylamino group Chemical group [H]C([H])([H])C([H])([H])N([H])[*] 0.000 description 1
- 125000006260 ethylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000000892 gravimetry Methods 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000005241 heteroarylamino group Chemical group 0.000 description 1
- 125000005222 heteroarylaminocarbonyl group Chemical group 0.000 description 1
- 125000005223 heteroarylcarbonyl group Chemical group 0.000 description 1
- 125000005224 heteroarylcarbonylamino group Chemical group 0.000 description 1
- 125000005204 heteroarylcarbonyloxy group Chemical group 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 125000005226 heteroaryloxycarbonyl group Chemical group 0.000 description 1
- 125000005143 heteroarylsulfonyl group Chemical group 0.000 description 1
- 125000005419 heteroarylsulfonylamino group Chemical group 0.000 description 1
- 125000005368 heteroarylthio group Chemical group 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 125000004628 isothiazolidinyl group Chemical group S1N(CCC1)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- HRDXJKGNWSUIBT-UHFFFAOYSA-N methoxybenzene Chemical group [CH2]OC1=CC=CC=C1 HRDXJKGNWSUIBT-UHFFFAOYSA-N 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 125000004458 methylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])[H] 0.000 description 1
- PGXWDLGWMQIXDT-UHFFFAOYSA-N methylsulfinylmethane;hydrate Chemical compound O.CS(C)=O PGXWDLGWMQIXDT-UHFFFAOYSA-N 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- XONPDZSGENTBNJ-UHFFFAOYSA-N molecular hydrogen;sodium Chemical compound [Na].[H][H] XONPDZSGENTBNJ-UHFFFAOYSA-N 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- ZUSSTQCWRDLYJA-UHFFFAOYSA-N n-hydroxy-5-norbornene-2,3-dicarboximide Chemical compound C1=CC2CC1C1C2C(=O)N(O)C1=O ZUSSTQCWRDLYJA-UHFFFAOYSA-N 0.000 description 1
- GSJRUEBQWPLHSN-UHFFFAOYSA-N n-methylmethanamine;oxolane Chemical compound CNC.C1CCOC1 GSJRUEBQWPLHSN-UHFFFAOYSA-N 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical group C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- IZUPBVBPLAPZRR-UHFFFAOYSA-N pentachloro-phenol Natural products OC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl IZUPBVBPLAPZRR-UHFFFAOYSA-N 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 238000005897 peptide coupling reaction Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 125000001844 prenyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- QGKLPGKXAVVPOJ-UHFFFAOYSA-N pyrrolidin-3-one Chemical group O=C1CCNC1 QGKLPGKXAVVPOJ-UHFFFAOYSA-N 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- LMUMMJCCZMWLEN-UHFFFAOYSA-N spiro[3.3]heptyl Chemical group [CH]1CCC11CCC1 LMUMMJCCZMWLEN-UHFFFAOYSA-N 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- GFYHSKONPJXCDE-UHFFFAOYSA-N sym-collidine Natural products CC1=CN=C(C)C(C)=C1 GFYHSKONPJXCDE-UHFFFAOYSA-N 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 150000003527 tetrahydropyrans Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000005942 tetrahydropyridyl group Chemical group 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001757 thermogravimetry curve Methods 0.000 description 1
- RLTPJVKHGBFGQA-UHFFFAOYSA-N thiadiazolidine Chemical group C1CSNN1 RLTPJVKHGBFGQA-UHFFFAOYSA-N 0.000 description 1
- 125000005304 thiadiazolidinyl group Chemical group 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- AJZGFFKDLABHDD-UHFFFAOYSA-N thiazinane Chemical compound C1CCSNC1 AJZGFFKDLABHDD-UHFFFAOYSA-N 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- BRNULMACUQOKMR-UHFFFAOYSA-N thiomorpholine Chemical group C1CSCCN1 BRNULMACUQOKMR-UHFFFAOYSA-N 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 125000005208 trialkylammonium group Chemical group 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- QXTIBZLKQPJVII-UHFFFAOYSA-N triethylsilicon Chemical compound CC[Si](CC)CC QXTIBZLKQPJVII-UHFFFAOYSA-N 0.000 description 1
- 125000004950 trifluoroalkyl group Chemical group 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/1072—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups
- C07K1/1075—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides by covalent attachment of residues or functional groups by covalent attachment of amino acids or peptide residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/107—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
- C07K1/113—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/50—Cyclic peptides containing at least one abnormal peptide link
- C07K7/54—Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
- C07K7/56—Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/64—Cyclic peptides containing only normal peptide links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
Definitions
- the present invention relates to methods for producing cyclic compounds containing N-substituted amino acid residues.
- Non-Patent Document 1 compounds that have been conventionally used as oral drugs should preferably have a molecular weight of 500 g/mol or less.
- Non-Patent Document 2 compounds that have been conventionally used as oral drugs should preferably have a molecular weight of 500 g/mol or less.
- Non-Patent Document 3, 4 Like insulin, which is used to treat hyperglycemia, peptides composed of natural amino acids have poor metabolic stability, and it has been difficult to develop peptides as oral drugs. However, it has been found that the metabolic stability and membrane permeability of peptides are improved by cyclizing peptides or using non-natural amino acids exemplified by N-methylamino acids in peptides (Non-Patent Document 3, 4).
- cyclic peptides containing unnatural amino acids it has become known that cyclic peptides containing N-substituted amino acids in particular can have metabolic stability and membrane permeability, that is, can have drug-likeness ( Patent document 1).
- Non-Patent Document 5 It has been suggested that cyclic peptide compounds containing unnatural amino acids are useful for creating inhibitors of protein-protein interactions.
- Non-Patent Document 6 Synthesis of peptides is accomplished by elongation of the desired amino acid sequence by sequential amide bond forming reactions of amino acids, including peptides containing unnatural amino acids in their sequence, especially N-methyl amino acids.
- Non-Patent Document 7 Halogenated hydrocarbon solvents (such as dichloromethane), and amide solvents (such as DMF) are widely used in peptide synthesis, but such side reactions have low reactivity with amino acids such as N-substituted amino acids. It can be observed in peptide synthesis (Non-Patent Document 8).
- the use of halogenated hydrocarbon solvents (eg, dichloromethane) and amide solvents (eg, DMF) is restricted (Non-Patent Document 9).
- the present invention has been made in view of such circumstances, and in one aspect, the present invention provides a peptide compound, particularly a linear or cyclic peptide compound containing a plurality of unnatural amino acids such as N-substituted amino acids,
- An object of the present invention is to provide a method for efficient production by a technique applicable to a large scale without isolation of an intermediate, for example, isolation of an intermediate as a pre-operation for the next step.
- One aspect WHEREIN This invention makes it a subject to provide the method of isolating and purifying the target cyclic peptide compound, or its salt, or those solvates, without relying on column chromatography.
- an object of the present invention is to wash a stabilizer (for example, an antioxidant such as BHT) contained in a solvent used in a process for producing a peptide compound with a solvent that solubilizes the stabilizer. , to provide a method for removing the stabilizer without isolating the target product produced in each step.
- the object of the present invention is inter alia to prepare peptide compounds, e.g. linear or cyclic, containing multiple unnatural amino acids, such as N-substituted amino acids, as intermediates of individual reaction steps, or as peptide compounds.
- one aspect of the invention described herein is to provide a method of making a peptide compound, which may comprise one or more reaction steps including the use of a solvent to solubilize the stabilizing agent. be.
- Peptide synthesis is generally carried out by repeating the process of linking the C-terminal carboxyl group of an amino acid or peptide with the N-terminal amino group of an amino acid or peptide to extend the peptide chain. It is known that reactions can occur (Side Reactions in Peptide Synthesis, Academic Press, 2015.). Therefore, in peptide synthesis, especially liquid phase peptide synthesis, it is common to isolate and purify the product between the elongation steps and before the cyclization step. However, in peptide synthesis on an industrial scale, isolation and purification of intermediates lead to longer synthesis times and higher costs. It is desirable to be able to continuously perform the following elongation reaction and cyclization reaction.
- unprotected amino acids and unprotected peptides are also difficult to dissolve in organic solvents due to their hydrophilicity. Furthermore, aggregation is promoted as the peptide chain is elongated, and the solubility of the peptide compound is often reduced (Biology and Chemistry, 2018, 56(8), 558; J. Biol. Chem., 1963, 238, 4074., Sci Rep, 2016, 6(28), 1.).
- a solvent with high solubility such as DMF or dimethyl sulfoxide
- dichloromethane which has excellent solubility, is also often used.
- DMF is used in 47% of the total and dichloromethane in 36% of the total. , 2013, 15, 596-600.
- DMF and dimethyl sulfoxide are highly soluble in water and are miscible with water, so the target product may migrate to the aqueous layer together with these organic solvents, causing a decrease in yield. inefficiency. For example, if the organic layer is contaminated with water, water will remain after the organic solvent containing the target substance is distilled off, and in some cases, hydrolysis of peptide bonds will occur (Side Reactions in Peptide Synthesis, Academic Press, 2015.).
- some solvents contain stabilizers (for example, antioxidants such as BHT).
- stabilizers for example, antioxidants such as BHT.
- the total amount of remaining stabilizer is not large and is not conspicuous as an impurity.
- the impact on subsequent processes may not be negligible (for example, the stabilizer contained in the intermediate may In the case of affecting the chemical reaction in the next step, in the case of active ingredients of pharmaceuticals, and in the case of stabilizing agents contained in the target final compound causing unexpected effects other than medicinal effects).
- the stabilizing agent can be removed during these processes.
- stabilizers can accumulate in intermediates and final compounds. Industrial production processes require general techniques for efficient removal of stabilizers.
- solvents useful in the methods described herein can be resistant to thermal decomposition. Such resistance can preferably be determined by solvent stability tests over a temperature range using measuring instruments such as GC, LC or NMR, preferably GC. Solvents of particular use can be resistant to elevated temperatures (e.g., stable for 48 hours near boiling, or stable for 2 months near room temperature, preferably stable for 48 hours near boiling) under the conditions exemplified above.
- Solvents of the present invention can exhibit good separation from the aqueous layer in a liquid separation operation. Such separation is carried out by adding equal parts of solvent and water in a separatory funnel, reaction flask, or reaction vessel at about room temperature (for example, 15° C. to 40° C., preferably 20° C. to 30° C.) within 30 minutes. can be determined by mixing, preferably within 15 minutes.
- the solvent of the present invention allows the elongation reaction and cyclization reaction of the peptide chain to proceed satisfactorily.
- Such reaction progress is preferably determined by measuring the chemical yield of the target compound or the chemical conversion of the starting material to the target compound using a measuring instrument such as GC, LC or NMR, preferably GC. be able to.
- Solvents of particular use may provide chemical yields of 70% to 100%, or chemical conversions of 70% to 100%, preferably both chemical yields and chemical conversions of 80% to 100%.
- the solvent of the present invention is a solvent that can be stable for 48 hours near the boiling point, a solvent that can show good separation in a liquid separation operation within 15 minutes at 20°C to 30°C, a chemical yield of the starting material and A solvent that can achieve 80% to 100% of both chemical conversions.
- the peptide chain can be prepared by simple operations such as liquid separation and filtration without isolating intermediates. can be continuously elongated, the peptide compound can be cyclized, and the stabilizing agent contained in the solvent can be removed. That is, subsequent reactions do not require isolation of an intermediate, eg, a single product, as understood in the art.
- the solution used in the next reaction contains intermediates (products of the previous reaction) and may further contain one or more reactants, or reagents, of the previous reaction, which are can be solubilized prior to the reaction of
- the present inventors have found that the organic layer or aqueous layer can be efficiently washed by using a specific aqueous solution or organic solvent in the liquid separation operation.
- the present inventors have found that the cyclic peptide compound produced without isolating and purifying the intermediate by the method of the present invention can be isolated and purified by crystallization without relying on column chromatography.
- a cyclic peptide compound, a salt thereof, or a solvate thereof, and a crystal of a cyclic peptide compound, a salt thereof, or a solvate thereof can be obtained.
- the present inventors have found reaction conditions that can suppress the formation of by-products in each of the condensation and deprotection reactions.
- the present invention includes the following in one non-limiting specific aspect.
- one or more selected from the group consisting of one or more water-immiscible solvents, one or more water-soluble alkylnitriles, and one or more water-soluble ethers A cyclic peptide compound, or a salt thereof, or a solvate thereof by a liquid phase method, which includes the step of linking the N-terminal amino acid residue and the C-terminal amino acid residue of the peptide compound in a solvent (solvent A) containing how to manufacture
- Solvent A is selected from the group consisting of 2-MeTHF, THF, 4-methyltetrahydropyran, MTBE, CPME, dimethyl carbonate, ethyl acetate, isopropyl acetate, anisole, MeCN, heptane, and toluene.
- [15] The method of any one of [1] to [14], further comprising the step of isolating and/or purifying the cyclic peptide compound by crystallization to obtain crystals of the cyclic peptide compound.
- the hydrate crystals have diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, and 10.435 by powder X-ray diffraction. °, 11.729°, 12.704°, 13.552°, 13.901°, 15.895°, 16.643°, and 17.813° ( ⁇ 0.2°)
- the method of [17] which is a C-type crystal containing at least 7 peaks.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, and 10 as measured by powder X-ray diffraction.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, 10 from the group consisting of .435°, 11.729°, 12.704°, 13.552°, 13.901°, 15.895°, 16.643°, and 17.813° ( ⁇ 0.2°)
- the method of [17], wherein the selected is a C-type crystal containing at least 9 peaks.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, and 10 by powder X-ray diffraction.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, 10 from the group consisting of .435°, 11.729°, 12.704°, 13.552°, 13.901°, 15.895°, 16.643°, and 17.813° ( ⁇ 0.2°)
- the method of [17], wherein the selected is a C-type crystal containing at least 11 peaks.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, 10 from the group consisting of .435°, 11.729°, 12.704°, 13.552°, 13.901°, 15.895°, 16.643°, and 17.813° ( ⁇ 0.2°)
- the method of [17], wherein the selected are C-type crystals containing at least 12 peaks.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, and 10 as determined by powder X-ray diffraction.
- the solvate crystal has diffraction angles (2 ⁇ values) of 8.006°, 9.002°, 9.943°, 11.501°, 13.067°, and 14.854 by powder X-ray diffraction. °, 16.320 °, 17.275 °, 19.261 °, and 20.324 ° ( ⁇ 0.2 °) DMSO-hydrate crystals of form A, described in [16] the method of. [21] The solvate crystal has diffraction angles (2 ⁇ values) of 8.223°, 9.594°, 9.976°, 11.879°, 13.841°, and 14.572 by powder X-ray diffraction.
- solvent A is a solvent consisting of 2-MeTHF or a solvent containing 2-MeTHF.
- Solvent A is one or more water selected from the group consisting of 2-MeTHF, dimethyl carbonate, anisole, isopropyl acetate, ethyl acetate, MTBE, CPME, 4-methyltetrahydropyran, heptane, and toluene
- solvent A is a solvent consisting of 2-MeTHF or a solvent containing 2-MeTHF.
- Solvent A is one or more water selected from the group consisting of 2-MeTHF, dimethyl carbonate, anisole, isopropyl acetate, ethyl acetate, MTBE, CPME, 4-methyltetrahydropyran, heptane, and toluene
- solvent A contains water-soluble alkylnitriles that are acetonitrile and/or propionitrile.
- solvent A contains one or more water-soluble ethers selected from the group consisting of THF, 1,4-dioxane, 1,3-dioxane, and dimethoxyethane; Any method described.
- a method for producing a peptide compound by a liquid phase method comprising: Step 1: Linking an N-protected amino acid or N-protected peptide to a C-protected amino acid or C-protected peptide, Step 2: removing the N-protecting group after step 1, and optionally repeating steps 1 and 2 multiple times to produce the peptide compound; and not including the step of isolating the products of steps 1 and 2.
- step 3 The method according to any one of [26] to [31], wherein the method for producing a peptide compound further comprises step 3 of removing the C-protecting group.
- step 3 The method according to any one of [26] to [31], wherein the final repetition does not include step 2.
- step 3 is performed after step 1 of the final iteration.
- Each step included in the method for producing a peptide compound comprises toluene, acetone, DMF, acetonitrile, THF, 2-MeTHF, dimethyl carbonate, anisole, isopropyl acetate, heptane, ethyl acetate, MTBE, and 4-methyltetrahydro
- solvent B solvent B
- each step included in the method for producing a peptide compound includes one or more operations selected from the group consisting of liquid separation operation, filtration operation, and concentration operation, [26]-[ 34].
- a water-immiscible solvent (solvent C) wherein a water-immiscible solvent (solvent C), water-soluble alkylnitriles, and/or water-soluble ethers are added before the liquid separation operation.
- Solvent C is one or more selected from the group consisting of 2-MeTHF, dimethyl carbonate, anisole, isopropyl acetate, ethyl acetate, MTBE, CPME, 4-methyltetrahydropyran, and heptane, [36 ].
- a washing operation of the organic layer in which the washing operation is performed with an aqueous solution containing citric acid and dipotassium hydrogen phosphate, or an aqueous layer in which the washing operation is performed with 2-MeTHF, heptane, MTBE, or isopropyl acetate The method according to any one of [35] to [41], including the washing operation.
- step 1 comprises the step of condensing the N-terminal amino group of the C-protected amino acid or C-protected peptide with the C-terminal carboxyl group of the N-protected amino acid or N-protected peptide, [26] The method according to any one of to [45]. [47] The method of [46], wherein the carboxyl group is activated.
- step 1 is performed in the presence of a condensing reagent.
- the condensing agent comprises a condensing agent selected from the group consisting of T3P, EDCI, HATU, COMU, BEP, PyBOP, DMT-MM, and PyOxim.
- step 2 is carried out by catalytic hydrogenation in the presence of a catalyst.
- the catalyst is selected from Pd/C, Pd(OH) 2 /C, or PtO2 .
- step 2 is performed in the presence of a deprotecting reagent.
- the deprotecting reagent is selected from TBAF, LiBH 4 , piperidine, trifluoroacetic acid, or methanesulfonic acid.
- the N-protecting group is Cbz, p-nitrobenzyloxycarbonyl, 2-naphthylmethyloxycarbonyl, diphenylmethyloxycarbonyl, 9-anthrylmethyloxycarbonyl, Teoc, Boc, trifluoroacetyl, Fmoc, or Alloc
- the method of [55], wherein the deprotection reaction is performed under acidic conditions.
- one or both of the C-protected peptide and the N-protected peptide contain 2 to 20 amino acid residues, and the amino acid residues contained in one or both of the C-protected peptide and the N-protected peptide.
- one or both of the C-protected peptide and the N-protected peptide used in step 1 of the final iteration contains 4 or more N-substituted amino acid residues, or 2 N-substituted amino acid residues;
- one or both of the C-protected and N-protected peptides used in step 1 of the last iteration consist of 5 or 6 amino acid residues and contain 4 or 5 unnatural amino acid residues; The method according to [26] to [62].
- the C-protected peptide used in step 1 of the final iteration is C-protected MeLeu-Ile-MeAla-Aze(2)-EtPhe(4-Me)-MeGly, and is N-protected Hph(4-CF3-35F2)-Pro-cLeu-MeGly(cPent)-MeAsp-NMe2.
- a C-protected amino acid, or a salt thereof, or a C-protected peptide, or a salt thereof The method according to any one of [26] to [61].
- Each impurity is less than 1%, less than 0.5%, less than 0.1%, or an undetectable amount, as determined by UVArea% at 210 nm by HPLC analysis, [70- 2], a highly purified compound represented by Formula 1, a salt thereof, or a solvate thereof.
- the impurity is less than 1%, less than 0.5%, less than 0.1%, or an undetectable amount as determined by UVArea% at 210 nm by HPLC analysis, and the impurity is an epimer, overextension, or deletion
- Impurity is less than 1%, less than 0.5%, less than 0.1%, or an undetectable amount as determined by UVArea% at 210 nm by HPLC analysis, and the impurity is a cyclic dimer shown below. (Cyclic dimer), and / or a cyclic trimer shown below (Cyclic trimer), [70-2], [70-3], or high purity according to [70-4] or a salt or solvate thereof.
- the solvate of the cyclic peptide compound of [70] which is a hydrate, DMSO-hydrate, acetone-hydrate, or DMSO solvate.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, and 10.435 by powder X-ray diffraction.
- the crystal of [75] which is a C-type crystal containing at least 7 peaks.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, and 10 as measured by powder X-ray diffraction.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, 10 from the group consisting of .435°, 11.729°, 12.704°, 13.552°, 13.901°, 15.895°, 16.643°, and 17.813° ( ⁇ 0.2°)
- the crystal of [75] which is a C-type crystal comprising at least 9 peaks.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, and 10 as measured by powder X-ray diffraction.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, 10 from the group consisting of .435°, 11.729°, 12.704°, 13.552°, 13.901°, 15.895°, 16.643°, and 17.813° ( ⁇ 0.2°)
- the crystal of [75] which is a C-type crystal comprising at least 11 peaks.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, 10 from the group consisting of .435°, 11.729°, 12.704°, 13.552°, 13.901°, 15.895°, 16.643°, and 17.813° ( ⁇ 0.2°)
- the crystal of [75] which is a C-type crystal comprising at least 12 peaks.
- the hydrate crystal has diffraction angles (2 ⁇ values) of 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, 10 including peaks at .435°, 11.729°, 12.704°, 13.552°, 13.901°, 15.895°, 16.643°, and 17.813° ( ⁇ 0.2°)
- the crystal of [75] which is a C-type crystal.
- the non-solvate crystal has diffraction angles (2 ⁇ values) of 5.370°, 6.934°, 8.940°, 9.838°, 10.771°, 12.0°, and 12.0° as diffraction angles (2 ⁇ values) by powder X-ray diffraction.
- the crystal of [73] which is an F-type crystal containing peaks at 181°, 13.525°, 15.179°, 16.202° and 17.554° ( ⁇ 0.2°).
- the solvate crystal has diffraction angles (2 ⁇ values) of 8.006°, 9.002°, 9.943°, 11.501°, 13.067°, and 14.854 by powder X-ray diffraction. °, 16.320 °, 17.275 °, 19.261 °, and 20.324 ° ( ⁇ 0.2 °) DMSO-hydrate crystals of form A, described in [73] crystals.
- the solvate crystal has diffraction angles (2 ⁇ values) of 8.223°, 9.594°, 9.976°, 11.879°, 13.841°, and 14.572 by powder X-ray diffraction. °, 15.934 °, 16.350 °, 19.805 °, and 20.480 ° ( ⁇ 0.2 °) are DMSO-hydrate crystals of form B, described in [73] crystals. [80] The solvate crystal has diffraction angles (2 ⁇ values) of 7.942°, 8.283°, 8.861°, 10.097°, 10.491°, and 11.805 by powder X-ray diffraction.
- the present invention even when having a complex amino acid sequence containing a plurality of non-natural amino acid residues, racemization and intermolecular reaction of amino acid residues are suppressed, and a cyclic peptide compound, or a salt thereof, or Solvates thereof can be efficiently produced.
- continuous elongation of the peptide chain and subsequent cyclization can be performed by simple post-treatments such as liquid separation, filtration, and concentration without isolating and purifying intermediates. can be performed, the desired peptide compound can be produced efficiently.
- INDUSTRIAL APPLICABILITY The production method of the present invention is particularly useful for large-scale peptide synthesis because it can reduce the production cost of peptide compounds and reduce environmental impact.
- FIG. 1 shows the results of powder X-ray diffraction measurement of the hydrate crystals (C-type crystals) of Compound 1 obtained in Example 25.
- FIG. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
- FIG. 2 shows the results of powder X-ray diffraction measurement of the non-solvate crystals (F-type crystals) of Compound 1 obtained in Example 25-2.
- the vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°).
- FIG. 3 shows the results of powder X-ray diffraction measurement of the crystals of Compound 1 (A-type crystals) obtained in Example 25-3.
- FIG. 4 shows the results of powder X-ray diffraction measurement of the crystals of Compound 1 (B type crystals) obtained in Example 25-3.
- the vertical axis is the diffraction intensity
- the horizontal axis is the diffraction angle 2 ⁇ (°).
- FIG. 5 shows the results of thermogravimetric and differential thermal analysis of the crystals of Compound 1 (B-type crystals) obtained in Example 25-3.
- the horizontal axis is temperature (°C), and the right vertical axis is weight change (%) of the sample in thermogravimetric analysis.
- the left vertical axis represents the heat flow observed in the differential thermal analysis.
- FIG. 4 shows the results of powder X-ray diffraction measurement of the crystals of Compound 1 (B type crystals) obtained in Example 25-3.
- the vertical axis is the diffraction intensity
- the horizontal axis is the diffraction angle 2 ⁇ (°).
- FIG. 5 shows the results of thermogravimetric and differential thermal analysis of the crystal
- FIG. 6 shows the results of 1 H-NMR measurement of the crystals of Compound 1 (B type crystals) obtained in Example 25-3.
- FIG. 7 shows the results of powder X-ray diffraction measurement of the hydrate crystals (type C crystals) of Compound 1 obtained in Example 25-4 at relative humidity of 75%, 30% and 0%. The vertical axis is the diffraction intensity, and the horizontal axis is the diffraction angle 2 ⁇ (°). 8 shows the results of thermogravimetric/differential thermal analysis of the hydrate crystals (C-type crystals) of Compound 1 obtained in Example 26.
- the horizontal axis is temperature (°C) and measurement time (minutes), and the right vertical axis is weight change (mg) of the sample in thermogravimetric analysis.
- the left vertical axis represents the heat flow (mW) observed in the differential thermal analysis.
- 9 shows the crystal structure of the hydrate crystal (C-type crystal) of Compound 1 obtained in Example 26, obtained by single-crystal X-ray structure analysis.
- 10 shows the results of dynamic water vapor adsorption measurement of the hydrate crystals of Compound 1 (C-type crystals) obtained in Example 26.
- the vertical axis is weight change (%) and the horizontal axis is relative humidity (%).
- FIG. 11 shows the crystal structure of DMSO-hydrate crystals (A-type crystals) of compound 1 obtained in Example 26-1 by single-crystal X-ray structure analysis. In this crystal structure, compound 1:DMSO:water is modeled as 1:6:3.
- FIG. 11 shows the crystal structure of DMSO-hydrate crystals (A-type crystals) of compound 1 obtained in Example 26-1 by single-crystal X-ray structure analysis. In this crystal structure, compound 1:DMSO:water is modeled as 1:6:3.
- FIG. 12 shows the crystal structure of the acetone-hydrate crystal of Compound 1 obtained in Example 26-2 (H-type crystal, for single-crystal X-ray structure analysis) obtained by single-crystal X-ray structure analysis.
- compound 1:acetone:water is modeled as 1:1:4.
- FIG. 13 shows the results of acetone-hydrate crystals of Compound 1 obtained in Example 26-2 (H-type crystals, for powder X-ray diffraction measurement).
- the vertical axis is the diffraction intensity
- the horizontal axis is the diffraction angle 2 ⁇ (°).
- alkyl refers to a monovalent group derived from an aliphatic hydrocarbon by removing any one hydrogen atom, and refers to heteroatoms (atoms other than carbon and hydrogen atoms) in the skeleton. ) or a subset of hydrocarbyl or hydrocarbon radical structures containing hydrogen and carbon atoms without containing unsaturated carbon-carbon bonds. Alkyl includes not only straight chain but also branched chain.
- the alkyl is alkyl having 1 to 20 carbon atoms (C 1 -C 20 , hereinafter “C p -C q ” means having p to q carbon atoms), C 1 -C 10 alkyl is preferred, and C 1 -C 6 alkyl is more preferred.
- alkyl examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, t-butyl, isobutyl (2-methylpropyl), n-pentyl, s-pentyl (1- methylbutyl), t-pentyl (1,1-dimethylpropyl), neopentyl (2,2-dimethylpropyl), isopentyl (3-methylbutyl), 3-pentyl (1-ethylpropyl), 1,2-dimethylpropyl, 2 -methylbutyl, n-hexyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1,1,2,2-tetramethylpropyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl , 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-
- alkenyl refers to monovalent radicals having at least one double bond (two adjacent SP 2 carbon atoms). Depending on the configuration of the double bond and substituents (if any), the geometry of the double bond can be
- E Electrode
- Z Zero
- Alkenyl includes not only straight-chain but also branched ones. Alkenyl preferably includes C 2 -C 10 alkenyl, more preferably C 2 -C 6 alkenyl, and specific examples include vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl. (including cis and trans), 3-butenyl, pentenyl, 3-methyl-2-butenyl, hexenyl and the like.
- alkynyl refers to monovalent radicals having at least one triple bond (two adjacent SP carbon atoms). Alkynyl includes not only straight chain but also branched ones. Alkynyl preferably includes C 2 -C 10 alkynyl, more preferably C 2 -C 6 alkynyl, and specific examples include ethynyl, 1-propynyl, propargyl, 3-butynyl, pentynyl, hexynyl, 3-phenyl.
- cycloalkyl means a saturated or partially saturated cyclic monovalent aliphatic hydrocarbon group, including monocyclic, bicyclocyclic and spirocyclic rings. Cycloalkyl preferably includes C 3 -C 8 cycloalkyl, and specific examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, bicyclo[2.2.1]heptyl, spiro[ 3.3]heptyl and the like.
- aryl means a monovalent aromatic hydrocarbon ring, preferably C 6 -C 10 aryl. Specific examples of aryl include phenyl, naphthyl (eg, 1-naphthyl, 2-naphthyl), and the like.
- heterocyclyl means a non-aromatic cyclic monovalent group containing 1 to 5 heteroatoms in addition to carbon atoms.
- a heterocyclyl may have double and or triple bonds in the ring, a carbon atom in the ring may be oxidized to form a carbonyl, and may be single or fused rings.
- the number of atoms constituting the ring is preferably 4-10 (4- to 10-membered heterocyclyl), more preferably 4-7 (4- to 7-membered heterocyclyl).
- heterocyclyl examples include azetidinyl, oxiranyl, oxetanyl, azetidinyl, dihydrofuryl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, tetrahydropyridyl, tetrahydropyrimidyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, piperidinyl, piperazinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, 1,2-thiazinane, thiadiazolidinyl, azetidinyl, oxazolidone, benzodioxanyl, benzoxazolyl, dioxolanyl, dioxanyl, Tetrahydr
- heteroaryl means an aromatic cyclic monovalent group containing 1 to 5 heteroatoms in addition to carbon atoms.
- the ring may be monocyclic, condensed with another ring, or partially saturated.
- the number of atoms constituting the ring is preferably 5-10 (5- to 10-membered heteroaryl), more preferably 5-7 (5- to 7-membered heteroaryl).
- heteroaryl examples include furyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, benzothienyl .
- alkoxy means an oxy group to which “alkyl” defined above is bonded, preferably C 1 -C 6 alkoxy. Specific examples of alkoxy include methoxy, ethoxy, 1-propoxy, 2-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, pentyloxy, 3-methylbutoxy and the like.
- alkenyloxy means an oxy group to which the above-defined “alkenyl” is attached, preferably C 2 -C 6 alkenyloxy.
- alkenyloxy include vinyloxy, allyloxy, 1-propenyloxy, 2-propenyloxy, 1-butenyloxy, 2-butenyloxy (including cis and trans), 3-butenyloxy, pentenyloxy, hexenyloxy, and the like. mentioned.
- cycloalkoxy means an oxy group to which the above-defined “cycloalkyl” is attached, preferably C 3 -C 8 cycloalkoxy. Specific examples of cycloalkoxy include cyclopropoxy, cyclobutoxy, cyclopentyloxy and the like.
- aryloxy means an oxy group to which the above-defined “aryl” is attached, preferably C 6 -C 10 aryloxy. Specific examples of aryloxy include phenoxy, 1-naphthyloxy, 2-naphthyloxy and the like.
- amino narrowly means -NH2 and broadly means -NRR', where R and R' are independently hydrogen, alkyl, alkenyl, alkynyl, cyclo is selected from alkyl, heterocyclyl, aryl, or heteroaryl, or R and R' together with the nitrogen atom to which they are attached form a ring.
- Preferred amino groups include -NH 2 , mono-C 1 -C 6 alkylamino, di-C 1 -C 6 alkylamino, 4- to 8-membered cyclic amino and the like.
- “monoalkylamino” means a group of “amino” defined above in which R is hydrogen and R′ is “alkyl” defined above, preferably mono-C 1 —C6 alkylamino. Specific examples of monoalkylamino include methylamino, ethylamino, n-propylamino, i-propylamino, n-butylamino, s-butylamino, t-butylamino and the like.
- dialkylamino means a group of “amino” defined above in which R and R′ are independently “alkyl” defined above, preferably di-C 1 -C 6 Alkylamino may be mentioned. Specific examples of dialkylamino include dimethylamino and diethylamino.
- cyclic amino means a group in which R and R′ in the above-defined “amino” form a ring together with the nitrogen atom to which they are attached, preferably A 4- to 8-membered cyclic amino is included.
- Specific examples of cyclic amino include 1-azetidyl, 1-pyrrolidyl, 1-piperidyl, 1-piperazyl, 4-morpholinyl, 3-oxazolidyl, 1,1-dioxidethiomorpholinyl-4-yl, 3 -oxa-8-azabicyclo[3.2.1]octan-8-yl and the like.
- protected amino means an amino group protected with any protecting group.
- Protected amino specifically includes, for example, amino protected with a protecting group such as Boc, Fmoc, Cbz, Troc, Alloc, Teoc, or trifluoroacetyl.
- aminocarbonyl means a carbonyl group to which “amino” as defined above is attached, preferably —CONH 2 , mono-C 1 -C 6 alkylaminocarbonyl, di-C 1 -C 6 alkyl Aminocarbonyl, 4- to 8-membered cyclic aminocarbonyl.
- aminocarbonyl examples include —CONH 2 , dimethylaminocarbonyl, 1-azetidinylcarbonyl, 1-pyrrolidinylcarbonyl, 1-piperidinylcarbonyl, 1-piperazinylcarbonyl, 4-morpholylcarbonyl, nylcarbonyl, 3-oxazolidinylcarbonyl, 1,1-dioxidethiomorpholinyl-4-ylcarbonyl, 3-oxa-8-azabicyclo[3.2.1]octan-8-ylcarbonyl and the like. be done.
- alkenyloxycarbonyl means a carbonyl group to which the above-defined “alkenyloxy” is bonded, preferably C 2 -C 6 alkenyloxycarbonyl.
- alkenyloxycarbonyl include vinyloxycarbonyl, allyloxycarbonyl, 1-propenyloxycarbonyl, 2-propenyloxycarbonyl, 1-butenyloxycarbonyl, 2-butenyloxycarbonyl (including cis and trans ), 3-butenyloxycarbonyl, pentenyloxycarbonyl, hexenyloxycarbonyl and the like.
- alkylsulfonyl means a sulfonyl group to which the above-defined “alkyl” is attached, preferably C 1 -C 6 alkylsulfonyl. Specific examples of alkylsulfonyl include methylsulfonyl and the like.
- hydroxyalkyl means a group in which one or more hydrogen atoms of “alkyl” defined above are replaced with hydroxyl groups, preferably C 1 -C 6 hydroxyalkyl.
- Specific examples of hydroxyalkyl include hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2-hydroxy-2-methylpropyl, 5-hydroxypentyl and the like.
- haloalkyl means a group in which one or more hydrogen atoms of “alkyl” defined above is replaced with halogen, preferably C 1 -C 6 haloalkyl, C 1 -C 6 fluoroalkyl is more preferred.
- haloalkyl include difluoromethyl, trifluoromethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 3,3-difluoropropyl, 4,4-difluorobutyl, 5,5 - difluoropentyl and the like.
- cyanoalkyl means a group in which one or more hydrogens of “alkyl” defined above is replaced with cyano, preferably C 1 -C 6 cyanoalkyl. Specific examples of cyanoalkyl include cyanomethyl, 2-cyanoethyl and the like.
- aminoalkyl as used herein means a group in which one or more hydrogen atoms of “alkyl” as defined above are replaced with “amino” as defined above, preferably C 1 -C 6 aminoalkyl.
- Specific examples of aminoalkyl include 1-pyridylmethyl, 2-(1-piperidyl)ethyl, 3-(1-piperidyl)propyl, 4-aminobutyl and the like.
- carboxyalkyl means a group in which one or more hydrogens of "alkyl” as defined above are replaced with carboxy, preferably C 2 -C 6 carboxyalkyl. Specific examples of carboxyalkyl include carboxymethyl and the like.
- alkenyloxycarbonylalkyl as used herein means a group in which one or more hydrogens of “alkyl” defined above is replaced with “alkenyloxycarbonyl” defined above, and C 2 -C 6 alkenyl Oxycarbonyl C 1 -C 6 alkyl is preferred and C 2 -C 6 alkenyloxycarbonyl C 1 -C 2 alkyl is more preferred.
- alkenyloxycarbonylalkyl include allyloxycarbonylmethyl, 2-(allyloxycarbonyl)ethyl and the like.
- alkoxyalkyl means a group in which one or more hydrogen atoms of “alkyl” defined above are replaced with “alkoxy” defined above, and C 1 -C 6 alkoxyC 1 -C 6 alkyl is preferred, and C 1 -C 6 alkoxyC 1 -C 2 alkyl is more preferred.
- Specific examples of alkoxyalkyl include methoxymethyl, ethoxymethyl, 1-propoxymethyl, 2-propoxymethyl, n-butoxymethyl, i-butoxymethyl, s-butoxymethyl, t-butoxymethyl, pentyloxymethyl, 3-methylbutoxymethyl, 1-methoxyethyl, 2-methoxyethyl, 2-ethoxyethyl and the like.
- cycloalkylalkyl means a group in which one or more hydrogens of “alkyl” as defined above are replaced with “cycloalkyl” as defined above, and C 3 -C 8 cycloalkylC 1 - C6 alkyl is preferred and C3 - C6 cycloalkyl C1 - C2 alkyl is more preferred.
- Specific examples of cycloalkylalkyl include cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl and the like.
- cycloalkoxyalkyl means a group in which one or more hydrogens of “alkyl” defined above is replaced with “cycloalkoxy” defined above, and C 3 -C 8 cycloalkoxyC 1 - C6 alkyl is preferred, and C3 - C6 cycloalkoxyC1 - C2 alkyl is more preferred.
- Specific examples of cycloalkoxyalkyl include cyclopropoxymethyl, cyclobutoxymethyl and the like.
- heterocyclylalkyl means a group in which one or more hydrogens of “alkyl” as defined above is replaced with “heterocyclyl” as defined above, 4- to 7-membered heterocyclyl C 1 -C 6 Alkyl is preferred, and 4- to 7-membered heterocyclyl C 1 -C 2 alkyl is more preferred.
- Specific examples of heterocyclylalkyl include 2-(tetrahydro-2H-pyran-4-yl)ethyl, 2-(azetidin-3-yl)ethyl and the like.
- alkylsulfonylalkyl means a group in which one or more hydrogen atoms of “alkyl” defined above are replaced with “alkylsulfonyl” defined above, and C 1 -C 6 alkylsulfonylC 1 - C6 alkyl is preferred, and C1 - C6 alkylsulfonyl C1 - C2 alkyl is more preferred.
- Specific examples of alkylsulfonylalkyl include methylsulfonylmethyl, 2-(methylsulfonyl)ethyl and the like.
- aminocarbonylalkyl means a group in which one or more hydrogen atoms of "alkyl” defined above are replaced with “aminocarbonyl” defined above, and aminocarbonylC 1 -C 6 alkyl is preferred, and aminocarbonyl C 1 -C 4 alkyl is more preferred.
- aminocarbonylalkyl examples include, for example, methylaminocarbonylmethyl, dimethylaminocarbonylmethyl, t-butylaminocarbonylmethyl, 1-azetidinylcarbonylmethyl, 1-pyrrolidinylcarbonylmethyl, 1-piperidinylcarbonyl methyl, 4-morpholinylcarbonylmethyl, 2-(methylaminocarbonyl)ethyl, 2-(dimethylaminocarbonyl)ethyl, 2-(1-azetidinylcarbonyl)ethyl, 2-(1-pyrrolidinylcarbonyl) ethyl, 2-(4-morpholinylcarbonyl)ethyl, 3-(dimethylaminocarbonyl)propyl, 4-(dimethylaminocarbonyl)butyl and the like.
- aryloxyalkyl means a group in which one or more hydrogen atoms of “alkyl” defined above are replaced with “aryloxy” defined above, and C 6 -C 10 aryloxy C 1 -C 6 alkyl is preferred, and C 6 -C 10 aryloxy C 1 -C 2 alkyl is more preferred.
- Specific examples of aryloxyalkyl include phenoxymethyl, 2-phenoxyethyl and the like.
- aralkyl (arylalkyl) means a group in which at least one hydrogen atom of "alkyl” defined above is replaced with “aryl” defined above, preferably C7 - C14 aralkyl. , C 7 -C 10 aralkyl are more preferred. Specific examples of aralkyl include benzyl, phenethyl, 3-phenylpropyl and the like.
- aralkoxy means an oxy group to which the above-defined “aralkyl” is attached, preferably C 7 -C 14 aralkoxy, more preferably C 7 -C 10 aralkoxy.
- aralkoxy include benzyloxy, phenethyloxy, 3-phenylpropoxy and the like.
- aralkoxyalkyl means a group in which one or more hydrogens of "alkyl” as defined above is replaced with “aralkoxy” as defined above, and C 7 -C 14 aralkoxyC 1 —C 6 alkyl is preferred, and C 7 -C 14 aralkoxy C 1 -C 2 alkyl is more preferred.
- Specific examples of aralkoxyalkyl include benzyloxymethyl, 1-(benzyloxy)ethyl and the like.
- heteroarylalkyl means a group in which at least one hydrogen atom of “alkyl” defined above is replaced with “heteroaryl” defined above, and a 5- to 10-membered heteroaryl C 1 - C 6 alkyl is preferred, and 5-10 membered heteroaryl C 1 -C 2 alkyl is more preferred.
- heteroarylalkyl examples include 3-thienylmethyl, 4-thiazolylmethyl, 2-pyridylmethyl, 3-pyridylmethyl, 4-pyridylmethyl, 2-(2-pyridyl)ethyl, 2-(3-pyridyl ) ethyl, 2-(4-pyridyl)ethyl, 2-(6-quinolyl)ethyl, 2-(7-quinolyl)ethyl, 2-(6-indolyl)ethyl, 2-(5-indolyl)ethyl, 2- (5-benzofuranyl)ethyl and the like.
- heteroarylalkoxy means an oxy group to which the above-defined “heteroarylalkyl” is attached, preferably 5- to 10-membered heteroaryl C 1 -C 6 alkoxy, 5- to 10-membered heteroaryl More preferred is C 1 -C 2 alkoxy.
- Specific examples of heteroarylalkoxy include 3-thienylmethoxy and 3-pyridylmethoxy.
- heteroarylalkoxyalkyl as used herein means a group in which one or more hydrogen atoms of “alkyl” defined above is replaced with “heteroarylalkoxy” defined above, and a 5- to 10-membered heteroaryl C 1 -C 6 alkoxy C 1 -C 6 alkyl is preferred, and 5-10 membered heteroaryl C 1 -C 2 alkoxy C 1 -C 2 alkyl is more preferred.
- Specific examples of heteroarylalkoxyalkyl include 3-pyridylmethoxymethyl and the like.
- heterocycloalkylidenealkyl means a group in which one or more hydrogen atoms of "alkyl” defined above is replaced with “heterocycloalkylidene” defined above, and a 4- to 7-membered heterocyclo Alkylidene C 1 -C 6 alkyl is preferred, and 4- to 7-membered heterocycloalkylidene C 1 -C 2 alkyl is more preferred.
- Specific examples of heteroarylalkoxyalkyl include tetrahydro-4H-pyran-4-ylidenemethyl, azetidin-3-ylidenemethyl and the like.
- alkoxyalkenyl means a group in which one or more hydrogen atoms of "alkenyl” as defined above are replaced with “alkoxy” as defined above, and C 1 -C 6 alkoxy C 2 -C 6 alkenyl is preferred.
- alkoxyalkenyl include (E)-4-methoxybut-2-en-1-yl and the like.
- aminocarbonylalkenyl means a group in which one or more hydrogen atoms of "alkenyl” defined above is replaced with “aminocarbonyl” defined above, and aminocarbonyl C 2 -C 6 alkenyl is preferred.
- Specific examples of aminocarbonylalkenyl include (E)-3-(dimethylaminocarbonyl)-prop-2-en-1-yl and the like.
- haloalkoxy means a group in which one or more hydrogen atoms of “alkoxy” defined above is replaced with halogen, preferably C 1 -C 6 haloalkoxy.
- haloalkoxy include difluoromethoxy, trifluoromethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy and the like.
- alkylene means a divalent group derived by further removing one hydrogen atom from the above “alkyl”, preferably C 4 -C 8 alkylene.
- alkylene include -CH 2 -, -(CH 2 ) 2 -, -(CH 2 ) 3 -, -CH(CH 3 )CH 2 -, -C(CH 3 ) 2 -, -(CH 2 ) 4- , -CH( CH3 ) CH2CH2- , -C ( CH3 ) 2CH2- , -CH2CH ( CH3 )CH2-, -CH2C ( CH3 ) 2- , -CH 2 CH 2 CH(CH 3 )-, -(CH 2 ) 5 -, -(CH 2 ) 6 -, -(CH 2 ) 7 -, -(CH 2 ) 8 - and the like.
- Alicyclic ring as used herein means a non-aromatic hydrocarbon ring.
- the alicyclic ring may have an unsaturated bond in the ring, or may be a polycyclic ring having two or more rings.
- a carbon atom constituting a ring may be oxidized to form a carbonyl.
- the alicyclic ring preferably includes a 3- to 8-membered alicyclic ring, and specific examples thereof include cyclopropane ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, bicyclo[ 2.2.1] heptane ring and the like.
- saturated heterocycle herein is meant a non-aromatic heterocycle containing from 1 to 5 heteroatoms in addition to carbon atoms and no double and/or triple bonds in the ring. do.
- the saturated heterocyclic ring may be monocyclic, or may form a condensed ring with another ring such as an aromatic ring such as a benzene ring.
- the saturated heterocyclic ring preferably includes a 4- to 7-membered saturated heterocyclic ring, and specific examples include, for example, azetidine ring, oxetane ring, tetrahydrofuran ring, tetrahydropyran ring, morpholine ring, thiomorpholine ring, pyrrolidine ring, 4-oxo pyrrolidine ring, piperidine ring, 4-oxopiperidine ring, piperazine ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, isoxazolidine ring, thiazolidine ring, isothiazolidine ring, thiadiazolidine ring, sazolidone ring, dioxolane ring, dioxane ring, thietane ring, octahydroindole ring, indoline ring and the like.
- Peptide in the present specification is not particularly limited as long as it is a peptide formed by amide bond or ester bond of natural amino acids and/or unnatural amino acids, preferably 5 to 30 residues, more preferably 7 to It is a peptide of 15 residues, more preferably 9-13 residues. Peptides may be linear peptides or cyclic peptides.
- peptide chain refers to a peptide chain in which 1, 2, 3, 4, or more natural amino acids and/or unnatural amino acids are linked by amide bonds and/or ester bonds.
- the peptide chain is preferably a peptide chain containing 1 to 4 amino acid residues, more preferably a peptide chain consisting of 1 to 4 amino acid residues.
- One or more as used herein means one or two or more numbers. When “one or more” is used in the context of substituents on a group, the term means from one to the maximum number of substituents allowed by the group. “One or more” specifically includes, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and/or greater.
- the compound of the present invention can be a salt thereof, preferably a chemically or pharmaceutically acceptable salt thereof.
- the compounds of the present invention or salts thereof can also be solvates thereof, preferably chemically or pharmaceutically acceptable solvates thereof.
- Salts of the compounds of the present invention include, for example, hydrochloride; hydrobromide; hydroiodide; phosphate; sulfonates; carboxylates such as acetates, citrates, malate, tartrates, succinates, salicylates; or alkali metal salts such as sodium salts, potassium salts; alkaline earth metal salts; ammonium salts such as ammonium salts, alkylammonium salts, dialkylammonium salts, trialkylammonium salts and tetraalkylammonium salts; These salts are produced, for example, by contacting the compound with an acid or base that can be used in the production of pharmaceuticals.
- the solvate of a compound refers to a compound formed with a solvent to form a single molecular cluster, and is a solvate formed with a solvent that is acceptable for ingestion accompanying administration of a drug.
- a solvent that is acceptable for ingestion accompanying administration of a drug.
- the solvent is water, it is called a hydrate.
- the solvate of the compound of the present invention is preferably a hydrate, and such a hydrate is specifically a 1-10 hydrate, preferably a 1-5 hydrate, more preferably a 1-3 hydrates.
- Solvates of the compounds of the invention include solvates with a single solvent such as water, alcohols (e.g., methanol, ethanol, 1-propanol, 2-propanol, etc.), dimethylformamide, etc., as well as multiple solvents. Also included are solvates with a single solvent such as water, alcohols (e.g., methanol, ethanol, 1-propanol, 2-propanol, etc.), dimethylformamide, etc., as well as multiple solvents. Also included are solvates with a single solvent such as water, alcohols (e.g., methanol, ethanol, 1-propanol, 2-propanol, etc.), dimethylformamide, etc., as well as multiple solvents. Also included are solvates with a single solvent such as water, alcohols (e.g., methanol, ethanol, 1-propanol, 2-propanol, etc.), dimethylformamide, etc., as well as multiple solvents. Also included are solvates with
- amino acid includes natural amino acids and non-natural amino acids.
- natural amino acids include Gly, Ala, Ser, Thr, Val, Leu, Ile, Phe, Tyr, Trp, His, Glu, Asp, Gln, Asn, Cys, Met, Lys, Arg, Pro point to Non-natural amino acids are not particularly limited, but are exemplified by ⁇ -amino acids, ⁇ -amino acids, D-amino acids, N-substituted amino acids, ⁇ , ⁇ -disubstituted amino acids, amino acids whose side chains are different from natural ones, and hydroxycarboxylic acids. Any configuration is acceptable for the amino acids herein.
- the side chains of amino acids are not particularly limited, but may be selected freely from, for example, alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, aralkyl groups, and cycloalkyl groups in addition to hydrogen atoms.
- One or two non-adjacent methylene groups in the group may be substituted with an oxygen atom, a carbonyl group (--CO--), or a sulfonyl group ( --SO.sub.2-- ).
- each may be given a substituent, and these substituents are not limited, for example, any substituent containing a halogen atom, an O atom, an S atom, an N atom, a B atom, a Si atom, or a P atom
- substituents are not limited, for example, any substituent containing a halogen atom, an O atom, an S atom, an N atom, a B atom, a Si atom, or a P atom
- substituents are not limited, for example, any substituent containing a halogen atom, an O atom, an S atom, an N atom, a B atom, a Si atom, or a P atom
- Examples include optionally substituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, aralkyl groups, cycloalkyl groups and the like.
- the amino acid herein may be a compound having a carboxy
- the backbone amino group of an amino acid can be unsubstituted ( NH2 group) or optionally substituted (i.e. -NHR group: R is optionally substituted alkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, cycloalkyl, wherein 1 or 2 non-adjacent methylene groups in these groups are substituted with an oxygen atom, a carbonyl group (--CO--), or a sulfonyl group (--SO 2 --);
- the carbon chain bonded to the N atom and the carbon atom at the ⁇ -position may form a ring like proline).
- the substituents for R are selected in the same manner as the substituents in the amino acid side chains described above.
- the aforementioned R when the main chain amino group is substituted is included in the "side chain of amino acid" in the present specification.
- Amino acids in which such backbone amino groups are substituted are referred to herein as "N-substituted amino acids.”
- the "N-substituted amino acid” in the present specification is preferably exemplified by N-alkylamino acid, N-C 1 -C 6 alkylamino acid, N-C 1 -C 4 alkylamino acid and N-methylamino acid. is not limited to
- amino acids that make up the peptide compounds herein include all corresponding isotopes.
- Isotopes of "amino acids” are those in which at least one atom is replaced with an atom with the same atomic number (number of protons) but a different mass number (sum of protons and neutrons) in an abundance ratio different from the natural one. is.
- Examples of isotopes contained in the "amino acid” that constitutes the peptide compound of the present invention include a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom, a phosphorus atom, a sulfur atom, a fluorine atom, a chlorine atom, and the like. 2H , 3H , 13C , 14C , 15N , 17O , 18O , 31P , 32P , 35S , 18F , 36Cl and the like are included.
- Examples of the substituent containing a halogen atom in the present specification include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aralkyl group and the like having a halogen as a substituent, and more specifically is exemplified by fluoroalkyl, difluoroalkyl, trifluoroalkyl and the like.
- oxy examples include alkoxy, cycloalkoxy, alkenyloxy, alkynyloxy, aryloxy, heteroaryloxy, aralkyloxy and the like.
- alkoxy C 1 -C 4 alkoxy and C 1 -C 2 alkoxy are preferred, and methoxy and ethoxy are especially preferred.
- Examples of oxycarbonyl include alkyloxycarbonyl, cycloalkyloxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, aryloxycarbonyl, heteroaryloxycarbonyl, aralkyloxycarbonyl and the like.
- Examples of carbonyloxy include alkylcarbonyloxy, cycloalkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy, arylcarbonyloxy, heteroarylcarbonyloxy, aralkylcarbonyloxy and the like. .
- thiocarbonyl examples include alkylthiocarbonyl, cycloalkylthiocarbonyl, alkenylthiocarbonyl, alkynylthiocarbonyl, arylthiocarbonyl, heteroarylthiocarbonyl, aralkylthiocarbonyl and the like.
- Examples of carbonylthio include alkylcarbonylthio, cycloalkylcarbonylthio, alkenylcarbonylthio, alkynylcarbonylthio, arylcarbonylthio, heteroarylcarbonylthio, aralkylcarbonylthio and the like. .
- aminocarbonyl examples include alkylaminocarbonyl (e.g. C 1 -C 6 or C 1 -C 4 alkylaminocarbonyl, especially ethylaminocarbonyl, methylaminocarbonyl, etc.) ), cycloalkylaminocarbonyl, alkenylaminocarbonyl, alkynylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, aralkylaminocarbonyl and the like.
- alkylaminocarbonyl e.g. C 1 -C 6 or C 1 -C 4 alkylaminocarbonyl, especially ethylaminocarbonyl, methylaminocarbonyl, etc.
- cycloalkylaminocarbonyl alkenylaminocarbonyl, alkynylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, aralkylaminocarbonyl
- Examples of carbonylamino include alkylcarbonylamino, cycloalkylcarbonylamino, alkenylcarbonylamino, alkynylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, aralkylcarbonylamino and the like. .
- Examples of oxycarbonylamino include alkoxycarbonylamino, cycloalkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, aralkyloxy carbonylamino and the like.
- Examples of sulfonylamino include alkylsulfonylamino, cycloalkylsulfonylamino, alkenylsulfonylamino, alkynylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, aralkylsulfonylamino, and the like.
- groups in which the H atom attached to the N atom in —NH—SO 2 —R is further substituted with alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl.
- aminosulfonyl examples include alkylaminosulfonyl, cycloalkylaminosulfonyl, alkenylaminosulfonyl, alkynylaminosulfonyl, arylaminosulfonyl, heteroarylaminosulfonyl, aralkylaminosulfonyl, and the like.
- groups in which the H atom attached to the N atom in —SO 2 —NHR is further substituted with alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl.
- sulfamoylamino examples include alkylsulfamoylamino, cycloalkylsulfamoylamino, alkenylsulfamoylamino, alkynylsulfamoylamino, arylsulfamoylamino, hetero arylsulfamoylamino, aralkylsulfamoylamino and the like.
- the two H atoms attached to the N atom in —NH—SO 2 —NHR are substituents independently selected from the group consisting of alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, and aralkyl. It may be substituted and these two substituents may form a ring.
- thio are selected from alkylthio, cycloalkylthio, alkenylthio, alkynylthio, arylthio, heteroarylthio, aralkylthio and the like.
- sulfonyl examples include alkylsulfonyl, cycloalkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aralkylsulfonyl, and the like.
- secondary amino examples include alkylamino, cycloalkylamino, alkenylamino, alkynylamino, arylamino, heteroarylamino, aralkylamino and the like.
- tertiary amino examples include, for example, alkyl(aralkyl)amino, independently among alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, aralkyl, and the like. and an amino group having any two substituents selected by , and these two arbitrary substituents may form a ring.
- Specific examples include dialkylamino, especially C 1 -C 6 dialkylamino, C 1 -C 4 dialkylamino, dimethylamino and diethylamino.
- C p -C q dialkylamino group refers to a group in which an amino group is substituted with two C p -C q alkyl groups, and both C p -C q alkyl groups are the same. may also be different.
- substituted amidinos are those in which the three substituents R, R', and R'' on the N atom are alkyl, cycloalkyl, alkenyl, alkynyl, aryl, hetero Groups independently selected from aryl and aralkyl, such as alkyl(aralkyl)(aryl)amidino and the like.
- aminocarbonylamino (-NR-CO-NR'R) is a Examples thereof include independently selected groups, groups formed by forming a ring, and the like.
- amino acid residue that constitutes the peptide compound is sometimes simply referred to as "amino acid”.
- A, B, and/or C includes any appropriate combination of “and” and “or”.
- A, B, and/or C includes the following seven variations; (i) A, (ii) B, (iii) C, (iv) A and B, (v) A and C, (vi) B and C, (vii) A, B, and C.
- the phrase "substantially/substantially consists of” means that the ingredients listed herein are the major ingredients (e.g., cyclic peptide compounds, cyclic peptide compounds, and crystalline forms of peptide compounds are (including but not limited to), if it does not negatively affect the effects of the embodiments of the present invention, if it is in an amount that does not negatively affect the effect of the embodiment of the present invention, or if Embodiments that do not have such a negative impact mean that other ingredients may be included.
- other components include, but are not limited to, components not described herein (crystals other than the desired crystal form, reaction by-products, or impurities exemplified by unreacted substances). not have a negative impact on embodiments of the invention, or in amounts to the extent that they do not have such a negative impact, or in embodiments to the extent that they do not have such a negative impact. may contain components of
- substantially free/free means that the ingredients listed herein are not the main ingredients (e.g., cyclic peptide compounds, cyclic peptide compounds and crystalline forms of peptide compounds). (including, but not limited to, ) and no other ingredients, or if such ingredients do not negatively affect the efficacy of an embodiment of the present invention, such negative It is meant that other ingredients may be included in amounts that are insignificant, or in embodiments that are insignificant to such negative effects. For example, such components described herein do not negatively affect the efficacy of the embodiments of the invention, are in amounts such that they do not negatively affect, or Those components may be included in embodiments that do not have a negative impact.
- negative effect used in relation to the effect of the present invention means an effect that negates the effect of the present invention. For example, when the action that should be exhibited in nature is taken as 100%, what reduces the action of the present invention to 30%, 20%, 10%, or 5% or less can also be said to have a "negative effect”. can.
- a method for producing a cyclic peptide compound in one aspect, relates to a method for producing a cyclic peptide compound, or a salt thereof, or a solvate thereof by a liquid phase method, the method comprising the steps of adding one or more kinds of water and an immiscible solvent (e.g., a solvent with low water solubility, a solvent with a high water/octanol coefficient (log Kow), or a solvent with a high water/octanol coefficient prediction), one or more water-soluble alkylnitriles, and Linking the N-terminal amino acid residue and the C-terminal amino acid residue of the peptide compound in a solvent (solvent A) containing one or more selected from the group consisting of one or more water-soluble ethers Including process.
- an immiscible solvent e.g., a solvent with low water solubility, a solvent with a high water/octanol coefficient (log Kow), or
- the water immiscible solvent can be characterized as an ester having 3 to 10 carbon atoms, specifically ethyl acetate, isopropyl acetate, n-propyl acetate, t-butyl acetate, propionate.
- ester having 3 to 10 carbon atoms, specifically ethyl acetate, isopropyl acetate, n-propyl acetate, t-butyl acetate, propionate.
- Examples include methyl acid and ethyl propionate.
- the water immiscible solvent can be characterized as a cyclic ether having 4 or more and 10 or less carbon atoms, specifically 2-MeTHF, THF, 4-methyltetrahydropyran or 1,4 -dioxane and the like are exemplified.
- the water immiscible solvent can be characterized as an acyclic ether having 4 or more and 10 or less carbon atoms, such as MTBE, diisopropyl ether or diethyl ether.
- the water immiscible solvent can be characterized as an ether having both cyclic and non-cyclic alkyl groups having 6 or more and 10 or less carbon atoms, specifically exemplified by CPME and the like. .
- the water-immiscible solvent can be characterized as a carbonate ester having 3 or more and 10 or less carbon atoms, specifically exemplified by dimethyl carbonate, diethyl carbonate, or diisopropyl carbonate.
- the water-immiscible solvent can be characterized as a hydrocarbon having 5 or more and 10 or less carbon atoms, specifically exemplified by pentane, hexane, or heptane.
- the water-immiscible solvent can be characterized as an aromatic hydrocarbon ring having 6 or more and 10 or less carbon atoms, specifically exemplified by toluene, xylene, or benzene.
- the water immiscible solvent can be characterized as having a low boiling point at ambient pressure (about 1 atmosphere).
- the low boiling point at normal pressure (around 1 atm) is exemplified as 35°C or higher and lower than 140°C.
- solvents having a boiling point of 140°C or higher at normal pressure such as DMF, DMA, NMP or dimethylsulfoxide can be excluded in the present invention.
- solvents that may potentially react with the peptide compound or cyclic peptide compound may be excluded from water-immiscible solvents in the present invention.
- unsuitable solvents as water immiscible solvents can be characterized as amines (e.g., n-propylamine or diisopropylamine), or alcohols (e.g., methanol, ethanol, n-propanol, phenol). can.
- the water-immiscible solvent used herein includes, but is not particularly limited to, solvents with low water solubility (eg, having a water solubility of 150 g/L or less).
- Water solubility can be determined by any method known in the art or described herein. Exemplary methods for determining solubility include, but are not intended to be limiting, gas chromatography, in which the solvent is heated to room temperature (eg, 15°C to 40°C, preferably 20°C to 30°C). ) can also be determined by measuring the concentration of said solvent in water prepared by mixing with an equal volume of water.
- a solvent with a large water/octanol coefficient (log Kow) value preferably has a coefficient greater than 0 (zero) and less than 5.
- the water/octanol coefficient (log Kow) can be determined by any method known in the art or described herein. Solvents with large water/octanol coefficients (log Kow) also include solvents with large predicted water/octanol coefficients, including, but not limited to, known in separate explicit measurements, e.g., by database searches or literature searches. can be determined by means.
- the water immiscible solvent is a solvent selected from the group consisting of THF, 2-MeTHF, MTHP, dimethyl carbonate, ethyl acetate, isopropyl acetate, preferably THF, or 2-MeTHF, more preferably 2 -MeTHF.
- THF Trifluoride
- 2-MeTHF Trimethyl carbonate
- ethyl acetate ethyl acetate
- isopropyl acetate preferably THF
- 2-MeTHF preferably 2 -MeTHF.
- the miscibility of solvents with water is described in the Merck Index 14th Edition , eg DMSO is described as soluble in water and acetonitrile as miscible with water.
- heptane is described as insoluble in water.
- 2-MeTHF is immiscible with water (Org. Process Res. Dev. 2007, 11, 1, 156-159.).
- the miscibility of a solvent with water can be determined by a well-known method exemplified below by those skilled in the art. For example, when the same volume of solvent and water are mixed at around room temperature (eg, 15° C. to 40° C., preferably 20° C. to 30° C.), the solvent and water separate into two layers.
- the miscibility test of the solvent with water is performed at around room temperature (for example, 15° C. to 40° C., preferably 20° C. to 30° C.), and the same volume of solvent and water are placed in a container such as a separating funnel, a reaction flask, or a reaction kettle.
- the solvent may be referred to as a solvent immiscible with water.
- the miscibility of a solvent with water may depend on the solubility of the solvent in water.
- Solvents that are immiscible with water include solvents that have low solubility in water.
- the solubility in water may change depending on the temperature, but the solubility in this specification means the solubility around room temperature, for example around 20°C to 30°C.
- Solubility in water of a solvent can actually be measured by methods not specified in the methods exemplified above, but can be found in commercial supplier catalogs and in the Merck Index 14th Edition .
- Merck Index 14th Edition states that 139 g of dimethyl carbonate, 43 g of isopropyl acetate, and 100 g of ethyl acetate dissolve in 1 L of water.
- Heptane is described as insoluble in water.
- 2-MeTHF is 140 g (Org. Process Res. Dev. 2007, 11, 1, 156-159.), and dimethyl carbonate is 139 g (J. Mol. Catal. A Chem. 2010, 317, 1 -18.) It is described as dissolving.
- Solvent solubility predictions in water can also be examined by database search tools such as SciFinder®. It states that 3.2 g of anisole, 20 g of isopropyl acetate, 39 g of ethyl acetate, and 4.7 mg of heptane are dissolved in 1 L of water.
- ChemIDplus Advanced (NIH) ([May 1, 2022], Internet ⁇ URL: https://chem.nlm.nih.gov/chemidplus/>) can also check water solubility.
- Acetonitrile, THF, and DMSO that are miscible with water have a water solubility of 1000 g/L. That is, the water-immiscible solvent has a solubility in water of 999 g/L or less, 500 g/L or less, 250 g/L or less, preferably 200 g/L or less, more preferably 150 g/L or less.
- the solubility of 2-MeTHF in water at room temperature is 150 g/L. Therefore, the property that the solvent has a solubility in water of 150 g/L or less at around room temperature (e.g., 25 ° C.) can be said to have properties equivalent to or superior to 2-MeTHF. .
- the solvent-based process of the present invention (1) is immiscible with water when used as a reaction solvent, and is therefore utilized as an extraction solvent in an aqueous work-up of the reaction mixture; (2) when used as an extraction solvent, the extraction solution containing the peptide compound is used as the starting material for the subsequent step/reaction (i.e. the solution containing the starting compound of the subsequent step); , etc., can be useful for use in the synthesis of peptide compounds.
- the method allows the entire reaction to be carried out to completion without isolation of intermediates from the solvent of the starting reaction.
- Solvents with low water solubility include, but are not limited to, solvents with a water solubility of 999 g/L or less, such as 2-MeTHF, dimethyl carbonate, ethyl acetate, isopropyl acetate, heptane, anisole, MTBE, CPME, 4-methyltetrahydropyran, toluene, etc. correspond to solvents with a water solubility of 999 g/L or less.
- 2-MeTHF, dimethyl carbonate, anisole, or a solvent containing one or more of these is preferably used from the viewpoint of increasing the conversion rate to the target product in the cyclization reaction and suppressing the formation of by-products.
- the miscibility of a solvent with water can depend on the solvent-specific water/octanol coefficient (log Kow), or water/octanol coefficient prediction, as described herein.
- the water/octanol coefficient represents the fat-solubility of a compound, and it is known that those with high fat-solubility have large values.
- Log Kow can actually be measured by methods well known to those skilled in the art, as described herein.
- the predicted value of the log Kow value is, for example, the value described in the literature, a search using a database search tool such as SciFinder (registered trademark), ChemIDplus Advanced (NIH) ([Search May 1, 2022], It can also be found by searching on the Internet ⁇ URL: https://chem.nlm.nih.gov/chemidplus/>).
- Examples of log Kow values, or predicted log Kow values, for water immiscible solvents are 1.35 for 2-MeTHF, 0.23 for dimethyl carbonate, 2.11 for anisole, 1.02 for isopropyl acetate, 0.73 for ethyl acetate, and 4.66 for heptane, respectively. and takes a positive value.
- the log Kow value or predicted log Kow value of water-miscible solvents is -0.34 for acetonitrile and -0.31 for DMSO, respectively, which are negative values. That is, the log Kow value of the solvent immiscible with water or the predicted log Ko value w is preferably a positive value, preferably 0 or more and 5 or less.
- 2-MeTHF dimethyl carbonate, ethyl acetate, isopropyl acetate, heptane, anisole, MTBE, CPME, 4-methyltetrahydro and pyran.
- Solvents that are immiscible with water include solvents that have low solubility in water or those that have a positive water/octanol coefficient (log Kow).
- Acetonitrile, propionitrile and the like are mentioned as water-soluble alkylnitriles.
- Water-soluble ethers include THF, 1,4-dioxane, and dimethoxyethane.
- solvent A can include one or more selected from solvents belonging to the group consisting of water-immiscible solvents, water-soluble alkylnitriles, and water-soluble ethers.
- solvent A can include solvents selected from the group consisting of 2-MeTHF, THF, MTHP, dimethyl carbonate, ethyl acetate, isopropyl acetate, anisole, acetonitrile, dichloromethane, and toluene.
- solvent A may consist of only one solvent selected from the group consisting of one or more water-immiscible solvents, one or more water-soluble alkylnitriles, and one or more water-soluble ethers.
- solvent A may contain two or more solvents selected from these.
- solvent A when solvent A contains a water-immiscible solvent, the solvent contained in solvent A may be one or more selected from water-soluble alkylnitriles and water-soluble ethers. .
- solvent A when solvent A contains water-soluble alkylnitriles, the solvent contained in solvent A may be one or more selected from water-immiscible solvents and water-soluble ethers. .
- solvent A when solvent A contains water-soluble ethers, the solvent contained in solvent A may be one or more selected from water-soluble alkylnitriles and water-immiscible solvents. .
- solvent A may include water-immiscible solvents, water-soluble alkylnitriles, and water-soluble ethers, as well as solvents that are none of these, such as DMF and acetone. good.
- solvent A is a solvent that may potentially react with the peptide compounds or cyclic peptide compounds described herein, such as alcohols (MeOH, EtOH, n-PrOH, iPrOH, nBuOH, iBuOH, tBuOH), primary amines ( nPrNH2 , iPrNH2, nBuNH2 , tBuNH2 ), secondary amines ( Et2NH , nPr2NH , iPr2NH , nBu2NH , tBu2NH ), and carboxylic acids It may be free of solvents selected from protic solvents such as (AcOH, EtCO2H , nPrCO2H ).
- protic solvents such as (AcOH, EtCO2H , nPrCO2H ).
- solvent A contains a solvent that is neither a water-immiscible solvent, a water-soluble alkylnitrile, nor a water-soluble ether
- the solvent is preferably 40% by weight or less of the total solvent A, More preferably, it is 30% by weight or less, 25% by weight or less, 20% by weight or less, 15% by weight or less, 10% by weight or less, or 5% by weight or less.
- the peptide compounds of the invention can be linear peptide compounds.
- the peptide compounds of the invention can be cyclic peptide compounds.
- a linear or cyclic peptide compound may contain a cyclic structure as its substructure.
- the cyclic structure includes a side chain of one amino acid residue and a side chain of another amino acid residue linked to each other, and an N-substituent of one amino acid residue and a side chain of another amino acid residue. Examples include those in which the amino acid residue is linked, and the one in which the N-substituent of one amino acid residue and the N-substituent of another amino acid residue are linked.
- the two amino acid residues involved in linking for the cyclic structure may be adjacent, with any number of amino acid residues therebetween, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 amino acid residues are present may
- the size of the ring formed by the cyclic structure is not particularly limited, but is a 4-, 5-, 6-, 7-, 8-, 9-, 10-, and 11-membered ring.
- peptide compound has a cyclic structure
- the number of cyclic structures is not limited, but preferably 1, 2, 3, 4, or 5 cyclic structures are present.
- the amino acid residue on the N-terminal side and the amino acid residue on the C-terminal side of the peptide compound are amide bonds, -(CH 2 ) n S(CH 2 ) m -, -(CH 2 ) n S( linked by a bond selected from O)( CH2 ) m- , or -( CH2 ) nS (O) 2 ( CH2 ) m- .
- n and m are each independently 1 or 2;
- the amino group of the N-terminal amino acid residue and the carboxyl group of the C-terminal amino acid residue are condensed.
- a cyclic peptide compound, a salt thereof, or a solvate thereof can be produced.
- the amide bond may be formed between the main chain amino group of the N-terminal amino acid residue and the main chain carboxyl group of the C-terminal amino acid residue, or the main chain amino group of the N-terminal amino acid residue.
- the carboxyl group may be activated in the system using a condensing reagent, or the carboxyl group may be converted to an active ester in advance.
- condensation of an amino group and a carboxyl group is used when an amino group and a carboxyl group are linked via an amide bond.
- the condensation reaction is carried out in the presence or absence of a condensing reagent in solvent A at a temperature of -20°C to around the boiling point of the solvent, preferably -20°C to 100°C, preferably -5°C to 60°C. by stirring the reaction mixture at a temperature of from 10 minutes to 48 hours.
- a condensing reagent is used in the condensation reaction, the condensing reagent and a solution containing the condensing reagent may be added to a solvent containing the starting material and optionally a base, and the solution containing the starting material and optionally a base is added to the solution containing the condensing reagent.
- the operation of dropping a solution containing a raw material and optionally a base into a solution containing a condensing reagent is sometimes referred to as "reverse dropping".
- reverse dropping By back-dropping the solution containing the condensation reagent over a long period of time, for example, several hours to several days, preferably 1 to 24 hours, more preferably 1 to 10 hours, the by-production of dimers and trimers can be suppressed. can.
- no condensing reagent is used for the condensation reaction, the one in which the carboxyl group has been previously converted to an active ester may be used.
- the condensing agent and the amount used when condensing the amino group and the carboxyl group are not particularly limited as long as they can form an amide bond, and the condensing agent and the amount used generally used in peptide synthesis are preferable (e.g., Peptide Coupling Reagents, More than a Letter Soup (Chem. Rev. 2011, 111, 6557-6602.)).
- condensing agents include condensing agents having a carbodiimide skeleton.
- a condensing agent having a carbodiimide skeleton can be used in the condensation reaction in combination with a hydroxy compound capable of forming an active ester.
- Condensing agents having a carbodiimide skeleton include, for example, N,N'-dicyclohexylcarbodiimide (DCC), N,N'-diisopropylcarbodiimide (DIC), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI HCl) and the like (see, for example, WATANABE Chemical Catalog, Amino acids and chiral building blocks to new medicine).
- DCC N,N'-dicyclohexylcarbodiimide
- DIC N,N'-diisopropylcarbodiimide
- EDCI HCl 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
- Hydroxy compounds capable of forming active esters include, for example, 1-hydroxy-1H-benzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAt), ethyl 2-cyano-2-(hydroxyimino)acetate ( oxyma), 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (HOOBt or HODhbt), N-hydroxy-5-norbornene-2,3-dicarboximide (HONB), 2,3,4,5,6-pentafluorophenol (HOPfp), N-hydroxysuccinimide (HOSu), 6-chloro-1-hydroxy-1H-benzotriazole (Cl-HOBt) (e.g.
- Salts having these skeletons such as K-oxyma, which is a potassium salt of oxyma, can also be used.
- K-oxyma which is a potassium salt of oxyma
- HOBt, HOAt, oxyma, and HOOBt are particularly preferred. Among them, it is preferable to use a combination of DIC and HOAt, or to use a combination of DIC and oxyma.
- O-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate HBTU
- O -(7-aza-1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate HATU
- O-[(ethoxycarbonyl)cyanomethyleneamino]-N,N,N',N'-tetramethyluro hexafluorophosphate HOTU
- O-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate TBTU
- HATU and DIPEA in combination, or to use COMU and DIPEA in combination.
- N,N'-carbonyldiimidazole (CDI), 1,1'-carbonyl-di-(1,2,4-triazole) (CDT), 4-(4,6-dimethoxy-1,3, Condensing agents such as 5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM), propylphosphonic anhydride (T3P) can also be utilized.
- HATU, PyBOP, and PyOxim are preferable as the condensing agent of the present invention from the viewpoint of increasing the conversion rate of the cyclization reaction and suppressing the formation of by-products.
- Combinations of solvents and condensing agents are HATU and anisole, dimethyl carbonate or 2-MeTHF, PyBOP and acetonitrile, anisole, dimethyl carbonate, 2-MeTHF, 4-methyltetrahydropyran or ethyl acetate, PyOxim and acetonitrile, anisole. , dimethyl carbonate, 2-MeTHF and ethyl acetate are preferred. More preferred combinations of solvent and condensing agent are anisole and PyBOP, dimethyl carbonate and PyBOP, and 2-MeTHF and PyBOP.
- the cyclic peptide compound produced by the method of the present invention comprises 8-20, preferably 9-15 amino acid residues, of which at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15 , at least 16, at least 17, at least 18, or at least 19 can be non-natural amino acid residues.
- the proportion of non-natural amino acids contained in the cyclic peptide compound produced by the method of the present invention is 30% or more, 40% or more, 50% or more, 60% or more of the total number of amino acids contained in the peptide compound. , 70% or more, and 80% or more.
- the non-natural amino acid residue contained in the cyclic peptide compound may be an N-substituted non-natural amino acid residue or an N-unsubstituted non-natural amino acid residue.
- Amino acid residues in which the amino group of the main chain of a natural amino acid is substituted with some atom or functional group other than hydrogen, or an amino acid residue in which the side chain has a structure different from that of the natural amino acid and the amino group of the main chain of which is not hydrogen Amino acid residues substituted with atoms or functional groups correspond to N-substituted unnatural amino acid residues.
- an amino acid residue having a side chain structure different from that of a natural amino acid, although the main chain amino group is not substituted corresponds to an N-unsubstituted non-natural amino acid residue.
- the cyclic peptide compounds produced by the methods of the invention have at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 N-substituted amino acid residues can include
- the ratio of N-substituted amino acid residues contained in the cyclic peptide compound produced by the method of the present invention is 30% or more, 40% or more, 50% or more of the total number of amino acids contained in the peptide compound, 60% or more, 70% or more, and 80% or more are exemplified.
- the N-substituted amino acid residue can be an N-substituted non-natural amino acid residue.
- the cyclic peptide compounds produced by the methods of the invention have at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 N-unsubstituted non- It can contain naturally occurring amino acid residues.
- the ratio of N-unsubstituted non-natural amino acid residues contained in the cyclic peptide compound produced by the method of the present invention is 30% or more, 40% or more of the total number of amino acids contained in the peptide compound, Examples are 50% or more, 60% or more, 70% or more, and 80% or more.
- the cyclic peptide compounds produced by the methods of the invention have at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 ⁇ , ⁇ -disubstituted amino acids It can contain residues.
- the ratio of ⁇ , ⁇ -disubstituted amino acid residues contained in the cyclic peptide compound produced by the method of the present invention is 5% or more, 10% or more, or 20% of the total number of amino acids contained in the peptide compound. Above, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more are exemplified.
- the cyclic peptide compound produced by the method of the present invention consists of 9 to 11 amino acid residues, of which 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, or 6 or more are N-substituted amino acid residues, one or more, or two or more of which may be N-unsubstituted non-natural amino acid residues.
- the methods of the present invention are particularly useful for large-scale production of cyclic peptide compounds containing many such unnatural amino acid residues.
- the cyclic peptide compound produced by the method of the present invention is preferably a solvate, which is a hydrate, DMSO-hydrate, acetone-hydrate, or DMSO solvate. is more preferred, and a hydrate is even more preferred.
- one or both of the amino acid residue on the C-terminal side and the amino acid residue on the N-terminal side of the linear peptide compound may be an amino acid residue that does not have an asymmetric carbon at the ⁇ -position carbon of the carboxyl group. can.
- Amino acid residues having no asymmetric carbon at the ⁇ -position carbon of the carboxyl group include amino acid residues having the same substituent at the ⁇ -position carbon.
- an amino acid atom eg glycine or N-substituted glycines such as N-methylglycine
- the ⁇ -carbon is replaced by two hydrogen atoms, i.e., the ⁇ -carbon is —CH 2 —
- the substituents on the ⁇ -position carbon are the same, those having the same substituents such as a methyl group and a methyl group do not have an asymmetric carbon.
- the ⁇ -position carbon is substituted with a spirocyclyl group such as a spirocyclopropyl group, spirocyclobutyl group, spirocyclopentyl group, or spirocyclohexyl group, that is, the substituents on the ⁇ -position carbon are combined with the ⁇ -position carbon.
- a spirocyclyl group such as a spirocyclopropyl group, spirocyclobutyl group, spirocyclopentyl group, or spirocyclohexyl group, that is, the substituents on the ⁇ -position carbon are combined with the ⁇ -position carbon.
- Those that form a ring also do not have an asymmetric carbon at the ⁇ -carbon of the carboxyl group.
- the cyclic peptide compound produced by the method of the present invention has the following formula (1): Is a cyclic peptide compound represented by, or a salt thereof or a solvate thereof.
- compounds of Formula 1 are useful as KRAS inhibitors and are used in various KRAS-related diseases, such as KRAS-related cancers. can be
- the cyclic peptide compound of formula (1) has the following formula (2): can be produced by a method comprising linking the N-terminal amino acid residue and the C-terminal amino acid residue of a linear peptide compound having
- the linking step is selected from the group consisting of one or more water-immiscible solvents, one or more water-soluble alkylnitriles, and one or more water-soluble ethers.
- a solvent comprising one or more of
- a solvent containing water-soluble alkylnitriles such as acetonitrile, or a solvent immiscible with water such as anisole, dimethyl carbonate and/or 2-MeTHF.
- column chromatography is preferably not used for the isolation and/or purification of the cyclic peptide compound produced by the method of the present invention, or a salt or solvate thereof.
- the cyclic peptide compound produced by the method of the present invention, or a salt thereof, or a solvate thereof can be isolated and/or purified by, for example, crystallization by crystallization instead of column chromatography.
- the reaction solution after the condensation reaction is subjected to a liquid separation operation, the organic layer is concentrated and/or filtered as necessary, and then a solvent suitable for crystallization is added to the resulting residue, Crystals of the cyclic peptide compound, or a salt thereof, or a solvate thereof can be obtained by optionally adding seed crystals and stirring as necessary.
- the solvent added during crystallization is not particularly limited as long as it is a solvent that allows the cyclic peptide compound to form crystals.
- Solvents in which the operation can be carried out are preferred.
- a solvent capable of such operation is exemplified.
- the crystals of the cyclic peptide compound can be obtained by keeping the crude crystals of the cyclic peptide compound suspended in a suspension state for an arbitrary time, a solvent that allows such an operation is used for crystallization.
- the solvent added during crystallization include acetone, water, DMSO, acetonitrile, ethanol, and mixed solvents thereof.
- the crystals of the cyclic peptide compound, its salt, or solvate thereof produced by the method of the present invention are nonsolvate crystals and solvates of the compound of formula (1) as described below. It can be a crystal, a salt crystal, or a salt solvate crystal.
- non-solvate crystals may refer to crystals that are not solvate or hydrate crystals.
- the solvate crystals of the compound of formula (1) are DMSO-hydrate crystals (A-type crystals or B-type crystals), hydrate crystals (C-type crystals), or acetone-hydrate crystals (H-type crystals). crystals), more preferably hydrate crystals.
- the present invention relates to a method for producing a peptide compound by a liquid phase method.
- the method comprises steps 1 and 2 below, and optionally repeating steps 1 and 2 multiple times, without isolating the product of each step, thereby producing a peptide compound. can be manufactured.
- Step 1) Linking/condensing an N-protected amino acid or N-protected peptide to a C-protected amino acid or C-protected peptide;
- Step 2 Step of removing/deprotecting the N-protecting group after Step 1.
- the method of the present invention can include Step 1 and Step 2 once each, and in certain embodiments, the method of the present invention can repeat Step 1 and Step 2 multiple times. In order to extend the peptide chain continuously, it is preferable to repeat step 1 and step 2 a plurality of times, for example, 2 to 20 times.
- C-protected amino acid means a natural or non-natural amino acid whose carboxyl group is protected
- C-protected peptide means a C-terminal amino acid residue whose carboxyl group is protected.
- the peptide may be composed only of natural amino acid residues, composed only of non-natural amino acid residues, or composed of any combination of natural amino acid residues and non-natural amino acid residues. .
- the C-protecting peptide can comprise 2-20 amino acid residues, at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 , at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 non-natural amino acid residues It is preferably a group.
- the non-natural amino acid residue contained in the C-protected peptide may be an N-substituted amino acid residue or an N-unsubstituted non-natural amino acid residue.
- the ratio of non-natural amino acid residues contained in the C-protected peptide is 30% or more, 40% or more, 50% or more, 60% or more, 70% of the total number of amino acids contained in the C-protected peptide. Above, 80% or more are exemplified.
- the C-protected peptide comprises N-substituted amino acid residues
- the C-protected peptide contains at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 N- Substitution amino acid residues can be included.
- the proportion of N-substituted amino acid residues contained in the C-protected peptide is 30% or more, 40% or more, 50% or more, 60% or more, 70% of the total number of amino acids contained in the C-protected peptide. % or more and 80% or more are exemplified.
- N-substituted amino acid residues can be non-natural amino acid residues.
- the C-protected peptide comprises N-unsubstituted unnatural amino acid residues
- the C-protected peptide contains at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 N-unsubstituted non-natural amino acid residues.
- the proportion of N-unsubstituted non-natural amino acid residues contained in the C-protected peptide is 30% or more, 40% or more, 50% or more, 60% of the total number of amino acids contained in the C-protected peptide. % or more, 70% or more, and 80% or more are exemplified.
- any protective group known in the art can be used as the protective group for the carboxyl group of "C-protected amino acid” and "C-protected peptide” as long as it does not reduce the solubility of the peptide in a solvent.
- the solubility of the C-protected amino acid and C-protected peptide in the solvent used for the reaction is at least 1% (w/v), more preferably 5% (w/v) or more.
- Specific examples of such a carboxyl-protecting group include a methyl group, an ethyl group, a t-Bu group, a trityl group, and a cumyl group, and among these, the t-Bu group is preferred.
- N-protected amino acid means a natural or non-natural amino acid whose amino group is protected
- N-protected peptide means that the amino group of the N-terminal amino acid residue is protected.
- the peptide may be composed only of natural amino acid residues, composed only of non-natural amino acid residues, or composed of any combination of natural amino acid residues and non-natural amino acid residues. .
- N-protected peptides can comprise from 2 to 20 amino acid residues, at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8 , at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 non-natural amino acid residues It is preferably a group.
- Non-natural amino acid residues contained in N-protected peptides may be N-substituted amino acid residues or N-unsubstituted non-natural amino acid residues.
- the ratio of non-natural amino acid residues contained in the N-protected peptide is 30% or more, 40% or more, 50% or more, 60% or more, 70% of the total number of amino acids contained in the N-protected peptide. Above, 80% or more are exemplified.
- the N-protected peptide comprises N-substituted amino acid residues
- the N-protected peptide contains at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 N- Substitution amino acid residues can be included.
- the proportion of N-substituted amino acid residues contained in the N-protected peptide is 30% or more, 40% or more, 50% or more, 60% or more, 70% of the total number of amino acids contained in the N-protected peptide. % or more and 80% or more are exemplified.
- N-substituted amino acid residues can be non-natural amino acid residues.
- the N-protected peptide comprises N-unsubstituted non-natural amino acid residues
- the N-protected peptide contains at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 N-unsubstituted non-natural amino acid residues.
- the ratio of N-unsubstituted non-natural amino acid residues contained in the N-protected peptide is 30% or more, 40% or more, 50% or more, 60% of the total number of amino acids contained in the N-protected peptide. % or more, 70% or more, and 80% or more are exemplified.
- Any protecting group known in the art can be used as the protecting group for the amino group of "N-protected amino acid” and "N-protected peptide” as long as it does not reduce the solubility of the peptide in solvents.
- Specific examples of such amino-protecting groups include Cbz, p-nitrobenzyloxycarbonyl, 2-naphthylmethyloxycarbonyl, diphenylmethyloxycarbonyl, 9-anthrylmethyloxycarbonyl, Teoc, Boc, trifluoroacetyl , or Alloc, among which Cbz, Teoc, or trifluoroacetyl is preferred.
- protecting groups for each of the N-protected and C-protected amino acids and/or N-protected and C-protected peptides are generally selected depending on the chemical reaction conditions and are It can be determined by conventional methods known in the art. For example, when a water-immiscible solvent (e.g., a lipophilic solvent) is used, such hydrophilic protecting groups are suitable protecting groups, as they can reduce the solubility of the protected compound in organic solvents. Sometimes not. Thus, when a water-immiscible solvent is used as described herein, a lipophilic protecting group is a preferred protecting group because it can maintain the solubility of, for example, a peptide compound in the water-immiscible solvent. Possible.
- a water-immiscible solvent e.g., a lipophilic solvent
- N-protecting groups examples include Cbz groups.
- Trifluoroacetyl is a preferred example when the amino acid has a highly sterically hindered functional group such as a spiro-cycloalkyl group at the ⁇ -position in the amino acid residue.
- Step 1 is a step of linking an N-protected amino acid or N-protected peptide to a C-protected amino acid or C-protected peptide to obtain a linear peptide compound with N-terminal and C-terminal protected, respectively.
- the linking of the C-protected amino acid or C-protected peptide and the N-protected amino acid or N-protected peptide in step 1 consists of the N-terminal amino group of the C-protected amino acid or C-protected peptide and N -protected amino acids or N-protected peptides with C-terminal carboxyl groups in the presence or absence of condensing reagents.
- Carboxyl groups can be activated in the system when the reaction is carried out in the presence of a condensing reagent.
- N-protected amino acids or N-protected peptides with preactivated carboxyl groups may be utilized.
- step 1 except for the solvent, the method described in the above section "Method for producing a cyclic peptide compound", for example, the reaction conditions and reagents can be employed, and the condensation reagent preferably used in this step is Condensing agents selected from the group consisting of T3P, EDCI, HATU, COMU, BEP, PyBOP, DMT-MM, and PyOxim are included.
- Condensing agents selected from the group consisting of T3P, EDCI, HATU, COMU, BEP, PyBOP, DMT-MM, and PyOxim are included.
- step 1 is one or The reaction and subsequent work-up can be carried out in multiple solvents (solvent B) and the next step can be carried out without isolating or purifying the product, ie the desired condensate.
- Solvent B includes 2-MeTHF, a mixed solvent of 2-MeTHF and acetonitrile (mixing ratio: 1 part by weight of acetonitrile, 0.5 parts by weight or more of 2-MeTHF, preferably 0.5 to 20 parts by weight , more preferably 1 to 10 parts by weight, more preferably 1 to 5 parts by weight), 4-methyltetrahydropyran, dimethyl carbonate, ethyl acetate, and/or anisole at least 1% by weight or more, 5% by weight % or more, 10 wt% or more, 15 wt% or more, 20 wt% or more, 25 wt% or more, 30 wt% or more, 35 wt% or more, 40 wt% or more, 45 wt% or
- step 1 when step 1 is performed multiple times, at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or Solvent B in at least 10 times or in at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% of all steps 1 contains at least 1% by weight, 5% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight or more, 25% by weight or more, 30% by weight or more, 35% by weight or more, 40% by weight of 2-MeTHF % or more, 45 wt% or more, or 50 wt% or more, 55 wt% or more, 60 wt% or more, 65 wt% or more, 70 wt% or more, 75 wt% or more, 80 wt% or more, 85 wt% or more, 90 It is preferably contained in an amount
- Step 2 is a step of removing N-terminal protecting groups from the N-terminal and C-terminal protected peptides obtained in Step 1.
- step 2 includes, for example, when the N-protecting group is Cbz, p-nitrobenzyloxycarbonyl, 2-naphthylmethyloxycarbonyl, diphenylmethyloxycarbonyl, and 9-anthrylmethyloxycarbonyl. It can be carried out by catalytic hydrogenation. Any catalyst known in the art can be used for catalytic hydrogenation. Specific examples of the catalyst include Pd/C, Pd(OH) 2 /C, PtO 2 and the like, with Pd/C being preferred. Hydrogen used for catalytic hydrogenation may be used under normal pressure or under pressure.
- hydrogen pressure decreases to about 90% or less of the hydrogen pressure at the start of the reaction
- hydrogen can be added again to about the initial hydrogen pressure at the start of the reaction, and the number of times is limited. Instead, the desired deprotection reaction can be carried out until the desired reaction conversion rate is reached.
- the inside of the reaction vessel may be replaced with hydrogen in the presence of the starting materials to initiate the reaction, or the inside of the reaction vessel may be replaced with hydrogen in the absence of the starting materials, and then the starting materials are introduced into the reaction vessel. can also be used to initiate the reaction.
- step 2 can be performed in the presence of a deprotecting reagent.
- a deprotecting reagent Any reagent known in the technical field, for example, reagents described in "Greene's Protective Groups in Organic Synthesis, Fifth Edition, 2014" can be used as the deprotecting reagent depending on the type of N-protecting group. However, for example, when the N-protecting group is Teoc, trifluoroacetyl, Fmoc, or Boc, TBAF, LiBH 4 , piperidine, trifluoroacetic acid, methanesulfonic acid, or the like is preferably used.
- the deprotection reaction of the trifluoroacetyl group includes (1) the use of lithium borohydride as a reducing reagent and/or (2) the addition of aqueous ammonia as a terminating agent.
- Use of fluoroethanol is also provided.
- the method includes (1) the use of lithium borohydride as the reducing reagent and (2) the use of trifluoroethanol prior to the addition of aqueous ammonia as a stopping agent. preferably includes both
- Step 2 is the same as Step 1 independently from the group consisting of toluene, acetone, DMF, acetonitrile, THF, 2-MeTHF, dimethyl carbonate, anisole, isopropyl acetate, heptane, ethyl acetate, and 4-methyltetrahydropyran.
- the reaction and subsequent work-up can be carried out in one or more solvents of choice (solvent B) to carry on to the next step without isolation or purification of the product, i.e. the desired deprotected form. be able to.
- Solvent B preferably contains 2-MeTHF.
- step 2 comprises heating the reaction mixture at a temperature of -40°C to about the boiling point of the solvent, preferably -30°C to 100°C, preferably -5°C to 40°C, for 15 minutes to 48 hours. It can be done by stirring.
- the methods described herein involve deprotection of the C-terminal amino acid of a peptide compound, wherein the C-protected peptide protecting group is tBu, and the deprotection reagent is a combination of HMDS and TMSOTf.
- the solvent in the deprotection step contains IPAc or 2-MeTHF
- the C-protected peptide can be a peptide compound consisting of 2-13 amino acid residues.
- the methods described herein comprise a deprotection reaction of the N-terminal amino acid of the peptide compound, wherein the N-protected peptide protecting group is a Cbz group and the deprotection
- the protective condition is catalytic hydrogenation
- the catalyst in hydrogenation is Pd/C
- the hydrogen pressure in hydrogenation is 1 atm (14.7 psi) or more and 3 atm (44.1 psi) or less
- the solvent in the deprotection step is 2- Including MeTHF or THF
- the N-protected peptide can be a peptide compound consisting of 2-13 amino acid residues.
- the methods described herein comprise a deprotection reaction of the N-terminal amino acid of the peptide compound, wherein the protecting group of the N-protected peptide is Teoc and the deprotection reagent. can generate a fluoride anion, the deprotection reagent is TBAF, the solvent for the deprotection step includes 2-MeTHF, isopropyl acetate, dimethyl carbonate or anisole, and the N-protected peptide has 2-13 amino acid residues It can be a peptide compound consisting of
- the methods described herein involve deprotection of the N-terminal amino acid of the peptide compound, wherein the protecting group of the N-protected peptide is trifluoroacetyl (TFA).
- the deprotection reagent is a reducing reagent
- the deprotection reagent is lithium borohydride
- the solvent for the deprotection step contains 2-MeTHF or methanol
- the N-protected peptide is a peptide consisting of 2-13 amino acid residues. can be a compound.
- the unreacted deprotected peptide can be removed by carrying out this reaction in the presence of acetone and performing a liquid separation operation after the reaction. That is, when a hydrogenolysis reaction is carried out in the presence of 36 equivalents of acetone, the amino group of the unreacted deprotected peptide is isopropylidened, suppressing the conversion to diketopiperazine and suppressing this isopropylidenation. Since the obtained peptide is a basic compound in which the terminal nitrogen is not amidated, it was found that it can be easily removed by acid washing in liquid separation treatment after the reaction.
- the method for producing the peptide compound of the present invention can further include step 3 of removing the C-protecting group.
- Step 3 can be performed under acidic conditions in the presence of a deprotecting reagent, for example, when the C-protecting group is t-Bu, trityl, cumyl, methyl, or ethyl.
- a deprotecting reagent for example, when the C-protecting group is t-Bu, trityl, cumyl, methyl, or ethyl.
- Any reagent known in the technical field for example, the reagent described in "Greene's Protective Groups in Organic Synthesis, Fifth Edition, 2014" can be used as the deprotection reagent.
- a combination of HMDS and a reagent selected from the group consisting of TMSOTf, TMSI, TMSBr, and TMSCl is preferably used to achieve acidic conditions.
- Step 3 as in steps 1 and 2, from the group consisting of toluene, acetone, DMF, acetonitrile, THF, 2-MeTHF, dimethyl carbonate, anisole, isopropyl acetate, heptane, ethyl acetate, and 4-methyltetrahydropyran.
- the reaction and subsequent work-up can be carried out in one or more independently selected solvents (solvent B) without isolation or purification of the product, i.e. the desired deprotected form, as follows: process can be performed.
- Solvent B preferably contains 2-MeTHF.
- Step 3 may be performed either after Step 1 (that is, between Steps 1 and 2) or after Step 2. More specifically, as described below, in the method of the present invention, step 1 and step 2 may be repeated multiple times, step 3 may be performed after the first step 1 or after step 2, and step It may be performed after step 1 or after step 2 for a certain number of iterations of steps 1 and 2, or after step 1 or after step 2 for the final iteration of steps 1 and 2. In one aspect, step 3 is preferably performed after step 1 or after step 2 in the final iteration of steps 1 and 2, more preferably after step 1 in the final iteration.
- step 3 is performed after step 1
- a linear peptide compound in which only the N-terminus is protected can be obtained.
- step 3 is performed after step 2
- a linear peptide compound in which both the N-terminus and C-terminus are deprotected can be obtained.
- step 3 can be carried out by stirring the reaction mixture at a temperature of -20°C to around the boiling point of the solvent, preferably 0°C to 180°C, for 15 minutes to 48 hours.
- the method for producing the peptide compound of the present invention comprises repeating Step 1 and Step 2, thereby extending the peptide chain.
- the number of repetitions is not limited, but is preferably 2 to 20 times, more preferably 2 to 15 times.
- the final step of the method of the present invention can be step 1 if the final iteration does not include step 2.
- the linear peptide compound produced can be a linear peptide compound in which both the N-terminus and C-terminus are protected.
- step 3, performed after step 1 can be the final step of the method of the invention if the final iteration does not include step 2.
- the linear peptide compound produced can be a linear peptide compound in which only the N-terminus is protected.
- a post-treatment After each reaction in Steps 1 to 3, a post-treatment can be performed, and the post-treatment allows the next reaction to be carried out without isolation of intermediates.
- the post-treatment includes one or more operations selected from the group consisting of a liquid separation operation including washing of the organic layer and the aqueous layer, a filtration operation, and a concentration operation. These operations can be combined as appropriate to achieve the state.
- a liquid separation operation including washing of the organic layer and the aqueous layer
- a filtration operation As a subsequent treatment
- liquid separation operation is usually carried out at least once.
- a filtration operation is usually carried out as a post-treatment.
- a part of the solvent can be distilled off by carrying out a further concentration operation.
- a liquid separation operation can be performed for liquid-liquid extraction of the target product after the completion of each reaction in Steps 1 to 3, which can include washing of the organic layer or aqueous layer.
- an amount suitable for the liquid separation operation for example, an amount of water and / or an aqueous solution such that the volume ratio of the organic layer: aqueous layer is within the range of 20: 80 to 80: 20, and /
- an organic solvent is added into the system.
- Aqueous solutions added for liquid separation include an aqueous sodium hydrogen sulfate solution, an aqueous potassium carbonate solution, an aqueous sodium carbonate solution, an aqueous dipotassium hydrogen phosphate solution, an aqueous disodium hydrogen phosphate solution, an aqueous sodium dihydrogen phosphate solution, and an aqueous sodium chloride solution. , an aqueous citric acid solution, an aqueous ammonia solution, an aqueous hydrochloric acid solution, and the like.
- the organic solvent added for the liquid separation operation include water-immiscible solvents, water-soluble alkylnitriles, and water-soluble ethers.
- the water-immiscible solvent added for liquid separation operation may be referred to as "solvent C".
- the organic solvent added for the liquid separation operation include 2-methyltetrahydrofuran (2-MeTHF), dimethyl carbonate, anisole, isopropyl acetate, ethyl acetate, MTBE, CPME, 4-methyltetrahydropyran , heptane, and one or more selected from the group consisting of acetonitrile.
- the organic layer preferably contains 2-MeTHF, which is stable against basicity and has excellent compound solubility.
- a liquid separation operation is performed.
- solvent C a water-immiscible solvent
- the aqueous layer and the organic layer can be separated.
- solvent C a solvent with low solubility in water, for example, a solvent with a water solubility of 999 g/L or less, a solvent of 500 g/L or less, a solvent of 250 g/L or less, preferably a solvent of 200 g/L or less, more preferably includes solvents of 150 g/L or less.
- Solvent C is preferably a solvent having a positive log Kow value or a predicted log Kow value, such as a value of 0 or more and 5 or less.
- 2-MeTHF dimethyl carbonate
- ethyl acetate isopropyl acetate
- heptane anisole
- MTBE MTBE
- CPME 4-methyltetrahydropyran
- 2-MeTHF, ethyl acetate, isopropyl acetate, or heptane, or solvents containing these are preferably used.
- Solvent C is preferably added in an amount that can be separated into the aqueous layer and the organic layer.
- it can be added to the system in an amount of about 50% to 100% by weight with respect to the entire organic layer. Separation of the aqueous layer and the organic layer is exemplified by the method of adding solvent C in a liquid separation operation, and then allowing the mixture of the aqueous layer and the organic layer to stand for 1 to 30 minutes to observe whether or not two layers are formed. can be determined by standard methods.
- the liquid separation operation can include washing the organic layer or the aqueous layer. Washing in the liquid separation operation can be performed using a solution containing no target substance to remove substances other than the target substance that can be impurities.
- the target substance is usually present in the organic layer, and in this case, by washing the organic layer with an aqueous solution, substances that can become impurities in the aqueous layer can be extracted and removed.
- the target substance is once transferred from the organic layer to the aqueous layer during the liquid separation process, the aqueous layer is washed when the target substance exists in the aqueous layer.
- a neutral, basic or acidic aqueous solution can be used to wash the organic layer.
- aqueous solutions that can be used for washing the organic layer include sodium hydrogen sulfate aqueous solution, potassium hydrogen sulfate aqueous solution, potassium carbonate aqueous solution, sodium carbonate aqueous solution, dipotassium hydrogen phosphate aqueous solution, disodium hydrogen phosphate aqueous solution, phosphoric acid
- Aqueous solutions such as an aqueous sodium dihydrogen solution, an aqueous sodium chloride solution, an aqueous citric acid solution, an aqueous ammonia solution, an aqueous hydrochloric acid solution, and the like can be used.
- the organic layer in order to sufficiently remove unreacted amino acids and peptides present in the system, can be washed with an aqueous sodium carbonate solution, an aqueous sodium hydrogensulfate solution, and/or an aqueous sodium carbonate solution in that order. preferable. If amino acids and peptides are still not sufficiently removed, they can be efficiently removed by washing the organic layer with an aqueous solution containing citric acid and dipotassium hydrogen phosphate. In one embodiment, washing the organic layer with a mixture of acetonitrile and an aqueous potassium carbonate solution is effective for removing highly fat-soluble amino acids and peptides.
- organic solvent that is immiscible with water can be used to wash the aqueous layer, and organic solvents such as 2-MeTHF, heptane, MTBE, and isopropyl acetate are preferably used.
- the present invention relates to a method for removing the solvent-derived stabilizer BHT (2,6-di-tert-butyl-4-methylphenol).
- the method includes using a solvent containing acetonitrile, propionitrile, 2-MeTHF, and heptane as the organic layer in a liquid separation operation, for example, a liquid separation operation after each step of the present invention. , which can effectively remove BHT.
- the residual amount of BHT in the organic layer was 2.0% or less, 1.9% or less, 1.8% or less, 1.7% or less, 1.6% or less, and 1.5% or less, 1.4% or less, 1.3% or less, 1.2% or less, 1.1% or less, 1.0% or less, 0.9% or less, 0.8% or less, 0.7% or less, 0.6% or less, 0.5% or less, 0.4% or less, 0.3% 0.2% or less, 0.1% or less, or 0.05% or less.
- BHT can be removed by using a specific solvent for the organic layer after dissolving the target substance in an aqueous layer containing water and a water-soluble alkylnitrile. Acetonitrile is preferred as the water-soluble alkylnitrile used here.
- the organic layer that can be used to remove BHT preferably contains a water immiscible solvent.
- Combinations of water-immiscible solvents can also be used, with preferred combinations being 2-MeTHF and heptane, or MTBE and heptane.
- the ratio of the solvent is preferably 100% by weight or more, more preferably 100% by weight or more and 400% by weight or less, and still more preferably 100% by weight or more and 300% by weight, based on the water-soluble alkylnitrile. It is possible to efficiently remove BHT by using it in the range of weight % or less.
- 2-MeTHF and heptane or MTBE and heptane are used in combination, 2-MeTHF or MTBE is used in a range of 10% by weight or more and 100% by weight or less, preferably 10% by weight or more and 80% by weight or less, based on heptane. It is possible to remove BHT efficiently by using in .
- Commercially available THF and 2-MeTHF may contain 150-400 ppm of BHT as a stabilizer. When a large amount of such THF or 2-MeTHF is used, for example, when the number of steps is 20 or more, the residual amount of BHT reaches 4%, and the adverse effect on the reaction cannot be ignored.
- Filtration operations and concentration operations known in this technical field can be used for the filtration operations and concentration operations in the present invention.
- a solvent for example, a solvent obtained by washing a reaction vessel such as a reaction vessel, may be added to the system.
- a solvent for example, independently selected from the group consisting of toluene, acetone, DMF, acetonitrile, THF, 2-MeTHF, dimethyl carbonate, anisole, isopropyl acetate, heptane, ethyl acetate, and 4-methyltetrahydropyran
- One or more solvents may be added into the system. In the present specification, the operation of adding this solvent is also included in post-treatment.
- the method for producing the peptide compound of the present invention does not include the step of isolating the intermediate as a single compound. Therefore, the solvent after the post-treatment of step 2 for the first time, or the solvent after the post-treatment of step 2 for a certain repetition of steps 1 and 2 is the reaction solvent (solvent B) for the next step 1 can be. Similarly, the solvent after the post-treatment of step 1 for the first time, or the solvent after the post-treatment of step 1 in a repetition of steps 1 and 2 becomes the reaction solvent (solvent B) in step 2 of those times. obtain. That is, the composition of solvent B may change as steps 1 and 2 are repeated, but the solvent species that make up solvent B are the same as the solvent species that have been used in the reactions and post-treatments in steps 1 and 2. can do
- the solvent (solvent A) used in the method for producing the cyclic peptide compound of the present invention includes the solvent (solvent X) after producing the linear peptide compound by the method for producing the peptide compound of the present invention.
- solvent X can be used as solvent A for the cyclization reaction as such.
- solvent X is further selected from the group consisting of one or more water-immiscible solvents, one or more water-soluble alkylnitriles, and one or more water-soluble ethers. can be added as solvent A.
- the solvent to be added is preferably 2-MeTHF, dimethyl carbonate, ethyl acetate, isopropyl acetate, anisole, acetonitrile, THF, 4-MeTHP, chlorobenzene, 1,3-dimethoxy.
- Benzene, MTBE, CPME and the like can be mentioned, and acetonitrile, 2-MeTHF, anisole and dimethyl carbonate are particularly preferred.
- solvent X when a solvent such as acetonitrile, 2-MeTHF, anisole, or dimethyl carbonate is added to solvent X to obtain solvent A, it is preferable to add the solvent in an amount of 20 to 80 times the weight of solvent X.
- a solvent such as acetonitrile, 2-MeTHF, anisole, or dimethyl carbonate
- Step 1 and Step 2 can be repeated, and one or both of the C-protected peptide and the N-protected peptide used in Step 1 of the final round of repetition preferably contains four or more N-substituted amino acid residues, or two or more N-substituted amino acid residues and one or more ⁇ , ⁇ disubstituted amino acid residues.
- N-substituted amino acid residues are preferably N-alkyl amino acid residues such as N-methyl or N-ethyl amino acid residues, or N-substituted cyclic amino acid residues such as proline or Aze(2).
- ⁇ , ⁇ -disubstituted amino acid residues examples include ⁇ , ⁇ -dialkylamino acid residues such as ⁇ , ⁇ -dimethylamino acid residues and cLeu in which two groups present at the ⁇ -position are linked to form an alicyclic ring.
- ⁇ , ⁇ -disubstituted cyclic amino acid residues such as, and the like are preferred.
- one or both of the C-protected peptide and N-protected peptide used in step 1 of the final iteration consists of 5 amino acid residues, 4 of which are non-natural amino acid residues. is preferred.
- one or both of the C-protected peptide and N-protected peptide used in step 1 of the last iteration consists of 6 amino acid residues, 5 of which are unnatural amino acid residues. is preferred.
- the method for producing the peptide compound of the present invention can be used to obtain a linear peptide compound used as a raw material for the method for producing the cyclic peptide compound of the present invention.
- a linear peptide compound used as a raw material for the method for producing the cyclic peptide compound of the present invention.
- step 1 is the final round of repetition, in order to produce a linear peptide compound as a raw material.
- C-protected MeLeu-Ile-MeAla-Aze(2)-EtPhe(4-Me)-MeGly can be used
- N- As a protected peptide N-protected Hph(4-CF3-35F2)-Pro-cLeu-MeGly(cPent)-MeAsp-NMe2 can be used.
- This compound was then used as a C-protected peptide and as an N-protected amino acid, (Z-Pro) using, through step 1, (Z-Pro-cLeu-MeGly(cPent)-MeAsp(OtBu)-NMe2) , and through step 2, (Pro-cLeu-MeGly(cPent)-MeAsp(OtBu)-NMe2) can be manufactured.
- This compound was then used as a C-protected peptide and as an N-protected amino acid, (Z-Hph(4-CF3-35F2) Cy2NH ) using, through step 1, (Z-Hph(4-CF3-35F2)-Pro-cLeu-MeGly(cPent)-MeAsp(OtBu)-NMe2) and through step 3, the target of this batch (Z-Hph(4-CF3-35F2)-Pro-cLeu-MeGly(cPent)-MeAsp-NMe2) can be manufactured.
- This batch includes step 3 after step 1, and the final iteration of steps 1 and 2 is the case without step 2.
- This compound was then used as a C-protected peptide and as an N-protected amino acid, (Z-Aze(2)) using, through step 1, (Z-Aze(2)-EtPhe(4-Me)-MeGlyOtBu) , and through step 2, (Aze(2)-EtPhe(4-Me)-MeGlyOtBu) can be manufactured.
- This compound was then used as a C-protected peptide and as an N-protected amino acid, (Z-Me Ala) using, through step 1, (Z-MeAla-Aze(2)-EtPhe(4-Me)-MeGlyOtBu) , and through step 2, (MeAla-Aze(2)-EtPhe(4-Me)-MeGlyOtBu) can be manufactured.
- This compound was then used as a C-protected peptide and as an N-protected amino acid, (Z-Ile) using, through step 1, (Z-Ile-MeAla-Aze(2)-EtPhe(4-Me)-MeGlyOtBu) , and through step 2, (Ile-MeAla-Aze(2)-EtPhe(4-Me)-MeGlyOtBu) can be manufactured.
- This compound was then used as a C-protected peptide and as an N-protected amino acid, (Teoc-MeLeu-Opfp) using, through step 1, (Teoc-MeLeu-Ile-MeAla-Aze(2)-EtPhe(4-Me)-MeGlyOtBu) , and through step 2, (MeLeu-Ile-MeAla-Aze(2)-EtPhe(4-Me)-MeGlyOtBu) can be manufactured.
- This compound was then used as a C-protected peptide and prepared in a first batch as an N-protected amino acid.
- the target compound (2) of this batch Hph(4-CF3-35F2)-Pro-cLeu-MeGly(cPent)-MeAsp-NMe2-MeLeu-Ile-MeAla-Aze(2)-EtPhe(4-
- any of the above batches using the method of the present invention can efficiently produce the desired linear peptide compound without isolating or purifying intermediates, the method of the present invention can be used on a large scale. is very useful for peptide synthesis of
- the method for producing the peptide compound of the present invention can further comprise the step of linking the N-terminal amino acid residue and the C-terminal amino acid residue of the peptide compound, and the cyclic Peptide compounds can be produced.
- the linking of the N-terminal amino acid residue and the C-terminal amino acid residue is performed by repeating steps 1 and 2 multiple times to link the N-terminal amino acid residue and C Accomplished by ligating the terminal amino acid residues.
- the method described in the section "Method for Producing a Cyclic Peptide Compound" above, such as the reaction conditions and reagents, can be applied to this step.
- the present invention relates to a salt, solvate, or solvate of a salt of the cyclic peptide compound represented by formula (1).
- the solvate of the compound is preferably a hydrate or a DMSO-water solvate.
- the present invention relates to a crystal of the cyclic peptide compound of formula (1), or a salt or solvate thereof.
- Crystals of this compound specifically include non-solvate crystals or solvate crystals of this compound, or non-solvate crystals or solvate crystals of salts of this compound.
- Preferred solvate crystals include hydrate crystals, DMSO-hydrate crystals, and acetone-hydrate crystals.
- the diffraction angle 2 ⁇ in powder X-ray diffraction is a diffraction peak measured using CuK ⁇ or CuK ⁇ 1 radiation. Crystals of these solvate crystals further identified by the diffraction angle 2 ⁇ in powder X-ray diffraction, for example, are sometimes referred to as "C-type crystals" of the hydrates shown below, but are simply referred to as "C-type". Sometimes.
- the crystal of the compound of formula (1) when the crystal of the compound of formula (1) is a hydrate crystal, the crystal contains at least one of the following peaks as a diffraction angle 2 ⁇ in powder X-ray diffraction: It is a C-type crystal with a diffraction pattern. 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, 10.435°, 11.729°, 12.704°, 13.552°, 13.901°, 15.895°, 16.643°, and 17.813° ( ⁇ 0.2°)
- the crystal of the compound of formula (1) when the crystal of the compound of formula (1) is a hydrate crystal, the crystal has a powder X-ray diffraction pattern containing the following peaks as diffraction angle 2 ⁇ in powder X-ray diffraction: C type crystal. 4.964°, 7.921°, 8.296°, 8.855°, 9.956°, 10.435°, 11.729°, 12.704°, 13.552°, 13.901°, 15.895°, 16.643°, and 17.813° ( ⁇ 0.2°)
- the Form C crystal has an X-ray diffraction pattern substantially identical to that described in FIG. In some embodiments, the Form C crystals have DSC and TG thermograms substantially identical to those set forth in FIG.
- the crystals of the compound of formula (1) when the crystals of the compound of formula (1) are non-solvate crystals, the crystals contain at least one of the following peaks in powder X-ray diffraction as diffraction angle 2 ⁇ : It is an F-type crystal with a line diffraction pattern. 5.370°, 6.934°, 8.940°, 9.838°, 10.771°, 12.181°, 13.525°, 15.179°, 16.202°, or 17.554° ( ⁇ 0.2°)
- the F-type crystal has an X-ray diffraction pattern substantially identical to that shown in FIG.
- the crystal of the compound of formula (1) when the crystal of the compound of formula (1) is a solvate crystal, the crystal contains at least one of the following peaks as diffraction angle 2 ⁇ in powder X-ray diffraction: Form A of DMSO-hydrate crystals with a diffraction pattern. 8.006°, 9.002°, 9.943°, 11.501°, 13.067°, 14.854°, 16.320°, 17.275°, 19.261°, or 20.324° ( ⁇ 0.2°)
- the A-type crystal has substantially the same X-ray diffraction pattern as described in FIG.
- the crystal of the compound of formula (1) when the crystal of the compound of formula (1) is a solvate crystal, the crystal contains at least one of the following peaks as diffraction angle 2 ⁇ in powder X-ray diffraction: Form B of DMSO-hydrate crystals with a diffraction pattern. 8.223°, 9.594°, 9.976°, 11.879°, 13.841°, 14.572°, 15.934°, 16.350°, 19.805°, 20.480° ( ⁇ 0.2°)
- the B-type crystal has an X-ray diffraction pattern substantially identical to that shown in FIG.
- the Form B crystals have a DSC thermogram substantially identical to that set forth in FIG.
- the crystal of the compound of formula (1) when the crystal of the compound of formula (1) is a solvate crystal, the crystal contains at least one of the following peaks as diffraction angle 2 ⁇ in powder X-ray diffraction: H-form acetone-hydrate crystals with a diffraction pattern. 7.942°, 8.283°, 8.861°, 10.097°, 10.491°, 11.805°, 12.673°, 12.830°, 13.514°, 13.855°, 15.853°, 16.405°, 16.642°, and 17.772° ( ⁇ 0.2°)
- the Form H crystal has an X-ray diffraction pattern substantially identical to that shown in FIG.
- the crystals of the compound of formula (1) are substantially free of impurities in any form.
- crystals of the compound of formula (1) can have a purity of at least about 90%.
- crystals of the compound of formula (1) have a purity of at least about 95%.
- crystals of the compound of Formula (1) have a purity of at least about 98%.
- crystals of the compound of formula (1) are at least 98.5%, 98.6%, 98.7%, 98.8%, 98.9%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7% , 99.8%, or 99.9% purity.
- the crystals of the compound of formula (1) are substantially free of other forms.
- the Form C crystal is substantially free of other crystalline forms of the compound represented by formula (1).
- the F-type crystal is substantially free of other crystalline forms of the compound represented by formula (1).
- the A-form crystal is substantially free of other crystalline forms of the compound represented by formula (1).
- the B-form crystal is substantially free of other crystalline forms of the compound represented by formula (1).
- the Form H crystal is substantially free of other crystal forms of the compound represented by formula (1).
- the present invention relates to a method for producing a hydrate crystal of the cyclic peptide compound represented by formula (1).
- the manufacturing method includes the following steps. Step A: a step of dissolving a cyclic peptide compound in a polar organic solvent in an amount capable of dissolving the cyclic peptide compound to obtain a solution; Step B: concentrating the solution to obtain a residue of the cyclic peptide compound, and Step C: adding a mixture of water and a polar organic solvent to the residue to obtain a hydrate crystal of the cyclic peptide compound. process.
- the polar organic solvent used in step A can be a solvent in which the cyclic peptide compound of formula (1), for example, the cyclic peptide compound in a crudely purified state can be dissolved.
- DMSO, DMF, DMA, NMP, acetone, methanol, ethanol, acetonitrile, and the like and more preferably acetone, DMSO, or ethanol.
- a soluble amount can be used in the range of 3 to 10 w/v, preferably in the range of 3 to 7 w/v, relative to the cyclic peptide compound of formula (1).
- concentration in step B includes lyophilization.
- the residue obtained in step B can be amorphous, oily, or solid.
- the residue obtained in step B can be a lyophilisate.
- the polar organic solvent used in step C can be the same solvent as the polar organic solvent used in step A.
- the mixing ratio of water and the polar organic solvent in the mixed solution used in step C 0.5 to 10 parts by weight of water can be used with respect to 1 part by weight of the polar organic solvent, preferably 1 to 7 parts by weight of water. More preferably, 1 to 5 parts by weight of water is used.
- the polar organic solvent used in step C is preferably acetonitrile, ethanol, or acetone.
- the present invention relates to a method for producing crystals of a cyclic peptide compound represented by formula (1).
- the manufacturing method is dissolving the amorphous cyclic peptide compound in DMSO to obtain a solution; freeze-drying the solution to obtain a lyophilized form of the cyclic peptide compound; and adding a water-acetonitrile mixture to the lyophilized form to obtain a hydrate crystal of the cyclic peptide compound.
- HPLC analysis conditions 1 Equipment: Waters ACQUITY UPLC H-Class Column: Ascentis Express 90A C18 (Sigma-Aldrich), 2.1 mm ID x 50 mm, 2.7 ⁇ m Mobile phase: 0.05% TFA/water (A), 0.05% TFA/MeCN (B) Elution method: B) 5% (0 min) ⁇ 100% (5 min) ⁇ 5% (5.1 min) ⁇ 5% (7 min) Flow rate: 0.5mL/min Column temperature: 35°C Detection wavelength: 210 nm (PDA)
- LCMS analysis conditions 1 Equipment: Waters ACQUITY UPLC H-Class + ACQUITY QDA Column: Ascentis Express 90A C18 (Sigma-Aldrich), 2.1 mm ID x 50 mm, 2.7 ⁇ m Mobile phase: 0.05% TFA/water (A), 0.05% TFA/MeCN (B) Elution method: B) 5% (0 min) ⁇ 100% (5 min) ⁇ 5% (5.1 min) ⁇ 5% (7 min) Flow rate: 0.5mL/min Column temperature: 35°C Detection wavelength: 210 nm (PDA)
- the 1 H-NMR spectrum was measured using a nuclear magnetic resonance spectrometer ECX500II (manufactured by JEOL), and the chemical shift of Me 4 Si used as an internal standard was set to 0 ppm, and the deuterium lock signal from the sample solvent was referenced. did.
- a sample solution was prepared by using a commercially available deuterated solvent suitable for the purpose of measurement as a sample solvent and mixing it with the compound to be measured. The signal integral value was calculated based on the ratio of the signal area intensity of each signal.
- the measurement method by qNMR was carried out by dissolving the residue containing the target compound and an internal standard substance in DMSO - d6 and performing the following analysis conditions.
- the yield was calculated according to the following formula using the content of the target substance in the residue calculated by qNMR and the purity of the target substance of the residue calculated by HPLC analysis.
- Measuring device JNM-ECZ500R Internal standard substance: 3,5-bis(trifluoromethyl)benzoic acid Measurement conditions ( 1 H-NMR): DMSO-d 6 , 24.3° C., pulse angle 90° C., digital resolution 0.25 Hz, relaxation time 60 seconds , no spin, 8 integrations Measurement conditions ( 19 F-NMR): DMSO-d 6 , 24.3°C, pulse angle 90°C, digital resolution 0.22 Hz, relaxation time 60 seconds, no spin, 8 integrations
- Powder X-ray (XRPD) diffraction measurement was performed under the following conditions, and the 2 ⁇ value of the scanning range was calculated.
- the diffraction angle (2 ⁇ value) is plotted on the horizontal axis and the diffraction intensity is plotted on the vertical axis.
- Measurement method 1 Measurement device: SmartLab System (manufactured by Rigaku Corporation) Radiation source: CuK ⁇ 1 Tube voltage: 45 kV Tube current: 200mA Scanning range: 3-35° Sampling width: 0.02°
- Measurement method 2 Measurement equipment: SmartLab System, D/Tex Ultra detector (manufactured by Rigaku) Radiation source: CuK ⁇ 1 Tube voltage: 45 kV Tube current: 200mA Scanning range: 5-30° Scanning speed: 5°/min Sampling width: 0.02°
- Measurement method 3 Measurement equipment: D8 Discover, 2D VANTEC-500 solid state detector (manufactured by Bruker) Radiation source: CuK ⁇ Tube voltage, tube current: 40 kV, 40 mA or 50 kV, 1000 ⁇ A (when using microfocus X-ray source I ⁇ S) Measuring range: 5-31° Exposure time: 100 seconds or 600 seconds (when using microfocus X-ray source I ⁇ S)
- Measuring device X'pert-pro MPD (manufactured by PANalytical) Radiation source: CuK ⁇ Tube voltage: 45 kV Tube current: 40mA Scanning range: 3-40° Scanning speed: 4.2°/min Sampling width: 0.017°
- Measuring device X'pert-pro MPD (manufactured by PANalytical) Source: Cu Tube voltage: 45 kV Tube current: 40mA Scanning range: 3-25° Scanning speed: 0.33°/s Sampling width: 0.026° Measurement: The sampled suspension was packed in a capillary for X-ray crystallography and measured.
- Measurement method 2 Measurement device: SmartLab System, DSC attachment (manufactured by Rigaku) Measurement range: 35-270°C Atmosphere: Nitrogen DSC conditions are shown in Table 3.
- the measurement method by HPLC was carried out by preparing a sample of a mixed solution containing the target compound by any of the following methods, and performing the above analysis conditions.
- Sample preparation method 1 A mixture containing the target compound was diluted with acetonitrile.
- Sample preparation method 2 A mixture containing the target compound was diluted with a mixture of acetonitrile and propylamine in a ratio of 9:1.
- Sample preparation method 3 A mixture containing the target compound was diluted with methanol.
- Sample preparation method 4 The mixture containing the target compound was diluted with a mixture of methanol and water in a ratio of 4:1.
- the reaction conversion rate is calculated by the area value of the raw material and the area value of the target product calculated by HPLC analysis, or the area value of the raw material, the area value of the propylamide form of the raw material and the area value of the target product, or the raw material before the reaction. Using the area value of and the area value of the raw material after the reaction, it was carried out by one of the following equations.
- Reaction conversion rate (%) area value of target product / (area value of raw material + area value of target product) x 100
- Reaction conversion rate (%) area value of target product/(area value of starting material + area value of propylamide of starting material + area value of target product) x 100
- Reaction conversion rate (%) 100 - (area value of raw material after reaction/area value of raw material before reaction x 100)
- the external temperature of the reaction vessel was set to 10° C., 5% aqueous sodium carbonate solution (26.6 kg) was added dropwise with stirring, and then water (6.9 kg) was added. After setting the external temperature of the reactor to 25° C. and stirring for 20 minutes, the water layer was discharged from the reactor.
- the obtained organic layer was similarly washed with a 5% sodium hydrogensulfate monohydrate aqueous solution (34.5 kg ⁇ 3) and a 5% sodium carbonate aqueous solution (34.5 kg) at an external temperature of 25°C.
- the obtained organic layer was collected in a storage container, and the washing solution obtained by washing the reaction kettle with 2-MeTHF (25.6 kg) was combined and collected in the storage container as a storage solution.
- the external temperature of the reactor was set at 10° C., and 5% aqueous sodium carbonate solution (25.2 kg) was added to the reaction mixture while stirring.
- the external temperature of the reactor was set to 25° C., and after stirring for 10 minutes, the stirring was stopped and the water layer was discharged from the reactor.
- the organic layer was washed twice with a 5% sodium hydrogensulfate monohydrate aqueous solution (33.2 kg) and then with a 5% sodium carbonate aqueous solution (33.2 kg).
- the organic layer was recovered in a storage container, and the reaction kettle was combined with the washing solution washed with 2-MeTHF (25.6 kg) and recovered in a storage container as a storage solution.
- the storage solution was added to the nitrogen-purged reaction vessel while rinsing the inside of the storage vessel with 2-MeTHF (1.7 kg).
- the external temperature of the reactor was set to 50° C., and the mixture was concentrated under reduced pressure while stirring until the liquid volume reached about 12 L.
- a 2-MeTHF solution (18.9 kg) containing compound 7 was obtained by combining the obtained residue and the washing liquid obtained by washing the reaction kettle with 2-MeTHF (8.5 kg).
- a 2-MeTHF solution (18.7 kg) containing compound 7 obtained in Example 3 was added to the nitrogen-purged reaction vessel while rinsing the storage container with 2-MeTHF (6.9 kg).
- 5% Pd/C (1.74 kg, 50% wet) was added to the reactor.
- the external temperature of the reactor was set to 25° C., and hydrogen was pressurized until the internal pressure of the reactor reached 0.18 MPaG. After stirring for 50 minutes, it was confirmed that there was no change in the internal pressure. After purging with nitrogen, the system was further pressurized to 0.18 MPaG with hydrogen and stirred for 1 hour.
- a sample was prepared by sampling the reaction mixture (sample preparation method 1), and it was confirmed by HPLC analysis that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1). After purging the inside of the reaction vessel with nitrogen, the reaction mixture was filtered under pressure. After washing the reaction kettle and filter with 2-MeTHF (10.6 kg), the filtrate and washings were collected in a storage container as a storage solution. The obtained filtrate and washing liquid were concentrated under reduced pressure at an external temperature of 40° C. until the liquid volume became about 6 L. A 2-MeTHF solution (14.0 kg) containing compound 8 was obtained by combining the residue and the washing liquid obtained by washing the reaction kettle with 2-MeTHF (8.5 kg). Retention time by HPLC analysis: 2.538 minutes (HPLC analysis conditions: method 1)
- a 2-MeTHF solution (13.9 kg) containing compound 8 obtained in Example 4, compound 9 (2.31 kg) and 2-MeTHF (10.4 kg) were sequentially added to a reaction vessel purged with nitrogen. After setting the external temperature of the reactor to 10° C. and adding DIPEA (4.61 kg) while stirring, T3P (1.6 M 2-MeTHF solution, 12.15 kg) was added dropwise. The external temperature of the reaction kettle was set to 25° C. and the reaction mixture was stirred for 1 hour. A sample was prepared by sampling the reaction mixture (sample preparation method 1), and the reaction conversion rate was confirmed to be 96.8% by HPLC analysis (reaction conversion rate calculation formula 1).
- the external temperature of the reaction kettle was set at 10° C., and 5% aqueous sodium carbonate solution (24.3 kg) was added to the reaction mixture while stirring.
- the external temperature of the reactor was set to 25° C., and after stirring for 10 minutes, the stirring was stopped and the aqueous layer was discharged from the reactor.
- the organic layer was washed twice with a 5% sodium hydrogensulfate monohydrate aqueous solution (32.4 kg) and then washed with a 5% sodium carbonate aqueous solution (32.4 kg).
- 2-MeTHF (25.6 kg) was added to the obtained organic layer.
- the external temperature of the reactor was set to 50° C., and the residue was collected in a storage container after concentration under reduced pressure with stirring until the liquid volume became about 12 L.
- the reaction vessel was washed with 2-MeTHF (8.5 kg), and the washings were combined to obtain a solution containing compound 10 (19.0 kg).
- Retention time by HPLC analysis 4.004 minutes (analysis conditions: method 1)
- a solution (18.8 kg) containing compound 10 obtained in Example 5 and 2-MeTHF (7.0 kg) were sequentially added to a reaction vessel purged with nitrogen.
- 5% Pd/C (1.70 kg, 50% water content) was added to the reactor.
- the external temperature of the reactor was set to 25° C., and hydrogen was pressurized until the internal pressure of the reactor reached 0.18 MPaG. After 1 hour and 40 minutes, it was confirmed that there was no change in the internal pressure, and after purging with nitrogen, the pressure was increased to 0.18 MPaG with hydrogen, and the mixture was stirred for 2 hours.
- a sample was prepared by sampling the reaction mixture (sample preparation method 1), and it was confirmed by HPLC analysis that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1).
- Example 7 Compound 13: (tert-butyl 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-(benzyloxycarbonylamino)-3 -methyl-pentanoyl]-methyl-amino]propanoyl]azetidine-2-carbonyl]-ethyl-amino]-3-(p-tolyl)propanoyl]-methyl-amino]acetate)
- a solution (16.5 kg) containing compound 11 obtained in Example 6 and 2-MeTHF (2.12 kg) were sequentially added to a nitrogen-purged reactor at room temperature. Then, a solution of compound 12 (2.52 kg) dissolved in 2-MeTHF (8.1 kg), 2-MeTHF (8.1 kg) and acetonitrile (3.1 kg) were sequentially added to the reactor at room temperature. After adding DIPEA (4.51 kg) with stirring at room temperature, the external temperature of the reaction vessel was set to 25°C, and HATU (4.52 kg) and 2-MeTHF (0.3 L) were sequentially added, Stirred at 25° C. for 1 hour.
- reaction conversion rate calculation formula 1 A sample was prepared by sampling the reaction mixture (sample preparation method 1), and it was confirmed by HPLC analysis that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1).
- N-Methylimidazole (0.65 kg) was added to the reactor, and 5% aqueous sodium carbonate solution (23.9 kg) was added with stirring, followed by stirring for 1 hour. Then, a 2.5% aqueous ammonia solution (23.9 kg) was added, and after stirring for 30 minutes, the aqueous layer was discharged from the reaction vessel.
- Example 7-1 Compound 13: (tert-butyl 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-(benzyloxycarbonylamino)-3 -methyl-pentanoyl]-methyl-amino]propanoyl]azetidine-2-carbonyl]-ethyl-amino]-3-(p-tolyl)propanoyl]-methyl-amino]acetate) (solvent study) A solution (72.62 mg) containing compound 11 (50.69 mg (0.100 mmol)) obtained in Example 6 was added to a reaction vessel and concentrated to dryness under reduced pressure at an external temperature of 60°C.
- reaction conversion rate calculation formula 3 The reaction mixture was sampled for sample preparation (sample preparation method 1), and it was confirmed by HPLC analysis that the raw material compound 14 was not detected (reaction conversion rate calculation formula 3).
- the external temperature of the reactor was set to 0° C., and 0.5 M hydrochloric acid aqueous solution (19.4 kg) was added. After setting the external temperature of the reactor to 25° C., the mixture was stirred for 10 minutes. After stopping the stirring, the water layer was discharged from the reactor. The obtained organic layer was washed with a 0.5 M hydrochloric acid aqueous solution (27.5 kg). A 5% potassium carbonate aqueous solution (27.5 kg x 2) and then DMF (2.8 kg) were added to the obtained organic layer.
- a solution (7.4 kg) containing compound 15 obtained in Example 8, a solution (9.0 kg) containing compound 13 obtained in Example 7, isopropyl acetate (4. 0 kg) and N-methylmorpholine (2.38 kg) were sequentially added at room temperature.
- 5% Pd/C (0.83 kg, 50% water content) was added to the reaction vessel, the external temperature of the reaction vessel was set to 25°C, and hydrogen was added until the internal pressure of the reaction vessel reached 0.18 MPaG. pressured. After 1 hour, after confirming that there was no change in the internal pressure, the pressure was increased to 0.18 MPaG with hydrogen, and the mixture was further stirred for 1 hour.
- reaction conversion rate calculation formula 1 A sample was prepared by sampling the reaction mixture (sample preparation method 1), and it was confirmed by HPLC analysis that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1). After purging the inside of the reaction vessel with nitrogen, the reaction mixture was filtered under pressure. After washing the inside of the reactor and the filter with 2-MeTHF (10.0 kg x 2), the filtrate and washings were combined to obtain a storage solution (first batch).
- a solution (7.4 kg) containing compound 15 obtained in Example 8, a solution (9.0 kg) containing compound 13 obtained in Example 7, isopropyl acetate (4. 0 kg) and N-methylmorpholine (2.38 kg) were sequentially added at room temperature.
- 5% Pd/C (0.83 kg, 50% water content) was added to the reactor, the external temperature of the reactor was set to 25°C, and hydrogen was added until the internal pressure of the reactor reached 0.18 MPaG. pressured. After 1 hour, after confirming that there was no change in the internal pressure, the pressure was increased to 0.18 MPaG with hydrogen, and the mixture was further stirred for 1 hour.
- reaction conversion rate calculation formula 1 A sample was prepared by sampling the reaction mixture (sample preparation method 1), and it was confirmed by HPLC analysis that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1). After purging the inside of the reaction vessel with nitrogen, the reaction mixture was filtered under pressure. After washing the inside of the reactor and the filter with 2-MeTHF (10.0 kg x 2), the filtrate and washings were combined to obtain a storage solution (second batch).
- Example 9-1 (When using 2-MeTHF instead of isopropyl acetate used in Example 9) Compound 16 (tert-butyl 2-[[(2S)-2-[ethyl-[(2S)-1-[(2S)-2-[methyl-[(2S,3S)-3-methyl-2-[ [(2S)-4-methyl-2-[methyl(2-trimethylsilylethoxycarbonyl)amino]pentanoyl]amino]pentanoyl]amino]propanoyl]azetidine-2-carbonyl]amino]-3-(p-tolyl)propanoyl] -methyl-amino]acetate)
- a storage solution (482.7 mg) containing compound 13 obtained in Example 7 was added to the reaction vessel and concentrated under reduced pressure to obtain a residue containing compound 13.
- a residue containing Compound 15 (91.2 mg, 81.2 wt %) and 2-MeTHF (1000 ⁇ L) were sequentially added to the reaction vessel at room temperature.
- 5% Pd/C (29.8 mg, 50% water content) was added to the reaction vessel at room temperature.
- the external temperature was set to 25° C.
- deaeration was performed with hydrogen gas
- the mixture was stirred for 1 hour.
- a sample was prepared by sampling the reaction mixture (sample preparation method 1), and subjected to HPLC analysis to confirm that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1).
- the reaction mixture was filtered and the residue was washed with 2-MeTHF (400 ⁇ L ⁇ 2).
- the external temperature of the reaction vessel containing the filtrate was set to 25° C., and 5% potassium carbonate aqueous solution (440 ⁇ L) and 4-dimethylaminopyridine (16.6 mg) were sequentially added with stirring. Stirring was stopped after 30 minutes and the aqueous layer was drained.
- the organic layer was washed with a 5% aqueous potassium hydrogensulfate solution (440 ⁇ L ⁇ 2) and a 5% aqueous potassium carbonate solution (440 ⁇ L ⁇ 2).
- the obtained organic layer was concentrated under reduced pressure to obtain a residue containing compound 16 (113.3 mg).
- Example 9-2 (when dimethyl carbonate was used instead of isopropyl acetate used in Example 9)
- Compound 16 (tert-butyl 2-[[(2S)-2-[ethyl-[(2S)-1-[(2S)-2-[methyl-[(2S,3S)-3-methyl-2-[ [(2S)-4-methyl-2-[methyl(2-trimethylsilylethoxycarbonyl)amino]pentanoyl]amino]pentanoyl]amino]propanoyl]azetidine-2-carbonyl]amino]-3-(p-tolyl)propanoyl]
- a storage solution (477.4 mg) containing compound 13 obtained in Example 7 was added to a reaction vessel for synthesizing compound 13 (methyl-amino]acetate) and concentrated under reduced pressure to obtain a residue containing compound 13.
- a residue containing Compound 15 (92.0 mg, 81.2 wt %) and dimethyl carbonate (1000 ⁇ L) were sequentially added to the reaction vessel at room temperature. After adding 5% Pd/C (29.7 mg, 50% water content) to the reaction vessel, the external temperature was set to 25° C., deaeration was performed with hydrogen gas, and the mixture was stirred for 1 hour.
- a sample was prepared by sampling the reaction mixture (sample preparation method 1), and subjected to HPLC analysis to confirm that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1). The reaction mixture was filtered and the residue was washed with dimethyl carbonate (400 ⁇ L ⁇ 2).
- the external temperature of the reaction vessel containing the filtrate was set to 25° C., and 5% potassium carbonate aqueous solution (880 ⁇ L) and 4-dimethylaminopyridine (17.1 mg) were sequentially added with stirring. Stirring was stopped after 30 minutes and the aqueous layer was drained. The organic layer was washed with a 5% aqueous potassium hydrogensulfate solution (880 ⁇ L ⁇ 2) and a 5% aqueous potassium carbonate solution (880 ⁇ L ⁇ 2). The obtained organic layer was concentrated under reduced pressure to obtain a residue containing compound 16 (107.3 mg).
- Example 9-3 (When using anisole instead of isopropyl acetate used in Example 9) The table below shows the results when dimethyl carbonate and anisole were used as solvents in place of 2-MeTHF used in the synthesis of compound 16 above.
- a solution (18.8 kg) containing compound 16 obtained in Example 9 and 2-MeTHF (5.8 kg) were sequentially added to a nitrogen-purged reactor at room temperature.
- the external temperature of the reactor was set to 47° C., and tetrabutylammonium fluoride (1 M THF solution, 17.6 kg) was added over 1 hour.
- the reaction mixture was sampled for sample preparation (sample preparation method 1), and it was confirmed by HPLC analysis that the raw material compound 16 was not detected (reaction conversion rate calculation formula 1). After stopping the stirring, the reaction mixture was split in half.
- the external temperature of the reaction kettle was set to 10° C., and 10% aqueous citric acid monohydrate solution (28.7 kg) was added to the reaction mixture.
- the external temperature of the reactor was set to 25° C., and after stirring for 10 minutes, the stirring was stopped and the aqueous layer was discharged from the reactor.
- the resulting organic layer was washed with 10% aqueous citric acid monohydrate solution (28.7 kg ⁇ 2) and 5% aqueous sodium carbonate solution (28.7 kg ⁇ 3).
- 2-MeTHF (26.0 kg) was added to the obtained organic layer, and the mixture was concentrated under reduced pressure at an external temperature of 60°C until the liquid volume became about 7 L.
- a solution (19.8 kg) containing compound 19 was obtained by combining the residue and the washing liquid obtained by washing the reaction kettle with 2-MeTHF (6.8 kg x 2). Retention time by HPLC analysis: 3.510 minutes (HPLC analysis conditions: method 3)
- Condensation reaction of compound 20 and compound 21 (examination of reaction conditions in Example 13) Solvents in the condensation reaction of compound 20 and compound 21 were investigated. Condensation reactions were followed by HPLC analysis. The yield was calculated from the area % (Area%) determined by HPLC analysis and the measured value of qNMR.
- Example 13-1 (When using anisole instead of 2-MeTHF and acetonitrile used in Example 13 ) Compound 22 (tert-butyl (3S)-3-[[(2S)-2-[benzyloxycarbonyl(methyl)amino]-2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino)-4 -oxo-butanoate)
- reaction conversion rate Calculation formula 1 The external temperature was set to 10° C., N-methylimidazole (34.6 ⁇ L) and 5% potassium carbonate aqueous solution (200 ⁇ L) were sequentially added to the reaction vessel, and the external temperature was set to 25° C. and stirred for 30 minutes. Then, 2.5% aqueous ammonia solution (800 ⁇ L) and anisole (260 ⁇ L) were added and stirred for 10 minutes, and then the aqueous layer was discharged.
- the resulting organic layer was washed with a 2.5% aqueous ammonia solution (1000 ⁇ L) and a 10% aqueous sodium hydrogensulfate monohydrate solution (1000 ⁇ L ⁇ 3).
- a solvent anisole (260 ⁇ L)
- the obtained organic layer was concentrated under reduced pressure to obtain a residue containing compound 22 (175.7 mg, yield: 82%).
- reaction conversion rate calculation formula 1 5% Pd/C (1.26 kg, 50% water content), the solution containing compound 22 obtained in Example 13 (21.0 kg), and 2-MeTHF (5.1 kg) were placed in a reaction vessel purged with nitrogen. were added sequentially at room temperature.
- the external temperature of the reaction vessel was set to 25° C., and hydrogen was pressurized until the internal pressure of the reaction vessel reached 0.18 MPaG. After stirring for 40 minutes, after confirming that there was no change in the internal pressure, the reactor was pressurized to 0.18 MPaG with hydrogen and stirred for an additional hour.
- the reaction mixture was sampled for sample preparation (sample preparation method 1), and HPLC analysis confirmed that the reaction conversion rate was 100% (raw materials not detected) (reaction conversion rate calculation formula 1).
- the external temperature of the reactor was set to 10° C., and 5% aqueous sodium carbonate solution (25.3 kg) was added.
- the external temperature of the reactor was set to 25° C., and after stirring for 30 minutes, the stirring was stopped and the aqueous layer was discharged from the reactor.
- the external temperature of the reactor was set to 15° C., and 5% sodium hydrogensulfate monohydrate aqueous solution (25.3 kg) was added.
- the external temperature of the reactor was set to 25° C., and after stirring for 10 minutes, the stirring was stopped and the aqueous layer was discharged from the reactor.
- a solution (22.4 kg) containing Compound 25 obtained in Example 15 and 2-MeTHF (0.76 kg) were added in order to a reaction vessel purged with nitrogen at room temperature.
- the external temperature of the reactor was set to -20°C, LiBH 4 (10 w/w% THF solution, 3.67 kg) was added with stirring, and the mixture was stirred for 2 hours.
- the reaction mixture was sampled for sample preparation (sample preparation method 4), and HPLC analysis confirmed that the reaction conversion rate was 100% (raw materials not detected) (reaction conversion rate calculation formula 1).
- 2,2,2-Trifluoroethanol (16.5 kg) was added dropwise to the reactor at an external temperature of -20 to -30°C over 3 hours.
- the external temperature of the reactor was raised to 0°C over 1 hour, and the mixture was further stirred at 0°C for 1 hour.
- a 20% ammonium chloride aqueous solution (14.3 kg) was added to the reactor, and after stirring for 13 minutes, the stirring was stopped and the aqueous layer was discharged from the reactor.
- the external temperature of the reactor was set to 10° C. and trifluoroacetic acid (1.88 kg) was added.
- the external temperature of the reaction kettle was set to 25° C., and the mixture was stirred for 1 hour.
- the obtained reaction mixture and the washing solution obtained by washing the reaction vessel with 2-MeTHF (6.7 kg) were combined and collected in a storage container.
- a 2 M sodium hydroxide aqueous solution (61.9 kg) was added to another reaction vessel purged with nitrogen at room temperature, and the external temperature of the reaction vessel was set to 10°C.
- the reaction mixture collected in the storage container was added dropwise over 70 minutes, then 2-MeTHF (0.6 kg) was added, and the external temperature of the reactor was set to 25°C.
- the stirring was stopped and the aqueous layer was discharged from the reactor.
- the obtained organic layer was washed with 2M sodium hydroxide aqueous solution (47.6 kg ⁇ 2) and 10% dipotassium hydrogen phosphate aqueous solution (23.8 kg).
- the obtained organic layer was concentrated under reduced pressure at an external temperature of 40° C. until the liquid volume became about 40 L.
- Example 15-1 Compound 25a: tert-butyl N 2 - ⁇ (2S)-2-[(1- ⁇ [(benzyloxy)carbonyl]amino ⁇ cyclopentane-1-carbonyl)(methyl)amino]-2-cyclopentylacetyl ⁇ -N,N,N 2 Synthesis of -trimethyl-L- ⁇ -asparaginate
- Example 16-1 Compound 26: tert-butyl N 2 - ⁇ (2S)-2-[(1-aminocyclopentane-1-carbonyl)(methyl)amino]-2-cyclopentylacetyl ⁇ -N,N,N 2 Synthesis of -trimethyl-L- ⁇ -asparaginate
- the external temperature of the reactor was set to 10° C., and CPME (34.1 kg), 5% aqueous sodium carbonate solution (23.6 kg) and N-methylimidazole (0.67 kg) were added in order. After setting the external temperature of the reactor to 25° C. and stirring for 40 minutes, the water layer was discharged from the reactor.
- the external temperature of the reactor was set to 10° C., and 5% sodium hydrogensulfate monohydrate aqueous solution (23.6 kg) was added. After setting the external temperature of the reactor to 25° C. and stirring for 10 minutes, the aqueous layer was discharged from the reactor.
- the obtained organic layer was washed with 5% sodium hydrogensulfate monohydrate aqueous solution (23.6 kg x 2) and 5% sodium carbonate aqueous solution (23.6 kg x 2), and then 2-MeTHF (26.0 kg) was added.
- the obtained organic layer was concentrated under reduced pressure while stirring at an external temperature of 40° C. until the liquid volume became about 12 L.
- THF (19.7 kg) was added to the obtained residue, the mixture was concentrated under reduced pressure with stirring at an external temperature of 40° C. until the liquid volume became about 12 L.
- CPME (9.0 kg) was added to the reactor.
- the mixture was concentrated under reduced pressure while stirring at an external temperature of 40° C. until the liquid volume became about 12 L.
- Example 17-1 (when using 2-MeTHF instead of acetonitrile used in the synthesis method of Example 17 )
- Compound 28 (Benzyl (2S)-2-[[1-[[(1S)-2-[[(1S)-3-tert-butoxy-1-(dimethylcarbamoyl)-3-oxo-propyl]-methyl -Amino]-1-cyclopentyl-2-oxo-ethyl]-methyl-carbamoyl]cyclopentyl]carbamoyl]pyrrolidine-1-carboxylate)
- a storage solution (1.29 g) containing Compound 26 was added to the reaction vessel and concentrated to dryness under reduced pressure at an external temperature of 40°C. Then, 2-MeTHF (0.91 mL) and compound 27 (126.90 mg) were added to the reaction vessel. After adding DIPEA (0.37 mL) with stirring at room temperature, HATU (338.30 mg) was added and stirred at room temperature for 3 hours. 2-MeTHF (1.84 mL) and 5% aqueous sodium carbonate solution (1.09 mL) were added to the reaction vessel, and N-methylimidazole (30.30 ⁇ L) was added, followed by stirring for 30 minutes.
- the obtained organic layer was treated with 2.5% aqueous ammonia solution (1.09 mL), 5% aqueous sodium hydrogen sulfate monohydrate solution (1.09 mL ⁇ 2), 5% aqueous sodium carbonate solution (1 .09 mL x 2), 2.5% ammonia aqueous solution (1.09 mL x 3), 5% sodium hydrogen sulfate monohydrate aqueous solution (1.09 mL x 2), 5% sodium carbonate aqueous solution (1.09 mL x 2) washed with The resulting organic layer was concentrated to dryness under reduced pressure at an external temperature of 40° C. to obtain a residue containing compound 28 (0.19 g, yield 50.9%).
- Example 18 Compound 29: (tert-butyl (3S)-3-[[(2S)-2-cyclopentyl-2-[methyl-[1-[[(2S)-pyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]amino ]Acetyl]-methyl-amino]-4-(dimethylamino)-4-oxo-butanoate)
- Example 18-1 (when 2-MeTHF is used instead of THF/2-MeTHF used in the synthesis method of Example 18 )
- Compound 29 (tert-butyl (3S)-3-[[(2S)-2-cyclopentyl-2-[methyl-[1-[[(2S)-pyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]amino ]Acetyl]-methyl-amino]-4-(dimethylamino)-4-oxo-butanoate)
- Example 17 A solution (1014.92 mg) containing Compound 28 (121.49 mg) obtained in Example 17 was added to a reaction vessel and concentrated to dryness under reduced pressure at an external temperature of 60°C. Then, 2-MeTHF (2081 mg) and 5% Pd/C (25.89 mg, 50% water content) were sequentially added to the nitrogen-purged reactor at room temperature. The external temperature of the reaction vessel was set to 25° C., and hydrogen was pressurized until the internal pressure of the reaction vessel reached 0.18 MPaG. After 7 hours, the reaction mixture was sampled for sample preparation (sample preparation method 1), and HPLC analysis confirmed that the reaction conversion rate was 99.9% (reaction conversion rate calculation formula 1).
- 2-MeTHF (5.0 kg) and compound 30 (3.08 kg) were sequentially added at room temperature to a reaction vessel purged with nitrogen containing the concentrated solution of the reaction mixture containing compound 29 obtained in Example 18. rice field.
- the external temperature of the reaction kettle was set to 10° C., and DIPEA (2.44 kg), T3P (50 wt % 2-MeTHF solution (6.56 kg)) and 2-MeTHF (0.4 kg) were sequentially added while stirring.
- the external temperature of the reaction kettle was set to 25° C., and the mixture was stirred for 1 hour.
- the reaction mixture was sampled for sample preparation (sample preparation method 1), and HPLC analysis confirmed that the reaction conversion rate was 99.3% (reaction conversion rate calculation formula 1).
- the external temperature of the reactor was set to 15° C., and 5% potassium carbonate aqueous solution (15.9 kg) and N-methylimidazole (352.4 g) were added while stirring.
- the external temperature of the reactor was set to 25° C., and after stirring for 3 hours and 30 minutes, the water layer was discharged from the reactor.
- the external temperature of the reactor was set to 20° C., and 10% sodium hydrogensulfate monohydrate aqueous solution (14.9 kg) was added.
- the external temperature of the reactor was set to 25° C., and after stirring for 15 minutes, the water layer was discharged from the reactor.
- a 2.5% potassium carbonate aqueous solution (21.3 kg) and acetonitrile (6.6 kg) were added to the obtained organic layer, and the mixture was stirred for 10 minutes. After stopping the stirring, the aqueous layer was discharged from the reaction vessel.
- 2-MeTHF (26.0 kg) was added to the obtained organic layer, and the reaction mixture was concentrated under reduced pressure with stirring at an external temperature of 40° C. until the liquid volume of the reaction mixture reached about 9 L.
- Isopropyl acetate (15.1 kg) was added to the obtained residue, and the operation of concentrating under reduced pressure until the liquid volume of the reaction mixture reached about 9 L was repeated twice.
- a solution (16.5 kg) containing compound 31 was obtained by combining the residue and the washing liquid obtained by washing the reaction kettle with isopropyl acetate (7.0 kg). Retention time by HPLC analysis: 4.978 minutes (HPLC analysis conditions: method 3)
- Example 20 Compound 32: ((3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(benzyloxycarbonylamino)-4-[3,5 -difluoro-4-(trifluoromethyl)phenyl]butanoyl]pyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]-methyl-amino]-2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino) -4-oxo-butanoic acid)
- a solution (16.3 kg) containing Compound 31 obtained in Example 19, isopropyl acetate (5.7 kg), and hexamethyldisilazane (1.69 kg) were sequentially added to a reaction vessel purged with nitrogen at room temperature. .
- the external temperature of the reactor was set to 10° C., and trimethylsilyl trifluoromethanesulfonate (1.87 kg) was added with stirring.
- the reaction mixture was stirred for 1 hour while maintaining the external temperature between 20°C and 30°C.
- a sample was prepared by sampling the reaction mixture (sample preparation method 1), and it was confirmed by HPLC analysis that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1).
- the external temperature of the reactor was set to 0° C., and 2-MeTHF (17.6 kg) and 5% dipotassium hydrogenphosphate aqueous solution (41.1 kg) were sequentially added to the reactor.
- the external temperature of the reactor was set to 25° C., and after stirring the reaction mixture for 10 minutes, the stirring was stopped and the aqueous layer was discharged from the reactor.
- the organic layer was then washed with a 5% aqueous sodium dihydrogen phosphate solution (41.1 kg).
- DIPEA (2.39 kg) and 2-MeTHF (26.0 kg) were added to the obtained organic layer while stirring, and the mixture was concentrated under reduced pressure at an external temperature of 30 to 33° C. until the liquid volume became approximately 8 L.
- a solution (14.7 kg) containing compound 32 was obtained by combining the residue and the washing liquid obtained by washing the reaction kettle with 2-MeTHF (6.8 kg x 2). Retention time by HPLC analysis: 4.220 minutes (HPLC analysis conditions: method 3)
- Example 20-1 (When using 2-MeTHF instead of isopropyl acetate used in the synthesis method of Example 20 ) Compound 32: ((3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(benzyloxycarbonylamino)-4-[3,5 -difluoro-4-(trifluoromethyl)phenyl]butanoyl]pyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]-methyl-amino]-2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino) -4-oxo-butanoic acid)
- a solution (401.94 mg) containing Compound 31 (93.45 mg) obtained in Example 19 was added to a reaction vessel, and the mixture was concentrated to dryness under reduced pressure at an external temperature of 60°C.
- 2-MeTHF (402 mg) and hexamethyldisilazane (38.6 mg) were sequentially added at room temperature.
- the external temperature of the reaction vessel was set to 0° C. and trimethylsilyl trifluoromethanesulfonate (43.4 mg) was added with stirring.
- the external temperature of the reaction vessel was set to 25° C. and the reaction mixture was stirred for 1 hour.
- a sample was prepared by sampling the reaction mixture (sample preparation method 1), and it was confirmed by HPLC analysis that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1).
- the external temperature of the reaction vessel was set to 0° C., and 2-MeTHF (402 mg) and 5% dipotassium hydrogenphosphate aqueous solution (0.93 mL) were sequentially added to the reaction vessel.
- the external temperature of the reaction vessel was set to room temperature, and after stirring the reaction mixture for 10 minutes, the stirring was stopped and the aqueous layer was discharged from the reaction vessel. The organic layer was then washed with a 5% aqueous sodium dihydrogen phosphate solution (0.93 mL).
- a solution (11.9 kg) containing compound 17 obtained in Example 10, a solution (12.84 kg) containing compound 32 obtained in Example 20, and 2-MeTHF (3 .1 kg) were added sequentially at room temperature.
- the external temperature of the reaction kettle was set at 10° C. and DMF (6.4 kg), DIPEA (1.6 kg), and HATU (2.78 kg) were added to the reaction mixture.
- the mixture was stirred for 3 hours while maintaining the external temperature at 20°C to 30°C.
- the reaction mixture was sampled for sample preparation (sample preparation method 1), and HPLC analysis confirmed that the reaction conversion rate was 99.6% (reaction conversion rate calculation formula 1).
- the obtained organic layer was concentrated under reduced pressure while stirring at an external temperature of 40° C. until the liquid volume became about 10 L.
- An operation of adding 2-MeTHF (17.0 kg) to the reaction mixture and concentrating under reduced pressure while stirring at an external temperature of 40° C. until the liquid volume became about 10 L was performed twice.
- the residue and the washing liquid obtained by washing the reaction kettle with 2-MeTHF (6.8 kg) were combined and recovered as a solution (23.9 kg) containing compound 33 in a storage container. Retention time by HPLC analysis: 10.272 minutes (HPLC analysis conditions: method 4)
- Example 21-1 (Instead of 2-MeTHF and DMF used in the synthesis method, when 2-MeTHF and acetonitrile were used) Compound 33: (tert-butyl 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2- [[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(benzyloxycarbonylamino)-4-[3,5-difluoro -4-(Trifluoromethyl)phenyl]butanoyl]pyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]-methyl-amino]-2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino)-4 -oxo-butanoyl]-methyl-amino]-4-methyl-pent
- a solution (1017.1 mg) containing compound 17 obtained in Example 10, a solution (1133.0 mg) containing compound 32 obtained in Example 20, and 2-MeTHF (313.7 ⁇ L) were placed in a flask at room temperature. were added sequentially. After cooling the external temperature to 10°C and adding acetonitrile (575 ⁇ L), DIPEA (266 ⁇ L) and HATU (238.0 mg) to the reaction mixture, the external temperature was raised to 25°C. After the reaction mixture was stirred at 25°C for 3 hours, the reaction mixture was sampled for sample preparation (sample preparation method 1), and HPLC analysis confirmed that the reaction conversion rate was 99.8% (reaction conversion rate Calculation formula 1). After setting the external temperature to 10° C.
- Example 21-2 (when 2-MeTHF is used instead of 2-MeTHF and DMF used in the synthesis method of Example 21 )
- Compound 33 (tert-butyl 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2- [[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(benzyloxycarbonylamino)-4-[3,5-difluoro -4-(Trifluoromethyl)phenyl]butanoyl]pyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]-methyl-amino]-2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino)-4 -oxo-butanoyl]-methyl-amino]-4-methyl-pentanoyl
- a solution (969.5 mg) containing compound 17 and compound 31 was added to a reaction vessel and concentrated under reduced pressure at an external temperature of 40°C to obtain a residue containing compounds 17 and 31.
- 2-MeTHF (1140 ⁇ L) was added to the reaction vessel at room temperature to dissolve the residue.
- DIPEA 106 ⁇ L
- HATU HATU
- Example 21-3 (When using anisole instead of 2-MeTHF and DMF used in the synthesis method of Example 21 ) Compound 33: (tert-butyl 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2- [[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(benzyloxycarbonylamino)-4-[3,5-difluoro -4-(Trifluoromethyl)phenyl]butanoyl]pyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]-methyl-amino]-2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino)-4 -oxo-butanoyl]-methyl-amino]-4-methyl-pentanoyl]amino]
- a solution (969.8 mg) containing compound 17 and compound 32 was added to a reaction vessel and concentrated under reduced pressure at an external temperature of 40°C to obtain a residue containing compounds 17 and 32.
- Anisole (1140 ⁇ L) was added to the reaction vessel at room temperature to dissolve the residue.
- DIPEA 106 ⁇ L
- HATU 97.7 mg
- Example 21-4 (when dimethyl carbonate was used instead of 2-MeTHF and DMF used in the synthesis method of Example 21 )
- Compound 33 (tert-butyl 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2- [[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(benzyloxycarbonylamino)-4-[3,5-difluoro -4-(Trifluoromethyl)phenyl]butanoyl]pyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]-methyl-amino]-2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino)-4 -oxo-butanoyl]-methyl-amino]-4-methyl-pentanoyl]
- a solution (968.4 mg) containing compound 17 and compound 32 was added to the reaction vessel and concentrated under reduced pressure at an external temperature of 40°C to obtain a residue containing compounds 17 and 32.
- Dimethyl carbonate (1140 ⁇ L) was added to the reaction vessel at room temperature to dissolve the residue.
- DIPEA 106 ⁇ L
- HATU HATU
- Example 21-5 and Example 21-6 Compound 33 was synthesized under the same conditions as in Example 21-1, except that ethyl acetate (Example 21-5) or isopropyl acetate (Example 21-6) was used instead of 2-MeTHF/acetonitrile. did. Compound 33 was obtained with a yield of 76% in Example 21-5 and a yield of 75% in Example 21-6.
- a solution (23.7 kg) containing compound 33 obtained in Example 21, 2-MeTHF (32.0 kg), and hexamethyldisilazane (3.46 kg) were sequentially added to a reaction vessel purged with nitrogen at room temperature. rice field.
- the external temperature of the reactor was set to 0° C., and trimethylsilyl trifluoromethanesulfonate (3.99 kg) was added with stirring.
- the mixture was stirred for 3 hours while maintaining the external temperature at 20°C to 30°C.
- a sample was prepared by sampling the reaction mixture (sample preparation method 1), and it was confirmed by HPLC analysis that the reaction conversion rate was 99.6% or more (reaction conversion rate calculation formula 1).
- the external temperature of the reaction kettle was set to 0° C., and 5% dipotassium hydrogen phosphate aqueous solution (23.8 kg) was added to the reaction mixture.
- the external temperature of the reactor was set to 25° C., and after stirring for 10 minutes, the aqueous layer was discharged from the reactor.
- the obtained organic layer was washed with an aqueous solution (23.3 kg x 4) containing citric acid monohydrate (0.57 kg) and dipotassium hydrogen phosphate (0.88 kg), and then added with a 5% sodium carbonate aqueous solution (23.0 kg). 8 kg).
- 2-MeTHF (26.0 kg) was added to the obtained organic layer, and the mixture was concentrated under reduced pressure while stirring at an external temperature of 40° C.
- Example 23 the solution (14.5 kg) containing compound 34 obtained in Example 22 was used, and the following operation was carried out in two batches. After adding 5% Pd/C (756.6 g, 50% water content) to the reaction vessel purged with nitrogen, THF (7.5 kg) was added. The external temperature of the reaction kettle was set at 25°C. A solution (14.5 kg) containing compound 34 obtained in Example 22 and THF (0.7 kg) were sequentially added. The external temperature of the reaction vessel was set to 25° C., and hydrogen was pressurized with stirring until the internal pressure of the reaction vessel reached 0.18 MPaG. After 2.5 hours, after confirming that there was no change in the internal pressure, the reactor was pressurized to 0.18 MPaG with hydrogen and stirred for another hour.
- Pd/C 756.6 g, 50% water content
- reaction conversion rate calculation formula 1 The reaction mixture was sampled for sample preparation (sample preparation method 1), and HPLC analysis confirmed that the reaction conversion rate was 99.6% (reaction conversion rate calculation formula 1). After purging the inside of the reaction vessel with nitrogen, the reaction mixture was filtered under pressure. After washing the inside of the reactor and the filter with 2-MeTHF (4.9 kg x 2), the filtrate and washings were combined to obtain a storage solution (first batch) containing compound 34.
- reaction conversion rate calculation formula 1 After adding 5% Pd/C (756.6 g, 50% water content) to the nitrogen-purged reactor, THF (7.5 kg) was added. The external temperature of the reaction kettle was set at 25°C. A solution (14.5 kg) containing compound 34 obtained in Example 22 and THF (0.7 kg) were sequentially added. The external temperature of the reaction vessel was set to 25° C., and hydrogen was pressurized with stirring until the internal pressure of the reaction vessel reached 0.18 MPaG. After 1 hour, after confirming that there was no change in the internal pressure, the reactor was pressurized to 0.18 MPaG with hydrogen and stirred for another 1 hour. The reaction mixture was sampled for sample preparation (sample preparation method 1), and HPLC analysis confirmed that the reaction conversion rate was 99.6% (reaction conversion rate calculation formula 1).
- a stock solution (60.5 kg) containing compound 34 and 2-MeTHF (0.4 kg) were sequentially added to a reaction vessel purged with nitrogen at room temperature. After concentrating under reduced pressure while stirring at an external temperature of 40°C until the liquid volume became 7.3 L, the external temperature was set to 25°C.
- Acetonitrile (20.3 kg), 2-MeTHF (6.3 kg) and heptane (35.4 kg) were added to the resulting residue and stirred for 30 minutes. After stopping the stirring, the lower layer was collected in a storage container.
- Acetonitrile (52.7 kg) and DIPEA (1.6 kg) were added to the resulting lower organic layer to obtain a solution containing compound 35 (83.6 kg). Retention time by HPLC analysis: 6.480 minutes (HPLC analysis conditions: method 4)
- Example 23-1 (when 2-MeTHF is used instead of THF used in the synthesis method of Example 23 ) Compound 35: (2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[( 3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-amino-4-[3,5-difluoro-4-(trifluoromethyl) Phenyl]butanoyl]pyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]-methyl-amino]-2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino)-4-oxo-butanoyl]-methyl- amino]-4-methyl-pentanoyl]amino]-3-methyl-pentanoyl]-methyl-amino]prop
- a solution (2447.7 mg) containing compound 34 obtained in Example 22 was added to the reaction vessel and concentrated under reduced pressure to obtain a residue containing compound 34.
- 2-MeTHF (2040 ⁇ L) and 5% Pd/C (96.8 mg, 50% water content) were added to the reaction vessel, followed by degassing with hydrogen gas and stirring for 4 hours.
- 2-MeTHF (460 ⁇ L) and 5% Pd/C (47.3 mg, 50% water content) were added to the reaction vessel, followed by degassing with hydrogen gas and stirring for 4 hours.
- a sample was prepared by sampling the reaction mixture (sample preparation method 1), and subjected to HPLC analysis to confirm that the reaction conversion rate was 99.7% (reaction conversion rate calculation formula 1).
- Example 24 Compound 1: ((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-butyl)-18-cyclopentyl-29-(3,5-difluoro-4 -(trifluoromethyl)phenethyl)-36-ethyl-11-isobutyl-N,N,5,6,12,16,19,33-octamethyl-35-(4-methylbenzyl)-4,7,10, 13,17,20,23,28,31,34,37-undecaoxotetratriacontahydro-2H,4H-spiro[azeto[2,1-u]pyrrolo[2,1-i][1,4 ,7,10,13,16,19,22,25,28,31]undecaazacyclotetratriacontin-21,1′-cyclopentane]-15-carboxamide)
- the external temperature of the reactor was set to 25° C., and ethyl acetate (104.7 kg) was added to the resulting residue.
- a 2.5% aqueous ammonia solution (77.8 kg) was added while stirring at an external temperature of 25°C, and the mixture was stirred for 85 minutes.
- a 5% aqueous solution of potassium hydrogensulfate monohydrate (89.8 kg) was added to the obtained organic layer with stirring at an external temperature of 20°C.
- the mixture was stirred at an external temperature of 25°C for 12 minutes. After discharging the aqueous layer from the reactor, the organic layer obtained at an external temperature of 25° C.
- Example 24-1 Compound 1: ((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-butyl)-18-cyclopentyl-29-(3,5-difluoro-4 -(trifluoromethyl)phenethyl)-36-ethyl-11-isobutyl-N,N,5,6,12,16,19,33-octamethyl-35-(4-methylbenzyl)-4,7,10, 13,17,20,23,28,31,34,37-undecaoxotetratriacontahydro-2H,4H-spiro[azeto[2,1-u]pyrrolo[2,1-i][1,4 ,7,10,13,16,19,22,25,28,31]undecaazacyclotetratriacontin-21,1′-cyclopentane]-15-carboxamide) (using HA
- Table 7 shows the results of synthesizing compound 1 using various condensing agents and solvents.
- the experimental procedure was the same as when HATU was used as the condensing agent and acetonitrile was used as the solvent (Example 24-1).
- SM in the table is the sum of the remaining amount of Compound 35 and the propylamide form of Compound 35 (Area % ratio of HPLC).
- TM in the table is the target product (compound 1), c-Dimer and c-Trimer are the by-products cyclic dimer and cyclic trimer, respectively. Shown as a % ratio (HPLC analysis conditions: method 5). Yields were calculated by HPLC analysis using methyl benzoate as an internal standard.
- anisole, dimethyl carbonate, and 2-MeTHF are preferred solvents in consideration of their high conversion rate to the desired product, low formation rate of by-products, and environmental load. It has been shown.
- HATU, PyBOP, and PyOxim were shown to be preferred condensing agents.
- Preferred combinations of solvent and condensing agent were anisole and PyBOP, dimethyl carbonate and PyBOP, and 2-methyltetrahydrofuran and PyBOP.
- a solution (2152.63 mg) containing compound 35 (100.16 mg (0.069 mmol)) obtained in Example 23 was added, and the mixture was concentrated to dryness under reduced pressure at an external temperature of 40°C.
- 2-MeTHF (2150 mg) and DIPEA (42.2 mg) were added to the concentrated residue to obtain a solution containing compound 35.
- PyBOP (141.10 mg) and 2-MeTHF (2150 mg) were added to the reaction vessel purged with nitrogen.
- the external temperature of the reaction vessel was set to 25° C. and the solution containing compound 35 was added dropwise to the reaction mixture over 4 hours. Washing was performed with 2-MeTHF (172 mg), a rinse solution was added, and the mixture was stirred for 2 hours.
- Example 25 Crystallization of compound 1: ((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-butyl)-18-cyclopentyl-29-(3,5- Difluoro-4-(trifluoromethyl)phenethyl)-36-ethyl-11-isobutyl-N,N,5,6,12,16,19,33-octamethyl-35-(4-methylbenzyl)-4,7 ,10,13,17,20,23,28,31,34,37-undecaoxotetratriacontahydro-2H,4H-spiro[azeto[2,1-u]pyrrolo[2,1-i][ 1,4,7,10,13,16,19,22,25,28,31]undecaazacyclotetratriacontin-21,1′-cyclopentane]-15-carboxamide) hydrate crystals
- the vessel containing the suspension was washed with a mixed solution of acetone (59.2 g)/water (61.2 g) and added to the reactor, followed by stirring for 2 hours and 1 minute. Filtered purified water (2.7 kg) was added and stirred for 7 hours and 10 minutes.
- the reaction mixture was subjected to pressure filtration, and the obtained crystals were washed while washing the inside of the reactor and the filter with a mixture of filtered acetone (7.5 kg) and purified water (7.5 kg).
- the obtained crystals were washed with filtered purified water (17.0 kg x 2), the pressure of the filtering device that collected the crystals was reduced, and the external temperature of the filtering device was set to 70°C to dry the crystals for 17 hours. Further, the crystals were dried at an external temperature of room temperature to 30° C. for 27 hours.
- the dry powder was recovered from the filter to obtain a white powder (2.6 kg).
- Example 25-1 Preparation of seed crystals used in Example 25
- Example Amorphous compound 1 (122.3 mg) was dissolved in DMSO (0.612 mL), and this solution (0.015 mL) Freeze-dried at °C for 2 days.
- a water-acetonitrile mixture (3:1, 0.015 mL) was added to the obtained freeze-dried product, and the mixture was shaken and stirred at room temperature for 7 days to obtain hydrate crystals of Compound 1 (C-type crystals). .
- Example 25-3 Compound 1 ((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-butyl)-18-cyclopentyl-29-(3,5-difluoro-4- (Trifluoromethyl)phenethyl)-36-ethyl-11-isobutyl-N,N,5,6,12,16,19,33-octamethyl-35-(4-methylbenzyl)-4,7,10,13 ,17,20,23,28,31,34,37-undecaoxotetratriacontahydro-2H,4H-spiro[azeto[2,1-u]pyrrolo[2,1-i][1,4, 7,10,13,16,19,22,25,28,31]undecaazacyclotetratriacontin-21,1′-cyclopentane]-15-carboxamide) DMSO-hydrate crystals
- Hydrate crystals (33.8 mg) were obtained as powdery crystals.
- the powdery crystals immediately after filtration were DMSO-hydrate crystal type A, and the powdery crystals dried under reduced pressure at room temperature for 8 hours after filtration were used as DMSO-hydrate crystal type B.
- DMSO-hydrate crystals of compound 1 (DMSO-hydrate crystal type A and DMSO-hydrate crystal type B) were each subjected to powder X-ray diffraction measurement (measurement method 3). The results are shown below.
- DMSO-hydrate crystal type B is 2.5 equivalents of DMSO to compound 1.
- Example 25-4 Compound 1 ((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-butyl)-18-cyclopentyl-29-(3,5-difluoro-4- (Trifluoromethyl)phenethyl)-36-ethyl-11-isobutyl-N,N,5,6,12,16,19,33-octamethyl-35-(4-methylbenzyl)-4,7,10,13 ,17,20,23,28,31,34,37-undecaoxotetratriacontahydro-2H,4H-spiro[azeto[2,1-u]pyrrolo[2,1-i][1,4, 7,10,13,16,19,22,25,28,31]undecaazacyclotetratriacontin-21,1'-cyclopentane]-15-carboxamide) hydrate crystal (type C crystal
- Example 26 Measurement of Physicochemical Properties of Hydrate Crystals of Compound 1 (C-type Crystals) Using the hydrate crystals of Compound 1 (C-type crystals) obtained in the same manner as in Example 25, powder X-ray diffraction Measurement, thermogravimetric/differential thermal analysis, determination of water content, and single-crystal X-ray structure analysis were performed.
- Powder X-ray Diffraction Measurement Humidity change powder X-ray diffraction measurement of the hydrate crystals of compound 1 (C type crystals) prepared in Example 26 was carried out by the following method.
- Measuring device SmartLab System, D/Tex Ultra detector, steam generator HUM-SL (manufactured by Rigaku) Anticathode: Cu Tube voltage: 45kV Tube current: 200mA Scanning range: 5-30° Scanning speed: 0.7°/min Sampling width: 0.02° Humidity change conditions:
- Measuring device Rigaku R-AXIS RAPID-II with a VariMax Cu diffractometer (manufactured by Rigaku)
- Anticathode Cu Tube voltage: 40 kV Tube current: 30mA
- Temperature: -180°C Measurement Measurement was performed with a strategy and an exposure time that are considered to provide sufficient diffraction spots for structural analysis.
- Structural analysis Initial structural determination was performed by a direct method (SIR2004, CrystalStructure, Rigaku), and structural refinement was performed by a full-matrix least-squares method (SHELXL-2017/1, APEX3, Bruker). All non-hydrogen atoms were refined with anisotropic temperature factors.
- the hydrogen atoms of the water molecules were placed in proper positions using restraint and refined with an isotropic temperature factor 1.5 times larger than the bound oxygen atoms.
- Other hydrogen atoms were placed in appropriate positions using the riding model, with an isotropic temperature factor of 1.2 times the magnitude of the non-hydrogen atoms to which they are bound. The results are shown in FIG.
- Dynamic water vapor adsorption measurement of the hydrate crystals (C-type crystals) of compound 1 prepared in Example 26 was performed by the following method. The results are shown in FIG. Measurement device: DVS Intrinsic (manufactured by Surface Measurement Systems) Temperature: 25°C Relative humidity (%) measurement points: Cycle 1: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0 (%); Cycle 2 : 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0 (%); Cycle 2 : 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0 (%) Threshold: 0.001 dm/dt (%/min) Minimum sorption time: 10 minutes Maximum sorption time: 1440 minutes
- the hydrate crystals of Compound 1 were found to be 3.3% lower than the weight at 0% relative humidity as the hydration number changed in the range of 0 to 95% relative humidity. It was confirmed that it is a hydrate crystal whose hydration number can change within the weight range.
- Example 26-1 Single-crystal X-ray measurement of DMSO-hydrate crystal (A form) of compound 1
- Compound 1 ((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-butyl)-18-cyclopentyl-29-(3,5-difluoro-4- (Trifluoromethyl)phenethyl)-36-ethyl-11-isobutyl-N,N,5,6,12,16,19,33-octamethyl-35-(4-methylbenzyl)-4,7,10,13 ,17,20,23,28,31,34,37-undecaoxotetratriacontahydro-2H,4H-spiro[azeto[2,1-u]pyrrolo[2,1-i][1,4, 7,10,13,16,19,22,25,28,31]undecaazacyclotetratriacon
- Single crystal X-ray structure analysis Single crystal X-ray structure analysis of the DMSO-hydrate crystal (A-type crystal) of Compound 1 prepared in Example 26-1 was performed by the following method.
- Measuring device Rigaku XtaLAB Synergy Custom with a VariMax Cu diffractometer (manufactured by Rigaku)
- Anticathode Cu Tube voltage: 40 kV Tube current: 30mA
- Temperature: -180°C Measurement Measurement was performed with a strategy and an exposure time that are considered to provide sufficient diffraction spots for structural analysis.
- Example 26-2 Measurement of physicochemical properties of acetone-hydrate crystals (H form) of Compound 1 (1) Single crystal X-ray structure analysis Compound 1 ((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-butyl)-18-cyclopentyl-29-(3,5-difluoro-4- (Trifluoromethyl)phenethyl)-36-ethyl-11-isobutyl-N,N,5,6,12,16,19,33-octamethyl-35-(4-methylbenzyl)-4,7,10,13 ,17,20,23,28,31,34,37-undecaoxotetratriacontahydro-2H,4H-spiro[azeto[2,1-u]pyrrolo[2,1-i][1,4, 7,10,13,16,19,22,25,28,31]undecaaza
- Single crystal X-ray structure analysis of the acetone-hydrate crystal of compound 1 obtained above was performed by the following method.
- the external temperature was set to 40° C. and water (6.4 mL) was added with stirring.
- a mortar-ground hydrate crystal of Compound 1 (6 mg) was added to a glass vial, suspended in an acetone water mixture (80 ⁇ L, 5/4 v/v), and the suspension was added to the reaction vessel. Further, an acetone-water mixture (80 ⁇ L, 5/4 v/v) was added to the glass vial, and the suspension was added to the reaction vessel. The crystallized solution was stirred for 2 hours. After adding water (1.6 mL) over 10 minutes, the suspension was stirred for 3 hours. After adding water (1.6 mL) over 10 minutes, the suspension was stirred for 2 hours. The suspension was cooled to an external temperature of 25° C. over 1 hour.
- the suspension was stored undisturbed overnight. On the next day, after stirring at an external temperature of 25° C., a portion of the suspension was sampled, and the powder X-ray diffraction measurement (measurement method 4) was performed on the suspension. After filtering the suspension with a Kiriyama funnel, the crystals were washed with an acetone-water mixture (5.6 mL, 4.4 mL). Subsequently, the crystals were washed twice with water (10 mL). The resulting wet powder was used for solvent content determination.
- Fmoc-Asp(OAl)-OH ((2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-4-oxo-4-prop-2-enoxybutanoic acid, CAS No. 146982-24-3) ( 200 g, 506 mmol), p-toluenesulfonic acid (5.7 g, 0.05 equivalent) and paraformaldehyde (45.6 g, 3 equivalent) were mixed with toluene and stirred at 110° C. for 16 hours. The reaction mixture was evaporated under reduced pressure, and the residue was dissolved in ethyl acetate and washed twice with an aqueous sodium hydrogencarbonate solution.
- the reaction solution was diluted with ethyl acetate (422 mL), washed twice with hydrochloric acid (1 mol/L, 422 mL), and the obtained aqueous layer was extracted twice with ethyl acetate (422 mL). All organic layers were mixed and washed in order with water (422 mL), a mixed solution of saturated aqueous sodium bicarbonate and water (1:1, 422 mL), and a mixed solution of saturated saline and water (1:1, 422 mL). The resulting organic layer was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. DCM (422 mL) was added to the resulting residue and stirred for 0.5 hours.
- the solution was drained from the frit after 10 minutes of shaking.
- DMF (420 mL) was added to the solid phase reaction vessel and shaken for 5 minutes before draining the solution through the frit.
- a solution of triethylamine hydrochloride (7.96 g, 57.8 mmol) in DCM (420 mL) was added to the solid phase reaction vessel and shaken for 5 minutes before draining the solution through the frit.
- DCM (420 mL) was added to the solid phase reaction vessel and shaken for 5 minutes before draining the solution through the frit.
- DMF (420 mL) was added to the solid phase reaction vessel and shaken for 5 minutes before draining the solution through the frit. This DMF washing step of the resin was repeated one more time.
- Nickel bromide trihydrate (NiBr 2.3H 2 O) (13.5 g, 49.7 mmol, 0.3 eq) and 4,4′-di-tert-butyl-2,2′-bipyridyl (dtbbpy, CAS No. 72914-19-3) (13.3 g, 49.7 mmol, 0.3 equivalent) was added to DMA (400 mL) and stirred at 50° C. for 3 hours under a nitrogen atmosphere to prepare a Ni solution.
- TfOH trifluoromethanesulfonic acid
- Acetonitrile/water 400/400 mL was added to the residue and the pH was adjusted to 7 with aqueous sodium hydroxide (48%).
- Fmoc-OSu (36.6 g, 108.6 mmol, 0.9 equivalents) was added to this solution, the pH was adjusted to 8.0 with an aqueous sodium hydroxide solution (48%), and the mixture was stirred at room temperature for 16 hours.
- the reaction solution was filtered while washing with acetonitrile/water (1/1) to remove solid components, the filtrate was diluted with acetonitrile, and adjusted to be acidic with 6 mol/L aqueous hydrochloric acid.
- Multipep RSi peptide synthesizer
- the compound 1217-c-resin obtained above (200 mg per solid-phase reaction vessel) was added to 30 solid-phase reaction vessels and set in a peptide synthesizer.
- Dichloromethane (DCM) was added to all 30 solid-phase reactors and allowed to stand for 1 hour to swell the resin. The solvent was then drained from the frit.
- NMP solution of Fmoc-MeGly-OH (0.6 mol/L) and HOAt (0.375 mol/L) (0.6 mL per solid-phase reaction vessel) and N,N'-diisopropylcarbodiimide (DIC) in DMF (10 v/v%, 0.72 mL per solid-phase reaction vessel) was mixed in the mixing vial of the synthesizer and then added to all 30 solid-phase reaction vessels. °C for 2.5 hours. The solution was then drained from the frit. DMF (1.4 mL per solid phase reactor) was added to all 30 solid phase reactors and the solvent was drained through the frit. This resin washing step was repeated two more times.
- NMP solution of Fmoc-MeAla-OH (0.6 mol/L) and HOAt (0.375 mol/L) (0.6 mL per solid-phase reaction vessel) and N,N'-diisopropylcarbodiimide (DIC) in DMF (10 v/v%, 0.72 mL per solid-phase reaction vessel) was mixed in the mixing vial of the synthesizer and then added to all 30 solid-phase reaction vessels. °C for 2.5 hours. The solution was then drained from the frit. DMF (1.4 mL per solid phase reactor) was added to all 30 solid phase reactors and the solvent was drained through the frit. This resin washing step was repeated two more times.
- Table 11 shows the LC/MS analysis conditions in Preparation Example 1.
- the obtained organic layer was washed with 5% aqueous sodium carbonate solution (14.4 mL ⁇ 1), 5% aqueous sodium hydrogensulfate monohydrate solution (14.4 mL ⁇ 1) and 5% aqueous sodium carbonate solution (14.4 mL ⁇ 1).
- the obtained organic layer was further washed twice with a 5% sodium hydrogensulfate monohydrate aqueous solution (14.4 mL ⁇ 1) and a 5% sodium carbonate aqueous solution (14.4 mL ⁇ 1).
- 2-MeTHF (14.4 mL) was added and washed with 5% aqueous sodium hydrogensulfate monohydrate solution (14.4 mL x 1) and 5% aqueous sodium carbonate solution (14.4 mL x 1).
- reaction solution containing compound a25 was added dropwise to a reaction vessel containing a 2M sodium hydroxide aqueous solution (44.3 mL). The aqueous layer was discharged and then washed with a 2M sodium hydroxide aqueous solution (34.1 mL ⁇ 2) and a 10% dipotassium hydrogen phosphate aqueous solution (17.0 mL ⁇ 1). The obtained organic layer was concentrated under reduced pressure to obtain a residue (2.90 g) containing compound a26. Retention time by HPLC analysis: 2.868 minutes (HPLC analysis conditions: method 3)
- the obtained organic layer was treated with 5% sodium hydrogen sulfate monohydrate aqueous solution (17.4 mL ⁇ 5), 5% sodium hydrogen sulfate aqueous solution (17.4 mL ⁇ 2), and 5% sodium hydrogen sulfate monohydrate solution. Washed with hydride aqueous solution (17.4 mL ⁇ 3) and 5% sodium carbonate aqueous solution (17.4 mL ⁇ 2). The resulting organic layer was concentrated under reduced pressure to obtain a residue (3.86 g) containing compound a28. Retention time by HPLC analysis: 4.323 minutes (HPLC analysis conditions: method 3)
- compound a30 (0.57 g), DIPEA (1.1 mL) and T3P (50 w/w % 2-MeTHF solution, 2.2 mL) were added, allowed to stand overnight, and stirred for 2 hours the next day.
- N-Methylimidazole (0.23 mL) was added, and after stirring for 1 hour, the aqueous layer was discharged.
- reaction conversion rate 99.0% After purging with nitrogen, a suspension of 5% Pd/C (0.24 g, 50% water content) in THF (4 mL) was added to the reaction solution, and after hydrogen substitution, the mixture was stirred for 4 hours (reaction conversion rate 99.0%). ). After purging with nitrogen and storing in a refrigerator overnight, the reaction conversion rate was 99.4% when it was returned to room temperature the next day and measured. The reaction mixture was subjected to suction filtration using filter paper, and the residue was washed with a 2-MeTHF solution (6.5 mL ⁇ 10). The resulting filtrate and washings were combined and concentrated under reduced pressure.
- Example 50 Step 5' Compound a36: (3S,9S,18S,21S,25S,28S,34S)-9-(cyclohexylmethyl)-21-isobutyl-28-isopropyl-7,10,13,16,22,26,29-heptamethyl- 18-[(1S)-1-methylpropyl]-3-(2-phenylethyl)-25-(piperidine-1-carbonyl)spiro[1,4,7,10,13,16,19,22,26 ,29,32-Undecazabicyclo[32.3.0]heptatriacontane-31,1′-cyclopentane]-2,5,8,11,14,17,20,23,27,30,33-undecaone synthesis
- Example 50-1 Compound a36: (3S,9S,18S,21S,25S,28S,34S)-9-(cyclohexylmethyl)-21-isobutyl-28-isopropyl-7,10,13,16,22,26,29-heptamethyl- 18-[(1S)-1-methylpropyl]-3-(2-phenylethyl)-25-(piperidine-1-carbonyl)spiro[1,4,7,10,13,16,19,22,26 ,29,32-Undecazabicyclo[32.3.0]heptatriacontane-31,1′-cyclopentane]-2,5,8,11,14,17,20,23,27,30,33-undecaone Synthesis (using PyBOP as condensing agent and dimethyl carbonate as solvent)
- Example 50-2 The results when anisole and 2-methyltetrahydrofuran were used as solvents are also shown in Table 13 (experimental procedures were performed in the same manner as in Example 50-1). In neither case was a cyclic trimer observed.
- Example 50-3 Compound a36: (3S,9S,18S,21S,25S,28S,34S)-9-(cyclohexylmethyl)-21-isobutyl-28-isopropyl-7,10,13,16,22,26,29-heptamethyl- 18-[(1S)-1-methylpropyl]-3-(2-phenylethyl)-25-(piperidine-1-carbonyl)spiro[1,4,7,10,13,16,19,22,26 ,29,32-Undecazabicyclo[32.3.0]heptatriacontane-31,1′-cyclopentane]-2,5,8,11,14,17,20,23,27,30,33-undecaone Synthesis (using PyBOP as condensing agent and dimethyl carbonate as solvent, production by reverse dropping method) PyBOP (59.9 mg) was weighed into a reaction vessel and suspended in dimethyl carbonate (1 mL).
- Example 51 Compound b1: (3S)-3-[[(2S)-2-[[1-[[(2S)-1-benzyloxycarbonylpyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]-methyl-amino]- Synthesis of 2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino)-4-oxo-butanoic acid A 2-MeTHF solution (17.45 g, 11.7 wt %) containing Compound 28 was added to the reaction vessel and concentrated under reduced pressure, and IPAc (10.2 mL) was added to the resulting residue.
- reaction conversion rate calculation formula 1 After adding HMDS (1.52 mL) while stirring at room temperature, the external temperature was cooled to 0° C., and TMSOTf (1.04 mL) was slowly added dropwise. The temperature was raised to room temperature and stirred for 30 minutes. A sample was prepared by sampling the reaction mixture (sample preparation method 1), and subjected to HPLC analysis to confirm that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1). The external temperature was cooled to 0° C., 5% dipotassium hydrogenphosphate aqueous solution (14.3 mL) was added dropwise to the reaction solution, and the mixture was stirred at room temperature for 10 minutes.
- the organic layer was removed, 0.5M hydrochloric acid aqueous solution (11.2 mL) and IPAc (10.2 mL) were added to the aqueous layer, and the mixture was stirred for 10 minutes.
- the aqueous layer was discharged, the organic layer was washed with a 5% sodium chloride aqueous solution (14.3 mL), and the aqueous layer was discharged.
- the resulting organic layer was concentrated to dryness under reduced pressure at an external temperature of 30°C to obtain a residue containing compound b1 (1.88 g, yield 94.1%).
- reaction conversion rate Equation 2 The external temperature was cooled to 0° C., N-methylimidazole (86 ⁇ L) and 5% aqueous sodium carbonate solution (5.6 mL) were added to the reaction solution, and the mixture was stirred at room temperature for 10 minutes.
- the aqueous layer was discharged, and the organic layer was washed with 2.5% aqueous ammonia solution (5.6 mL), 5% aqueous sodium hydrogensulfate solution (5.6 mL ⁇ 2), and 5% aqueous sodium carbonate solution (8.2 mL ⁇ 3). did.
- the resulting organic layer was concentrated to dryness under reduced pressure at an external temperature of 30°C to obtain a residue containing compound b2 (1.88 g, yield 93.8%).
- Example 53 Compound b3: 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S )-3-[[(2S)-2-[[1-[[(2S)-1-benzyloxycarbonylpyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]-methyl-amino]-2-cyclopentyl-acetyl ]-methyl-amino]-4-(dimethylamino)-4-oxo-butanoyl]-methyl-amino]-4-methyl-pentanoyl]amino]-3-methyl-pentanoyl]-methyl-amino]propanoyl]azetidine- Synthesis of 2-carbonyl]-ethyl-amino]-3-(p-tolyl)propanoyl]-methyl-amino]acetic acid The
- the organic layer was removed, 0.5M hydrochloric acid aqueous solution (7.41 mL) and 2-MeTHF (9.0 mL) were added to the aqueous layer, and the mixture was stirred for 10 minutes.
- the aqueous layer was discharged, the organic layer was washed with a 5% sodium chloride aqueous solution (13.0 mL), and the aqueous layer was discharged.
- the resulting organic layer was concentrated to dryness under reduced pressure at an external temperature of 35°C to obtain a residue containing compound b3 (3.36 g, yield 92.7%).
- Example 54 Compound b4: 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S )-3-[[(2S)-2-cyclopentyl-2-[methyl-[1-[[(2S)-pyrrolidine-2-carbonyl]amino]cyclopentanecarbonyl]amino]acetyl]-methyl-amino]- 4-(dimethylamino)-4-oxo-butanoyl]-methyl-amino]-4-methyl-pentanoyl]amino]-3-methyl-pentanoyl]-methyl-amino]propanoyl]azetidine-2-carbonyl]-ethyl- Synthesis of amino]-3-(p-tolyl)propanoyl]-methyl-amino]acetic acid Compound b3 (1.01 g, 0.762
- reaction conversion rate calculation formula 1 After 5% Pd/C (0.162 g, 50% water content) was added to the reaction vessel, degassing and substitution with hydrogen gas was performed three times, and the mixture was stirred for 2 hours. A sample was prepared by sampling the reaction mixture (sample preparation method 1), and subjected to HPLC analysis to confirm that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1). The reaction mixture was filtered using filter paper and a membrane filter, and the residue was washed with 2-MeTHF (5.0 mL ⁇ 2). The obtained filtrate was concentrated under reduced pressure to obtain a residue containing compound b4 (1.43 g, yield 96.7%).
- Example 55-6 Compound b5: (6S,9S,14S,17S,20S,24S,27S,33S)-27-cyclopentyl-7-ethyl-20-isobutyl-N,N,4,14,15,21,25,28-octamethyl -17-[(1S)-1-methylpropyl]-2,5,8,13,16,19,22,26,29,32-decaoxo-6-(p-tolylmethyl)spiro[1,4,7 ,12,15,18,21,25,28,31-Decazatricyclo[31.3.0.09,12]hexatriacontane-30,1'-cyclopentane]-24-carboxamide.
- Example 55-11 (manufacture by reverse dropping method of Example 55-6) Compound b4 (9.89 mg (8.31 ⁇ mol)) and 2-MeTHF (0.99 mL (100 v/w)) were added to the vial and stirred at 50°C for 10 minutes. After confirming the dissolution of the raw materials, DIPEA (6.67 ⁇ L (38.2 ⁇ mol)) was added, and the reaction solution was sucked up into a syringe. PyAOP (17.1 mg (32.8 ⁇ mol)) and 2-MeTHF (0.99 mL (100 v/w)) were added to another reaction vessel, and the solution in the syringe was added dropwise over 3 hours while stirring at room temperature. . After completion of dropping, the reaction solution (50 ⁇ L) was diluted with a mixture of MeCN/propylamine (9:1) (100 ⁇ L) to prepare a solution for HPLC analysis.
- Example 56 Compound c1: tert-butyl (3S)-3-[[(2S)-2-[[1-(benzyloxycarbonylamino)cyclopentanecarbonyl]-methyl-amino]-2-cyclopentyl-acetyl]-methyl-amino Synthesis of ]-4-(dimethylamino)-4-oxo-butanoate A 2-MeTHF solution (16.006 g, 32.5 wt %) containing Compound 23 was added to the reaction vessel at room temperature and concentrated under reduced pressure. The operation of dissolving the residue in MeCN (10.0 mL) and concentrating under reduced pressure was repeated three times.
- N-methylimidazole (4.3 mL) was added and stirred for 5 minutes, then tap water (27.0 mL) was added and stirred for 30 minutes, then the external temperature of the reaction vessel was increased from 55°C to 25°C. The temperature was allowed to cool and the reaction mixture was stirred overnight.
- the reaction mixture was subjected to suction filtration using filter paper, and the residue was washed with a mixed solution of MeCN (18.0 mL) and tap water (9.0 mL). The filtered crystals were vacuum-dried at 40° C. for 3 hours to obtain a white powder (6.957 g) containing compound c1.
- reaction conversion rate calculation formula 1 The reaction vessel was removed from the ice bath and stirred at room temperature for 1 hour. The reaction mixture was diluted with MeCN and subjected to HPLC analysis to confirm that the reaction conversion rate was 99.9% or more (reaction conversion rate calculation formula 1). The reaction vessel was cooled in an ice bath, dichloromethane (12.0 mL) and 5% dipotassium hydrogenphosphate aqueous solution (24.0 mL) were added, stirred for 10 minutes, and the organic layer was discharged. After adding 2-MeTHF (72.0 mL) to the aqueous layer, the organic layer was washed with 0.5 M hydrochloric acid aqueous solution (12.0 mL) and 5% sodium chloride aqueous solution (24.0 mL).
- the resulting organic layer was concentrated under reduced pressure to obtain a white powder (1.977 g) containing compound c2.
- the resulting white powder and 3,5-bis(trifluoromethyl)benzoic acid were dissolved in DMSO-d 6 and subjected to qNMR analysis (yield: 81.51%).
- Example 58 Compound c3: 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S )-3-[[(2S)-2-[[1-(benzyloxycarbonylamino)cyclopentanecarbonyl]-methyl-amino]-2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino) -4-oxo-butanoyl]-methyl-amino]-4-methyl-pentanoyl]amino]-3-methyl-pentanoyl]-methyl-amino]propanoyl]azetidine-2-carbonyl]-ethyl-amino]-3-( Synthesis of tert-butyl p-tolyl)propanoyl]-methyl-amino]acetate A 2-MeTHF solution (1.22
- reaction conversion rate Equation 2 After adding DIPEA (0.885 mL) with stirring at room temperature, HATU (792 mg) was added. After stirring for 2 hours at room temperature, the reaction mixture was sampled to prepare a sample (sample preparation method 2) and subjected to HPLC analysis to confirm that the reaction conversion rate was 99.9% or more (calculation of reaction conversion rate Equation 2). The external temperature was cooled to 0° C., N-methylimidazole (72 ⁇ L) and 5% aqueous sodium carbonate solution (10 mL) were added to the reaction solution, and the mixture was stirred at room temperature for 10 minutes.
- the aqueous layer was discharged, and the organic layer was washed twice with 5% dipotassium hydrogen phosphate aqueous solution (5.25 mL) and 0.5M hydrochloric acid aqueous solution (3.5 mL), and then washed with 5% sodium chloride aqueous solution (7.0 mL). Wash and drain the aqueous layer. The resulting organic layer was concentrated to dryness under reduced pressure at an external temperature of 30°C to obtain a residue containing compound c4 (0.85 g, yield 95.2%).
- Example 60 Compound c5: 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S )-3-[[(2S)-2-[(1-aminocyclopentanecarbonyl)-methyl-amino]-2-cyclopentyl-acetyl]-methyl-amino]-4-(dimethylamino)-4-oxo- Butanoyl]-methyl-amino]-4-methyl-pentanoyl]amino]-3-methyl-pentanoyl]-methyl-amino]propanoyl]azetidine-2-carbonyl]-ethyl-amino]-3-(p-tolyl)propanoyl Synthesis of ]-methyl-amino]acetic acid Compound c4 (462 mg, 53.5 wt %) obtained in Example 59 and 2-MeTH
- reaction conversion rate calculation formula 1 After adding 2-MeTHF (10 mL) to the reaction mixture, it was filtered using filter paper and a membrane filter, and the residue was washed with 2-MeTHF (5.0 mL ⁇ 2). The resulting filtrate was concentrated under reduced pressure to obtain a solution containing compound c5 (1.16 g, yield 91.0%).
- Example 61-1 Compound c6: (3S,6S,9S,13S,16S,25S,28S)-16-cyclopentyl-26-ethyl-9-isobutyl-N,N,3,4,10,14,17,23-octamethyl-6 -[(1S)-1-methylpropyl]-2,5,8,11,15,18,21,24,27-nonoxo-25-(p-tolylmethyl)spiro[1,4,7,10,14 ,17,20,23,26-nonazabicyclo[26.2.0]triacontane-19,1′-cyclopentane]-13-carboxamide.
- Example 61-5 (manufacture by reverse dropping method of Example 61-4) Compound c5 (45.0 mg, 21.8 wt% (8.97 ⁇ mol)) was weighed into a vial, concentrated to dryness, 2-MeTHF (0.98 mL (100 v/w)) was added, and the mixture was stirred at 50°C for 10 minutes. . After confirming the dissolution of the raw materials, DIPEA (7.21 ⁇ L (41.2 ⁇ mol)) was added, and the reaction solution was sucked up into a syringe.
- a method for producing a cyclic peptide compound, or a salt thereof, or a solvate thereof, which is useful as a pharmaceutical, and a peptide compound used for producing the cyclic peptide compound, a salt thereof, or a solvate thereof A method is provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Peptides Or Proteins (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
〔1〕1種または複数種の水と混和しない溶媒、1種または複数種の水溶性アルキルニトリル類、および1種または複数種の水溶性エーテル類からなる群より選択される1つまたは複数を含む溶媒(溶媒A)中、ペプチド化合物のN末端のアミノ酸残基とC末端のアミノ酸残基とを連結する工程を含む、液相法によって、環状ペプチド化合物、もしくはその塩またはそれらの溶媒和物を製造する方法。
〔1-1〕溶媒Aが、2-MeTHF、THF、4-メチルテトラヒドロピラン、MTBE、CPME、炭酸ジメチル、酢酸エチル、酢酸イソプロピル、アニソール、MeCN、ヘプタン、およびトルエンからなる群から選択される溶媒を1つ以上含む、〔1〕に記載の方法。
〔2〕N末端のアミノ酸残基とC末端のアミノ酸残基が、アミド結合、または-(CH2)nS(CH2)m-、-(CH2)nS(O)(CH2)m-、もしくは-(CH2)nS(O)2(CH2)m-より選択される結合よって連結され、ここでnおよびmはそれぞれ独立して1または2である、〔1〕に記載の方法。
〔3〕環状ペプチド化合物が、8~20のアミノ酸残基を含み、該アミノ酸残基の少なくとも1つが非天然アミノ酸残基である、〔1〕または〔2〕に記載の方法。
〔4〕環状ペプチド化合物が、9~15のアミノ酸残基を含み、該アミノ酸残基の少なくとも1つが非天然アミノ酸残基である、〔1〕~〔3〕のいずれかに記載の方法。
〔5〕環状ペプチド化合物が、少なくとも1つのN-置換の非天然アミノ酸残基を含む、〔1〕~〔4〕のいずれかに記載の方法。
〔6〕環状ペプチド化合物が、少なくとも1つのN-非置換の非天然アミノ酸残基を含む、〔1〕~〔5〕のいずれかに記載の方法。
〔7〕環状ペプチド化合物が、少なくとも1つのα,αジ置換アミノ酸残基を含む、〔1〕~〔6〕のいずれかに記載の方法。
〔8〕C末端のアミノ酸残基またはN末端のアミノ酸残基の一方または両方が、カルボキシル基のα位炭素に不斉炭素を有しないアミノ酸残基である、〔1〕~〔7〕のいずれかに記載の方法。
〔9〕C末端のアミノ酸残基が、カルボキシル基のα位炭素に不斉炭素を有しないアミノ酸残基である、〔1〕~〔8〕のいずれかに記載の方法。
〔10〕N末端のアミノ酸残基が、N-非置換のアミノ酸残基である、〔1〕~〔8〕のいずれかに記載の方法。
〔11〕環状ペプチド化合物、もしくはその塩またはそれらの溶媒和物が、環状ペプチド化合物の溶媒和物である、〔1〕~〔10〕のいずれかに記載の方法。
〔12〕環状ペプチド化合物の溶媒和物が、環状ペプチド化合物の水和物である、〔1〕~〔11〕のいずれかに記載の方法。
〔13〕環状ペプチド化合物が、下記式:
〔14〕環状ペプチド化合物の単離および/または精製にカラムクロマトグラフィーを用いない、〔1〕~〔13〕のいずれかに記載の方法。
〔15〕環状ペプチド化合物を晶析により単離および/または精製して、環状ペプチド化合物の結晶を得る工程をさらに含む、〔1〕~〔14〕のいずれかに記載の方法。
〔16〕環状ペプチド化合物の結晶が、下記式:
〔17〕環状ペプチド化合物の溶媒和物結晶が水和物結晶である、〔16〕に記載の方法。
〔18〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも7個のピークを含むC型結晶である、〔17〕に記載の方法。
〔18-1〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも8個のピークを含むC型結晶である、〔17〕に記載の方法。
〔18-2〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも9個のピークを含むC型結晶である、〔17〕に記載の方法。
〔18-3〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも10個のピークを含むC型結晶である、〔17〕に記載の方法。
〔18-4〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも11個のピークを含むC型結晶である、〔17〕に記載の方法。
〔18-5〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも12個のピークを含むC型結晶である、〔17〕に記載の方法。
〔18-6〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)のピークを含むC型結晶である、〔17〕に記載の方法。
〔19〕非溶媒和物結晶が、粉末X線回折による回折角(2θ値)として、5.370°、6.934°、8.940°、9.838°、10.771°、12.181°、13.525°、15.179°、16.202°、および17.554°(±0.2°)のピークを含むF型結晶である、〔16〕に記載の方法。
〔20〕溶媒和物結晶が、粉末X線回折による回折角(2θ値)として、8.006°、9.002°、9.943°、11.501°、13.067°、14.854°、16.320°、17.275°、19.261°、および20.324°(±0.2°)のピークを含むA型のDMSO-水和物結晶である、〔16〕に記載の方法。
〔21〕溶媒和物結晶が、粉末X線回折による回折角(2θ値)として、8.223°、9.594°、9.976°、11.879°、13.841°、14.572°、15.934°、16.350°、19.805°、および20.480°(±0.2°)のピークを含むB型のDMSO-水和物結晶である、〔16〕に記載の方法。
〔22〕溶媒和物結晶が、粉末X線回折による回折角(2θ値)として、7.942°、8.283°、8.861°、10.097°、10.491°、11.805°、12.673°、12.830°、13.514°、13.855°、15.853°、16.405°、16.642°、および17.772°(±0.2°)のピークを含むH型のアセトン-水和物結晶である、〔16〕に記載の方法。
〔23〕溶媒Aが2-MeTHFからなる溶媒、または2-MeTHFを含む溶媒である、〔1〕~〔22〕のいずれかに記載の方法。
〔23-1〕溶媒Aが、2-MeTHF、炭酸ジメチル、アニソール、酢酸イソプロピル、酢酸エチル、MTBE、CPME、4-メチルテトラヒドロピラン、ヘプタン、およびトルエンからなる群より選択される1つ以上の水と混和しない溶媒を含む、〔1〕~〔22〕のいずれかに記載の方法。
〔24〕溶媒Aが、アセトニトリル、および/またはプロピオニトリルである水溶性アルキルニトリル類を含む、〔1〕~〔22〕のいずれかに記載の方法。
〔25〕溶媒Aが、THF、1,4-ジオキサン、1,3-ジオキサン、およびジメトキシエタンからなる群より選択される1つ以上の水溶性エーテル類を含む、〔1〕~〔22〕のいずれかに記載の方法。
〔26〕液相法によってペプチド化合物を製造する方法であって、
工程1:C-保護アミノ酸またはC-保護ペプチドに、N-保護アミノ酸またはN-保護ペプチドを連結する工程、
工程2:工程1の後にN-保護基を除去する工程、および
任意で、工程1と工程2を複数回繰り返して、ペプチド化合物を製造する工程、
を含み、工程1と工程2の生成物を単離する工程を含まない、前記方法。
〔27〕ペプチド化合物が直鎖ペプチド化合物である、〔1〕~〔26〕のいずれかに記載の方法。
〔28〕ペプチド化合物が、その部分構造として環状構造を含む、〔26〕または〔27〕に記載の方法。
〔29〕溶媒Aが、ペプチド化合物を製造した後の溶媒を含む、〔1〕~〔25〕のいずれかに記載の方法であって、ペプチド化合物が、〔26〕に記載の方法により製造される、前記方法。
〔30〕工程1と工程2をそれぞれ1回行うか、または工程1と工程2を2回~20回繰り返す、〔26〕~〔29〕のいずれかに記載の方法。
〔31〕ペプチド化合物を製造する方法が、C-保護基を除去する工程3をさらに含む、〔26〕~〔30〕のいずれかに記載の方法。
〔32〕繰り返しの最終回は、工程2を含まない、〔26〕~〔31〕のいずれかに記載の方法。
〔33〕工程3が繰り返しの最終回の工程1の後に行われる、〔31〕または〔32〕に記載の方法。
〔34〕ペプチド化合物を製造する方法に含まれる各工程が、トルエン、アセトン、DMF、アセトニトリル、THF、2-MeTHF、炭酸ジメチル、アニソール、酢酸イソプロピル、ヘプタン、酢酸エチル、MTBE、および4-メチルテトラヒドロピランからなる群より独立して選択される1つまたは複数の溶媒(溶媒B)中で行われる、〔26〕~〔33〕のいずれかに記載の方法。
〔34-1〕溶媒Bが2-MeTHF、MTBE、酢酸イソプロピル、および酢酸エチルからなる群より選択される、〔26〕~〔33〕のいずれかに記載の方法。
〔35〕ペプチド化合物を製造する方法に含まれる各工程の後処理が、分液操作、ろ過操作、および濃縮操作からなる群より選択される1つまたは複数の操作を含む、〔26〕~〔34〕のいずれかに記載の方法。
〔36〕分液操作の前に、水と混和しない溶媒(溶媒C)、水溶性アルキルニトリル類、および/または水溶性エーテル類が添加される、〔35〕に記載の方法。
〔37〕溶媒Cが、2-MeTHF、炭酸ジメチル、アニソール、酢酸イソプロピル、酢酸エチル、MTBE、CPME、4-メチルテトラヒドロピラン、およびヘプタンからなる群より選択される1つまたは複数である、〔36〕に記載の方法。
〔38〕溶媒Cが、2-MeTHFである、〔36〕または〔37〕に記載の方法。
〔39〕溶媒Cが、水層と有機層に分離可能な量で添加される、〔36〕~〔38〕のいずれかに記載の方法。
〔40〕分離可能な量が、有機層全体に対して、約50重量%~100重量%である、〔39〕に記載の方法。
〔41〕有機層が、2-MeTHFを含む、〔35〕~〔40〕のいずれかに記載の方法。
〔42〕分液操作が、有機層の洗浄操作を含む、〔35〕~〔40〕のいずれかに記載の方法。
〔42-1〕洗浄操作が、クエン酸とリン酸水素二カリウムを含む水溶液を用いて行われる有機層の洗浄操作、または2-MeTHF、ヘプタン、MTBE、もしくは酢酸イソプロピルを用いて行われる水層の洗浄操作を含む、〔35〕~〔41〕のいずれかに記載の方法。
〔43〕洗浄操作が、アセトニトリルと炭酸カリウム水溶液の混合液を用いて行われる有機層の洗浄操作を含む、〔35〕~〔42〕のいずれかに記載の方法。
〔44〕分液操作が、炭酸ナトリウム水溶液、硫酸水素ナトリウム水溶液、および/または炭酸ナトリウム水溶液を用いて行われる有機層の洗浄操作を含む、〔35〕~〔43〕のいずれかに記載の方法。
〔44-1〕分液操作が、炭酸ナトリウム水溶液、硫酸水素ナトリウム水溶液、および炭酸ナトリウム水溶液を用いて行われる有機層の洗浄操作を含む、〔35〕~〔43〕のいずれかに記載の方法。
〔45〕分液操作後に有機層が、目的物に対して2%以下のBHTを含む、〔35〕~〔44〕のいずれかに記載の方法。
〔45-1〕(1) ペプチド化合物が〔26〕~〔45〕のいずれかの方法で製造され、および、(2) 溶媒Aが〔35〕~〔45〕のいずれかの方法で使われる溶媒をさらに含む、〔1〕~〔23-1〕のいずれかに記載の方法。
〔46〕工程1が、C-保護アミノ酸またはC-保護ペプチドのN末端のアミノ基と、N-保護アミノ酸またはN-保護ペプチドのC末端のカルボキシル基とを縮合する工程を含む、〔26〕~〔45〕のいずれかに記載の方法。
〔47〕カルボキシル基が活性化されている、〔46〕に記載の方法。
〔48〕工程1が、縮合試薬の存在下で行われる、〔46〕に記載の方法。
〔49〕縮合試薬がT3P、EDCI、HATU、COMU、BEP、PyBOP、DMT-MM、およびPyOximからなる群より選択される縮合剤を含む、〔48〕に記載の方法。
〔50〕工程2が、触媒の存在下、接触水素化により行われる、〔26〕~〔49〕のいずれかに記載の方法。
〔51〕触媒が、Pd/C、Pd(OH)2/C、またはPtO2より選択される、〔50〕に記載の方法。
〔52〕工程2が、脱保護試薬の存在下で行われる、〔26〕~〔49〕のいずれかに記載の方法。
〔53〕脱保護試薬が、TBAF、LiBH4、ピペリジン、トリフルオロ酢酸、またはメタンスルホン酸より選択される、〔52〕に記載の方法。
〔54〕N-保護基が、Cbz、p-ニトロベンジルオキシカルボニル、2-ナフチルメチルオキシカルボニル、ジフェニルメチルオキシカルボニル、9-アントリルメチルオキシカルボニル、Teoc、Boc、トリフルオロアセチル、Fmoc、またはAllocより選択される、〔26〕~〔53〕のいずれかに記載の方法。
〔55〕工程3が、脱保護試薬の存在下で行われる、〔26〕~〔44〕のいずれかに記載の方法。
〔56〕脱保護反応が、酸性条件で行われる、〔55〕に記載の方法。
〔57〕酸性条件が、HMDSと、TMSOTf、TMSI、TMSBr、およびTMSClからなる群より選択される試薬との組み合わせで達成される、〔56〕に記載の方法。
〔58〕C-保護基が、t-Bu、トリチル、クミル、メチル、またはエチルより選択される、〔26〕~〔57〕のいずれかに記載の方法。
〔59〕C-保護ペプチドおよびN-保護ペプチドの一方または両方が、2~20のアミノ酸残基を含み、該C-保護ペプチドおよびN-保護ペプチドの一方または両方に含まれる該アミノ酸残基の少なくとも1つが非天然アミノ酸残基である、〔26〕~〔58〕のいずれかに記載の方法。
〔60〕C-保護ペプチドおよびN-保護ペプチドの一方または両方が、少なくとも1つのN-置換アミノ酸残基を含む、〔26〕~〔59〕のいずれかに記載の方法。
〔61〕C-保護ペプチドおよびN-保護ペプチドの一方または両方が、少なくとも1つのN-非置換の非天然アミノ酸残基を含む、〔26〕~〔60〕のいずれかに記載の方法。
〔62〕繰り返しの最終回の工程1で用いられるC-保護ペプチドおよびN-保護ペプチドの一方または両方が、N-置換アミノ酸残基を4つ以上含むか、またはN-置換アミノ酸残基を2つ以上含み、かつα,αジ置換アミノ酸残基を1つ以上含む、〔26〕~〔61〕のいずれかに記載の方法。
〔63〕繰り返しの最終回の工程1で用いられるC-保護ペプチドおよびN-保護ペプチドの一方または両方が、5つまたは6つのアミノ酸残基からなり、4つまたは5つの非天然アミノ酸残基を含む〔26〕~〔62〕に記載の方法。
〔64〕繰り返しの最終回の工程1で用いられるC-保護ペプチドが、C-保護されたMeLeu-Ile-MeAla-Aze(2)-EtPhe(4-Me)-MeGlyであり、繰り返しの最終回の工程1で用いられるN-保護ペプチドが、N-保護されたHph(4-CF3-35F2)-Pro-cLeu-MeGly(cPent)-MeAsp-NMe2である、〔63〕に記載の方法。
〔65〕C-保護アミノ酸、もしくはその塩、またはC-保護ペプチド、もしくはその塩が、
〔66〕N-保護アミノ酸、もしくはその塩、またはN-保護ペプチド、もしくはその塩が、
〔67〕ペプチド化合物が、
〔68〕ペプチド化合物のN末端のアミノ酸残基とC末端のアミノ酸残基とを連結する工程をさらに含む、〔26〕~〔67〕のいずれかに記載の方法。
〔69〕(1)下記式:
(2)N末端のアミノ酸残基とC末端のアミノ酸残基とを連結する工程、
を含む、下記式:
〔70〕下記式:
〔70-1〕HPLC分析による210nmでのUVArea値により決定される、90%以上、95%以上、98%以上、または99%以上の純度を有する、式1で表される化合物、その塩、またはそれらの溶媒和物。
〔70-2〕 HPLC分析による210nmでのUVArea%により決定される、総不純物が5%未満、2%未満、1%未満、0.5%未満、または検出不能な量であることを特徴とする、高純度の式1で表される化合物、その塩、またはそれらの溶媒和物。
〔70-3〕HPLC分析による210nmでのUVArea%により決定される、不純物各々がそれぞれ1%未満、0.5%未満、0.1%未満、または検出不能な量であることを特徴とする、〔70-2〕に記載の高純度の式1で表される化合物、その塩、またはそれらの溶媒和物。
〔70-4〕HPLC分析による210nmでのUVArea%により決定される、不純物が1%未満、0.5%未満、0.1%未満、または検出不能な量であり、該不純物がエピマー、過剰伸長体、欠損体、二量体、および三量体からなる群からされることを特徴とする、〔70-2〕、または〔70-3〕に記載の高純度の式1で表される化合物、その塩、またはそれらの溶媒和物。
〔70-5〕HPLC分析による210nmでのUVArea%により決定される、不純物が1%未満、0.5%未満、0.1%未満、または検出不能な量であり、該不純物が以下に示す環状二量体(Cyclic dimer)、および/または以下に示す環状三量体(Cyclic trimer)であることを特徴とする、〔70-2〕、〔70-3〕、または〔70-4〕に記載の高純度の式1で表される化合物、その塩、またはそれらの溶媒和物。
〔72〕下記式:
〔73〕結晶が、非溶媒和物結晶、溶媒和物結晶、塩の結晶、および塩の溶媒和物結晶からなる群より選択される、〔72〕に記載の結晶。
〔74〕結晶が、溶媒和物結晶である、〔73〕に記載の結晶。
〔75〕溶媒和物結晶が水和物結晶である、〔72〕に記載の結晶。
〔76〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも7個のピークを含むC型結晶である、〔75〕に記載の結晶。
〔76-1〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも8個のピークを含むC型結晶である、〔75〕に記載の結晶。
〔76-2〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも9個のピークを含むC型結晶である、〔75〕に記載の結晶。
〔76-3〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも10個のピークを含むC型結晶である、〔75〕に記載の結晶。
〔76-4〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも11個のピークを含むC型結晶である、〔75〕に記載の結晶。
〔76-5〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも12個のピークを含むC型結晶である、〔75〕に記載の結晶。
〔76-6〕水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)のピークを含むC型結晶である、〔75〕に記載の結晶。
〔77〕非溶媒和物結晶が、粉末X線回折による回折角(2θ値)として、5.370°、6.934°、8.940°、9.838°、10.771°、12.181°、13.525°、15.179°、16.202°、および17.554°(±0.2°)のピークを含むF型結晶である、〔73〕に記載の結晶。
〔78〕溶媒和物結晶が、粉末X線回折による回折角(2θ値)として、8.006°、9.002°、9.943°、11.501°、13.067°、14.854°、16.320°、17.275°、19.261°、および20.324°(±0.2°)のピークを含むA型のDMSO-水和物結晶である、〔73〕に記載の結晶。
〔79〕溶媒和物結晶が、粉末X線回折による回折角(2θ値)として、8.223°、9.594°、9.976°、11.879°、13.841°、14.572°、15.934°、16.350°、19.805°、および20.480°(±0.2°)のピークを含むB型のDMSO-水和物結晶である、〔73〕に記載の結晶。
〔80〕溶媒和物結晶が、粉末X線回折による回折角(2θ値)として、7.942°、8.283°、8.861°、10.097°、10.491°、11.805°、12.673°、12.830°、13.514°、13.855°、15.853°、16.405°、16.642°、および17.772°(±0.2°)のピークを含むH型のアセトン-水和物結晶である、〔73〕に記載の結晶。
〔81〕下記式:
該環状ペプチド化合物を該環状ペプチド化合物が溶解可能な量の極性有機溶媒に溶解させて溶液を得る工程、
該溶液を濃縮して、該環状ペプチド化合物の残渣を得る工程、および
該残渣に水と極性有機溶媒の混合液を加えて、該環状ペプチド化合物の水和物結晶を得る工程
を含む、前記方法。
〔82〕下記式:
アモルファス状態の該環状ペプチド化合物をDMSOに溶解させて溶液を得る工程、
該溶液を凍結乾燥して、該環状ペプチド化合物の凍結乾燥体を得る工程、および
該凍結乾燥体に水-アセトニトリル混合液を加えて、該環状ペプチド化合物の水和物結晶を得る工程
を含む、前記方法。
上記番号付けにおいて、従属項が引用する番号は、特に言及がない限りその番号の枝番を含む。例えば、従属項において引用する〔1〕は、〔1〕とともに、その枝番である〔1-1〕を含むことを示す。他の番号付けにおいても同様である。
2-MeTHF:2-メチルテトラヒドロフラン
AcOEt:酢酸エチル
Alloc:アリルオキシカルボニル
BEP:2-ブロモ-1-エチルピリジニウム テトラフルオロホウ酸塩
BHT:2,6-ジ-tert-ブチル-4-メチルフェノール
Boc:t-ブトキシカルボニル
Cbz:ベンジルオキシカルボニル
COMU:(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩
CPME:シクロペンチルメチルエーテル
CSA:10-カンファースルホン酸
DIPEA:N,N-ジイソプロピルエチルアミン
DMA:ジメチルアセトアミド
DMAP:4-ジメチルアミノピリジン
DMF:N,N-ジメチルホルムアミド
DMT-MM:4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド
EDCI:1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド
HATU:O-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロリン酸塩
HMDS:1,1,1,3,3,3-ヘキサメチルジシラザン
HOAt:1-ヒドロキシ-7-アザベンゾトリアゾール
HOBt:1-ヒドロキシベンゾトリアゾール
IPAc:酢酸イソプロピル
MeCN:アセトニトリル
MTBE:メチルtert-ブチルエーテル
MTHP:4-メチルテトラヒドロピラン
NMP:N-メチルピロリドン
PyBOP:1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホ二ウムヘキサフルオロリン酸塩
PyOxim:(エチルシアノ(ヒドロキシイミノ)アセタト-O2)-トリ-(1-ピロリジニル)-ホスホニウム ヘキサフルオロリン酸塩
T3P:プロピルホスホン酸無水物
TBAF:テトラブチルアンモニウムフルオリド
Teoc:2-(トリメチルシリル)エトキシカルボニル
THF:テトラヒドロフラン
TMSOTf:トリフルオロメタンスルホン酸トリメチルシリル
本明細書における「ハロゲン原子」としては、F、Cl、BrまたはIが例示される。
(i) A、(ii) B、(iii) C、(iv) AおよびB、(v) AおよびC、(vi) BおよびC、(vii) A、B、およびC。
ある態様において、本発明は、液相法によって環状ペプチド化合物、もしくはその塩またはそれらの溶媒和物を製造する方法に関し、該方法は、1種または複数種の水と混和しない溶媒(例えば、水に対する溶解度が低い溶媒、水/オクタノール係数(log Kow)の大きい溶媒、または水/オクタノール係数予測値の大きい溶媒)、1種または複数種の水溶性アルキルニトリル類、および1種または複数種の水溶性エーテル類からなる群より選択される1つまたは複数を含む溶媒(溶媒A)中、ペプチド化合物のN末端のアミノ酸残基とC末端のアミノ酸残基とを連結する工程を含む。
ある実施態様において、水と混和しない溶媒としての不適当な溶媒は、アミン(例えば、n-プロピルアミンまたはジイソプロピルアミン)、またはアルコール(例えば、メタノール、エタノール、n-プロパノール、フェノール)として特徴付けることができる。
活性エステルを形成できるヒドロキシ化合物としては、例えば、1-ヒドロキシ-1H-ベンゾトリアゾール(HOBt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)、2-シアノ-2-(ヒドロキシイミノ)酢酸エチル(oxyma)、3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,3-ベンゾトリアジン(HOOBtまたはHODhbt)、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシミド(HONB)、2,3,4,5,6-ペンタフルオロフェノール(HOPfp)、N-ヒドロキシスクシンイミド(HOSu)、6-クロロ-1-ヒドロキシ-1H-ベンゾトリアゾール(Cl-HOBt)が挙げられる(例えば、WATANABE Chemicalのカタログ、Amino acids and chiral building blocks to new medicine参照)。また、これらの骨格を有する塩、例えばoxymaのカリウム塩であるK-oxymaなども用いることができる。これらの中では特にHOBt、HOAt、oxyma、HOOBtが好ましい。中でも、DICとHOAtとを組み合わせて用いること、あるいはDICとoxymaとを組み合わせて用いることが好ましい。その他に、ホスホニウム系縮合剤・ウロニウム系縮合剤としてO-(1H-ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(HBTU)、O-(7-アザ-1H-ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(HATU)、N-[1-(シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ(モルホリノ)]ウロニウムヘキサフルオロリン酸塩(COMU)、O-[(エトキシカルボニル)シアノメチレンアミノ]-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(HOTU)、O-(1H-ベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムテトラフルオロホウ酸塩(TBTU)、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロホウ酸塩(TATU)、[エチルシアノ(ヒドロキシイミノ)アセタト-O2]トリ-1-ピロリジニルホスホニウムヘキサフルオロリン酸塩(PyOxim)、2-ブロモ-1-エチルピリジニウムテトラフルオロホウ酸塩(BEP)、1H-ベンゾトリアゾール-1-イルオキシ-トリ(ピロリジノ)ホスホニウムヘキサフルオロリン酸塩(PyBOP)、1H-ベンゾトリアゾール-1-イルオキシ-トリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン酸塩(BOP)、ブロモトリ(ピロリジノ)ホスホニウムヘキサフルオロリン酸塩(PyBroP)、クロロトリ(ピロリジノ)ホスホニウムヘキサフルオロリン酸塩(PyCloP)、(7-アザベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウムヘキサフルオロリン酸(PyAOP)、ブロモトリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン酸(Brop)、3-(ジエトキシホスホリルオキシ)-1,2,3-ベンゾトリアジン-4(3H)-オン(DEPBT)、N,N,N’,N’-テトラメチル-O-(N-スクシンイミジル)ウロニウムテトラフルオロホウ酸(TSTU)、N,N,N’,N’-テトラメチル-O-(N-スクシンイミジル)ウロニウムヘキサフルオロリン酸(HSTU)、O-(3,4-ジヒドロ-4-オキソ-1,2,3-ベンゾトリアジン-3-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロホウ酸塩(TDBTU)、テトラメチルチウロニウムS-(1-オキシド-2-ピリジル)-N,N,N’,N’-テトラフルオロホウ酸塩(TOTT)、O-(2-オキソ-1(2H)ピリジル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロホウ酸(TPTU)のうちのいずれかと、N,N-ジイソプロピルエチルアミン(DIPEA)、トリエチルアミン(TEA)、2,4,6-トリメチルピリジン(2,4,6-コリジン)、2,6-ジメチルピリジン(2,6-ルチジン)のうちのいずれかの塩基とを組み合わせて縮合反応に利用することができる。特にHATUとDIPEAと組み合わせて用いること、あるいはCOMUとDIPEAとを組み合わせて用いることが好ましい。その他に、N,N’-カルボニルジイミダゾール(CDI)、1,1’-カルボニル-ジ-(1,2,4-トリアゾール)(CDT)、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム塩化物(DMT-MM)、プロピルホスホン酸無水物(T3P)などの縮合剤を利用することもできる。環化反応の変換率を高め、副生成物を抑制する観点から、本発明の縮合剤としては、HATU、PyBOP、PyOximが好ましい。また、溶媒と縮合剤の組合は、HATUとアニソール、炭酸ジメチル、または2-MeTHF、PyBOPとアセトニトリル、アニソール、炭酸ジメチル、2-MeTHF、4-メチルテトラヒドロピラン、または酢酸エチル、PyOximとアセトニトリル、アニソール、炭酸ジメチル、2-MeTHF、酢酸エチルが好ましい。溶媒と縮合剤の組合せは、アニソールとPyBOP、炭酸ジメチルとPyBOP、2-MeTHFとPyBOPの組合せがより好ましい。
具体的には、例えば、縮合反応後の反応溶液を分液操作に供し、必要に応じて有機層を濃縮、および/またはろ過した後、得られた残渣に晶析に適した溶媒を加え、任意で種晶を加えて、必要に応じて攪拌することで、環状ペプチド化合物、もしくはその塩またはそれらの溶媒和物の結晶を得ることができる。晶析の際に添加される溶媒は、環状ペプチド化合物が結晶を形成することができる溶媒であれば特に制限はないが、環状ペプチド化合物が溶解した溶液に対し、環状ペプチド化合物の溶解度を低下させる操作を行うことのできる溶媒が好ましい。例えば貧溶媒の添加や溶液の冷却により、環状ペプチド化合物の溶解度を低下させて結晶化が可能な場合は、そのような操作が可能な溶媒が例示される。また、環状ペプチド化合物の粗結晶を懸濁液状態下、任意の時間懸濁状態を保つことで環状ペプチド化合物の結晶を得ることができる場合は、そのような操作が可能な溶媒を、結晶化に用いることができる。晶析の際に添加される溶媒として、具体的には、例えば、アセトン、水、DMSO、アセトニトリル、またはエタノール、およびこれらの混合溶媒などが挙げられる。
ある態様において、本発明は、液相法によってペプチド化合物を製造する方法に関する。該方法は、各工程の生成物を単離する工程を含まずに、以下の工程1および工程2、並びに任意で該工程1と該工程2を複数回繰り返すことを含み、これによりペプチド化合物を製造することができる。
(工程1)C-保護アミノ酸またはC-保護ペプチドに、N-保護アミノ酸またはN-保護ペプチドを連結/縮合する工程;
(工程2)工程1の後にN-保護基を除去/脱保護する工程。
例えば、水と混和しない溶媒(例えば、親油性溶媒)が用いられる場合、親水性保護基は有機溶媒中の保護化合物の溶解度を低下させうるため、そのような親水性保護基は適した保護基でない場合もある。したがって、本明細書に記載のように水と混和しない溶媒を使用する場合、親油性保護基は、水と混和しない溶媒中での例えばペプチド化合物の溶解度を維持しうることから、好ましい保護基でありうる。
非限定的な実施態様として、本発明の方法で使用され得るN-保護基の例示としてはCbz基が挙げられる。アミノ酸がアミノ酸残基中のα位にスピロ-シクロアルキル基のような立体障害の大きい官能基を有する場合、トリフルオロアセチルが好ましく例示される。
工程1は、C-保護アミノ酸またはC-保護ペプチドに、N-保護アミノ酸またはN-保護ペプチドを連結して、N末端とC末端がそれぞれ保護された直鎖ペプチド化合物を得る工程である。
工程2は、工程1で得られた、N末端とC末端がそれぞれ保護されたペプチドからN末端の保護基を除去する工程である。
本発明者らは、Cbz-Ile-MeAla-Aze誘導体の末端窒素原子の保護基であるCbz基を除去するために、加水素分解反応に付すと、反応中にジケトピペラジンが形成されてしまい、続くペプチド伸長ができなくなることを見出した。
そこで、脱Cbz反応とペプチド伸長の反応条件を検討したところ、アミノ酸活性エステル存在下に、Cbz体を加水素分解に付して、脱Cbzをおこなうと、効率的にペプチド伸長できることを見出した。文献(J. Chem. Soc., Chem. Ccmmun., 1987, 1155-6.)には、アミノ酸活性エステル存在下に、Cbz体を加水素分解に付してペプチド伸長する例が報告されているが、Cbz体としては、 Cbz-Ala-D-Pro-OMe、Cbz-Asu(OBut)-D-Pro-OMe‐、Cbz-D-Val-Pro-OMe が報告されているのみで、Aze誘導体についての例については、記されていない。また、N-アルキルアミノ酸活性エステルとの反応についての例も開示されていない。N-アルキルアミノ酸活性エステルは、その立体的要因から、窒素がアルキル化されていない通常のアミノ酸活性エステルよりも反応性が低下していることが容易に推察される。したがって、N-アルキルアミノ酸活性エステルが反応する時間よりも早く脱Cbzが起きると、ジケトピペラジンが生成してしまう。すなわち、脱Cbzの後に、すみやかにN-アルキルアミノ酸活性エステルと反応させる条件を見出す必要がある。本発明者らは、反応条件を検討した結果、N-アルキルアミノ酸活性エステルであるTeoc MeLeu-pFp存在下に、Cbz-Ile-MeAla-Aze-EtPh(4-Me)-MeGly体を、酢酸イソプロピル中、N-メチルモルホリンとPd/Cを加えて、水素圧0.10~0.18MPaGにて加水素分解反応に付すと、ジケトピペラジンの生成を抑制して、Teoc-MeLeu-Ile-MeAla-Aze-EtPh(4-Me)-MeGly体が得られることを見出した。また、このとき、アセトン存在下に本反応をおこない、反応後に分液操作することにより、未反応の脱保護されたペプチドを除去できることを見出した。すなわち、アセトンを36等量存在させて加水素分解反応をおこなうと、未反応の脱保護されたペプチドのアミノ基がイソプロピリデン化されて、ジケトピペラジンへ変換が抑制されて、このイソプロピリデン化されたペプチドは、末端窒素がアミド化されていない塩基性化合物であるため、反応後の分液処理にて酸洗浄することにより容易に除去できることがわかった。
ある態様において、本発明のペプチド化合物を製造する方法は、前記工程1と前記工程2を繰り返すことを含み、これによりペプチド鎖を伸長することができる。繰り返しの回数は、限定されないが、2回~20回が好ましく、2~15回がより好ましい。工程1と工程2を繰り返すにあたり、繰り返しの最終回は、工程2を含まなくてもよい。ある態様において、繰り返しの最終回が工程2を含まない場合、本発明の方法の最終工程は工程1となり得る。この場合、製造される直鎖ペプチド化合物は、N末端およびC末端の双方が保護された直鎖ペプチド化合物となり得る。ある態様において、繰り返しの最終回が工程2を含まない場合、工程1の後に行われる工程3が本発明の方法の最終工程となり得る。この場合、製造される直鎖ペプチド化合物は、N末端のみが保護された直鎖ペプチド化合物となり得る。
工程1~工程3の各反応後には後処理を行うことができ、該後処理により、中間体を単離することなく次の反応を行うことができる。後処理として具体的には、有機層や水層の洗浄を含む分液操作、ろ過操作、および濃縮操作からなる群より選択される1つまたは複数の操作が含まれ、次の工程に適した状態となるようにこれらの操作を適宜組み合わせることができる。例えば、縮合試薬や脱保護試薬を用いて工程1~工程3の各反応を行った場合には、その後処理として、通常、少なくとも1回以上の分液操作が行われる。また、接触水素化により工程2の反応を行った場合には、通常、その後処理としてろ過操作が行われる。いずれの場合でも、例えば、次の工程に備えて溶媒量を調節する目的で、あるいは、溶媒の置換の目的で、さらに濃縮操作を行って溶媒の一部を留去することができる。
市販されているTHFや2-MeTHFには、安定化剤として150~400 ppm程度のBHTが含まれていることがある。このようなTHFや2-MeTHFを大量に用いた場合、例えば、工程数が20工程以上になると、BHTの残存量は4%に達することになり、反応への悪影響が無視できなくなり得る。本発明の方法を用いることにより、事前に溶媒からBHTを除去する操作や、工程の途中で蓄積したBHTを除去するための単離操作(例えば、カラムクロマトグラフィー)を行う必要がなくなる。したがって、複数工程を含み、大スケールでのペプチドの液相合成の場合などにこの方法を適用することにより、ペプチド鎖を連続的に伸長することができ、目的のペプチド化合物を効率的に得ることができる。
別の態様において、繰り返しの最終回の工程1で用いられるC-保護ペプチドおよびN-保護ペプチドの一方または両方は、6つのアミノ酸残基からなり、そのうちの5つが非天然アミノ酸残基であることが好ましい。
を用い、N-保護アミノ酸として、
を用い、工程1を経て
を製造し、工程2を経て、
を製造することができる。
または
を用い、工程1を経て、
または
を製造し、工程2を経て、
を製造することができる。
を用い、工程1を経て、
を製造し、工程2を経て、
を製造することができる。
を用い、工程1を経て、
を製造し、工程3を経て、このバッチの目的物である
を製造することができる。
このバッチは、工程1の後に工程3を含み、かつ工程1と工程2の繰り返しの最終回は、工程2を含まないケースである。
を用い、N-保護アミノ酸として、
を用い、工程1を経て
を製造し、工程2を経て、
を製造することができる。
を用い、工程1を経て、
を製造し、工程2を経て、
を製造することができる。
を用い、工程1を経て、
を製造し、工程2を経て、
を製造することができる。
を用い、工程1を経て、
を製造し、工程2を経て、
を製造することができる。
を用い、工程1を経て、
を製造し、工程2を経て、
を製造することができる。
を製造し、工程3を経て、
を製造し、工程2を経て、このバッチの目的物である化合物(2):
を製造することができる。
このバッチは、工程1と工程2の繰り返しの最終回において、工程1の後に工程3を含むケースである。
また、このバッチで得られた化合物2は、単離や精製することなく、本発明の環状ペプチド化合物を製造する方法の原料として利用することができる。
4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)
4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)
5.370°、6.934°、8.940°、9.838°、10.771°、12.181°、13.525°、15.179°、16.202°、または17.554°(±0.2°)
8.006°、9.002°、9.943°、11.501°、13.067°、14.854°、16.320°、17.275°、19.261°、または20.324°(±0.2°)
8.223°、9.594°、9.976°、11.879°、13.841°、14.572°、15.934°、16.350°、19.805°、20.480°(±0.2°)
7.942°、8.283°、8.861°、10.097°、10.491°、11.805°、12.673°、12.830°、13.514°、13.855°、15.853°、16.405°、16.642°、および17.772°(±0.2°)
工程A:環状ペプチド化合物を該環状ペプチド化合物が溶解可能な量の極性有機溶媒に溶解させて溶液を得る工程、
工程B: 該溶液を濃縮して、該環状ペプチド化合物の残渣を得る工程、および
工程C: 該残渣に水と極性有機溶媒の混合液を加えて、該環状ペプチド化合物の水和物結晶を得る工程。
アモルファス状態の該環状ペプチド化合物をDMSOに溶解させて溶液を得る工程、
該溶液を凍結乾燥して、該環状ペプチド化合物の凍結乾燥体を得る工程、および
該凍結乾燥体に水-アセトニトリル混合液を加えて、該環状ペプチド化合物の水和物結晶を得る工程を含む。
HPLC分析条件 method 1
装置:Waters ACQUITY UPLC H-Class
カラム:Ascentis Express 90A C18 (Sigma-Aldrich), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法: B) 5%(0 min)→100%(5 min)→5%(5.1 min)→5%(7 min)
流速:0.5 mL/min
カラム温度:35 ℃
検出波長:210nm(PDA)
装置:Waters ACQUITY UPLC H-Class
カラム:Ascentis Express 90A C18 (Sigma-Aldrich), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B) 5%(0 min)→100%(6 min)→5%(6.1min)→5%(8 min)
流速:0.5 mL/min
カラム温度:35 ℃
検出波長:210nm(PDA)
装置:Waters ACQUITY UPLC H-Class
カラム:CAPCELL CORE ADME (OSAKA SODA), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B):5%(0 min)→100%(5 min)→5%(5.1 min)→5%(7 min)
流速:0.5 mL/min
カラム温度:35℃
検出波長:210nm(PDA)
装置:Waters ACQUITY UPLC H-Class
カラム:ACQUITY UPLC CSH C18 (Waters), 2.1 mm ID×100 mm, 1.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B) 20%(0 min)→100%(10 min)→100%(13.5 min)→20%(13.6 min)→20%(18.0 min)
流速:0.3 mL/min
カラム温度:50 ℃
検出波長:210nm(PDA)
装置:Waters ACQUITY UPLC H-Class
カラム:ACQUITY UPLC CSH C18 (Waters), 2.1 mm ID×150 mm, 1.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B) 20%(0 min)→100%(24 min)→100%(29 min)→20%(29.1 min)→20%(34 min)
流速:0.3 mL/min
カラム温度:50 ℃
検出波長:220nm(PDA)
装置:Waters ACQUITY UPLC H-Class
カラム:CAPCELL CORE ADME (OSAKA SODA), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B):5%(0 min)→100%(10 min)→5%(10.1 min)→5%(12 min)
流速:0.5 mL/min
カラム温度:35℃
検出波長:210nm(PDA)
LCMS分析条件 method 1
装置:Waters ACQUITY UPLC H-Class + ACQUITY QDA
カラム:Ascentis Express 90A C18 (Sigma-Aldrich), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法: B) 5%(0 min)→100%(5 min)→5%(5.1 min)→5%(7 min)
流速:0.5 mL/min
カラム温度:35 ℃
検出波長:210nm(PDA)
装置:Waters ACQUITY UPLC H-Class + ACQUITY QDA
カラム:Ascentis Express 90A C18 (Sigma-Aldrich), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B) 5%(0 min)→100%(6 min)→5%(6.1 min)→5%(8 min)
流速:0.5 mL/min
カラム温度:35 ℃
検出波長:210nm(PDA)
装置:Waters ACQUITY UPLC H-Class + ACQUITY QDA
カラム:CAPCELL CORE ADME (OSAKA SODA), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B) 5%(0 min)→100%(5 min)→5%(5.1 min)→5%(7 min)
流速:0.5 mL/min
カラム温度:35 ℃
検出波長:210nm(PDA)
装置:Waters SQD2
カラム:ACQUITY UPLC CSH C18 (Waters), 2.1 mm ID×100 mm, 1.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B) 20%(0 min)→100%(10 min)→100%(13.5 min)→20%(13.6 min)→20%(18.0 min)
流速:0.3 mL/min
カラム温度:50 ℃
検出波長:210nm(PDA)
装置:Waters SQD2
カラム:ACQUITY UPLC CSH C18 (Waters), 2.1 mm ID×150 mm, 1.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B) 20%(0 min)→100%(24 min)→100%(29 min)→20%(29.1 min)→20%(34 min)
流速:0.3 mL/min
カラム温度:50 ℃
検出波長:220nm(PDA)
装置:Waters ACQUITY UPLC H-Class + ACQUITY QDA
カラム:CAPCELL CORE ADME (OSAKA SODA), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B):5%(0 min)→100%(10 min)→5%(10.1 min)→5%(12 min)
流速:0.5 mL/min
カラム温度:35℃
検出波長:210nm(PDA)
内部標準物質:3,5-ビス(トリフルオロメチル)安息香酸
測定条件(1H-NMR):DMSO-d6, 24.3℃, パルス角度 90℃, デジタル分解能 0.25Hz, 緩和時間 60秒、 スピン無し、積算回数8回
測定条件(19F-NMR):DMSO-d6, 24.3℃, パルス角度 90℃, デジタル分解能 0.22Hz, 緩和時間 60秒、 スピン無し、積算回数8回
(測定方法1)
測定装置:SmartLab System(Rigaku Corporation社製)
線源:CuKα1
管電圧:45 kV
管電流:200 mA
走査範囲:3~35°
サンプリング幅:0.02°
測定装置:SmartLab System、D/Tex Ultra detector(リガク社製)
線源:CuKα1
管電圧:45 kV
管電流:200 mA
走査範囲:5~30°
走査速度:5°/分
サンプリング幅:0.02°
測定装置:D8 Discover、2D VANTEC-500 solid state detector(Bruker社製)
線源:CuKα
管電圧、管電流:40 kV、40 mAまたは50 kV、1000 μA(マイクロフォーカスX線源IμS使用時)
測定範囲:5~31°
露光時間:100秒または600秒(マイクロフォーカスX線源IμS使用時)
測定装置:X’pert-pro MPD(PANalytical社製)
線源:CuKα
管電圧:45 kV
管電流:40 mA
走査範囲:3~40°
走査速度:4.2°/分
サンプリング幅:0.017°
測定装置:X’pert-pro MPD(PANalytical社製)
線源:Cu
管電圧:45 kV
管電流:40 mA
走査範囲:3~25°
走査速度:0.33°/秒
サンプリング幅:0.026°
測定:サンプリングした懸濁液をX線結晶解析用キャピラリーに詰め,測定した。
(測定方法1)
測定装置:EXSTAR TG/DTA6200R装置(セイコーインスツルメンツ(現社名:日立ハイテクサイエンス)社製)
測定範囲:30~350℃
昇温速度:10℃/分
雰囲気:窒素
測定装置:STA7200RV+AS-3T(日立ハイテクサイエンス製)
測定範囲:30~350℃
昇温速度:10℃/分
雰囲気:窒素
測定装置:TGA/DSC 3+(Mettler Toledo製)
測定範囲:25~350℃
昇温速度:10℃/分
雰囲気:乾燥窒素
サンプル調製法1:目的化合物を含む混合液を、アセトニトリルで希釈した。
サンプル調製法2:目的化合物を含む混合液を、アセトニトリルとプロピルアミンを9対1の比率で混ぜた混合液で希釈した。
サンプル調製法3:目的化合物を含む混合液を、メタノールで希釈した。
サンプル調整法4:目的化合物を含む混合液を、メタノールと水を4対1の比率で混ぜた混合液で希釈した。
式1:反応転換率(%)=目的物の面積値/(原料の面積値+目的物の面積値)×100
式2:反応転換率(%)=目的物の面積値/(原料の面積値+原料のプロピルアミド体の面積値+目的物の面積値)×100
式3:反応転換率(%)=100-(反応後の原料の面積値/反応前の原料の面積値×100)
HPLC分析による保持時間:4.500分(HPLC分析条件:method 1)
HPLC分析による保持時間:2.389分(HPLC分析条件:method 1)
化合物7:(ベンジル (2S)-2-[[(1S)-2-[(2-tert-ブトキシ-2-オキソ-エチル)-メチル-アミノ]-2-オキソ-1-(p-トリルメチル)エチル]-エチル-カルバモイル]アゼチジン-1-カルボキシラート)の合成
HPLC分析による保持時間:4.065分(HPLC分析条件:method 1)
HPLC分析による保持時間:2.538分(HPLC分析条件:method 1)
化合物10:(tert-ブチル 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[ベンジルオキシカルボニル(メチル)アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
HPLC分析による保持時間:4.004分(分析条件:method 1)
化合物11:(tert-ブチル 2-[[(2S)-2-[エチル-[(2S)-1-[(2S)-2-(メチルアミノ)プロパノイル]アゼチジン-2-カルボニル]アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
HPLC分析による保持時間:2.510分(HPLC分析条件:method 1)
化合物13:(tert-ブチル 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-(ベンジルオキシカルボニルアミノ)-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
HPLC分析による保持時間:4.235分(HPLC分析条件:method 1)
化合物11と化合物12の縮合反応における溶媒を検討した。縮合反応はHPLC分析により追跡した。収率はHPLC分析により求めたエリア%(Area%)により算出した。
化合物13:(tert-ブチル 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-(ベンジルオキシカルボニルアミノ)-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成(溶媒の検討)
実施例6で得られた化合物11(50.69mg(0.100mmol))を含む溶液(72.62mg)を反応容器に加え、外温60℃にて減圧濃縮乾固した。次いで、反応容器に化合物12(32.50mg(0.122mmol))を加え、2-MeTHF(0.35mL)を室温にて加えた。DIPEA(58.3mg(0.451mmol))を室温にて攪拌しながら加えた後、反応容器の外温を25℃に設定し、HATU(58.37mg(0.154mmol))を加えた後、25 ℃にて4時間撹拌した。反応容器にN-メチルイミダゾール(8.17mg(0.099mmol))を加え、さらに5%炭酸ナトリウム水溶液(300μL)を撹拌しながら加えた後に2時間30分撹拌した。次いで、不溶物を綿栓にて濾去後、水層を排出した。得られた有機層に2.5%アンモニア水溶液(300μL)を加え、5分間撹拌後に、水層を排出した。得られた有機層を、2.5%アンモニア水溶液(320μL)、10%硫酸水素ナトリウム一水和物水溶液(320μL×2)、3%リン酸水素二カリウム水溶液(320μL)で洗浄した。得られた有機層を外温60℃にて減圧濃縮乾固した。得られた残渣をHPLCで分析した。標品を用いたHPLC分析の結果、得られた化合物13は56.77mg(75.1%収率)であった。
化合物13のLCMS (ESI):保持時間:4.012分、m/z=750 [M+H]+(LCMS分析条件:method 1)
HPLC分析による保持時間:4.261分(HPLC分析条件:method 1)
HPLC分析による保持時間:6.175分(HPLC分析条件:method 2)
化合物16:(tert-ブチル 2-[[(2S)-2-[エチル-[(2S)-1-[(2S)-2-[メチル-[(2S,3S)-3-メチル-2-[[(2S)-4-メチル-2-[メチル(2-トリメチルシリルエトキシカルボニル)アミノ]ペンタノイル]アミノ]ペンタノイル]アミノ]プロパノイル]アゼチジン-2-カルボニル]アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
HPLC分析による保持時間:5.964分(HPLC分析条件:method 2)
化合物16(tert-ブチル 2-[[(2S)-2-[エチル-[(2S)-1-[(2S)-2-[メチル-[(2S,3S)-3-メチル-2-[[(2S)-4-メチル-2-[メチル(2-トリメチルシリルエトキシカルボニル)アミノ]ペンタノイル]アミノ]ペンタノイル]アミノ]プロパノイル]アゼチジン-2-カルボニル]アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
化合物16(tert-ブチル 2-[[(2S)-2-[エチル-[(2S)-1-[(2S)-2-[メチル-[(2S,3S)-3-メチル-2-[[(2S)-4-メチル-2-[メチル(2-トリメチルシリルエトキシカルボニル)アミノ]ペンタノイル]アミノ]ペンタノイル]アミノ]プロパノイル]アゼチジン-2-カルボニル]アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
反応容器に、実施例7で得られた化合物13を含む保管溶液(477.4mg)を加え減圧濃縮し、化合物13を含む残渣を得た。反応容器に、化合物15を含む残渣(92.0mg,81.2wt%)と炭酸ジメチル(1000μL)を室温にて順次加えた。反応容器に、5%Pd/C(29.7mg、50%含水品)を加えた後に外温を25℃に設定し、水素ガスによる脱気置換を行い1時間撹拌した。反応混合物をサンプリングしてサンプル調製し(サンプル調製法1)、HPLC分析に付して反応転換率が99.9%以上であることを確認した(反応転換率の算出式1)。反応混合物を濾過し、残渣を炭酸ジメチル(400μL×2)で洗浄した。ろ液を含んだ反応容器の外温を25℃に設定し、5%炭酸カリウム水溶液(880μL)と4-ジメチルアミノピリジン(17.1mg)を攪拌しながら順次加えた。30分後に撹拌を停止し、水層を排出した。有機層を5%硫酸水素カリウム水溶液(880μL×2)、5%炭酸カリウム水溶液(880μL×2)で洗浄した。得られた有機層を減圧濃縮し、化合物16を含む残渣(107.3mg)を得た。取得した残渣をアセトニトリルで希釈し、LCMS分析に付した(method 2:化合物16の保持時間;5.579分、m/z=910 [M+Na]+)。得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO-d6に溶解させ、qNMR分析に付した(収率:62%)。
化合物16の上記の合成法で用いた2-MeTHFに代えて、溶媒として炭酸ジメチル、アニソールを用いた場合の結果を下表に示した。
化合物17:(tert-ブチル 2-[[(2S)-2-[エチル-[(2S)-1-[(2S)-2-[メチル-[(2S,3S)-3-メチル-2-[[(2S)-4-メチル-2-(メチルアミノ)ペンタノイル]アミノ]ペンタノイル]アミノ]プロパノイル]アゼチジン-2-カルボニル]アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
HPLC分析による保持時間:3.057分(HPLC分析条件:method 1)
HPLC分析による保持時間:3.510分(HPLC分析条件:method 3)
HPLC分析による保持時間:1.560分(HPLC分析条件:method 3)
化合物22:(tert-ブチル (3S)-3-[[(2S)-2-[ベンジルオキシカルボニル(メチル)アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
HPLC分析による保持時間:4.356分(HPLC分析条件:method 3)
化合物20と化合物21の縮合反応における溶媒を検討した。縮合反応はHPLC分析により追跡した。収率はHPLC分析により求めたエリア%(Area%)、およびqNMRの測定値より算出した。
化合物22 (tert-ブチル (3S)-3-[[(2S)-2-[ベンジルオキシカルボニル(メチル)アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
LCMS(ESI):保持時間:4.269分、m/z=526 [M+Na]+(LCMS分析条件 method 3)
収率:82%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
HPLC分析による保持時間:2.297分(HPLC分析条件:method 3)
化合物25:(tert-ブチル (3S)-3-[[(2S)-2-シクロペンチル-2-[メチル-[1-[(2,2,2-トリフルオロアセチル)アミノ]シクロペンタンカルボニル]アミノ]アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
HPLC分析による保持時間:6.166分(HPLC分析条件:method 3)
化合物26:(tert-ブチル (3S)-3-[[(2S)-2-[(1-アミノシクロペンタンカルボニル)-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
HPLC分析による保持時間:2.725分(HPLC分析条件:method 3)
化合物25a: tert-ブチル N 2 -{(2S)-2-[(1-{[(ベンジルオキシ)カルボニル]アミノ}シクロペンタン-1-カルボニル)(メチル)アミノ]-2-シクロペンチルアセチル}-N,N,N 2 -トリメチル-L-α-アスパラギナートの合成
取得した固体をアセトニトリルに希釈し、HPLC分析に付した(method 6化合物25aの保持時間;6.712分)
LCMS(ESI):保持時間:6.696分、m/z=637.29 [M+Na]+(LCMS分析条件 method 6)
収率:84%
化合物26: tert-ブチル N 2 -{(2S)-2-[(1-アミノシクロペンタン-1-カルボニル)(メチル)アミノ]-2-シクロペンチルアセチル}-N,N,N 2 -トリメチル-L-α-アスパラギナートの合成
LCMS(ESI):保持時間:2.421分、m/z=503.19 [M+Na]+(LCMS分析条件 method 3)
化合物28:(ベンジル (2S)-2-[[1-[[(1S)-2-[[(1S)-3-tert-ブトキシ-1-(ジメチルカルバモイル)-3-オキソ-プロピル]-メチル-アミノ]-1-シクロペンチル-2-オキソ-エチル]-メチル-カルバモイル]シクロペンチル]カルバモイル]ピロリジン-1-カルボキシラート)の合成
HPLC分析による保持時間:4.189分(HPLC分析条件:method 3)
化合物28:(ベンジル (2S)-2-[[1-[[(1S)-2-[[(1S)-3-tert-ブトキシ-1-(ジメチルカルバモイル)-3-オキソ-プロピル]-メチル-アミノ]-1-シクロペンチル-2-オキソ-エチル]-メチル-カルバモイル]シクロペンチル]カルバモイル]ピロリジン-1-カルボキシラート)の合成
LCMS(ESI):保持時間:4.178分、m/z=735 [M+Na]+(LCMS分析条件 method 3)
収率:50.9%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物29:(tert-ブチル (3S)-3-[[(2S)-2-シクロペンチル-2-[メチル-[1-[[(2S)-ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]アミノ]アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
HPLC分析による保持時間:2.846分(HPLC分析条件:method 3)
化合物29:(tert-ブチル (3S)-3-[[(2S)-2-シクロペンチル-2-[メチル-[1-[[(2S)-ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]アミノ]アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
化合物29のLCMS(ESI):保持時間:2.826分、m/z=578 [M+H]+(LCMS分析条件:method 3)
化合物31:(tert-ブチル (3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアート)の合成
HPLC分析による保持時間:4.978分(HPLC分析条件:method 3)
化合物32:((3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタン酸)の合成
HPLC分析による保持時間:4.220分(HPLC分析条件:method 3)
化合物32:((3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタン酸)の合成
化合物32のLCMS(ESI):保持時間:4.132分、m/z=921 [M+H]+(LCMS分析条件:method 3)
化合物33:(tert-ブチル 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
HPLC分析による保持時間:10.272分(HPLC分析条件:method 4)
化合物17と化合物32の縮合反応における溶媒を検討した。縮合反応はHPLC分析により追跡した。収率はHPLC分析により求めたエリア%(Area%)、およびqNMRの測定値より算出した。
化合物33:(tert-ブチル 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
LCMS(ESI):保持時間:10.35分、m/z=1669 [M+Na]+(LCMS分析条件 method 4)
収率:83%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物33:(tert-ブチル 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
フラスコに、実施例10で得られた化合物17を含む溶液(4062.5mg)、実施例20で得られた化合物32を含む溶液(4534.0mg)、および2-MeTHF(1254μL)を室温にて順次加えて、化合物17と化合物31を含む溶液を得た。反応容器に化合物17と化合物31を含む溶液(969.5mg)を加え、外温40℃にて減圧濃縮し、化合物17及び31を含む残渣を得た。反応容器に2-MeTHF(1140μL)を室温にて加え、残渣を溶解させた。外温を10℃に冷却し、反応混合物にDIPEA(106μL)、およびHATU(94.9mg)を加えた後、外温を25℃に昇温した。反応混合物を25℃にて3時間撹拌した後、反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が99.8%であることを確認した(反応転換率の算出式1)。外温を10℃に設定し、2.5%アンモニア水溶液(680μL)を加えた後、外温を25℃に設定し10分間撹拌し、水層を排出した。得られた有機層を10%硫酸水素ナトリウム一水和物水溶液(680μL)、5%炭酸ナトリウム水溶液(680μL)で洗浄した。得られた有機層を減圧濃縮し、化合物33を含む残渣(262.3mg)を得た。
LCMS(ESI):保持時間:10.49分、m/z=1669 [M+Na]+(LCMS分析条件 method 4)
収率:85%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物33:(tert-ブチル 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
フラスコに、実施例10で得られた化合物17を含む溶液(4062.5mg)、実施例20で得られた化合物32を含む溶液(4534.0mg)、及び2-MeTHF(1254μL)を室温にて順次加えて、化合物17と化合物32を含む溶液を得た。反応容器に化合物17と化合物32を含む溶液(969.8mg)を加え、外温40℃にて減圧濃縮し、化合物17及び32を含む残渣を得た。反応容器にアニソール(1140μL)を室温にて加え、残渣を溶解させた。外温を10℃に冷却し、反応混合物にDIPEA(106μL)、およびHATU(97.7mg)を加えた後、外温を25℃に昇温した。反応混合物を25℃にて3時間撹拌した後、反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が99.9%であることを確認した(反応転換率の算出式1)。外温を10℃に設定し、2.5%アンモニア水溶液(680μL)を加えた後、外温を25℃に設定し10分間撹拌した。反応容器にアニソール(570μL)と2.5%アンモニア水溶液(340μL)を加え、10分間攪拌し、水層を排出した。得られた有機層を10%硫酸水素ナトリウム一水和物水溶液(920μL)、5%炭酸ナトリウム水溶液(920μL)で洗浄した。得られた有機層を減圧濃縮し、化合物33を含む残渣(207.3mg)を得た。
LCMS(ESI):保持時間:10.38分、m/z=1669 [M+Na]+(LCMS分析条件 method 4 )
収率:68%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物33:(tert-ブチル 2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]アセタート)の合成
フラスコに、実施例10で得られた化合物17を含む溶液(4062.5mg)、実施例20で得られた化合物32を含む溶液(4534.0mg)、及び2-MeTHF(1254μL)を室温にて順次加えて、化合物17と化合物32を含む溶液を得た。反応容器に化合物17と化合物32を含む溶液(968.4mg)を加え、外温40℃にて減圧濃縮し、化合物17及び32を含む残渣を得た。反応容器に炭酸ジメチル(1140μL)を室温にて加え、残渣を溶解させた。外温を10℃に冷却し、反応混合物にDIPEA(106μL)、およびHATU(95.2mg)を加えた後、外温を25℃に昇温した。反応混合物を25℃にて3時間撹拌した後、反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が99.9%であることを確認した(反応転換率の算出式1)。外温を10℃に設定し、2.5%アンモニア水溶液(680μL)を加えた後、外温を25℃に設定し10分間撹拌した。反応容器に炭酸ジメチル(1140μL)と2.5%アンモニア水溶液(680μL)を加え、10分間攪拌し、水層を排出した。得られた有機層を10%硫酸水素ナトリウム一水和物水溶液(1360μL)、5%炭酸ナトリウム水溶液(1360μL)で洗浄した。得られた有機層を減圧濃縮し、化合物33を含む残渣(264.6mg)を得た。
LCMS(ESI):保持時間:10.35分、m/z=1669 [M+Na]+(LCMS分析条件method 4 )
収率:84%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
2-MeTHF/アセトニトリルに代えて、酢酸エチル(実施例21-5)、または酢酸イソプロピル(実施例21-6)を用いた点を除き、実施例21-1と同様の条件で化合物33を合成した。実施例21-5では76%の収率で、実施例21-6では75%の収率で化合物33を得た。
化合物34:(2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S-1)-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]酢酸)の合成
HPLC分析による保持時間:9.215分(HPLC分析条件:method 4)
化合物35:(2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-アミノ-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]酢酸)の合成
窒素で置換した反応釜に、5% Pd/C(756.6g、50%含水品)を加えた後に、THF(7.5kg)を加えた。反応釜の外温を25℃に設定した。実施例22で得られた化合物34を含む溶液(14.5kg)、THF(0.7kg)を順次加えた。反応釜の外温を25℃に設定し、撹拌しながら反応釜の内圧が0.18MPaGになるまで水素で加圧した。2.5時間後、内圧の変動がないことを確認した後、反応釜を水素で0.18MPaGまで加圧し、さらに1時間撹拌した。反応混合物をサンプリングしてサンプル調製(サンプル調製法1)し、HPLC分析により反応転換率が99.6%であることを確認した(反応転換率の算出式1)。反応釜内を窒素で置換後、反応混合物を加圧濾過した。反応釜内と濾過機を2-MeTHF(4.9kgx2)で洗浄後、濾液と洗浄液を合わせて、化合物34を含む保管溶液(第一バッチ)を得た。
HPLC分析による保持時間:6.480分(HPLC分析条件:method 4)
化合物35:(2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-アミノ-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]酢酸)の合成
化合物1:((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-ブチル)-18-シクロペンチル-29-(3,5-ジフルオロ-4-(トリフルオロメチル)フェネチル)-36-エチル-11-イソブチル-N,N,5,6,12,16,19,33-オクタメチル-35-(4-メチルベンジル)-4,7,10,13,17,20,23,28,31,34,37-ウンデカオキソテトラトリアコンタヒドロ-2H,4H-スピロ[アゼト[2,1-u]ピロロ[2,1-i][1,4,7,10,13,16,19,22,25,28,31]ウンデカアザシクロテトラトリアコンチン-21,1'-シクロペンタン]-15-カルボキサミド)の合成
HPLC分析による保持時間:18.008分(HPLC分析条件:method 5)
化合物35を出発原料として用い、化合物1への環化反応における、縮合剤、および溶媒を検討した。環化反応はHPLC分析により追跡した。収率は安息香酸メチルを内部標準物質として用い、HPLC分析によるArea%比から算出した。
化合物1:((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-ブチル)-18-シクロペンチル-29-(3,5-ジフルオロ-4-(トリフルオロメチル)フェネチル)-36-エチル-11-イソブチル-N,N,5,6,12,16,19,33-オクタメチル-35-(4-メチルベンジル)-4,7,10,13,17,20,23,28,31,34,37-ウンデカオキソテトラトリアコンタヒドロ-2H,4H-スピロ[アゼト[2,1-u]ピロロ[2,1-i][1,4,7,10,13,16,19,22,25,28,31]ウンデカアザシクロテトラトリアコンチン-21,1'-シクロペンタン]-15-カルボキサミド)の合成(縮合剤としてHATUを使用、溶媒としてアセトニトリルを使用)
反応容器に化合物35(10.44mg(7.17 μmol))と内部標準物質(安息香酸メチル、3.60mg(26.44μmol))を秤量し、溶媒(アセトニトリル、2mL(200v/w))で溶解した。室温で撹拌しながら、DIPEA(5.74μL(32.9μmol))を加えた。反応容器の外温を25℃に設定し、縮合剤(HATU、10.39mg(27.3μmol))を加えて30分撹拌した。反応液(50μL)をMeCN/プロピルアミン(9:1)の混合液(100μL)で希釈し、HPLC分析用の溶液を調製した。安息香酸メチルを内部標準物質として用いたHPLC分析の結果、収率は76%であった(HPLC分析条件:method 5)。
化合物1のLCMS(ESI):保持時間:18.08分、m/z=1439 [M+H]+(LCMS分析条件 method 5)
化合物35のプロピルアミド体のLCMS(ESI):保持時間:13.39分、m/z=1498[M+H]+(LCMS分析条件 method 5)
環状ダイマー(c-Dimer)のLCMS(ESI):保持時間:23.18分、m/z=2898[M+Na]+(LCMS分析条件 method 5)
環状トリマー(c-Trimer)のLCMS(ESI):保持時間:25.74分、m/z=2157 [M+2H]2+(LCMS分析条件 method 5)
化合物1:((3S,9S,12S,17S,20S,23S,27S,30S,36S)-30-シクロペンチル-3-[2-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]エチル]-10-エチル-23-イソブチル-N,N,7,17,18,24,28,31-オクタメチル-20-[(1S)-1-メチルプロピル]-2,5,8,11,16,19,22,25,29,32,35-ウンデカオキソ-9-(p-トリルメチル)スピロ[1,4,7,10,15,18,21,24,28,31,34-ウンデカザトリシクロ[34.3.0.0 12,15 ]ノナトリアコンタン-33,1'-シクロペンタン]-27-カルボキサミド)の合成
HPLC分析による保持時間:17.992分(HPLC分析条件:method 5)
化合物1の結晶化:((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-ブチル)-18-シクロペンチル-29-(3,5-ジフルオロ-4-(トリフルオロメチル)フェネチル)-36-エチル-11-イソブチル-N,N,5,6,12,16,19,33-オクタメチル-35-(4-メチルベンジル)-4,7,10,13,17,20,23,28,31,34,37-ウンデカオキソテトラトリアコンタヒドロ-2H,4H-スピロ[アゼト[2,1-u]ピロロ[2,1-i][1,4,7,10,13,16,19,22,25,28,31]ウンデカアザシクロテトラトリアコンチン-21,1'-シクロペンタン]-15-カルボキサミド)の水和物結晶(C型結晶)の合成
窒素で置換した化合物1を含む溶液が入った反応釜に、反応釜の外温を40℃に設定し、濾過した精製水(10.9kg)を加えた。アセトン(59.2g)/水(61.2g)の混合液に、実施例25-1と同様の操作により得られた、化合物1の粉砕結晶(10.2g)を加えて得た懸濁液を反応釜に加えた。懸濁液の入った容器をアセトン(59.2g)/水(61.2g)の混合液で洗いこみながら反応釜に加えた後、2時間1分間撹拌した。濾過した精製水(2.7kg)を加え、7時間10分間撹拌した。さらに、アセトン(59.2g)/水(61.2g)の混合液に、実施例25-1と同様の操作により、得られた化合物1の粉砕結晶 (10.2g)を加えて得た懸濁液を反応釜に加えた。懸濁液の入った容器をアセトン(59.2g)/水(61.2g)の混合液で洗いこみながら、反応釜に加え、12時間40分間撹拌した。濾過した精製水(2.7kg)を加え、2時間撹拌した。反応釜の外温を40℃から25℃へ1時間かけて降温後、反応混合物を18時間44分間攪拌した。反応混合物を、加圧濾過し、反応釜内と濾過機を、濾過したアセトン(7.5kg)と精製水(7.5kg)の混合液で洗浄しながら得られた結晶を洗浄した。得られた結晶を、濾過した精製水(17.0kgx2)で洗浄し、結晶を回収した濾過装置を減圧し、濾過装置の外温を70℃に設定して結晶を17時間乾燥した。さらに、外温を室温~30℃にて結晶を27時間乾燥した。乾燥末を濾過機から回収し、白色の粉末(2.6kg)を得た。
HPLC分析による保持時間:18.199分(HPLC分析条件:method 5)
XRPD装置を用いた粉末X線解析(測定方法4)の結果、2θ値は、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)が主要なピークとして観測された。図1に分析結果を示した。
アモルファス状態の化合物1(122.3mg)をDMSO(0.612mL)に溶解させ、この溶解液(0.015mL)を-20℃で2日間凍結乾燥した。得られた凍結乾燥物に水-アセトニトリル混合液(3:1,0.015mL)を加え、室温にて7日間振とう攪拌することで化合物1の水和物結晶(C型結晶)を得た。
実施例25-2
化合物1 ((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-ブチル)-18-シクロペンチル-29-(3,5-ジフルオロ-4-(トリフルオロメチル)フェネチル)-36-エチル-11-イソブチル-N,N,5,6,12,16,19,33-オクタメチル-35-(4-メチルベンジル)-4,7,10,13,17,20,23,28,31,34,37-ウンデカオキソテトラトリアコンタヒドロ-2H,4H-スピロ[アゼト[2,1-u]ピロロ[2,1-i][1,4,7,10,13,16,19,22,25,28,31]ウンデカアザシクロテトラトリアコンチン-21,1'-シクロペンタン]-15-カルボキサミド)の非溶媒和物結晶(F型)の合成
実施例24と同様の方法で得られた化合物1の水和物結晶(C型結晶)を7mm×7mm×0.25mmアルミニウムサンプル容器に密に詰め、以下の条件(粉末X線(XRPD)回折測定の測定方法2、および熱分析の測定方法2)でXRD-DSC同時測定を行うことにより、測定終了後サンプルとして化合物1の非溶媒和物結晶(F型)を得た。
XRPD装置を用いた粉末X線解析(測定方法2)の結果、2θ値は、5.370°、6.934°、8.940°、9.838°、10.771°、12.181°、13.525°、15.179°、16.202°、および17.554°(±0.2°)が主要なピークとして観測された。図2に分析結果を示した。
化合物1 ((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-ブチル)-18-シクロペンチル-29-(3,5-ジフルオロ-4-(トリフルオロメチル)フェネチル)-36-エチル-11-イソブチル-N,N,5,6,12,16,19,33-オクタメチル-35-(4-メチルベンジル)-4,7,10,13,17,20,23,28,31,34,37-ウンデカオキソテトラトリアコンタヒドロ-2H,4H-スピロ[アゼト[2,1-u]ピロロ[2,1-i][1,4,7,10,13,16,19,22,25,28,31]ウンデカアザシクロテトラトリアコンチン-21,1'-シクロペンタン]-15-カルボキサミド)のDMSO-水和物結晶(A型、およびB型)の合成
化合物1の水和物結晶(C型結晶、104.3mg)にDMSO(0.52mL)を加え、室温にて17時間100rpmで振とう攪拌することで標題化合物のDMSO-水和物結晶(33.8mg)を粉末状結晶として得た。ろ過直後の粉末状結晶をDMSO-水和物結晶A型、ろ過後、室温で8時間減圧乾燥した粉末状結晶をDMSO-水和物結晶B型とした。
実施例25-3で得られた化合物1のDMSO-水和物結晶(DMSO-水和物結晶 B型)を、熱分析(測定方法3)に供した。結果を図5に示す。
実施例25-3で得られた化合物1のDMSO-水和物結晶(DMSO-水和物結晶B型)を、1H-NMR測定に供した。結果を図6に示す。
化合物1 ((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-ブチル)-18-シクロペンチル-29-(3,5-ジフルオロ-4-(トリフルオロメチル)フェネチル)-36-エチル-11-イソブチル-N,N,5,6,12,16,19,33-オクタメチル-35-(4-メチルベンジル)-4,7,10,13,17,20,23,28,31,34,37-ウンデカオキソテトラトリアコンタヒドロ-2H,4H-スピロ[アゼト[2,1-u]ピロロ[2,1-i][1,4,7,10,13,16,19,22,25,28,31]ウンデカアザシクロテトラトリアコンチン-21,1'-シクロペンタン]-15-カルボキサミド)の水和物結晶(C型結晶)の合成
アモルファス状態の化合物1(293.2mg)をエタノール(0.586mL)に室温溶解した。この溶液に水(0.147mL)と、実施例25-1と同様の方法で得た化合物1の水和物結晶(C型結晶)の種結晶を加え、室温で30分間撹拌した。さらに水(0.147mL)を加え、室温で2時間撹拌した。さらに水(0.147mL)を加え、室温で30分間撹拌した後、水(0.147mL)を加え、室温で30分間撹拌し、沈殿物を濾過回収、水で洗浄、減圧乾燥することで化合物1の水和物結晶(C型結晶、256.0mg)を粉末状結晶として得た。
化合物1の水和物結晶(C型結晶)の物理化学的性質の測定
実施例25と同様の用法で得られた化合物1の水和物結晶(C型結晶)を用いて、粉末X線回折測定、熱重量・示差熱分析、水分量の測定、および単結晶X線構造解析を行った。
(1)粉末X線回折測定
以下の方法で、実施例26で調製した化合物1の水和物結晶(C型結晶)の湿度変化粉末X線回折測定を実施した。
測定装置:SmartLab System、D/Tex Ultra detector、水蒸気発生装置HUM-SL(リガク社製)
対陰極:Cu
管電圧:45kV
管電流:200mA
走査範囲:5~30°
走査速度:0.7°/分
サンプリング幅:0.02°
湿度変化条件:
実施例26で調製した化合物1の水和物結晶(C型結晶)の熱重量・示差熱分析を熱分析の測定方法4で実施した。結果を図8に示す。
実施例26で調製した化合物1の水和物結晶(C型結晶)の水分量を、カールフィッシャー滴定法で測定した。測定は、試料を実験室環境下で馴化させた後にCA-310(日東精工アナリテック製)を用いて行った。測定の結果、化合物1の水和物結晶(C型結晶)の水分量は6.50wt%であった。
(4)単結晶X線構造解析
以下の方法で、実施例26で調製した化合物1の水和物結晶(C型結晶)の単結晶X線構造解析を行った。
測定装置:Rigaku R-AXIS RAPID-II with a VariMax Cu diffractometer(リガク社製)
対陰極:Cu
管電圧:40 kV
管電流:30 mA
温度:-180℃
測定:構造解析に十分な回折斑点が得られると考えらえるストラテジー、露光時間で測定を行った。
構造解析:初期構造決定は直接法(SIR2004、CrystalStructure、Rigaku)で行い、構造精密化はfull-matrix least-squares法(SHELXL-2017/1、APEX3、Bruker)で行った。全ての非水素原子は異方性温度因子で精密化した。水分子の水素原子はリストレインを用いて適切な位置に置き、結合している酸素原子の1.5倍の大きさの等方性温度因子で精密化した。そのほかの水素原子はライディングモデルを用いて適切な位置に置き、結合している非水素原子の1.2倍の大きさの等方性温度因子とした。
結果を図9に示す。
測定装置:DVS Intrinsic(Surface Measurement Systems製)
温度:25℃
相対湿度(%)測定点:
サイクル1:0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0(%); サイクル2:10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0(%)
閾値:0.001 dm/dt(%/分)
最小収着時間:10分
最大収着時間:1440分
化合物1のDMSO-水和物結晶(A型)の単結晶X線の測定
化合物1((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-ブチル)-18-シクロペンチル-29-(3,5-ジフルオロ-4-(トリフルオロメチル)フェネチル)-36-エチル-11-イソブチル-N,N,5,6,12,16,19,33-オクタメチル-35-(4-メチルベンジル)-4,7,10,13,17,20,23,28,31,34,37-ウンデカオキソテトラトリアコンタヒドロ-2H,4H-スピロ[アゼト[2,1-u]ピロロ[2,1-i][1,4,7,10,13,16,19,22,25,28,31]ウンデカアザシクロテトラトリアコンチン-21,1'-シクロペンタン]-15-カルボキサミド)のDMSO-水和物結晶(A型)の合成
化合物1の水和物結晶(C型結晶)(54.9mg)をDMSO(0.784mL)に室温溶解した。この溶液を室温で110分振とうしたところ、化合物1のDMSO-水和物結晶(A型)をDMSO中に得た。
以下の方法で、実施例26-1で調製した化合物1のDMSO-水和物結晶(A型結晶)の単結晶X線構造解析を行った。
測定装置:Rigaku XtaLAB Synergy Custom with a VariMax Cu diffractometer(リガク社製)
対陰極:Cu
管電圧:40 kV
管電流:30 mA
温度:-180℃
測定:構造解析に十分な回折斑点が得られると考えらえるストラテジー、露光時間で測定を行った。
構造解析:初期構造決定は直接法(SHELXT-2018/2、CrysAlisPro、Rigaku)で行い、構造精密化はfull-matrix least-squares 法(SHELXL-2017/1、APEX3、Bruker)で行った。非水素原子の温度因子は、基本的には異方性としたが、ディスオーダーしている原子は等方性で精密化した。水分子の水素原子はリストレインを用いて適切な位置に置き、結合している酸素原子の1.5倍の大きさの等方性温度因子で精密化した。そのほかの水素原子はライディングモデルを用いて適切な位置に置き、結合している非水素原子の1.2倍または1.5倍の大きさの等方性温度因子とした。結果を図11に示す。
化合物1のアセトン-水和物結晶(H型)の物理化学的性質の測定
(1)単結晶X線構造解析
化合物1((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-ブチル)-18-シクロペンチル-29-(3,5-ジフルオロ-4-(トリフルオロメチル)フェネチル)-36-エチル-11-イソブチル-N,N,5,6,12,16,19,33-オクタメチル-35-(4-メチルベンジル)-4,7,10,13,17,20,23,28,31,34,37-ウンデカオキソテトラトリアコンタヒドロ-2H,4H-スピロ[アゼト[2,1-u]ピロロ[2,1-i][1,4,7,10,13,16,19,22,25,28,31]ウンデカアザシクロテトラトリアコンチン-21,1'-シクロペンタン]-15-カルボキサミド)のアセトン-水和物結晶(H型、単結晶X線構造解析用)の合成
9mLバイアルにアセトン(0.8mL)と水(0.2mL)を添加後に混和し、その中に化合物1の非晶質固体(約1mg)を添加した0.3mLバイアルを入れ、9mLバイアルにキャップをし、溶媒を蒸気拡散させることで3時間後に結晶を得た。
測定装置:Rigaku XtaLAB Synergy Custom with a VariMax Cu diffractometer(リガク社製)
対陰極:Cu
管電圧:40 kV
管電流:30 mA
温度:-180℃
測定:構造解析に十分な回折斑点が得られると考えらえるストラテジー、露光時間で測定を行った。
構造解析:初期構造決定は直接法(SHELXT-2018/2、CrysAlisPro、Rigaku)で行い、構造精密化はfull-matrix least-squares 法(SHELXL-2018/3、Olex2、OlexSys)で行った。非水素原子の温度因子は異方性として精密化した。水分子の水素原子は適切な位置に置き、結合している酸素原子の1.5倍の大きさの等方性温度因子で精密化した。そのほかの水素原子はライディングモデルを用いて適切な位置に置き、結合している非水素原子の1.2倍または1.5倍の大きさの等方性温度因子とした。結果を図12に示す。
化合物1((5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-ブチル)-18-シクロペンチル-29-(3,5-ジフルオロ-4-(トリフルオロメチル)フェネチル)-36-エチル-11-イソブチル-N,N,5,6,12,16,19,33-オクタメチル-35-(4-メチルベンジル)-4,7,10,13,17,20,23,28,31,34,37-ウンデカオキソテトラトリアコンタヒドロ-2H,4H-スピロ[アゼト[2,1-u]ピロロ[2,1-i][1,4,7,10,13,16,19,22,25,28,31]ウンデカアザシクロテトラトリアコンチン-21,1'-シクロペンタン]-15-カルボキサミド)のアセトン-水和物結晶(H型、粉末X線回折測定用と溶媒含有量の測定用)の合成
反応容器にて、化合物1の水和物結晶(C型結晶)(2.1g)とアセトン(16mL)を加えた。外温を40℃に設定し、水(6.4mL)を攪拌しながら加えた。ガラスバイアルに乳鉢粉砕した化合物1の水和物結晶(6mg)を加え、アセトン水混液(80μL、5/4v/v)で懸濁させたのち、懸濁液を反応容器に加えた。さらにガラスバイアルにアセトン水混液(80μL、5/4v/v)を加え、懸濁液を反応容器に加えた。晶析液を2時間攪拌した。水(1.6mL)を10分かけ加えた後、懸濁液を3時間攪拌した。水(1.6mL)を10分かけ加えた後、懸濁液を2時間攪拌した。懸濁液を1時間かけて外温25℃へ冷却した。懸濁液を終夜静置保管した。翌日、外温25℃で攪拌した後、懸濁液を一部サンプリングし、懸濁液のまま粉末X線回折測定(測定方法4)を実施した。懸濁液を桐山漏斗にて濾過した後に、結晶をアセトン水混液(5.6mL、4.4mL)で洗浄した。つづいて、結晶を水(10mL)で2回洗浄した。得られた湿性末を溶媒含有量の測定に用いた。
GCによるアセトン量の分析条件を以下に示した。
装置:GC-2010(島津社製)
カラム:DB-624(Agilent), 0.530 mm ID×30 m, 3.00 μm
カラム温度:50 ℃(5min)→10 ℃/min→90 ℃(0min)→50 ℃/min→240 ℃(5min)
注入口温度:230 ℃
検出器温度:250 ℃
スプリット比:20/1
流量:30 cm/sec
装置:CA-200(日東精工アナリテック社製)
陽極液:アクアミクロンAKX
陰極液:アクアミクロンCXU
これらの測定では、湿性末のアセトン量は3.7%、水分量が17.5%であった。
下記の構造を有する化合物1(「(5S,8S,11S,15S,18S,23aS,29S,35S,37aS)-8-((S)-sec-ブチル)-18-シクロペンチル-29-(3,5-ジフルオロ-4-(トリフルオロメチル)フェネチル)-36-エチル-11-イソブチル-N,N,5,6,12,16,19,33-オクタメチル-35-(4-メチルベンジル)-4,7,10,13,17,20,23,28,31,34,37-ウンデカオキソテトラトリアコンタヒドロ-2H,4H-スピロ[アゼト[2,1-u]ピロロ[2,1-i][1,4,7,10,13,16,19,22,25,28,31]ウンデカアザシクロテトラトリアコンチン-21,1'-シクロペンタン]-15-カルボキサミド」)は下記のスキーム1に従って合成した。
LCMS(ESI)m/z=408(M+H)+
保持時間:1.407分(分析条件SMDmethod_20)
LCMS(ESI)m/z=410(M+H)+
保持時間:1.956分(分析条件SMDmethod_05)
窒素雰囲気下、氷冷下にてWSCI・HCl(27.4g,143mmol)のDMF(217mL)溶液にHOBt(17.72g,131mmol)を加え、更に化合物aa033b(48.8g,119mmol)をDCM(90mL)とDMF(90mL)の混合溶液として加え、0℃で30分攪拌した。そこにジメチルアミンのTHF溶液(2mol/L,65.6mL,131mmol)を滴下にて加え、0℃で30分攪拌した。反応液を酢酸エチル(488mL)で希釈し、有機層を塩酸(1mol/L,390mL)で2回洗浄し、更に飽和炭酸水素ナトリウム水溶液と水の混合溶液(1:1,488mL))で2回洗浄し、さらに、飽和食塩水と水の混合溶液(1:1、488mL)で1回洗浄後、得られた有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒留去して化合物aa011-aを得た。(51.16g,収率98%)。
LCMS(ESI)m/z=437.0(M+H)+
保持時間:1.262分(分析条件SMDFA05)
LCMS(ESI)m/z=378(M+H)+
保持時間:1.01分(分析条件SQDFA05)
LCMS(ESI)m/z=380(M+H)+
保持時間:0.92分(分析条件SQDFA05)
化合物aa079(42.2g,111mmol)とOxyma(19.99g,141mmol)のDMF(391mL)溶液に、WSCI・HCl(31.5g,164mmol)を室温にて加え、30分攪拌して溶液Aを得た。
LCMS(ESI)m/z=598.2(M+Na)+
保持時間:1.320分(分析条件SMDAM05)
窒素雰囲気下、室温にて化合物1217-a(55.55g,96mmol)のDCM(193mL)溶液に、テトラキス(トリフェニルホスフィン)パラジウム(0)(1.115g,0.965mmol)を加え、更にフェニルシラン(8.31mL、67.5mmol)を滴下にて加え、30分攪拌した。反応液をMTBE(556mL)で希釈し、飽和炭酸水素ナトリウム水溶液と水の混合溶液(1:1,556mL)で抽出した。得られた有機層を水(278mL)で抽出した。水層を混合し、DCM(556mL)を加えた。そこにリン酸(56.7g,579mmol)を滴下にて加えてpHを2~3に調整し、有機層を分離後、水層をDCM(556mL)にて抽出した。得られた有機層を混合し、飽和食塩水と水の混合溶液(1:1、556mL)で洗浄後、硫酸ナトリウムで乾燥し、減圧下溶媒留去して化合物1217-bを得た。(48.87g,収率95%)
LCMS(ESI)m/z=536(M+H)+
保持時間:1.138分(分析条件SMDAM05)
フィルター付きの反応容器に2-クロロトリチルクロライドレジン(SUNRESIN社から購入、1.36mmol/g,114g、155mmol)をセットし、DCM(1140mL)を加え、25℃で45分攪拌後、フィルターから溶媒を排出した。反応容器に化合物1217-b(48.87g,91mmol)とメタノール(29.6mL,730mmol)とDIPEA(76mL,438mmol)のDCM(798mL)溶液を加え、25℃で60分攪拌し、フィルターから溶液を排出した。続けて、反応容器にメタノール(111mL,2737mmol)とDIPEA(76mL,438mmol)のDCM(684mL)溶液を加え、25℃で90分攪拌し、フィルターから溶液を排出した。反応容器にDCM(570mL)を加えて5分攪拌し、フィルターから溶液を排出した。このレジンの洗浄操作を更に4回繰り返し、得られたレジンを減圧下乾燥して化合物1217-b-resinを得た(140.5g)。レジンに結合している化合物のFmoc基を定量することにより、担持量を0.482mmol/gと算出した。
上記で得られたレジン(0.482mmol/g、60g、28.92mmol)をプラスチック製固相反応容器にセットした。室温にて、この固相反応容器にDCM(600mL)を加え、5分振盪した後、溶媒をフリットから排出した。この固相反応容器にDMF(420mL)を加え、5分振盪した後、溶媒をフリットから排出した。このレジンの洗浄工程を更に1回繰り返した。この固相反応容器にジアザビシクロウンデセン(DBU)のDMF溶液(2v/v%、420mL)を添加しFmoc基の脱保護を行った。10分振盪後に溶液をフリットから排出した。この固相反応容器にDMF(420mL)を加え、5分振盪した後、溶液をフリットから排出した。この固相反応容器にトリエチルアミン塩酸塩(7.96g、57.8mmol)のDCM(420mL)溶液を加え、5分振盪した後、溶液をフリットから排出した。この固相反応容器にDCM(420mL)を加え、5分振盪した後、溶液をフリットから排出した。この固相反応容器にDMF(420mL)を加え、5分振盪した後、溶液をフリットから排出した。このDMFによるレジンの洗浄工程を更に1回繰り返した。
化合物aa134、(2S)-4-[3,5-ジフルオロ-4-(トリフルオロメチル)フェニル]-2-(9H-フルオレン-9-イルメトキシカルボニルアミノ)ブタン酸、Fmoc-Hph(4-CF3-35-F2)-OHの合成
LCMS(ESI)m/z=505.2(M+Na)+
保持時間:0.992分(分析条件SMDmethod_16)
LCMS(ESI)m/z=496(M+Na)+
保持時間:1.544分(分析条件SMDmethod_15)
保持時間:3.538分(分析条件SMDmethod_14)
1H-NMR(300MHz,DMSO-d6)δ:12.69(s,1H),7.90(d,J=7.5Hz,2H),7.78-7.54(m,3H),7.48-7.20(m,6H),4.33(d,J=6.3Hz,2H),4.24(t,J=6.9Hz,1H),3.97-3.84(m,1H),2.79-2.65(m,2H),2.15-2.00(m,1H),2.00-1.83(m,1H)
LCMS(ESI)m/z=428(M+H)+
保持時間:1.03分(分析条件SQDFA05)
LCMS(ESI)m/z=430(M+H)+
保持時間:0.95分(分析条件SQDFA05)
30本すべての固相反応容器にジアザビシクロウンデセン(DBU)のDMF溶液(2v/v%、固相反応容器1本に対して1.4mL)を添加し、30℃に加温して10分後に溶液をフリットから排出した。この30本すべての固相反応容器にDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このDMFによるレジンの洗浄工程を更に3回繰り返した。続いて、Fmoc-Pro-OH(CAS番号71989-31-6)(0.6mol/L)とHOAt(0.375mol/L)のNMP溶液(固相反応容器1本に対して0.6mL)と、N,N’-ジイソプロピルカルボジイミド(DIC)のDMF溶液(10v/v%、固相反応容器1本に対して0.72mL)を合成機のmixing vialで混合した後に30本すべての固相反応容器に対して添加し、40℃にて4時間静置した。その後、溶液をフリットから排出した。30本すべての固相反応容器に対してDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このレジンの洗浄工程を更に2回繰り返した。
上記で得られたレジンを含む30本すべての固相反応容器にジアザビシクロウンデセン(DBU)のDMF溶液(2v/v%、固相反応容器1本に対して1.4mL)を添加し、35℃に加温して10分後に溶液をフリットから排出した。この30本すべての固相反応容器にDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このDMFによるレジンの洗浄工程を更に3回繰り返した。続いて、Fmoc-Hph(4-CF3-35-F2)-OH(化合物aa134)(0.45mol/L)とHOAt(0.375mol/L)のNMP溶液(固相反応容器1本に対して0.6mL)と、N,N’-ジイソプロピルカルボジイミド(DIC)のDMF溶液(10v/v%、固相反応容器1本に対して0.72mL)を合成機のmixing vialで混合した後に30本すべての固相反応容器に対して添加し、40℃にて2.5時間静置した。その後、溶液をフリットから排出した。30本すべての固相反応容器に対してDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このレジンの洗浄工程を更に2回繰り返した。
上記で得られたレジンを含む30本すべての固相反応容器にジアザビシクロウンデセン(DBU)のDMF溶液(2v/v%、固相反応容器1本に対して1.4mL)を添加し、35℃に加温して10分後に溶液をフリットから排出した。この30本すべての固相反応容器にDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このDMFによるレジンの洗浄工程を更に3回繰り返した。続いて、Fmoc-MeGly-OH(0.6mol/L)とHOAt(0.375mol/L)のNMP溶液(固相反応容器1本に対して0.6mL)と、N,N’-ジイソプロピルカルボジイミド(DIC)のDMF溶液(10v/v%、固相反応容器1本に対して0.72mL)を合成機のmixing vialで混合した後に30本すべての固相反応容器に対して添加し、40℃にて2.5時間静置した。その後、溶液をフリットから排出した。30本すべての固相反応容器に対してDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このレジンの洗浄工程を更に2回繰り返した。
上記で得られたレジンを含む30本すべての固相反応容器にジアザビシクロウンデセン(DBU)のDMF溶液(2v/v%、固相反応容器1本に対して1.4mL)を添加し、35℃に加温して10分後に溶液をフリットから排出した。この30本すべての固相反応容器にDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このDMFによるレジンの洗浄工程を更に3回繰り返した。続いて、前述のとおり製造したFmoc-EtPhe(4-Me)-OH(0.6mol/L)とHOAt(0.375mol/L)のNMP溶液(固相反応容器1本に対して0.6mL)と、N,N’-ジイソプロピルカルボジイミド(DIC)のDMF溶液(10v/v%、固相反応容器1本に対して0.72mL)を合成機のmixing vialで混合した後に30本すべての固相反応容器に対して添加し、40℃にて2.5時間静置した。その後、溶液をフリットから排出した。30本すべての固相反応容器に対してDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このレジンの洗浄工程を更に2回繰り返した。
上記で得られたレジンを含む30本すべての固相反応容器にジアザビシクロウンデセン(DBU)のDMF溶液(2v/v%、固相反応容器1本に対して1.4mL)を添加し、35℃に加温して10分後に溶液をフリットから排出した。この30本すべての固相反応容器にDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このDMFによるレジンの洗浄工程を更に3回繰り返した。続いて、Fmoc-Aze(2)-OH(0.6mol/L)とHOOBt(0.375mol/L)のNMPとDMSOの混合溶液(7:3)(固相反応容器1本に対して0.6mL)と、N,N’-ジイソプロピルカルボジイミド(DIC)のDMF溶液(10v/v%、固相反応容器1本に対して0.72mL)を合成機のmixing vialで混合した後に30本すべての固相反応容器に対して添加し、60℃にて5時間静置した。その後、N,N’-ジイソプロピルカルボジイミド(DIC)のDMF溶液(10v/v%、固相反応容器1本に対して0.72mL)を30本すべての固相反応容器に対して添加し、60℃にて5時間静置した。その後、溶液をフリットから排出した。30本すべての固相反応容器に対してDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このレジンの洗浄工程を更に2回繰り返した。
上記で得られたレジンを含む30本すべての固相反応容器にジアザビシクロウンデセン(DBU)のDMF溶液(2v/v%、固相反応容器1本に対して1.4mL)を添加し、35℃に加温して10分後に溶液をフリットから排出した。この30本すべての固相反応容器にDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このDMFによるレジンの洗浄工程を更に3回繰り返した。続いて、Fmoc-MeAla-OH(0.6mol/L)とHOAt(0.375mol/L)のNMP溶液(固相反応容器1本に対して0.6mL)と、N,N’-ジイソプロピルカルボジイミド(DIC)のDMF溶液(10v/v%、固相反応容器1本に対して0.72mL)を合成機のmixing vialで混合した後に30本すべての固相反応容器に対して添加し、40℃にて2.5時間静置した。その後、溶液をフリットから排出した。30本すべての固相反応容器に対してDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このレジンの洗浄工程を更に2回繰り返した。
上記で得られたレジンを含む30本すべての固相反応容器にジアザビシクロウンデセン(DBU)のDMF溶液(2v/v%、固相反応容器1本に対して1.4mL)を添加し、35℃に加温して10分後に溶液をフリットから排出した。この30本すべての固相反応容器にDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このDMFによるレジンの洗浄工程を更に3回繰り返した。続いて、Fmoc-Ile-OH(0.6mol/L)とHOAt(0.375mol/L)のNMP溶液(固相反応容器1本に対して0.6mL)と、N,N’-ジイソプロピルカルボジイミド(DIC)のDMF溶液(10v/v%、固相反応容器1本に対して0.72mL)を合成機のmixing vialで混合した後に30本すべての固相反応容器に対して添加し、40℃にて10時間静置した。その後、溶液をフリットから排出した。30本すべての固相反応容器に対してDMF(固相反応容器1本に対して1.4mL)を加え、溶媒をフリットから排出した。このレジンの洗浄工程を更に2回繰り返した。続いて、30本すべての固相反応容器に対してDCM(固相反応容器1本に対して1.6mL)を加え、溶媒をフリットから排出した。このレジンの洗浄工程を更に5回繰り返した。30本すべての固相反応容器からレジンを回収し、混合して続く操作を行った。
上記で得られたレジンを200mLのプラスチック製固相反応容器に加え、ここにDCM(60mL)を加え、30℃で5分振盪した後、溶媒をフリットから排出した。この固相反応容器にトルエン(50mL)を加え、30℃で5分振盪した後、溶媒をフリットから排出した。このトルエンによるレジンの洗浄工程を更に1回繰り返した。この固相反応容器にジアザビシクロウンデセン(DBU)のトルエン溶液(2v/v%、45mL)を添加し、30℃で5分振盪後に溶液をフリットから排出した。
上記により得られたレジンを含む固相反応容器に、2,2,2-トリフルオロエタノール(TFE)(60mL)とDCM(60mL)とDIPEA(0.909mL)の混合溶液を加え、室温にて2時間振盪した。その後、溶液をフリットから回収した。この固相反応容器に2,2,2-トリフルオロエタノール(TFE)(30mL)とDCM(30mL)の混合溶液を加え、室温にて5分間振盪後、溶液をフリットから回収した。更にこの固相反応容器に、2,2,2-トリフルオロエタノール(TFE)(30mL)とDCM(30mL)の混合溶液を加え、室温にて5分間振盪後、溶液をフリットから回収した。回収したすべての溶液を混合し、減圧下にて溶媒留去して化合物1217-dを粗生成物として得た。(3.85g)
LCMS(ESI)m/z=1453.9(M-H)-
保持時間:0.67分(分析条件SQDAA50)
上記により得られた化合物1217-d(3.85g)を酢酸イソプロピル(529mL)とDIPEA(0.915mL、5.24mmol)の混合液に溶解し、HCTU(O-(1H-6-クロロベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロリン酸、CAS番号330645-87-9)(1.805g、4.36mmol)を加え、室温にて21時間攪拌した。その後、溶液量が約半分になるまで減圧下溶媒留去した。得られた溶液に、飽和塩化アンモニウム水溶液(40mL)と水(40mL)の混合溶液を加え、酢酸イソプロピル(350mL)で抽出した。得られた有機層を飽和炭酸水素ナトリウム水溶液(40mL)と水(40mL)の混合溶液、飽和食塩水(40mL)と水(40mL)の混合溶液で順に洗浄後、硫酸ナトリウムで乾燥し、減圧下溶媒留去して3.36gの残渣を得た。得られた残渣を逆相シリカゲルカラムクロマトグラフィー(Daisogel SP-120-40/60-ODS-RPS、溶出液としてアセトニトリル(0.1%のギ酸を含む)/水(0.1%のギ酸を含む)を使用)で精製し、目的物を含む溶出液を凍結乾燥することでアモルファス状態の化合物1(1.36g、収率34%)を得た。得られた化合物1のマススペクトルの値と液体クロマトグラフィーの保持時間は下記のとおりであった。
LCMS(ESI)m/z=1437.7(M+H)+
保持時間:7.496分(分析条件SSC-A-AF-01)
HPLC分析による保持時間:4.499分(HPLC分析条件:method 3)
HPLC分析による保持時間:2.419分(HPLC分析条件:method 3)
化合物a06:tert-ブチル 2-[[(2S)-2-[[2-[ベンジルオキシカルボニル(メチル)アミノ]アセチル]-メチル-アミノ]-3-シクロヘキシル-プロパノイル]-メチル-アミノ]アセタートの合成
HPLC分析による保持時間:4.458分(HPLC分析条件:method 3)
化合物a07:tert-ブチル 2-[[(2S)-3-シクロヘキシル-2-[メチル-[2-(メチルアミノ)アセチル]アミノ]プロパノイル]-メチル-アミノ]アセタートの合成
HPLC分析による保持時間:2.848分(HPLC分析条件:method 3)
化合物a09:tert-ブチル 2-[[(2S)-2-[[2-[[2-[ベンジルオキシカルボニル(メチル)アミノ]アセチル]-メチル-アミノ]アセチル]-メチル-アミノ]-3-シクロヘキシル-プロパノイル]-メチル-アミノ]アセタートの合成
HPLC分析による保持時間:4.055分(HPLC分析条件:method 3)
化合物a10:tert-ブチル 2-[[(2S)-3-シクロヘキシル-2-[メチル-[2-[メチル-[2-(メチルアミノ)アセチル]アミノ]アセチル]アミノ]プロパノイル]-メチル-アミノ]アセタートの合成
反応混合物をろ紙を用いて吸引濾過し、残渣を2-MeTHF溶液(12mLx3)で洗浄した。得られた濾液および洗浄液を合わせて減圧濃縮し化合物a10を含む残渣(1.97g)を得た。
HPLC分析による保持時間:2.521分(分析条件:method 3)
化合物a12:tert-ブチル 2-[[(2S)-2-[[2-[[2-[[(2S,3S)-2-(ベンジルオキシカルボニルアミノ)-3-メチル-ペンタノイル]-メチル-アミノ]アセチル]-メチル-アミノ]アセチル]-メチル-アミノ]-3-シクロヘキシル-プロパノイル]-メチル-アミノ]アセタートの合成
HPLC分析による保持時間:4.006分(HPLC分析条件:method 1)
化合物a13:tert-ブチル 2-[[(2S)-2-[[2-[[2-[[(2S,3S)-2-アミノ-3-メチル-ペンタノイル]-メチル-アミノ]アセチル]-メチル-アミノ]アセチル]-メチル-アミノ]-3-シクロヘキシル-プロパノイル]-メチル-アミノ]アセタートの合成
HPLC分析による保持時間:2.776分(HPLC分析条件:method 1)
化合物a15:tert-ブチル 2-[[(2S)-3-シクロヘキシル-2-[メチル-[2-[メチル-[2-[メチル-[(2S,3S)-3-メチル-2-[[(2S)-4-メチル-2-[メチル(2-トリメチルシリルエトキシカルボニル)アミノ]ペンタノイル]アミノ]ペンタノイル]アミノ]アセチル]アミノ]アセチル]アミノ]プロパノイル]-メチル-アミノ]アセタートの合成
HPLC分析による保持時間:4.919分(HPLC分析条件:method 1)
化合物a16:tert-ブチル 2-[[(2S)-3-シクロヘキシル-2-[メチル-[2-[メチル-[2-[メチル-[(2S,3S)-3-メチル-2-[[(2S)-4-メチル-2-(メチルアミノ)ペンタノイル]アミノ]ペンタノイル]アミノ]アセチル]アミノ]アセチル]アミノ]プロパノイル]-メチル-アミノ]アセタートの合成
HPLC分析による保持時間:2.909分(HPLC分析条件:method 1)
HPLC分析による保持時間:3.934分(HPLC分析条件:method 3)
HPLC分析による保持時間:2.058分(HPLC分析条件:method 3)
化合物a22:tert-ブチル (3S)-3-[[(2S)-2-[ベンジルオキシカルボニル(メチル)アミノ]-3-メチル-ブタノイル]-メチル-アミノ]-4-オキソ-4-(1-ピペリジル)ブタノアートの合成
HPLC分析による保持時間:4.428分(HPLC分析条件:method 3)
化合物a23:tert-ブチル (3S)-3-[メチル-[(2S)-3-メチル-2-(メチルアミノ)ブタノイル]アミノ]-4-オキソ-4-(1-ピペリジル)ブタノアートの合成
HPLC分析による保持時間:2.393分(HPLC分析条件:method 3)
化合物a25:tert-ブチル (3S)-3-[メチル-[(2S)-3-メチル-2-[メチル-[1-[(2,2,2-トリフルオロアセチル)アミノ]シクロペンタンカルボニル]アミノ]ブタノイル]アミノ]-4-オキソ-4-(1-ピペリジル)ブタノアートの合成
HPLC分析による保持時間:4.002分(HPLC分析条件:method 3)
化合物a26:tert-ブチル (3S)-3-[[(2S)-2-[(1-アミノシクロペンタンカルボニル)-メチル-アミノ]-3-メチル-ブタノイル]-メチル-アミノ]-4-オキソ-4-(1-ピペリジル)ブタノアートの合成
HPLC分析による保持時間:2.868分(HPLC分析条件:method 3)
化合物a28:ベンジル (2S)-2-[[1-[[(1S)-1-[[(1S)-3-tert-ブトキシ-3-オキソ-1-(ピペリジン-1-カルボニル)プロピル]-メチル-カルバモイル]-2-メチル-プロピル]-メチル-カルバモイル]シクロペンチル]カルバモイル]ピロリジン-1-カルボキシラートの合成
HPLC分析による保持時間:4.323分(HPLC分析条件:method 3)
化合物a29:tert-ブチル (3S)-3-[メチル-[(2S)-3-メチル-2-[メチル-[1-[[(2S)-ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]アミノ]ブタノイル]アミノ]-4-オキソ-4-(1-ピペリジル)ブタノアートの合成
HPLC分析による保持時間:2.970分(HPLC分析条件:method 3)
化合物a31:tert-ブチル (3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-フェニル-ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-3-メチル-ブタノイル]-メチル-アミノ]-4-オキソ-4-(1-ピペリジル)ブタノアートの合成
HPLC分析による保持時間:4.794分(HPLC分析条件:method 3)
化合物a32:(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-フェニル-ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-3-メチル-ブタノイル]-メチル-アミノ]-4-オキソ-4-(1-ピペリジル)ブタン酸の合成
HPLC分析による保持時間:4.001分(HPLC分析条件:method 3)
化合物a33:tert-ブチル 2-[[(2S)-2-[[2-[[2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-フェニル-ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-3-メチル-ブタノイル]-メチル-アミノ]-4-オキソ-4-(1-ピペリジル)ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]アセチル]-メチル-アミノ]アセチル]-メチル-アミノ]-3-シクロヘキシル-プロパノイル]-メチル-アミノ]アセタートの合成
HPLC分析による保持時間:10.65分(分析条件:method 4)
化合物a34:2-[[(2S)-2-[[2-[[2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-(ベンジルオキシカルボニルアミノ)-4-フェニル-ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-3-メチル-ブタノイル]-メチル-アミノ]-4-オキソ-4-(1-ピペリジル)ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]アセチル]-メチル-アミノ]アセチル]-メチル-アミノ]-3-シクロヘキシル-プロパノイル]-メチル-アミノ]酢酸の合成
HPLC分析による保持時間:9.26分(分析条件:method 4)
化合物a35:2-[[(2S)-2-[[2-[[2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-[(2S)-2-アミノ-4-フェニル-ブタノイル]ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-3-メチル-ブタノイル]-メチル-アミノ]-4-オキソ-4-(1-ピペリジル)ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]アセチル]-メチル-アミノ]アセチル]-メチル-アミノ]-3-シクロヘキシル-プロパノイル]-メチル-アミノ]酢酸の合成
HPLC分析による保持時間:12.39分(HPLC分析条件:method 4)
化合物a36:(3S,9S,18S,21S,25S,28S,34S)-9-(シクロヘキシルメチル)-21-イソブチル-28-イソプロピル-7,10,13,16,22,26,29-ヘプタメチル-18-[(1S)-1-メチルプロピル]-3-(2-フェニルエチル)-25-(ピペリジン-1-カルボニル)スピロ[1,4,7,10,13,16,19,22,26,29,32-ウンデカザビシクロ[32.3.0]ヘプタトリアコンタン-31,1'-シクロペンタン]-2,5,8,11,14,17,20,23,27,30,33-ウンデカオンの合成
HPLC分析による保持時間:18.69分(HPLC分析条件:method 5)
化合物a36:(3S,9S,18S,21S,25S,28S,34S)-9-(シクロヘキシルメチル)-21-イソブチル-28-イソプロピル-7,10,13,16,22,26,29-ヘプタメチル-18-[(1S)-1-メチルプロピル]-3-(2-フェニルエチル)-25-(ピペリジン-1-カルボニル)スピロ[1,4,7,10,13,16,19,22,26,29,32-ウンデカザビシクロ[32.3.0]ヘプタトリアコンタン-31,1'-シクロペンタン]-2,5,8,11,14,17,20,23,27,30,33-ウンデカオンの合成(縮合剤としてPyBOP、溶媒として炭酸ジメチルを使用)
アニソールおよび2-メチルテトラヒドロフランを溶媒として用いた場合の結果も表13に示した(実験操作は、実施例50-1と同様に行った)。いずれの場合も、環状トリマーは観測されなかった。
化合物a36:(3S,9S,18S,21S,25S,28S,34S)-9-(シクロヘキシルメチル)-21-イソブチル-28-イソプロピル-7,10,13,16,22,26,29-ヘプタメチル-18-[(1S)-1-メチルプロピル]-3-(2-フェニルエチル)-25-(ピペリジン-1-カルボニル)スピロ[1,4,7,10,13,16,19,22,26,29,32-ウンデカザビシクロ[32.3.0]ヘプタトリアコンタン-31,1'-シクロペンタン]-2,5,8,11,14,17,20,23,27,30,33-ウンデカオンの合成(縮合剤としてPyBOP、溶媒として炭酸ジメチルを使用、逆滴下法による製造)
反応容器にPyBOP (59.9mg)を秤量し、炭酸ジメチル(1mL)に懸濁した。別容器に化合物a35 (39.9mg)を炭酸ジメチル(1mL)に溶解し、これにDIPEA (24.3μL)を加えた。この原料の溶液をPyBOP懸濁液へシリンジポンプを用いて室温にて3時間かけて加えた。加え終わったのち容器に残った原料溶液を炭酸ジメチル(0.2mL)で洗いこみ、その後30分攪拌した。反応液(50μL)をMeCN/プロピルアミン(9:1)の混合液(100μL)で希釈し、その溶液を用いてHPLC分析した。結果は、表13に示した。
化合物b1:(3S)-3-[[(2S)-2-[[1-[[(2S)-1-ベンジルオキシカルボニルピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタン酸の合成
LCMS(ESI):保持時間:2.929分、m/z=678.61 [M+Na]+(LCMS分析条件 method 1)
収率:94.1%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物b2:(2S)-2-[[1-[[(1S)-2-[[(1S)-3-[[(1S)-1-[[(1S,2S)-1-[[(1S)-2-[(2S)-2-[[(1S)-2-[(2-tert-ブトキシ-2-オキソ-エチル)-メチル-アミノ]-2-オキソ-1-(p-トリルメチル)エチル]-エチル-カルバモイル]アゼチジン-1-イル]-1-メチル-2-オキソ-エチル]-メチル-カルバモイル]-2-メチル-ブチル]カルバモイル]-3-メチル-ブチル]-メチル-アミノ]-1-(ジメチルカルバモイル)-3-オキソ-プロピル]-メチル-アミノ]-1-シクロペンチル-2-オキソ-エチル]-メチル-カルバモイル]シクロペンチル]カルバモイル]ピロリジン-1-カルボン酸ベンジルの合成
LCMS(ESI):保持時間:21.17分、m/z=1403.06 [M+Na]+(LCMS分析条件 method 5)
収率:93.8%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物b3:2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-[[(2S)-1-ベンジルオキシカルボニルピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]酢酸の合成
LCMS(ESI):保持時間:18.19分、m/z=1325.02 [M+H]+(LCMS分析条件 method 5)
収率:92.7%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物b4:2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-シクロペンチル-2-[メチル-[1-[[(2S)-ピロリジン-2-カルボニル]アミノ]シクロペンタンカルボニル]アミノ]アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]酢酸の合成
LCMS(ESI):保持時間:2.921分、m/z=1191.00 [M+H]+(LCMS分析条件 method 1)
収率:96.7%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物b5:(6S,9S,14S,17S,20S,24S,27S,33S)-27-シクロペンチル-7-エチル-20-イソブチル-N,N,4,14,15,21,25,28-オクタメチル-17-[(1S)-1-メチルプロピル]-2,5,8,13,16,19,22,26,29,32-デカオキソ-6-(p-トリルメチル)スピロ[1,4,7,12,15,18,21,25,28,31-デカザトリシクロ[31.3.0.09,12]ヘキサトリアコンタン-30,1'-シクロペンタン]-24-カルボキサミドの合成
反応容器に化合物b4(9.99mg(8.39μmol))を秤量し、溶媒(2-MeTHF、2.0mL(200v/w))を加えた。室温で攪拌しながら、DIPEA(6.74μL(38.6μmol))を加えた。反応容器の外温を25℃に設定し、縮合剤(PyAOP、17.2mg (33.0μmol))を加えて30分攪拌した。反応液(50μL)をMeCN/プロピルアミン(9:1)の混合液(100μL)で希釈し、HPLC分析用の溶液を調製した。
化合物b5のLCMS(ESI):保持時間:16.81分、m/z=1173.51 [M+H]+(LCMS分析条件 method 5)
環状ダイマーb6(c-Dimer)のLCMS(ESI):保持時間:22.36分、m/z=2367.91 [M+Na]+(LCMS分析条件 method 5)
環状トリマーb7(c-Trimer)のLCMS(ESI):保持時間:24.41分、m/z=1759.26 [M+2H]2+(LCMS分析条件 method 5)
バイアルに化合物b4(9.89mg(8.31μmol))と2-MeTHF(0.99mL(100v/w))を加え、50℃で10分間攪拌した。原料の溶解を確認後、DIPEA(6.67μL (38.2μmol))を加え、反応液をシリンジに吸い上げた。別の反応容器にPyAOP(17.1mg(32.8μmol))と2-MeTHF(0.99mL(100v/w))を加え、室温で攪拌しながら前記シリンジ内の溶液を3時間かけて滴下した。滴下終了後、反応液(50μL)をMeCN/プロピルアミン(9:1)の混合液(100μL)で希釈し、HPLC分析用の溶液を調製した。
化合物c1:tert-ブチル (3S)-3-[[(2S)-2-[[1-(ベンジルオキシカルボニルアミノ)シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノアートの合成
LCMS分析条件
装置:Waters ACQUITY UPLC H-Class + ACQUITY QDA
カラム:CAPCELL CORE ADME (OSAKA SODA), 2.1 mm ID×50 mm, 2.7 μm
移動相:0.05% TFA/water (A)、0.05% TFA/MeCN (B)
溶出法:B) 5%(0 min)→100%(10 min)→5%(10.1 min)→5%(12 min)
流速:0.5 mL/min
カラム温度:35 ℃
検出波長:210 nm(PDA)
得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した(収率:78.32%)。
化合物c2:(3S)-3-[[(2S)-2-[[1-(ベンジルオキシカルボニルアミノ)シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタン酸の合成
化合物c3:2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-(ベンジルオキシカルボニルアミノ)シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]酢酸 tert-ブチルの合成
HPLC:保持時間:4.606分(HPLC分析条件 method 1)
収率:91.2%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物c4:2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[[1-(ベンジルオキシカルボニルアミノ)シクロペンタンカルボニル]-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]酢酸の合成
LCMS(ESI):保持時間:3.974分、m/z=1228.38 [M+H]+(LCMS分析条件 method 1)
収率:95.2%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物c5:2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(3S)-3-[[(2S)-2-[(1-アミノシクロペンタンカルボニル)-メチル-アミノ]-2-シクロペンチル-アセチル]-メチル-アミノ]-4-(ジメチルアミノ)-4-オキソ-ブタノイル]-メチル-アミノ]-4-メチル-ペンタノイル]アミノ]-3-メチル-ペンタノイル]-メチル-アミノ]プロパノイル]アゼチジン-2-カルボニル]-エチル-アミノ]-3-(p-トリル)プロパノイル]-メチル-アミノ]酢酸の合成
LCMS(ESI):保持時間:2.920分、m/z=1093.88 [M+H]+(LCMS分析条件 method 1)
収率:91.0%(得られた残渣と3,5-ビス(トリフルオロメチル)安息香酸をDMSO‐d6に溶解させ、qNMR分析に付した。)
化合物c6:(3S,6S,9S,13S,16S,25S,28S)-16-シクロペンチル-26-エチル-9-イソブチル-N,N,3,4,10,14,17,23-オクタメチル-6-[(1S)-1-メチルプロピル]-2,5,8,11,15,18,21,24,27-ノナオキソ-25-(p-トリルメチル)スピロ[1,4,7,10,14,17,20,23,26-ノナザビシクロ[26.2.0]トリアコンタン-19,1'-シクロペンタン]-13-カルボキサミドの合成
反応容器に化合物c5(44.19mg、21.8wt%(8.81μmol))を秤量し、濃縮乾固後に溶媒(MeCN、1.9mL(200v/w))を加えた。室温で攪拌しながら、DIPEA(7.19μL(41.2μmol))を加えた。縮合剤(HATU、12.84mg(33.8μmol))を加えて30分攪拌した。反応液(50μL)をMeCN/プロピルアミン(9:1)の混合液(100μL)で希釈し、HPLC分析用の溶液を調製した。
化合物c6のLCMS(ESI):保持時間:17.22分、m/z=1076.38 [M+H]+(LCMS分析条件 method 5)
環状ダイマーc7(c-Dimer)のLCMS(ESI):保持時間:21.85分、m/z=2151.42 [M+H]+(LCMS分析条件 method 5)
環状トリマーc8のLCMS(ESI):保持時間:24.50分、m/z=1614.13 [M+2H]2+(LCMS分析条件 method 5)
バイアルに化合物c5(45.0mg、21.8wt%(8.97μmol))を秤量し、濃縮乾固後に2-MeTHF(0.98mL(100v/w))を加え、50℃で10分間攪拌した。原料の溶解を確認後、DIPEA(7.21μL(41.2μmol))を加え、反応液をシリンジに吸い上げた。別の反応容器にPyAOP(17.8mg(34.1μmol))と2-MeTHF(0.98mL(100v/w))を加え、室温で攪拌しながら前記シリンジ内の溶液を3時間かけて滴下した。滴下終了後、反応液(50μL)をMeCN/プロピルアミン(9:1)の混合液(100μL)で希釈し、HPLC分析用の溶液を調製した。
Claims (16)
- 1種または複数種の水と混和しない溶媒、1種または複数種の水溶性アルキルニトリル類、および1種または複数種の水溶性エーテル類からなる群より選択される1つまたは複数を含む溶媒(溶媒A)中、ペプチド化合物のN末端のアミノ酸残基とC末端のアミノ酸残基とを連結する工程を含む、液相法によって、環状ペプチド化合物、もしくはその塩またはそれらの溶媒和物を製造する方法。
- N末端のアミノ酸残基とC末端のアミノ酸残基が、アミド結合、または-(CH2)nS(CH2)m-、-(CH2)nS(O)(CH2)m-、もしくは-(CH2)nS(O)2(CH2)m-より選択される結合よって連結され、ここでnおよびmはそれぞれ独立して1または2である、請求項1に記載の方法。
- 環状ペプチド化合物が、8~20のアミノ酸残基を含み、該アミノ酸残基の少なくとも1つが非天然アミノ酸残基である、請求項1または2に記載の方法。
- 環状ペプチド化合物が、少なくとも1つのN-置換の非天然アミノ酸残基を含む、請求項1~3のいずれか一項に記載の方法。
- 環状ペプチド化合物が、少なくとも1つのN-非置換の非天然アミノ酸残基を含む、請求項1~4のいずれか一項に記載の方法。
- C末端のアミノ酸残基またはN末端のアミノ酸残基の一方または両方が、カルボキシル基のα位炭素に不斉炭素を有しないアミノ酸残基である、請求項1~5のいずれか一項に記載の方法。
- 環状ペプチド化合物、もしくはその塩またはそれらの溶媒和物が、環状ペプチド化合物の溶媒和物である、請求項1~6のいずれか一項に記載の方法。
- 環状ペプチド化合物を晶析により単離および/または精製して、環状ペプチド化合物の結晶を得る工程をさらに含む、請求項1~8のいずれか一項に記載の方法。
- 環状ペプチド化合物の溶媒和物結晶が水和物結晶である、請求項10に記載の方法。
- 水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも7個のピークを含むC型結晶である、請求項11に記載の方法。
- 結晶が、非溶媒和物結晶、溶媒和物結晶、塩の結晶、および塩の溶媒和物結晶からなる群より選択される、請求項13に記載の結晶。
- 溶媒和物結晶が水和物結晶である、請求項14に記載の結晶。
- 水和物結晶が、粉末X線回折による回折角(2θ値)として、4.964°、7.921°、8.296°、8.855°、9.956°、10.435°、11.729°、12.704°、13.552°、13.901°、15.895°、16.643°、および17.813°(±0.2°)からなる群から選択される、少なくとも7個のピークを含むC型結晶である、請求項15に記載の結晶。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL307918A IL307918A (en) | 2021-05-07 | 2022-05-06 | Methods for the production of cyclic compounds consisting of N-substituted amino acid residues |
AU2022269959A AU2022269959A1 (en) | 2021-05-07 | 2022-05-06 | Methods for producing cyclic compounds comprising N-substituted amino acid residues |
CA3219081A CA3219081A1 (en) | 2021-05-07 | 2022-05-06 | Methods for producing cyclic compounds comprising n-substituted amino acid residues |
CN202280031973.4A CN117279928A (zh) | 2021-05-07 | 2022-05-06 | 包含n-取代氨基酸残基的环状化合物的制备方法 |
MX2023013098A MX2023013098A (es) | 2021-05-07 | 2022-05-06 | Metodos para producir compuestos ciclicos que comprenden residuos de aminoacidos n-sustituidos. |
KR1020237027717A KR20230169072A (ko) | 2021-05-07 | 2022-05-06 | N-치환 아미노산 잔기를 포함하는 환상 화합물의 제조방법 |
JP2022547692A JP7165289B1 (ja) | 2021-05-07 | 2022-05-06 | N-置換アミノ酸残基を含む環状化合物の製造方法 |
KR1020227043787A KR102569348B1 (ko) | 2021-05-07 | 2022-05-06 | N-치환 아미노산 잔기를 포함하는 환상 화합물의 제조 방법 |
JP2022169217A JP2022186851A (ja) | 2021-05-07 | 2022-10-21 | N-置換アミノ酸残基を含む環状化合物の製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021079014 | 2021-05-07 | ||
JP2021-079014 | 2021-05-07 | ||
JP2021-188473 | 2021-11-19 | ||
JP2021188473 | 2021-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022234864A1 true WO2022234864A1 (ja) | 2022-11-10 |
Family
ID=82156429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/019606 WO2022234864A1 (ja) | 2021-05-07 | 2022-05-06 | N-置換アミノ酸残基を含む環状化合物の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220411462A1 (ja) |
EP (1) | EP4086272A1 (ja) |
AR (1) | AR125800A1 (ja) |
TW (1) | TW202309065A (ja) |
WO (1) | WO2022234864A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024080308A1 (ja) * | 2022-10-12 | 2024-04-18 | 中外製薬株式会社 | ペプチド、界面活性剤及びポリマーを含む組成物 |
WO2024085235A1 (ja) * | 2022-10-20 | 2024-04-25 | 中外製薬株式会社 | 環状ペプチドの結晶の製造方法 |
WO2024195801A1 (ja) * | 2023-03-20 | 2024-09-26 | 中外製薬株式会社 | 環状ペプチドの共結晶の製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7472101B2 (ja) | 2019-03-15 | 2024-04-22 | 中外製薬株式会社 | 芳香族アミノ酸誘導体の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013100132A1 (ja) * | 2011-12-28 | 2013-07-04 | 中外製薬株式会社 | ペプチド化合物の環化方法 |
WO2018225851A1 (ja) * | 2017-06-09 | 2018-12-13 | 中外製薬株式会社 | N-置換アミノ酸を含むペプチドの合成方法 |
WO2019117274A1 (ja) * | 2017-12-15 | 2019-06-20 | 中外製薬株式会社 | ペプチドの製造方法、及び塩基の処理方法 |
WO2020111238A1 (ja) * | 2018-11-30 | 2020-06-04 | 中外製薬株式会社 | ペプチド化合物、またはアミド化合物の脱保護法および固相反応における脱樹脂方法、並びにペプチド化合物の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2721048A1 (en) * | 2011-06-16 | 2014-04-23 | Lonza Ltd | A process for extraction of peptides and its application in liquid phase peptide synthesis |
JP6116782B1 (ja) | 2015-08-28 | 2017-04-19 | 積水メディカル株式会社 | ベンジル化合物 |
HUE056740T2 (hu) | 2016-06-20 | 2022-03-28 | Sekisui Medical Co Ltd | Új difenilmetán védõszer |
JP6283775B1 (ja) | 2016-07-25 | 2018-02-21 | 積水メディカル株式会社 | 新規キサンテン保護剤 |
TW201833127A (zh) | 2017-02-27 | 2018-09-16 | 日商積水醫療股份有限公司 | 新穎四環式保護劑 |
CN111491941B (zh) | 2017-12-19 | 2023-08-08 | 积水医疗株式会社 | 新型烷基二苯甲烷保护剂 |
GB201805088D0 (en) * | 2018-03-28 | 2018-05-09 | Univ Warwick | Macrocyclization of peptidomimetics |
JP7472101B2 (ja) | 2019-03-15 | 2024-04-22 | 中外製薬株式会社 | 芳香族アミノ酸誘導体の製造方法 |
MX2022005302A (es) | 2019-11-07 | 2022-05-24 | Chugai Pharmaceutical Co Ltd | Compuesto de peptidos ciclicos que tiene accion inhibidora de kras. |
-
2022
- 2022-05-06 TW TW111117093A patent/TW202309065A/zh unknown
- 2022-05-06 AR ARP220101207A patent/AR125800A1/es unknown
- 2022-05-06 WO PCT/JP2022/019606 patent/WO2022234864A1/ja active Application Filing
- 2022-05-06 US US17/738,283 patent/US20220411462A1/en active Pending
- 2022-05-06 EP EP22172056.8A patent/EP4086272A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013100132A1 (ja) * | 2011-12-28 | 2013-07-04 | 中外製薬株式会社 | ペプチド化合物の環化方法 |
WO2018225851A1 (ja) * | 2017-06-09 | 2018-12-13 | 中外製薬株式会社 | N-置換アミノ酸を含むペプチドの合成方法 |
WO2019117274A1 (ja) * | 2017-12-15 | 2019-06-20 | 中外製薬株式会社 | ペプチドの製造方法、及び塩基の処理方法 |
WO2020111238A1 (ja) * | 2018-11-30 | 2020-06-04 | 中外製薬株式会社 | ペプチド化合物、またはアミド化合物の脱保護法および固相反応における脱樹脂方法、並びにペプチド化合物の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024080308A1 (ja) * | 2022-10-12 | 2024-04-18 | 中外製薬株式会社 | ペプチド、界面活性剤及びポリマーを含む組成物 |
WO2024085235A1 (ja) * | 2022-10-20 | 2024-04-25 | 中外製薬株式会社 | 環状ペプチドの結晶の製造方法 |
WO2024195801A1 (ja) * | 2023-03-20 | 2024-09-26 | 中外製薬株式会社 | 環状ペプチドの共結晶の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202309065A (zh) | 2023-03-01 |
AR125800A1 (es) | 2023-08-16 |
EP4086272A1 (en) | 2022-11-09 |
US20220411462A1 (en) | 2022-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022234864A1 (ja) | N-置換アミノ酸残基を含む環状化合物の製造方法 | |
US11732002B2 (en) | Deprotection method and resin removal method in solid-phase reaction for peptide compound or amide compound, and method for producing peptide compound | |
KR20200016941A (ko) | N-치환 아미노산을 포함하는 펩타이드의 합성 방법 | |
JP7165289B1 (ja) | N-置換アミノ酸残基を含む環状化合物の製造方法 | |
CN114867734A (zh) | 肽化合物的合成法 | |
AU2022340959A1 (en) | Synthesis of bicycle toxin conjugates, and intermediates thereof | |
EP4269422A1 (en) | Method for producing peptide compound containing n-substituted-amino acid residue | |
EP4009962A1 (en) | Compositions of trofinetide | |
EP4249496A1 (en) | Method for supporting amino acid on resin for solid-phase synthesis | |
KR20230019120A (ko) | 고난도 서열의 효율적 펩티드 축합법 | |
CN117279928A (zh) | 包含n-取代氨基酸残基的环状化合物的制备方法 | |
WO2024219480A1 (ja) | 環状ペプチド化合物の製造方法 | |
JP7430297B2 (ja) | N-アルキルアミノ酸、およびn-アルキルアミノ酸を含むペプチドの製造方法 | |
WO2024080333A1 (ja) | N-置換アミノ酸残基を含む環状ペプチド化合物の製造方法 | |
TW202430539A (zh) | 包含n-取代胺基酸殘基的環狀胜肽化合物的製造方法 | |
CN118234729A (zh) | 用于制备双环甘氨酸-脯氨酸化合物和其单环甘氨酸-脯氨酸中间体的方法 | |
CN118475590A (zh) | N-烷基氨基酸以及包含n-烷基氨基酸的肽的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022547692 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227043787 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22798968 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 307918 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280031973.4 Country of ref document: CN Ref document number: 2022269959 Country of ref document: AU Ref document number: AU2022269959 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3219081 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/013098 Country of ref document: MX |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023022504 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2022269959 Country of ref document: AU Date of ref document: 20220506 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202392987 Country of ref document: EA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112023022504 Country of ref document: BR Free format text: 1) APRESENTE NOVAS FOLHAS DO RELATORIO DESCRITIVO ADAPTADAS AO ART. 40 DA INSTRUCAO NORMATIVA/INPI/NO 31/2013, DE FORMA QUE A NUMERACAO DOS PARAGRAFOS DO CONTEUDO ENVIADO NA PETICAO NO 870230095354 DE 27/10/2023 NAO SE CONFUNDA COM OUTRAS NUMERACOES EXISTENTES NO TEXTO COMO, POR EXEMPLO, NO PARAGRAFO 21. 2) MELHORAR A LEGIBILIDADE DAS TABELAS, UMA VEZ QUE NAO ATENDEM AO ART 31 DA INSTRUCAO NORMATIVA/INPI/NO 31/2013, NAO ESTANDO EM CARACTER DE CORPO 12. 3 )CORRIGIR A NUMERACAO DAS TABELAS, POIS EXISTEM DUAS TABELAS DIFERENTES COM O NUMERO 9. AEXIGENCIA DEVE SER RESPONDIDA EM ATE 60 (SESSENTA) DIAS DE SUA PUBLICACAO E DEVE SER REALIZADA POR MEIO DA PETICAO GRU CODIGO DE SERVICO 207. |
|
ENP | Entry into the national phase |
Ref document number: 112023022504 Country of ref document: BR Kind code of ref document: A2 Effective date: 20231027 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22798968 Country of ref document: EP Kind code of ref document: A1 |