WO2022230931A1 - 金属水素化物電池のバイポーラ電極、バイポーラ電極を備えた金属水素化物電池、金属水素化物電池のバイポーラ電極の製造方法、及び金属水素化物電池の製造方法 - Google Patents

金属水素化物電池のバイポーラ電極、バイポーラ電極を備えた金属水素化物電池、金属水素化物電池のバイポーラ電極の製造方法、及び金属水素化物電池の製造方法 Download PDF

Info

Publication number
WO2022230931A1
WO2022230931A1 PCT/JP2022/019056 JP2022019056W WO2022230931A1 WO 2022230931 A1 WO2022230931 A1 WO 2022230931A1 JP 2022019056 W JP2022019056 W JP 2022019056W WO 2022230931 A1 WO2022230931 A1 WO 2022230931A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal hydride
active material
current collector
hydride battery
Prior art date
Application number
PCT/JP2022/019056
Other languages
English (en)
French (fr)
Inventor
祐貴 中條
知広 中村
恭平 松浦
佑太朗 川畑
貴之 弘瀬
元章 奥田
岳太 岡西
素宜 奥村
裕之 海谷
昌士 児玉
大樹 寺島
政伸 大内
興 吉岡
慎一郎 堀江
利文 小▲柳▼
Original Assignee
株式会社豊田自動織機
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, トヨタ自動車株式会社 filed Critical 株式会社豊田自動織機
Priority to DE112022002372.4T priority Critical patent/DE112022002372T5/de
Priority to US18/288,255 priority patent/US20240213461A1/en
Priority to CN202280030997.8A priority patent/CN117203788A/zh
Publication of WO2022230931A1 publication Critical patent/WO2022230931A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a bipolar electrode for a metal hydride battery, a metal hydride battery with a bipolar electrode, a method for manufacturing a bipolar electrode for a metal hydride battery, and a method for manufacturing a metal hydride battery.
  • a metal hydride battery comprises, for example, a positive electrode having a nickel hydroxide such as nickel hydroxide as a positive electrode active material, a negative electrode having a hydrogen absorbing alloy as a negative electrode active material, and an electrolytic solution comprising an alkali metal aqueous solution. Secondary batteries are common.
  • a bipolar battery As a conventional power storage module, a bipolar battery is known that includes a bipolar electrode in which a positive electrode is formed on one surface of an electrode plate and a negative electrode is formed on the other surface (see, for example, Patent Document 1 below).
  • a bipolar battery includes a laminate in which bipolar electrodes and separators are alternately laminated along the stacking direction. At both ends of the stack in the stacking direction, terminating electrodes, each having only one of a positive electrode and a negative electrode, are located. An internal space formed between the electrodes contains an electrolytic solution.
  • a plated steel sheet is used for the current collector that constitutes the bipolar electrode of a metal hydride battery from the viewpoint of cost and resistance to reaction with the electrolyte.
  • the present inventors produced a bipolar electrode using a current collector made of a plated steel sheet and a negative electrode and a positive electrode containing a hydrogen storage alloy, assembled a hydride battery using the bipolar electrode, and conducted a storage test. However, a voltage drop (self-discharge) phenomenon of unknown cause was confirmed.
  • the present inventors believe that the phenomenon in which hydrogen moves to the counter electrode via the current collector of the bipolar electrode is involved in self-discharge, and a layer containing a specific material reduces hydrogen permeation. Got an idea.
  • the inventors of the present invention have found that self-discharge can be reduced by using a current collector having a layer containing a specific material.
  • a bipolar electrode of a metal hydride battery includes a current collector having a first surface and a second surface opposite to the first surface, and a negative electrode active material layer provided on the first surface. and a positive electrode active material layer provided on the second surface, wherein the negative electrode active material layer contains a metal hydride, and the current collector is formed on a steel plate and at least one of both surfaces of the steel plate. and a Ni—Fe alloy layer.
  • FIG. 1 is a schematic diagram showing a cross section of a bipolar electrode of a metal hydride battery of this embodiment
  • FIG. 1 is a schematic diagram showing a cross section of a bipolar electrode of a metal hydride battery of this embodiment
  • FIG. 2 is a schematic diagram showing an example of results obtained by SEM-EDX (energy dispersive X-ray spectroscopy) of a Ni—Fe alloy layer
  • FIG. 2 is an explanatory diagram of an electrochemical hydrogen permeation method
  • FIG. 4 is a diagram showing evaluation results of the hydrogen permeation suppression effect
  • FIG. 4 is a schematic diagram showing a cross section of a bipolar electrode of a metal hydride battery of another embodiment
  • FIG. 4 is a schematic diagram showing a cross section of a bipolar electrode of a metal hydride battery of another embodiment
  • FIG. 4 is a schematic diagram showing a cross section of a bipolar electrode of a metal hydride battery of another embodiment
  • 1 is a schematic cross-sectional view showing an example of a power storage device to which a bipolar electrode of a metal hydride battery of the present embodiment is applied
  • FIG. FIG. 7 is a schematic cross-sectional view showing the internal configuration of the power storage module in FIG. 6
  • 1 is a schematic diagram of an evaluation battery to which the bipolar electrode of the metal hydride battery of the present embodiment is applied
  • the bipolar electrode of the metal hydride battery and the metal hydride battery according to one embodiment of the present disclosure will be described below in order. Also, a method capable of manufacturing the bipolar electrode of the metal hydride battery and a method capable of manufacturing the metal hydride battery using the bipolar electrode of the metal hydride battery will be described in detail in order.
  • the method capable of manufacturing the bipolar electrode of the metal hydride battery of the present disclosure may be referred to as the electrode manufacturing method of the present disclosure, as required.
  • a method capable of manufacturing the metal hydride battery of the present disclosure may be referred to as the battery manufacturing method of the present disclosure.
  • the bipolar electrode of the metal hydride battery of the present disclosure is sometimes referred to as the electrode of the present disclosure or the bipolar electrode of the present disclosure.
  • the numerical range "x to y" described herein includes the lower limit x and the upper limit y. Further, a numerical range can be configured by arbitrarily combining these upper and lower limits and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from within the numerical range can be used as upper and lower numerical values.
  • the bipolar electrode 100 of the metal hydride battery of the present embodiment includes a current collector 10, a negative electrode active material layer 20 provided on the first surface 10A of the current collector 10, and and a positive electrode active material layer 30 provided on a second surface 10B different from the first surface 10A.
  • the negative electrode active material layer 20 contains metal hydride.
  • the current collector 10 includes a steel plate 13 and a Ni—Fe alloy layer 15 provided on at least one surface of the steel plate 13 .
  • the bipolar electrode 100 basically includes a negative electrode active material (metal hydride) on the first surface 10A of the current collector 10 and a positive electrode active material on the second surface 10B opposite to the first surface 10A.
  • a negative electrode active material metal hydride
  • the electrode of the present disclosure may constitute a bipolar electrode by joining a first current collector comprising a metal hydride and a second current collector comprising a positive electrode active material.
  • the current collector 10 has a Ni—Fe alloy layer 15 on the surface of the steel plate 13 .
  • the steel plate 13 may be, for example, low-carbon steel with a carbon content of less than 0.25% by weight, ultra-low-carbon steel with a carbon content of less than 0.01% by weight, or a non-carbon steel obtained by adding Ti or Nb to ultra-low-carbon steel.
  • Carbon steels such as aging-resistant ultra-low carbon steels can be mentioned.
  • Examples of low-carbon steel include low-carbon aluminum-killed steel (carbon content: 0.01 to 0.15% by weight), cold-rolled steel sheets (SPCC, etc.) specified in JISG 3141:2005, and the like.
  • the main material of the steel plate 13 is Fe, and may contain metallic elements other than Fe.
  • the ratio of metal elements other than Fe in steel plate 13 is preferably 10 wt% or less, more preferably 5 wt% or less, even more preferably 2 wt% or less, and particularly preferably 1 wt% or less.
  • the thickness of the current collector 10 can be exemplified from 5 ⁇ m to 1000 ⁇ m.
  • the Ni--Fe alloy layer 15 is formed on at least one surface of the steel plate 13.
  • the Ni—Fe alloy layer 15 is an alloy layer containing an alloy substantially composed of nickel (Ni) and iron (Fe).
  • Ni—Fe alloy layer 15 in the present embodiment only needs to contain nickel (Ni) and iron (Fe), and the state in which each component is contained is not particularly limited.
  • Ni--Fe alloy layer in this specification is as follows. When performing elemental analysis of Ni and Fe at a depth of 10 ⁇ m from the surface layer, it is defined that a Ni-Fe alloy layer exists in a portion containing 1/10 or more of the maximum content of Ni and Fe. .
  • the Ni—Fe alloy layer 15 is obtained by SEM-EDX (energy dispersive X-ray spectroscopy) as shown in FIG.
  • SEM-EDX energy dispersive X-ray spectroscopy
  • the distance between 1/10 of the maximum of Ni and Fe respectively can be read as a Ni--Fe alloy layer.
  • FIG. 2 shows an example of the above analysis results, in which the horizontal axis indicates the distance ( ⁇ m) in the depth direction from the surface layer, and the vertical axis indicates the X-ray intensity of Ni and Fe.
  • the metallic elements contained in the Ni--Fe alloy layer 15 are not limited to Ni and Fe, and may contain other metallic elements as long as the problems of the present invention can be solved.
  • the Ni—Fe alloy layer 15 may contain metallic elements such as Co and Mo, and inevitable impurities.
  • the ratio of metal elements other than Ni and Fe in the Ni—Fe alloy layer 15 is preferably 10 wt % or less, more preferably 5 wt % or less, even more preferably 1 wt % or less, and particularly preferably 0.5 wt % or less.
  • the bipolar electrode of the metal hydride battery of this embodiment has the effect of reducing hydrogen permeation due to the Ni—Fe alloy layer 15 contained in the current collector.
  • the discharge reaction of a nickel metal hydride battery is expressed as follows. Positive electrode: NiOOH + H2O + e - ⁇ Ni(OH) 2 + OH - Negative electrode: MH + OH - ⁇ M + H2O + e - Furthermore, the reaction at the negative electrode consists of the following two reactions.
  • the inventor of the present invention conceived of forming a coating on the steel sheet that constitutes the current collector to reduce hydrogen permeation to the counter electrode. Specifically, the idea of forming a Ni—Fe alloy layer on at least one surface of a steel plate was conceived.
  • FIG. 3 schematically shows a hydrogen permeation test apparatus used for evaluation.
  • two electrolytic cells EC 1 and EC 2 are arranged facing each other with a test piece W interposed therebetween.
  • the electrolytic cell EC 1 on the left side in FIG. 3 is the cathode side (hydrogen entry side), and the electrolytic cell EC 2 on the right side is the anode side (hydrogen detection side).
  • the hydrogen permeation test apparatus generates hydrogen in the electrolytic cell EC1, permeates the test piece W and reaches the electrolytic cell EC2, and detects the anode current when the hydrogen is oxidized.
  • RE1 and RE2 are reference electrodes
  • CE1 and CE2 are counter electrodes
  • WE is a test piece W as a working electrode, which are connected to potentiostat PS and potentio-galvanostat PS/GS, respectively.
  • Hg/HgO or calomel electrodes can be used for the reference electrodes RE1 and RE2.
  • Platinum can be used for the counter electrodes CE1 and CE2.
  • An alkaline electrolyte containing KOH, NaOH, and LiOH can be used as the electrolyte Ea.
  • a voltage is applied to the counter electrode CE1 by a potentio-galvanostat PS/GS so that the potential on the hydrogen entry side is -0.6 V, -0.45 V, -0.3 V (vs RHE (reversible hydrogen electrode)), and hydrogen Measure the current change on the detection side. Also, the potential on the hydrogen detection side is held at +1.45 V (vsRHE).
  • the liquid temperature is kept at 65°C and deaerated with N2 gas during the test.
  • FIG. 4 shows the result of measuring the hydrogen permeation current using the following two types of test pieces using the above hydrogen permeation test apparatus.
  • (Specimen W1) A surface-treated steel plate with a 5 ⁇ m thick Ni plating formed on both sides
  • (Specimen W2) A 3.5 ⁇ m thick Ni—Fe alloy layer was formed on both sides, and a thickness was formed on the Ni—Fe alloy layer.
  • a cold-rolled foil (thickness 50 ⁇ m) of low-carbon aluminum-killed steel was used.
  • the method of forming the Ni plating layer and the Ni--Fe alloy layer was the method described in Examples below.
  • the Ni--Fe alloy layer 15 is provided on the side of the steel plate 13, particularly on the side where the negative electrode active material layer 20 is located.
  • the Ni—Fe alloy layer 15 is provided at least on the side where the negative electrode active material layer 20 is located among both surfaces of the steel plate 13 as shown in FIG. 1A. is preferred. That is, the Ni—Fe alloy layer 15 formed between the negative electrode active material layer 20 and the steel plate 13 allows hydrogen released by the negative electrode active material layer 20 (that is, hydrogen storage alloy: metal hydride) to pass through the steel plate 13. Since permeation is prevented, hydrogen permeation can be further reduced.
  • the Ni--Fe alloy layer 15 is more preferably provided on both sides of the steel plate 13, as shown in FIG. 1B. That is, in FIG. 1B, a Ni--Fe alloy layer 15a is provided on the first surface of the steel plate 13, and a Ni--Fe alloy layer 15b is provided on the opposite second surface.
  • the negative electrode active material layer 20 that is, hydrogen storage alloy: metal hydride
  • the positive electrode active material layer 30 Since it is considered that the Ni--Fe alloy layer 15b traps it before reaching it, the voltage drop problem described above can be avoided.
  • the first surface of the steel plate 13 is on the same side as the first surface 10A of the current collector. Both sides of the steel plate 13 refer to the first side and the second side opposite to the first side.
  • the thickness of the Ni--Fe alloy layer 15 is preferably 1.0 ⁇ m or more. When the thickness of the Ni—Fe alloy layer 15 is 1.0 ⁇ m or more, it is considered that the Ni—Fe alloy layer 15 is sufficiently effective in reducing hydrogen permeation. That is, when the thickness of the Ni—Fe alloy layer 15 in the current collector is 1.0 ⁇ m or more, it is considered that the voltage drop in the battery can be reduced more effectively.
  • the thickness of the Ni--Fe alloy layer 15 is more preferably 1.2 ⁇ m or more, more preferably 1.5 ⁇ m or more. Furthermore, it is preferable to provide the Ni—Fe alloy layer 15 on both the first surface and the second surface of the steel plate 13 .
  • the thickness of the Ni--Fe alloy layer 15 can be calculated by, for example, SEM-EDX (energy dispersive X-ray spectroscopy). That is, as described above, elemental analysis of Ni and Fe at a depth of up to 10 ⁇ m in the thickness direction from the surface layer is performed by line analysis using SEM-EDX (energy dispersive X-ray spectroscopy).
  • the measurement conditions can be acceleration voltage: 10 kV, observation magnification: 5000 times, measurement step: 0.01 ⁇ m, and the like.
  • the horizontal axis is the distance ( ⁇ m) in the depth direction from the surface layer
  • the vertical axis is the X-ray intensity of Ni and Fe. and 1/10 of the respective maximum values of Fe can be read from the graph and used as the thickness of the Ni—Fe alloy layer.
  • the Ni--Fe alloy layer 15 is also provided on the negative terminal electrode, which will be described later.
  • a Ni—Fe alloy layer on the negative terminal electrode, in a cell (single cell) including the negative terminal electrode, reduction in discharge reserve caused by hydrogen permeating the negative terminal electrode and leaking to the outside of the battery is reduced. be able to.
  • the active material layers (negative electrode active material layer 20 and positive electrode active material layer 30) of this embodiment will be described.
  • the negative electrode active material layer 20 contains a negative electrode active material and, if necessary, a negative electrode additive, a binder, and a conductive aid.
  • the positive electrode active material layer 30 contains a positive electrode active material and, if necessary, a positive electrode additive, a binder, and a conductive aid. Matters relating to both the positive electrode active material layer and the negative electrode active material layer will be described below as the active material layer.
  • the negative electrode active material contained in the negative electrode active material layer 20 is not limited as long as it is used as a negative electrode active material for a nickel metal hydride battery, that is, a hydrogen absorbing alloy (metal hydride).
  • a hydrogen-absorbing alloy is basically an alloy of metal A, which readily reacts with hydrogen but has poor hydrogen-releasing ability, and metal B, which does not readily react with hydrogen but has excellent hydrogen-releasing ability.
  • A is a misch containing Group 2 elements such as Mg, Group 3 elements such as Sc and lanthanides, Group 4 elements such as Ti and Zr, Group 5 elements such as V and Ta, and a plurality of rare earth elements. Examples include metal (hereinafter sometimes abbreviated as Mm), Pd, and the like.
  • Mm metal
  • Pd and the like.
  • B include Fe, Co, Ni, Cr, Pt, Cu, Ag, Mn, Zn, and Al.
  • AB 5 type showing a hexagonal CaCu 5 type crystal structure As specific hydrogen storage alloys, AB 5 type showing a hexagonal CaCu 5 type crystal structure, AB 2 type showing a hexagonal MgZn 2 type or cubic MgCu 2 type crystal structure, AB type showing a cubic CsCl type crystal structure , A 2 B type showing a hexagonal Mg 2 Ni type crystal structure, a solid solution type showing a body-centered cubic structure, and an AB 3 type and A 2 B 7 in which the AB 5 type and AB 2 type crystal structures are combined. type and A 5 B 19 type can be exemplified.
  • the hydrogen storage alloy may have one of the above crystal structures, or may have a plurality of the above crystal structures.
  • Examples of AB 5 type hydrogen storage alloys include LaNi 5 , CaCu 5 and MmNi 5 .
  • MgZn 2 , ZrNi 2 and ZrCr 2 can be exemplified as AB 2 type hydrogen storage alloys.
  • Examples of AB type hydrogen storage alloys include TiFe and TiCo.
  • Examples of the A 2 B type hydrogen storage alloy include Mg 2 Ni and Mg 2 Cu.
  • Ti--V, V--Nb, and Ti--Cr can be exemplified as solid solution type hydrogen storage alloys.
  • CeNi3 can be exemplified as an AB3 type hydrogen storage alloy.
  • Ce 2 Ni 7 can be exemplified as the A 2 B 7 type hydrogen storage alloy.
  • Ce 5 Co 19 and Pr 5 Co 19 can be exemplified as the A 5 B 19 type hydrogen storage alloy.
  • some metals may be replaced with one or more other metals or elements.
  • the surface of the negative electrode active material may be treated by a known method.
  • Alkali treatment means treating the hydrogen storage alloy with an alkaline aqueous solution in which an alkali metal hydroxide is dissolved.
  • the rare earth element which is highly soluble in the alkaline aqueous solution, is eluted from the surface of the hydrogen storage alloy.
  • the Ni concentration on the surface of the hydrogen-absorbing alloy becomes higher than that inside the hydrogen-absorbing alloy.
  • a portion having a higher Ni concentration than the inside is referred to as a Ni-enriched layer. It is believed that the presence of the Ni-enriched layer improves the performance of the negative electrode active material.
  • alkali metal hydroxides examples include lithium hydroxide, sodium hydroxide, and potassium hydroxide, with sodium hydroxide being preferred.
  • an aqueous sodium hydroxide solution as the alkaline aqueous solution, the battery characteristics of the nickel metal hydride battery of the present disclosure may be optimized compared to using lithium hydroxide or potassium hydroxide as the alkaline aqueous solution.
  • a strongly basic alkaline aqueous solution is preferable.
  • concentration of the alkali metal hydroxide in the alkaline aqueous solution are 10 to 60% by mass, 20 to 55% by mass, 30 to 50% by mass, and 40 to 50% by mass.
  • Alkali treatment is preferably carried out by immersing the hydrogen storage alloy in an alkaline aqueous solution.
  • it is preferable to carry out under stirring conditions, and it is preferable to carry out under heating conditions.
  • the heating temperature range include 50 to 150°C, 70 to 140°C, and 90 to 130°C.
  • the heating time may be appropriately determined according to the concentration of the alkaline aqueous solution and the heating temperature, and examples thereof include 0.1 to 10 hours, 0.2 to 5 hours, and 0.5 to 3 hours.
  • the hydrogen storage alloy preferably contains a rare earth element and Ni.
  • the negative electrode active material is preferably in a powder state, and its average particle size is preferably in the range of 1 to 100 ⁇ m, more preferably in the range of 3 to 50 ⁇ m, further preferably in the range of 5 to 30 ⁇ m.
  • the negative electrode active material layer preferably contains the negative electrode active material in an amount of 85 to 99% by mass, more preferably 90 to 98% by mass, based on the total mass of the negative electrode active material layer.
  • a negative electrode additive is added to the negative electrode in order to improve the battery characteristics of the nickel metal hydride battery.
  • the negative electrode additive is not limited as long as it is used as a negative electrode additive for nickel metal hydride batteries.
  • Specific negative electrode additives include fluorides of rare earth elements such as CeF3 and YF3 , bismuth compounds such as Bi2O3 and BiF3 , indium compounds such as In2O3 and InF3 , and positive electrode additives. Compounds exemplified as can be mentioned.
  • the negative electrode active material layer preferably contains the negative electrode additive in an amount of 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, based on the total mass of the negative electrode active material layer.
  • the positive electrode active material contained in the positive electrode active material layer 30 of the present embodiment may be nickel hydroxide that is used as a positive electrode active material for nickel metal hydride batteries, and part of it contains other metals. It may be doped. Examples of specific positive electrode active materials include nickel hydroxide and metal-doped nickel hydroxide. Examples of metals with which nickel hydroxide is doped include group 2 elements such as magnesium and calcium, group 9 elements such as cobalt, rhodium and iridium, and group 12 elements such as zinc and cadmium.
  • the surface of the positive electrode active material may be treated by a known method.
  • the positive electrode active material is preferably in a powder state, and its average particle size is preferably in the range of 1 to 100 ⁇ m, more preferably in the range of 3 to 50 ⁇ m, even more preferably in the range of 5 to 30 ⁇ m.
  • the average particle size means the value of D50 in the measurement using a general laser diffraction particle size distribution meter.
  • the positive electrode active material layer preferably contains the positive electrode active material in an amount of 75 to 99% by mass, more preferably 80 to 97% by mass, more preferably 85 to 95% by mass, based on the total mass of the positive electrode active material layer. It is more preferably contained in mass %.
  • a positive electrode additive is added to the positive electrode in order to improve the battery characteristics of the nickel metal hydride battery.
  • the positive electrode additive is not limited as long as it is used as a positive electrode additive for nickel metal hydride batteries.
  • Specific positive electrode additives include niobium compounds such as Nb2O5 , tungsten compounds such as WO2 , WO3 , Li2WO4 , Na2WO4 and K2WO4 , and ytterbium compounds such as Yb2O3 . , TiO 2 , yttrium compounds such as Y 2 O 3 , zinc compounds such as ZnO, calcium compounds such as CaO, Ca(OH) 2 and CaF 2 , and other rare earth oxides.
  • the positive electrode active material layer preferably contains the positive electrode additive in an amount of 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, based on the total mass of the positive electrode active material layer. .
  • the binder and conductive aid that are optionally contained in the active material layer will be described below.
  • the binder plays a role in binding the active material, etc. to the surface of the current collector.
  • the binder is not limited as long as it is used as a binder for electrodes of nickel metal hydride batteries.
  • Specific binders include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, polyolefin resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, carboxymethylcellulose, methylcellulose and hydroxypropyl. ( A meth)acrylic resin can be exemplified.
  • the active material layer preferably contains the binder in an amount of 0.1 to 15% by mass, more preferably 1 to 10% by mass, more preferably 2 to 7%, based on the total mass of the active material layer. It is more preferably contained in mass %. This is because if the amount of the binder is too small, the formability of the electrode will deteriorate, and if the amount of the binder is too large, the energy density of the electrode will be low.
  • a conductive aid is added to increase the conductivity of the electrode. Therefore, the conductive aid may be optionally added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent.
  • the conductive aid may be added to the active material layer in the form of powder, or may be used in a state of coating the surface of the active material particles. Any chemically inactive electron conductor may be used as the conductive aid.
  • Specific conductive aids include metals such as cobalt, nickel and copper, metal oxides such as cobalt oxides, metal hydroxides such as cobalt hydroxide, carbon materials such as carbon black, graphite, and carbon fibers. are exemplified.
  • the negative electrode active material layer 20 preferably contains the conductive aid in an amount of 0.1 to 5% by mass, more preferably 0.2 to 3% by mass, based on the total mass of the negative electrode active material layer. It is preferably contained in an amount of 0.3 to 1% by mass, more preferably.
  • the positive electrode active material layer 30 preferably contains 0.1 to 10% by mass, more preferably 0.2 to 7% by mass, of the conductive aid with respect to the total mass of the positive electrode active material layer. It is preferably contained in an amount of 0.3 to 5 mass %, more preferably.
  • the Ni layer 17 is formed on the outermost surface of the current collector 10 on the same side as the one surface (first surface) 10A. That is, a Ni layer 17 is further formed between the Ni—Fe alloy layer 15 and the negative electrode active material layer 20 .
  • a Ni layer 17a is formed on the outermost surface on the same side as one surface (first surface) 10A of the current collector 10, and the other surface (second surface)
  • a Ni layer 17b may be formed on the outermost surface on the same side as 10B.
  • a Ni layer 17a is further formed between the Ni--Fe alloy layer 15a and the negative electrode active material layer 20, and a further Ni layer is formed between the Ni--Fe alloy layer 15b and the positive electrode active material layer 30. 17b are formed.
  • the thickness of the Ni layer 17 is not particularly limited, it is preferably 0.1 ⁇ m to 10.0 ⁇ m, for example.
  • the metal element contained in the Ni layer 17 is not limited to Ni, and may contain other metal elements.
  • the Ni layer 17 may contain metal elements such as Co and Mo.
  • the ratio of metal elements other than Ni in the Ni layer 17 is preferably 10 wt % or less, more preferably 5 wt % or less, still more preferably 1 wt % or less, and particularly preferably 0.5 wt % or less.
  • the Ni layer 17 As a method for forming the Ni layer 17, there is a method in which a Ni layer in which Fe is not diffused remains in the heat treatment for forming the Ni—Fe alloy layer 15, or a method in which the Ni—Fe alloy layer 15 is formed. A method of performing Ni plating again after forming is mentioned. From the viewpoint of corrosion resistance to the electrolytic solution, the method of providing the Ni layer 17 by the above-mentioned Ni plating again is preferable, and the plating method includes, for example, electroplating, electroless plating, and the like. Among these methods, the method using electroplating is particularly preferable from the viewpoint of cost, film thickness control, and the like.
  • the Ni layer 17 described above may be a roughened Ni layer 17c.
  • the roughened Ni layer 17c is a Ni layer having a surface roughness larger than that of the Ni--Fe alloy layer 15 or the steel plate 13 on the surface in contact with the negative electrode active material layer 20 or the positive electrode active material layer 30. means.
  • the bonding strength between the current collector 10 and the member to be bonded can be improved.
  • the molten resin enters between the plurality of projections, exhibiting an anchor effect. Thereby, it is possible to improve the bonding strength between the bipolar electrode and the sealing portion of the present embodiment.
  • the surface area is increased by providing the roughened Ni layer 17c, the heat radiation of the electrode can be improved.
  • the numerical value of the surface roughness of the roughened Ni layer 17c can be expressed using known parameters and the like.
  • the parameter can be defined by, for example, the ten-point average roughness Rzjis, and Rzjis is preferably 2.0 ⁇ m to 16.0 ⁇ m.
  • the ten-point average roughness Rzjis is measured according to JISB0601:2013, and is preferably measured using a laser microscope.
  • an underlying Ni layer 17d may be appropriately formed between the Ni--Fe alloy layer 15 and the roughened Ni layer 17c, as shown in FIG. 5C.
  • the underlying Ni layer 17d With a thickness of about 0.1 ⁇ m to 10 ⁇ m, effects such as improving the adhesion of the roughened Ni layer 17c and suppressing the occurrence of pinholes can be obtained.
  • a method for manufacturing a bipolar electrode for a metal hydride battery according to this embodiment includes a current collector forming step (step 1) and an active material layer forming step (step 2). Then, the current collector forming step (step 1) includes a step of providing a Ni layer on at least one surface of the steel sheet (step 1a), and heat-treating the steel sheet provided with the Ni layer to obtain Ni in the Ni layer and the steel sheet. and a step of diffusing Fe from Ni to form a Ni—Fe alloy layer (step 1b).
  • the current collector forming step (step 1) may further include a roughened Ni layer forming step (step 1c).
  • the step of forming an active material layer includes a step of forming a negative electrode active material layer on the first surface of the current collector (step 2a) and a step of providing a positive electrode active material layer on the second surface of the current collector (step 2a). step 2b);
  • a Ni layer is formed on the surface of the steel sheet by, for example, electrolytic plating using a Ni plating bath.
  • a Ni plating bath plating baths commonly used for Ni plating, such as Watt bath, citric acid bath, sulfamic acid bath, borofluoride bath, and chloride bath can be used.
  • the Ni layer is formed by using a Watt bath having a bath composition of 200 to 350 g/L of nickel sulfate hexahydrate, 20 to 60 g/L of nickel chloride hexahydrate, and 10 to 50 g/L of boric acid. 5 to 5.0, a bath temperature of 40 to 80° C., and a current density of 1 to 40 A/dm 2 .
  • the thickness of the Ni layer is preferably 0.05-5.0 ⁇ m, more preferably 0.1-3.0 ⁇ m.
  • the heat treatment may be performed by either a continuous annealing method or a box annealing method (batch annealing). Further, the heat treatment conditions may be appropriately selected according to the required thickness of the Ni—Fe alloy layer and the thickness of the Ni plating layer. For example, in the case of continuous annealing, it is preferable to set the heat treatment temperature range to 700 to 800° C. and the heat treatment time range to 10 seconds to 300 seconds. In the case of box annealing, it is preferable that the heat treatment temperature range is 450 to 600° C., the heat treatment time range is 1 hour to 10 hours, and the heat treatment atmosphere is a non-oxidizing atmosphere or a reducing protective gas atmosphere. .
  • the heat treatment atmosphere is a reducing protective gas atmosphere
  • a protective gas consisting of 75% hydrogen and 25% nitrogen generated by an ammonia cracking method called hydrogen-enriched annealing with good heat transfer is used as the protective gas. It is preferable to use Then, a Ni--Fe alloy layer in which Ni in the Ni layer and Fe in the steel sheet are diffused can be formed by thermal diffusion by heat treatment. In this case, Fe may be diffused to the surface of the Ni layer, or a part of the Ni layer may be left as a Ni layer in which Fe is not diffused. .
  • Step 1c will be explained.
  • a roughened Ni layer can be formed by depositing nickel particles in an agglomerated state using a method such as electroplating. can. That is, the roughened Ni layer exists between the Ni—Fe alloy layer and the negative electrode active material layer or the positive electrode active material layer.
  • the roughened Ni layer formed in step 1c is a Ni—Fe alloy layer on the surface of the side in contact with the negative electrode active material layer 20 or the positive electrode active material layer 30 formed in the active material layer forming step (step 2) described later. Alternatively, it has a surface roughness greater than that of a steel plate.
  • step 1c As a method for forming the roughened Ni layer in step 1c, methods other than electroplating, such as sputtering and roll pressing with a rough surface, can be applied. Further, step 1c may include a step of forming a base Ni layer before forming the roughened Ni layer.
  • Step 2 conventionally known methods such as roll coating, die coating, dip coating, doctor blade, spray coating, and curtain coating are used to form an active material layer on the surface of the current collector.
  • an active material, a solvent, and, if necessary, a binder, a conductive aid, and an additive are mixed to form a slurry, which is then applied to the surface of a current collector and then dried.
  • solvents include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. In order to increase the electrode density, it may be compressed after drying.
  • the positive electrode active material layer may be formed after the negative electrode active material layer is formed, or the positive electrode active material layer may be formed in the reverse order.
  • the negative electrode active material layer and the positive electrode active material layer may be provided at the same time. That is, the step of forming the active material layer (step 2) includes the step of forming the negative electrode active material layer on the first surface of the current collector (step 2a) and the step of providing the positive electrode active material layer on the second surface of the current collector (step 2a). If step 2b) is included, the order is not restricted.
  • the metal hydride battery of the present disclosure is characterized by stacking the bipolar electrodes of the present disclosure.
  • the metal hydride battery of the present disclosure includes a bipolar electrode having a negative electrode active material layer on a first surface of a current collector and a positive electrode active material layer on a second surface of the current collector.
  • the current collector includes a steel plate and a Ni—Fe alloy layer provided on at least one surface of the steel plate.
  • the number of bipolar electrodes in the metal hydride battery of the present disclosure may be one or more, and the number of bipolar electrodes can be increased or decreased according to the desired capacity.
  • the metal hydride battery of the present disclosure can be manufactured by interposing a separator between the bipolar electrodes and by sealing the separator airtightly after injecting the electrolytic solution.
  • Metal hydride batteries of the present disclosure are, for example, nickel metal hydride batteries.
  • a metal hydride battery according to one embodiment of the present disclosure will be described below using a nickel metal hydride battery as an embodiment, but the metal hydride battery of the present disclosure is not limited to this.
  • FIG. 6 is a schematic cross-sectional view showing one embodiment of a power storage device.
  • the power storage device 1 includes a module stack 2 including a plurality of stacked power storage modules 4 and a restraining member 3 that applies a restraining load to the module stack 2 in the stacking direction D of the module stack 2 . .
  • the module laminate 2 includes multiple power storage modules 4 and multiple cooling plates 5 .
  • three power storage modules 4 and four cooling plates 5 are alternately stacked such that the cooling plates 5 are positioned on both sides of the power storage module 4 .
  • the direction in which the power storage modules 4 are stacked is referred to as "stacking direction D".
  • a direction crossing or perpendicular to the stacking direction D is defined as a horizontal direction.
  • the power storage module 4 is a bipolar metal hydride battery, and has a rectangular shape when viewed from the stacking direction D.
  • a nickel metal hydride battery is exemplified as the power storage module 4 .
  • Electricity storage modules 4 adjacent to each other in the stacking direction D are electrically connected via cooling plates 5 .
  • a cooling plate 5 located at one end in the stacking direction D of the module stack 2 is connected to a negative terminal 6 .
  • a positive electrode terminal 7 is connected to the cooling plate 5 located at the other end in the stacking direction D.
  • the negative terminal 6 and the positive terminal 7 are pulled out in a direction intersecting the stacking direction D from the edge of the cooling plate 5, for example.
  • the negative terminal 6 and the positive terminal 7 are connected to an external circuit (not shown) of a vehicle or the like, and charging/discharging of the power storage device 1 is performed by the external circuit.
  • the cooling plate 5 is made of aluminum.
  • the outermost layer (stack outermost layer) of the module laminate 2 is the cooling plate 5 , but the outermost layer of the module laminate 2 may be the power storage module 4 .
  • the negative terminal 6 or the positive terminal 7 is connected to the power storage module 4 forming the outermost layer of the stack.
  • the cooling plate 5 Inside the cooling plate 5 , a plurality of flow paths 5 a for circulating a coolant such as air are provided, and the heat generated in the power storage module 4 is released to the outside of the power storage device 1 .
  • the channel 5a extends along a direction that intersects (perpendicularly) the stacking direction D and the drawing direction of the negative electrode terminal 6 and the positive electrode terminal 7, for example.
  • the cooling plate 5 is conductive and functions as a connection member that electrically connects the power storage modules 4 to each other.
  • the cooling plate 5 also has a function as a heat radiating plate that radiates the heat generated in the power storage module 4 by circulating the coolant through these flow paths 5a.
  • the area of the cooling plate 5 is smaller than the area of the power storage module 4 in plan view in the stacking direction D. As shown in FIG. However, from the viewpoint of improving heat dissipation, the area of the cooling plate 5 may be the same as the area of the storage module 4 or may be larger than the area of the storage module 4 in a plan view in the stacking direction D. Alternatively, the electric storage module 4 may be heated by circulating a high-temperature coolant through the flow path 5a.
  • the restraining member 3 has a pair of end plates 8 that sandwich the module laminate 2 in the stacking direction D, and has fastening bolts 81 and nuts 82 that fasten the end plates 8 together.
  • the end plate 8 is a metal plate that is slightly larger than the power storage module 4 and the cooling plate 5 in plan view in the stacking direction D, and has a rectangular shape.
  • An insulating film F is arranged between each end plate 8 and the module stack 2 . The film F provides insulation between each end plate 8 and the module stack 2 .
  • the edge of the end plate 8 is provided with an insertion hole 8a at a position outside the module stack 2 when viewed from the stacking direction D.
  • the fastening bolt 81 is passed from the insertion hole 8a of one end plate 8 toward the insertion hole 8a of the other end plate 8.
  • a nut 82 is screwed onto the tip portion of the fastening bolt 81 protruding from the insertion hole 8 a of the other end plate 8 .
  • the power storage module 4 and the cooling plate 5 are sandwiched between the two end plates 8 and unitized as the module stack 2 .
  • a binding load is applied in the stacking direction D to the module stack 2 .
  • FIG. 7 is a schematic cross-sectional view showing the internal configuration of the power storage module shown in FIG. 6.
  • the power storage module 4 includes an electrode laminate (cell stack) 11, conductive plates 40 positioned on both outer sides of the electrode laminate 11 in the stacking direction D, and the electrode laminate 11 and the conductive plates 40 It has a resin seal portion 12 that integrates with.
  • the electrode stack 11 is composed of a plurality of electrodes stacked along the stacking direction D of the power storage module 4 with separators SP interposed therebetween. These electrodes include a stack of multiple bipolar electrodes 100 (200), a negative terminal electrode 18, and a positive terminal electrode 19.
  • FIG. The bipolar electrode 100 (200) and the separator SP are rectangular when viewed from the stacking direction D. As shown in FIG.
  • the bipolar electrode 100 (200) includes a current collector 10 including one surface (first surface) 10A and the other surface (second surface) 10B opposite to the one surface 10A, and a negative electrode active material provided on the one surface 10A. It has a layer 20 and a positive electrode active material layer 30 provided on the other surface 10B.
  • the positive electrode active material layer 30 is formed by coating the current collector 10 with a positive electrode active material.
  • the negative electrode active material layer 20 is formed by coating the current collector 10 with a negative electrode active material.
  • the negative terminal electrode 18 has a current collector 10 and a negative electrode active material layer 20 provided on one surface 10A of the current collector 10 .
  • the negative terminal electrode 18 is arranged at one end of the electrode stack 11 in the stacking direction D so that one surface 10A faces the central side of the stacking direction D of the electrode stack 11 .
  • the other surface 10B of the current collector 10 of the negative terminal electrode 18 constitutes the outer surface in the stacking direction D of the electrode stack 11, and includes one cooling plate 5 (see FIG. 6) adjacent to the power storage module 4 and the conductive plate 40. are electrically connected via
  • the negative electrode active material layer 20 of the negative terminal electrode 18 faces the positive electrode active material layer 30 of the bipolar electrode 100 (200) via the separator SP.
  • the positive terminal electrode 19 has a current collector 10 and a positive electrode active material layer 30 provided on the other surface 10B of the current collector 10 .
  • the positive terminal electrode 19 is arranged at the other end of the electrode stack 11 in the stacking direction D so that the other surface 10B faces the center of the stack in the stacking direction D of the electrode stack 11 .
  • the positive electrode active material layer 30 of the positive terminal electrode 19 faces the negative electrode active material layer 20 of the bipolar electrode 100 (200) via the separator SP.
  • One surface 10A of the current collector 10 of the positive terminal electrode 19 constitutes the outer surface in the stacking direction D of the electrode stack 11, and the other cooling plate 5 (see FIG. 6) adjacent to the power storage module 4 and the conductive plate 40 are electrically connected via
  • the current collector 10 is a plated steel plate.
  • An edge portion 10C of the current collector 10 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated, and has a rectangular frame shape.
  • the positive electrode active material forming the positive electrode active material layer 30 the above-mentioned materials can be used.
  • the negative electrode active material forming the negative electrode active material layer 20 the above-mentioned materials can be used.
  • the formation area of the negative electrode active material layer 20 on the one surface 10A of the current collector 10 is slightly larger than the formation area of the positive electrode active material layer 30 on the other surface 10B of the current collector 10. .
  • the conductive plate 40 is a conductive plate-like member provided for suppressing deterioration of the electrode laminate 11 .
  • the conductive plate 40 is an uncoated foil with no active material layer formed on both sides.
  • the conductive plate 40 is made of nickel, for example.
  • the conductive plate 40 has a central portion 41 in contact with the cooling plate 5 and a rectangular frame-shaped edge portion 42 surrounding the central portion 41 .
  • the edge portion 42 is a portion held by the sealing body (seal portion) 12 .
  • the thickness of the conductive plate 40 is, for example, 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the conductive plates 40 form outer walls of the power storage module 4 at both ends in the stacking direction D. As shown in FIG. In addition, when the conductive plate 40 is not provided, the negative terminal electrode 18 and the positive terminal electrode 19 constitute the outer wall.
  • the seal portion 12 is formed in a rectangular frame shape as a whole, for example, from an insulating resin. Seal portion 12 is provided along side surface 11 a of electrode laminate 11 so as to surround edge portion 10 ⁇ /b>C of current collector 10 and edge portion 42 of conductive plate 40 . The seal portion 12 holds the edge portion 10 ⁇ /b>C of the current collector 10 and the edge portion 42 of the conductive plate 40 .
  • the seal portion 12 includes a plurality of first seal portions 21 coupled to the edge portion 10C of the current collector 10 and the edge portion 42 of the conductive plate 40, and surrounds the first seal portions 21 from the outside along the side surface 11a, and a second seal portion 22 coupled to each of the first seal portions 21 .
  • the constituent material of the first seal portion 21 and the second seal portion 22 is polypropylene, for example.
  • the first seal portion 21 is provided continuously over the entire circumference of the edge portion 42 of the conductive plate 40 or the entire circumference of the edge portion 10C on the other surface 10B of the current collector 10, and has a rectangular frame shape when viewed from the stacking direction D. is making In the negative terminal electrode 18 and the positive terminal electrode 19, the first sealing portion 21 is provided on the edge portion 10C of both the one surface 10A and the other surface 10B of the current collector 10. As shown in FIG.
  • the first seal portion 21 is welded to the edge portion 42 of the conductive plate 40 or the other surface 10B of the current collector 10 by, for example, ultrasonic waves or thermocompression, and is airtightly joined.
  • the first seal portion 21 is a film having a predetermined thickness in the stacking direction D, for example.
  • the first seal portion 21 may be formed by punching a resin sheet, may be formed by arranging a plurality of resin sheets in a frame shape, or may be formed by injection molding using a mold. may In this embodiment, the first seal portion 21 is formed by punching a resin sheet.
  • the thickness of the first seal portion 21 is, for example, 50 ⁇ m or more and 250 ⁇ m or less.
  • the inside of the first seal portion 21 is located between the edge portions 10C of the current collectors 10 adjacent to each other in the stacking direction D. As shown in FIG. The outer side of the first seal portion 21 protrudes beyond the edge of the current collector 10 , and the tip portion thereof is held by the second seal portion 22 .
  • the first seal portions 21 adjacent to each other along the stacking direction D may be separated from each other or may be in contact with each other. Further, the outer edge portions of the first seal portion 21 may be joined together by, for example, hot plate welding.
  • the second seal portion 22 is provided outside the electrode laminate 11 and the first seal portion 21 and constitutes the outer wall (housing) of the power storage module 4 .
  • the second seal portion 22 is formed, for example, by injection molding of resin, and extends along the stacking direction D over the entire length of the electrode stack 11 .
  • the second seal portion 22 has a rectangular frame shape extending in the stacking direction D as an axial direction.
  • the second seal portion 22 is welded to the outer surface of the first seal portion 21 by heat during injection molding, for example.
  • the first seal portion 21 and the second seal portion 22 form an internal space V between adjacent electrodes and seal the internal space V. More specifically, the second seal portion 22 is formed between the bipolar electrodes 100 (200) that are adjacent to each other along the stacking direction D, and the negative electrode termination electrodes that are adjacent to each other along the stacking direction D, together with the first seal portion 21 . 18 and the bipolar electrode 100 (200), and between the positive terminal electrode 19 and the bipolar electrode 100 (200) adjacent to each other along the stacking direction D, respectively. Thereby, airtightness is provided between the adjacent bipolar electrodes 100 (200), between the negative terminal electrode 18 and the bipolar electrode 100 (200), and between the positive terminal electrode 19 and the bipolar electrode 100 (200).
  • a partitioned internal space V is formed. This internal space V contains an electrolytic solution (not shown). The separator SP, the positive electrode active material layer 30, and the negative electrode active material layer 20 are impregnated with the electrolytic solution.
  • Each seal portion 12 constitutes a cell (single battery).
  • the first sealing portion 21 is joined to the bipolar electrode 100 (200), the negative terminal electrode 18, the positive terminal electrode 19, and the conductive plate 40 (first step).
  • first step first, the bipolar electrode 100 (200), the negative terminal electrode 18, the positive terminal electrode 19, and the conductive plate 40 are prepared.
  • the first sealing portion 21 is welded to the other surface 10B of the current collector 10 and the one surface 40a of the conductive plate 40 .
  • the first sealing portion 21 is coupled to each of the bipolar electrode 100 (200), the negative terminal electrode 18, the positive terminal electrode 19, and the conductive plate 40.
  • the first sealing portion 21 is also welded to the one surface 10A of the current collector 10 of the positive terminal electrode 19 .
  • the electrode laminate 11 is formed (second step).
  • the laminate S is formed by alternately laminating the bipolar electrodes 100 (200) coupled with the first seal portions 21 and the separators SP along the lamination direction D.
  • the negative terminal electrode 18 is arranged at one end of the laminated body S in the lamination direction D
  • the positive terminal electrode 19 is arranged at the other end of the laminated body S in the lamination direction D.
  • the electrode laminate 11 having the bipolar electrode 100 (200), the separator SP, the negative terminal electrode 18, and the positive terminal electrode 19 is formed.
  • the stacked first seal portion 21 forms an internal space V between the electrodes included in the electrode stack 11 and seals the internal space V.
  • the conductive plate 40 coupled with the first seal portion 21 is stacked on the electrode laminate 11 (third step).
  • the first sealing portion 21 coupled to the conductive plate 40 is arranged next to the negative terminal electrode 18 and the positive terminal electrode 19 in the stacking direction D. As shown in FIG.
  • the second seal portions 22 that connect the first seal portions 21 are formed (fourth step).
  • a mold is used to inject resin onto the outer peripheral surface of each first seal portion 21 .
  • the second sealing portion 22 is formed by hardening the resin by cooling or the like.
  • the seal portion 12 having the first seal portion 21 and the second seal portion 22 is formed.
  • the conductive plate 40 may be welded to each of the first seal portions 21 coupled to the negative terminal electrode 18 and the positive terminal electrode 19 .
  • an electrolytic solution is injected into each internal space V after the fourth step.
  • the nickel metal hydride battery of the present embodiment preferably includes various members arranged in known nickel metal hydride batteries.
  • a battery unit composed of a positive terminal electrode, a bipolar electrode, a negative terminal electrode, and a separator is referred to as a battery module.
  • the nickel metal hydride battery of the present disclosure may comprise a single battery module or multiple battery modules combined in series.
  • the separator may be made of synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (aromaticpolyamide), polyester, polyacrylonitrile, polysaccharides such as cellulose and amylose, and natural materials such as fibroin, keratin, lignin and suberin. It can be composed of a porous body, a nonwoven fabric, a woven fabric, or the like using one or a plurality of electrically insulating materials such as polymers and ceramics. Also, the separator may have a multilayer structure. It is preferable that the surface of the separator is subjected to a hydrophilic treatment. Examples of hydrophilic treatment include sulfonation treatment, corona treatment, fluorine gas treatment, and plasma treatment.
  • the electrolyte solution may be a strong basic aqueous solution that is generally used as an electrolyte solution for nickel metal hydride batteries.
  • strong base aqueous solutions include potassium hydroxide aqueous solutions, sodium hydroxide aqueous solutions, and lithium hydroxide aqueous solutions.
  • As the electrolytic solution only one type of strong base aqueous solution may be used, or a plurality of types of strong base aqueous solutions may be mixed and used.
  • known additives employed in electrolytes for nickel metal hydride batteries may be added to the electrolyte.
  • a seal portion is provided between the electrodes of the nickel metal hydride battery of the present disclosure.
  • the sealing portion prevents leakage of the electrolyte, suppresses mixing of the electrolyte between the electrodes, and suppresses contact of the electrolyte, the positive electrode active material layer, and the negative electrode active material layer with the outside air.
  • the seal portion is arranged in close contact with the two adjacent current collectors, and is arranged in a state of surrounding the entire area where the electrolytic solution, the positive electrode active material layer, and the negative electrode active material layer are present.
  • the sealing portion may be arranged in two or three layers around the location where the electrolytic solution, the positive electrode active material layer, and the negative electrode active material layer are present.
  • the sealing portion includes insulating resins with alkali resistance such as polypropylene, polyphenylene sulfide, and modified polyphenylene ether. Also, what is generally called a gasket or packing may be employed as the sealing portion.
  • the seal portion may be formed by pressing the material of the seal portion to the current collector, may be formed by thermocompression bonding to the current collector, or may be attached to the current collector using an adhesive. It may be formed by bonding.
  • An insulating outer frame that does not conduct electricity is preferably arranged around the periphery of the electrode.
  • the outer frame plays a role of maintaining the shape of the electrodes and a role of preventing short circuits between the electrodes.
  • the seal portion described above is arranged inside the outer frame.
  • the outer frame may also serve as the seal portion. Examples of materials for the outer frame include synthetic resins, and synthetic resins containing insulating oxides or insulating ceramics.
  • the nickel metal hydride battery of the present disclosure preferably includes a cooling plate that dissipates heat generated during charging and discharging.
  • the cooling plate is preferably arranged along the surface of the electrodes on the outside of the battery module. If there are multiple battery modules, it may be placed between each battery module.
  • the cooling plate is preferably made of metal with excellent thermal conductivity, such as aluminum.
  • a plate-like body that can be stacked on the surface of the battery module is preferable, and a plate-like body having through holes that enable air cooling is more preferable.
  • the battery module of the nickel metal hydride battery of the present disclosure is preferably restrained in the thickness direction, that is, the stacking direction of the electrodes, by a restraint.
  • the electrolytic solution can be evenly permeated into the positive electrode active material layer and the negative electrode active material layer, and uneven expansion of the electrodes due to charging and discharging can be suppressed.
  • the resistance variation of the battery can be suppressed.
  • the sealing effect of the sealing portion can be preferably maintained.
  • the binding member may bind one battery module or may bind multiple battery modules.
  • the restraining member it is preferable to use two restraining plates and a fastening member for fastening the two restraining plates. Bolts and nuts can be exemplified as fastening members.
  • a material for the restraining member a material having high resistance to strong alkali is preferable. Specific examples of the material of the restraining member include synthetic resin and insulating ceramics. Also, a battery container that houses the battery module may be used as the restraining member.
  • a battery container is a container that houses a battery module.
  • the battery container one used as a battery container for a known nickel metal hydride battery may be adopted.
  • the shape of the battery container is not particularly limited, and various shapes such as a rectangular shape, a cylindrical shape, a coin shape, and a laminate shape can be adopted.
  • a material for the battery container a material having high resistance to strong alkali is preferable.
  • Specific examples of the battery container include a nickel container, a resin container, a metal container with a nickel-plated inner surface, and a metal container with a resin coating layer on the inner surface.
  • the nickel metal hydride battery of the present disclosure may be mounted in vehicles and industrial vehicles.
  • the vehicle may be any vehicle that uses electrical energy from a nickel metal hydride battery as a power source in whole or in part, and may be, for example, an electric vehicle or a hybrid vehicle.
  • nickel metal hydride batteries When nickel metal hydride batteries are mounted on a vehicle, it is preferable to connect a plurality of nickel metal hydride batteries in series to form an assembled battery.
  • Devices equipped with nickel metal hydride batteries include, in addition to vehicles, personal computers, mobile communication devices, and various other battery-powered home electric appliances, office devices, industrial devices, and the like.
  • the nickel metal hydride battery of the present disclosure can be power source for spacecraft and/or auxiliary equipment, auxiliary power source for vehicles that do not use electricity as a power source, power source for mobile home robots, power source for system backup, power source for uninterruptible power supply, It may be used as a power storage device that temporarily stores electric power required for charging in a charging station for an electric vehicle.
  • the Ni—Fe alloy layer 15 is formed on both surfaces of the current collector 10 constituting the bipolar electrode 100 (200), the negative terminal electrode 18, and the positive terminal terminal electrode 19. It may be formed only on one side.
  • the Ni—Fe alloy layer 15 is provided on one surface of the current collector 10, it is preferably provided on the one surface (first surface) 10A. Further, the Ni—Fe alloy layer 15 may not be provided on the current collector 10 that constitutes the positive terminal electrode 19 .
  • the other surface 10B of the current collector 10 included in the bipolar electrode is roughened, but the present invention is not limited to this.
  • the other surface 10B only the portion included in the bonding area with the first seal portion 21 may be roughened.
  • only the portion of the one surface 40a of the conductive plate 40 that is included in the bonding area with the first seal portion 21 may be roughened.
  • each of the current collector and the conductive plate has a rectangular shape in plan view, but is not limited to this.
  • Each of the current collector and the conductive plate may have a polygonal shape, a circular shape, or an elliptical shape in plan view.
  • each of the end plate, the separator, and the seal portion (specifically, the first seal portion and the second seal portion) may not have a rectangular frame shape in plan view.
  • Example 1 ⁇ Production of current collector> First, cold-rolled foils (thickness: 50 ⁇ m) of low-carbon aluminum-killed steel having the chemical composition shown below were prepared as steel sheets.
  • the thickness of the Ni--Fe alloy layer was obtained using SEM-EDX (energy dispersive X-ray spectroscopy). That is, the thickness of the Ni—Fe alloy layer is calculated by SEM-EDX (energy dispersive X-ray spectroscopy), and the elemental analysis of Ni and Fe at a depth of 10 ⁇ m from the surface layer to the thickness direction is linearly analyzed. I went with The measurement conditions were acceleration voltage: 10 kV, observation magnification: 5000 times, and measurement step: 0.01 ⁇ m. As shown in FIG. 2, the horizontal axis is the distance ( ⁇ m) in the depth direction from the surface layer, and the vertical axis is the X-ray intensity of Ni and Fe. and the distance between 1/10 of the maximum value of each of Fe was defined as the Ni—Fe alloy layer, and the thickness was read from the graph.
  • SEM-EDX energy dispersive X-ray spectroscopy
  • a base Ni layer of 1.0 ⁇ m was formed under the following plating conditions (second Ni plating step).
  • Bath composition 250 g/L nickel sulfate hexahydrate, 45 g/L nickel chloride hexahydrate, 30 g/L boric acid pH: 4.0-5.0
  • Bath temperature 60°C
  • Current density 10A/ dm2
  • a roughened Ni layer was provided under the following plating conditions (third Ni plating step) to obtain a current collector.
  • the roughened Ni layer undergoes a plating process under the following roughened Ni layer plating conditions, and then, in order to improve the adhesion between the steel sheet and the roughened Ni layer, is coated with nickel under the following covered nickel plating conditions. formed.
  • the nickel deposit as the roughened Ni layer was 18.1 g/m 2 .
  • a film of the negative electrode slurry was applied to the first surface of the current collector.
  • the positive electrode slurry was applied in the form of a film to the second surface of the current collector.
  • the current collector coated with the slurry was dried to remove water and pressed to manufacture a bipolar electrode having a positive active material layer and a negative active material layer formed on the current collector.
  • a positive terminal electrode having a positive electrode active material layer formed on the second surface was manufactured in the same manner as the bipolar electrode, except that the negative electrode slurry was not applied to the first surface of the current collector.
  • a negative terminal electrode having a negative active material layer formed on the first surface was manufactured in the same manner as the bipolar electrode, except that the second surface of the current collector was not coated with the positive electrode slurry.
  • a sulfonated polyolefin fiber nonwoven fabric with a thickness of 104 ⁇ m was prepared as the separator SP.
  • a bipolar electrode 100 was sandwiched between a positive terminal electrode 19 and a negative terminal electrode 18 to form an electrode plate group.
  • a separator SP was interposed between the electrodes.
  • Example 1 Between the bipolar electrode 100 and the positive electrode terminal electrode 19 and between the bipolar electrode 100 and the negative electrode terminal electrode 18, a resin casing (seal portion) 12 was placed and joined by thermocompression.
  • the battery for evaluation of Example 1 was manufactured by injecting the electrolyte solution between the bipolar electrode 100 and the positive electrode terminal electrode 19 and between the bipolar electrode 100 and the negative electrode terminal electrode 18 and then hermetically sealing them.
  • the bipolar electrode 100 and the positive terminating electrode 19, and the bipolar electrode 100 and the negative terminating electrode 18 constitute one cell (single cell), respectively, providing a total of two cells.
  • Example 2 In the manufacturing process of the current collector, the target thickness of the first Ni plating process was 0.5 ⁇ m. In addition, heat treatment was performed in the subsequent diffusion step. Through this heat treatment, a surface-treated steel sheet having Ni—Fe alloy layers formed on both sides of the steel sheet was obtained. The thickness of the Ni—Fe alloy layer per side of the obtained surface-treated steel sheet was 1.5 ⁇ m.
  • a current collector, a bipolar electrode, and an evaluation battery were manufactured in the same manner as in Example 1 except for the above.
  • Example 3 In the manufacturing process of the current collector, the target thickness of the first Ni plating process was set to 1.5 ⁇ m. In addition, heat treatment was performed in the subsequent diffusion step. Through this heat treatment, a surface-treated steel sheet having Ni—Fe alloy layers formed on both sides of the steel sheet was obtained. The thickness of the Ni—Fe alloy layer per side of the obtained surface-treated steel sheet was 2.5 ⁇ m.
  • a current collector, a bipolar electrode, and an evaluation battery were manufactured in the same manner as in Example 1 except for the above.
  • Example 4 In the manufacturing process of the current collector, the target thickness of the first Ni plating process was set to 3.0 ⁇ m. In the subsequent diffusion step, heat treatment was performed at a heat treatment temperature of 640° C. for a soaking time of 2 hours. Through this heat treatment, a surface-treated steel sheet having Ni—Fe alloy layers formed on both sides of the steel sheet was obtained. The thickness of the Ni—Fe alloy layer per side of the obtained surface-treated steel sheet was 3.87 ⁇ m. A current collector, a bipolar electrode, and an evaluation battery were manufactured in the same manner as in Example 1 except for the above.
  • Example 5 a low-carbon aluminum-killed steel having a thickness of 200 ⁇ m was prepared as a steel plate and Ni-plated to a target thickness of 2.0 ⁇ m using a Watt bath (first Ni-plating step). Then, after performing a softening heat treatment for rolling, it was rolled to 50 ⁇ m. Thereafter, a heat treatment (diffusion process) was performed under the conditions of a reducing atmosphere at a heat treatment temperature of 480° C. and a soaking time of 4 hours. Through this heat treatment, a surface-treated steel sheet having Ni—Fe alloy layers on both sides was obtained. The thickness of the Ni—Fe alloy layer per side of the obtained surface-treated steel sheet was 0.55 ⁇ m. A current collector, a bipolar electrode, and an evaluation battery were manufactured in the same manner as in Example 1 except for the above.
  • each of the evaluation batteries of Examples 1 to 5 and Comparative Examples 1 and 2 was repeatedly charged and discharged to perform an activation process.
  • Each battery for evaluation after activation was adjusted to an SOC (State of Charge) of 85%, discharged to an SOC of 0%, and the discharge capacity before storage was measured.
  • SOC State of Charge
  • Each evaluation battery after activation was again adjusted to SOC of 85%, and stored in a constant temperature layer at 65° C. for 350 hours. After storage, each evaluation battery was discharged to 0% SOC, and the discharge capacity after storage was measured. Leakage current was calculated by the following formula.
  • the evaluation battery of Example 2 was also evaluated at a low temperature of -40°C as follows. After the evaluation battery was activated, it was adjusted to an SOC (State of Charge) of 85%, discharged to an SOC of 0%, and the discharge capacity before storage was measured. Each evaluation battery after activation was again adjusted to an SOC of 85% and stored in a -40° C. constant temperature bath for 350 hours. After storage, each evaluation battery was discharged to 0% SOC, and the discharge capacity after storage was measured. Leakage current was calculated by the following formula.
  • leakage current test in power storage module (Example 6) A current collector and a bipolar electrode were produced in the same manner as in Example 2. After that, a power storage module as shown in FIG. 6 was produced using the same separator, active material, etc. as in the evaluation battery described above. It should be noted that this power storage module includes 23 stacked bipolar electrodes and positive and negative terminal electrodes.
  • the obtained power storage module was repeatedly charged and discharged to perform an activation process. After adjusting the SOC (State of Charge) of the electricity storage module after activation to 85%, it was discharged to SOC 0%, and the discharge capacity before storage was measured. The power storage module after activation was again adjusted to SOC of 85% and stored in a constant temperature layer at 65° C. for 170 hours. The storage module after storage was discharged to SOC 0%, and the discharge capacity after storage was measured. Leakage current was calculated by the following formula.
  • Example 3 A power storage module was fabricated in the same manner as in Example 6, except that Ni plating (first Ni plating step) and heat treatment (diffusion step) for providing a Ni—Fe alloy layer were not performed in the current collector forming step. . Leakage current was calculated in the same manner as in Example 6 for the obtained power storage module. Table 2 shows the obtained leakage current per unit area.
  • the bipolar electrode and the power storage module in this embodiment can reduce the voltage drop of the power storage module by reducing the amount of hydrogen that permeates the current collector of the bipolar electrode. Therefore, according to the embodiments of the present disclosure, it is possible to improve the long-term reliability of the power storage module and the metal hydride battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

金属水素化物電池のバイポーラ電極(100)は、集電体(10)と、集電体(10)の第1面(10A)に設けられる負極活物質層(20)と、集電体(10)の第2面(10B)に設けられる正極活物質層(30)と、を備える。負極活物質層(20)は金属水素化物を含む。集電体(10)は、鋼板(13)と、鋼板(13)の少なくとも一方の面に形成されたNi-Fe合金層(15)と、を有する。

Description

金属水素化物電池のバイポーラ電極、バイポーラ電極を備えた金属水素化物電池、金属水素化物電池のバイポーラ電極の製造方法、及び金属水素化物電池の製造方法
 本開示は、金属水素化物電池のバイポーラ電極、バイポーラ電極を備えた金属水素化物電池、金属水素化物電池のバイポーラ電極の製造方法、及び金属水素化物電池の製造方法に関する。
 金属水素化物電池は、例えば、正極活物質として水酸化ニッケルなどのニッケル水酸化物を有する正極と、負極活物質として水素吸蔵合金を有する負極と、アルカリ金属水溶液からなる電解液とを具備する二次電池が一般的である。
 従来の蓄電モジュールとして、電極板の一方の面に正極が形成され、他方の面に負極が形成されたバイポーラ電極を備えるバイポーラ電池が知られている(例えば、下記特許文献1参照)。バイポーラ電池は、バイポーラ電極とセパレータとが積層方向に沿って交互に積層された積層体を備えている。積層方向における積層体の両端には、正極または負極の一方のみを備える終端電極が位置している。電極間に形成された内部空間には、電解液が収容されている。
特開2005-135764号公報
 コスト、電解液への耐反応性などの観点から、金属水素化物電池のバイポーラ電極を構成する集電体には、めっき鋼板が用いられる。本発明者らが、めっき鋼板からなる集電体と、水素吸蔵合金を含有する負極と正極を用いてバイポーラ電極を製造し、当該バイポーラ電極を用いた水素化物電池を組み立てて保存試験を行ったところ、原因不明の電圧低下(自己放電)現象が確認された。
 本発明者らは、鋭意検討の結果、バイポーラ電極の集電体を介して対極に水素が移動する現象が自己放電に関与していると考え、特定の材料を含む層によって水素透過を低減させる着想を得た。そして、本発明者らは、特定の材料を含む層を備える集電体を用いることにより、自己放電を低減する事が可能であることを見出した。
 本開示の一態様に係る金属水素化物電池のバイポーラ電極は、第1面及び前記第1面の反対側の第2面を有する集電体と、前記第1面に設けられる負極活物質層と、前記第2面に設けられる正極活物質層とを備え、前記負極活物質層は金属水素化物を含み、前記集電体は、鋼板と、前記鋼板の両面のうち少なくとも一方の面に形成されたNi-Fe合金層と、を有する。
本実施形態の金属水素化物電池のバイポーラ電極の断面を示す模式図である。 本実施形態の金属水素化物電池のバイポーラ電極の断面を示す模式図である。 Ni-Fe合金層のSEM-EDX(エネルギー分散型X線分光法)で得られた結果の一例を示す模式図である。 電気化学的水素透過法の説明図である。 水素透過抑制効果の評価結果を示す図である。 他の実施形態の金属水素化物電池のバイポーラ電極の断面を示す模式図である。 他の実施形態の金属水素化物電池のバイポーラ電極の断面を示す模式図である。 他の実施形態の金属水素化物電池のバイポーラ電極の断面を示す模式図である。 本実施形態の金属水素化物電池のバイポーラ電極が適用される蓄電装置の一例を示す概略断面図である。 図6における蓄電モジュールの内部構成を示す概略断面図である。 本実施形態の金属水素化物電池のバイポーラ電極を適用した評価用電池の模式図である。
 以下に、本開示の一実施形態の金属水素化物電池のバイポーラ電極、及び金属水素化物電池について、順を追って説明する。また、当該金属水素化物電池のバイポーラ電極を製造可能な方法、及び当該金属水素化物電池のバイポーラ電極を用いた金属水素化物電池を製造可能な方法について、順を追って詳細に説明する。
 以下、必要に応じて、本開示の金属水素化物電池のバイポーラ電極を製造可能な方法を、本開示の電極製造方法と称する場合がある。また、本開示の金属水素化物電池を製造可能な方法を、本開示の電池製造方法と称する場合がある。本開示の金属水素化物電池のバイポーラ電極を、本開示の電極、又は本開示のバイポーラ電極と称する場合がある。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。
 <金属水素化物電池のバイポーラ電極:第1実施形態>
 まず、本開示の金属水素化物電池のバイポーラ電極について、以下の実施形態と図を用いて詳細に説明する。図1Aに示すように本実施形態の金属水素化物電池のバイポーラ電極100は、集電体10と、集電体10の第1面10Aに設けられる負極活物質層20と、集電体10の第1面10Aとは異なる第2面10Bに設けられる正極活物質層30とを備える。負極活物質層20は金属水素化物を含む。集電体10は、鋼板13と、鋼板13の少なくとも一方の面に備えられたNi-Fe合金層15とを含む。
 バイポーラ電極100は、基本的に集電体10の第1面10Aに負極活物質(金属水素化物)を備え、第1面10Aと反対側の第2面10Bに正極活物質を備えるが、これに限られるものではない。すなわち本開示の電極は、金属水素化物を備える第1の集電体と正極活物質を備える第2の集電体とが接合されてバイポーラ電極を構成するものであっても良い。
 集電体10は、鋼板13の表面にNi-Fe合金層15を備える。鋼板13としては、例えば炭素量が0.25重量%未満の低炭素鋼、炭素量が0.01重量%未満の極低炭素鋼、極低炭素鋼にTiやNbなどを添加してなる非時効性極低炭素鋼等の炭素鋼が挙げられる。低炭素鋼としては、低炭素アルミキルド鋼(炭素量0.01~0.15重量%)、JISG 3141:2005にて規定される冷間圧延鋼板(SPCC等)等が挙げられる。圧延性と経済性から、低炭素アルミキルド鋼(炭素量0.01~0.15重量%)を採用するのが好ましい。鋼板13の主たる材料はFeであり、Fe以外の金属元素を含んでいてもよい。なお、鋼板13中のFe以外の金属元素の割合は10wt%以下が好ましく、5wt%以下がより好ましく、2wt%以下がさらに好ましく、1wt%以下が特に好ましい。集電体10の厚みとしては、5μm~1000μmを例示できる。
 Ni-Fe合金層15は、鋼板13の少なくとも一方の面に形成される。Ni-Fe合金層15は、実質的にニッケル(Ni)及び鉄(Fe)からなる合金が含まれる合金層である。
 本実施形態におけるNi-Fe合金層15は、ニッケル(Ni)及び鉄(Fe)を含有していればよく、各成分がどのような状態で含まれているかは特に限定されるものではない。
 また本明細書中におけるNi-Fe合金層の定義としては以下のとおりである。表層から10μmまでの深さにおけるNiおよびFeの元素分析を行った際、NiとFeそれぞれの含有量の最大値の1/10量以上が含まれる部分にNi-Fe合金層が存在すると定義する。
 すなわち本実施形態においてNi-Fe合金層15は、図2に示すようなSEM-EDX(エネルギー分散型X線分光法)で得られた結果において、Niの曲線とFeの曲線が交差する前後の部分において、NiとFeそれぞれの最大値の1/10の間の距離をNi-Fe合金層として読み取ることができる。なお図2は上記分析結果の一例であり、横軸を表層からの深さ方向の距離(μm)、縦軸をNiおよびFeのX線強度として示したものである。
 なお本実施形態においてNi-Fe合金層15中に含まれる金属元素としては、NiとFeに制限されず、本発明の課題を解決し得る限り、他の金属元素を含んでいてもよい。
 例えば、Ni-Fe合金層15中には、Co、Mo等の金属元素や、不可避の不純物が含まれていてもよい。なお、Ni-Fe合金層15中のNi及びFe以外の金属元素の割合は10wt%以下が好ましく、5wt%以下がより好ましく、1wt%以下がさらに好ましく、0.5wt%以下が特に好ましい。
 本実施形態において、Ni-Fe合金層15による水素透過低減の効果について説明する。すなわち、本実施形態の金属水素化物電池のバイポーラ電極は、その集電体中に含まれるNi-Fe合金層15により、水素透過低減の効果を有する。
 ニッケル金属水素化物電池の放電反応は以下のように表される。
 正極:NiOOH + H O + e→ Ni(OH) + OH
 負極:MH + OH → M + H O + e
 さらに、負極における反応は以下の2つの反応からなる。
 MH = M + H +e
 H+ OH = H O
 反応の際、バイポーラ電極では、電子eは集電体を介して負極から正極に移動する。水酸化物イオンOHは、電解液を介して正極から隣り合うバイポーラ電極の負極に移動する。電池の外では、負極から外部回路(負荷)を介して電子が正極に移動する。
 一方、バイポーラ電極の集電体が水素透過を許容する場合、外部回路に接続されていない状態でも、正極及び負極で以下の反応が生じる。
 正極:NiOOH + H + e → Ni(OH)
 H → H + e
 負極:H+ e → H
 MH → M + H +e
 負極活物質層(金属水素化物MH)と正極活物質層との間に生じる水素濃度勾配によって、負極活物質層では上記反応により水素原子[H]が生じる。水素原子[H]は負極活物質層から集電体を介して、対極である正極活物質層に移動する。正極に移動した水素原子[H]は、上記反応式のように正極で消費されることから、常に負極活物質層と正極活物質層との間に、水素濃度勾配が生じる。結果として、この反応サイクルが繰り返し起こり、正極の電位は低下し続け、かつ負極の電位は上昇し続けることで、電池電圧の低下を引き起こす。上記反応は、通常の放電時に正極及び負極で生じる反応とは異なるものの、活物質の反応結果としては同じであり、反応によって正極及び負極のそれぞれの電位は低下する。金属水素化物による水素の放出は吸熱反応であり、また電位が高いほど活物質の反応性は高いため、上述の反応は、高電位、高温にて顕著となる。反応の際、バイポーラ電極では、電子eの集電体を介した移動は生じない。
 そこで、本発明者は、集電体を構成する鋼板に、対極への水素透過を低減する被覆を形成させることを想起した。具体的には、鋼板の少なくとも一方の面にNi-Fe合金層を形成することを想起した。
 ところで、鉄鋼の水素脆性を検証する技術が従来知られている。鉄鋼の水素脆性は、水素の拡散によって支配される鉄鋼の遅れ破壊現象である。これらの従来技術は、鋼中に水素が留まることによる鋼そのものの機械特性への影響を検証する技術である。
 一方で、本開示のバイポーラ電極のように、鋼板の両面において生じる水素濃度勾配を前提として、鋼板中の水素透過を低減させる技術は知られていない。本発明者らが鋭意検討した結果、鋼板の少なくとも一方の面にNi-Fe合金層を形成させることにより、バイポーラ電極の集電体材料となる鋼板中の水素透過の低減が可能であることを見いだした。
 Ni-Fe合金層による鋼板中の水素透過の低減効果について、以下のように電気化学的水素透過法を用いて評価する。評価に用いた水素透過試験装置を図3に模式的に示す。
 水素透過試験装置は、2つの電解槽EC及びECが試験片Wを挟んで対向して配置されている。図3中左側の電解槽ECは、カソード側(水素侵入側)であり、右側の電解槽ECがアノード側(水素検出側)である。水素透過試験装置は、電解槽EC1で水素を発生させ、試験片Wを透過して電解槽ECまで到達した水素が酸化される時のアノード電流を検出する。図中、RE1、RE2は参照電極、CE1、CE2は対極、WEは作用電極としての試験片Wであり、それぞれポテンショスタットPS、ポテンショ・ガルバノスタットPS/GSに接続されている。参照電極RE1、RE2はHg/HgO又はカロメル電極を用いることができる。対極CE1、CE2は白金を用いることができる。電解液Eaは、KOH、NaOH、LiOHを含むアルカリ電解液を用いることができる。
 水素侵入側の電位が-0.6V、-0.45V、-0.3V(vsRHE(可逆水素電極))となるように、ポテンショ・ガルバノスタットPS/GSにより対極CE1に電圧を印加し、水素検出側の電流変化を測定する。また、水素検出側の電位は+1.45V(vsRHE)、に保持する。液温は65℃に保持し、試験中はNガスで脱気する。種々の試験片Wの水素透過電流を測定して比較することにより、集電体を模した試験片の水素透過低減の効果について考察することが可能となる。
 上記水素透過試験装置を用いて、以下の2種類の試験片を用いて水素透過電流を測定した結果を図4に示す。
 (試験片W1)厚さ5μmのNiめっきを両面に形成した表面処理鋼板
 (試験片W2)厚さ3.5μmのNi-Fe合金層を両面に形成し、さらにNi-Fe合金層上に厚さ1μmのNiめっきを形成した表面処理鋼板
 なお鋼板は、低炭素アルミキルド鋼の冷間圧延箔(厚さ50μm)を用いた。Niめっき層、Ni-Fe合金層の形成方法は、後述の実施例に記載の方法とした。
 上記のような現象を理由として、本実施形態においては、Ni-Fe合金層15は鋼板13の両面のうち、特に負極活物質層20が位置する側の面に設けられることが好ましい。
 上記のような水素透過現象の推定メカニズムを理由として、Ni-Fe合金層15は、図1Aに示すように鋼板13の両面のうち、少なくとも負極活物質層20が位置する側の面に設けられることが好ましい。すなわち、負極活物質層20と鋼板13との間に形成されたNi-Fe合金層15が、負極活物質層20(すなわち、水素吸蔵合金:金属水素化物)により放出される水素が鋼板13を透過することを妨げるため、水素透過をより低減し得る。
 またNi-Fe合金層15は、図1Bに示されるように、鋼板13の両面に設けられるのがさらに好ましい。すなわち図1Bにおいては、鋼板13の第1面にNi-Fe合金層15aが設けられ、反対側の第2面にNi-Fe合金層15bが設けられている。このような構成により、仮に負極活物質層20(すなわち、水素吸蔵合金:金属水素化物)により放出される水素がNi-Fe合金層15a及び鋼板13を透過した場合でも、正極活物質層30に到達する前にNi-Fe合金層15bに捕捉されると考えられるため、上述した電圧低下の問題を回避できる。なお、鋼板13の第1面は、集電体の第1面10Aと同じ側の面である。鋼板13の両面とは、第1面及び第1面とは反対側の第2面を指す。
 Ni-Fe合金層15の厚みは、1.0μm以上であるのが好ましい。Ni-Fe合金層15の厚みが1.0μm以上である場合、Ni-Fe合金層15による水素透過低減の十分な効果が得られると考えられる。すなわち、集電体におけるNi-Fe合金層15の厚みが1.0μm以上である場合、電池における電圧低下をより効果的に低減できると考えられる。
 また、Ni-Fe合金層15の厚みは、1.2μm以上であるのが更に好ましく、1.5μm以上であるのがより好ましい。さらにNi-Fe合金層15は鋼板13の第1面及び第2面の両方に設けることが好ましい。
 なお、Ni-Fe合金層15の厚みは、例えばSEM-EDX(エネルギー分散型X線分光法)により算出することができる。すなわち上述のように、SEM-EDX(エネルギー分散型X線分光法)での分析にて、表層から厚さ方向へ10μmまでの深さにおけるNiおよびFeの元素分析を線分析で行う。なお、測定条件としては加速電圧:10kV、観察倍率:5000倍、測定ステップ:0.01μm、等とすることができる。図2に示すように、横軸を表層からの深さ方向の距離(μm)、縦軸をNiおよびFeのX線強度とし、Niの曲線とFeの曲線が交差する前後の部分において、NiとFeそれぞれの最大値の1/10の間の距離をグラフより読み取り、Ni-Fe合金層の厚みとすることができる。
 なおNi-Fe合金層15は、後述する負極終端電極にも設けられるのが好ましい。負極終端電極にNi-Fe合金層を形成することで、負極終端電極を含むセル(単電池)において、水素が負極終端電極を透過して電池外部に漏れることで生じる放電リザーブの減少を低減することができる。
 次に、本実施形態の活物質層(負極活物質層20及び正極活物質層30)について説明する。なお本実施形態において、負極活物質層20は、負極活物質を含み、必要に応じて負極添加剤、結着剤及び導電助剤を含む。また正極活物質層30は、正極活物質を含み、必要に応じて正極添加剤、結着剤及び導電助剤を含む。以下、正極活物質層と負極活物質層の両者に関する事項は、両者を総じて活物質層として説明する。
 本実施形態において負極活物質層20に含まれる負極活物質としては、ニッケル金属水素化物電池の負極活物質、すなわち水素吸蔵合金(金属水素化物)として用いられるものであれば限定されない。水素吸蔵合金とは、基本的に、容易に水素と反応するものの、水素の放出能力に劣る金属Aと、水素と反応しにくいものの、水素の放出能力に優れる金属Bとの合金である。Aとしては、Mgなどの第2族元素、Sc、ランタノイドなどの第3族元素、Ti、Zrなどの第4族元素、V、Taなどの第5族元素、複数の希土類元素を含有するミッシュメタル(以下、Mmと略すことがある。)、Pdなどを例示できる。また、Bとしては、Fe、Co、Ni、Cr、Pt、Cu、Ag、Mn、Zn、Alなどを例示できる。
 具体的な水素吸蔵合金として、六方晶CaCu型結晶構造を示すAB型、六方晶MgZn型若しくは立方晶MgCu型結晶構造を示すAB型、立方晶CsCl型結晶構造を示すAB型、六方晶MgNi型結晶構造を示すAB型、体心立方晶構造を示す固溶体型、並びに、AB型及びAB型の結晶構造が組み合わされたAB型、A型及びA19型のものを例示できる。水素吸蔵合金は、以上の結晶構造のうち、1種類を有するものでもよいし、また、以上の結晶構造の複数を有するものでもよい。
 AB型水素吸蔵合金として、LaNi、CaCu、MmNiを例示できる。AB型水素吸蔵合金として、MgZn、ZrNi、ZrCrを例示できる。AB型水素吸蔵合金として、TiFe、TiCoを例示できる。AB型水素吸蔵合金として、MgNi、MgCuを例示できる。固溶体型水素吸蔵合金として、Ti-V、V-Nb、Ti-Crを例示できる。AB型水素吸蔵合金として、CeNiを例示できる。A型水素吸蔵合金として、CeNiを例示できる。A19型水素吸蔵合金として、CeCo19、PrCo19を例示できる。上記の各結晶構造において、一部の金属を、他の1種類若しくは複数種類の金属又は元素で置換してもよい。
 負極活物質の表面は公知の方法で処理されてもよい。特に、負極活物質としては、アルカリ処理された水素吸蔵合金を採用するのが好ましい。アルカリ処理とは、水素吸蔵合金を、アルカリ金属水酸化物を溶解したアルカリ水溶液で処理することを意味する。
 例えば、希土類元素とNiを含む水素吸蔵合金を、アルカリ金属水酸化物を溶解したアルカリ水溶液で処理すると、アルカリ水溶液に対して溶解性の高い希土類元素が水素吸蔵合金の表面から溶出することになる。ここで、Niはアルカリ水溶液に対して溶解性が低いため、結果的に、水素吸蔵合金の表面のNi濃度は、水素吸蔵合金の内部と比較して高くなる。以下、水素吸蔵合金において、Ni濃度が内部と比較して高い部分を、Ni濃縮層という。Ni濃縮層の存在に因り、負極活物質の性能が向上すると考えられる。
 アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムを例示でき、中でも、水酸化ナトリウムが好ましい。アルカリ水溶液として水酸化ナトリウム水溶液を用いることで、アルカリ水溶液として水酸化リチウムや水酸化カリウムを用いる場合と比較して、本開示のニッケル金属水素化物電池の電池特性が好適化する場合がある。
 アルカリ水溶液としては強塩基性のものが好ましい。アルカリ水溶液におけるアルカリ金属水酸化物の濃度として、10~60質量%、20~55質量%、30~50質量%、40~50質量%を例示できる。
 アルカリ処理は、水素吸蔵合金をアルカリ水溶液に浸ける方法で行うのが好ましい。その際には、撹拌条件下で行うのが好ましく、また、加熱条件下で行うのが好ましい。加熱温度の範囲としては、50~150℃、70~140℃、90~130℃を例示できる。加熱時間は、アルカリ水溶液の濃度や加熱温度に応じて適宜決定すればよいが、0.1~10時間、0.2~5時間、0.5~3時間を例示できる。
 以上のアルカリ処理の観点からは、水素吸蔵合金としては、希土類元素とNiを含むものが好ましい。
 負極活物質は粉末状態が好ましく、また、その平均粒子径としては1~100μmの範囲内が好ましく、3~50μmの範囲内がより好ましく、5~30μmの範囲内がさらに好ましい。
 負極活物質層には、負極活物質が負極活物質層全体の質量に対して、85~99質量%で含まれるのが好ましく、90~98質量%で含まれるのがより好ましい。
 負極添加剤は、ニッケル金属水素化物電池の電池特性を向上させるために負極に添加されるものである。負極添加剤としては、ニッケル金属水素化物電池の負極添加剤として用いられるものであれば限定されない。具体的な負極添加剤として、CeF及びYFなどの希土類元素のフッ化物、Bi及びBiFなどのビスマス化合物、In及びInFなどのインジウム化合物、並びに、正極添加剤として例示した化合物を挙げることができる。
 負極活物質層には、負極添加剤が負極活物質層全体の質量に対して、0.1~10質量%で含まれるのが好ましく、0.5~5質量%で含まれるのがより好ましい。
 次に、本実施形態の正極活物質層30に含まれる正極活物質としては、ニッケル金属水素化物電池の正極活物質として用いられるニッケル水酸化物であればよく、その一部に他の金属がドープされていてもよい。具体的な正極活物質として、水酸化ニッケル、金属をドープした水酸化ニッケルを例示できる。水酸化ニッケルにドープする金属として、マグネシウム、カルシウムなどの第2族元素、コバルト、ロジウム、イリジウムなどの第9族元素、亜鉛、カドミウムなどの第12族元素を例示できる。
 正極活物質の表面は公知の方法で処理されてもよい。正極活物質は粉末状態が好ましく、また、その平均粒子径としては1~100μmの範囲内が好ましく、3~50μmの範囲内がより好ましく、5~30μmの範囲内がさらに好ましい。なお、本明細書において、平均粒子径とは、一般的なレーザー回折式粒度分布計を用いた測定におけるD50の値を意味する。
 正極活物質層には、正極活物質が正極活物質層全体の質量に対して、75~99質量%で含まれるのが好ましく、80~97質量%で含まれるのがより好ましく、85~95質量%で含まれるのがさらに好ましい。
 正極添加剤は、ニッケル金属水素化物電池の電池特性を向上させるために正極に添加されるものである。正極添加剤としては、ニッケル金属水素化物電池の正極添加剤として用いられるものであれば限定されない。具体的な正極添加剤として、Nbなどのニオブ化合物、WO、WO、LiWO、NaWO及びKWOなどのタングステン化合物、Ybなどのイッテルビウム化合物、TiOなどのチタン化合物、Yなどのイットリウム化合物、ZnOなどの亜鉛化合物、CaO、Ca(OH)及びCaFなどのカルシウム化合物、並びに、その他の希土類酸化物を例示できる。
 正極活物質層には、正極添加剤が正極活物質層全体の質量に対して、0.1~10質量%で含まれるのが好ましく、0.5~5質量%で含まれるのがより好ましい。
 本実施形態において、活物質層に必要に応じて含まれる結着剤及び導電助剤について以下に説明する。
 結着剤は活物質などを集電体の表面に繋ぎ止める役割を果たすものである。結着剤としては、ニッケル金属水素化物電池の電極用結着剤として用いられるものであれば限定されない。具体的な結着剤として、ポリフッ化ビニリデン、ポリテトラフルオロエチレン及びフッ素ゴムなどのフッ素含有樹脂、ポリプロピレン及びポリエチレンなどのポリオレフィン樹脂、ポリイミド及びポリアミドイミドなどのイミド系樹脂、カルボキシメチルセルロース、メチルセルロース及びヒドロキシプロピルセルロースなどのセルロース誘導体、スチレンブタジエンゴムなどの共重合体、並びに、(メタ)アクリル酸誘導体をモノマー単位として含有する、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸及びポリメタクリル酸エステルなどの(メタ)アクリル系樹脂を例示できる。
 活物質層には、結着剤が活物質層全体の質量に対して、0.1~15質量%で含まれるのが好ましく、1~10質量%で含まれるのがより好ましく、2~7質量%で含まれるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくてもよい。導電助剤は、粉末状態で活物質層に添加されてもよいし、活物質粒子の表面を被覆した状態で用いられてもよい。導電助剤としては化学的に不活性な電子伝導体であれば良い。具体的な導電助剤としては、コバルト、ニッケル、銅などの金属、コバルト酸化物などの金属酸化物、及びコバルト水酸化物などの金属水酸化物、カーボンブラック、黒鉛、炭素繊維などの炭素材料が例示される。
 負極活物質層20には、導電助剤が負極活物質層全体の質量に対して、0.1~5質量%で含まれるのが好ましく、0.2~3質量%で含まれるのがより好ましく、0.3~1質量%で含まれるのがさらに好ましい。
 正極活物質層30には、導電助剤が正極活物質層全体の質量に対して、0.1~10質量%で含まれるのが好ましく、0.2~7質量%で含まれるのがより好ましく、0.3~5質量%で含まれるのがさらに好ましい。
 <金属水素化物電池のバイポーラ電極:第2実施形態>
 次に以下の第2実施形態を用いて、本開示の金属水素化物電池のバイポーラ電極をさらに詳細に説明する。なお本実施形態は、集電体10の少なくとも一方の最表面にNi層17が形成されている点において上述の第1実施形態と相違する。そのためこれら相違点について主に説明し、上記した第1実施形態の構成と同一の機能を有する部材については、同一の参照番号を付してその説明は適宜省略する。
 図5Aに示すように、本実施形態の金属水素化物電池のバイポーラ電極200は、集電体10の一方面(第1面)10Aと同じ側の最表面にNi層17が形成されている。すなわち、Ni-Fe合金層15と負極活物質層20との間にさらにNi層17が形成されている。なお本実施形態においては、図5Bに示すように、集電体10の一方面(第1面)10Aと同じ側の最表面にNi層17aが形成されると共に、他方面(第2面)10Bと同じ側の最表面にNi層17bが形成されている構成でもよい。なお図5Bでは、Ni-Fe合金層15aと負極活物質層20との間にさらにNi層17aが形成されており、Ni-Fe合金層15bと正極活物質層30との間にさらにNi層17bが形成されている。
 Ni層17の厚みとしては特に限定されるものではないが、例えば0.1μm~10.0μmであることが好ましい。
 Ni層17中に含まれる金属元素としては、Niに制限されず、他の金属元素を含んでいてもよい。例えば、Ni層17中には、Co、Mo等の金属元素が含まれていてもよい。なお、Ni層17中のNi以外の金属元素の割合は10wt%以下が好ましく、より好ましくは5wt%以下が好ましく、さらに好ましくは1wt%以下、特に好ましくは0.5wt%以下が好ましい。
 なお、Ni層17の形成方法としては、Ni-Fe合金層15を形成するための熱処理において、Feが拡散していないNi層を残存させることで形成する方法や、Ni-Fe合金層15を形成した後に再度のNiめっきを行う方法が挙げられる。電解液に対する耐食性の観点から、上述の再度のNiめっきによりNi層17を設ける方法が好ましく、めっき方法としては、例えば電解めっき、無電解めっき等の方法が挙げられる。このうち、コストや膜厚制御等の観点より特に電解めっきによる方法が好ましい。
 なお、本実施形態においてさらに、上述のNi層17は粗化Ni層17cであってもよい。なお粗化Ni層17cとは、負極活物質層20又は正極活物質層30と接する側の表面において、Ni-Fe合金層15あるいは鋼板13よりも大きい表面粗さを有するNi層であることを意味する。Ni層17を粗化Ni層17cとすることにより、集電体10と接合する部材との間の結合強度を向上させることができる。例えば、集電体10と後述するシール部との接合界面では、溶融状態の樹脂が複数の突起間に入り込み、アンカー効果が発揮される。これにより、本実施形態のバイポーラ電極とシール部との間の結合強度を向上させることができる。また、粗化Ni層17cを設けることにより表面積が大きくなるため、電極の放熱性等を向上できる。
 粗化Ni層17cの表面粗さの数値としては、公知のパラメータ等を用いて表すことができる。パラメータとしては、例えば十点平均粗さRzjisにより規定可能であり、Rzjisが2.0μm~16.0μmであることが好ましい。十点平均粗さRzjisはJISB0601:2013に準拠して測定され、レーザー顕微鏡を用いて測定することが好ましい。
 粗化Ni層17cを形成する際には、図5Cに示すように、Ni-Fe合金層15と粗化Ni層17cとの間に、適宜、下地Ni層17dを形成してもよい。0.1μm~10μm程度の下地Ni層17dを設けることにより粗化Ni層17cの密着性を向上させる、ピンホールの発生を抑制する、等の効果が得られる。
 <バイポーラ電極の製造方法>
 次に、本開示の金属水素化物電池のバイポーラ電極を製造可能な方法について、以下の実施形態により説明する。本実施形態にかかる金属水素化物電池のバイポーラ電極の製造方法は、集電体形成工程(ステップ1)と、活物質層形成工程(ステップ2)と、を含む。そして、集電体形成工程(ステップ1)は、鋼板の少なくとも一方の面にNi層を設ける工程(ステップ1a)と、Ni層を設けた鋼板を熱処理することによりNi層中のNiと鋼板中のFeとを拡散させてNi-Fe合金層を形成する工程(ステップ1b)と、を含む。集電体形成工程(ステップ1)はさらに、粗化Ni層形成工程(ステップ1c)を含んでいてもよい。そして活物質層形成工程(ステップ2)は、集電体の第1面に負極活物質層を形成する工程(ステップ2a)と、集電体の第2面に正極活物質層を設ける工程(ステップ2b)と、を含む。
 ステップ1aについて説明すると、例えば電解めっきにより、Niめっき浴を用いて、鋼板の表面にNi層を形成する。Niめっき浴としては、Niめっきで通常用いられているめっき浴、すなわち、ワット浴や、クエン酸浴、スルファミン酸浴、ほうフッ化物浴、塩化物浴などを用いることができる。例えば、Ni層は、ワット浴として、硫酸ニッケル六水和物200~350g/L、塩化ニッケル六水和物20~60g/L、ほう酸10~50g/Lの浴組成のものを用い、pH1.5~5.0、浴温40~80℃にて、電流密度1~40A/dmの条件で形成することができる。Ni層の厚みは、好ましくは0.05~5.0μm、より好ましくは0.1~3.0μmである。
 ステップ1bについて説明すると、熱処理は、連続焼鈍法、または箱型焼鈍法(バッチ焼鈍)のいずれで行なってもよい。また、熱処理条件は、必要とするNi-Fe合金層の厚み及びNiめっき層の厚みに応じて、適宜選択すればよい。例えば、連続焼鈍とする場合には、熱処理温度の範囲を700~800℃、熱処理時間の範囲を10秒~300秒とすることが好ましい。また、箱型焼鈍とする場合には、熱処理温度の範囲を450~600℃、熱処理時間の範囲を1時間~10時間、熱処理雰囲気を非酸化性雰囲気または還元性保護ガス雰囲気とすることが好ましい。なお、熱処理雰囲気を、還元性保護ガス雰囲気とする場合には、保護ガスとして、熱伝達のよい水素富化焼鈍と呼ばれるアンモニアクラック法により生成される75%水素-25%窒素からなる保護ガスを用いることが好ましい。そして、熱処理によって熱拡散させることにより、Ni層中のNiと鋼板中のFeとを拡散させたNi-Fe合金層を形成することができる。なお、この場合においては、FeがNi層の表面まで拡散するような構成としてもよいし、あるいは、Ni層の一部についてはFeが拡散していないNi層を残存させるような構成としてもよい。
 ステップ1cについて説明すると、ステップ1bにより形成されたNi-Fe合金層上に、電気めっき等の方法を用いてニッケル粒状物を凝集させた状態で析出させることで粗化Ni層を形成することができる。すなわち、粗化Ni層が、Ni-Fe合金層と負極活物質層又は正極活物質層との間に存在することとなる。ステップ1cにより形成される粗化Ni層は、後述の活物質層形成工程(ステップ2)において形成される負極活物質層20又は正極活物質層30と接する側の表面において、Ni-Fe合金層あるいは鋼板よりも大きい表面粗さを有する。なお、ステップ1cにおいて粗化Ni層を形成する方法としては、電気めっき以外にも、スパッタや粗面を備えたロールプレス等の方法を適用し得る。また、このステップ1cにおいて粗化Ni層を形成する前に下地Ni層を形成する工程が含まれていてもよい。
 ステップ2について説明すると、集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、溶剤、並びに必要に応じて結着剤、導電助剤及び添加剤を混合してスラリーにしてから、当該スラリーを集電体の表面に塗布後、乾燥する。溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。
 なお、集電体の表面に活物質層を形成する順番としては、負極活物質層を設けた後に正極活物質層を設けることとしてもよいし、その逆の順で設けることとしてもよい。また、負極活物質層と正極活物質層を同時に設けることとしてもよい。すなわち活物質層形成工程(ステップ2)は、集電体の第1面に負極活物質層を形成する工程(ステップ2a)と、集電体の第2面に正極活物質層を設ける工程(ステップ2b)とが含まれていれば、その順番は制限されない。
 <金属水素化物電池及びその製造方法>
 本開示の金属水素化物電池は、本開示のバイポーラ電極が積層されてなることを特徴とする。それ以外の構成については、例えば特開2020-140773号公報等の文献に開示される構成を適用することができる。すなわち本開示の金属水素化物電池は、集電体の第1面に負極活物質層を備え、第2面に正極活物質層を備えるバイポーラ電極を備える。集電体は、上述のとおり、鋼板と鋼板の少なくとも一方の面に設けられたNi-Fe合金層を備えるものである。本開示の金属水素化物電池においてバイポーラ電極の数は1以上であればよく、所望する容量に応じて、バイポーラ電極の数を増減できる。バイポーラ電極間にはセパレータを介すると共に、電解液を注入した後に気密に密閉することで、本開示の金属水素化物電池を製造することができる。本開示の金属水素化物電池は、例えばニッケル金属水素化物電池である。
 以下、実施形態としてニッケル金属水素化物電池を例にして本開示の一実施形態の金属水素化物電池について説明するが、本開示の金属水素化物電池の発明はこれに限られるものではない。
 図6は、蓄電装置の一実施形態を示す概略断面図である。蓄電装置1は、積層された複数の蓄電モジュール4を含むモジュール積層体2と、モジュール積層体2に対してモジュール積層体2の積層方向Dに拘束荷重を付加する拘束部材3とを備えている。
 モジュール積層体2は、複数の蓄電モジュール4と、複数の冷却板5とを含む。本実施形態では、3つの蓄電モジュール4と4つの冷却板5が、蓄電モジュール4の両側に冷却板5が位置するように交互に積層されている。以下、蓄電モジュール4が積層されている方向を「積層方向D」とする。また、積層方向Dに交差もしくは直交する方向を水平方向とする。
 蓄電モジュール4は、バイポーラ型の金属水素化物電池であり、積層方向Dから見て矩形状である。以下の説明では、蓄電モジュール4として、ニッケル金属水素化物電池を例示する。積層方向Dに互いに隣り合う蓄電モジュール4は、冷却板5を介して電気的に接続されている。モジュール積層体2において、積層方向Dの一端に位置する冷却板5には、負極端子6が接続されている。積層方向Dの他端に位置する冷却板5には、正極端子7が接続されている。負極端子6及び正極端子7は、例えば冷却板5の縁部から積層方向Dに交差する方向に引き出されている。負極端子6及び正極端子7は図示しない車両等の外部回路に接続されており、外部回路によって蓄電装置1の充放電が行われる。冷却板5は、アルミニウムからなる。
 なお、本実施形態では、モジュール積層体2の最外層(スタック最外層)は冷却板5であるが、モジュール積層体2の最外層は蓄電モジュール4であってもよい。この場合、スタック最外層を構成する蓄電モジュール4に、負極端子6もしくは正極端子7が接続される。
 冷却板5の内部には、空気等の冷媒を流通させる複数の流路5aが設けられており、蓄電モジュール4において発生した熱を蓄電装置1外に放出する。流路5aは、例えば積層方向Dと、負極端子6及び正極端子7の引き出し方向とにそれぞれ交差(直交)する方向に沿って延在している。冷却板5は、導電性で、蓄電モジュール4同士を電気的に接続する接続部材としての機能を有している。また、冷却板5は、これらの流路5aに冷媒を流通させることにより、蓄電モジュール4で発生した熱を放熱する放熱板としての機能を併せ持っている。本実施形態では、積層方向Dから見た平面視において、冷却板5の面積は、蓄電モジュール4の面積よりも小さい。しかし、放熱性の向上の観点から、積層方向Dから見た平面視において、冷却板5の面積は、蓄電モジュール4の面積と同じでもよく、蓄電モジュール4の面積よりも大きくてもよい。また、流路5aに高温の冷媒を流通させて、蓄電モジュール4の加温を行なっても良い。
 拘束部材3は、積層方向Dにおいてモジュール積層体2を挟む一対のエンドプレート8を有するとともに、エンドプレート8同士を締結する締結ボルト81及びナット82を有する。エンドプレート8は、積層方向Dから見た平面視において、蓄電モジュール4及び冷却板5よりも一回り大きい金属板であり、矩形状である。各エンドプレート8とモジュール積層体2との間には、絶縁性のフィルムFが配置されている。フィルムFにより、各エンドプレート8とモジュール積層体2との間は絶縁されている。
 エンドプレート8の縁部には、積層方向Dから見て、モジュール積層体2よりも外側となる位置に挿通孔8aが設けられている。締結ボルト81は、一方のエンドプレート8の挿通孔8aから他方のエンドプレート8の挿通孔8aに向かって通されている。他方のエンドプレート8の挿通孔8aから突出した締結ボルト81の先端部分には、ナット82が螺合されている。これにより、蓄電モジュール4及び冷却板5が2枚のエンドプレート8によって挟み込まれ、モジュール積層体2としてユニット化されている。また、モジュール積層体2に対し、拘束荷重が積層方向Dに付加されている。
 次に、蓄電モジュール4の構成について詳細に説明する。図7は、図6に示された蓄電モジュールの内部構成を示す概略断面図である。図7に示されるように、蓄電モジュール4は、電極積層体(セルスタック)11、積層方向Dにおいて電極積層体11の両外側に位置する導電板40、及び、電極積層体11と導電板40とを一体化する樹脂製のシール部12を備える。
 電極積層体11は、セパレータSPを介して蓄電モジュール4の積層方向Dに沿って積層された複数の電極によって構成されている。これらの電極は、複数のバイポーラ電極100(200)の積層体と、負極終端電極18と、正極終端電極19とを含む。バイポーラ電極100(200)及びセパレータSPは、積層方向Dから見て矩形状である。
 バイポーラ電極100(200)は、一方面(第1面)10A及び一方面10Aの反対側の他方面(第2面)10Bを含む集電体10と、一方面10Aに設けられた負極活物質層20と、他方面10Bに設けられた正極活物質層30とを有している。正極活物質層30は、正極活物質が集電体10に塗工されることにより形成される。負極活物質層20は、負極活物質が集電体10に塗工されることにより形成される。電極積層体11において、一のバイポーラ電極100(200)の正極活物質層30は、セパレータSPを挟んで積層方向Dの一方に隣り合う別のバイポーラ電極100(200)の負極活物質層20と対向している。電極積層体11において、一のバイポーラ電極100(200)の負極活物質層20は、セパレータSPを挟んで積層方向Dの他方に隣り合う別のバイポーラ電極100(200)の正極活物質層30と対向している。
 負極終端電極18は、集電体10と、集電体10の一方面10Aに設けられた負極活物質層20とを有している。負極終端電極18は、一方面10Aが電極積層体11における積層方向Dの中央側を向くように、積層方向Dにおける電極積層体11の一端に配置されている。負極終端電極18の集電体10の他方面10Bは、電極積層体11の積層方向Dにおける外側面を構成し、蓄電モジュール4に隣接する一方の冷却板5(図6参照)と導電板40を介して電気的に接続されている。負極終端電極18の負極活物質層20は、セパレータSPを介して、バイポーラ電極100(200)の正極活物質層30と対向している。
 正極終端電極19は、集電体10と、集電体10の他方面10Bに設けられた正極活物質層30とを有している。正極終端電極19は、他方面10Bが電極積層体11における積層方向Dの中央側を向くように、積層方向Dにおける電極積層体11の他端に配置されている。正極終端電極19の正極活物質層30は、セパレータSPを介して、バイポーラ電極100(200)の負極活物質層20と対向している。正極終端電極19の集電体10の一方面10Aは、電極積層体11の積層方向Dにおける外側面を構成し、蓄電モジュール4に隣接する他方の冷却板5(図6参照)と導電板40を介して電気的に接続されている。
 集電体10は、めっき処理が施された鋼板である。集電体10の縁部10Cは、正極活物質及び負極活物質が塗工されない未塗工領域であり、矩形枠状となっている。正極活物質層30を構成する正極活物質としては、上述のものを用いることができる。負極活物質層20を構成する負極活物質は、上述のものを用いることができる。本実施形態では、集電体10の一方面10Aにおける負極活物質層20の形成領域は、集電体10の他方面10Bにおける正極活物質層30の形成領域に対して一回り大きくなっている。
 導電板40は、電極積層体11の劣化抑制のために設けられる導電性の板状部材である。導電板40は、両面において活物質層が形成されていない未塗工箔である。導電板40は、例えば、ニッケルよりなる。導電板40は、冷却板5に接する中央部41と、中央部41を囲む矩形枠状の縁部42とを有する。縁部42は、封止体(シール部)12に保持される部分である。導電板40の厚さは、例えば0.1μm以上1000μm以下である。導電板40は、積層方向Dの両端において、蓄電モジュール4の外壁を構成している。なお、導電板40を設けない場合は、負極終端電極18及び正極終端電極19が外壁を構成する。
 シール部12は、例えば絶縁性の樹脂によって、全体として矩形の枠状に形成されている。シール部12は、集電体10の縁部10Cと、導電板40の縁部42とを包囲するように、電極積層体11の側面11aに沿って設けられている。シール部12は、集電体10の縁部10Cと、導電板40の縁部42とを保持している。シール部12は、集電体10の縁部10C及び導電板40の縁部42に結合された複数の第1シール部21と、側面11aに沿って第1シール部21を外側から包囲し、第1シール部21のそれぞれに結合された第2シール部22とを有している。第1シール部21及び第2シール部22の構成材料は、例えばポリプロピレンである。
 第1シール部21は、導電板40の縁部42の全周、もしくは集電体10の他方面10Bにおいて縁部10Cの全周にわたって連続的に設けられ、積層方向Dから見て矩形枠状をなしている。負極終端電極18及び正極終端電極19では、集電体10の一方面10A及び他方面10Bの双方の縁部10Cに第1シール部21が設けられている。
 第1シール部21は、例えば超音波又は熱圧着によって導電板40の縁部42もしくは集電体10の他方面10Bに溶着され、気密に接合されている。第1シール部21は、例えば積層方向Dに所定の厚さを有するフィルムである。第1シール部21は、樹脂シートを打ち抜き加工することによって形成されてもよいし、複数の樹脂シートを枠状に配置して形成されてもよいし、金型を用いた射出成形によって形成されてもよい。本実施形態では、第1シール部21は、樹脂シートを打ち抜き加工することによって形成される。第1シール部21の厚さは、例えば50μm以上250μm以下である。第1シール部21の内側は、積層方向Dにおいて互いに隣り合う集電体10の縁部10C同士の間に位置している。第1シール部21の外側は、集電体10の縁よりも外側に張り出しており、その先端部分は、第2シール部22によって保持されている。積層方向Dに沿って互いに隣り合う第1シール部21同士は、互いに離間していてもよく、接していてもよい。また、第1シール部21の外縁部分同士は、例えば熱板溶着などによって互いに結合していてもよい。
 第2シール部22は、電極積層体11及び第1シール部21の外側に設けられ、蓄電モジュール4の外壁(筐体)を構成している。第2シール部22は、例えば樹脂の射出成型によって形成され、積層方向Dに沿って電極積層体11の全長にわたって延在している。第2シール部22は、積層方向Dを軸方向として延在する矩形の枠状である。第2シール部22は、例えば射出成型時の熱によって第1シール部21の外表面に溶着されている。
 第1シール部21及び第2シール部22は、隣り合う電極の間に内部空間Vを形成すると共に内部空間Vを封止する。より具体的には、第2シール部22は、第1シール部21と共に、積層方向Dに沿って互いに隣り合うバイポーラ電極100(200)の間、積層方向Dに沿って互いに隣り合う負極終端電極18とバイポーラ電極100(200)との間、及び積層方向Dに沿って互いに隣り合う正極終端電極19とバイポーラ電極100(200)との間をそれぞれ封止している。これにより、隣り合うバイポーラ電極100(200)の間、負極終端電極18とバイポーラ電極100(200)との間、及び正極終端電極19とバイポーラ電極100(200)との間には、それぞれ気密に仕切られた内部空間Vが形成されている。この内部空間Vには、電解液(不図示)が収容されている。電解液は、セパレータSP、正極活物質層30、及び負極活物質層20内に含浸されている。
 積層方向Dに互いに隣り合うバイポーラ電極100(200)とシール部12、負極終端電極18と隣り合うバイポーラ電極100(200)とシール部12、正極終端電極19と隣り合うバイポーラ電極100(200)とシール部12は、それぞれセル(単電池)を構成する。
 次に、本実施形態に係る蓄電モジュールの製造方法の一例について説明する。まず、バイポーラ電極100(200)、負極終端電極18、正極終端電極19、及び導電板40に対して第1シール部21を結合する(第1工程)。第1工程では、まず、バイポーラ電極100(200)、負極終端電極18、正極終端電極19、及び導電板40を準備する。続いて、集電体10の他方面10Bと、導電板40の一方面40aとに、第1シール部21を溶着する。これにより、バイポーラ電極100(200)、負極終端電極18、正極終端電極19、及び導電板40のそれぞれに対して第1シール部21が結合する。さらに、正極終端電極19の集電体10の一方面10Aにも第1シール部21を溶着する。
 次に、電極積層体11を形成する(第2工程)。第2工程では、まず、第1シール部21が結合されたバイポーラ電極100(200)、及びセパレータSPを積層方向Dに沿って交互に積層することによって積層体Sを形成する。続いて、積層方向Dにおける積層体Sの一端に負極終端電極18を配置すると共に、積層方向Dにおける積層体Sの他端に正極終端電極19を配置する。これにより、バイポーラ電極100(200)、セパレータSP、負極終端電極18、及び正極終端電極19を有する電極積層体11を形成する。このとき、積層された第1シール部21が、電極積層体11に含まれる電極間に内部空間Vを形成すると共に当該内部空間Vを封止する。
 次に、第1シール部21が結合された導電板40を、電極積層体11に重ねる(第3工程)。第3工程では、導電板40に結合された第1シール部21を、積層方向Dにおいて負極終端電極18及び正極終端電極19の隣に配置する。
 次に、各第1シール部21を結合する第2シール部22を形成する(第4工程)。第4工程では、例えば金型を用いて、各第1シール部21の外周面に対して樹脂を射出成形する。そして、当該樹脂を冷却等により硬化することによって、第2シール部22を形成する。これにより、第1シール部21及び第2シール部22を有するシール部12を形成する。このとき、導電板40が負極終端電極18、正極終端電極19に結合する各第1シール部21に溶着してもよい。図示はしないが、第4工程後、各内部空間V内に電解液を注入する。以上の工程を経て、蓄電モジュール4が製造される。
 本実施形態のニッケル金属水素化物電池は、公知のニッケル金属水素化物電池に配置される種々の部材を備えているのが好ましい。以下、正極終端電極、バイポーラ電極、負極終端電極及びセパレータで構成される電池単位を電池モジュールという。本開示のニッケル金属水素化物電池は、単一の電池モジュールを具備してもよいし、複数の電池モジュールを直列に組み合わせて具備してもよい。
 セパレータとしては、公知のものを採用すればよい。例えば、セパレータは、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromaticpolyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などによって構成することができる。また、セパレータは多層構造としてもよい。セパレータは、表面に親水化処理が施されていることが好ましい。親水化処理としては、スルホン化処理、コロナ処理、フッ素ガス処理、プラズマ処理を例示できる。
 電解液は、ニッケル金属水素化物電池用の電解液として一般に用いられる強塩基水溶液を用いればよい。強塩基水溶液として、具体的には、水酸化カリウム水溶液、水酸化ナトリウム水溶液、水酸化リチウム水溶液が挙げられる。電解液としては、一種のみの強塩基水溶液を用いてもよいし、複数種の強塩基水溶液を混合して用いてもよい。また、電解液には、ニッケル金属水素化物電池用電解液に採用される公知の添加剤が添加されていてもよい。
 本開示のニッケル金属水素化物電池の電極間には、シール部が設けられる。シール部は、電解液の漏れを防止し、電極間の電解液が相互に混ざり合うことを抑制し、かつ、電解液や正極活物質層及び負極活物質層が外気と接触するのを抑制する。シール部は、隣り合う2枚の集電体に密着して配置され、かつ、電解液や正極活物質層及び負極活物質層が存在する箇所の全体を取り囲む状態で配置される。シール部は、電解液や正極活物質層及び負極活物質層が存在する箇所の周りに、2重や3重に配置されてもよい。
 シール部の材料としては、ポリプロピレン、ポリフェニレンサルファイド、変性ポリフェニレンエーテルなどの耐アルカリ性を有する絶縁性の樹脂を挙げることができる。また、一般にガスケットやパッキンと称されるものを、シール部として採用してもよい。シール部は、シール部の材料を集電体に圧着することで形成してもよいし、集電体に熱圧着することで形成してもよく、また、接着剤を用いて集電体に接着することで形成してもよい。
 電極の周縁には、電気を通さない絶縁性の外枠が配置されるのが好ましい。外枠は電極の形状を維持する役割と、電極同士の短絡を防止する役割を担う。上述したシール部は、外枠の内側に配置される。外枠がシール部を兼ねてもよい。外枠の材料としては、合成樹脂、又は、絶縁性の酸化物若しくは絶縁性のセラミックスを含有する合成樹脂を例示できる。
 本開示のニッケル金属水素化物電池は、充放電に伴う発熱を放熱する冷却板を備えるのが好ましい。冷却板は、電池モジュールの外側に、電極の面に沿って配置されるのが好ましい。複数の電池モジュールが存在する場合には、それぞれの電池モジュールの間に配置されてもよい。
 冷却板は、アルミニウムなどの熱伝導性に優れる金属製が好ましい。冷却板の形状としては、電池モジュールの面と積層可能な板状体が好ましく、さらには、板状体に空冷可能な貫通孔が設けられているものがより好ましい。
 本開示のニッケル金属水素化物電池の電池モジュールは、拘束具により、厚み方向すなわち電極の積層方向に拘束されるのが好ましい。電池モジュールを積層方向に拘束することにより、正極活物質層及び負極活物質層への電解液の浸透を万遍なく行うことができるとともに、充放電に伴う電極の膨張の偏りを抑制でき、さらに、電池の抵抗変動を抑制することができる。また、シール部のシール効果を好適に維持することもできる。
 拘束部材は、一の電池モジュールを拘束してもよいし、複数の電池モジュールを拘束してもよい。拘束部材としては、2枚の拘束板と、2枚の拘束板を締結する締結部材とを用いるのが好ましい。締結部材としては、ボルト及びナットを例示できる。拘束部材の材質としては、強アルカリに対して耐性の高いものが好ましい。拘束部材の材質の具体例としては、合成樹脂及び絶縁性のセラミックスを例示できる。また、電池モジュールを収容する電池容器を、拘束部材として用いてもよい。
 電池容器は、電池モジュールを収容する容器である。電池容器としては、公知のニッケル金属水素化物電池の電池容器として用いられるものを採用すればよい。電池容器の形状は特に限定されるものでなく、角型、円筒型、コイン型、ラミネート型等、種々の形状を採用することができる。電池容器の材質としては、強アルカリに対して耐性の高いものが好ましい。電池容器の具体例としては、ニッケル製容器、樹脂製容器、内表面がニッケルめっきされた金属容器、内表面に樹脂コーティング層を具備する金属容器を例示できる。
 拘束部材や電池容器には、排ガス弁が配置されてもよく、また、電解液を補充するための注液口が配置されてもよい。
 本開示のニッケル金属水素化物電池は、車両や産業用車両に搭載してもよい。車両は、その動力源の全部あるいは一部にニッケル金属水素化物電池による電気エネルギーを使用している車両であればよく、例えば、電気車両、ハイブリッド車両などであるとよい。車両にニッケル金属水素化物電池を搭載する場合には、ニッケル金属水素化物電池を複数直列に接続して組電池とするとよい。ニッケル金属水素化物電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本開示のニッケル金属水素化物電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
 なお、上記実施形態は、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。また、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ○上記実施形態では、Ni-Fe合金層15はバイポーラ電極100(200)、負極終端電極18及び正極終端電極19を構成する集電体10の両面に形成しているが、集電体10の片方の面のみに形成してもよい。集電体10の片方の面にNi-Fe合金層15を設ける場合は、一方面(第1面)10Aに設けるのが好ましい。また、正極終端電極19を構成する集電体10にNi-Fe合金層15を設けなくてもよい。
 ○上記実施形態では、バイポーラ電極に含まれる集電体10における他方面10Bが粗面化されているが、これに限らない。例えば、当該他方面10Bのうち、第1シール部21との結合領域に含まれる箇所のみが粗面化されてもよい。また、導電板40の一方面40aのうち、第1シール部21との結合領域に含まれる箇所のみが粗面化されてもよい。
 ○上記実施形態では、集電体及び導電板のそれぞれは、平面視にて矩形状であるが、これに限らない。集電体及び導電板のそれぞれは、平面視にて多角形状でもよいし、円形状でもよいし、楕円形状でもよい。同様に、エンドプレートと、セパレータと、シール部(具体的には、第1シール部及び第2シール部)とのそれぞれもまた、平面視にて矩形枠形状でなくてもよい。
 以下に、上記実施形態をさらに具体化した実施例について説明する。なお、上記実施形態は、これらの実施例によって限定されるものではない。
 (実施例1)
 <集電体の製造>
 まず鋼板として下記に示す化学組成を有する低炭素アルミキルド鋼の冷間圧延箔(厚さ50μm)を準備した。
 C:0.04重量%、Mn:0.32重量%、Si:0.01重量%、P:0.012重量%、S:0.014重量%、残部:Feおよび不可避的不純物
 次に、準備した鋼板に対して電解脱脂、硫酸浸漬の酸洗を行った後、下記条件にて鋼板の両面に、片面あたりの狙い厚み0.35μmでワット浴を用いたNiめっきを行った。これにより、鋼板の両面に、Ni付着量3.12g/mのNiめっき層を形成した(第1Niめっき工程)。なお、Niめっきの条件は以下の通りとした。
 (第1Niめっきの条件)
 浴組成:硫酸ニッケル六水和物:250g/L、塩化ニッケル六水和物:45g/L、ほう酸:30g/L
 浴温:60℃
 pH:4.0~5.0
 撹拌:空気撹拌又は噴流撹拌
 電流密度:10A/dm
 次いで、上記で形成したNiめっき層を有する鋼板に対して、箱形焼鈍により、熱処理温度560℃、均熱時間6時間、還元雰囲気の条件で熱処理(拡散工程)を行った。この熱処理により、Ni-Fe合金層が鋼板の両面に形成された表面処理鋼板を得た。得られた表面処理鋼板における片面あたりのNi-Fe合金層の厚さは1.2μmであった。
 なお、Ni-Fe合金層厚さはSEM-EDX(エネルギー分散型X線分光法)を用いて得た。すなわちNi-Fe合金層の厚みの算出はSEM-EDX(エネルギー分散型X線分光法)での分析にて、表層から厚さ方向へ10μmまでの深さにおけるNiおよびFeの元素分析を線分析で行った。なお、測定条件としては加速電圧:10kV、観察倍率:5000倍、測定ステップ:0.01μm、とした。図2に示すように、横軸を表層からの深さ方向の距離(μm)、縦軸をNiおよびFeのX線強度とし、Niの曲線とFeの曲線が交差する前後の部分において、NiとFeそれぞれの最大値の1/10の間の距離をNi-Fe合金層としてグラフよりその厚みを読み取った。
 次いで、Ni-Fe合金層が両面に形成された表面処理鋼板の両面に、以下のめっき条件によって1.0μmの下地Ni層を形成した(第2Niめっき工程)。
 <下地Ni層めっき条件>
 浴組成:硫酸ニッケル六水和物250g/L、塩化ニッケル六水和物45g/L、ほう酸30g/L
 pH:4.0~5.0
 浴温:60℃
 電流密度:10A/dm
 下地Ni層を形成した表面処理鋼板の他方面(第2面)に、以下のめっき条件によって粗化Ni層を設けて(第3Niめっき工程)、集電体を得た。粗化Ni層は、下記の粗化Ni層めっき条件によるめっき工程を経た後、鋼板と粗化Ni層との密着性向上のために、下記の被覆ニッケルめっき条件による被覆ニッケルめっき処理を施して形成した。粗化Ni層としてのニッケル付着量は18.1g/mであった。
 <粗化Ni層めっき条件>
 めっき浴中の硫酸ニッケル六水和物濃度:10g/L
 めっき浴中の塩化ニッケル六水和物濃度:10g/L
 めっき浴の塩化物イオン濃度:3g/L
 めっき浴中のニッケルイオンとアンモニウムイオンとの比:ニッケルイオン/アンモニウムイオン(重量比)=0.17
 pH:6
 浴温:50℃
 電流密度:12A/dm
 めっき時間:80秒間
 <被覆ニッケルめっき条件>
 浴組成:硫酸ニッケル六水和物250g/L、塩化ニッケル六水和物45g/L、ホウ酸30g/L
 pH:4.2
 浴温:60℃
 電流密度:5A/dm
 めっき時間:36秒間
 すなわち上記のように製造した実施例1における集電体は、鋼板の表面側から順に、Ni-Fe合金層、下地Ni層、粗化Ni層を備える。鋼板は、集電体の基材である。Ni-Fe合金層、下地Ni層は、集電体の両面(第1面及び第2面)に形成されている。粗化Ni層は、集電体の他方面(第2面)にのみ形成されている。
 [バイポーラ電極の製造]
 正極活物質として水酸化ニッケル粉末を94.3質量部、導電助剤としてコバルト粉末を1質量部、結着剤としてアクリル系樹脂エマルションを固形分として3.5質量部、結着剤としてカルボキシメチルセルロースを0.7質量部、正極添加剤としてYを0.5質量部、及び、適量のイオン交換水を混合して、正極スラリーを製造した。
 負極活物質としてA型水素吸蔵合金を97.8質量部、結着剤としてアクリル系樹脂エマルションを固形分として1.5質量部、結着剤としてカルボキシメチルセルロースを0.7質量部、及び、適量のイオン交換水を混合して、負極スラリーを製造した。
 集電体の第1面に、上記負極スラリーを膜状に塗布した。集電体の第2面に、上記正極スラリーを膜状に塗布した。スラリーが塗布された集電体を乾燥して水を除去し、プレスして、集電体上に正極活物質層と負極活物質層とが形成されたバイポーラ電極を製造した。
 上記集電体の第1面に負極スラリーを塗布しなかったこと以外は、上記バイポーラ電極と同様にして、第2面に正極活物質層が形成された正極終端電極を製造した。上記集電体の第2面に正極スラリーを塗布しなかったこと以外は、上記バイポーラ電極と同様にして、第1面に負極活物質層が形成された負極終端電極を製造した。
 [評価用電池の製造]
 図8の模式図に示される構成の評価用電池を製造した。
 電解液として、水酸化カリウムの濃度が5.4mol/Lであり、水酸化ナトリウムの濃度が0.8mol/Lであり、水酸化リチウムの濃度が0.5mol/Lであり、塩化リチウムの濃度が0.05mol/Lである水溶液を準備した。
 セパレータSPとして、スルホン化処理が施された厚さ104μmのポリオレフィン繊維製不織布を準備した。バイポーラ電極100を正極終端電極19と負極終端電極18とで挟み込み、極板群とした。電極間にはセパレータSPを介した。
 バイポーラ電極100と正極終端電極19との間及びバイポーラ電極100と負極終端電極18との間それぞれに樹脂製の筐体(シール部)12を配置して、熱圧着で接合した。バイポーラ電極100と正極終端電極19との間及びバイポーラ電極100と負極終端電極18との間それぞれに上記電解液を注入した後に気密に密閉することで、実施例1の評価用電池を製造した。本実施例では、バイポーラ電極100と正極終端電極19、及びバイポーラ電極100と負極終端電極18とでそれぞれ1つのセル(単電池)が構成され、合計で2つのセルを備える。
 (実施例2)
 集電体の製造工程において、第1Niめっき工程の狙い厚み0.5μmとした。また、それに次ぐ拡散工程で熱処理を行った。この熱処理により、Ni-Fe合金層が鋼板の両面に形成された表面処理鋼板を得た。得られた表面処理鋼板における片面あたりのNi-Fe合金層の厚さは1.5μmであった。それ以外は実施例1と同様にして集電体、バイポーラ電極及び評価用電池の製造を行った。
 (実施例3)
 集電体の製造工程において、第1Niめっき工程の狙い厚み1.5μmとした。また、それに次ぐ拡散工程で熱処理を行った。この熱処理により、Ni-Fe合金層が鋼板の両面に形成された表面処理鋼板を得た。得られた表面処理鋼板における片面あたりのNi-Fe合金層の厚さは2.5μmであった。それ以外は実施例1と同様にして集電体、バイポーラ電極及び評価用電池の製造を行った。
 (実施例4)
 集電体の製造工程において、第1Niめっき工程の狙い厚み3.0μmとした。また、それに次ぐ拡散工程で、熱処理温度640℃、均熱時間2時間として熱処理を行った。この熱処理により、Ni-Fe合金層が鋼板の両面に形成された表面処理鋼板を得た。得られた表面処理鋼板における片面あたりのNi-Fe合金層の厚さは3.87μmであった。それ以外は実施例1と同様にして集電体、バイポーラ電極及び評価用電池の製造を行った。
 (実施例5)
 まず鋼板として厚さ200μmの低炭素アルミキルド鋼を準備し、ワット浴を用いて狙い厚み2.0μmのNiめっきを行った(第1Niめっき工程)。次いで、圧延のための軟質化熱処理を行った後、50μmまで圧延を行った。その後、熱処理温度480℃、均熱時間4時間として、還元雰囲気の条件で熱処理(拡散工程)を行った。この熱処理により、Ni-Fe合金層を両面に有する表面処理鋼板を得た。得られた表面処理鋼板における片面あたりのNi-Fe合金層の厚さは0.55μmであった。それ以外は実施例1と同様にして集電体、バイポーラ電極及び評価用電池の製造を行った。
 (比較例1)
 実施例1で用いた鋼板に対して、実施例1と同様の方法で第2Niめっき工程及び第3Niめっき工程を行うことにより、下地Ni層、及び粗化Ni層を設けた集電体を製造した。下地Ni層の厚みは1μmとした。Ni-Fe合金層を設けるための第1Niめっき工程及び熱処理は行わなかった。前記集電体に変更したこと以外は、実施例1と同様の方法で、バイポーラ電極及び評価用電池の製造を行った。
 (比較例2)
 実施例1で用いた鋼板に対して、実施例1と同様の方法で第2Niめっき工程及び第3Niめっき工程を行うことにより、下地Ni層、及び粗化Ni層を設けた集電体を製造した。下地Ni層の厚みは5μmとした。Ni-Fe合金層を設けるための第1Niめっき工程及び熱処理は行わなかった。前記集電体に変更したこと以外は、実施例1と同様の方法で、バイポーラ電極及び評価用電池の製造を行った。
 [Ni-Fe合金層の有無及び厚みの変化に伴う漏電流の変化試験]
 上記のようにして製造した評価用電池を用いて、集電体のNi-Fe合金層の有無及び厚みの変化による漏電流の変化を試験評価した。
 すなわち、上記実施例1~5及び比較例1~2の各評価用電池に対して、充放電を繰り返し、活性化処理を行った。
 活性化後の各評価用電池をSOC(State of Charge)85%に調整した後SOC0%まで放電させて、保存前の放電容量を測定した。再度、活性化後の各評価用電池をSOC85%に調整し、65℃の恒温層で350時間保存した。保存後の各評価用電池をSOC0%まで放電させて、保存後の放電容量を測定した。漏電流を以下の式で算出した。
 (保存前の放電容量-保存後の放電容量)/保存時間=漏電流
 各々の単位面積あたりの漏電流の値を表1に示す。
 比較例及び実施例5を対比すると、漏電流がNi-Fe合金層により低減されたことが示された。また実施例1~実施例5によれば、Ni-Fe合金層の厚みを増加させることが漏電流低減に有効であることが示された。一方で実施例1及び実施例2においてNi-Fe合金層の厚みを1.2μmから1.5μmに変化させても漏電流値に変化がなかったことから、Ni-Fe合金層の厚みとして1.0μmあれば、漏電流低減のための充分な値であると考えられる。
 また、活性化後の実施例2~4、及び比較例1の各評価用電池に対して、60℃の条件下、1CでSOC20%からSOC80%まで充電後、1CでSOC80%からSOC20%まで放電させるとの充放電サイクルを、1500回繰り返した。その後、SOC80%まで充電させた後に、各セルを個別に1CでSOC80%からSOC0%まで放電させて、各セルのサイクル後の放電容量を測定した。漏電流は以下の式で算出した。試験時間は、1500回の充放電に要した時間である。バイポーラ電極と正極終端電極とで構成するセルを水素発生側セルとし、バイポーラ電極と負極終端電極とで構成するセルを水素侵入側セルとする。
 (水素発生側セルの放電容量-水素侵入側セルの放電容量)/試験時間=漏電流
 各々の単位面積あたりの漏電流の値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、上記実施例2の評価用電池に対して、-40℃の低温下での評価も以下のように行った。評価用電池の活性化後に、SOC(Stateof Charge)85%に調整した後SOC0%まで放電させて、保存前の放電容量を測定した。再度、活性化後の各評価用電池をSOC85%に調整し、-40℃の恒温層で350時間保存した。保存後の各評価用電池をSOC0%まで放電させて、保存後の放電容量を測定した。漏電流を以下の式で算出した。
 (保存前の放電容量-保存後の放電容量)/保存時間=漏電流
 単位面積あたりの漏電流の値は、0.0μm/mであった。
 [蓄電モジュールにおける漏電流試験]
 (実施例6)
 実施例2と同様に集電体及びバイポーラ電極を製造した。その後、上述の評価用電池と同様のセパレータ、活物質等を用いて図6に示すような蓄電モジュールを作製した。なお、この蓄電モジュールは、積層個数23個のバイポーラ電極に加えて正極及び負極の終端電極を含むものとした。
 得られた蓄電モジュールに対して充放電を繰り返し、活性化処理を行った。
 活性化後の蓄電モジュールをSOC(State of Charge)85%に調整した後、SOC0%まで放電させて、保存前の放電容量を測定した。再度、活性化後の蓄電モジュールをSOC85%に調整し、65℃の恒温層で170時間保存した。保存後の蓄電モジュールをSOC0%まで放電させて、保存後の放電容量を測定した。漏電流を以下の式で算出した。
 (保存前の放電容量-保存後の放電容量)/保存時間=漏電流
 単位面積あたりの漏電流を表2に示す。
 (比較例3)
 集電体形成工程において、Ni-Fe合金層を設けるためのNiめっき(第1Niめっき工程)及び熱処理(拡散工程)を行わなかったこと以外は実施例6と同様にして、蓄電モジュールを作製した。得られた蓄電モジュールについて、実施例6と同様にして漏電流を算出した。得られた単位面積あたりの漏電流を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 以上に説明した本実施形態に係るバイポーラ電極、及び蓄電モジュールによって奏される作用効果について説明する。すなわち本実施形態におけるバイポーラ電極及び蓄電モジュールは、バイポーラ電極の集電体を透過する水素を低減することで、蓄電モジュールの電圧低下を低減できる。したがって本開示の実施形態によれば、蓄電モジュール及び金属水素化物電池の長期信頼性を向上させることができる。

Claims (13)

  1.  第1面及び前記第1面の反対側の第2面を有する集電体と、
     前記第1面に設けられる負極活物質層と、
     前記第2面に設けられる正極活物質層と、
     を備え、
     前記負極活物質層は金属水素化物を含み、
     前記集電体は、鋼板と、前記鋼板の両面のうち少なくとも一方の面に形成されたNi-Fe合金層と、を有する、金属水素化物電池のバイポーラ電極。
  2.  前記Ni-Fe合金層の厚みが1.0μm以上である、請求項1に記載の金属水素化物電池のバイポーラ電極。
  3.  前記Ni-Fe合金層が、前記集電体の前記第1面と同じ側に配置される、請求項1又は2に記載の金属水素化物電池のバイポーラ電極。
  4.  前記Ni-Fe合金層が、前記集電体の前記第1面と同じ側及び前記集電体の前記第2面と同じ側の各々に配置される、請求項1~3のいずれか一項に記載の金属水素化物電池のバイポーラ電極。
  5.  前記集電体は、前記集電体の前記第1面と同じ側に配置される前記Ni-Fe合金層と、前記負極活物質層との間に、さらにNi層を有する、請求項1~4のいずれか一項に記載の金属水素化物電池のバイポーラ電極。
  6.  前記集電体は、前記集電体の前記第2面と同じ側に配置される前記Ni-Fe合金層と、前記正極活物質層との間に、さらにNi層を有する、請求項1~5のいずれか一項に記載の金属水素化物電池のバイポーラ電極。
  7.  前記Ni層の前記負極活物質層又は前記正極活物質層と接する表面が、前記Ni-Fe合金層あるいは前記鋼板よりも大きい表面粗さを有する、請求項5又は6に記載の金属水素化物電池のバイポーラ電極。
  8.  前記Ni層の表面粗さが、十点平均粗さRzjisにおいて、Rzjis=2.0μm~16.0μmである、請求項7に記載の金属水素化物電池のバイポーラ電極。
  9.  積層された複数のバイポーラ電極を備える金属水素化物電池であって、前記バイポーラ電極の各々が請求項1~8のいずれか一項に記載のバイポーラ電極である、金属水素化物電池。
  10.  前記正極活物質層がニッケル水酸化物を含む、請求項9に記載の金属水素化物電池。
  11.  鋼板とNi-Fe合金層とを有する集電体を形成する工程であって、
      前記鋼板の両面のうち少なくとも一方の面にNi層を設けることと、
      前記Ni層を設けた前記鋼板を熱処理することにより前記Ni層中のNiと前記鋼板中のFeとを拡散させて前記Ni-Fe合金層を形成することと、を含む、集電体を形成する工程と、
     形成された前記集電体の第1面に負極活物質層を形成する工程と、
     前記集電体の第2面に正極活物質層を設ける工程と、を含む、金属水素化物電池のバイポーラ電極の製造方法。
  12.  集電体を形成する工程はさらに、前記Ni-Fe合金層の上に、前記Ni-Fe合金層よりも大きい表面粗さ又は前記鋼板よりも大きい表面粗さを有する粗化Ni層を形成することを含む、請求項11に記載の金属水素化物電池のバイポーラ電極の製造方法。
  13.  請求項11又は12に記載の製造方法でバイポーラ電極を製造する工程と、
     前記バイポーラ電極を用いて金属水素化物電池を製造する工程と、
     を有する金属水素化物電池の製造方法。 
PCT/JP2022/019056 2021-04-28 2022-04-27 金属水素化物電池のバイポーラ電極、バイポーラ電極を備えた金属水素化物電池、金属水素化物電池のバイポーラ電極の製造方法、及び金属水素化物電池の製造方法 WO2022230931A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022002372.4T DE112022002372T5 (de) 2021-04-28 2022-04-27 Bipolare elektrode für metallhydrid-batterie, metallhydrid-batterie, ausgestattet mit bipolarer elektrode, verfahren zum herstellen einer bipolaren elektrode für metallhydrid-batterie und verfahren zum herstellen einer metallhydrid-batterie
US18/288,255 US20240213461A1 (en) 2021-04-28 2022-04-27 Bipolar electrode for metal hydride battery, metal hydride battery equipped with bipolar electrode, method for producing bipolar electrode for metal hydride battery, and method for producing metal hydride battery
CN202280030997.8A CN117203788A (zh) 2021-04-28 2022-04-27 金属氢化物电池的双极电极、具备双极电极的金属氢化物电池、金属氢化物电池的双极电极的制造方法以及金属氢化物电池的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-076896 2021-04-28
JP2021076896A JP2022170619A (ja) 2021-04-28 2021-04-28 金属水素化物電池のバイポーラ電極、及びそのバイポーラ電極を備えた金属水素化物電池

Publications (1)

Publication Number Publication Date
WO2022230931A1 true WO2022230931A1 (ja) 2022-11-03

Family

ID=83848532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019056 WO2022230931A1 (ja) 2021-04-28 2022-04-27 金属水素化物電池のバイポーラ電極、バイポーラ電極を備えた金属水素化物電池、金属水素化物電池のバイポーラ電極の製造方法、及び金属水素化物電池の製造方法

Country Status (5)

Country Link
US (1) US20240213461A1 (ja)
JP (1) JP2022170619A (ja)
CN (1) CN117203788A (ja)
DE (1) DE112022002372T5 (ja)
WO (1) WO2022230931A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210832A1 (ja) * 2022-04-29 2023-11-02 東洋鋼鈑株式会社 ニッケルめっき鋼板及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154743A1 (ja) * 2023-01-16 2024-07-25 東洋鋼鈑株式会社 ニッケルめっき金属材
WO2024181649A1 (ko) * 2023-02-28 2024-09-06 주식회사 프렘투 음극, 양극 또는 음극과 양극 특성을 갖는 집전체 및 이를 포함하는 이차전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173623A (ja) * 1998-12-07 2000-06-23 Mitsubishi Materials Corp 多孔質ニッケル基材及びそれを用いたアルカリ二次電池用電極
JP2004164898A (ja) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd バイポーラ電池の製造方法、およびバイポーラ電池
JP2018133207A (ja) * 2017-02-15 2018-08-23 株式会社豊田自動織機 二次電池
JP2018186008A (ja) * 2017-04-26 2018-11-22 株式会社豊田自動織機 電極の製造方法
JP2020047445A (ja) * 2018-09-18 2020-03-26 株式会社豊田自動織機 ニッケル金属水素化物電池
JP2020167163A (ja) * 2019-03-29 2020-10-08 東洋鋼鈑株式会社 アルカリ二次電池用表面処理板およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570863B2 (ja) 2003-10-30 2010-10-27 川崎重工業株式会社 バイポーラプレート方式の積層電池
JP7112352B2 (ja) 2019-02-26 2022-08-03 株式会社豊田自動織機 蓄電モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173623A (ja) * 1998-12-07 2000-06-23 Mitsubishi Materials Corp 多孔質ニッケル基材及びそれを用いたアルカリ二次電池用電極
JP2004164898A (ja) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd バイポーラ電池の製造方法、およびバイポーラ電池
JP2018133207A (ja) * 2017-02-15 2018-08-23 株式会社豊田自動織機 二次電池
JP2018186008A (ja) * 2017-04-26 2018-11-22 株式会社豊田自動織機 電極の製造方法
JP2020047445A (ja) * 2018-09-18 2020-03-26 株式会社豊田自動織機 ニッケル金属水素化物電池
JP2020167163A (ja) * 2019-03-29 2020-10-08 東洋鋼鈑株式会社 アルカリ二次電池用表面処理板およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210832A1 (ja) * 2022-04-29 2023-11-02 東洋鋼鈑株式会社 ニッケルめっき鋼板及びその製造方法

Also Published As

Publication number Publication date
JP2022170619A (ja) 2022-11-10
CN117203788A (zh) 2023-12-08
US20240213461A1 (en) 2024-06-27
DE112022002372T5 (de) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2022230931A1 (ja) 金属水素化物電池のバイポーラ電極、バイポーラ電極を備えた金属水素化物電池、金属水素化物電池のバイポーラ電極の製造方法、及び金属水素化物電池の製造方法
CN111801444B (zh) 电解铜箔、电极及包含其的锂离子二次电池
US9293771B2 (en) Anode for secondary battery, anode current collector, production method thereof, and secondary battery
KR100360359B1 (ko) 리튬 2차전지
KR101918008B1 (ko) 구리 피복 강박, 음극 집전체 및 그 제조법 및 전지
US8216720B2 (en) Negative electrode for lithium secondary cell and lithium secondary cell
KR100331186B1 (ko) 전극구조체,이전극구조체가구비된2차전지및상기전극구조체와2차전지의제조방법
US8507133B2 (en) Anode active material, anode, and lithium secondary battery
JP3191752B2 (ja) ニッケル−水素二次電池およびその電極の製造方法
US20050064291A1 (en) Battery and non-aqueous electrolyte secondary battery using the same
US20110108759A1 (en) Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method for manufacturing positive electrode active material for alkaline storage battery
US8852804B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
KR20120032413A (ko) 응력 완화층을 갖는 리튬 이차 전지
US20060166099A1 (en) Closed nickel-hydrogen storage battery and its production method
KR20190069485A (ko) 전지용 집전체 및 전지
US20110274972A1 (en) Hydrogen-absorbing alloy and nickel-metal hydride rechargeable battery
JP5544576B2 (ja) 燃料電池正極およびこれを用いた燃料電池
EP0757396B1 (en) Porous, nickel coated, sintered iron substrate for electrodes in alkaline secondary batteries
JP3846602B2 (ja) 密閉型ニッケル−水素蓄電池
EP2713426B1 (en) Nickel-metal hydride storage battery
JP2023098448A (ja) 金属水素化物電池のバイポーラ電極、及びそのバイポーラ電極を備えた金属水素化物電池
WO2020012891A1 (ja) ニッケル金属水素化物電池
Yao et al. Nickel substrate having three-dimensional micronetwork structure for high-power nickel/metal-hydride battery
JP2020047445A (ja) ニッケル金属水素化物電池
JP7140054B2 (ja) ニッケル金属水素化物電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795844

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280030997.8

Country of ref document: CN

Ref document number: 18288255

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202317079681

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 112022002372

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795844

Country of ref document: EP

Kind code of ref document: A1