WO2022230387A1 - ニオブ酸リチウム溶液およびその製造方法 - Google Patents

ニオブ酸リチウム溶液およびその製造方法 Download PDF

Info

Publication number
WO2022230387A1
WO2022230387A1 PCT/JP2022/010677 JP2022010677W WO2022230387A1 WO 2022230387 A1 WO2022230387 A1 WO 2022230387A1 JP 2022010677 W JP2022010677 W JP 2022010677W WO 2022230387 A1 WO2022230387 A1 WO 2022230387A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium niobate
solution
niobium
lithium
positive electrode
Prior art date
Application number
PCT/JP2022/010677
Other languages
English (en)
French (fr)
Inventor
隆二 元野
周平 原
泰輝 荒川
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020237040898A priority Critical patent/KR20230174276A/ko
Priority to EP22795310.6A priority patent/EP4332064A1/en
Priority to CN202280042207.8A priority patent/CN117480122A/zh
Priority to JP2022580286A priority patent/JP7329705B2/ja
Publication of WO2022230387A1 publication Critical patent/WO2022230387A1/ja
Priority to JP2023128828A priority patent/JP2023153202A/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium niobate solution and a method for producing the same.
  • Patent Document 1 discloses a technique for reducing the interfacial resistance that occurs in .
  • the lithium niobate precursor aqueous solution disclosed in Patent Literature 1 is added with a hydrogen peroxide solution in order to improve storage stability.
  • Patent Document 1 discloses the following points to be noted regarding the lithium niobate precursor aqueous solution to which the hydrogen peroxide solution is added. If the concentration of the hydrogen peroxide solution is less than 0.1 mol per 1 mol of niobium, the resulting niobium polyacid reacts with hydroxide ions and decomposes. If the amount of free hydrogen peroxide is less than 0.01% by mass, it is difficult to maintain the stability of the aqueous precursor solution. It is disclosed that some of the solubilized niobic acid may form unstable peroxo complexes.
  • the present invention provides a lithium niobate solution that has high dispersibility in water, good solubility in water, and excellent storage stability, and a method for producing the same.
  • the lithium niobate solution of the present invention which has been made to solve the above problems, is a niobate containing lithium niobate and ammonium ions, wherein the molar ratio Li/Nb of lithium and niobium is 0.8 or more and 2.0 or less.
  • the lithium solution is characterized by having a lithium niobate particle size (D50) of 100 nm or less as determined by a dynamic light scattering method.
  • the lithium niobate (LiNbO 3 ) in the lithium niobate solution has a molar ratio Li/Nb of lithium to niobium of 0.8 or more and 2.0 or less, The stability of the solution is improved, such as by suppressing the precipitation of precipitates. Further, the molar ratio Li/Nb of lithium and niobium in the lithium niobate solution is more preferably 0.9 or more and 1.5 or less, and even more preferably 0.9 or more and 1.2 or less.
  • the lithium niobate in the lithium niobate solution of the present invention is presumed to exist in the solution as ions in which niobate and lithium are ionically bonded.
  • the lithium niobate solution of the present invention while hydroxide ions are present as anions, halide ions such as fluoride ions and chloride ions are almost absent, and lithium is believed to be present as cations.
  • niobium is considered to exist as an anion such as NbO 3 - or as a polyoxometalate (polyacid) ion in which a plurality of niobium atoms and oxygen atoms are bonded.
  • the lithium niobate solution of the present invention contains ammonium ions in addition to lithium niobate.
  • the method for producing the lithium niobate solution of the present invention will be described later in detail. Since the lithium niobate solution of the present invention is produced after the ammonium cake is produced, it is believed that the ammonium ions substituted for the lithium ions are present in the solution as cations.
  • the method of measuring the concentration of ammonium ions present in the solution includes adding sodium hydroxide to the solution, separating the ammonia by distillation, and quantifying the concentration of ammonium ions using an ion meter.
  • a method of quantifying with a thermal conductivity meter, the Kjeldahl method, gas chromatography (GC), ion chromatography, GC-MS (mass spectrometry) and the like can be mentioned.
  • the ammonium ion concentration of the ammonium ions contained in the lithium niobate solution of the present invention is preferably 0.001% by mass or more and 25% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less. It is more preferable in it being more than mass % and 8 mass % or less.
  • the lithium niobate particle size (D50) in the lithium niobate solution measured by the dynamic light scattering method is 100 nm or less in view of high dispersibility.
  • the lithium niobate particle size (D50) in the lithium niobate solution is smaller, it is stable due to less change over time, and good coating film formation without uncoated areas during film formation can be achieved. , is preferable from the viewpoint of ensuring a sufficient coating weight.
  • the lithium niobate particle size (D50) in the lithium niobate solution is more preferably 80 nm or less, further preferably 50 nm or less, particularly preferably 30 nm or less, and even more preferably 20 nm or less, It is more particularly preferably 10 nm or less, particularly preferably 5 nm or less, and even more particularly preferably 3 nm or less.
  • the lithium niobate particle size (D50) is 100 nm or less.
  • the liquid be the "lithium niobate solution" of the present invention.
  • the dynamic light scattering method measures the light scattering intensity from a group of particles moving in Brownian motion by irradiating a solution such as a suspension solution with light such as a laser beam.
  • This is a method for determining the particle size and distribution.
  • the particle size distribution evaluation method uses a zeta potential/particle size/molecular weight measurement system (manufactured by Otsuka Electronics Co., Ltd.: ELSZ-2000), JIS Z 8828: 2019 "Particle size analysis-dynamic light scattering to comply with the law.
  • the particle diameter (D50) refers to the median diameter (D50), which is the particle diameter showing the 50% integrated value of the cumulative distribution curve.
  • the "solution" in the present invention is not limited to one in which a solute is dispersed or mixed in a solvent in a monomolecular state, but an assembly in which a plurality of molecules are attracted by intermolecular interactions, such as (1 ) polymeric molecules, (2) solvated molecules, (3) molecular clusters, (4) colloidal particles, etc., dispersed in a solvent.
  • the lithium niobate solution of the present invention preferably does not contain hydrogen peroxide.
  • hydrogen peroxide is added to improve stability in order to suppress decomposition by reaction with hydroxide ions.
  • the lithium niobate solution of the present invention can ensure long-term stability even in the absence of hydrogen peroxide due to the presence of ammonium ions in the solution.
  • the method for detecting hydrogen peroxide in a solution is to use, for example, the standard addition method to measure the relative intensity of the absorbance with a standard solution of hydrogen peroxide, so that the solution does not contain hydrogen peroxide. can be confirmed. Specifically, from the ultraviolet-visible absorption spectra of a standard solution containing a known concentration of hydrogen peroxide, for example, 1% by mass, and a standard solution to which no hydrogen peroxide is added, changes in absorbance due to peroxo complex formation are observed.
  • the sample with unknown hydrogen peroxide concentration in that wavelength region is less than 1%, the sample with unknown hydrogen peroxide concentration It can be confirmed that substantially no hydrogen peroxide is contained in the If the solution contains hydrogen peroxide, the hydrogen peroxide reacts with the niobium polyacid to form a peroxo complex. By confirming the difference, it can be confirmed that the solution does not contain hydrogen peroxide.
  • a method of adding a reagent that reacts with hydrogen peroxide to color the solution and measuring the color development may be performed by adding a reagent that reacts with hydrogen oxide and fluorescence, and measuring the emitted light.
  • the lithium niobate solution of the present invention is preferably an aqueous solution. Since lithium niobate in the lithium niobate solution of the present invention has high dispersibility in water and good solubility in water, pure water can be used as a solvent.
  • the lithium niobate solution of the present invention is characterized in that the lithium niobate concentration in the lithium niobate solution is 0.1 to 30% by mass. Further, the lithium niobate solution of the present invention is characterized in that the lithium niobate concentration in the lithium niobate solution is 5 to 20% by mass. It is preferable that the lithium niobate concentration in the lithium niobate solution is 0.1 to 30% by mass in terms of both practicality and stability of the lithium niobate solution, and more preferably 1 to 25% by mass. , more preferably 3 to 21% by mass, and particularly preferably 5 to 20% by mass.
  • the lithium niobate concentration in the lithium niobate solution is determined by appropriately diluting the solution with dilute hydrochloric acid as necessary, and using ICP emission spectrometry (manufactured by Agilent Technologies: AG-5110), JIS K0116: 2014, the Nb weight fraction in terms of niobium oxide (Nb 2 O 5 ) and the Li weight fraction are measured and calculated.
  • Niobic acid in the lithium niobate solution of the present invention does not necessarily exist in the form of Nb 2 O 5 . The reason why the content of niobic acid is shown in terms of Nb 2 O 5 is based on the convention when showing the niobium concentration.
  • the lithium niobate solution of the present invention can be used for coating a positive electrode for a lithium ion secondary battery or a positive electrode material, or for coating a positive electrode for an all-solid lithium ion battery or a positive electrode material.
  • the lithium niobate solution of the present invention was subjected to a temporal stability test in which the state of the solution was visually observed after standing for one month in a thermostat set at room temperature (25 ° C.), and a dynamic light scattering method.
  • the lithium niobate solution of the present invention is a lithium ion secondary battery. It is suitable as a positive electrode for use or a material for covering a positive electrode material.
  • the positive electrode active material for a lithium ion secondary battery of the present invention is characterized in that the surface thereof is coated with lithium niobate contained in the lithium niobate solution.
  • the surface of the positive electrode active material is coated with lithium niobate. can be verified.
  • the coating amount of lithium niobate covering the surface of the positive electrode active material for lithium ion secondary batteries of the present invention is obtained by dissolving the positive electrode active material for lithium ion secondary batteries in an appropriate amount of hydrofluoric acid, and obtaining ICP light emission.
  • the niobium weight fraction concentration is preferably 1 or more, more preferably more than 1, still more preferably 1.1 or more, and particularly preferably 1.2 or more.
  • the lithium niobate solution of the present invention may contain components other than the components derived from lithium niobate and the components derived from ammonia (referred to as "other components") within a range that does not impair the effects thereof. good.
  • other components include Na, Mg, Si, K, Ca, Ti, Mn, Ni, Zn, Sr, Zr, Ta, Mo, Ba and W.
  • the content of other components in the lithium niobate solution of the present invention is preferably less than 5% by mass, more preferably less than 4% by mass, and even more preferably less than 3% by mass.
  • the lithium niobate solution of the present invention is unintentionally assumed to contain unavoidable impurities.
  • the content of unavoidable impurities is preferably less than 0.01% by mass.
  • the lithium ion secondary battery of the present invention is characterized by having a positive electrode coated with the positive electrode active material.
  • the positive electrode active material coated with the lithium niobate solution of the present invention is suitable for coating the surface of the positive electrode for a lithium ion secondary battery as described above, and therefore the lithium niobate solution of the present invention can be used.
  • the performance of the lithium ion secondary battery can be improved.
  • the method for producing a lithium niobate solution of the present invention comprises the steps of: producing an acidic niobium solution containing niobium; and obtaining a precipitation slurry containing niobium by a reverse neutralization method in which the acidic niobium solution is added to aqueous ammonia. and a step of obtaining a lithium niobate solution by maintaining the mixture obtained by mixing the obtained precipitation slurry containing niobium, lithium hydroxide and pure water at 20° C. to 100° C. while stirring.
  • the acidic niobium solution contains fluoride ions obtained by solvent extraction of a solution of niobium dissolved in an acidic solution containing hydrofluoric acid.
  • fluoride ions obtained by solvent extraction of a solution of niobium dissolved in an acidic solution containing hydrofluoric acid.
  • the niobium referred to in this specification includes niobate compounds unless otherwise specified.
  • the acidic niobium solution containing fluoride ions eg, an aqueous niobium fluoride solution
  • the acidic niobium solution containing fluoride ions is preferably adjusted to contain 1 to 100 g/L of niobium in terms of Nb 2 O 5 by adding water (eg, pure water).
  • water eg, pure water
  • the niobium concentration is 1 g/L or more in terms of Nb 2 O 5
  • the niobium concentration is 100 g/L or less in terms of Nb 2 O 5 , it is preferable because the niobate compound hydrate is easily soluble in water, and the niobate compound hydrate that is more reliably soluble in water is synthesized. To achieve this, it is more preferably 90 g/L or less, even more preferably 80 g/L or less, and particularly preferably 70 g/L or less.
  • the pH of the niobium fluoride aqueous solution is preferably 2 or less, more preferably 1 or less, from the viewpoint of completely dissolving niobium or niobium oxide.
  • the acidic niobium solution containing fluoride ions is added to a predetermined It is preferable to obtain a niobium-containing precipitation slurry by addition into concentrated aqueous ammonia, ie, by a reverse neutralization method.
  • the ammonia concentration of the ammonia water used for reverse neutralization is preferably 10% by mass to 30% by mass.
  • the ammonia concentration is 10% by mass, niobium is less likely to remain undissolved, and niobium or niobium acid can be completely dissolved in water.
  • the ammonia concentration is 30% by mass or less, it is close to a saturated aqueous solution of ammonia, which is preferable.
  • the ammonia concentration of the ammonia water is preferably 10% by mass or more, more preferably 15% by mass or more, even more preferably 20% by mass or more, and particularly preferably 25% by mass.
  • the ammonia concentration is preferably 30% by mass or less, more preferably 29% by mass or less, and even more preferably 28% by mass or less.
  • the amount of the niobium fluoride aqueous solution added to the aqueous ammonia is preferably such that the molar ratio of NH 3 /Nb 2 O 5 is 95 or more and 500 or less, more preferably 100 or more and 450 or less. More preferably, it is 110 or more and 400 or less.
  • the amount of the niobium fluoride aqueous solution added to the ammonia water is preferably such that the NH 3 /HF molar ratio is 3.0 or more from the viewpoint of generating amines and niobic acid compounds that dissolve in dilute ammonia water. It is more preferably 4.0 or more, and even more preferably 5.0 or more.
  • the NH 3 /HF molar ratio is preferably 100 or less, more preferably 50 or more, and even more preferably 40 or more.
  • the time required for adding the aqueous niobium fluoride solution to the aqueous ammonia is preferably within 1 minute, more preferably within 30 seconds, and even more preferably within 10 seconds. That is, instead of gradually adding the niobium fluoride aqueous solution over time, it is preferable to add the aqueous solution of niobium fluoride at once, for example, to the ammonia water in the shortest possible time for neutralization reaction.
  • the neutralization reaction can be carried out while maintaining a high pH.
  • the niobium fluoride aqueous solution and ammonia water can be used at room temperature.
  • the method for producing a lithium niobate solution of the present invention includes a step of removing fluoride ions from the niobium-containing precipitation slurry obtained by the reverse neutralization method to obtain a niobium-containing precipitate from which fluoride ions have been removed.
  • Fluorine compounds such as ammonium fluoride are present as impurities in the precipitation slurry containing niobium obtained by the inverse neutralization method, and therefore these are preferably removed.
  • the method for removing the fluorine compound is arbitrary, but for example, a method by filtration using a membrane such as reverse osmosis filtration using ammonia water or pure water, ultrafiltration, or microfiltration, centrifugation, or other known methods. can be adopted.
  • a membrane such as reverse osmosis filtration using ammonia water or pure water, ultrafiltration, or microfiltration, centrifugation, or other known methods.
  • temperature control is not particularly required, and the removal may be performed at room temperature.
  • the precipitation slurry containing niobium obtained by the reverse neutralization method is decanted using a centrifuge, and washing is repeated until the amount of free fluoride ions is 100 mg / L or less. , a niobium-containing precipitate from which fluoride ions are removed is obtained.
  • the cleaning liquid used for removing fluoride ions is aqueous ammonia.
  • ammonia water of 5.0 mass% or less is preferable, ammonia water of 4.0 mass% or less is more preferable, ammonia water of 3.0 mass% or less is further preferable, and ammonia of 2.5 mass% Water is particularly preferred. If the ammonia water content is 5.0% by mass or less, ammonia and ammonium ions are suitable for fluorine, and an unnecessary increase in cost can be avoided.
  • niobium-containing precipitate slurry By diluting the obtained niobium-containing precipitate from which fluoride ions have been removed, with pure water or the like, a niobium-containing precipitate slurry from which fluoride ions have been removed is obtained.
  • the niobium concentration of the niobium-containing precipitation slurry was determined by taking part of the slurry, drying it at 110°C for 24 hours, and then calcining it at 1,000°C for 4 hours to generate Nb 2 O 5 . .
  • the weight of Nb 2 O 5 thus produced can be measured and the niobium concentration of the slurry can be calculated from the weight.
  • the mixture obtained by mixing the niobium-containing precipitation slurry and the lithium hydroxide--monohydrate from which fluoride ions have been removed is maintained at 20° C. to 100° C. while stirring, thereby obtaining the present invention.
  • a lithium niobate solution is obtained.
  • the lithium niobate concentration of the final mixture is 0.1 to 30% by mass in terms of Nb 2 O 5 , and the molar ratio Li/Nb of lithium and niobium is 0.8 or more and 2.0 or less.
  • pure water or an alkaline aqueous solution such as aqueous ammonia may be added to and mixed with the mixture obtained by mixing the niobium-containing precipitation slurry and lithium hydroxide monohydrate.
  • the ammonia concentration of the ammonia water added to the mixture may be any concentration. For example, it may be 0.1% by mass or more and 30% by mass or less, or 10% by mass or more and 25% by mass or less.
  • lithium niobate solution is allowed to cool to room temperature.
  • Lithium niobate powder can be obtained by drying the lithium niobate solution of the present invention.
  • the lithium niobate solution of the present invention obtained by the above-described production method has a pH of 9 or more, because the lithium niobate solution is stable. Furthermore, the pH of the lithium niobate solution of the present invention is more preferably 10 or higher, more preferably 10.5 or higher, and particularly preferably 11 or higher.
  • a method for producing a positive electrode active material for a lithium ion secondary battery coated with a lithium niobate solution includes mixing a lithium niobate solution, a positive electrode active material, and an aqueous solution of lithium hydroxide to prepare a lithium niobate-containing positive electrode active material for a battery containing lithium niobate.
  • the method is characterized by comprising a step of producing a positive electrode active material slurry and a step of drying the battery positive electrode active material slurry containing lithium niobate.
  • a battery positive electrode active material such as LiMn 2 O 4 (manufactured by Merck: spinel type, particle size ⁇ 0.5 ⁇ m) is added to an aqueous solution of lithium niobate obtained by diluting the lithium niobate solution of the present invention with pure water. By doing so, a slurry containing lithium niobate is obtained. Then, while stirring the slurry containing lithium niobate, an aqueous solution of lithium hydroxide is added dropwise, and the slurry is maintained at 90° C. for 10 minutes to produce a positive electrode active material slurry for batteries containing lithium niobate.
  • LiMn 2 O 4 manufactured by Merck: spinel type, particle size ⁇ 0.5 ⁇ m
  • the positive electrode active material slurry for a battery containing lithium niobate is dried in an air drying furnace for 15 hours while maintaining the temperature in the furnace at 110° C., thereby obtaining lithium coated with lithium niobate.
  • a positive electrode active material for an ion secondary battery can be produced.
  • the positive electrode active material for batteries is added in the method for producing the positive electrode active material for lithium ion secondary batteries described above, it may be changed as appropriate according to the application.
  • dispersants, pH adjusters, colorants, thickeners, wetting agents, binder resins and the like may be added.
  • the lithium niobate solution of the present invention has high dispersibility in water, good solubility in water, and excellent storage stability.
  • lithium niobate solution of the embodiment according to the present invention will be further described with reference to the following examples. However, the following examples do not limit the present invention.
  • reaction liquid was a slurry of niobate compound hydrate, in other words, a slurry of niobium-containing precipitates.
  • this reaction liquid was decanted using a centrifuge and washed until the amount of liberated fluoride ions became 100 mg/L or less to obtain a niobium-containing precipitate from which the fluoride ions were removed. At this time, ammonia water was used as a cleaning liquid.
  • the niobium-containing precipitate from which the fluoride ions were removed was diluted with pure water to obtain a slurry. A portion of this slurry was dried at 110° C. for 24 hours and then calcined at 1,000° C. for 4 hours to produce Nb 2 O 5 , and the concentration of Nb 2 O 5 contained in the slurry was calculated from its weight.
  • the slurry of the niobium-containing precipitate diluted with pure water was diluted with lithium hydroxide so that the final mixture had a niobium concentration of 1% by mass in terms of Nb 2 O 5 and a Li/Nb molar ratio of 1.
  • a translucent slurry mixture was obtained by mixing the hydrate and pure water. While this mixture was stirred, it was maintained at a liquid temperature of 50° C. to 100° C., for example, 70° C. for 1 hour.
  • the pH of the obtained lithium niobate aqueous solution according to Example 1 was 11.
  • Example 2 In Example 2, the same production method as in Example 1 was carried out, except that the concentration of niobium in the semi-transparent slurry mixture was 5% by mass in terms of Nb 2 O 5 . An aqueous lithium oxide solution was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 2 was 11.
  • Example 3 In Example 3, the same production method as in Example 1 was carried out, except that the concentration of niobium in the semi-transparent slurry mixture was 10% by mass in terms of Nb 2 O 5 . An aqueous lithium oxide solution was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 3 was 11.
  • Example 4 In Example 4, the same production method as in Example 1 was carried out, except that the concentration of niobium in the translucent slurry mixture was 20% by mass in terms of Nb 2 O 5 , and colorless and transparent niobium according to Example 4 was prepared. An aqueous lithium oxide solution was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 4 was 11.
  • Example 5 In Example 5, the same production method as in Example 1 was carried out, except that the concentration of niobium in the translucent slurry mixture was 10% by mass in terms of Nb 2 O 5 and the molar ratio of Li/Nb was 2. Then, a colorless and transparent lithium niobate aqueous solution according to Example 5 was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 5 was 11.
  • Example 6 In Example 6, the production method was the same as in Example 1, except that the concentration of niobium in the translucent slurry mixture was 10% by mass in terms of Nb 2 O 5 and the molar ratio of Li/Nb was 0.9. was carried out to obtain a colorless and transparent lithium niobate aqueous solution according to Example 6. The pH of the obtained lithium niobate aqueous solution according to Example 6 was 11.
  • Example 7 the translucent slurry mixture obtained in Example 1 was heated to 70° C. in a water bath, held with stirring for 2 hours, and then cooled to room temperature. In order to replenish the water evaporated by this heating, pure water is added, and the concentration is adjusted so that the niobium concentration of the colorless and transparent slurry mixture is 5% by mass in terms of Nb 2 O 5 . A colorless and transparent lithium niobate aqueous solution was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 7 was 11.
  • Example 8 In Example 8, the translucent slurry mixture obtained in Example 1 was heated to 70° C. in a water bath, held with stirring for 6 hours, and then cooled to room temperature. In order to replenish the moisture evaporated by this heating, pure water is added, and the concentration is adjusted so that the niobium concentration of the colorless and transparent slurry mixture is 5% by mass in terms of Nb 2 O 5 . A colorless and transparent lithium niobate aqueous solution was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 8 was 11.
  • Example 9 In Example 9, the translucent slurry mixture obtained in Example 1 was heated to 70° C. in a water bath, held with stirring for 25 hours, and then cooled to room temperature. In order to replenish the moisture evaporated by this heating, pure water is added, and the concentration is adjusted so that the niobium concentration of the colorless and transparent slurry mixture is 5% by mass in terms of Nb 2 O 5 . A colorless and transparent lithium niobate aqueous solution was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 9 was 11.
  • Example 10 the slurry of the niobium-containing precipitate according to Example 1 was prepared such that the translucent slurry mixture had a niobium concentration of 5 wt% as Nb2O5 and a NH3 concentration of 5.5 wt%. and, when mixing lithium hydroxide monohydrate and pure water, the same production method as in Example 1 except that part of the pure water was replaced with ammonia water ( NH concentration of 25% by mass) A colorless and transparent lithium niobate aqueous solution according to Example 10 was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 10 was 11.
  • Example 11 In Example 11, the slurry of the niobium - containing precipitate according to Example 1 and When lithium hydroxide monohydrate and pure water were mixed, the same production method as in Example 1 was carried out, except that part of the pure water was replaced with ammonia water ( NH3 concentration: 25% by mass). , a colorless and transparent lithium niobate aqueous solution according to Example 11 was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 11 was 11.
  • Example 12 In Example 12, the translucent slurry mixture obtained in Example 1 was heated to 70° C. in a water bath, held with stirring for 6 hours, and then cooled to room temperature. In order to replenish the moisture evaporated by this heating, pure water is added, and the concentration is adjusted so that the niobium concentration of the colorless and transparent slurry mixture is 10% by mass in terms of Nb 2 O 5 . A colorless and transparent lithium niobate aqueous solution was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 12 was 11.
  • Example 13 the slurry of the niobium-containing precipitate according to Example 1 was prepared such that the translucent slurry mixture had a niobium concentration of 10 % by weight as Nb2O5 and a NH3 concentration of 8.2% by weight. and, when mixing lithium hydroxide monohydrate and pure water, the same production method as in Example 1 except that part of the pure water was replaced with ammonia water ( NH concentration of 25% by mass) A colorless and transparent lithium niobate aqueous solution according to Example 13 was obtained. The pH of the obtained lithium niobate aqueous solution according to Example 13 was 11.
  • Comparative example 1 In Comparative Example 1, 35% hydrogen peroxide solution was added to the colorless and transparent lithium niobate aqueous solution according to Example 1 so that the H 2 O 2 /Nb molar ratio was 0.3. An aqueous lithium niobate solution was obtained. The obtained lithium niobate aqueous solution according to Comparative Example 1 had a pH of 11.
  • Comparative example 2 In Comparative Example 2, 35% hydrogen peroxide solution was added to the colorless and transparent lithium niobate aqueous solution of Example 1 so that the molar ratio of H 2 O 2 /Nb was 1, and the niobic acid of Comparative Example 2 was prepared. An aqueous lithium solution was obtained. The obtained lithium niobate aqueous solution according to Comparative Example 2 had a pH of 8.
  • Comparative Example 3 (Comparative Example 3)
  • the above-described niobium fluoride aqueous solution was slowly added to 500 mL of a 1% lithium hydroxide aqueous solution, and the Nb 2 O 5 content was 5% by mass and the Li/Nb molar ratio was 1.
  • a fine particle dispersion was obtained.
  • this fine particle dispersion was filtered and washed until the amount of liberated fluoride ions reached 100 mg/L, and a lithium niobate sol according to Comparative Example 3 was obtained.
  • the obtained lithium niobate sol according to Comparative Example 3 had a pH of 8.6.
  • Comparative Example 4 In Comparative Example 4, the translucent slurry mixture obtained in Example 1 was heated to 70° C. in a water bath, maintained with stirring for 73 hours, and then cooled to room temperature. It was confirmed that a precipitate was formed by heating for 73 hours. In order to replenish the moisture evaporated by this heating, pure water was added to adjust the niobium concentration of the slurry mixture to 5% by mass in terms of Nb 2 O 5 , and lithium niobate according to Comparative Example 4. An aqueous solution was obtained. The obtained lithium niobate aqueous solution according to Comparative Example 4 had a pH of 11.
  • the sample is appropriately diluted with dilute hydrochloric acid, and using ICP emission spectrometry (manufactured by Agilent Technologies: AG-5110), in accordance with JIS K0116: 2014, Nb weight fraction in terms of Nb 2 O 5 and , and the Li weight fraction were measured.
  • ICP emission spectrometry manufactured by Agilent Technologies: AG-5110
  • Measurement conditions for the ultraviolet-visible absorption spectrum may be as follows.
  • ⁇ Apparatus UH4150 type spectrophotometer (manufactured by Hitachi High-Tech Science Co., Ltd.)
  • ⁇ Measurement mode wavelength scan
  • ⁇ Data mode %T (transmission)
  • ⁇ Measurement wavelength range 200 to 2,600 nm
  • ⁇ Scan speed 600 nm/min
  • ⁇ Sampling interval 2 nm
  • ⁇ Dynamic light scattering method> The particle size distribution is evaluated using a zeta potential/particle size/molecular weight measurement system (manufactured by Otsuka Electronics Co., Ltd.: ELSZ-2000), in accordance with JIS Z 8828: 2019 "particle size analysis-dynamic light scattering method”. Carried out.
  • the solution was filtered with a filter with a pore size of 2 ⁇ m, and an ultrasonic cleaner (manufactured by AS ONE: VS-100III) was used at 28 kHz for 3 minutes. Sonication was performed.
  • the particle diameter (D50) refers to the median diameter (D50), which is the particle diameter showing the 50% integrated value of the integrated distribution curve.
  • “Initial particle size D50 (nm)” in Table 1 refers to the lithium niobate particle size (D50) in the lithium niobate aqueous solution immediately after being produced.
  • particle size over time D50 (nm) refers to the particle size (D50) of lithium niobate in an aqueous solution of lithium niobate after standing for one month in a constant temperature chamber set at room temperature of 25°C. .
  • ⁇ Temporal stability test> The lithium niobate aqueous solutions of Examples 1 to 13 and Comparative Examples 1, 2, and 4, and the lithium niobate sol of Comparative Example 3 were allowed to stand in a thermostat set at room temperature of 25° C. for one month, after which a white precipitate was formed. The presence or absence of gelation was visually observed. Those in which no white precipitation or gelation was observed were evaluated as having stability over time as " ⁇ ", and those in which even one white precipitation or gelation was observed were evaluated as having no stability over time and " ⁇ " ” was evaluated.
  • gelation was determined by placing each tantalate compound dispersion in a plastic container, and judging that the dispersion that did not drop quickly when the container was turned upside down was gelling.
  • the particle size (D50) of lithium niobate over time in the lithium niobate aqueous solutions of Examples 1 to 13 and Comparative Examples 1, 2, and 4 after standing for one month, and in the lithium niobate sol of Comparative Example 3. was measured using the dynamic light scattering method described above.
  • the positive electrode active materials coated with the lithium niobate aqueous solutions of Examples 1 to 13 and Comparative Examples 1, 2, and 4, and the lithium niobate sol of Comparative Example 3 were observed for coating and the amount of coating was measured.
  • the positive electrode active material for which coating observation and coating amount measurement were performed was produced by the following production procedure.
  • the lithium niobate aqueous solution after standing at room temperature of 25° C. for one month was diluted with pure water so that the niobium concentration was 2.3 mass % in terms of Nb 2 O 5 . Further, when the niobium concentration in the lithium niobate aqueous solution after standing for one month was less than 2.3% by mass in terms of Nb 2 O 5 , no dilution was performed.
  • a positive electrode active material slurry containing lithium niobate is obtained by adding a positive electrode active material (lithium manganate) to a diluted lithium niobate aqueous solution so that the weight ratio of niobium/lithium manganate is 2/100. rice field.
  • the coated state of the particle surface of the positive electrode active material coated with lithium niobate was evaluated by observing with a scanning electron microscope (SEM). Using a scanning electron microscope (SEM), five SEM images (20 ⁇ m ⁇ 20 ⁇ m) at a magnification of 50,000 were observed under the condition of an acceleration voltage of 1 kV to observe the coating state of the particle surface of the positive electrode active material. Under the observation conditions described above, the particles were evaluated as "good” when no uncovered 1 ⁇ m square area on the surface of the particles was observed, and as “poor” when even one area was observed.
  • SEM scanning electron microscope
  • the aqueous solutions of lithium niobate according to Examples 1 to 13 had a molar ratio Li/Nb of lithium to niobium of 0.8 or more and 2.0 or less.
  • the lithium niobate particle size (D50) is 100 nm or less, good results were obtained in all the results of the aging stability test, the film formation test, and the safety test.
  • the particle size (D50) of the lithium niobate over time remained the same as that of the initial particles even after one month had passed. No large difference was observed compared to the diameter (D50), and the stability over time was excellent.
  • the initial particle size (D50) and particle size over time (D50) of lithium niobate in the lithium niobate aqueous solution according to Comparative Example 2 could not be measured due to gelation.
  • the lithium niobate aqueous solution according to Comparative Example 4 had precipitates, and the initial particle size (D50) and the particle size over time (D50) of lithium niobate were not measured.
  • the lithium niobate aqueous solutions according to Examples 1 to 13 had improved stability during long-term storage when the lithium niobate concentration in the aqueous solution was 0.1 to 30% by mass.
  • the lithium niobate aqueous solution according to the present invention has high dispersibility in water, good solubility in water, and excellent storage stability. It is suitable as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明のニオブ酸リチウム溶液は、リチウムとニオブのモル比Li/Nbが0.8以上2.0以下であるニオブ酸リチウムと、アンモニウムイオンとを含むニオブ酸リチウム溶液であって、動的光散乱法によるニオブ酸リチウム溶液中のニオブ酸リチウム粒子径(D50)が100nm以下である。また、本発明のニオブ酸リチウム溶液の製造方法は、ニオブを含有する酸性ニオブ溶液を生成する工程と、酸性ニオブ溶液をアンモニア水に添加する逆中和法によりニオブを含有する沈殿スラリーを得る工程と、ニオブを含有する沈殿スラリーと水酸化リチウムとを混合した混合物を撹拌しながら20℃~100℃で保持し、ニオブ酸リチウム溶液を得る工程とを有する。

Description

ニオブ酸リチウム溶液およびその製造方法
 本発明は、ニオブ酸リチウム溶液およびその製造方法に関する。
 ニオブ酸リチウムは、その単結晶が非線形光学材料として利用され、その溶液は、リチウムイオン二次電池の正極活物質粒子の表面を被覆させることにより、リチウムイオン二次電池の正極と電解質との間で生じる界面抵抗を低減させる技術が、特許文献1に開示されている。特許文献1に開示されたニオブ酸リチウムの前駆体水溶液は、保存安定性向上のために、過酸化水素水が添加されていた。
特開2020-66570号公報
 しかしながら、過酸化水素水が添加されたニオブ酸リチウムの前駆体水溶液は、次のような留意点が特許文献1に開示されている。過酸化水素水の濃度がニオブ1molに対して、0.1mol未満であると、生成したニオブのポリ酸が水酸化物イオンと反応して分解する点、またニオブ酸リチウムの前駆体水溶液中にフリーの過酸化水素が0.01質量%未満では、当該前駆体水溶液の安定性を保つのが困難である点、さらにニオブ酸リチウムの前駆体水溶液中に過酸化水素が存在することにより、可溶化したニオブ酸の一部が不安定なペルオキソ錯体を形成するおそれがある点が開示されている。
 本発明は、上記課題に鑑みて、水への分散性が高く、水に対する溶解性が良好で、且つ保存安定性に優れたニオブ酸リチウム溶液及びその製造方法を提供することである。
 上記課題を解決するためになされた本発明のニオブ酸リチウム溶液は、リチウムとニオブのモル比Li/Nbが0.8以上2.0以下であるニオブ酸リチウムと、アンモニウムイオンとを含むニオブ酸リチウム溶液であって、動的光散乱法による前記ニオブ酸リチウム溶液中のニオブ酸リチウム粒子径(D50)が100nm以下であることを特徴とする。
 本発明のニオブ酸リチウム溶液は、ニオブ酸リチウム溶液中のニオブ酸リチウム(LiNbO)が、リチウムとニオブのモル比Li/Nbが0.8以上2.0以下であると、当該溶液からの沈殿物の析出発生を抑制できるなど溶液の安定性が向上する。また、ニオブ酸リチウム溶液中のリチウムとニオブのモル比Li/Nbが0.9以上1.5以下であるとより好ましく、0.9以上1.2以下であるとさらに好ましい。
 ここで、本発明のニオブ酸リチウム溶液中のニオブ酸リチウムは、ニオブ酸とリチウムとがイオン結合した状態のイオンとして溶液中に存在するものと推測する。本発明のニオブ酸リチウム溶液には、陰イオンとして水酸化物イオンは存在する一方、フッ化物イオンおよび塩化物イオンなどのハロゲン化物イオンはほとんど存在せず、リチウムは陽イオンとして存在すると考えられるため、ニオブはNbO のような陰イオンか、複数のニオブ原子と酸素原子とが結合したポリオキソメタレート(ポリ酸)イオンとして存在していると考えられる。
 また、本発明のニオブ酸リチウム溶液は、ニオブ酸リチウムの他に、アンモニウムイオンも含まれる。後述する本発明のニオブ酸リチウム溶液の製造方法で詳しく説明するが、当該製造工程において、酸性のニオブ溶液をアンモニア水に添加する逆中和法により、ニオブを含有する沈殿スラリーである含水ニオブ酸アンモニウムケーキを生成した後、本発明のニオブ酸リチウム溶液が生成されることから、リチウムイオンと置換されたアンモニウムイオンが陽イオンとして当該溶液中に存在すると考えられる。
 当該溶液中に存在するアンモニウムイオン濃度の測定方法は、当該溶液に水酸化ナトリウムを加えてアンモニアを蒸留分離し、イオンメータによりアンモニウムイオン濃度を定量する方法、ガス化した試料中のN分を熱伝導度計で定量する方法、ケルダール法、ガスクロマトグラフィー(GC)、イオンクロマトグラフィー、GC-MS(質量分析)などが挙げられる。
 本発明のニオブ酸リチウム溶液に含まれるアンモニウムイオンのアンモニウムイオン濃度は、0.001質量%以上25質量%以下であると好ましく、0.5質量%以上10質量%以下であるとより好ましく、1質量%以上8質量%以下であるとさらに好ましい。
 さらに、動的光散乱法による前記ニオブ酸リチウム溶液中のニオブ酸リチウム粒子径(D50)が100nm以下であると、分散性が高い点で好ましい。また、当該ニオブ酸リチウム溶液中のニオブ酸リチウム粒子径(D50)がより小径であると、経時変化が少ないため安定し、また成膜時における被覆されていない箇所のない良好な塗膜形成や、十分な被膜重量を確保できる観点から好ましい。当該ニオブ酸リチウム溶液中のニオブ酸リチウム粒子径(D50)が、80nm以下であるとより好ましく、50nm以下であるとさらに好ましく、30nm以下であると特に好ましく、20nm以下であるとより特に好ましく、10nm以下であるとさらに特に好ましく、5nm以下であるとまた特に好ましく、3nm以下であるとよりまた特に好ましい。このように、本発明のニオブ酸リチウム溶液中のニオブ酸リチウム粒子径(D50)が、動的光散乱法を用いて測定した結果、ニオブ酸リチウム粒子径(D50)が100nm以下である状態の液を、本発明の「ニオブ酸リチウム溶液」とする。
 ここで、動的光散乱法とは、懸濁溶液などの溶液にレーザ光などの光を照射することにより、ブラウン運動する粒子群からの光散乱強度を測定し、その強度の時間的変動から粒子径と分布を求める方法である。具体的には、粒度分布の評価方法は、ゼータ電位・粒径・分子量測定システム(大塚電子株式会社製:ELSZ-2000)を用いて、JIS Z 8828:2019「粒子径解析-動的光散乱法」に準拠して実施する。なお、測定直前に測定対象である溶液中の埃等を除去するため、2μm孔径のフィルタで当該溶液を濾過し、超音波洗浄機(アズワン社製:VS-100III)にて28kHz、3分間の超音波処理を実施する。なお、粒子径(D50)は、積算分布曲線の50%積算値を示す粒子径であるメジアン径(D50)をいう。
 なお、本発明における「溶液」とは、溶質が溶媒中に単分子の状態で分散又は混合しているものに限られず、複数の分子が分子間の相互作用により引き合った集合体、例えば(1)多量体分子、(2)溶媒和分子、(3)分子クラスター、(4)コロイド粒子などが溶媒に分散しているものも含まれる。
 また、本発明のニオブ酸リチウム溶液は、前記ニオブ酸リチウム溶液中に過酸化水素が含まれないことが好ましい。
 一般的に、酸化ニオブがポリ酸イオンとして溶液中に存在している場合、水酸化物イオンと反応し分解することを抑制するため、過酸化水素を添加し、安定性を向上させているが、本発明のニオブ酸リチウム溶液は、当該溶液中にアンモニウムイオンが存在していることにより、過酸化水素が存在していない状態であっても、長期安定性を確保することができる。
 溶液中の過酸化水素の検出方法は、例えば標準添加法を用いて、過酸化水素の標準液との吸光度の相対強度を測定することにより、当該溶液中に過酸化水素が含まれていないことを確認することができる。具体的には、既知濃度、例えば1質量%過酸化水素を含む標準液と、過酸化水素が無添加の標準液とにおけるそれぞれの紫外可視吸収スペクトルから、ペルオキソ錯体形成に伴う吸光度の変化が観測される波長領域を見出し、その波長領域における過酸化水素が無添加の標準液と過酸化水素濃度が不明な試料との吸光度の差が1%未満であれば、過酸化水素濃度が不明な試料に過酸化水素が実質的に含まれていないことを確認することができる。当該溶液中に過酸化水素が含まれている場合、過酸化水素はニオブのポリ酸と反応し、ペルオキソ錯体を形成することから、上述したように過酸化水素が無添加の標準液の吸光度の差を確認することにより、溶液中に過酸化水素が含まれていないことを確認できる。また、上述した標準添加法以外にも、例えば市販の過酸化水素測定キットを用いて、当該溶液に過酸化水素と呈色反応する試薬を加え、その発色を測定する方法や、当該溶液に過酸化水素と蛍光反応する試薬を加え、その発光を測定することによって、当該溶液中の過酸化水素を定性分析及び定量分析を行ってもよい。
 また、本発明のニオブ酸リチウム溶液は、前記ニオブ酸リチウム溶液が、水溶液であることが好ましい。
 本発明のニオブ酸リチウム溶液中のニオブ酸リチウムは、水への分散性が高く、水に対する溶解性が良好であるため、溶媒として純水を用いることができる。
 また、本発明のニオブ酸リチウム溶液は、前記ニオブ酸リチウム溶液中のニオブ酸リチウム濃度が0.1~30質量%であることを特徴とする。さらに、本発明のニオブ酸リチウム溶液は、前記ニオブ酸リチウム溶液中のニオブ酸リチウム濃度が5~20質量%であることを特徴とする。
 ニオブ酸リチウム溶液中のニオブ酸リチウム濃度が0.1~30質量%であると、ニオブ酸リチウム溶液の実用性及び安定性を両立する点で好ましく、また1~25質量%であるとより好ましく、3~21質量%であるとよりさらに好ましく、5~20質量%であると特に好ましい。
 ここで、ニオブ酸リチウム溶液中のニオブ酸リチウム濃度は、当該溶液を必要に応じて希塩酸で適度に希釈し、ICP発光分析(アジレント・テクノロジー社製:AG-5110)を用いて、JIS K0116:2014に準拠し、酸化ニオブ(Nb)換算のNb重量分率と、Liの重量分率とを測定して算出する。なお、本発明のニオブ酸リチウム溶液中のニオブ酸は、必ずしもNbの状態で存在するものではない。ニオブ酸の含有量を、Nb換算で示しているのは、ニオブ濃度を示す際の慣例に基づくものである。
 また、本発明のニオブ酸リチウム溶液は、リチウムイオン二次電池用正極、或いは正極材の被覆用、又は全固体リチウムイオン電池用正極、或いは正極材の被覆用とすることができる。
 本発明のニオブ酸リチウム溶液は、室温(25℃)に設定した恒温器内で1カ月静置した後の当該溶液の状態を目視観察する経時安定性試験、及び動的光散乱法により当該溶液中のニオブ酸リチウム粒子の経時粒子径(D50)を測定した結果に加えて、リチウムイオン二次電池用正極の集電板の代替品としたガラス基板上に塗布し、その塗膜の状態を光学顕微鏡にて観察する成膜性試験、また当該溶液を正極活物質に混合し、発泡の有無を目視確認する安全性試験の結果より、本発明のニオブ酸リチウム溶液は、リチウムイオン二次電池用正極、或いは正極材を被覆するものとして好適である。
 また、本発明のリチウムイオン二次電池用正極活物質は、前記ニオブ酸リチウム溶液に含まれるニオブ酸リチウムでその表面が被覆されていることを特徴とする。
 本発明のニオブ酸リチウム溶液によるリチウムイオン二次電池用正極活物質の粒子表面の被覆状態を走査電子顕微鏡にて観察する被覆観察を行うことにより、当該正極活物質の表面がニオブ酸リチウムにより被覆されていることを確認することができる。また、本発明のリチウムイオン二次電池用正極活物質の表面を被覆するニオブ酸リチウムの被覆量は、当該リチウムイオン二次電池用正極活物質を適量のフッ化水素酸に溶解し、ICP発光分析(アジレント・テクノロジー社製:AG-5110)を用いて、JIS K0116:2014に準拠し、当該正極活物質の粒子表面を被覆するニオブ酸リチウムのニオブ重量分率濃度を測定することによって算出することができる。当該ニオブ重量分率濃度は、1以上が好ましく、1を超えるとより好ましく、1.1以上がさらに好ましく、1.2以上が特に好ましい。
 さらに、本発明のニオブ酸リチウム溶液は、その作用効果を阻害しない範囲で、ニオブ酸リチウムに由来する成分、及びアンモニアに由来する成分以外の成分(「他成分」という。)を含有してもよい。他成分としては、例えばNa、Mg、Si、K、Ca、Ti、Mn、Ni、Zn、Sr、Zr、Ta、Mo、Ba、Wなどが挙げられる。但し、これらに限定するものではない。本発明のニオブ酸リチウム溶液における他成分の含有量は、5質量%未満であるのが好ましく、4質量%未満であるのがより好ましく、3質量%未満であるとさらに好ましい。なお、本発明のニオブ酸リチウム溶液は、意図したものではなく、不可避不純物を含むことが想定される。不可避不純物の含有量は0.01質量%未満であるのが好ましい。
 また、本発明のリチウムイオン二次電池は、前記正極活物質が被覆した正極を有することを特徴とする。
 本発明のニオブ酸リチウム溶液により被覆された正極活物質は、上述したようにリチウムイオン二次電池用正極の表面を被覆するものとして、好適であるから、本発明のニオブ酸リチウム溶液により被覆された正極活物質を正極の表面に被覆させることにより、リチウムイオン二次電池としての性能向上が図れる。
 上述した本発明のニオブ酸リチウム溶液の製造方法について、以下説明する。
 本発明のニオブ酸リチウム溶液の製造方法は、ニオブを含有する酸性ニオブ溶液を生成する工程と、前記酸性ニオブ溶液をアンモニア水に添加する逆中和法によりニオブを含有する沈殿スラリーを得る工程と、得られた前記ニオブを含有する沈殿スラリーと水酸化リチウム及び純水とを混合した混合物を撹拌しながら20℃~100℃で保持し、ニオブ酸リチウム溶液を得る工程と、を有する。
 先ず、ニオブを含有する酸性ニオブ溶液を生成する工程において、酸性ニオブ溶液は、ニオブがフッ化水素酸を含む酸性溶液に溶解した溶解液を溶媒抽出することにより得られたフッ化物イオンを含有する酸性ニオブ溶液をいう。なお、本明細書で言及するニオブは、特段の説明がない限り、ニオブ酸化合物を含むものである。
 ここで、フッ化物イオンを含有する酸性ニオブ溶液、例えばフッ化ニオブ水溶液は、水(例えば純水)を加えてニオブをNb換算で1~100g/L含有するように調整すると好ましい。この際、ニオブ濃度がNb換算で1g/L以上であると、水に溶けやすいニオブ酸化合物水和物となることから好ましく、生産性を考えた場合、10g/L以上がより好ましく、20g/L以上であるとさらに好ましい。他方、ニオブ濃度がNb換算で100g/L以下であれば、水に溶けやすいニオブ酸化合物水和物になることから好ましく、より確実に水に溶けやすいニオブ酸化合物水和物を合成するには、90g/L以下であるとより好ましく、80g/L以下であるとさらに好ましく、70g/L以下であると特に好ましい。なお、フッ化ニオブ水溶液のpHは、ニオブ乃至ニオブ酸化物を完全溶解させる観点から、2以下であると好ましく、1以下であるとより好ましい。
 次に、前記酸性ニオブ溶液をアンモニア水に添加する逆中和法によりニオブを含有する沈殿スラリーを得る工程(以下、逆中和工程という。)では、フッ化物イオンを含有する酸性ニオブ溶液を所定濃度のアンモニア水中に添加、すなわち逆中和法により、ニオブを含有する沈殿スラリーを得るのが好ましい。
 逆中和に用いるアンモニア水のアンモニア濃度は10質量%~30質量%であると好ましい。当該アンモニア濃度が10質量%であると、ニオブが溶け残りにくくなり、ニオブ乃至ニオブ酸を水に完全に溶解させることができる。他方、当該アンモニア濃度が30質量%以下であると、アンモニアの飽和水溶液付近であるから好ましい。
 かかる観点から、アンモニア水のアンモニア濃度は10質量%以上であると好ましく、15質量%以上であるとより好ましく、20質量%以上であるとさらに好ましく、25質量%であると特に好ましい。他方、当該アンモニア濃度は30質量%以下であると好ましく、29質量%以下であるとより好ましく、28質量%以下であるとさらに好ましい。
 逆中和工程の際、アンモニア水に添加するフッ化ニオブ水溶液の添加量は、NH/Nbのモル比が95以上500以下とするのが好ましく、100以上450以下とするのがより好ましく、110以上400以下とするのがさらに好ましい。また、アンモニア水に添加するフッ化ニオブ水溶液の添加量は、アミンや薄いアンモニア水に溶けるニオブ酸化合物が生成する観点から、NH/HFのモル比が3.0以上とするのが好ましく、4.0以上とするとより好ましく、5.0以上とするとさらに好ましい。他方、コスト低減の観点から、NH/HFのモル比が100以下とするのが好ましく、50以上とするとより好ましく、40以上とするとさらに好ましい。
 逆中和工程において、フッ化ニオブ水溶液のアンモニア水への添加に係る時間は、1分以内であると好ましく、30秒以内であるとより好ましく、10秒以内であるとさらに好ましい。すなわち、時間をかけて徐々にフッ化ニオブ水溶液を添加するのではなく、例えば一気に投入するなど、出来るだけ短い時間でアンモニア水へ投入し、中和反応させると好適である。また、逆中和工程では、アルカリ性のアンモニア水へ、酸性のフッ化ニオブ水溶液を添加することから、高いpHを保持したまま中和反応させることができる。なお、フッ化ニオブ水溶液及びアンモニア水は、常温のまま用いることができる。
 また、本発明のニオブ酸リチウム溶液の製造方法は、逆中和法により得られたニオブを含有する沈殿スラリーからフッ化物イオンを除去し、フッ化物イオンが除去されたニオブ含有沈殿物を得る工程を有する。逆中和法により得られたニオブを含有する沈殿スラリーには、不純物として、フッ化アンモニウムなどのフッ素化合物が存在するため、これらを除去することが好ましい。
 フッ素化合物の除去方法は任意であるが、例えばアンモニア水や純水を用いた逆浸透ろ過、限外ろ過、精密ろ過などの膜を用いたろ過による方法や、遠心分離、その他の公知の方法を採用することができる。なお、ニオブを含有する沈殿スラリーからフッ化物イオンを除去する際、温度調節は特に必要なく、常温で実施してもよい。
 具体的には、逆中和法により得られたニオブを含有する沈殿スラリーを、遠心分離機を用いてデカンテーションし、遊離したフッ化物イオン量が100mg/L以下になるまで洗浄を繰り返すことにより、フッ化物イオンが除去されたニオブ含有沈殿物が得らえる。
 フッ化物イオンの除去に用いられる洗浄液はアンモニア水であると好適である。具体的には、5.0質量%以下のアンモニア水が好ましく、4.0質量%以下のアンモニア水がより好ましく、3.0質量%以下のアンモニア水がさらに好ましく、2.5質量%のアンモニア水が特に好ましい。5.0質量%以下のアンモニア水であると、アンモニア、アンモニウムイオンがフッ素に対して適切であり不要なコストの増加を回避することができる。
 このようにして、得られたフッ化物イオンが除去されたニオブ含有沈殿物を純水などで希釈することにより、フッ化物イオンが除去された、ニオブを含有する沈殿スラリーが得られる。なお、当該ニオブを含有する沈殿スラリーのニオブ濃度は、当該スラリーの一部を採取し、110℃で24時間乾燥させた後、1,000℃で4時間焼成し、Nbを生成する。このように生成したNbの重量を測定し、その重量から当該スラリーのニオブ濃度を算出することができる。
 そして、フッ化物イオンが除去された、前記ニオブを含有する沈殿スラリーと水酸化リチウム--一水和物とを混合した混合物を撹拌しながら20℃~100℃で保持することにより、本発明のニオブ酸リチウム溶液が得られる。
 具体的には、最終的な混合物のニオブ酸リチウム濃度がNb換算で0.1~30質量%、且つリチウムとニオブのモル比Li/Nbが0.8以上2.0以下となるように、得られた前記ニオブを含有する沈殿スラリーを、水酸化リチウム一水和物と混合することにより、半透明白色スラリーが得られる。当該半透明白色スラリーを撹拌しながら、液温を50℃~100℃(例えば、70℃)に1時間~24時間保持することにより、本発明の無色透明なニオブ酸リチウム溶液が得られる。また、前記ニオブを含有する沈殿スラリーと水酸化リチウム一水和物とを混合した混合物に、純水や、アルカリ性水溶液、例えばアンモニア水を添加して、混合してもよい。当該混合物に、添加されるアンモニア水のアンモニア濃度は、任意の濃度であればよい。例えば、0.1質量%以上30質量%以下であればよく、10質量%以上25質量%以下であればよい。
 さらに、得られたニオブ酸リチウム溶液を室温まで放冷する。なお、本発明のニオブ酸リチウム溶液を乾燥させることにより、ニオブ酸リチウム粉末を得ることができる。
 上述した製造方法により、得られた本発明のニオブ酸リチウム溶液のpHが9以上であると、当該ニオブ酸リチウム溶液が安定する点で好ましい。さらに、本発明のニオブ酸リチウム溶液のpHが10以上であるとより好ましく、10.5以上であるとさらに好ましく、11以上であると特に好ましい。
 さらに、上述した本発明のニオブ酸リチウム溶液が被覆したリチウムイオン二次電池用正極活物質を製造する方法について、以下説明する。
 ニオブ酸リチウム溶液が被覆したリチウムイオン二次電池用正極活物質の製造方法は、ニオブ酸リチウム溶液と、正極活物質と、水酸化リチウム水溶液とを混合して、ニオブ酸リチウムを含有する電池用正極活物質スラリーを生成する工程と、前記ニオブ酸リチウムを含有する電池用正極活物質スラリーを乾燥する工程と、を有することを特徴とする。
 先ず、本発明のニオブ酸リチウム溶液を純水で希釈したニオブ酸リチウム水溶液中に、電池用正極活物質、例えばLiMn(メルク社製:スピネル型、粒径<0.5μm)を添加することにより、ニオブ酸リチウムを含有するスラリーが得られる。そして、ニオブ酸リチウムを含有するスラリーを撹拌しながら、水酸化リチウム水溶液を滴下し、10分間90℃に保持することにより、ニオブ酸リチウムを含有する電池用正極活物質スラリーが生成される。
 電池用正極活物質等として、上述したLiMnの他、LiCoO、LiNiO、LiFeO、LiMnO、LiFePO、LiCoPO、LiNiPO、LiMnPO、LiNi0.5Mn1.5、LiMn1/3Co1/3Ni1/3、LiCo0.2Ni0.4Mn0.4、モリブデン酸リチウム、LiMnO、LiNi0.8Co0.15Al0.05、LiMnOを用いることができる。
 次に、ニオブ酸リチウムを含有する電池用正極活物質スラリーを、炉内温度を110℃で保持し、15時間に亘って大気乾燥炉内で乾燥させることにより、ニオブ酸リチウムにより被覆されたリチウムイオン二次電池用正極活物質を製造することができる。
 なお、上述したリチウムイオン二次電池用正極活物質の製造方法では、電池用正極活物質を添加したが、適宜用途に合わせて変更してもよい。例えば、分散剤、pH調整剤、着色剤、増粘剤、湿潤剤、バインダー樹脂等を添加してもよい。
 本発明のニオブ酸リチウム溶液は、水への分散性が高く、水に対する溶解性も良好で、且つ保存安定性に優れている。
 以下、本発明に係る実施形態のニオブ酸リチウム溶液について、以下の実施例によりさらに説明する。但し、以下の実施例は、本発明を限定するものではない。
 (実施例1)
 五酸化ニオブ100gを55%フッ化水素酸水溶液200gに溶解させ、イオン交換水を830mL添加することによって、ニオブをNb25換算で100g/L含有する(Nb25=8.84質量%)フッ化ニオブ水溶液を得た。このフッ化ニオブ水溶液200mLを、アンモニア水(NH3濃度25質量%)1Lに、1分間未満の時間で添加して(NH3/Nb25モル比=177.9、NH3/HFモル比=12.2)、反応液(pH11)を得た。この反応液はニオブ酸化合物水和物のスラリー、言い換えればニオブ含有沈殿物のスラリーであった。
 次に、この反応液を、遠心分離機を用いてデカンテーションし、遊離したフッ化物イオン量が100mg/L以下になるまで洗浄して、当該フッ化物イオンを除去したニオブ含有沈殿を得た。この際、洗浄液にはアンモニア水を用いた。
 さらに、当該フッ化物イオンを除去したニオブ含有沈殿を純水で希釈しスラリーを得た。このスラリーの一部を110℃で24時間乾燥後、1,000℃で4時間焼成することでNb25を生成し、その重量からスラリーに含まれるNb25濃度を算出した。
 そして、純水で希釈したニオブ含有沈殿のスラリーを、最終的な混合物のニオブ濃度がNb換算で1質量%、且つLi/Nbのモル比が1となるように、水酸化リチウム一水和物と純水とを混合することにより、半透明色なスラリー混合物を得た。この混合物を撹拌しながら、液温が50℃~100℃、例えば70℃となるように1時間保持した後、実施例1に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例1に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例2)
 実施例2では、半透明色なスラリー混合物のニオブ濃度がNb換算で5質量%とした以外は、実施例1と同様な製造方法を実施し、実施例2に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例2に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例3)
 実施例3では、半透明色なスラリー混合物のニオブ濃度がNb換算で10質量%とした以外は、実施例1と同様な製造方法を実施し、実施例3に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例3に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例4)
 実施例4では、半透明色なスラリー混合物のニオブ濃度がNb換算で20質量%とした以外は、実施例1と同様な製造方法を実施し、実施例4に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例4に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例5)
 実施例5では、半透明色なスラリー混合物のニオブ濃度がNb換算で10質量%とし、且つLi/Nbのモル比が2とした以外は、実施例1と同様な製造方法を実施し、実施例5に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例5に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例6)
 実施例6では、半透明色なスラリー混合物のニオブ濃度がNb換算で10質量%とし、且つLi/Nbのモル比が0.9とした以外は、実施例1と同様な製造方法を実施し、実施例6に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例6に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例7)
 実施例7では、実施例1で得られた半透明色なスラリー混合物をウォーターバスで70℃に加熱し、撹拌しながら2時間保持した後、室温まで冷却した。この加熱によって、蒸発した水分を補給するため、純水を添加し、無色透明なスラリー混合物のニオブ濃度がNb換算で5質量%となるように濃度調節を行い、実施例7に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例7に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例8)
 実施例8では、実施例1で得られた半透明色なスラリー混合物をウォーターバスで70℃に加熱し、撹拌しながら6時間保持した後、室温まで冷却した。この加熱によって、蒸発した水分を補給するため、純水を添加し、無色透明なスラリー混合物のニオブ濃度がNb換算で5質量%となるように濃度調節を行い、実施例8に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例8に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例9)
 実施例9では、実施例1で得られた半透明色なスラリー混合物をウォーターバスで70℃に加熱し、撹拌しながら25時間保持した後、室温まで冷却した。この加熱によって、蒸発した水分を補給するため、純水を添加し、無色透明なスラリー混合物のニオブ濃度がNb換算で5質量%となるように濃度調節を行い、実施例9に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例9に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例10)
 実施例10では、半透明色なスラリー混合物のニオブ濃度がNb換算で5質量%、且つNH濃度が5.5質量%となるように、実施例1に係るニオブ含有沈殿のスラリーと、水酸化リチウム一水和物及び純水を混合する際、当該純水の一部をアンモニア水(NH濃度25質量%)に置き換えたこと以外は、実施例1と同様な製造方法を実施し、実施例10に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例10に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例11)
 実施例11では、半透明色なスラリー混合物のニオブ濃度がNb換算で5質量%、且つNH濃度が10質量%となるように、実施例1に係るニオブ含有沈殿のスラリーと、水酸化リチウム一水和物及び純水を混合する際、当該純水の一部をアンモニア水(NH濃度25質量%)に置き換えたこと以外は、実施例1と同様な製造方法を実施し、実施例11に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例11に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例12)
 実施例12では、実施例1で得られた半透明色なスラリー混合物をウォーターバスで70℃に加熱し、撹拌しながら6時間保持した後、室温まで冷却した。この加熱によって、蒸発した水分を補給するため、純水を添加し、無色透明なスラリー混合物のニオブ濃度がNb換算で10質量%となるように濃度調節を行い、実施例12に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例12に係るニオブ酸リチウム水溶液のpHは11であった。
 (実施例13)
 実施例13では、半透明色なスラリー混合物のニオブ濃度がNb換算で10質量%、且つNH濃度が8.2質量%となるように、実施例1に係るニオブ含有沈殿のスラリーと、水酸化リチウム一水和物及び純水を混合する際、当該純水の一部をアンモニア水(NH濃度25質量%)に置き換えたこと以外は、実施例1と同様な製造方法を実施し、実施例13に係る無色透明なニオブ酸リチウム水溶液を得た。得られた実施例13に係るニオブ酸リチウム水溶液のpHは11であった。
 (比較例1)
 比較例1では、実施例1に係る無色透明なニオブ酸リチウム水溶液に、35%過酸化水素水をH/Nbのモル比が0.3となるように加え、比較例1に係るニオブ酸リチウム水溶液を得た。得られた比較例1に係るニオブ酸リチウム水溶液のpHは11であった。
 (比較例2)
 比較例2では、実施例1に係る無色透明なニオブ酸リチウム水溶液に、35%過酸化水素水をH/Nbのモル比が1となるように加え、比較例2に係るニオブ酸リチウム水溶液を得た。得られた比較例2に係るニオブ酸リチウム水溶液のpHは8であった。
 (比較例3)
 比較例3では、上述したフッ化ニオブ水溶液を、1%水酸化リチウム水溶液500mLに対して、ゆっくりと添加し、Nb含有量が5質量%、Li/Nbのモル比が1である微粒子分散液を得た。そして、この微粒子分散液に対して、限外ろ過装置を用いて、遊離したフッ化物イオン量が100mg/Lになるまでろ過洗浄し、比較例3に係るニオブ酸リチウムゾルを得た。得られた比較例3に係るニオブ酸リチウムゾルのpHは8.6であった。
 (比較例4)
 比較例4では、実施例1で得られた半透明色なスラリー混合物をウォーターバスで70℃に加熱し、撹拌しながら73時間保持した後、室温まで冷却した。なお、この73時間加熱したことにより、沈殿物が生じたことを確認した。この加熱によって、蒸発した水分を補給するため、純水を添加し、スラリー混合物のニオブ濃度がNb換算で5質量%となるように濃度調節を行い、比較例4に係るニオブ酸リチウム水溶液を得た。得られた比較例4に係るニオブ酸リチウム水溶液のpHは11であった。
 そして、実施例1~13、及び比較例1、2、4において得られたニオブ酸リチウム水溶液、また比較例3のニオブ酸リチウムゾルについて、次のような物性を測定した。以下、測定した物性値、及びその物性値の測定方法を示すとともに、測定結果を表1に示す。
 〈元素分析〉
 必要に応じて試料を希塩酸で適度に希釈し、ICP発光分析(アジレント・テクノロジー社製:AG-5110)を用いて、JIS K0116:2014に準拠し、Nb換算のNb重量分率と、Li重量分率とを測定した。
 〈アンモニア定量分析〉
 水酸化ナトリウム溶液(30g/100ml)25mlを試料溶液1~5mlに加え、この混合液を沸騰させて蒸留し、その蒸留液(約200ml)を純水20mlと硫酸0.5mlとを入れた容器に流出させることによりアンモニアを分離した。次に、分離したアンモニアを250mlのメスフラスコに転移し純水で250mlに定容した。さらに、250mlに定容した溶液を100mlのメスフラスコに10ml分取し、分取した溶液に、水酸化ナトリウム溶液(30g/100mL)1mlを加え、純水で100mlに定容した。このようにして得られた溶液をイオンメータ(本体:HORITA F-53、電極:HORIBA 500 2A)を用いて定量分析することにより、溶液中に含まれるアンモニウムイオン濃度(質量%)を測定した。
 〈過酸化水素定性分析〉
 過酸化水素が添加されてない標準液と、H換算で1質量%となるように過酸化水素が添加された標準液との紫外可視吸光スペクトルをそれぞれ測定し、吸光度の変化率の最も大きな波長を「λ」とした。次に、過酸化水素濃度が不明な試料について、波長λにおける吸光度を同様に測定し、過酸化水素濃度が不明な試料の波長λにおける吸光度と過酸化水素が添加されてない標準液の波長λにおける吸光度との比が1%以下である場合、当該試料に過酸化水素は添加されていないと判断した。
 紫外可視吸光スペクトルの測定条件は、次のようであればよい。
・装置:UH4150形分光光度計(株式会社日立ハイテクサイエンス製)
・測定モード:波長スキャン
・データモード:%T(透過)
・測定波長範囲:200~2,600nm
・スキャンスピード:600nm/min
・サンプリング間隔:2nm
 〈動的光散乱法〉
 粒度分布の評価は、ゼータ電位・粒径・分子量測定システム(大塚電子株式会社製:ELSZ-2000)を用いて、JIS Z 8828:2019「粒子径解析-動的光散乱法」に準拠して実施した。また、測定直前に測定対象である溶液中の埃等を除去するため、2μm孔径のフィルタで当該溶液を濾過し、超音波洗浄機(アズワン社製:VS-100III)にて28kHz、3分間の超音波処理を実施した。なお、粒子径(D50)は、積算分布曲線の50%積算値を示す粒子径であるメジアン径(D50)をいう。表1の「初期粒子径D50(nm)」とは、生成された直後のニオブ酸リチウム水溶液中のニオブ酸リチウム粒子径(D50)をいう。また、表1の「経時粒子径D50(nm)」とは、室温25℃に設定した恒温器内で1カ月静置した後のニオブ酸リチウム水溶液中のニオブ酸リチウム粒子径(D50)をいう。
 〈経時安定性試験〉
 実施例1~13、及び比較例1、2、4のニオブ酸リチウム水溶液、また比較例3のニオブ酸リチウムゾルを室温25℃に設定した恒温器内で1カ月間静置した後、白色沈殿やゲル化の有無を目視観察することにより行った。白色沈殿やゲル化が一つも観察されなかったものは経時安定性を有するとして「○」と評価し、白色沈殿やゲル化が一つでも観察されたものは経時安定性を有しないとして「×」と評価した。ここで、ゲル化の判定は、各タンタル酸化合物分散液をプラスチック容器に入れ、当該容器を逆さまにした際、速やかに落下しない分散液をゲル化していると判定した。また、1カ月静置後の実施例1~13、及び比較例1、2、4のニオブ酸リチウム水溶液中、また比較例3のニオブ酸リチウムゾル中のニオブ酸リチウムの経時粒子径(D50)を、上述した動的光散乱法を用いて測定した。
 〈成膜性試験〉
 集電板の代替品であるガラス基板の表面に形成した塗膜の外観評価を光学顕微鏡で観察することによって行った。実施例1~13、及び比較例1、2、4のニオブ酸リチウム水溶液、また比較例3のニオブ酸リチウムゾルを2μm孔径のフィルタで濾過しながらシリンジを用いて、アセトンにより脱脂洗浄した後、乾燥を行った50mm×50mmのガラス基板に滴下し、スピンコート(1,500rpm、15秒)により、塗布した。そして、塗布した箇所を、自然乾燥することにより、ガラス基板上に塗膜を形成した。形成した塗膜の中央15mm×15mmの範囲において、光学顕微鏡(倍率:40倍)で当該ガラス基板を観察し、気泡、塗工ムラ、ひび割れが、一つも観察されなかったものは成膜性に優れているとして「○」と評価し、一つでも観察されたものを成膜性に優れていないとして「×」と評価した。
 〈安全性試験〉
 実施例1~13、及び比較例1、2、4のニオブ酸リチウム水溶液、また比較例3のニオブ酸リチウムゾルを正極活物質に添加した際における発泡の有無を目視観察し、評価した。実施例1~13、及び比較例1、2、4のニオブ酸リチウム水溶液、また比較例3のニオブ酸リチウムゾル50mLを、試験容器中の正極活物質であるマンガン酸リチウム5gに全量をまとめて混合した際における発泡の有無を目視観察した。発泡が一つも観察されなかったものは安全性を有するとして「○」と評価し、発泡が一つでも観察されたものは安全性を有しないとして「×」と評価した。
 〈正極活物質の生成方法〉
 実施例1~13、及び比較例1、2、4のニオブ酸リチウム水溶液、また比較例3のニオブ酸リチウムゾルにより被覆された正極活物質について、被覆観察を行うとともに、被覆量を測定した。被覆観察、及び被覆量測定を行った正極活物質は、以下のような生成手順により生成した。
 室温25℃で1カ月静置した後のニオブ酸リチウム水溶液を、ニオブ濃度がNbに換算して2.3質量%になるように純水で希釈した。また、1カ月静置した後のニオブ酸リチウム水溶液中のニオブ濃度がNbに換算して2.3質量%未満である場合、希釈を行わなかった。希釈したニオブ酸リチウム水溶液中に、正極活物質(マンガン酸リチウム)をニオブ/マンガン酸リチウムの重量比が2/100となるように加えることにより、ニオブ酸リチウムを含有する正極活物質スラリーを得た。次に、得られたニオブ酸リチウムを含有する正極活物質スラリーを撹拌しながら、水酸化リチウム水溶液0.4mol/Lを、最終的なLi/Nbのモル比が2となるように滴下し、液温を90℃に保持した状態で、10分間撹拌した。そして、得られたニオブ酸リチウムを含有する正極活物質スラリーを、大気乾燥炉内で、110℃で15時間に亘り乾燥させることにより、ニオブ酸リチウムにより被覆された正極活物質を得た。
 〈被覆観察〉
 ニオブ酸リチウムにより被覆された正極活物質の粒子表面の被覆状態を走査電子顕微鏡(SEM)で観察することにより評価した。走査電子顕微鏡(SEM)を用い、加速電圧1kVの条件下で、倍率50,000倍のSEM像(20μm×20μm)を5画面観察し、当該正極活物質の粒子表面の被覆状態を観察した。上述した観察条件下で、粒子の表面1μm四方に被覆できていない箇所が1カ所も観察されなったものを「○」とし、1カ所でも観察されたものを「×」と評価した。
 〈被覆量の測定〉
 ニオブ酸リチウムにより被覆された正極活物質に対して、適量のフッ酸を添加することにより、正極活物質の表面を被覆するニオブ酸リチウムが溶解した溶解液を得た。そして、当該溶解液に対して、ICP発光分析(アジレント・テクノロジー社製:AG-5110)を用いて、JIS K0116:2014に準拠し、正極活物質の表面を被覆するニオブ酸リチウムが溶解した溶解液中のニオブ重量分率濃度を測定して算出した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、実施例1~13に係るニオブ酸リチウム水溶液は、リチウムとニオブのモル比Li/Nbが0.8以上2.0以下であり、また当該水溶液中の動的光散乱法によるニオブ酸リチウム粒子径(D50)が100nm以下であると、経時安定性試験、成膜性試験、及び安全性試験の結果全てにおいて、良好な結果が得られた。
 実施例1~13に係るニオブ酸リチウム水溶液は、当該水溶液中に過酸化水素が含まれていないが、1カ月経過した後であっても、ニオブ酸リチウムの経時粒子径(D50)は初期粒子径(D50)と比して大きな差は見られず、経時安定性に優れるものであった。なお、比較例2に係るニオブ酸リチウム水溶液中のニオブ酸リチウムの初期粒子径(D50)及び経時粒子径(D50)は、ゲル化のため測定が不可能であった。また、比較例4に係るニオブ酸リチウム水溶液は、沈殿物が生成されていることを確認し、ニオブ酸リチウムの初期粒子径(D50)及び経時粒子径(D50)の測定は行わなかった。
 実施例1~13に係るニオブ酸リチウム水溶液は、当該水溶液中のニオブ酸リチウム濃度が0.1~30質量%であると、長期保管時の安定性が向上した。
 実施例1~13に係るニオブ酸リチウム水溶液により被覆された正極活物質は、その粒子表面の被覆状態をSEM観察した結果、当該ニオブ酸リチウムにより完全に被覆された状態であることを確認することができた。また、それらの正極活物質の表面を被覆するニオブ酸リチウムのニオブ重量分率濃度は1.0質量%以上であった。一方、比較例1に係るニオブ酸リチウム水溶液により被覆された正極活物質の表面を被覆するニオブ酸リチウムのニオブ重量分率濃度は1.0質量%であったが、その粒子表面の被覆状態をSEM観察した結果、被覆されていない箇所が観察された。
 本明細書開示の発明は、各発明や実施形態の構成の他に、適用可能な範囲で、これらの部分的な構成を本明細書開示の他の構成に変更して特定したもの、或いはこれらの構成に本明細書開示の他の構成を付加して特定したもの、或いはこれらの部分的な構成を部分的な作用効果が得られる限度で削除して特定した上位概念化したものを含む。
 本発明に係るニオブ酸リチウム水溶液は、水への分散性が高く、水に対する溶解性も良好で、且つ保存安定性も優れていることから、リチウムイオン二次電池の正極活物質を被覆するものとして好適である。

Claims (13)

  1.  リチウムとニオブのモル比Li/Nbが0.8以上2.0以下であるニオブ酸リチウムと、アンモニウムイオンとを含むニオブ酸リチウム溶液であって、
     動的光散乱法による前記ニオブ酸リチウム溶液中のニオブ酸リチウム粒子径(D50)が100nm以下であることを特徴とするニオブ酸リチウム溶液。
  2.  前記ニオブ酸リチウム溶液中に過酸化水素が含まれないことを特徴とする請求項1に記載のニオブ酸リチウム溶液。
  3.  前記ニオブ酸リチウム溶液が、水溶液であることを特徴とする請求項1、又は2に記載のニオブ酸リチウム溶液。
  4.  前記ニオブ酸リチウム溶液中のニオブ酸リチウム濃度が0.1~30質量%であることを特徴とする請求項1~3の何れか一つに記載のニオブ酸リチウム溶液。
  5.  前記ニオブ酸リチウム溶液中のニオブ酸リチウム濃度が5~20質量%であることを特徴とする請求項1~3の何れか一つに記載のニオブ酸リチウム溶液。
  6.  前記ニオブ酸リチウム粒子径(D50)が30nm以下であることを特徴とする請求項1~5の何れか一つに記載のニオブ酸リチウム溶液。
  7.  前記ニオブ酸リチウム粒子径(D50)が10nm以下であることを特徴とする請求項1~6の何れか一つに記載のニオブ酸リチウム溶液。
  8.  リチウムイオン二次電池用正極、或いは正極材の被覆用であることを特徴とする請求項1~7の何れか一つに記載のニオブ酸リチウム溶液。
  9.  請求項1~8の何れか一つに記載の前記ニオブ酸リチウム溶液に含まれるニオブ酸リチウムでその表面が被覆されていることを特徴とするリチウムイオン二次電池用正極活物質。
  10.  請求項9に記載された前記正極活物質が被覆した正極を有することを特徴とするリチウムイオン二次電池。
  11.  ニオブを含有する酸性ニオブ溶液を生成する工程と、
     前記酸性ニオブ溶液をアンモニア水に添加する逆中和法により前記ニオブを含有する沈殿スラリーを得る工程と、
     得られた前記ニオブを含有する沈殿スラリーと水酸化リチウムとを混合した混合物を撹拌しながら20℃~100℃で保持し、ニオブ酸リチウム溶液を得る工程と、
     を有することを特徴とするニオブ酸リチウム溶液の製造方法。
  12.  前記酸性ニオブ溶液は、ニオブがフッ化水素酸を含む酸性溶液に溶解した溶解液を溶媒抽出することにより得られたフッ化物イオンを含有する酸性ニオブ溶液であり、
     前記ニオブを含有する沈殿スラリーからフッ化物イオンを除去し、ニオブ含有沈殿物を得る工程と、
     得られた前記ニオブ含有沈殿物と水酸化リチウムとを混合した混合物を撹拌しながら20℃~100℃で保持し、ニオブ酸リチウム溶液を得る工程と、
     前記ニオブ酸リチウム溶液を室温まで放冷する工程と、
     を有することを特徴とする請求項11に記載のニオブ酸リチウム溶液の製造方法。
  13.  請求項1~7の何れかに一つに記載の前記ニオブ酸リチウム溶液と、正極活物質と、水酸化リチウム水溶液とを混合して、ニオブ酸リチウムを含有する電池用正極活物質スラリーを生成する工程と、
     前記ニオブ酸リチウムを含有する電池用正極活物質スラリーを乾燥する工程と、
     を有することを特徴とするニオブ酸リチウムが被覆したリチウムイオン二次電池用正極活物質の製造方法。
PCT/JP2022/010677 2021-04-28 2022-03-10 ニオブ酸リチウム溶液およびその製造方法 WO2022230387A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237040898A KR20230174276A (ko) 2021-04-28 2022-03-10 니오브산리튬 용액 및 그 제조 방법
EP22795310.6A EP4332064A1 (en) 2021-04-28 2022-03-10 Lithium niobate solution and method for producing same
CN202280042207.8A CN117480122A (zh) 2021-04-28 2022-03-10 铌酸锂溶液及其制造方法
JP2022580286A JP7329705B2 (ja) 2021-04-28 2022-03-10 ニオブ酸リチウム溶液およびその製造方法
JP2023128828A JP2023153202A (ja) 2021-04-28 2023-08-07 ニオブ酸リチウム溶液およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021075470 2021-04-28
JP2021-075470 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230387A1 true WO2022230387A1 (ja) 2022-11-03

Family

ID=83848359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010677 WO2022230387A1 (ja) 2021-04-28 2022-03-10 ニオブ酸リチウム溶液およびその製造方法

Country Status (6)

Country Link
EP (1) EP4332064A1 (ja)
JP (2) JP7329705B2 (ja)
KR (1) KR20230174276A (ja)
CN (1) CN117480122A (ja)
TW (1) TW202308944A (ja)
WO (1) WO2022230387A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276522A (zh) * 2023-11-22 2023-12-22 天津润光恒科技开发有限公司 纳米铌酸锂包覆的三元正极材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190115A (ja) * 2009-03-12 2011-09-29 Taki Chem Co Ltd ニオブ酸アンモニウムゾル及びその製造方法並びに薄膜形成用塗布液及び薄膜担持基材
JP2014210701A (ja) * 2013-04-02 2014-11-13 Dowaホールディングス株式会社 リチウムとニオブ錯体とを含有する溶液と、その製造方法
JP2015103321A (ja) * 2013-11-21 2015-06-04 Dowaホールディングス株式会社 リチウムとニオブ錯体とを含有する溶液、およびその製造方法、並びにリチウムイオン電池
JP2018002581A (ja) * 2016-06-28 2018-01-11 Dowaエレクトロニクス株式会社 溶液およびその製造方法、ならびに二次電池用活物質の製造方法
JP2018104242A (ja) * 2016-12-27 2018-07-05 多木化学株式会社 アルカリ金属安定型ニオブ酸ゾル
JP2018127392A (ja) * 2017-02-10 2018-08-16 多木化学株式会社 ニオブ酸オルガノゾルおよびその製造方法
JP2020066570A (ja) * 2018-10-19 2020-04-30 Dowaエレクトロニクス株式会社 ニオブ酸リチウムの前駆体水溶液およびその製造方法
JP2020164401A (ja) * 2019-03-26 2020-10-08 Dowaエレクトロニクス株式会社 リチウムとニオブ錯体と亜硝酸とを含有する溶液およびその製造方法、並びに、リチウム二次電池用活物質の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190115A (ja) * 2009-03-12 2011-09-29 Taki Chem Co Ltd ニオブ酸アンモニウムゾル及びその製造方法並びに薄膜形成用塗布液及び薄膜担持基材
JP2014210701A (ja) * 2013-04-02 2014-11-13 Dowaホールディングス株式会社 リチウムとニオブ錯体とを含有する溶液と、その製造方法
JP2015103321A (ja) * 2013-11-21 2015-06-04 Dowaホールディングス株式会社 リチウムとニオブ錯体とを含有する溶液、およびその製造方法、並びにリチウムイオン電池
JP2018002581A (ja) * 2016-06-28 2018-01-11 Dowaエレクトロニクス株式会社 溶液およびその製造方法、ならびに二次電池用活物質の製造方法
JP2018104242A (ja) * 2016-12-27 2018-07-05 多木化学株式会社 アルカリ金属安定型ニオブ酸ゾル
JP2018127392A (ja) * 2017-02-10 2018-08-16 多木化学株式会社 ニオブ酸オルガノゾルおよびその製造方法
JP2020066570A (ja) * 2018-10-19 2020-04-30 Dowaエレクトロニクス株式会社 ニオブ酸リチウムの前駆体水溶液およびその製造方法
JP2020164401A (ja) * 2019-03-26 2020-10-08 Dowaエレクトロニクス株式会社 リチウムとニオブ錯体と亜硝酸とを含有する溶液およびその製造方法、並びに、リチウム二次電池用活物質の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117276522A (zh) * 2023-11-22 2023-12-22 天津润光恒科技开发有限公司 纳米铌酸锂包覆的三元正极材料及其制备方法和应用
CN117276522B (zh) * 2023-11-22 2024-01-26 天津润光恒科技开发有限公司 纳米铌酸锂包覆的三元正极材料及其制备方法和应用

Also Published As

Publication number Publication date
EP4332064A1 (en) 2024-03-06
JP7329705B2 (ja) 2023-08-18
TW202308944A (zh) 2023-03-01
JPWO2022230387A1 (ja) 2022-11-03
JP2023153202A (ja) 2023-10-17
CN117480122A (zh) 2024-01-30
KR20230174276A (ko) 2023-12-27

Similar Documents

Publication Publication Date Title
US7566479B2 (en) Method for the synthesis of surface-modified materials
TWI581489B (zh) 具有經氧化表面之含硫酸鹽的可充電電池陰極
KR20160006665A (ko) 정극 활물질 분말 및 이의 제조 방법
CN108778998B (zh) 溶液及其制造方法、以及二次电池用活性物质的制造方法
JP7329705B2 (ja) ニオブ酸リチウム溶液およびその製造方法
JP7369005B2 (ja) ニオブ酸リチウムの前駆体水溶液およびその製造方法
JP2021064598A (ja) リチウムイオン二次電池用正極活物質およびその製造方法
Wang et al. A porous hierarchical micro/nano LiNi 0.5 Mn 1.5 O 4 cathode material for Li-ion batteries synthesized by a urea-assisted hydrothermal method
CN107408693A (zh) 二次电池用正极活性物质及其制造方法
US7829061B2 (en) Zirconium oxide hydrate particles and method for producing the same
CN106252719A (zh) 锂组合物的制造方法及硫化物固体电解质材料的制造方法
CN109004267A (zh) 硫化物固体电解质材料的制造方法
KR102031531B1 (ko) 황화물 고체 전해질 재료의 제조 방법
CN108778999B (zh) 溶液及其制造方法、以及二次电池用活性物质的制造方法
CN106898734A (zh) 正极活性材料包覆液及其制备方法以及正极活性材料的包覆方法
US11502294B2 (en) Solution and method for producing the same, and a method for producing active material, for secondary battery
WO2024090406A1 (ja) ニオブ酸リチウム分散液
JP2022080964A (ja) リチウムとニオブとを含有する溶液、リチウム二次電池用活物質、および、それらの製造方法
WO2024090404A1 (ja) 金属酸リチウム混合液およびその製造方法
WO2023171020A1 (ja) タンタル酸化合物分散液およびその製造方法
WO2024090405A1 (ja) タングステン酸リチウム分散液およびその製造方法
JP7410226B2 (ja) 電極活物質被覆用リチウム含有酸化物前駆体溶液とその製造方法
Zehetmaier et al. Nanocellulose‐Mediated Transition of Lithium‐Rich Pseudo‐Quaternary Metal Oxide Nanoparticles into Lithium Nickel Cobalt Manganese Oxide (NCM) Nanostructures
CN115701669A (zh) 用于被覆电极活性物质的含锂氧化物前体溶液及制造方法
TW202335335A (zh) 複合粒子、正極、全固態電池及複合粒子之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580286

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18289477

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237040898

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237040898

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022795310

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795310

Country of ref document: EP

Effective date: 20231128

WWE Wipo information: entry into national phase

Ref document number: 202280042207.8

Country of ref document: CN