WO2022230469A1 - 蓄電装置 - Google Patents

蓄電装置 Download PDF

Info

Publication number
WO2022230469A1
WO2022230469A1 PCT/JP2022/013708 JP2022013708W WO2022230469A1 WO 2022230469 A1 WO2022230469 A1 WO 2022230469A1 JP 2022013708 W JP2022013708 W JP 2022013708W WO 2022230469 A1 WO2022230469 A1 WO 2022230469A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
projection
protrusion
power storage
insulating plate
Prior art date
Application number
PCT/JP2022/013708
Other languages
English (en)
French (fr)
Inventor
竜二 大井手
浩生 植田
丈幸 加藤
怜史 森岡
素宜 奥村
Original Assignee
株式会社豊田自動織機
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, トヨタ自動車株式会社 filed Critical 株式会社豊田自動織機
Priority to CN202280031420.9A priority Critical patent/CN117242628A/zh
Priority to US18/285,081 priority patent/US20240194998A1/en
Priority to JP2023517160A priority patent/JP7559227B2/ja
Priority to DE112022000650.1T priority patent/DE112022000650T5/de
Publication of WO2022230469A1 publication Critical patent/WO2022230469A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a power storage device.
  • a power storage device includes a power storage module, a current collector plate laminated on the power storage module, an insulating plate laminated on the current collector plate, and a restraining plate laminated on the insulating plate (Patent Reference 1).
  • the insulating plate is provided with a protrusion and the constraining plate is provided with a hole into which the protrusion is inserted.
  • the protrusion interferes with the hole, and stress concentrates at the base of the protrusion, resulting in cracks in the thickness direction of the insulating plate. may occur. This may cause insulation failure.
  • An object of the present disclosure is to provide a power storage device capable of positioning an insulating plate with respect to a restraining plate and suppressing poor insulation of the insulating plate.
  • a power storage device includes a power storage module, a current collector plate stacked on the power storage module in a first direction and electrically connected to the power storage module, and a current collector plate stacked in the first direction. and a constraining plate laminated on the insulating plate in a first direction and applying a constraining load to the power storage module, the current collector plate, and the insulating plate, wherein the insulating plate and the constraining plate are different from each other
  • the insulating plate has a coefficient of thermal expansion, and has an opposing surface facing the constraining plate, and a first protrusion provided on the opposing surface at a position spaced apart from the center of the opposing surface, and the constraining plate has , a first hole into which the first protrusion is inserted; the first protrusion is divided into a first protrusion and a second protrusion in a second direction intersecting the first direction;
  • the first projection is arranged near the center of the facing surface in the second direction, and the second projection is arranged near
  • the insulating plate is provided with the first protrusion
  • the restraining plate is provided with the first hole. Therefore, the insulating plate can be positioned with respect to the constraining plate by inserting the first protrusion of the insulating plate into the first hole of the constraining plate.
  • the insulating plate and the constraining plate have coefficients of thermal expansion different from each other.
  • the first protrusion is provided at a position spaced apart from the center of the facing surface of the insulating plate. Therefore, when the insulating plate and the constraining plate thermally expand and contract, the first protrusion moves toward or away from the center of the facing surface relative to the first hole.
  • the first projection is divided into a first projection and a second projection in a second direction intersecting the first direction, the first projection being arranged near the center of the facing surface, and the second projection being the outer edge of the facing surface. placed nearby.
  • the rigidity of each of the first projection and the second projection is smaller than the rigidity of the undivided first projection. Therefore, even when the first protrusion interferes with the first hole, only one of the first protrusion and the second protrusion interferes with the first hole and is easily broken at the base. This suppresses cracks in the thickness direction of the insulating plate. As a result, insulation failure of the insulating plate can be suppressed.
  • the insulating plate may be made of resin and have a coefficient of thermal expansion higher than that of the constraining plate, and the first projection may be in contact with the inner wall of the first hole.
  • the insulating plate since the insulating plate is made of resin, the lower the temperature, the more brittle it becomes. Therefore, cracks are likely to occur in the insulating plate, especially when it is thermally shrunk. Further, since the coefficient of thermal expansion of the insulating plate is higher than the coefficient of thermal expansion of the constraining plate, when the insulating plate and the constraining plate thermally contract, the first protruding portion is relatively opposed to the first hole.
  • first protrusions arranged near the center of the facing surface abut against the inner wall of the first hole, only the first protrusions are easily cracked at their roots due to movement of the first protrusions due to thermal contraction. This suppresses cracks in the thickness direction of the insulating plate. As a result, insulation failure of the insulating plate can be suppressed.
  • the rigidity of the first projection may be lower than the rigidity of the second projection. In this case, compared to the case where the rigidity of the first projection is equal to or higher than the rigidity of the second projection, it is easier to realize a structure in which the first projection is easily cracked at its base.
  • the facing surface has a rectangular shape having a pair of short sides along the second direction and a pair of long sides along a third direction that intersects the first direction and the second direction. It may be a long hole extending in three directions.
  • the facing surfaces are rectangular, the dimensional tolerance of the insulating plate and the constraining plate in the third direction, which is the long side direction, tends to increase.
  • the first hole is an elongated hole extending in the third direction, the first protrusion can be reliably inserted into the first hole even if the insulating plate and the restraining plate have a large dimensional tolerance in the third direction. can be done.
  • the first protrusion may be provided at a position spaced apart from the center of the facing surface in the second direction.
  • the moving direction in which the first protrusion moves relative to the first hole is a direction that intersects with the third direction. Therefore, compared to the case where the first protrusion is positioned at the center of the facing surface in the second direction and the moving direction coincides with the third direction, the first hole extends in the third direction. easy to interfere with. Therefore, a configuration that suppresses cracks in the thickness direction of the insulating plate is particularly effective.
  • the plurality of first protrusions may be arranged along each of the pair of long sides.
  • the insulating plate can be positioned more accurately with respect to the constraining plate.
  • the thickness of the insulating plate may be thinner than the height of the first protrusion. In this case, since the insulating plate is thin, it is particularly effective to suppress cracks in the thickness direction of the insulating plate.
  • Each of the first projection and the second projection may be in contact with the inner wall of the first hole.
  • the insulating plate can be positioned more accurately with respect to the constraining plate.
  • the insulating plate may have a coefficient of thermal expansion twice or more that of the constraining plate. In this case, since the difference in coefficient of thermal expansion is large, the amount of movement of the first projection relative to the first hole is large. Therefore, a configuration that suppresses cracks in the thickness direction of the insulating plate is particularly effective.
  • the first projection may be divided into a first projection and a second projection by a slit.
  • first projection and the second projection are spaced apart from each other, when one of the first projection and the second projection is cracked at the base, the influence on the other is suppressed.
  • Each of the first projection and the second projection may be divided into a pair of projection pieces in a third direction intersecting the first direction and the second direction.
  • the rigidity of each projection piece is smaller than the rigidity of each of the first projection and the second projection. Therefore, even when the first protrusion interferes with the first hole, the pair of protrusion pieces forming the first protrusion or the second protrusion can be easily broken at the base. This further suppresses cracks in the thickness direction of the insulating plate. As a result, poor insulation of the insulating plate can be further suppressed.
  • the insulating plate further has a second projection provided closer to one end in the third direction than the first projection on the facing surface, and the restraining plate has a second hole into which the second projection is inserted.
  • the second protrusion may be divided into a third protrusion and a fourth protrusion in the third direction.
  • the second protrusion is provided closer to one end in the third direction than the first protrusion on the facing surface. Therefore, when the insulating plate is attached to the restraining plate, the first protrusion can be easily inserted into the first hole by first inserting the second protrusion into the second hole.
  • the rigidity of each of the third projection and the fourth projection is smaller than the rigidity of the undivided second projection.
  • the third projection is arranged closer to the center of the facing surface than the fourth projection, and may be in contact with the inner wall of the second hole.
  • the insulating plate is made of resin, the lower the temperature, the more fragile it becomes. Therefore, cracks are likely to occur in the insulating plate, especially when it is thermally shrunk. Further, since the coefficient of thermal expansion of the insulating plate is higher than the coefficient of thermal expansion of the constraining plate, when the insulating plate and the constraining plate thermally contract, the second protruding portion is relatively opposed to the second hole.
  • the rigidity of the third projection may be lower than that of the fourth projection. In this case, compared to the case where the rigidity of the third projection is equal to or higher than the rigidity of the fourth projection, it is easier to realize a configuration in which the third projection is easily cracked at its base.
  • the plurality of second protrusions may be arranged side by side in the second direction. In this case, by inserting the plurality of second protrusions into the corresponding second holes, the insulating plate can be reliably positioned with respect to the restraint plate.
  • a power storage device capable of positioning the insulating plate with respect to the restraining plate and suppressing poor insulation of the insulating plate.
  • FIG. 1 is a perspective view of a power storage device according to one embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the internal configuration of the power storage module shown in FIG. 1;
  • FIG. 3 is an exploded perspective view showing the overall configuration of the insulating plate and the restraining plate.
  • FIG. 4 is a plan view of the constraining plate viewed from the inner surface side.
  • FIG. 5 is a partially enlarged plan view of the constraining plate viewed from the outer surface side.
  • FIG. 6 is a cross-sectional view of an insulating plate and a restraint plate of a power storage device according to a comparative example.
  • FIG. 7 is a cross-sectional view of an insulating plate and a restraining plate of the power storage device according to one embodiment.
  • FIG. 8 is a perspective view of an insulating plate provided with projections according to a first modified example.
  • FIG. 9 is a plan view of an insulating plate provided with projections according to a first modification.
  • FIG. 10 is an exploded perspective view showing the overall configuration of an insulating plate and a constraining plate provided with protrusions according to a second modification.
  • FIG. 11 is a plan view of a constraining plate according to a second modification, viewed from the inner surface side.
  • FIG. 12 is a plan view of an insulating plate provided with protrusions according to a third modification.
  • FIG. A power storage device 1 shown in FIG. 1 is used, for example, as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles.
  • the power storage device 1 is, for example, a secondary battery such as a nickel-hydrogen secondary battery or a lithium-ion secondary battery.
  • the power storage device 1 may be, for example, an electric double layer capacitor.
  • the case where the electric storage device 1 is a nickel-metal hydride battery is exemplified.
  • a power storage device 1 includes a module laminate 2 , a restraining member 4 , and a pair of insulating plates 20 .
  • the module laminate 2 includes a plurality of (seven in this embodiment) power storage modules 3 and a plurality of (eight in this embodiment) collector plates 5 stacked in the first direction D1.
  • the power storage module 3 includes an electrode laminate 51 and a resin sealing body 52 that seals the electrode laminate 51 .
  • the power storage module 3 is formed in, for example, a rectangular parallelepiped shape.
  • the electrode stack 51 includes a plurality of electrodes stacked along the stacking direction (first direction D1) with separators 53 interposed therebetween, and metal plates 60A and 60B arranged at stacking ends of the electrode stack 51. I'm in.
  • the plurality of electrodes includes a stack of bipolar electrodes 54 , a negative terminal electrode 58 and a positive terminal electrode 59 .
  • a stack of multiple bipolar electrodes 54 is provided between a negative terminal electrode 58 and a positive terminal electrode 59 .
  • the bipolar electrode 54 has a metal plate 55 including one surface 55a and the other surface 55b opposite to the one surface 55a, a positive electrode 56 provided on the one surface 55a, and a negative electrode 57 provided on the other surface 55b.
  • the positive electrode 56 is a positive electrode active material layer formed by coating the metal plate 55 with a positive electrode active material.
  • the negative electrode 57 is a negative electrode active material layer formed by coating the metal plate 55 with a negative electrode active material.
  • the positive electrode 56 of one bipolar electrode 54 faces the negative electrode 57 of another bipolar electrode 54 that is adjacent in the first direction D ⁇ b>1 with the separator 53 interposed therebetween.
  • the negative electrode 57 of one bipolar electrode 54 faces the positive electrode 56 of another bipolar electrode 54 adjacent to the other in the first direction D1 with the separator 53 interposed therebetween.
  • the negative terminal electrode 58 has a metal plate 55 and a negative electrode 57 provided on the other surface 55 b of the metal plate 55 .
  • the negative terminal electrode 58 is arranged on one end side in the first direction D1 such that the other surface 55b faces the central side of the electrode stack 51 in the first direction D1.
  • a metal plate 60A is further laminated on one surface 55a of the metal plate 55 of the negative terminal electrode 58, and the metal plate 60A is electrically connected to one current collector plate 5 (see FIG. 1) adjacent to the power storage module 3 via the metal plate 60A. It is connected to the.
  • the negative electrode 57 provided on the other surface 55b of the metal plate 55 of the negative terminal electrode 58 faces the positive electrode 56 of the bipolar electrode 54 at one end in the first direction D1 with the separator 53 interposed therebetween.
  • the positive terminal electrode 59 has a metal plate 55 and a positive electrode 56 provided on one surface 55 a of the metal plate 55 .
  • the positive terminal electrode 59 is arranged on the other end side in the first direction D1 so that one surface 55a faces the center side of the electrode laminate 51 in the first direction D1.
  • a metal plate 60B is further laminated on the other surface 55b of the metal plate 55 of the positive terminal electrode 59, and the other current collector plate 5 (see FIG. 1) adjacent to the power storage module 3 is electrically connected through this metal plate 60B. It is connected to the.
  • the positive electrode 56 provided on one surface 55a of the metal plate 55 of the positive terminal electrode 59 faces the negative electrode 57 of the bipolar electrode 54 at the other end in the first direction D1 with the separator 53 interposed therebetween.
  • the metal plate 55 is made of metal such as nickel or nickel-plated steel plate.
  • the metal plate 55 is a rectangular metal foil made of nickel.
  • Each metal plate 55 is one of the metal plates included in the electrode laminate 51 .
  • An edge portion 55c of the metal plate 55 has a rectangular frame shape and is an uncoated region where the positive electrode active material and the negative electrode active material are not coated.
  • Examples of the positive electrode active material forming the positive electrode 56 include nickel hydroxide.
  • An example of the negative electrode active material forming the negative electrode 57 is a hydrogen storage alloy.
  • the formation area of the negative electrode 57 on the other surface 55 b of the metal plate 55 is one size larger than the formation area of the positive electrode 56 on the one surface 55 a of the metal plate 55 .
  • the electrode laminate 51 has a plurality of laminated metal plates 55, 60A, 60B.
  • the separator 53 is a member for preventing a short circuit between the metal plates 55, and is formed in a sheet shape, for example.
  • Examples of the separator 53 include porous films made of polyolefin resins such as polyethylene (PE) and polypropylene (PP), and woven or nonwoven fabrics made of polypropylene, methyl cellulose, and the like.
  • the separator 53 may be reinforced with a vinylidene fluoride resin compound. Note that the separator 53 is not limited to a sheet shape, and may be bag-shaped.
  • the metal plates 60A and 60B are substantially the same member as the metal plate 55, and are made of metal such as nickel or nickel-plated steel plate. Both of the metal plates 60A and 60B are one of the metal plates included in the electrode laminate 51 . As an example, the metal plates 60A and 60B are rectangular metal foils made of nickel.
  • the metal plates 60A and 60B are uncoated electrodes in which neither the positive electrode active material layer nor the negative electrode active material layer is coated on one surface 60a and the other surface 60b. That is, the metal plates 60A and 60B are uncoated electrodes having no active material layers on both sides.
  • the metal plate 60A is positioned at one stack end of the electrode stack 51 . Due to the metal plate 60A, the negative terminal electrode 58 is placed between the metal plate 60A and the bipolar electrode 54 along the first direction D1.
  • the metal plate 60B is positioned at the other stack end of the electrode stack 51 . Due to the metal plate 60B, the positive terminal electrode 59 is arranged between the metal plate 60B and the bipolar electrode 54 along the first direction D1.
  • the central region of the electrode stack 51 (the region where the active material layers are arranged in the bipolar electrode 54, the negative electrode terminating electrode 58, and the positive terminating electrode 59) is first compared to the surrounding regions. It bulges in direction D1.
  • the metal plates 60A and 60B are bent in a direction in which the central regions of the metal plates 60A and 60B are separated from each other. Central regions of one surface 60 a of the metal plate 60 A and the other surface 60 b of the metal plate 60 B are in contact with the current collector plate 5 . That is, the current collector plate 5 is arranged in contact with the metal plates 60A and 60B at the lamination ends of the electrode laminate 51 .
  • the sealing body 52 is made of, for example, an insulating resin, and is formed in a rectangular tubular shape as a whole.
  • the sealing body 52 is provided so as to surround the side surface 51 a of the electrode laminate 51 .
  • the encapsulant 52 holds the edge 55c on the side surface 51a.
  • the sealing body 52 includes a plurality of frame-shaped second electrodes provided at the edges of the metal plate included in the electrode laminate 51 (that is, the edge 55c of the metal plate 55 and the edge 60c of the metal plates 60A and 60B). 1 sealing portion 61 (resin portion), and a second sealing portion 62 surrounding the first sealing portion 61 from the outside along the side surface 51 a and coupled to each of the first sealing portions 61 . ing.
  • the first sealing portion 61 and the second sealing portion 62 are, for example, an insulating resin having alkali resistance.
  • materials constituting the first sealing portion 61 and the second sealing portion 62 include polypropylene (PP), polyphenylene sulfide (PPS), modified polyphenylene ether (modified PPE), and the like.
  • the first sealing portion 61 is provided continuously over the entire circumference of the edge 55c of the metal plate 55 or the edge 60c of the metal plates 60A and 60B, and has a rectangular frame shape when viewed from the first direction D1.
  • the first sealing portion 61 is welded to the edge 55c of the metal plate 55 or the edge 60c of the metal plates 60A and 60B by, for example, ultrasonic waves or heat, and is airtightly joined.
  • the first sealing portion 61 extends outside the edge 55c of the metal plate 55 or the edge 60c of the metal plates 60A and 60B as viewed in the first direction D1.
  • the first sealing portion 61 has an outer portion 61a projecting outside the edges of the metal plate 55 or the metal plates 60A and 60B and an inner portion 61b positioned inside the edges of the metal plate 55 or the metal plates 60A and 60B. and including.
  • the tip (outer edge) of the outer portion 61 a of the first sealing portion 61 is joined to the second sealing portion 62 by the welding layer 63 .
  • the welding layer 63 is formed by joining the tip portions of the first sealing portions 61 that have been melted by hot plate welding, for example, to each other.
  • the outer portions 61a of the first sealing portion 61 adjacent to each other along the first direction D1 may be separated from each other or may be in contact with each other. Also, the outer portions 61a of the first sealing portion 61 that are adjacent to each other along the first direction D1 may be joined to each other by, for example, hot plate welding.
  • the plurality of first sealing portions 61 includes a plurality of first sealing portions 61A provided on the bipolar electrode 54 and the positive terminal electrode 59, a first sealing portion 61B provided on the negative terminal electrode 58, and a metal plate. It has a first sealing portion 61C provided on 60A and first sealing portions 61D and 61E provided on the metal plate 60B.
  • the first sealing portion 61A is joined to one surface 55a of the metal plate 55 of the bipolar electrode 54 and the positive terminal electrode 59.
  • the inner portion 61b of the first sealing portion 61A is located between the edge portions 55c of the metal plates 55 adjacent to each other in the first direction D1.
  • a region where the edge portion 55c of the one surface 55a of the metal plate 55 and the first sealing portion 61A overlap is a bonding region between the metal plate 55 and the first sealing portion 61A.
  • the first sealing portion 61A is formed with a two-layer structure by folding one sheet of film in two.
  • An outer edge portion of the first sealing portion 61A embedded in the second sealing portion 62 is a folded portion (bent portion) of the film.
  • the first layer of film forming the first sealing portion 61A is bonded to one surface 55a.
  • the inner edge of the second layer film is located outside the inner edge of the first layer film, forming a stepped portion on which the separator 53 is placed.
  • the inner edge of the second layer film is located inside the edge of the metal plate 55 .
  • the first sealing portion 61B is joined to one surface 55a of the metal plate 55 of the negative terminal electrode 58.
  • the inner portion 61b of the first sealing portion 61B is located between the edge 55c of the metal plate 55 of the negative terminal electrode 58 and the edge 60c of the metal plate 60A that are adjacent to each other in the first direction D1.
  • a region where the edge portion 55c of the one surface 55a of the metal plate 55 and the inner portion 61b of the first sealing portion 61B overlap is a bonding region between the metal plate 55 and the first sealing portion 61B.
  • the first sealing portion 61B is also joined to the other surface 60b of the metal plate 60A.
  • a region where the edge portion 60c on the other surface 60b of the metal plate 60A and the first sealing portion 61B overlap is a bonding region between the metal plate 60A and the first sealing portion 61B.
  • the first sealing portion 61B is also joined to the edge portion 60c on the other surface 60b of the metal plate 60A. It can be said that the first sealing portion 61B is provided not only on the negative terminal electrode 58 but also on the metal plate 60A.
  • the first sealing portion 61C is joined to one surface 60a (outer surface) of the metal plate 60A.
  • the first sealing portion 61C is positioned on the most one end side in the first direction D1 among the plurality of first sealing portions 61 .
  • a region where the edge portion 60c on the one surface 60a of the metal plate 60A and the first sealing portion 61C overlap is a bonding region between the metal plate 60A and the first sealing portion 61C.
  • One surface 60a of the metal plate 60A has an exposed portion 60d exposed from the first sealing portion 61C.
  • the current collector plate 5 is arranged in contact with the exposed portion 60d.
  • the outer edges of the first sealing portions 61B and 61C embedded in the second sealing portion 62 are continuous. That is, the first sealing portions 61B and 61C are formed by folding one sheet of film in two with the edge 60c of the metal plate 60A interposed therebetween. The outer edge portions of the first sealing portions 61B and 61C are the folded portions (bent portions) of the film. The films forming the first sealing portions 61B and 61C are joined to the edge portion 60c on both the one surface 60a and the other surface 60b of the metal plate 60A. By bonding both surfaces of the metal plate 60A to the first sealing portions 61B and 61C in this way, it is possible to suppress the seepage of the electrolytic solution due to the so-called alkali creep phenomenon.
  • the first sealing portion 61D is joined to one surface 60a of the metal plate 60B.
  • the inner portion 61b of the first sealing portion 61D is positioned between the edge 55c of the metal plate 55 of the positive terminal electrode 59 and the edge 60c of the metal plate 60B that are adjacent to each other in the first direction D1.
  • a region where the edge portion 60c on the one surface 60a of the metal plate 60B and the first sealing portion 61D overlap is a bonding region between the metal plate 60B and the first sealing portion 61D.
  • the first sealing portion 61E is arranged on the edge portion 60c of the other surface 60b (outer surface) of the metal plate 60B.
  • the first sealing portion 61E is located on the farthest other end side in the first direction D1 among the plurality of first sealing portions 61 .
  • the first sealing portion 61E is not joined to the metal plate 60B.
  • the other surface 60b of the metal plate 60B has an exposed portion 60d exposed from the first sealing portion 61E.
  • the current collector plate 5 is arranged in contact with the exposed portion 60d.
  • the outer edges of the first sealing portions 61D and 61E embedded in the second sealing portion 62 are continuous. That is, the first sealing portions 61D and 61E are formed by folding one sheet of film in two with the edge 60c of the metal plate 60B sandwiched therebetween. The outer edge portions of the first sealing portions 61D and 61E are folded portions (bent portions) of the film. The films forming the first sealing portions 61D and 61E are joined to the edge portion 60c on one surface 60a of the metal plate 60B.
  • the surfaces of the metal plates 55, 60A, 60B are roughened.
  • the roughened region may be only the bonding region, but in this embodiment, the entire one surface 55a of the metal plate 55 is roughened.
  • the entire one surface 60a and the other surface 60b of the metal plate 60A are roughened.
  • the entire one surface 60a of the metal plate 60B is roughened.
  • Roughening can be realized by forming a plurality of projections by, for example, electroplating.
  • the resin in a molten state enters between the plurality of protrusions formed by surface roughening at the bonding interface with the first sealing portion 61 in the bonding region, and an anchor effect is obtained. demonstrated.
  • the bonding strength between the metal plates 55, 60A, 60B and the first sealing portion 61 can be improved.
  • the projections formed during surface roughening have, for example, a shape that tapers from the proximal side to the distal side. As a result, the cross-sectional shape between adjacent projections becomes an undercut shape, making it possible to enhance the anchor effect.
  • the second sealing portion 62 is provided outside the electrode laminate 51 and the first sealing portion 61 so as to surround the side surface 51 a of the electrode laminate 51 , and constitutes an outer wall (housing) of the power storage module 3 . .
  • the second sealing portion 62 is formed, for example, by injection molding of resin, and extends over the entire length of the electrode laminate 51 along the first direction D1.
  • the second sealing portion 62 has a rectangular frame shape extending in the first direction D1 as an axial direction.
  • the second sealing portion 62 is welded to the outer surface of the first sealing portion 61 by heat during injection molding, for example.
  • the sealing body 52 forms an internal space V between adjacent electrodes and seals the internal space V. More specifically, the second sealing portion 62, together with the first sealing portion 61, is formed between the bipolar electrodes 54 adjacent to each other along the first direction D1 and between the negative electrode terminals adjacent to each other along the first direction D1. It seals between the electrode 58 and the bipolar electrode 54 and between the positive terminal electrode 59 and the bipolar electrode 54 that are adjacent to each other along the first direction D1. As a result, airtight internal spaces V are formed between the adjacent bipolar electrodes 54, between the negative terminal electrode 58 and the bipolar electrode 54, and between the positive terminal electrode 59 and the bipolar electrode 54, respectively. ing.
  • This internal space V accommodates an electrolytic solution (not shown) containing an alkaline solution such as an aqueous potassium hydroxide solution.
  • the electrolytic solution is impregnated in the separator 53 , positive electrode 56 and negative electrode 57 .
  • the sealing body 52 also seals between the metal plate 60A and the negative terminal electrode 58 and between the metal plate 60B and the positive terminal electrode 59, respectively.
  • a plurality of power storage modules 3 are stacked with collector plates 5 interposed therebetween. Electricity storage modules 3 adjacent to each other in the first direction D ⁇ b>1 are electrically connected via current collector plates 5 .
  • the plurality of current collector plates 5 includes a current collector plate 5A on one end side in the first direction D1, a current collector plate 5B on the other end side, and a plurality of (six in this embodiment) collectors interposed between the power storage modules 3.
  • the electric plate 5C and, are included.
  • the current collector plate 5C is provided between the power storage modules 3 adjacent to each other in the first direction D1.
  • the current collector plate 5C is disposed in contact with the exposed portion 60d of the other surface 60b of the metal plate 60B and the exposed portion 60d of the one surface 60a of the metal plate 60A. It is
  • the current collector plates 5A and 5B are arranged so as to sandwich the plurality of power storage modules 3 and the plurality of current collector plates 5C from both sides in the first direction D1.
  • the current collector plates 5A and 5B are stacked in the first direction D1 on the power storage module 3 positioned at the stack end among the plurality of power storage modules 3 .
  • the current collector plate 5 ⁇ /b>A is stacked on the power storage module 3 positioned at one stack end in the first direction D ⁇ b>1 and is electrically connected to at least the power storage module 3 .
  • the current collector plate 5B is stacked on the power storage module 3 positioned at the other stacking end in the first direction D1, and is electrically connected to at least the power storage module 3 .
  • a negative electrode terminal 7 is connected to one current collector plate 5A.
  • a positive electrode terminal 6 is connected to the other collector plate 5B.
  • the restraint member 4 includes a pair of restraint plates 8 that sandwich the module laminate 2 from both sides in the first direction D1, and a plurality of connection members 9 that connect the pair of restraint plates 8 .
  • the pair of restraint plates 8 includes a restraint plate 8A on the negative terminal 7 side and a restraint plate 8B on the positive terminal 6 side.
  • a pair of restraint plates 8 are laminated on both sides of the module laminate 2 so as to sandwich the module laminate 2 in the first direction D1.
  • the connecting member 9 applies a binding load to the module stack 2 from both sides in the first direction D1 via a pair of binding plates 8 .
  • a plurality of power storage modules 3 and a plurality of collector plates 5 are unitized as a module laminate 2 by being sandwiched between a pair of restraint plates 8 .
  • the connecting member 9 is composed of a bolt 9a and a nut 9b that fasten the pair of restraining plates 8 together.
  • the pair of insulating plates 20 includes an insulating plate 20A on the negative terminal 7 side and an insulating plate 20B on the positive terminal 6 side.
  • An insulating plate 20A is provided between the collector plate 5A and the restraining plate 8A.
  • the insulating plate 20A is a member for ensuring insulation between the collector plate 5A and the restraint plate 8A.
  • the insulating plate 20A is in contact with the collector plate 5A and the constraining plate 8A.
  • the insulating plate 20A is laminated on the collector plate 5A in the first direction D1.
  • the insulating plate 20A is arranged so as to overlap the entire area of the current collector plate 5A when viewed from the first direction D1.
  • the constraining plate 8A is laminated on the insulating plate 20A in the first direction D1, and applies a constraining load to the power storage module 3, the collector plate 5A, and the insulating plate 20A positioned at least one end of the stack.
  • An insulating plate 20B is provided between the current collector plate 5B and the restraining plate 8B.
  • the insulating plate 20B is a member for ensuring insulation between the collector plate 5B and the restraint plate 8B.
  • the insulating plate 20B is in contact with the collector plate 5B and the constraining plate 8B.
  • the insulating plate 20B is laminated on the current collecting plate 5B in the first direction D1.
  • the insulating plate 20B is arranged so as to overlap the entire area of the current collector plate 5B when viewed from the first direction D1.
  • the constraining plate 8B is laminated on the insulating plate 20B in the first direction D1, and applies a constraining load to at least the power storage module 3, the current collecting plate 5B, and the insulating plate 20B positioned at the other stack end.
  • the insulating plate 20 is made of an insulating material.
  • the insulating plate 20 is made of resin such as polypropylene (PP), for example.
  • the insulating plate 20 has a coefficient of thermal expansion different from that of the constraining plate 8 .
  • the insulating plate 20 has a coefficient of thermal expansion higher than that of the constraining plate 8 .
  • the insulating plate 20 has a coefficient of thermal expansion that is at least twice the coefficient of thermal expansion of the constraining plate 8 .
  • the insulating plate 20 may have a coefficient of thermal expansion that is five times or more the coefficient of thermal expansion of the constraining plate 8 .
  • FIG. 3 is an exploded perspective view showing the overall configuration of the insulating plate 20B and the restraining plate 8B.
  • FIG. 4 is a plan view of the constraining plate 8B viewed from the inner surface 11b side.
  • FIG. 5 is a partially enlarged plan view of the constraining plate 8B viewed from the outer surface 11a side. 3 to 5, the structures of the insulating plate 20B and the constraining plate 8B on the positive terminal 6 side will be described, but the insulating plate 20A and the constraining plate 8A on the negative terminal 7 side also have the same structure.
  • the insulating plate 20B has a facing surface 20a and a plurality of (six in this embodiment) projections 30.
  • the facing surface 20a faces the constraining plate 8B in the first direction D1.
  • the facing surface 20 a has a rectangular shape with a pair of short sides 21 and a pair of long sides 22 .
  • the pair of short sides 21 and the pair of long sides 22 form outer edges of the facing surface 20a.
  • the short side direction of the facing surface 20a is defined as a second direction D2, and the long side direction of the facing surface 20a is defined as a third direction D3.
  • the first direction D1, the second direction D2, and the third direction D3 cross each other (perpendicularly in this embodiment).
  • the pair of short sides 21 face each other in the third direction D3.
  • the pair of long sides 22 are opposed to each other in the second direction D2.
  • the plurality of protrusions 30 are made of the same material as the main body of the insulating plate 20B including the facing surface 20a, and are formed integrally with the main body.
  • a plurality of protrusions 30 are provided at positions spaced apart from the center of the facing surface 20a and protrude toward the restraining plate 8B.
  • the insulating plate 20 and the restraining plate 8 thermally expand and contract radially.
  • the center of the facing surface 20a is the center position when the insulating plate 20 thermally expands and contracts in the in-plane direction, and does not move in the in-plane direction due to thermal expansion and thermal contraction.
  • the center of the facing surface 20a is, for example, the center of gravity of the facing surface 20a. Since the insulating plate 20B is thin, thermal expansion and thermal contraction in the thickness direction (first direction D1) are greater than thermal expansion and thermal contraction in the in-plane direction (second direction D2 and third direction D3) of the opposing surface 20a. very small.
  • the plurality of protrusions 30 are arranged in two rows along each of the pair of long sides 22 .
  • the plurality of protrusions 30 are provided at positions spaced apart from the center in the short side direction (second direction D2) of the facing surface 20a. That is, the plurality of projections 30 are provided at positions separated from the center line of the facing surface 20a in the second direction D2.
  • the center line of the facing surface 20a in the second direction D2 is a straight line that is parallel to the pair of long sides 22 and has the same distance from the pair of long sides 22 .
  • a plurality of (three in the present embodiment) protrusions 30 arranged near one long side 22 of the facing surface 20a are arranged in the third direction D3 while being spaced apart from each other.
  • a plurality of (three in the present embodiment) protrusions 30 arranged near the other long side 22 of the facing surface 20a are arranged in the third direction D3 while being spaced apart from each other.
  • Each protrusion 30 is divided into a first protrusion 31 and a second protrusion 32 in the in-plane direction of the facing surface 20a.
  • each protrusion 30 is divided in the second direction D2.
  • the first protrusion 31 is arranged near the center of the facing surface 20a in the second direction D2.
  • the second protrusion 32 is arranged near the outer edge of the facing surface 20a in the second direction D2.
  • the first protrusion 31 is arranged inside the facing surface 20a, and the second protrusion 32 is arranged outside the facing surface 20a (closer to the corresponding long side 22) in the second direction D2.
  • the protrusion 30 is divided into a first protrusion 31 and a second protrusion 32 by a slit 33 .
  • the slit 33 extends in the third direction D3.
  • the slit 33 extends to the facing surface 20a.
  • the first protrusion 31 and the second protrusion 32 are separated from each other by the slit 33 .
  • the projecting portion 30 has a shape in which a cylinder having a central axis along the first direction D1 is divided by a slit 33 passing through the central axis.
  • the first protrusion 31 and the second protrusion 32 have a C-shaped columnar shape when viewed from the first direction D1.
  • the first protrusion 31 and the second protrusion 32 have the same shape.
  • the first protrusion 31 and the second protrusion 32 have the same stiffness.
  • the thickness of the insulating plate 20B is thinner than the height of the protrusions 30 (protrusion height from the facing surface 20a), for example, 1/2 or less of the height of the protrusions 30.
  • the thickness of the insulating plate 20B is, for example, 2.0 mm.
  • the height of the protrusion 30 is, for example, 5 mm.
  • the constraining plate 8 is a rectangular metal plate having an area slightly larger than the areas of the power storage module 3 and the collector plate 5 when viewed from the first direction D1.
  • the lateral direction of the restraint plate 8 coincides with the second direction D2.
  • the longitudinal direction of the restraint plate 8 coincides with the third direction D3.
  • the restraint plate 8 has a body portion 11 and a pair of edge portions 10 .
  • the body portion 11 overlaps the module stack 2 when viewed from the first direction D1.
  • the pair of edge portions 10 extend from the body portion 11 in the second direction D2 and do not overlap the module laminate 2 when viewed from the first direction D1.
  • the pair of edge portions 10 are provided on both sides of the body portion 11 in the second direction D2. That is, the body portion 11 is sandwiched between the pair of edge portions 10 in the second direction D2.
  • the edge portion 10 has an outer surface 10a facing outward in the first direction D1 (the side opposite to the power storage module 3 in the first direction D1) and facing inward in the first direction D1 (the power storage module 3 side in the first direction D1). and an inner surface 10b.
  • the body portion 11 has an outer surface 11a facing outward in the first direction D1 and an inner surface 11b facing inward in the first direction D1.
  • the outer surface 10a is positioned inside the first direction D1 with respect to the outer surface 11a.
  • the inner surface 10b is located inside the inner surface 11b in the first direction D1.
  • the inner surface 10 b faces the facing surface 20 a of the insulating plate 20 .
  • the pair of edge portions 10 are outer edge portions extending in the longitudinal direction (third direction D3) of the restraint plate 8 .
  • Edge portion 10 is provided with a plurality of insertion holes 10c through which bolts 9a are inserted. 3, illustration of the insertion hole 10c is omitted.
  • the plurality of insertion holes 10c are arranged so as to be spaced apart from each other along the third direction D3.
  • the plurality of insertion holes 10c are arranged at equal intervals from one end to the other end of the edge portion 10 in the longitudinal direction of the restraining plate 8.
  • the head of the bolt 9a is arranged on the outer surface 10a of the restraining plate 8A.
  • the tip (threaded tip) of the shaft of the bolt 9a protrudes from the outer surface 10a of the restraining plate 8B.
  • a nut 9b is screwed onto the tip of the bolt 9a.
  • the nut 9b is arranged on the outer surface 10a of the restraining plate 8B.
  • the inner surface 11b of the restraining plate 8B is provided with a plurality of holes 40 into which the plurality of protrusions 30 are inserted.
  • One corresponding protrusion 30 that is, a pair of first protrusion 31 and second protrusion 32 is inserted into one hole 40 .
  • the depth of the hole 40 is greater than the height of the protrusion 30 .
  • the depth of hole 40 is shallower than the thickness of constraining plate 8B, and hole 40 does not penetrate through constraining plate 8B.
  • the depth of the hole 40 is, for example, 10 mm.
  • the thickness of the restraint plate 8B is, for example, 15 mm.
  • the hole 40 is an elongated hole extending in the third direction D3.
  • the length of the hole 40 in the third direction D3 (the length of the hole 40) is longer than the length of the hole 40 in the second direction D2 (the width of the hole 40).
  • the plurality of holes 40 have the same shape, but may have different shapes.
  • the protrusion 30 is inserted (press-fitted) into the hole 40 so that, for example, the first protrusion 31 and the second protrusion 32 are in contact with the inner wall 40a of the hole 40, as shown in FIG. Since the protrusion 30 is divided by the slit 33, it can be easily press-fitted into the hole 40. As shown in FIG. In FIG. 5, the holes 40 and the projections 30 are indicated by dashed lines.
  • the inner wall 40a has a pair of planar portions facing each other in the second direction D2 and abutting on the first projection 31 and the second projection 32. As shown in FIG. The pair of planar portions sandwich the first projection 31 or the second projection 32 in the second direction D2.
  • the first protrusions 31 and the second protrusions 32 may be configured to contact the inner wall 40a at least when the insulating plate 20B and the restraining plate 8B thermally expand or contract. In this embodiment, at least the first projection 31 may be configured to contact the inner wall 40a.
  • the insulating plate 20 is provided with the projecting portion 30
  • the restraining plate 8 is provided with the hole portion 40 into which the projecting portion 30 is inserted. Therefore, the insulating plate 20 can be positioned with respect to the restraint plate 8 by inserting the protrusion 30 into the hole 40 .
  • the insulating plate 20 and the constraining plate 8 have different coefficients of thermal expansion.
  • the insulating plate 20 thermally expands and contracts radially from the center of the facing surface 20a.
  • the protrusion 30 is provided on the opposing surface 20a at a position spaced apart from the center of the opposing surface 20a.
  • the protrusion 30 is positioned in the in-plane direction of the opposing surface 20a and relatively in the center of the opposing surface 20a with respect to the hole 40. Move toward or away from.
  • FIG. 6 is a cross-sectional view of an insulating plate 20B and a restraint plate 8B of a power storage device according to a comparative example.
  • FIG. 7 is a cross-sectional view of the insulating plate 20B and the restraint plate 8B of the power storage device 1.
  • FIG. 6 and 7, the configuration of the insulating plate 20B and the constraining plate 8B on the positive terminal 6 side will be described, but the insulating plate 20A and the constraining plate 8A on the negative electrode terminal 7 side also have the same structure. 6 and 7, the facing surface 20a and the inner surface 11b are separated from each other, but actually they are in contact with each other.
  • the power storage device according to the comparative example shown in FIG. 6 is different from the power storage device 1 shown in FIG. 7 in that the insulating plate 20B has projections 130 that are not divided.
  • FIG. 6(a) shows a state before the insulating plate 20B and the restraining plate 8B are thermally expanded or thermally contracted.
  • FIG. 6B shows how the projection 130 moves relative to the hole 40 when the insulating plate 20B and the restraining plate 8B thermally expand or contract.
  • the left side of the paper surface is closer to the center of the facing surface 20a.
  • projection 130 when projection 130 moves, projection 130 interferes with inner wall 40 a of hole 40 , and stress concentrates at the base of projection 130 . Since the projection 130 is thick and has high rigidity, it is difficult to break at the base. As a result, cracks occur in the insulating plate 20B in the thickness direction.
  • FIG. 7 shows the state before the insulating plate 20B and the constraining plate 8B are thermally expanded or thermally contracted.
  • FIG. 7B shows how the protrusion 30 moves relative to the hole 40 when the insulating plate 20B and the restraining plate 8B thermally expand or contract.
  • the protrusion 30 is divided into the first protrusion 31 and the second protrusion 32, the first protrusion 31 is arranged near the center of the facing surface 20a, and the second protrusion 32 is arranged near the outer edge of the facing surface 20a. It is Each of the first projections 31 and the second projections 32 is thinner and less rigid than the undivided projection 130 .
  • the insulating plate 20 is made of resin, so it becomes more brittle at lower temperatures. For this reason, the insulating plate 20 is likely to be cracked particularly when it is thermally shrunk. It has a coefficient of thermal expansion higher than that of the constraining plate 8 . Therefore, when the insulating plate 20 and the restraining plate 8 thermally contract, the protrusion 30 moves toward the center of the facing surface 20 a relative to the hole 40 . Since the first projection 31 arranged near the center of the facing surface 20a abuts against the inner wall 40a of the hole 40, only the first projection 31 is easily cracked at its base when the projection 30 moves due to thermal contraction.
  • the facing surface 20a has a rectangular shape having a pair of short sides 21 along the second direction D2 and a pair of long sides 22 along the third direction D3. Therefore, the dimensional tolerance of the insulating plate 20 and the constraining plate 8 in the third direction D3, which is the long side direction, tends to increase. Since the hole portion 40 is an elongated hole extending in the third direction D3, the projection portion 30 can be reliably inserted into the hole portion 40 even when the insulating plate 20 and the restraining plate 8 have a large dimensional tolerance in the third direction D3. be able to.
  • the length of the hole 40 can be set according to the dimensional tolerances of the insulating plate 20 and the restraining plate 8 .
  • the dimensional tolerance of the insulating plate 20 and the constraining plate 8 is, for example, 3 mm at maximum.
  • the moving direction in which the protrusion 30 moves relative to the hole 40 is the direction in which the hole 40, which is an elongated hole, extends. 3 coincides with direction D3. Therefore, even if the protrusion 30 moves, it is difficult to interfere with the hole 40 .
  • the protrusion 30 is provided at a position spaced apart from the center of the facing surface 20a in the second direction D2. Therefore, the moving direction in which the protrusion 30 moves relative to the hole 40 is the in-plane direction of the facing surface 20a and the direction intersecting the third direction D3. Therefore, the protrusion 30 is likely to interfere with the hole 40 . Therefore, the configuration of this embodiment is particularly effective in suppressing cracks in the thickness direction of the insulating plate 20 .
  • a plurality of protrusions 30 are arranged along each of the pair of long sides 22 . Therefore, the insulating plate 20 can be positioned with respect to the restraint plate 8 more accurately.
  • the thickness of the insulating plate 20 is thinner than the height of the protrusion 30. Since the insulating plate 20 is thin as described above, the configuration of the present embodiment is particularly effective in suppressing cracks in the thickness direction of the insulating plate 20 .
  • Each of the first projection 31 and the second projection 32 is in contact with the inner wall 40a of the hole portion 40. Therefore, the insulating plate 20 can be positioned with respect to the restraint plate 8 more accurately.
  • the insulating plate 20 has a coefficient of thermal expansion that is at least twice the coefficient of thermal expansion of the constraining plate 8 . Since the difference in coefficient of thermal expansion is large in this manner, the amount of movement of the protrusion 30 relative to the hole 40 is large. Therefore, the configuration of this embodiment is particularly effective in suppressing cracks in the thickness direction of the insulating plate 20 .
  • the protrusion 30 is divided into a first protrusion 31 and a second protrusion 32 by a slit 33 .
  • the first projection 31 and the second projection 32 are separated from each other by the slit 33, when one of the first projection 31 and the second projection 32 is broken at the base, the other is not affected. Suppressed.
  • the first projection 31 and the second projection 32 have a C-shaped pillar shape when viewed from the first direction D1.
  • it may have a semicircular shape, a circular shape, or a polygonal columnar shape when viewed from the direction D1.
  • the first protrusion 31 and the second protrusion 32 may have shapes different from each other.
  • the first projections 31 and the second projections 32 have the same rigidity, but the rigidity of the first projections 31 may be lower than the rigidity of the second projections 32 .
  • the rigidity of the first projection 31 is equal to or higher than the rigidity of the second projection 32, it is easier to realize a structure in which the first projection 31 is easily cracked at its base.
  • the projection 30 is divided into the first projection 31 and the second projection 32 in the second direction D2 by the slit 33, but the projection 30 may be further divided.
  • FIG. 8 is a perspective view of an insulating plate 20B provided with projections 30A according to a first modified example.
  • FIG. 9 is a plan view of an insulating plate 20B provided with projections 30A according to the first modification. 8 and 9, the configuration of the insulating plate 20B on the positive electrode terminal 6 side will be described, but the insulating plate 20A on the negative electrode terminal 7 side may also have the same configuration.
  • the projection 30A may be divided into four parts by being further divided in the third direction D3, for example. In this case, the protrusion 30A includes four protrusions spaced apart from each other.
  • first projection 31 is divided into a pair of projection pieces 34 in the third direction D3.
  • second protrusion 32 is divided into a pair of protrusion pieces 35 in the third direction D3.
  • Each of the first projection 31 and the second projection 32 is divided in the third direction D3 by a slit 36 extending in the second direction D2.
  • the slit 36 extends to the facing surface 20a.
  • the pair of projecting pieces 34 are separated from each other by slits 36 .
  • a pair of projecting pieces 35 are separated from each other by a slit 36 .
  • Each of the projecting pieces 34 and 35 may have a sector shape with a central angle of 90 degrees when viewed from the first direction D1.
  • the four projecting pieces 34 and 35 have the same shape.
  • Each of the projecting pieces 34 and 35 may have, for example, a circular or polygonal columnar shape when viewed from the first direction D1.
  • the four projecting pieces 34 and 35 may have shapes different from each other.
  • FIG. 10 is an exploded perspective view showing the overall configuration of an insulating plate 20B provided with projections 70 and a constraining plate 8B according to the second modification.
  • FIG. 11 is a plan view of a constraining plate according to a second modification, viewed from the inner surface side. 10 and 11, the configuration of the insulating plate 20B and the constraining plate 8B on the positive terminal 6 side will be described, but the insulating plate 20A and the constraining plate 8A on the negative terminal 7 side may also have the same structure.
  • the insulating plate 20B further has a plurality of (four in this modification) protrusions 70 provided on the facing surface 20a.
  • the plurality of projections 70 have the same shape, but may have different shapes.
  • the plurality of protrusions 70 are made of the same material as the main body of the insulating plate 20B, and are formed integrally with the main body. A plurality of protrusions 70 are provided at positions spaced apart from the center of the opposing surface 20a and protrude toward the restraining plate 8B. The height of the protrusion 70 is, for example, the same as the height of the protrusion 30 .
  • the plurality of protrusions 70 are arranged in one row along one short side 21 .
  • the plurality of projecting portions 70 are provided at positions separated from the center in the long side direction (third direction D3) of the facing surface 20a. That is, the plurality of protrusions 70 are provided at positions separated from the center line of the facing surface 20a in the third direction D3.
  • the center line of the facing surface 20a in the third direction D3 is a straight line that is parallel to the pair of short sides 21 and has the same distance from the pair of short sides 21 .
  • the plurality of projections 70 are provided closer to one end in the third direction D3 than the plurality of projections 30 on the facing surface 20a.
  • the multiple protrusions 70 are arranged side by side in the second direction D2.
  • Each protrusion 70 is divided into a first protrusion 71 and a second protrusion 72 in the in-plane direction of the facing surface 20a.
  • Each protrusion 70 is divided in the third direction D3.
  • the first protrusion 71 is arranged near the center of the facing surface 20a in the third direction D3.
  • the second protrusion 72 is arranged closer to the outer edge of the facing surface 20a in the third direction D3.
  • the first projection 71 is arranged inside the facing surface 20a, and the second projection 72 is arranged outside the facing surface 20a (closer to one short side 21) in the third direction D3.
  • the protrusion 70 is divided into a first protrusion 71 and a second protrusion 72 by a slit 73 extending in the second direction D2.
  • the slit 73 extends to the facing surface 20a.
  • the first protrusion 71 and the second protrusion 72 are separated from each other by the slit 73 .
  • the projecting portion 70 has a shape in which a rectangular tube having a height direction in the first direction D ⁇ b>1 , a long side in the second direction D ⁇ b>2 , and a short side in the third direction D ⁇ b>3 is divided by slits 73 .
  • the first protrusion 71 and the second protrusion 72 have a U-shaped columnar shape when viewed from the first direction D1.
  • the first protrusion 71 and the second protrusion 72 have the same shape.
  • the first protrusion 71 and the second protrusion 72 have the same stiffness.
  • a plurality of (two in this modified example) holes 80 into which a plurality of protrusions 70 are inserted are provided on the inner surface 11b of the restraining plate 8B.
  • Two corresponding projections 70 that is, two sets of first projection 71 and second projection 72 are inserted into one hole 80 .
  • One corresponding protrusion 70 may be inserted into one hole 80 , or all protrusions 70 may be inserted into one hole 80 .
  • the depth of the hole 80 is greater than the height of the protrusion 30 .
  • the depth of hole 80 is shallower than the thickness of constraining plate 8B, and hole 80 does not penetrate through constraining plate 8B.
  • the depth of hole 80 is equivalent to the depth of hole 40 .
  • the hole portion 80 is an elongated hole extending in the second direction D2.
  • the length of the hole portion 80 in the second direction D2 (the length of the hole portion 80) is longer than the length of the hole portion 80 in the third direction D3 (the width of the hole portion 80).
  • the plurality of holes 80 have the same shape, but may have different shapes.
  • the protrusion 70 is inserted (press-fitted) into the hole 80 so that the first protrusion 71 and the second protrusion 72 are in contact with the inner wall 80a of the hole 80, for example. Since the protrusion 70 is divided by the slit 73, it can be easily press-fitted into the hole 80.
  • the inner wall 80a has a pair of flat portions facing each other in the third direction D3 and abutting on the first projection 71 and the second projection 72. As shown in FIG. The pair of planar portions sandwich the first projection 71 or the second projection 72 in the third direction D3.
  • the first protrusions 71 and the second protrusions 72 may be configured to contact the inner wall 80a at least when the insulating plate 20B and the restraining plate 8B thermally expand or contract. In this modified example, at least the first protrusion 71 may be configured to contact the inner wall 80a.
  • the insulating plate 20B can also be positioned with respect to the restraining plate 8B by inserting the protrusion 70 according to the second modification into the hole 80.
  • the protrusion 70 is provided closer to one end in the third direction D3 than the protrusion 30 on the facing surface 20a. Therefore, when the insulating plate 20B is attached to the restraining plate 8B, the projection 30 can be easily inserted into the hole 40 by inserting the projection 70 into the hole 80 first.
  • the multiple protrusions 70 are arranged side by side in the second direction D2. By inserting the plurality of protrusions 70 into the corresponding holes 80, the insulating plate 20B can be reliably positioned with respect to the restraint plate 8B.
  • each of the first projections 71 and the second projections 72 is smaller than the rigidity of the projecting portion 70 that is not divided. Therefore, even if the insulating plate 20B and the constraining plate 8B thermally expand and contract as described above and the protrusion 70 interferes with the hole 80, only one of the first protrusion 71 and the second protrusion 72 will remain a hole. It interferes with the portion 80 and easily cracks at the root. This suppresses cracks in the thickness direction of the insulating plate 20B. As a result, poor insulation of the insulating plate 20B can be suppressed.
  • the first projection 71 is arranged closer to the center of the facing surface 20 a than the second projection 72 and is in contact with the inner wall 80 a of the hole 80 . Therefore, when the insulating plate 20B and the constraining plate 8B thermally shrink, only the first projection 71 is easily cracked at its base. This suppresses cracks in the thickness direction of the insulating plate 20B. As a result, poor insulation of the insulating plate 20B can be suppressed.
  • the first projections 71 and the second projections 72 have the same rigidity, but the rigidity of the first projections 71 may be lower than the rigidity of the second projections 72 .
  • the rigidity of the first projection 71 is equal to or higher than the rigidity of the second projection 72, it is easier to realize a configuration in which the first projection 71 is easily cracked at its base.
  • FIG. 12 is a plan view of an insulating plate 20B provided with projections 70A according to a third modified example.
  • the insulating plate 20A on the negative terminal 7 side may also have a similar configuration.
  • the protrusion 70A has a rib 74 on the second protrusion 72 .
  • the ribs 74 can increase the rigidity of the second projections 72 and prevent the second projections 72 from cracking.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

蓄電装置1は、蓄電モジュール3と、蓄電モジュール3上に積層された集電板5と、集電板5上に積層された絶縁板20A,20Bと、絶縁板20A,20B上に積層された拘束板8とを備える。絶縁板20A,20B及び拘束板8は、互いに異なる熱膨張率を有する。絶縁板20A,20Bは、拘束板8と対向する対向面20aと、対向面20aの中央から離間した位置に設けられた突起部30と、を有する。拘束板8には、突起部30が挿入される穴部40が設けられている。突起部30は、第1方向D1に交差する第2方向D2において第1突起31と第2突起32とに分割されている。第1突起31は、第2方向D2において対向面20aの中央寄りに配置されており、第2突起32は、第2方向D2において対向面20aの外縁寄りに配置されている。

Description

蓄電装置
 本開示は、蓄電装置に関する。
 蓄電モジュールと、蓄電モジュール上に積層された集電板と、集電板上に積層された絶縁板と、絶縁板上に積層された拘束板と、を備える蓄電装置が知られている(特許文献1参照)。
特開2018-6058号公報
 モジュールを複数積層する蓄電装置では、絶縁板を拘束板に対して位置決めするために、例えば、絶縁板に突起部を設けると共に、拘束板に突起部が挿入される穴部を設けることが考えられる。しかしながら、絶縁板及び拘束板の面方向の熱膨張率の違いにより、突起部が穴部と干渉し、突起部の根元に応力が集中する結果、絶縁板に厚さ方向の割れ(クラック)が生じるおそれがある。これにより、絶縁不良が生じるおそれがある。
 本開示の目的は、絶縁板を拘束板に対して位置決めすることができると共に、絶縁板の絶縁不良を抑制することができる蓄電装置の提供である。
 本開示の一側面に係る蓄電装置は、蓄電モジュールと、第1方向において蓄電モジュール上に積層され、蓄電モジュールと電気的に接続された集電板と、第1方向において集電板上に積層された絶縁板と、第1方向において絶縁板上に積層され、蓄電モジュール、集電板、及び、絶縁板に拘束荷重を付加する拘束板と、を備え、絶縁板及び拘束板は、互いに異なる熱膨張率を有し、絶縁板は、拘束板と対向する対向面と、対向面上で対向面の中央から離間した位置に設けられた第1突起部と、を有し、拘束板には、第1突起部が挿入される第1穴部が設けられており、第1突起部は、第1方向に交差する第2方向において第1突起と第2突起とに分割されており、第1突起は、第2方向において対向面の中央寄りに配置されており、第2突起は、第2方向において対向面の外縁寄りに配置されている。
 上記蓄電装置では、絶縁板には第1突起部が設けられ、拘束板には第1穴部が設けられている。したがって、絶縁板の第1突起部を拘束板の第1穴部に挿入することにより、絶縁板を拘束板に対して位置決めすることができる。絶縁板及び拘束板は、互いに異なる熱膨張率を有している。また、第1突起部は、絶縁板の対向面の中央から離間した位置に設けられている。このため、絶縁板及び拘束板が熱膨張及び熱収縮する際、第1突起部は、第1穴部に対して相対的に対向面の中央に向かう方向又は遠ざかる方向に移動する。これにより、第1突起部が第1穴部と干渉し、第1突起部の根元に応力が集中する。第1突起部は、第1方向に交差する第2方向において第1突起と第2突起とに分割され、第1突起は、対向面の中央寄りに配置され、第2突起は対向面の外縁寄りに配置されている。第1突起及び第2突起それぞれの剛性は、分割されていない第1突起部の剛性に比べて小さい。よって、第1突起部が第1穴部と干渉した場合でも、第1突起及び第2突起のいずれか一方のみが第1穴部と干渉し、容易に根元で割れる。これにより、絶縁板に厚さ方向の割れが生じることが抑制される。この結果、絶縁板の絶縁不良を抑制することができる。
 絶縁板は、樹脂からなり、拘束板の熱膨張率よりも高い熱膨張率を有し、第1突起は、第1穴部の内壁に当接していてもよい。この場合、絶縁板は樹脂からなるので、低温になるほど脆くなる。よって、特に熱収縮する際に絶縁板に割れが生じ易い。また、絶縁板の熱膨張率は、拘束板の熱膨張率よりも高いので、絶縁板及び拘束板が熱収縮する際、第1突起部は、第1穴部に対して相対的に対向面の中央に向かう方向に移動する。対向面の中央寄りに配置された第1突起は、第1穴部の内壁に当接するので、熱収縮による第1突起部の移動で第1突起のみが容易に根元で割れる。これにより、絶縁板に厚さ方向の割れが生じることが抑制される。この結果、絶縁板の絶縁不良を抑制することができる。
 第1突起の剛性は、第2突起の剛性よりも低くてもよい。この場合、第1突起の剛性が第2突起の剛性以上である場合と比べて、第1突起が容易に根元で割れる構成を実現し易い。
 対向面は、第2方向に沿う一対の短辺と、第1方向及び第2方向に交差する第3方向に沿う一対の長辺と、を有する長方形状であり、第1穴部は、第3方向に延在する長穴であってもよい。この場合、対向面は長方形状であるため、長辺方向である第3方向における絶縁板及び拘束板の寸法公差が大きくなり易い。第1穴部は第3方向に延在する長穴であるため、第3方向における絶縁板及び拘束板の寸法公差が大きな場合でも、第1突起部を第1穴部に確実に挿入することができる。
 第1突起部は、対向面の第2方向の中央から離間した位置に設けられていてもよい。この場合、第1突起部が第1穴部に対して相対的に移動する移動方向は、第3方向と交差する方向となる。よって、第1突起部が対向面の第2方向の中央に位置し、上記移動方向が第3方向と一致する場合と比べて、第1突起部が第3方向に延在する第1穴部と干渉し易い。よって、絶縁板に厚さ方向の割れが生じることを抑制する構成が特に有効である。
 複数の第1突起部は、一対の長辺のそれぞれに沿って配列されていてもよい。この場合、絶縁板を拘束板に対してより正確に位置決めすることができる。
 絶縁板の厚さは、第1突起部の高さよりも薄くてもよい。この場合、絶縁板が薄いので、絶縁板に厚さ方向の割れが生じることを抑制する構成が特に有効である。
 第1突起及び第2突起のそれぞれは、第1穴部の内壁に当接していてもよい。この場合、絶縁板を拘束板に対してより正確に位置決めすることができる。
 絶縁板は、拘束板の熱膨張率の2倍以上の熱膨張率を有していてもよい。この場合、熱膨張率の差が大きいので、第1突起部が第1穴部に対して相対的に移動する移動量が大きくなる。よって、絶縁板に厚さ方向の割れが生じることを抑制する構成が特に有効である。
 第1突起部は、スリットにより第1突起と第2突起とに分割されていてもよい。この場合、第1突起及び第2突起が互いに離間しているので、第1突起及び第2突起のいずれか一方が根元で割れた際に、他方への影響が抑制される。
 第1突起及び第2突起のそれぞれは、第1方向及び第2方向に交差する第3方向において一対の突起片に分割されていてもよい。この場合、各突起片の剛性は、第1突起及び第2突起それぞれの剛性よりも小さい。よって、第1突起部が第1穴部と干渉した場合でも、第1突起又は第2突起を構成する一対の突起片が容易に根元で割れる。これにより、絶縁板に厚さ方向の割れが生じることが更に抑制される。この結果、絶縁板の絶縁不良を更に抑制することができる。
 絶縁板は、対向面上において第1突起部よりも第3方向の一端寄りに設けられた第2突起部を更に有し、拘束板には、第2突起部が挿入される第2穴部が更に設けられており、第2突起部は、第3方向において第3突起と第4突起とに分割されていてもよい。この場合、第2突起部は、対向面上において第1突起部よりも第3方向の一端寄りに設けられている。このため、絶縁板を拘束板に取り付ける際に、まずは第2突起部を第2穴部に挿入すれば、第1突起部を第1穴部に容易に挿入することができる。第3突起及び第4突起それぞれの剛性は、分割されていない第2突起部の剛性に比べて小さい。よって、上述のように絶縁板及び拘束板が熱膨張及び熱収縮し、第2突起部が第2穴部と干渉した場合でも、第3突起及び第4突起のいずれか一方のみが穴部と干渉し、容易に根元で割れる。これにより、絶縁板に厚さ方向の割れが生じることが抑制される。この結果、絶縁板の絶縁不良を抑制することができる。
 第3突起は、第4突起よりも対向面の中央寄りに配置されており、第2穴部の内壁に当接していてもよい。この場合、上述のように、絶縁板は樹脂からなるので、低温になるほど脆くなる。よって、特に熱収縮する際に絶縁板に割れが生じ易い。また、絶縁板の熱膨張率は、拘束板の熱膨張率よりも高いので、絶縁板及び拘束板が熱収縮する際、第2突起部は、第2穴部に対して相対的に対向面の中央に向かう方向に移動する。対向面の中央寄りに配置された第3突起は、第2穴部の内壁に当接するので、熱収縮による第2突起部の移動で第3突起のみが容易に根元で割れる。これにより、絶縁板に厚さ方向の割れが生じることが抑制される。この結果、絶縁板の絶縁不良を抑制することができる。
 第3突起の剛性は、第4突起の剛性よりも低くてもよい。この場合、第3突起の剛性が第4突起の剛性以上である場合と比べて、第3突起が容易に根元で割れる構成を実現し易い。
 複数の第2突起部は、第2方向に並んで配置されていてもよい。この場合、複数の第2突起部を対応する第2穴部に挿入することにより、絶縁板を拘束板に対して確実に位置決めすることができる。
 本開示によれば、絶縁板を拘束板に対して位置決めすることができると共に、絶縁板の絶縁不良を抑制することができる蓄電装置が提供される。
図1は、一実施形態に係る蓄電装置の斜視図である。 図1に示される蓄電モジュールの内部構成を示す概略断面図である。 図3は、絶縁板及び拘束板の全体構成を示す展開斜視図である。 図4は、拘束板を内面側から見た平面図である。 図5は、拘束板を外面側から見た一部拡大平面図である。 図6は、比較例に係る蓄電装置の絶縁板及び拘束板の断面図である。 図7は、一実施形態に係る蓄電装置の絶縁板及び拘束板の断面図である。 図8は、第1変形例に係る突起部が設けられた絶縁板の斜視図である。 図9は、第1変形例に係る突起部が設けられた絶縁板の平面図である。 図10は、第2変形例に係る突起部が設けられた絶縁板及び拘束板の全体構成を示す展開斜視図である。 図11は、第2変形例に係る拘束板を内面側から見た平面図である。 図12は、第3変形例に係る突起部が設けられた絶縁板の平面図である。
 以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。
 図1~図5を参照して、本実施形態に係る蓄電装置1について説明する。図1に示される蓄電装置1は、例えば、フォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリに用いられる。蓄電装置1は、例えばニッケル水素二次電池又はリチウムイオン二次電池等の二次電池である。蓄電装置1は、例えば電気二重層キャパシタであってもよい。本実施形態では、蓄電装置1がニッケル水素電池である場合を例示する。
 蓄電装置1は、モジュール積層体2と、拘束部材4と、一対の絶縁板20と、を備えている。モジュール積層体2は、第1方向D1において積層された複数(本実施形態では7つ)の蓄電モジュール3と、複数(本実施形態では8つ)の集電板5と、を含んでいる。
 図2に示されるように、蓄電モジュール3は、電極積層体51と、電極積層体51を封止する樹脂製の封止体52とを備えている。蓄電モジュール3は、例えば、直方体形状に形成されている。
 電極積層体51は、セパレータ53を介して積層方向(第1方向D1)に沿って積層された複数の電極と、電極積層体51の積層端に配置された金属板60A,60Bと、を含んでいる。複数の電極は、複数のバイポーラ電極54の積層体と、負極終端電極58と、正極終端電極59とを含む。複数のバイポーラ電極54の積層体は、負極終端電極58及び正極終端電極59の間に設けられている。
 バイポーラ電極54は、一方面55a及び一方面55aの反対側の他方面55bを含む金属板55と、一方面55aに設けられた正極56と、他方面55bに設けられた負極57とを有している。正極56は、正極活物質が金属板55に塗工されることにより形成される正極活物質層である。負極57は、負極活物質が金属板55に塗工されることにより形成される負極活物質層である。電極積層体51において、一のバイポーラ電極54の正極56は、セパレータ53を挟んで第1方向D1の一方に隣り合う別のバイポーラ電極54の負極57と対向している。電極積層体51において、一のバイポーラ電極54の負極57は、セパレータ53を挟んで第1方向D1の他方に隣り合う別のバイポーラ電極54の正極56と対向している。
 負極終端電極58は、金属板55と、金属板55の他方面55bに設けられた負極57とを有している。負極終端電極58は、他方面55bが電極積層体51における第1方向D1の中央側を向くように、第1方向D1の一端側に配置されている。負極終端電極58の金属板55の一方面55aには、金属板60Aが更に積層され、この金属板60Aを介して蓄電モジュール3に隣接する一方の集電板5(図1参照)と電気的に接続されている。負極終端電極58の金属板55の他方面55bに設けられた負極57は、セパレータ53を介して、第1方向D1の一端のバイポーラ電極54の正極56と対向している。
 正極終端電極59は、金属板55と、金属板55の一方面55aに設けられた正極56とを有している。正極終端電極59は、一方面55aが電極積層体51における第1方向D1の中央側を向くように、第1方向D1の他端側に配置されている。正極終端電極59の金属板55の他方面55bには、金属板60Bが更に積層され、この金属板60Bを介して蓄電モジュール3に隣接する他方の集電板5(図1参照)と電気的に接続されている。正極終端電極59の金属板55の一方面55aに設けられた正極56は、セパレータ53を介して、第1方向D1の他端のバイポーラ電極54の負極57と対向している。
 金属板55は、例えば、ニッケル又はニッケルメッキ鋼板といった金属からなる。一例として、金属板55は、ニッケルからなる矩形の金属箔である。各金属板55は、いずれも電極積層体51に含まれる金属板の一つである。金属板55の縁部55cは、矩形枠状をなし、正極活物質及び負極活物質が塗工されない未塗工領域となっている。正極56を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極57を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。本実施形態では、金属板55の他方面55bにおける負極57の形成領域は、金属板55の一方面55aにおける正極56の形成領域に対して一回り大きくなっている。電極積層体51は、積層された複数の金属板55,60A,60Bを有している。
 セパレータ53は、金属板55同士の短絡を防止するための部材であり、例えばシート状に形成されている。セパレータ53としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、メチルセルロース等からなる織布又は不織布等が例示される。セパレータ53は、フッ化ビニリデン樹脂化合物で補強されたものであってもよい。なお、セパレータ53は、シート状に限られず、袋状のものを用いてもよい。
 金属板60A,60Bは、金属板55と実質的に同一の部材であり、例えばニッケル又はニッケルメッキ鋼板といった金属からなる。金属板60A,60Bは、いずれも電極積層体51に含まれる金属板の一つである。一例として、金属板60A,60Bは、ニッケルからなる矩形の金属箔である。金属板60A,60Bは、一方面60a及び他方面60bに正極活物質層及び負極活物質層のいずれもが塗工されていない未塗工電極となっている。すなわち、金属板60A,60Bは、両面に活物質層が設けられていない未塗工電極である。
 金属板60Aは、電極積層体51の一方の積層端に位置している。金属板60Aにより、負極終端電極58は、第1方向D1に沿って金属板60Aとバイポーラ電極54との間に配置された状態となっている。金属板60Bは、電極積層体51の他方の積層端に位置している。金属板60Bにより、正極終端電極59は、第1方向D1に沿って金属板60Bとバイポーラ電極54との間に配置された状態となっている。電極積層体51では、電極積層体51の中央領域(バイポーラ電極54、負極終端電極58、及び正極終端電極59において活物質層が配置されている領域)が、その周りの領域に比べて第1方向D1に膨らんでいる。このため、金属板60A,60Bは、金属板60A,60Bの中央領域が互いに離間する方向に屈曲している。金属板60Aの一方面60a及び金属板60Bの他方面60bの中央領域は、集電板5と当接(接触)している。すなわち、集電板5は、電極積層体51の積層端の金属板60A,60Bに接触して配置されている。
 封止体52は、例えば絶縁性の樹脂によって、全体として矩形の筒状に形成されている。封止体52は、電極積層体51の側面51aを囲むように設けられている。封止体52は、側面51aにおいて縁部55cを保持している。封止体52は、電極積層体51に含まれる金属板の縁部(すなわち、金属板55の縁部55c及び金属板60A,60Bの縁部60c)にそれぞれ設けられた枠状の複数の第1封止部61(樹脂部)と、側面51aに沿って第1封止部61を外側から包囲し、第1封止部61のそれぞれに結合された第2封止部62とを有している。第1封止部61及び第2封止部62は、例えば、耐アルカリ性を有する絶縁性の樹脂である。第1封止部61及び第2封止部62の構成材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、変性ポリフェニレンエーテル(変性PPE)などが挙げられる。
 第1封止部61は、金属板55の縁部55c又は金属板60A,60Bの縁部60cの全周にわたって連続的に設けられ、第1方向D1から見て矩形枠状をなしている。第1封止部61は、例えば超音波又は熱によって金属板55の縁部55c又は金属板60A,60Bの縁部60cに溶着され、気密に接合されている。第1封止部61は、第1方向D1から見て、金属板55の縁部55c又は金属板60A,60Bの縁部60cよりも外側にまで延びている。第1封止部61は、金属板55又は金属板60A,60Bの縁よりも外側に張り出した外側部分61aと、金属板55又は金属板60A,60Bの縁よりも内側に位置する内側部分61bと、を含む。第1封止部61の外側部分61aの先端部(外縁部)は、溶着層63により第2封止部62に接合されている。溶着層63は、例えば熱板溶着により溶融された第1封止部61の先端部同士が互いに結合して形成される。第1方向D1に沿って互いに隣り合う第1封止部61の外側部分61a同士は、互いに離間していてもよく、接していてもよい。また、第1方向D1に沿って互いに隣り合う第1封止部61の外側部分61a同士は、例えば熱板溶着などによって互いに結合していてもよい。
 複数の第1封止部61は、バイポーラ電極54及び正極終端電極59に設けられた複数の第1封止部61Aと、負極終端電極58に設けられた第1封止部61Bと、金属板60Aに設けられた第1封止部61Cと、金属板60Bに設けられた第1封止部61D,61Eと、を有している。
 第1封止部61Aは、バイポーラ電極54及び正極終端電極59の金属板55の一方面55aに接合されている。第1封止部61Aの内側部分61bは、第1方向D1に互いに隣り合う金属板55の縁部55c同士の間に位置している。金属板55の一方面55aにおける縁部55cと、第1封止部61Aとが重なる領域は、金属板55と第1封止部61Aとの結合領域となっている。
 本実施形態では、第1封止部61Aは、1枚のフィルムが二つに折りたたまれることによって、二層構造で形成されている。第2封止部62に埋設されている第1封止部61Aの外縁部は、フィルムの折り返し部(屈曲部)である。第1封止部61Aを構成する一層目のフィルムは、一方面55aに接合されている。二層目のフィルムの内縁は、一層目のフィルムの内縁よりも外側に位置し、セパレータ53が載置される段差部を形成している。二層目のフィルムの内縁は、金属板55の縁よりも内側に位置している。
 第1封止部61Bは、負極終端電極58の金属板55の一方面55aに接合されている。第1封止部61Bの内側部分61bは、第1方向D1に互いに隣り合う負極終端電極58の金属板55の縁部55cと、金属板60Aの縁部60cとの間に位置している。金属板55の一方面55aにおける縁部55cと第1封止部61Bの内側部分61bとが重なる領域は、金属板55と第1封止部61Bとの結合領域となっている。第1封止部61Bは、金属板60Aの他方面60bにも接合されている。金属板60Aの他方面60bにおける縁部60cと、第1封止部61Bとが重なる領域は、金属板60Aと第1封止部61Bとの結合領域となっている。本実施形態では、第1封止部61Bは、金属板60Aの他方面60bにおける縁部60cにも接合されている。第1封止部61Bは、負極終端電極58だけでなく、金属板60Aにも設けられていると言える。
 第1封止部61Cは、金属板60Aの一方面60a(外面)に接合されている。本実施形態では、第1封止部61Cは、複数の第1封止部61のうち、第1方向D1の最も一端側に位置する。金属板60Aの一方面60aにおける縁部60cと、第1封止部61Cとが重なる領域は、金属板60Aと第1封止部61Cとの結合領域となっている。金属板60Aの一方面60aは、第1封止部61Cから露出する露出部60dを有している。集電板5は、露出部60dに当接(接触)して配置されている。
 本実施形態では、第2封止部62に埋設されている第1封止部61B,61Cの外縁部同士は連続している。すなわち、第1封止部61B,61Cは、1枚のフィルムが金属板60Aの縁部60cを挟んで二つに折りたたまれることによって形成されている。第1封止部61B,61Cの外縁部は、フィルムの折り返し部(屈曲部)である。第1封止部61B,61Cを構成するフィルムは、金属板60Aの一方面60a及び他方面60bの両方において縁部60cと接合されている。このように、金属板60Aの両面を第1封止部61B,61Cと接合することで、いわゆるアルカリクリープ現象による電解液の滲み出しを抑制することができる。
 第1封止部61Dは、金属板60Bの一方面60aに接合されている。第1封止部61Dの内側部分61bは、第1方向D1に互いに隣り合う正極終端電極59の金属板55の縁部55cと、金属板60Bの縁部60cとの間に位置している。金属板60Bの一方面60aにおける縁部60cと、第1封止部61Dとが重なる領域は、金属板60Bと第1封止部61Dとの結合領域となっている。
 第1封止部61Eは、金属板60Bの他方面60b(外面)における縁部60cに配置されている。本実施形態では、第1封止部61Eは、複数の第1封止部61のうち、第1方向D1の最も他端側に位置する。また、本実施形態では、第1封止部61Eは、金属板60Bに接合されていない。金属板60Bの他方面60bは、第1封止部61Eから露出する露出部60dを有している。集電板5は、露出部60dに当接(接触)して配置されている。
 本実施形態では、第2封止部62に埋設されている第1封止部61D,61Eの外縁部同士は連続している。すなわち、第1封止部61D,61Eは、1枚のフィルムが金属板60Bの縁部60cを挟んで二つに折りたたまれることにより形成されている。第1封止部61D,61Eの外縁部は、フィルムの折り返し部(屈曲部)である。第1封止部61D,61Eを構成するフィルムは、金属板60Bの一方面60aにおいて縁部60cと接合されている。
 結合領域において、金属板55,60A,60Bの表面は、粗面化されている。粗面化された領域は、結合領域のみでもよいが、本実施形態では金属板55の一方面55aの全体が粗面化されている。また、金属板60Aの一方面60a及び他方面60bの全体が粗面化されている。また、金属板60Bの一方面60aの全体が粗面化されている。
 粗面化は、例えば電解メッキによる複数の突起の形成により実現し得る。結合領域に複数の突起が形成されることにより、結合領域における第1封止部61との接合界面では、溶融状態の樹脂が粗面化により形成された複数の突起間に入り込み、アンカー効果が発揮される。これにより、金属板55,60A,60Bと第1封止部61との間の結合強度を向上させることができる。粗面化の際に形成される突起は、例えば基端側から先端側に向かって先太りとなる形状を有している。これにより、隣り合う突起の間の断面形状がアンダーカット形状となり、アンカー効果を高めることが可能となる。
 第2封止部62は、電極積層体51の側面51aを囲むように電極積層体51及び第1封止部61の外側に設けられ、蓄電モジュール3の外壁(筐体)を構成している。第2封止部62は、例えば樹脂の射出成型によって形成され、第1方向D1に沿って電極積層体51の全長にわたって延在している。第2封止部62は、第1方向D1を軸方向として延在する矩形の枠状を呈している。第2封止部62は、例えば射出成型時の熱によって第1封止部61の外表面に溶着されている。
 封止体52は、隣り合う電極の間に内部空間Vを形成すると共に内部空間Vを封止する。より具体的には、第2封止部62は、第1封止部61と共に、第1方向D1に沿って互いに隣り合うバイポーラ電極54の間、第1方向D1に沿って互いに隣り合う負極終端電極58とバイポーラ電極54との間、及び第1方向D1に沿って互いに隣り合う正極終端電極59とバイポーラ電極54との間をそれぞれ封止している。これにより、隣り合うバイポーラ電極54の間、負極終端電極58とバイポーラ電極54との間、及び正極終端電極59とバイポーラ電極54との間には、それぞれ気密に仕切られた内部空間Vが形成されている。この内部空間Vには、例えば水酸化カリウム水溶液等のアルカリ溶液を含む電解液(不図示)が収容されている。電解液は、セパレータ53、正極56、及び負極57内に含浸されている。封止体52は、金属板60Aと負極終端電極58との間、及び金属板60Bと正極終端電極59との間もそれぞれ封止している。
 複数の蓄電モジュール3は、集電板5を介して積層されている。第1方向D1に互いに隣り合う蓄電モジュール3同士は、集電板5を介して電気的に接続されている。複数の集電板5は、第1方向D1における一端側の集電板5Aと、他端側の集電板5Bと、蓄電モジュール3間に介在する複数(本実施形態では6つ)の集電板5Cと、を含んでいる。集電板5Cは、第1方向D1に互いに隣り合う蓄電モジュール3間に設けられている。第1方向D1に互いに隣り合う蓄電モジュール3間において、集電板5Cは、金属板60Bの他方面60bの露出部60d、及び、金属板60Aの一方面60aの露出部60dのそれぞれに接触配置されている。
 集電板5A,5Bは、複数の蓄電モジュール3及び複数の集電板5Cを第1方向D1の両側から挟むように配置されている。集電板5A,5Bは、複数の蓄電モジュール3のうち積層端に位置する蓄電モジュール3上に第1方向D1において積層されている。集電板5Aは、第1方向D1において、一方の積層端に位置する蓄電モジュール3上に積層され、少なくとも当該蓄電モジュール3と電気的に接続されている。集電板5Bは、第1方向D1において、他方の積層端に位置する蓄電モジュール3上に積層され、少なくとも当該蓄電モジュール3と電気的に接続されている。一方の集電板5Aには、負極端子7が接続されている。他方の集電板5Bには、正極端子6が接続されている。
 拘束部材4は、モジュール積層体2を第1方向D1の両側から挟む一対の拘束板8と、一対の拘束板8を連結する複数の連結部材9と、を含む。一対の拘束板8は、負極端子7側の拘束板8A及び正極端子6側の拘束板8Bを含む。一対の拘束板8は、第1方向D1において、モジュール積層体2を挟むように、モジュール積層体2の両側に積層されている。連結部材9は、一対の拘束板8を介して第1方向D1の両側からモジュール積層体2に拘束荷重を付加する。複数の蓄電モジュール3及び複数の集電板5は、一対の拘束板8により挟持されることで、モジュール積層体2としてユニット化されている。本実施形態では、連結部材9は、一対の拘束板8を締結するボルト9a及びナット9bによって構成されている。
 一対の絶縁板20は、負極端子7側の絶縁板20A及び正極端子6側の絶縁板20Bを含む。集電板5Aと拘束板8Aとの間には、絶縁板20Aが設けられる。絶縁板20Aは、集電板5Aと拘束板8Aとの間の絶縁性を確保するための部材である。絶縁板20Aは、集電板5Aと拘束板8Aとに接触している。絶縁板20Aは、第1方向D1において集電板5A上に積層されている。絶縁板20Aは、第1方向D1から見て、集電板5Aの全域と重なるように配置される。拘束板8Aは、第1方向D1において絶縁板20A上に積層され、少なくとも一方の積層端に位置する蓄電モジュール3、集電板5A、及び、絶縁板20Aに拘束荷重を付加している。
 集電板5Bと拘束板8Bとの間には、絶縁板20Bが設けられる。絶縁板20Bは、集電板5Bと拘束板8Bとの間の絶縁性を確保するための部材である。絶縁板20Bは、集電板5Bと拘束板8Bとに接触している。絶縁板20Bは、第1方向D1において集電板5B上に積層されている。絶縁板20Bは、第1方向D1から見て、集電板5Bの全域と重なるように配置される。拘束板8Bは、第1方向D1において絶縁板20B上に積層され、少なくとも他方の積層端に位置する蓄電モジュール3、集電板5B、及び、絶縁板20Bに拘束荷重を付加している。
 絶縁板20は、絶縁性材料により形成される。絶縁板20は、例えば、ポリプロピレン(PP)等の樹脂からなる。絶縁板20は、拘束板8の熱膨張率と異なる熱膨張率を有している。絶縁板20は、拘束板8の熱膨張率よりも高い熱膨張率を有している。絶縁板20は、拘束板8の熱膨張率の2倍以上の熱膨張率を有している。絶縁板20は、拘束板8の熱膨張率の5倍以上の熱膨張率を有していてもよい。
 次に、図1~図5を参照して、絶縁板20及び拘束板8の構成について更に説明する。図3は、絶縁板20B及び拘束板8Bの全体構成を示す展開斜視図である。図4は、拘束板8Bを内面11b側から見た平面図である。図5は、拘束板8Bを外面11a側から見た一部拡大平面図である。なお、図3~図5では、正極端子6側の絶縁板20B及び拘束板8Bの構成について説明するが、負極端子7側の絶縁板20A及び拘束板8Aも同趣旨の構成を有する。
 絶縁板20Bは、対向面20a及び複数(本実施形態では6つ)の突起部30を有している。対向面20aは、第1方向D1において拘束板8Bと対向している。対向面20aは、一対の短辺21と、一対の長辺22と、を有する長方形状である。一対の短辺21と、一対の長辺22とは、対向面20aの外縁を構成している。対向面20aの短辺方向を第2方向D2、対向面20aの長辺方向を第3方向D3とする。第1方向D1、第2方向D2、及び、第3方向D3は、互いに交差(本実施形態では直交)している。一対の短辺21は、第3方向D3において互いに対向している。一対の長辺22は、第2方向D2において互いに対向している。
 複数の突起部30は、対向面20aを含む絶縁板20Bの本体部と同じ材料からなり、本体部と一体的に形成されている。複数の突起部30は、対向面20aの中央から離間した位置に設けられ、拘束板8Bに向かって突出している。絶縁板20及び拘束板8は、放射状に熱膨張及び熱収縮する。対向面20aの中央とは、絶縁板20が面内方向に熱膨張及び熱収縮する際の中心となる位置であり、熱膨張及び熱収縮によって面内方向に移動しない位置である。対向面20aの中央は、例えば、対向面20aの重心である。絶縁板20Bは薄いので、厚さ方向(第1方向D1)における熱膨張及び熱収縮は、対向面20aの面内方向(第2方向D2及び第3方向D3)における熱膨張及び熱収縮に比べて非常に小さい。
 複数の突起部30は、一対の長辺22のそれぞれに沿って2列で配列されている。複数の突起部30は、対向面20aの短辺方向(第2方向D2)の中央から離間した位置に設けられている。すなわち、複数の突起部30は、対向面20aの第2方向D2の中心線から離間した位置に設けられている。対向面20aの第2方向D2の中心線とは、一対の長辺22に平行で、一対の長辺22からの距離が等しい直線である。対向面20aの一方の長辺22寄りに配置された複数(本実施形態では3つ)の突起部30は、互いに離間して第3方向D3に並んでいる。対向面20aの他方の長辺22寄りに配置された複数(本実施形態では3つ)の突起部30は、互いに離間して第3方向D3に並んでいる。
 各突起部30は、対向面20aの面内方向において第1突起31と第2突起32とに分割されている。本実施形態では、各突起部30は、第2方向D2に分割されている。第1突起31は、第2方向D2において対向面20aの中央寄りに配置されている。第2突起32は、第2方向D2において対向面20aの外縁寄りに配置されている。各突起部30では、第2方向D2において、第1突起31が対向面20aの内側に配置され、第2突起32が対向面20aの外側(対応する長辺22寄り)に配置されている。
 突起部30は、スリット33により第1突起31と第2突起32とに分割されている。スリット33は、第3方向D3に延びている。スリット33は、対向面20aまで至っている。第1突起31及び第2突起32は、スリット33により互いに離間している。突起部30は、第1方向D1に沿う中心軸を有する円筒が、中心軸を通るスリット33により分割された形状を有している。第1突起31及び第2突起32は、第1方向D1から見て、C字形状となる柱形状を有している。第1突起31及び第2突起32は、互いに同形状を有している。第1突起31及び第2突起32は、互いに同じ剛性を有している。
 絶縁板20Bの厚さは、突起部30の高さ(対向面20aからの突出高さ)よりも薄く、例えば、突起部30の高さの1/2以下である。絶縁板20Bの厚さは、例えば、2.0mmである。突起部30の高さは、例えば、5mmである。
 拘束板8は、第1方向D1から見て、蓄電モジュール3及び集電板5の面積よりも一回り大きい面積を有する矩形の金属板である。拘束板8の短手方向は、第2方向D2と一致している。拘束板8の長手方向は、第3方向D3と一致している。拘束板8は、本体部11及び一対の縁部10を有する。本体部11は、第1方向D1から見てモジュール積層体2と重なる。一対の縁部10は、本体部11から第2方向D2に延在すると共に第1方向D1から見てモジュール積層体2と重ならない。本実施形態では、一対の縁部10は、第2方向D2における本体部11の両側に設けられている。すなわち、本体部11は、第2方向D2において一対の縁部10に挟まれている。
 縁部10は、第1方向D1の外側(第1方向D1における蓄電モジュール3とは反対側)を向く外面10aと、第1方向D1の内側(第1方向D1における蓄電モジュール3側)を向く内面10bと、を有している。本体部11は、第1方向D1の外側を向く外面11aと、第1方向D1の内側を向く内面11bと、を有している。外面10aは、外面11aよりも第1方向D1の内側に位置している。内面10bは、内面11bよりも第1方向D1の内側に位置している。内面10bは、絶縁板20の対向面20aと対向している。
 一対の縁部10は、拘束板8の長手方向(第3方向D3)に延在する外縁部分である。縁部10には、ボルト9aが挿通される複数の挿通孔10cが設けられている。なお、図3では、挿通孔10cの図示が省略されている。図4に示されるように、各縁部10において、複数の挿通孔10cは、第3方向D3に沿って互いに離間するように配置されている。本実施形態では、複数の挿通孔10cは、拘束板8の長手方向における縁部10の一端から他端まで等間隔に配置されている。図1に示されるように、ボルト9aの頭部は、拘束板8Aの外面10a上に配置されている。ボルト9aの軸部の先端部(ネジ先)は、拘束板8Bの外面10aから突出している。ボルト9aの先端部には、ナット9bが螺合されている。ナット9bは、拘束板8Bの外面10a上に配置されている。
 図4及び図5に示されるように、拘束板8Bの内面11bには、複数の突起部30が挿入される複数の穴部40が設けられている。1つの穴部40には、対応する1つの突起部30、すなわち、1組の第1突起31及び第2突起32が挿入される。穴部40の深さは、突起部30の高さよりも深い。穴部40の深さは、拘束板8Bの厚さよりも浅く、穴部40は拘束板8Bを貫通していない。穴部40の深さは、例えば、10mmである。拘束板8Bの厚さは、例えば、15mmである。
 穴部40は、第3方向D3に延在する長穴である。穴部40の第3方向D3の長さ(穴部40の長さ)は、穴部40の第2方向D2の長さ(穴部40の幅)よりも長い。複数の穴部40は、互いに同形状を有しているが、互いに異なる形状を有していてもよい。
 突起部30は、図5に示されるように、例えば、第1突起31及び第2突起32のそれぞれが穴部40の内壁40aに当接するように、穴部40に挿入(圧入)される。突起部30はスリット33により分割されているので、穴部40への圧入を容易に行うことができる。図5では、穴部40及び突起部30が破線で示されている。内壁40aは、第2方向D2において互いに対向し、第1突起31及び第2突起32と当接する一対の平面部を有している。一対の平面部は、第1突起31又は第2突起32を第2方向D2において挟持している。
 突起部30が穴部40に挿入された状態でも、第1突起31及び第2突起32は、第2方向D2において互いに離間している。突起部30が穴部40に挿入された状態におけるスリット33の間隔は、突起部30が穴部40に挿入されていない状態におけるスリット33の間隔以下である。第1突起31及び第2突起32は、少なくとも絶縁板20B及び拘束板8Bが熱膨張又は熱収縮する際に内壁40aに当接する構成であればよい。本実施形態では、少なくとも第1突起31が内壁40aに当接する構成であればよい。
 次に、本実施形態に係る蓄電装置1の作用及び効果について説明する。
 蓄電装置1では、絶縁板20には突起部30が設けられ、拘束板8には突起部30が挿入される穴部40が設けられている。したがって、突起部30を穴部40に挿入することにより、絶縁板20を拘束板8に対して位置決めすることができる。絶縁板20及び拘束板8は、互いに異なる熱膨張率を有している。絶縁板20は、対向面20aの中央から放射線状に熱膨張及び熱収縮する。突起部30は、対向面20a上で対向面20aの中央から離間した位置に設けられている。このため、絶縁板20及び拘束板8が熱膨張及び熱収縮する際、突起部30は、対向面20aの面内方向であって、穴部40に対して相対的に対向面20aの中央に向かう方向又は遠ざかる方向に移動する。
 図6は、比較例に係る蓄電装置の絶縁板20B及び拘束板8Bの断面図である。図7は、蓄電装置1の絶縁板20B及び拘束板8Bの断面図である。図6及び図7では、正極端子6側の絶縁板20B及び拘束板8Bの構成について説明するが、負極端子7側の絶縁板20A及び拘束板8Aも同趣旨の構成を有する。図6及び図7では、対向面20a及び内面11bは互いに離間しているが、実際は接触している。
 図6に示される比較例に係る蓄電装置は、絶縁板20Bが分割されていない突起部130を有する点で、図7に示される蓄電装置1と相違している。図6の(a)には、絶縁板20B及び拘束板8Bが熱膨張又は熱収縮する前の状態が示されている。図6の(b)には、絶縁板20B及び拘束板8Bが熱膨張又は熱収縮する際に、突起部130が穴部40に対して相対的に移動する様子が示されている。図6では、紙面左側が対向面20aの中央寄りである。比較例に係る蓄電装置では、突起部130が移動することにより、突起部130が穴部40の内壁40aと干渉し、突起部130の根元に応力が集中する。突起部130は、太く剛性が高いので根元で割れ難い。その結果、絶縁板20Bに厚さ方向の割れが生じる。
 図7の(a)には、絶縁板20B及び拘束板8Bが熱膨張又は熱収縮する前の状態が示されている。図7の(b)には、絶縁板20B及び拘束板8Bが熱膨張又は熱収縮する際に、突起部30が穴部40に対して相対的に移動する様子が示されている。蓄電装置1では、突起部30は第1突起31及び第2突起32に分割され、第1突起31は対向面20aの中央寄りに配置され、第2突起32は対向面20aの外縁寄りに配置されている。第1突起31及び第2突起32のそれぞれは、分割されていない突起部130と比べて細く、剛性が低くなる。よって、突起部30が移動することにより、突起部30が穴部40と干渉した場合でも、第1突起31及び第2突起32のいずれか一方のみが穴部40と干渉し、容易に根元で割れる。ここでは、第1突起31のみが根元で割れる。これにより、絶縁板20Bに厚さ方向の割れが生じることが抑制される。この結果、絶縁板20Bの絶縁不良を抑制することができる。また、第1突起31が割れた後も、第2突起32は割れずに残っているので、第2突起32により、絶縁板20Bを拘束板8Bに対して位置決めする機能を維持できる。
 蓄電装置1では、絶縁板20は、樹脂からなるので、低温になるほど脆くなる。このため、特に熱収縮する際に絶縁板20に割れが生じ易い。拘束板8の熱膨張率よりも高い熱膨張率を有する。このため、絶縁板20及び拘束板8が熱収縮する際、突起部30は、穴部40に対して相対的に対向面20aの中央に向かう方向に移動する。対向面20aの中央寄りに配置された第1突起31は、穴部40の内壁40aに当接するので、熱収縮による突起部30の移動で第1突起31のみが容易に根元で割れる。
 対向面20aは、第2方向D2に沿う一対の短辺21と、第3方向D3に沿う一対の長辺22と、を有する長方形状である。このため、長辺方向である第3方向D3における絶縁板20及び拘束板8の寸法公差が大きくなり易い。穴部40は第3方向D3に延在する長穴であるため、第3方向D3における絶縁板20及び拘束板8の寸法公差が大きな場合でも、突起部30を穴部40に確実に挿入することができる。穴部40の長さは、絶縁板20及び拘束板8の寸法公差に応じて設定され得る。絶縁板20及び拘束板8の寸法公差は、例えば最大で3mmである。
 突起部30が対向面20aの第2方向D2の中央に設けられる場合、突起部30が穴部40に対して相対的に移動する移動方向は、長穴である穴部40が延在する第3方向D3と一致する。よって、突起部30が移動しても穴部40と干渉し難い。これに対し、本実施形態では、突起部30は、対向面20aの第2方向D2の中央から離間した位置に設けられている。このため、突起部30が穴部40に対して相対的に移動する移動方向は、対向面20aの面内方向であって、第3方向D3と交差する方向となる。したがって、突起部30が穴部40と干渉し易い。よって、絶縁板20に厚さ方向の割れが生じることを抑制する本実施形態の構成が特に有効である。
 複数の突起部30は、一対の長辺22のそれぞれに沿って配列されている。このため、絶縁板20を拘束板8に対してより正確に位置決めすることができる。
 絶縁板20の厚さは、突起部30の高さよりも薄い。このように絶縁板20が薄いので、絶縁板20に厚さ方向の割れが生じることを抑制する本実施形態の構成が特に有効である。
 第1突起31及び第2突起32のそれぞれは、穴部40の内壁40aに当接している。このため、絶縁板20を拘束板8に対してより正確に位置決めすることができる。
 絶縁板20は、拘束板8の熱膨張率の2倍以上の熱膨張率を有している。このように、熱膨張率の差が大きいので、突起部30が穴部40に対して相対的に移動する移動量が大きくなる。よって、絶縁板20に厚さ方向の割れが生じることを抑制する本実施形態の構成が特に有効である。
 突起部30は、スリット33により第1突起31と第2突起32とに分割されている。このように、第1突起31及び第2突起32がスリット33により互いに離間しているので、第1突起31及び第2突起32のいずれか一方が根元で割れた際に、他方への影響が抑制される。
 本開示は上記実施形態に限定されない。
 上記実施形態では、第1突起31及び第2突起32は、第1方向D1から見て、C字形状となる柱形状を有しているが、第1突起31及び第2突起32は、第1方向D1から見て、例えば、半円状、円状、又は、多角形状となる柱形状であってもよい。第1突起31及び第2突起32は、互いに異なる形状を有していてもよい。
 上記実施形態では、第1突起31及び第2突起32は、互いに同じ剛性を有しているが、第1突起31の剛性は、第2突起32の剛性よりも低くてもよい。この場合、第1突起31の剛性が第2突起32の剛性以上である場合と比べて、第1突起31が容易に根元で割れる構成を実現し易い。
 上記実施形態では、突起部30は、スリット33により第2方向D2において第1突起31及び第2突起32に2分割されているが、突起部30は更に分割されていてもよい。図8は、第1変形例に係る突起部30Aが設けられた絶縁板20Bの斜視図である。図9は、第1変形例に係る突起部30Aが設けられた絶縁板20Bの平面図である。図8及び図9では、正極端子6側の絶縁板20Bの構成について説明するが、負極端子7側の絶縁板20Aも同趣旨の構成を有してもよい。図8及び図9に示されるように、突起部30Aは、例えば、更に第3方向D3において分割されることにより、4分割されていてもよい。この場合、突起部30Aは、互いに離間している4つの突起を含んで構成される。
 第1突起31は、第3方向D3において一対の突起片34に分割されているとも言える。第2突起32は、第3方向D3において一対の突起片35に分割されているとも言える。第1突起31及び第2突起32のそれぞれは、第2方向D2に延びるスリット36により、第3方向D3に分割されている。スリット36は、対向面20aまで至っている。一対の突起片34は、スリット36により互いに離間している。一対の突起片35は、スリット36により互いに離間している。各突起片34,35は、第1方向D1から見て、中心角90度の扇形状を有していてもよい。4つの突起片34,35は、互いに同形状を有している。各突起片34,35は、第1方向D1から見て、例えば、円状、又は、多角形状となる柱形状であってもよい。4つの突起片34,35は、互いに異なる形状を有していてもよい。
 図10は、第2変形例に係る突起部70が設けられた絶縁板20B及び拘束板8Bの全体構成を示す展開斜視図である。図11は、第2変形例に係る拘束板を内面側から見た平面図である。図10及び図11では、正極端子6側の絶縁板20B及び拘束板8Bの構成について説明するが、負極端子7側の絶縁板20A及び拘束板8Aも同趣旨の構成を有してもよい。図10及び図11に示されるように、絶縁板20Bは、対向面20a上に設けられた複数(本変形例では4つ)の突起部70を更に有している。複数の突起部70は、互いに同じ形状を有しているが、互いに異なる形状を有していてもよい。複数の突起部70は、絶縁板20Bの本体部と同じ材料からなり、本体部と一体的に形成されている。複数の突起部70は、対向面20aの中央から離間した位置に設けられ、拘束板8Bに向かって突出している。突起部70の高さは、例えば、突起部30の高さと同等である。
 複数の突起部70は、一方の短辺21に沿って1列で配列されている。複数の突起部70は、対向面20aの長辺方向(第3方向D3)の中央から離間した位置に設けられている。すなわち、複数の突起部70は、対向面20aの第3方向D3の中心線から離間した位置に設けられている。対向面20aの第3方向D3の中心線とは、一対の短辺21に平行で、一対の短辺21からの距離が等しい直線である。複数の突起部70は、対向面20aにおいて複数の突起部30よりも第3方向D3の一端寄りに設けられている。複数の突起部70は、第2方向D2に並んで配置されている。
 各突起部70は、対向面20aの面内方向において第1突起71と第2突起72とに分割されている。各突起部70は、第3方向D3に分割されている。第1突起71は、第3方向D3において対向面20aの中央寄りに配置されている。第2突起72は、第3方向D3において対向面20aの外縁寄りに配置されている。各突起部70では、第3方向D3において、第1突起71が対向面20aの内側に配置され、第2突起72が対向面20aの外側(一方の短辺21寄り)に配置されている。
 突起部70は、第2方向D2に延びるスリット73により、第1突起71と第2突起72とに分割されている。スリット73は、対向面20aまで至っている。第1突起71及び第2突起72は、スリット73により互いに離間している。突起部70は、第1方向D1を高さ方向、第2方向D2を長辺方向、第3方向D3を短辺方向とする角筒が、スリット73により分割された形状を有している。第1突起71及び第2突起72は、第1方向D1から見て、U字状の柱形状を有している。第1突起71及び第2突起72は、互いに同形状を有している。第1突起71及び第2突起72は、互いに同じ剛性を有している。
 拘束板8Bの内面11bには、複数の突起部70が挿入される複数(本変形例では2つ)の穴部80が設けられている。1つの穴部80には、対応する2つの突起部70、すなわち、2組の第1突起71及び第2突起72が挿入される。1つの穴部80には、対応する1つの突起部70が挿入されてもよいし、1つの穴部80に全ての突起部70が挿入されてもよい。穴部80の深さは、突起部30の高さよりも深い。穴部80の深さは、拘束板8Bの厚さよりも浅く、穴部80は拘束板8Bを貫通していない。穴部80の深さは、穴部40の深さと同等である。
 穴部80は、第2方向D2に延在する長穴である。穴部80の第2方向D2の長さ(穴部80の長さ)は、穴部80の第3方向D3の長さ(穴部80の幅)よりも長い。複数の穴部80は、互いに同形状を有しているが、互いに異なる形状を有していてもよい。
 突起部70は、例えば、第1突起71及び第2突起72のそれぞれが穴部80の内壁80aに当接するように、穴部80に挿入(圧入)される。突起部70はスリット73により分割されているので、穴部80への圧入を容易に行うことができる。内壁80aは、第3方向D3において互いに対向し、第1突起71及び第2突起72と当接する一対の平面部を有している。一対の平面部は、第1突起71又は第2突起72を第3方向D3において挟持する。
 突起部70が穴部80に挿入された状態でも、第1突起71及び第2突起72は、第3方向D3において互いに離間する。突起部70が穴部80に挿入された状態におけるスリット73の間隔は、突起部70が穴部80に挿入されていない状態におけるスリット73の間隔以下である。第1突起71及び第2突起72は、少なくとも絶縁板20B及び拘束板8Bが熱膨張又は熱収縮する際に内壁80aに当接する構成であればよい。本変形例では、少なくとも第1突起71が内壁80aに当接する構成であればよい。
 第2変形例に係る突起部70を穴部80に挿入することによっても、絶縁板20Bを拘束板8Bに対して位置決めすることができる。特に、突起部70は、対向面20a上において突起部30よりも第3方向D3の一端寄りに設けられている。このため、絶縁板20Bを拘束板8Bに取り付ける際に、まずは突起部70を穴部80に挿入すれば、突起部30を穴部40に容易に挿入することができる。複数の突起部70は、第2方向D2に並んで配置されている。複数の突起部70を対応する穴部80に挿入することにより、絶縁板20Bを拘束板8Bに対して確実に位置決めすることができる。
 第1突起71及び第2突起72それぞれの剛性は、分割されていない突起部70の剛性に比べて小さい。よって、上述のように絶縁板20B及び拘束板8Bが熱膨張及び熱収縮し、突起部70が穴部80と干渉した場合でも、第1突起71及び第2突起72のいずれか一方のみが穴部80と干渉し、容易に根元で割れる。これにより、絶縁板20Bに厚さ方向の割れが生じることが抑制される。この結果、絶縁板20Bの絶縁不良を抑制することができる。
 第1突起71は、第2突起72よりも対向面20aの中央寄りに配置されており、穴部80の内壁80aに当接している。よって、絶縁板20B及び拘束板8Bが熱収縮する際、第1突起71のみが容易に根元で割れる。これにより、絶縁板20Bに厚さ方向の割れが生じることが抑制される。この結果、絶縁板20Bの絶縁不良を抑制することができる。
 上記第2変形例では、第1突起71及び第2突起72は、互いに同じ剛性を有しているが、第1突起71の剛性は、第2突起72の剛性よりも低くてもよい。この場合、第1突起71の剛性が第2突起72の剛性以上である場合と比べて、第1突起71が容易に根元で割れる構成を実現し易い。
 図12は、第3変形例に係る突起部70Aが設けられた絶縁板20Bの平面図である。図12に示されるように、図12では、正極端子6側の絶縁板20Bの構成について説明するが、負極端子7側の絶縁板20Aも同趣旨の構成を有してもよい。図12に示されるように、突起部70Aは、第2突起72がリブ74を有している。リブ74によれば、第2突起72の剛性を高め、第2突起72が割れることを抑制できる。
 上記実施形態及び上記変形例は、適宜組み合わされてもよい。
 1…蓄電装置、3…蓄電モジュール、5,5A,5B,5C…集電板、8,8A,8B…拘束板、20,20A,20B…絶縁板、20a…対向面、21…短辺、22…長辺、30,30A…突起部、31…第1突起、32…第2突起、33…スリット、34,35…突起片、36…スリット、40…穴部、40a…内壁、70,70A…突起部、71…第1突起、72…第2突起、73…スリット、80…穴部、80a…内壁。

 

Claims (15)

  1.  蓄電モジュールと、
     第1方向において前記蓄電モジュール上に積層され、前記蓄電モジュールと電気的に接続された集電板と、
     前記第1方向において前記集電板上に積層された絶縁板と、
     前記第1方向において前記絶縁板上に積層され、前記蓄電モジュール、前記集電板、及び、前記絶縁板に拘束荷重を付加する拘束板と、
     を備え、
     前記絶縁板及び前記拘束板は、互いに異なる熱膨張率を有し、
     前記絶縁板は、前記拘束板と対向する対向面と、前記対向面上で前記対向面の中央から離間した位置に設けられた第1突起部と、を有し、
     前記拘束板には、前記第1突起部が挿入される第1穴部が設けられており、
     前記第1突起部は、前記第1方向に交差する第2方向において第1突起と第2突起とに分割されており、
     前記第1突起は、前記第2方向において前記対向面の中央寄りに配置されており、
     前記第2突起は、前記第2方向において前記対向面の外縁寄りに配置されている、
     蓄電装置。
  2.  前記絶縁板は、樹脂からなり、前記拘束板の熱膨張率よりも高い熱膨張率を有し、
     前記第1突起は、前記第1穴部の内壁に当接する、
     請求項1に記載の蓄電装置。
  3.  前記第1突起の剛性は、前記第2突起の剛性よりも低い、
     請求項2に記載の蓄電装置。
  4.  前記対向面は、前記第2方向に沿う一対の短辺と、前記第1方向及び前記第2方向に交差する第3方向に沿う一対の長辺と、を有する長方形状であり、
     前記第1穴部は、前記第3方向に延在する長穴である、
     請求項1~3のいずれか一項に記載の蓄電装置。
  5.  前記第1突起部は、前記対向面の前記第2方向の中央から離間した位置に設けられている、
     請求項4に記載の蓄電装置。
  6.  複数の前記第1突起部は、前記一対の長辺のそれぞれに沿って配列されている、
     請求項4又は5に記載の蓄電装置。
  7.  前記絶縁板の厚さは、前記第1突起部の高さよりも薄い、
     請求項1~6のいずれか一項に記載の蓄電装置。
  8.  前記第1突起及び前記第2突起のそれぞれは、前記第1穴部の内壁に当接している、
     請求項1~7のいずれか一項に記載の蓄電装置。
  9.  前記絶縁板は、前記拘束板の熱膨張率の2倍以上の熱膨張率を有している、
     請求項1~8のいずれか一項に記載の蓄電装置。
  10.  前記第1突起部は、スリットにより前記第1突起と前記第2突起とに分割されている、
     請求項1~9のいずれか一項に記載の蓄電装置。
  11.  前記第1突起及び前記第2突起のそれぞれは、前記第1方向及び前記第2方向に交差する第3方向において一対の突起片に分割されている、
     請求項1~10のいずれか一項に記載の蓄電装置。
  12.  前記絶縁板は、前記対向面上において前記第1突起部よりも前記第3方向の一端寄りに設けられた第2突起部を更に有し、
     前記拘束板には、前記第2突起部が挿入される第2穴部が更に設けられており、
     前記第2突起部は、前記第3方向において第3突起と第4突起とに分割されている、
     請求項4~6のいずれか一項に記載の蓄電装置。
  13.  前記第3突起は、前記第4突起よりも前記対向面の中央寄りに配置されており、前記第2穴部の内壁に当接する、
     請求項12に記載の蓄電装置。
  14.  前記第3突起の剛性は、前記第4突起の剛性よりも低い、
     請求項13に記載の蓄電装置。
  15.  複数の前記第2突起部は、前記第2方向に並んで配置されている、
     請求項12~14のいずれか一項に記載の蓄電装置。

     
PCT/JP2022/013708 2021-04-30 2022-03-23 蓄電装置 WO2022230469A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280031420.9A CN117242628A (zh) 2021-04-30 2022-03-23 蓄电装置
US18/285,081 US20240194998A1 (en) 2021-04-30 2022-03-23 Power storage device
JP2023517160A JP7559227B2 (ja) 2021-04-30 2022-03-23 蓄電装置
DE112022000650.1T DE112022000650T5 (de) 2021-04-30 2022-03-23 Energiespeichervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-077464 2021-04-30
JP2021077464 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022230469A1 true WO2022230469A1 (ja) 2022-11-03

Family

ID=83847915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013708 WO2022230469A1 (ja) 2021-04-30 2022-03-23 蓄電装置

Country Status (5)

Country Link
US (1) US20240194998A1 (ja)
JP (1) JP7559227B2 (ja)
CN (1) CN117242628A (ja)
DE (1) DE112022000650T5 (ja)
WO (1) WO2022230469A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305426A (ja) * 2006-05-11 2007-11-22 Toyota Motor Corp 電池パックおよび車両
JP2014220234A (ja) * 2013-04-08 2014-11-20 株式会社Gsユアサ 蓄電装置
JP2016054129A (ja) * 2014-09-04 2016-04-14 株式会社Gsユアサ 蓄電装置
JP2019186021A (ja) * 2018-04-10 2019-10-24 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法
JP2019192584A (ja) * 2018-04-27 2019-10-31 株式会社豊田自動織機 蓄電モジュール

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409216B2 (ja) 2019-05-09 2024-01-09 大日本印刷株式会社 容器、収容物入り容器、収容物入り容器の製造方法、解凍方法および細胞製剤の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305426A (ja) * 2006-05-11 2007-11-22 Toyota Motor Corp 電池パックおよび車両
JP2014220234A (ja) * 2013-04-08 2014-11-20 株式会社Gsユアサ 蓄電装置
JP2016054129A (ja) * 2014-09-04 2016-04-14 株式会社Gsユアサ 蓄電装置
JP2019186021A (ja) * 2018-04-10 2019-10-24 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法
JP2019192584A (ja) * 2018-04-27 2019-10-31 株式会社豊田自動織機 蓄電モジュール

Also Published As

Publication number Publication date
JP7559227B2 (ja) 2024-10-01
CN117242628A (zh) 2023-12-15
DE112022000650T5 (de) 2023-11-02
JPWO2022230469A1 (ja) 2022-11-03
US20240194998A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
JP6550848B2 (ja) 角形二次電池
WO2018123503A1 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
JP6874852B2 (ja) 蓄電モジュール
JP6959514B2 (ja) 蓄電モジュール、蓄電モジュールの製造方法、及び、蓄電装置の製造方法
JP6911749B2 (ja) 蓄電装置
JP2018049801A (ja) 蓄電装置
JP2019129031A (ja) 蓄電モジュール
WO2020241585A1 (ja) 蓄電装置
WO2020196095A1 (ja) 蓄電装置
JP6959523B2 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
WO2022230469A1 (ja) 蓄電装置
JP7491776B2 (ja) 蓄電装置
JP7420566B2 (ja) 蓄電装置
JP7056167B2 (ja) 蓄電モジュール、及び、蓄電モジュールの製造方法
JP7079694B2 (ja) 蓄電モジュール
JP7070279B2 (ja) 蓄電モジュール
JP7056466B2 (ja) 蓄電モジュール
JP7079695B2 (ja) 蓄電モジュール
JP6926509B2 (ja) 蓄電装置
JP6561866B2 (ja) 積層型電池
JP2020145102A (ja) 蓄電モジュールの製造方法
JP2019079677A (ja) 蓄電モジュール
JP7548128B2 (ja) 外装体および電池
JP7572909B2 (ja) 蓄電装置
JP7551566B2 (ja) 蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517160

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202317061065

Country of ref document: IN

Ref document number: 112022000650

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 18285081

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280031420.9

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22795388

Country of ref document: EP

Kind code of ref document: A1