WO2022228233A1 - 从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置 - Google Patents

从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置 Download PDF

Info

Publication number
WO2022228233A1
WO2022228233A1 PCT/CN2022/087892 CN2022087892W WO2022228233A1 WO 2022228233 A1 WO2022228233 A1 WO 2022228233A1 CN 2022087892 W CN2022087892 W CN 2022087892W WO 2022228233 A1 WO2022228233 A1 WO 2022228233A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
extraction
raffinate
stirring
chamber
Prior art date
Application number
PCT/CN2022/087892
Other languages
English (en)
French (fr)
Inventor
刘训兵
彭灿
刘振
周群成
王子
董雄武
吴山木
欧阳剑君
Original Assignee
湖南金源新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南金源新材料股份有限公司 filed Critical 湖南金源新材料股份有限公司
Priority to JP2024502242A priority Critical patent/JP2024514986A/ja
Priority to KR1020237033088A priority patent/KR20230165230A/ko
Publication of WO2022228233A1 publication Critical patent/WO2022228233A1/zh
Priority to US18/476,064 priority patent/US20240018623A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/34Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing sulfur, e.g. sulfonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0446Juxtaposition of mixers-settlers
    • B01D11/0457Juxtaposition of mixers-settlers comprising rotating mechanisms, e.g. mixers, mixing pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0488Flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0492Applications, solvents used
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/22Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/22Purification
    • C01D7/24Crystallisation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of non-ferrous metal hydrometallurgy, in particular to a lithium ion extraction, purification and concentration crystallization technology.
  • the raffinate contains more than 1g/L of lithium.
  • the recovery of lithium in the raffinate is generally by precipitation with trisodium phosphate or carbonate to prepare lithium phosphate or lithium carbonate.
  • the comprehensive yield of lithium phosphate or lithium carbonate prepared by this method is generally 70-90%.
  • the prepared lithium product has low purity and cannot meet the standard of battery-grade lithium salt.
  • the lithium ion concentration in the liquid is still about 200 mg/L, and subsequent treatment is required, which increases the difficulty of recovery and environmental protection. Therefore, it is necessary to study a method and equipment for improving the yield of lithium recovery in P507 raffinate and the quality of recovered products, so as to meet the needs of high-quality lithium carbonate preparation and environmental protection treatment.
  • the object of the present invention is to overcome the deficiencies and defects mentioned in the above background technology, disclose a kind of recovery rate that can effectively improve lithium, the lithium carbonate prepared by recovery can meet the battery-level requirements, and the lithium content of the raffinate after the recovery treatment is low At 1 mg/L, the method and extraction device for extracting and preparing battery-grade lithium carbonate from P507 raffinate can significantly reduce the difficulty of environmental protection treatment.
  • One of the technical solutions of the present invention is: a method for extracting and preparing battery-grade lithium carbonate from P507 raffinate, including the following steps: mixing, extracting, purifying, back-extracting, alkalizing, crystallization, separating, drying, and
  • the special feature is: the said mixing: first adjust the pH value of the P507 raffinate with lithium hydroxide or alkali to 8.5-10.5, preferably 9-10, 9.5, filter, and reserve the filtrate for later use.
  • the saponified P507 is mixed with the liquid filtered in the mixing step, the mixture is left to stand for phase separation, the P507 organic phase is retained for use, and the aqueous phase detects the lithium ion concentration, if it is less than 1 mg/L, it can be sent to wastewater treatment.
  • the purification the organic phase of the extraction step is purified and washed with 0.1-0.25 mol/L, preferably 0.2 mol/L lithium sulfate solution.
  • the back extraction take the purified and washed P507 organic phase for back extraction with dilute sulfuric acid, and obtain a blank organic and lithium sulfate solution after the two phases are separated.
  • the alkalization taking the lithium solution obtained in the stripping step and heating up to 85-95°C, preferably 90°C, adding lithium hydroxide or alkali to adjust the pH value to 9.0-13.0, preferably 10.0-12.0, 10.5-11.0, and keeping the temperature at 85-95 °C is preferably 90 °C, stand for 2-8 hours, preferably 3-7 hours, 4-6 hours, 3-5 hours, filter after 4 hours, and the filtrate is used for later use.
  • the filtrate is passed into compressed air, the compressed air pressure is 0.2-0.8MPa, preferably 0.3-0.7MPa, 0.4-0.6MPa, 0.5MPa, and the compressed air flow rate is 8-30m3/h, preferably 10-25m3/ h, 13-22m3/h, 15-20m3/h, 16-18m3/h, and evaporate and concentrate at the same time. When there are fine grains in the concentrate, discharge and cool.
  • the purified and washed P507 organic phase can be used for back extraction with dilute liquid alkali, and the blank organic and lithium hydroxide solution can be obtained after the two phases are separated.
  • an extraction device for preparing battery-grade lithium carbonate from P507 raffinate is provided with a stirring chamber, a clarification chamber is connected to the stirring chamber through a transition tank, and a stirrer is arranged in the stirring chamber.
  • the stirring chamber is a cube
  • the clarification chamber is a rectangular parallelepiped
  • the length-width ratio of the clarification chamber is 4-5:1
  • the volume ratio of the stirring chamber and the clarification chamber is 1:4.5-5.5
  • the mixer consists of a main mixer and an auxiliary mixer.
  • the mixing blade of the main mixer is made into a double-layer cross shape
  • the mixing body of the auxiliary mixer is made into a cylindrical mixing body. The blade is sleeved in the cylindrical stirring body.
  • the rotational speed of the main mixer is 1000-2000 rpm, preferably 1200-1800 rpm, 1300-1600 rpm, 1400-1500 rpm, and the rotational speed of the auxiliary mixer 2 is 100-200 rpm/ minutes, preferably 120-180 rpm, 140-160 rpm, 150 rpm.
  • the diameter of the stirring blade of the main mixer is 0.28-0.33 of the side length of the stirring chamber, and the diameter of the cylindrical stirring body of the auxiliary stirring is 0.65-0.75 of the side length of the stirring chamber.
  • two strip-shaped steady flow fences are arranged in sequence in the clarification chamber.
  • the distance between the position of the first steady flow fence and the inlet end of the transition groove of the clarification chamber is 1/4 of the length of the clarification chamber, and the distance between the position of the first steady flow fence and the inlet end of the transition groove of the clarification chamber is 1/4 of the length of the clarification chamber.
  • the distance between the position where the steady flow fence is the length of the clarification chamber and the inlet end of the transition groove of the clarification chamber is 1/2 of the length of the clarification chamber.
  • the present invention has the following advantages: (1) Due to the above extraction method, the lithium ion concentration in the raffinate is as low as 1 mg/L, which significantly reduces the difficulty of wastewater treatment.
  • Fig. 1 is a process flow diagram of the present invention.
  • FIG. 2 is a schematic cross-sectional structure diagram of a front view of an embodiment of an extraction device of the present invention.
  • FIG. 3 is a schematic top-view structural diagram of an embodiment of an extraction device of the present invention.
  • FIG. 4 is a schematic structural diagram of a cylindrical stirring body of an embodiment of the extraction device of the present invention.
  • the method for extracting and preparing battery-grade lithium carbonate from P507 raffinate includes the following steps: mixing, extracting, purifying, back-extracting, alkalizing, crystallization, separating, and drying. Adjust the pH value to 10.0 with lithium hydroxide or alkali, filter, and reserve the filtrate for future use.
  • the saponified P507 is mixed with the liquid filtered in the mixing step, the mixture is left to stand for phase separation, the P507 organic phase is retained for use, and the aqueous phase detects the lithium ion concentration, if it is less than 1 mg/L, it can be sent to wastewater treatment.
  • the organic phase in the extraction step is purified and washed with 0.2 mol/L lithium sulfate solution, and after washing, it is left to stand for phase separation, the P507 organic phase is retained for use, and the aqueous phase is incorporated into the extraction step.
  • the back extraction take the purified and washed P507 organic phase for back extraction with dilute sulfuric acid, and obtain a blank organic and lithium sulfate solution after the two phases are separated.
  • the alkalization taking the lithium solution obtained in the back-extraction step and heating up to 90°C, adding lithium hydroxide or alkali to adjust the pH value to 10.0, keeping the temperature at 90°C, standing for 4 hours and then filtering, and the filtrate for later use.
  • the crystallization after alkalization, the filtrate is fed with compressed air, the compressed air pressure is 0.5MPa, and the compressed air flow rate is 18m3/h, and at the same time, evaporation and concentration are carried out.
  • the back-extraction the purified and washed P507 organic phase can be used for back-extraction with dilute alkali, and the blank organic and lithium hydroxide solution can be obtained after the two phases are separated.
  • the extraction device for preparing battery-grade lithium carbonate from P507 raffinate is equipped with a stirring chamber.
  • the stirring chamber is connected with a clarification chamber through a transition tank.
  • the aspect ratio is 5:1, and the volume ratio of the stirring chamber to the clarification chamber is 1:5.5.
  • the mixer consists of a main mixer and an auxiliary mixer.
  • the mixing blades provided in the main mixer are made into a double-layer cross shape.
  • the stirring body is made into a cylindrical stirring body, the cylindrical wall of the cylindrical stirring body is evenly distributed with circular small holes with a diameter of 5 mm, and the stirring blade is sleeved in the cylindrical stirring body.
  • the rotating speed of described main mixer is 1200 rev/min, and the rotating speed of auxiliary mixer 2 is 150 rev/min.
  • the diameter of the stirring blade of the main mixer is 0.3 of the side length of the stirring chamber, and the diameter of the cylindrical stirring body of the auxiliary stirring is 0.7 of the side length of the stirring chamber.
  • the circular holes on the wall of the cylinder are set at one per square centimeter.
  • the clarification chamber is sequentially provided with two strip-shaped steady flow fences, the distance between the position of the first steady flow fence and the inlet end of the transition groove of the clarification chamber is 1/4 of the length of the clarification chamber, and the second steady flow fence The distance between the position where the grid is the length of the clarification chamber and the inlet end of the transition groove of the clarification chamber is 1/2 of the length of the clarification chamber.
  • Embodiment 1 As shown in Figure 1, the method for extracting and preparing battery-grade lithium carbonate from P507 raffinate includes the following steps: mixing, extraction, purification, back extraction, alkalization, crystallization, separation, and drying. The part is: described mixing: first adjust the pH value of the P507 raffinate to 8.5-10.5 with lithium hydroxide or alkali, filter, and reserve the filtrate for later use.
  • the above-mentioned pH value is adjusted with lithium hydroxide or alkali, can be adjusted to 9-10, 8.5-9, 9-9.5, 9.5-10.
  • This step can effectively precipitate and remove impurity cations such as nickel.
  • the experimental data are shown in Table 1.
  • Table 1 The effect of PH value on the removal of nickel and other impurity cations by precipitation.
  • the saponified P507 is mixed with the liquid filtered in the mixing step, the mixture is left to stand for phase separation, the P507 organic phase is reserved, and the aqueous phase detects the lithium ion concentration, which is less than 1 mg/L. sent to wastewater treatment.
  • the lithium in the filtrate can be extracted into the organic phase, the lithium ion concentration in the raffinate can be reduced, and the difficulty of wastewater treatment can be alleviated.
  • the organic phase of the extraction step is purified and washed with 0.1-0.25 mol/L lithium sulfate solution, and after washing, it is left to stand for phase separation, the organic phase of P507 is retained for use, and the aqueous phase is incorporated into the extraction step.
  • the above-mentioned lithium sulfate solution can be 0.12-0.23mol/L, 0.15-0.20mol/L, 0.16-0.18mol/L, 0.1-0.12mol/L, 0.13-0.15mol/L, 0.16-0.18mol/L, 0.19- 0.20mol/L, 0.21-0.22mol/L, 0.23-0.25mol/L.
  • This step can wash the impurity ions such as sodium entrained in the organic phase, and improve and purify the lithium ions in the organic phase.
  • the experimental data are shown in Table 2.
  • Table 2 Effect of lithium sulfate solution concentration on removal of impurity ions.
  • the back extraction in the extraction device, the purified and washed P507 organic phase is used for back extraction with dilute sulfuric acid, and a blank organic and lithium sulfate solution is obtained after the two phases are separated.
  • This step enables back-extraction of lithium in the organic phase to obtain lithium salts in solution.
  • the concentration of lithium ions is increased, and on the other hand, lithium and impurities are further separated.
  • the alkalization taking the lithium solution obtained in the back-extraction step and heating up to 85-95 ° C, adding lithium hydroxide or alkali to adjust the pH value to 9.0-13.0, keeping the temperature at 85-95 ° C, standing for 2-8 hours, then filtering, and the filtrate for use .
  • the above lithium solution can be heated to 85-86°C, 87-88°C, 89-90°C, 91-92°C, and 93-94°C.
  • the above-mentioned adding lithium hydroxide or alkali can adjust the pH value to be 9.5-10.0, 10.5-11.0, 11.5-12.0, 12.5-13.0.
  • the above-mentioned holding temperature can be 85-86°C, 87-88°C, 89-90°C, 91-92°C, and 93-94°C.
  • the above standing time can be 2-3 hours, 4-5 hours, 6-7 hours.
  • This alkalization step can alkalize lithium ions and remove organic and easily precipitated impurities in the lithium solution.
  • the experimental data are shown in Table 3, Table 4, and Table 5.
  • Table 4 Table of organic content and removal effect of lithium solution under different pH values under the condition of standing for 4 hours at 90°C.
  • Table 5 Table of organic content and removal effect of lithium solution under different standing time conditions at 90°C and PH value of 11.0.
  • the crystallization after alkalization, the filtrate is fed with compressed air, the compressed air pressure is 0.2-0.8 MPa, and the compressed air flow rate is 8-30 m 3 /h, and at the same time, evaporation and concentration are carried out.
  • the above-mentioned compressed air pressure can be 0.2-0.3MPa, 0.4-0.5MPa, 0.6-0.7MPa.
  • the above compressed air flow rate can be 8-10m 3 /h, 11-13m 3 /h, 14-16m 3 /h, 17-19m 3 /h, 20-22m 3 /h, 23-25m 3 /h, 26 -28m3 /h, 29-30m3 /h.
  • This crystallization step carbonizes the lithium ions, which are converted to lithium carbonate under the action of carbon dioxide in compressed air.
  • the experimental data are shown in Table 6 and Table 7.
  • Table 6 Time effect table for complete transformation of lithium under different pressure conditions under the flow rate of compressed air 20m 3 /h.
  • Table 7 Time and effect table for complete transformation of lithium under different flow conditions under the condition of compressed air pressure of 0.7MPa. .
  • the back extraction in the extraction device, the purified and washed P507 organic phase can be used for back extraction with dilute alkali, and the blank organic and lithium hydroxide solution can be obtained after the two phases are separated.
  • the alkali in the above embodiment can be one or more of sodium hydroxide, potassium hydroxide, and ammonium hydroxide.
  • Embodiment 1 The technical effects of Embodiment 1 are: the concentration of lithium ions in the raffinate can be reduced to 1 mg/L, which significantly reduces the difficulty of wastewater treatment; the recovery rate of lithium is improved, and the recovery rate of lithium is more than 99%; the lithium salt is improved The purity of the solution ensures that the quality of lithium carbonate products produced by precipitation meets the battery-level requirements; the introduction of impurity ions is avoided, and the product purity is further ensured and improved. The lithium carbonate products fully meet the battery-level requirements.
  • Embodiment 2 As shown in Figure 1, the method for extracting and preparing battery-grade lithium carbonate from P507 raffinate is special in that it includes the following steps: a. Adjust the pH value to 8.5-10.5, preferably 9-10, 9.5, filter, and reserve the filtrate for later use. It can precipitate and remove impurity cations such as nickel.
  • the saponified P507 is mixed with the liquid filtered in the previous step, and the mixture is left to stand for phase separation.
  • the P507 organic phase (loaded organic phase) is reserved for use, and the aqueous phase (raffinate) is used to detect lithium If the ion concentration is less than 1mg/L, it can be sent to wastewater treatment.
  • the lithium in the filtrate can be extracted into the organic phase, the lithium ion concentration in the raffinate can be reduced, and the difficulty of wastewater treatment can be alleviated.
  • Alkalization take the lithium solution in the previous step and heat it up to 85-95 ° C, preferably 90 ° C, add lithium hydroxide (or alkali) to adjust the pH value to 9.0-13.0, preferably 9.5-12.5, 10.0-12.0, 10.5-11.5, 11. Incubate at 85-95°C, preferably 90°C, stand for 2-8 hours, preferably 3-7 hours, 4-6 hours, filter after 5 hours, and use the filtrate for later use. This step can alkalize lithium ions and remove organic and easy-to-precipitate impurities in the lithium solution.
  • the filtrate is fed with compressed air, the compressed air pressure is 0.2-0.8MPa, preferably 0.3-0.7MPa, 0.4-0.6MPa, 0.5MPa, and the compressed air flow rate is 8-30m 3 /h, preferably 10-25m 3 /h, 13-22m 3 /h, 15-20m 3 /h, 16-18m 3 /h, and simultaneously carry out evaporation and concentration, when there are fine crystal particles in the concentrated solution, discharge and cool.
  • the compressed air pressure is 0.2-0.8MPa, preferably 0.3-0.7MPa, 0.4-0.6MPa, 0.5MPa
  • the compressed air flow rate is 8-30m 3 /h, preferably 10-25m 3 /h, 13-22m 3 /h, 15-20m 3 /h, 16-18m 3 /h, and simultaneously carry out evaporation and concentration, when there are fine crystal particles in the concentrated solution, discharge and cool.
  • Embodiment 2 By adopting the above extraction method, the lithium ion concentration in the raffinate is as low as 1 mg/L, which significantly reduces the difficulty of wastewater treatment; by adopting the extraction method and the alkalization-air precipitation method, the recovery rate of lithium is improved, and the lithium The recovery rate is over 99%; the extraction and separation method is used to improve the purity of the lithium salt solution to ensure that the quality of the lithium carbonate product produced by precipitation meets the battery-level requirements; the alkalization-air precipitation method is used to avoid the introduction of impurity ions , to further ensure and improve product purity, lithium carbonate products fully meet battery-grade requirements.
  • Embodiment 3 As shown in Figure 2-4, an extraction device for preparing battery-grade lithium carbonate from P507 raffinate is provided with a stirring chamber 5, and the stirring chamber 5 is connected with a clarification chamber 7 through a transition tank 6, and inside the stirring chamber 5
  • the mixer is equipped with a special feature: the mixing chamber 5 is a cube, the clarification chamber 7 is a rectangular parallelepiped, the length-width ratio of the clarification chamber 7 is 4-5:1, and the volume ratio of the mixing chamber 5 and the clarification chamber 7 is 1:4.5- 5.5, the mixer consists of a main mixer 1 and an auxiliary mixer 2.
  • the main mixer 1 is provided with a stirring blade 4, and the stirring blade 4 is made into a double-layer cross shape.
  • the stirring body of the auxiliary mixer 2 is made into a cylindrical stirring body 3.
  • the cylindrical wall of the stirring body 3 is evenly distributed with circular small holes with a diameter of 5-10 mm, and the stirring blades 4 are sleeved in the cylindrical stirring body 3 .
  • the rotation speed of the main mixer 1 is 1000-2000 rpm, and can also be 1100-1300 rpm, 1400-1500 rpm, 1600-1700 rpm, 1800-1900 rpm /Minute.
  • the rotation speed of the auxiliary mixer 2 is 100-200 rpm, and can also be 110-120 rpm, 130-140 rpm, 150-160 rpm, 170-180 rpm, and 190 rpm. Its function is: the high-speed operation of the main agitation is to mix fully, the two phases are quickly balanced, and a better extraction effect is achieved.
  • the auxiliary stirring has a low rotation speed and is cylindrical, which can reduce the fluid movement speed of the mixed liquid running at a high speed of the main stirring, and break the phase continuity, which is more conducive to the subsequent phase separation.
  • the maximum diameter of the stirring blade 4 of the main mixer 1 is 0.28-0.33 of the side length of the stirring chamber 5
  • the diameter of the cylindrical stirring body 3 of the auxiliary stirring is 0.65-0.75 of the side length of the stirring chamber 5 .
  • Its function is: the larger the stirring blade, the greater the stirring intensity, and when the stirring blade is larger than this ratio, on the one hand, the motor load will increase; The difficulty of subsequent phase separation increases. Inhaling air will accumulate a large number of bubbles in the mixture, which will affect the extraction effect and increase the difficulty of phase separation.
  • two strip-shaped steady flow fences 8 are arranged in sequence in the clarification chamber 7 , and the distance between the position of the first steady flow fence and the inflow end of the transition groove 6 of the clarification chamber 7 is the clarification chamber 1/4 of the length, the distance between the position of the second steady flow fence is the length of the clarification chamber 7 and the inflow port of the clarification chamber transition groove 6 is 1/2 of the length of the clarification chamber 7 .
  • Its function is: the purpose of the steady flow fence is to reduce the flow rate of the mixed liquid and achieve the purpose of accelerating the separation of the two phases. If the first block is too close to the inlet of the transition tank, it will cause rapid currents, and there may be flooding (the mixed liquid in the tank is blocked prematurely and caused waves to flow out of the tank).
  • the extraction principle of the extraction device for preparing battery-grade lithium carbonate from P507 raffinate is: the organic phase and the lithium-containing aqueous phase are vigorously mixed under the main stirring high-speed operation, and the lithium is transferred from the aqueous phase to the organic phase.
  • the mixed two phases quickly collide with the auxiliary stirring under the action of centrifugal force, the pores above the mixed phase will disperse the mixed phase and reduce the flow rate under the action of the auxiliary stirring, so as to achieve the effect of destruction and stirring to ensure the extraction effect.
  • the mixed liquid enters the clarification chamber through the transition tank.
  • the main function of the clarification chamber is to separate the two phases.
  • the purpose of setting the fence is to reduce the fluid flow rate and speed up the phase separation.
  • the beneficial effect of the above extraction device for preparing battery-grade lithium carbonate from P507 raffinate is: when extracting lithium with an extractant, the capacity of the extractant is affected due to the characteristics of lithium, so a rapid response is required to increase the extraction tank capacity.
  • This extraction tank increases the stirring intensity on the basis of traditional extraction, and at the same time uses auxiliary stirring to break emulsification and phase continuity, and speed up the phase separation, thus ensuring the production capacity of the extraction tank.
  • Embodiment 1 A method and device for extracting and preparing battery-grade lithium carbonate from P507 raffinate, the steps are as follows: a.
  • the components of the P507 raffinate are as follows: Li: 1.5g/L, Fe: 0.0005g/L, Al : 0.0003g/L, Zn: 0.0001g/L, Ni: 0.035g/L, Cu: 0.0001g/L, Pb: 0.001g/L, Ca: 0.0004g/L, Mg: 0.001g/L, Na: 3.3g/L.
  • step b Add the filtrate of step b and P507 after saponification to the stirring chamber of the extraction device after startup, and the raffinate after passing through the extraction device is analyzed and detected to be 0.00091g/L (0.91mg/L).
  • step d Add the organic phase of step c and 0.25 mol/L lithium sulfate solution to the stirring chamber of the extraction device after startup, and after passing through the extraction device, the aqueous phase flows to the stirring chamber of step c.
  • step e Add the organic phase of step d and the sulfuric acid solution of 2.25 mol/L into the stirring chamber of the extraction device after startup. After passing through the extraction device, the aqueous phase is a high-concentration lithium solution, and the organic phase is a blank organic phase.
  • the obtained concentration is 20.3g/L lithium solution 7950mL, after subtracting the lithium hydroxide used to adjust the pH value, the extraction yield is 99.47%.
  • the lithium solution is heated to 92°C, the pH value is adjusted to 12.5 with lithium hydroxide, and the reaction is kept at 90°C for 2 hours and then filtered.
  • step f filtrate in the reactor feed compressed air and heat up to evaporate, compressed air 0.65MPa, flow 16.3m 3 /h, when there are fine crystals in the reactor, stop the compressed air and heat up, the reaction
  • the lithium liquid in the device is released for cooling.
  • the analysis and detection results of lithium carbonate after drying are as follows: Li 2 CO 3 : 99.61%, Fe: 0.0001%, Al: 0.0002%, Zn: 0.0001%, Ni: 0.0007%, Cu: 0.0001%, Pb: 0.0001% , Ca: 0.0004%, Mg: 0.0011%, Na: 0.0023%, K: 0.0003%, Si: 0.0012%, SO 4 2- : 0.017%, Cl- : 0.001%.
  • Embodiment 2 A method and device for extracting and preparing battery-grade lithium carbonate from P507 raffinate, the steps are as follows.
  • the composition of P507 raffinate is as follows: Li: 2.35g/L, Fe: 0.0002g/L, Al: 0.0009g/L, Zn: 0.0003g/L, Ni: 0.017g/L, Cu: 0.0001g/L , Pb: 0.001g/L, Ca: 0.0005g/L, Mg: 0.0012g/L, Na: 2.12g/L.
  • step b Add the filtrate of step b and P507 after saponification to the stirring chamber of the extraction device after startup, and the raffinate after passing through the extraction device is analyzed and detected to be 0.00077g/L (0.77mg/L).
  • step d Add the organic phase of step c and 0.18 mol/L lithium sulfate solution to the stirring chamber of the extraction device after startup, and after passing through the extraction device, the aqueous phase flows to the stirring chamber of step c.
  • step e Add the organic phase of step d and the sulfuric acid solution of 2.13 mol/L into the stirring chamber of the extraction device after starting. After passing through the extraction device, the aqueous phase is a high-concentration lithium solution, and the organic phase is a blank organic phase.
  • the obtained concentration is 19.43g/L lithium solution 12050mL, after subtracting the lithium hydroxide used to adjust the pH value, the extraction yield is 99.63%.
  • the lithium solution is heated to 95°C, the pH value is adjusted to 12.5 with lithium hydroxide, and the reaction is kept at 95°C for 2 hours and then filtered.
  • step f filtrate in the reactor feed compressed air and heat up to evaporate, compressed air 0.70MPa, flow 18.2m 3 /h, when there are fine crystals in the reactor, stop the compressed air and heat up, the reaction
  • the lithium liquid in the device is released for cooling.
  • the analysis and detection results of lithium carbonate after drying are as follows: Li 2 CO 3 : 99.58%, Fe: 0.0006%, Al: 0.0007%, Zn: 0.0005%, Ni: 0.0002%, Cu: 0.0005%, Pb: 0.0005% , Ca: 0.0006%, Mg: 0.0009%, Na: 0.0011%, K: 0.0003%, Si: 0.0017%, SO 4 2- : 0.041%, Cl- : 0.001%.
  • Embodiment 3 A method and device for extracting and preparing battery-grade lithium carbonate from P507 raffinate, the steps are as follows.
  • the composition of P507 raffinate is as follows: Li: 0.93g/L, Fe: 0.0005g/L, Al: 0.0005g/L, Zn: 0.0001g/L, Ni: 0.055g/L, Cu: 0.0005g/L , Pb: 0.003g/L, Ca: 0.0005g/L, Mg: 0.0007g/L, Na: 1.37g/L.
  • step b Add the filtrate of step b and P507 after saponification to the stirring chamber of the extraction device after starting, and the raffinate after passing through the extraction device is analyzed and detected to be 0.00083g/L (0.83mg/L).
  • step d Add the organic phase of step c and 0.22 mol/L lithium sulfate solution to the stirring chamber of the extraction device after startup, and after passing through the extraction device, the aqueous phase flows to the stirring chamber of step c.
  • step e Add the organic phase of step d and the sulfuric acid solution of 2.01 mol/L into the stirring chamber of the extraction device after startup. After passing through the extraction device, the aqueous phase is a high-concentration lithium solution, and the organic phase is a blank organic phase.
  • the obtained concentration is 19.11g/L lithium solution 4860mL, after subtracting the lithium hydroxide used to adjust the pH value, the extraction yield is 99.86%.
  • the lithium solution is heated to 90°C, the pH value is adjusted to 12.2 with lithium hydroxide, and the reaction is kept at 90°C for 2 hours and then filtered.
  • step f filtrate in the reactor feed compressed air and heat up to evaporate, compressed air 0.55MPa, flow 21.2m 3 /h, when there are fine crystals in the reactor, stop the compressed air and heat up, the reaction
  • the lithium liquid in the device is released for cooling.
  • the comprehensive yield of lithium is 99.86%.
  • the analysis and detection results of lithium carbonate after drying are as follows: Li 2 CO 3 : 99.59%, Fe: 0.0007%, Al: 0.0005%, Zn: 0.0003%, Ni: 0.0005%, Cu: 0.0001%, Pb: 0.0006% , Ca: 0.0005%, Mg: 0.0005%, Na: 0.0013%, K: 0.0005%, Si: 0.0032%, SO 4 2- : 0.033%, Cl- : 0.001%.
  • Embodiment 4 A method and device for extracting and preparing battery-grade lithium carbonate from P507 raffinate, the steps are as follows.
  • the composition of P507 raffinate is as follows: Li: 5.5g/L, Fe: 0.001g/L, Al: 0.0011g/L, Zn: 0.0021g/L, Ni: 0.075g/L, Cu: 0.0023g/L , Pb: 0.001g/L, Ca: 0.0016g/L, Mg: 0.001g/L, Na: 5.3g/L.
  • step b Add the filtrate of step b and P507 after saponification to the stirring chamber of the extraction device after startup, and the raffinate after passing through the extraction device is analyzed and detected to be 0.00033g/L (0.33mg/L).
  • step d Add the organic phase of step c and the lithium sulfate solution of 0.19 mol/L to the stirring chamber of the extraction device after startup, and after passing through the extraction device, the aqueous phase flows to the stirring chamber of step c.
  • step e Add the organic phase of step d and the sulfuric acid solution of 2.15 mol/L into the stirring chamber of the extraction device after startup. After passing through the extraction device, the aqueous phase is a high-concentration lithium solution, and the organic phase is a blank organic phase.
  • the obtained concentration is 20.17g/L lithium solution 27350mL, after subtracting the lithium hydroxide used to adjust the pH value, the extraction yield is 99.66%.
  • the lithium solution is heated to 95°C, the pH value is adjusted to 11.9 with lithium hydroxide, and the reaction is kept at 90°C for 2 hours and then filtered.
  • step f filtrate in the reactor feed compressed air and heat up to evaporate, compressed air 0.75MPa, flow 18.3m 3 /h, when there are fine crystals in the reactor, stop the compressed air and heat up, the reaction
  • the lithium liquid in the device is released for cooling.
  • the analysis and detection results of lithium carbonate after drying are as follows: Li 2 CO 3 : 99.53%, Fe: 0.0005%, Al: 0.0007%, Zn: 0.0005%, Ni: 0.0005%, Cu: 0.0005%, Pb: 0.0003% , Ca: 0.0009%, Mg: 0.0017%, Na: 0.0037%, K: 0.0001%, Si: 0.0019%, SO 4 2- : 0.023%, Cl- : 0.001%.
  • Example 5 As shown in Figure 2-4, an extraction device for preparing battery-grade lithium carbonate from P507 raffinate is provided with a stirring chamber 5, and the stirring chamber 5 is connected with a clarifying chamber 7 through a transition tank 6, and in the stirring chamber 5 A mixer is provided, the mixing chamber 5 is a cube, the clarification chamber 7 is a cuboid, the length-width ratio of the clarification chamber 5 is 4-5:1, and the volume ratio of the mixing chamber 5 and the clarification chamber 7 is 1:4.5-5.5, and the mixer is composed of The main mixer 1 and the auxiliary mixer 2 are composed.
  • the main mixer 1 is provided with a stirring blade 4.
  • the stirring blade 4 is made into a double-layer cross shape.
  • the stirring body of the auxiliary mixer 2 is made into a cylindrical stirring body 3. There are evenly distributed circular holes with a diameter of 5-10mm, and the stirring blades 4 are sleeved in the cylindrical stirring body 3 .
  • Example 6 As shown in Figure 2-4, an extraction device for preparing battery-grade lithium carbonate from P507 raffinate is provided with a stirring chamber 5, and the stirring chamber 5 is connected with a clarification chamber 7 through a transition tank 6.
  • a mixer is provided, the mixing chamber 5 is a cube, the clarification chamber 7 is a rectangular parallelepiped, the length-width ratio of the clarification chamber 7 is 4-5:1, and the volume ratio of the mixing chamber 5 and the clarification chamber 7 is 1:4.5-5.5, and the mixer is composed of The main mixer 1 and the auxiliary mixer 2 are composed.
  • the main mixer 1 is composed of the main mixer driving motor 12 and the stirring blade 4, and the stirring blade 4 is a double-layer cross.
  • the auxiliary mixer 2 is composed of the auxiliary mixer driving motor 11 , the auxiliary mixer driving wheel 10 which is drivingly connected with the driving motor 11 , the auxiliary mixer driving wheel 9 which is drivingly connected with the driving wheel 10 , and the cylindrical stirring body 3 connected with the driving wheel 9 .
  • the drive wheel 9 of the auxiliary mixer is provided with a center hole, and the shaft of the stirring blade 4 of the main mixer 1 passes through the center hole of the drive wheel 9 .
  • a support bearing is placed under the transmission wheel 9 .
  • the driving wheel 10 and the transmission wheel 9 are connected by gear or friction.
  • the main mixer drive motor 12 and the auxiliary mixer drive motor 11 are fixed on the top cover of the mixing chamber 5 through brackets.
  • the rotation speed of the main mixer 1 is 1000-2000 rpm
  • the rotation speed of the auxiliary mixer 2 is 100-200 r/min
  • the maximum diameter of the stirring blade 4 of the main mixer 1 is 0.28-0.33 of the length of the side of the mixing chamber 5, and the auxiliary mixer 2
  • the diameter of the cylindrical stirring body 3 is 0.65-0.75 of the side length of the stirring chamber 5 .
  • the cylindrical wall of the cylindrical stirring body 3 is evenly distributed with circular small holes with a diameter of 5-10 mm. 1 per square centimeter.
  • the stirring blade 4 is sleeved in the cylindrical stirring body 3 .
  • the clarification chamber is staggered with two strip-shaped steady flow fences 8 , the position of the first steady flow fence on the left is 1/4 of the length of the clarification chamber 7 from the inflow inlet end of the transition groove 6 of the clarification chamber 7 , and the second on the right The distance between the position of the block steady flow fence of the length of the clarification chamber 7 and the inflow end of the transition groove 6 of the clarification chamber 7 is 1/2 of the length of the clarification chamber 7 .
  • the steady flow fence 8 is a conventional fence.
  • the invention has been put into industrial production and application, the recovery rate of lithium is above 99%, and the prepared lithium carbonate product meets the standard requirements of battery-grade lithium carbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

从P507萃余液中提取制备电池级碳酸锂的方法及装置,有色金属湿化冶金技术领域,特别是涉及一种锂离子萃取提纯和浓缩晶析技术。包括调杂、萃取、纯化、反萃取、碱化、结晶、分离、烘干等步骤,所述调杂:先将P507萃余液用氢氧化锂或碱调节PH值到8.5-10.5,过滤,留滤液备用;所述碱化:取锂溶液升温至85-95℃,加入氢氧化锂或碱调节PH值至9.0-13.0,保温85-95℃静置2-8小时后过滤,滤液备用;所述结晶:碱化后滤液通入压缩空气,压缩空气压力0.2-0.8MPa,压缩空气气流量8-30m3/h,同时进行蒸发浓缩,当浓缩液中有微细结晶,放料冷却。经萃取后的萃余液中锂含量小于1mg/L,降低了废水处理难度;经过调杂、萃取、纯化、反萃取等过程,锂溶液得到深度的净化;经过碱化、结晶、分离、烘干后所得到的碳酸锂收率99%以上,产品纯度完全符合电池级要求。

Description

从P507萃余液中提取制备电池级碳酸锂的方法及萃取装置 技术领域
本发明涉及有色金属湿法冶金技术领域,特别是涉及一种锂离子萃取提纯和浓缩晶析技术。
背景技术
锂离子电池正极物料在湿法回收处理时,使用P507萃取剂进行萃取时,萃余液中含有1g/L以上的锂。萃余液中锂的回收,一般是采用磷酸三钠或是碳酸盐进行沉淀制备磷酸锂或碳酸锂。此方法制备的磷酸锂或碳酸锂的综合收率一般在70-90%。制备的锂产品纯度低,达不到电池级锂盐的标准。沉淀后液中锂离子浓度仍有200mg/L左右,后续还需要继续处理,增加回收难度和环保处理难度。因此,有必要研究一种对于提高P507萃余液中锂回收的收率和回收产品品质的方法及设备,以满足高品质碳酸锂制备和环保处理的需求。
技术问题
本发明的目的在于克服以上背景技术中提到的不足和缺陷,公开一种能有效地提高锂的回收率,回收制备的碳酸锂能达到电池级要求,回收处理后的萃余液锂含量低于1mg/L,能显著减轻环保处理难度的从P507萃余液中提取制备电池级碳酸锂的方法及萃取装置。
技术解决方案
本发明的技术解决方案之一是:从P507萃余液中提取制备电池级碳酸锂的方法,包括以下步骤:调杂、萃取、纯化、反萃取、碱化、结晶、分离、烘干,其特殊之处在于:所述调杂:先将P507萃余液用氢氧化锂或碱调节PH值到8.5-10.5,优选9-10,9.5,过滤,留滤液备用。
所述萃取:用皂化后的P507与调杂步骤过滤后的液体进行混合,混合后静置分相,P507有机相留用,水相检测锂离子浓度,小于1mg/L即可送入废水处理。
所述纯化:取萃取步骤有机相用0.1-0.25mol/L,优选0.2mol/L的硫酸锂溶液进行纯化洗涤,洗涤后静置分相,P507有机相留用,水相并入萃取步骤。
所述反萃取:取纯化洗涤后的P507有机相采用稀硫酸进行反萃取,两相分离后得到空白有机和硫酸锂溶液。
所述碱化:取反萃取步骤所得锂溶液升温至85-95℃,优选90℃,加入氢氧化锂或碱调节PH值至9.0-13.0,优选10.0-12.0,10.5-11.0,保温85-95℃优选90℃,静置2-8小时优选3-7小时,4-6小时,3-5小时,4小时后过滤,滤液备用。
所述结晶:碱化后滤液通入压缩空气,压缩空气压力0.2-0.8MPa,优选0.3-0.7MPa,0.4-0.6MPa,0.5MPa,压缩空气气流量8-30m3/h,优选 10-25m3/h,13-22m3/h,15-20m3/h,16-18m3/h,同时进行蒸发浓缩,当浓缩液中有微细晶粒,放料冷却。
进一步地,所述反萃取:可以取纯化洗涤后的P507有机相采用稀液碱进行反萃取,两相分离后得到空白有机和氢氧化锂溶液。
本发明的技术解决方案之二是:从P507萃余液中提取制备电池级碳酸锂的萃取装置,设有搅拌室,搅拌室通过过渡槽相连有澄清室,在搅拌室内设有搅拌机,其特殊之处在于:搅拌室为正方体,澄清室为长方体,澄清室长宽比为4-5:1,搅拌室与澄清室的体积比为1:4.5-5.5,所述搅拌机由主搅拌机和副搅拌机所组成,主搅拌机设有的搅拌叶制成双层十字形,副搅拌机的搅拌体制成筒状搅拌体,筒状搅拌体的筒壁上均匀分布有直径为5-10mm圆形小孔, 搅拌叶套设在筒状搅拌体内。
进一步地,所述主搅拌机的转速为1000-2000转/分,优选1200-1800转/分,1300-1600转/分,1400-1500转/分,副搅拌机2的转速为100-200转/分,优选120-180转/分,140-160转/分,150转/分。
进一步地,所述主搅拌机的搅拌叶的直径为搅拌室边长的0.28-0.33,副搅拌的筒状搅拌体直径为搅拌室边长的0.65-0.75。
进一步地,所述筒壁上的圆形小孔每平方厘米设1个。
进一步地,所述澄清室内依次设置有两块条板状稳流栏栅,第一块稳流栏栅的位置距澄清室过渡槽流入口端的距离为澄清室长度的1/4,第二块稳流栏栅为澄清室长度的位置距澄清室过渡槽流入口端的距离为澄清室长度的1/2。
有益效果
本发明由于采用了以上技术方案,具有以下优点:(1)由于采取以上萃取法,萃余液中锂离子浓度低至1mg/L,显著降低了废水处理难度。
(2)由于采取萃取法和碱化-空气沉淀法,提高了锂的回收率,锂的回收率达99%以上。
(3)由于采取萃取分离法提高了锂盐溶液的纯度,确保在沉淀生产碳酸锂产品的品质达到电池级要求。
(4)由于采取碱化-空气沉淀法,避免了杂质离子的带入,进一步确保和提高产品纯度,碳酸锂产品完全符合电池级要求。
附图说明
图1为本发明的工艺流程图。
图2为本发明萃取装置实施例的主视剖面结构示意图。
图3为本发明萃取装置实施例的俯视结构示意图。
图4为本发明萃取装置实施例的筒状搅拌体结构示意图。
附图标记说明:1-主搅拌机,2-副搅拌机,3-筒状搅拌体,4-搅拌叶,5-搅拌室、6-过渡槽、7-澄清室、8-稳流栏栅,9-副搅拌机传动轮,10-副搅拌机驱动轮,11-副搅拌机驱动电机,12-主搅拌机驱动电机。
本发明的最佳实施方式
从P507萃余液中提取制备电池级碳酸锂的方法,包括以下步骤:调杂、萃取、纯化、反萃取、碱化、结晶、分离、烘干,所述调杂:先将P507萃余液用氢氧化锂或碱调节PH值到10.0,过滤,留滤液备用。
所述萃取:用皂化后的P507与调杂步骤过滤后的液体进行混合,混合后静置分相,P507有机相留用,水相检测锂离子浓度,小于1mg/L即可送入废水处理。
所述纯化:取萃取步骤有机相用0.2mol/L的硫酸锂溶液进行纯化洗涤,洗涤后静置分相,P507有机相留用,水相并入萃取步骤。
所述反萃取:取纯化洗涤后的P507有机相采用稀硫酸进行反萃取,两相分离后得到空白有机和硫酸锂溶液。
所述碱化:取反萃取步骤所得锂溶液升温至90℃,加入氢氧化锂或碱调节PH值至10.0,保温90℃,静置4小时后过滤,滤液备用。
所述结晶:碱化后滤液通入压缩空气,压缩空气压力0.5MPa,压缩空气气流量18m3/h,,同时进行蒸发浓缩,当浓缩液中有微细晶粒,放料冷却。
所述反萃取:可以取纯化洗涤后的P507有机相采用稀液碱进行反萃取,两相分离后得到空白有机和氢氧化锂溶液。
从P507萃余液中提取制备电池级碳酸锂的萃取装置,设有搅拌室,搅拌室通过过渡槽相连有澄清室,在搅拌室内设有搅拌机,搅拌室为正方体,澄清室为长方体,澄清室长宽比为5:1,搅拌室与澄清室的体积比为1:5.5,所述搅拌机由主搅拌机和副搅拌机所组成,主搅拌机设有的搅拌叶制成双层十字形,副搅拌机的搅拌体制成筒状搅拌体,筒状搅拌体的筒壁上均匀分布有直径为5mm圆形小孔,搅拌叶套设在筒状搅拌体内。 所述主搅拌机的转速为1200转/分,副搅拌机2的转速为150转/分。所述主搅拌机的搅拌叶的直径为搅拌室边长的0.3,副搅拌的筒状搅拌体直径为搅拌室边长的0.7。所述筒壁上的圆形小孔每平方厘米设1个。所述澄清室内依次设置有两块条板状稳流栏栅,第一块稳流栏栅的位置距澄清室过渡槽流入口端的距离为澄清室长度的1/4,第二块稳流栏栅为澄清室长度的位置距澄清室过渡槽流入口端的距离为澄清室长度的1/2。
本发明的实施方式
为了更清楚地理解本发明,下面结合附图1-4用具体实施方式对本发明作进一步的说明。
实施方式1:如图1,从P507萃余液中提取制备电池级碳酸锂的方法,包括以下步骤:调杂、萃取、纯化、反萃取、碱化、结晶、分离、烘干,其特殊之处在于:所述调杂:先将P507萃余液用氢氧化锂或碱调节PH值到8.5-10.5,过滤,留滤液备用。
上述用氢氧化锂或碱调节PH值,可以调节到9-10, 8.5-9, 9-9.5, 9.5-10。
此步骤能有效沉淀去除镍等杂质阳离子,实验数据如表1。
表1:PH值对沉淀去除镍等杂质阳离子的效果表。
 
Figure 7037dest_path_image001
 所述萃取:在萃取装置中,用皂化后的P507与调杂步骤过滤后的液体进行混合,混合后静置分相,P507有机相留用,水相检测锂离子浓度,小于1mg/L即可送入废水处理。
此步骤能将滤液中的锂萃取至有机相中,降低萃余中锂离子浓度,减轻废水处理难度。
所述纯化:在萃取装置中,取萃取步骤有机相用0.1-0.25mol/L的硫酸锂溶液进行纯化洗涤,洗涤后静置分相,P507有机相留用,水相并入萃取步骤。
上述硫酸锂溶液可以为0.12-0.23mol/L,0.15-0.20mol/L,0.16-0.18mol/L,0.1-0.12mol/L,0.13-0.15mol/L,0.16-0.18mol/L,0.19-0.20mol/L,0.21-0.22mol/L,0.23-0.25mol/L。
此步骤能将有机相中夹带的钠等杂质离子洗涤,提高和纯化有机相中锂离子。实验数据如表2。
表2:硫酸锂溶液浓度对去除杂质离子的效果表。
Figure 300616dest_path_image002
所述反萃取:在萃取装置中,取纯化洗涤后的P507有机相采用稀硫酸进行反萃取,两相分离后得到空白有机和硫酸锂溶液。
此步骤能将有机相中的锂进行反萃取,以获得溶液状态的锂盐。一方面提高锂离子浓度,另一方面锂与杂质得到进一步分离。
所述碱化:取反萃取步骤所得锂溶液升温至85-95℃,加入氢氧化锂或碱调节PH值至9.0-13.0,保温85-95℃,静置2-8小时后过滤,滤液备用。
上述锂溶液可以升温至85-86℃,87-88℃,89-90℃,91-92℃,93-94℃。
 上述加入氢氧化锂或碱可以调节PH值为9.5-10.0,10.5-11.0,11.5-12.0,12.5-13.0。
上述保温温度可以85-86℃,87-88℃,89-90℃,91-92℃,93-94℃。
上述静置时间可以为2-3小时,4-5小时,6-7小时。
此碱化步骤能对锂离子进行碱化,去除锂液中有机和易沉淀杂质。实验数据如表3、表4、表5。
表3:PH值11.0,静置4小时条件下锂液不同反应温度有机含量及去除效果表。
Figure 750707dest_path_image003
表4:90℃,静置4小时条件下锂液不同PH值条件下有机含量及去除效果表。
Figure 737118dest_path_image004
表5:90℃,PH值11.0条件下锂液不同静置时间条件下有机含量及去除效果表。
Figure 964837dest_path_image005
所述结晶:碱化后滤液通入压缩空气,压缩空气压力0.2-0.8MPa,压缩空气气流量8-30m 3/h,同时进行蒸发浓缩,当浓缩液中有微细晶粒,放料冷却。
上述压缩空气压力可以为0.2-0.3MPa,0.4-0.5MPa,0.6-0.7MPa。
上述压缩空气气流量可以为8-10m 3/h,11-13m 3/h,14-16m 3/h,17-19m 3/h,20-22m 3/h,23-25m 3/h,26-28m 3/h,29-30m 3/h。
此结晶步骤能对锂离子进行碳化,在压缩空气中二氧化碳作用下锂转化为碳酸锂。实验数据如表6、表7所示。
表6:压缩空气20m 3/h流量下不同压力条件下锂完全转化所需时间效果表。
Figure 796526dest_path_image006
表7:压缩空气0.7MPa压力情况下不同流量条件下锂完全转化所需时间效果表。
Figure 160512dest_path_image007
在另一实施方案中,所述反萃取:在萃取装置中,可以取纯化洗涤后的P507有机相采用稀碱进行反萃取,两相分离后得到空白有机和氢氧化锂溶液。
以上实施方案中的碱可以为氢氧化钠、氢氧化钾、氢氧化铵的一种或多种。
实施方式1的技术效果为:能使萃余液中锂离子浓度低至1mg/L,显著降低了废水处理难度;提高了锂的回收率,锂的回收率达99%以上;提高了锂盐溶液的纯度,确保在沉淀生产碳酸锂产品的品质达到电池级要求;避免了杂质离子的带入,进一步确保和提高产品纯度,碳酸锂产品完全符合电池级要求。
实施方式2:如图1,从P507萃余液中提取制备电池级碳酸锂的方法,其特殊之处在于:包括以下步骤:a.调杂:先将P507萃余液用氢氧化锂或碱调节PH值到8.5-10.5,优选9-10,9.5,过滤,留滤液备用。能沉淀去除镍等杂质阳离子。
b.萃取:在萃取装置中,用皂化后的P507与上步骤过滤后的液体进行混合,混合后静置分相,P507有机相(负载有机相)留用,水相(萃余液)检测锂离子浓度,小于1mg/L即可送入废水处理。此步骤能将滤液中的锂萃取至有机相中,降低萃余中锂离子浓度,减轻废水处理难度。
c.纯化:在萃取装置中,取上步有机相(负载有机相)用0.1-0.25mol/L,优选0.1-0.25mol/L,0.15-0.20mol/L,硫酸锂溶液进行纯化洗涤,洗涤后静置分相,P507有机相留用,水相并入上步骤。此步骤能将有机相中夹带的钠等杂质离子洗涤,提高和纯化有机相中锂离子。
d.反萃取:在萃取装置中,取纯化洗涤后的P507有机相采用稀硫酸(或稀液碱)进行反萃取,两相分离后得到空白有机和硫酸锂(或氢氧化锂)溶液。此步骤能将有机相中的锂进行反萃取,以获得溶液状态的锂盐。一方面提高锂离子浓度,另一方面锂与杂质得到进一步分离。
e.碱化:取上步骤锂溶液升温至85-95℃,优选90℃,加入氢氧化锂(或碱)调节PH值至9.0-13.0,优选9.5-12.5,10.0-12.0,10.5-11.5,11,保温85-95℃,优选90℃,静置2-8小时,优选3-7小时,4-6小时,5小时后过滤,滤液备用。此步骤能对锂离子进行碱化,去除锂液中有机和易沉淀杂质。
f.结晶:碱化后滤液通入压缩空气,压缩空气压力0.2-0.8MPa,优选0.3-0.7MPa,0.4-0.6MPa,0.5MPa,压缩空气气流量8-30m 3/h,优选 10-25m 3/h,13-22m 3/h,15-20m 3/h,16-18m 3/h,同时进行蒸发浓缩,当浓缩液中有微细晶粒,放料冷却。
g.分离:浓缩液冷却至常温,离心分离,固体即为碳酸锂,液体返上步继续参与反应。
h.烘干:离心分离的后固体物经常规烘干后即得到电池级碳酸锂。
实施方式2通过采取以上萃取法,萃余液中锂离子浓度低至1mg/L,显著降低了废水处理难度;通过采用萃取法和碱化-空气沉淀法,提高了锂的回收率,锂的回收率达99%以上;通过采用萃取分离法提高了锂盐溶液的纯度,确保在沉淀生产碳酸锂产品的品质达到电池级要求;通过采用碱化-空气沉淀法,避免了杂质离子的带入,进一步确保和提高产品纯度,碳酸锂产品完全符合电池级要求。
实施方式3:如图2-4,从P507萃余液中提取制备电池级碳酸锂的萃取装置,设有搅拌室5,搅拌室5通过过渡槽6相连有澄清室7,在搅拌室5内设有搅拌机,其特殊之处在于:搅拌室5为正方体,澄清室7为长方体,澄清室7长宽比为4-5:1,搅拌室5与澄清室7的体积比为1:4.5-5.5,所述搅拌机由主搅拌机1和副搅拌机2所组成,主搅拌机1设有搅拌叶4,搅拌叶4制成双层十字形,副搅拌机2的搅拌体制成筒状搅拌体3,筒状搅拌体3的筒壁上均匀分布有直径为5-10mm圆形小孔,搅拌叶4套设在筒状搅拌体3内。
在另一实施方案中,所述主搅拌机1的转速为1000-2000转/分,也可以为1100-1300转/分,1400-1500转/分,1600-1700转/分,1800-1900转/分。副搅拌机2的转速为100-200转/分,也可以为110-120转/分,130-140转/分,150-160转/分,170-180转/分,190转/分。其作用是:主搅拌高速运转是为了混合充分,两相快速平衡,达到更佳的萃取效果。副搅拌低转速且为筒状,可以将主搅拌高速运转的混合液流体运动速度降下来,打破相连续为后续更利于分相。
在另一实施方案中,所述主搅拌机1的搅拌叶4的最大直径为搅拌室5边长的0.28-0.33,副搅拌的筒状搅拌体3直径为搅拌室5边长的0.65-0.75。其作用是:搅拌浆叶浆叶越大搅拌强度越大,而当搅拌浆叶大于此比例后一方面会增加电机负荷,另一方面搅拌强度太大两相会出现乳化和大量吸入空气,造成后续分相难度增加,吸入空气会在混合液中积聚大量气泡影响萃取效果和分相难芳增加。
在另一实施方案中,所述澄清室7内依次设置有两块条板状稳流栏栅8,第一块稳流栏栅的位置距澄清室7过渡槽6流入口端的距离为澄清室长度的1/4,第二块稳流栏栅为澄清室7长度的位置距澄清室过渡槽6流入口端的距离为澄清室7长度的1/2。其作用是:稳流栏栅的目的是降低混合液的流速,达到加快两相分相的目的。第一块如果过离过渡槽流入口过近会造成激流,可能会有泛液(槽内混合液过早阻挡而被激起波浪泛出槽外)的可能,过长起不到作用并且会影响第二块的效果。第二块稳流栏栅离过渡槽流入口过近时,当流体流经第一块栏栅后流速已降下来,又马上再遇上第二栏栅,在两个栏栅之间再次形成旋涡流,反而影响到两相的分相。如果离得过远,流体在经过第一块栏栅后流速已降下来了,栏栅基本失去其应有作用。
从P507萃余液中提取制备电池级碳酸锂的萃取装置的萃取原理是:有机相与含锂水相在主搅拌高速运转下强力混合,锂由水相转移至有机相中。当混合后的两相在离心力作用下快速与副搅拌进行碰撞,在副搅拌的运动下其上面的细孔将混合相打散并降低了流速,达到破坏和搅拌作用确保萃取效果。混合液经过过渡槽进入到澄清室,澄清室主要作用就是两相的分离,设置栏栅的目的就是降低流体流速加快分相。
以上从P507萃余液中提取制备电池级碳酸锂的萃取装置的有益效果是:在用萃取剂萃取锂时,因为锂的特性造成萃取剂容量受影响,所以需要快速反应来增加萃取槽产能。此萃取槽是在传统萃取基础之上加大搅拌强度,同时利用副搅拌来破乳化和相连续,加快分相,从而确保了萃取槽产能。
实施例1:一种从P507萃余液中提取制备电池级碳酸锂的方法及装置,步骤如下:a.P507萃余液成份如下:Li:1.5g/L,Fe:0.0005g/L,Al:0.0003g/L,Zn:0.0001g/L,Ni:0.035g/L,Cu:0.0001g/L,Pb:0.001g/L,Ca:0.0004g/L,Mg:0.001g/L,Na:3.3g/L。
b.取萃余液100L,用氢氧化锂调节PH值至9.8,过滤。
c.向启动后的萃取装置搅拌室加入步骤b的滤液和皂化后P507,经过萃取装置后取萃余液分析检测Li为0.00091g/L(0.91mg/L)。
d.向启动后的萃取装置搅拌室加入步骤c的有机相和0.25mol/L的硫酸锂溶液,经过萃取装置后,水相流向步骤c搅拌室。
e.向启动后的萃取装置搅拌室加入步骤d的有机相和2.25mol/L的硫酸溶液,经过萃取装置后,水相为高浓度锂液,有机相为空白有机。获得浓度为20.3g/L锂液7950mL,减去调PH值所用氢氧化锂后萃取收率99.47%。
f.将锂液升温至92℃,用氢氧化锂调节PH值至12.5,保持90℃静置反应2小时后过滤。
g.反应器内加入步骤f滤液,加料完成后通入压缩空气并升温进行蒸发,压缩空气0.65MPa,流量16.3m 3/h,当反应器内有微细结晶,停止压缩空气和升温,将反应器内锂液放出冷却。
h.锂液冷却至室温后进行分离和烘干,母液继续返步骤g参与反应。所以锂的综合收率为99.47%。
i.碳酸锂经烘干后分析检测结果如下:Li 2CO 3:99.61%,Fe:0.0001%,Al:0.0002%,Zn:0.0001%,Ni:0.0007%,Cu:0.0001%,Pb:0.0001%,Ca:0.0004%,Mg:0.0011%,Na:0.0023%,K:0.0003%,Si:0.0012%,SO 4 2-:0.017%,Cl -:0.001%。
实施例2:一种从P507萃余液中提取制备电池级碳酸锂的方法及装置,步骤如下。
a.P507萃余液成份如下:Li:2.35g/L,Fe:0.0002g/L,Al:0.0009g/L,Zn:0.0003g/L,Ni:0.017g/L,Cu:0.0001g/L,Pb:0.001g/L,Ca:0.0005g/L,Mg:0.0012g/L,Na:2.12g/L。
b.取萃余液100L,用氢氧化锂调节PH值至10.2,过滤。
c.向启动后的萃取装置搅拌室加入步骤b的滤液和皂化后P507,经过萃取装置后取萃余液分析检测Li为0.00077g/L(0.77mg/L)。
d.向启动后的萃取装置搅拌室加入步骤c的有机相和0.18mol/L的硫酸锂溶液,经过萃取装置后,水相流向步骤c搅拌室。
e.向启动后的萃取装置搅拌室加入步骤d的有机相和2.13mol/L的硫酸溶液,经过萃取装置后,水相为高浓度锂液,有机相为空白有机。获得浓度为19.43g/L锂液12050mL,减去调PH值所用氢氧化锂后萃取收率99.63%。
f.将锂液升温至95℃,用氢氧化锂调节PH值至12.5,保持95℃静置反应2小时后过滤。
g.反应器内加入步骤f滤液,加料完成后通入压缩空气并升温进行蒸发,压缩空气0.70MPa,流量18.2m 3/h,当反应器内有微细结晶,停止压缩空气和升温,将反应器内锂液放出冷却。
h.锂液冷却至室温后进行分离和烘干,母液继续返步骤g参与反应。所以锂的综合收率为99.63%。
i.碳酸锂经烘干后分析检测结果如下:Li 2CO 3:99.58%,Fe:0.0006%,Al:0.0007%,Zn:0.0005%,Ni:0.0002%,Cu:0.0005%,Pb:0.0005%,Ca:0.0006%,Mg:0.0009%,Na:0.0011%,K:0.0003%,Si:0.0017%,SO 4 2-:0.041%,Cl -:0.001%。
实施例3:一种从P507萃余液中提取制备电池级碳酸锂的方法及装置,步骤如下。
a.P507萃余液成份如下:Li:0.93g/L,Fe:0.0005g/L,Al:0.0005g/L,Zn:0.0001g/L,Ni:0.055g/L,Cu:0.0005g/L,Pb:0.003g/L,Ca:0.0005g/L,Mg:0.0007g/L,Na:1.37g/L。
b.取萃余液100L,用氢氧化锂调节PH值至9.5,过滤。
c.向启动后的萃取装置搅拌室加入步骤b的滤液和皂化后P507,经过萃取装置后取萃余液分析检测Li为0.00083g/L(0.83mg/L)。
d.向启动后的萃取装置搅拌室加入步骤c的有机相和0.22mol/L的硫酸锂溶液,经过萃取装置后,水相流向步骤c搅拌室。
e.向启动后的萃取装置搅拌室加入步骤d的有机相和2.01mol/L的硫酸溶液,经过萃取装置后,水相为高浓度锂液,有机相为空白有机。获得浓度为19.11g/L锂液4860mL,减去调PH值所用氢氧化锂后萃取收率99.86%。
f.将锂液升温至90℃,用氢氧化锂调节PH值至12.2,保持90℃静置反应2小时后过滤。
g.反应器内加入步骤f滤液,加料完成后通入压缩空气并升温进行蒸发,压缩空气0.55MPa,流量21.2m 3/h,当反应器内有微细结晶,停止压缩空气和升温,将反应器内锂液放出冷却。
h.锂液冷却至室温后进行分离和烘干,母液继续返步骤g参与反应。所以锂的综合收率为99.86%。
i.碳酸锂经烘干后分析检测结果如下:Li 2CO 3:99.59%,Fe:0.0007%,Al:0.0005%,Zn:0.0003%,Ni:0.0005%,Cu:0.0001%,Pb:0.0006%,Ca:0.0005%,Mg:0.0005%,Na:0.0013%,K:0.0005%,Si:0.0032%,SO 4 2-:0.033%,Cl -:0.001%。
实施例4:一种从P507萃余液中提取制备电池级碳酸锂的方法及装置,步骤如下。
a.P507萃余液成份如下:Li:5.5g/L,Fe:0.001g/L,Al:0.0011g/L,Zn:0.0021g/L,Ni:0.075g/L,Cu:0.0023g/L,Pb:0.001g/L,Ca:0.0016g/L,Mg:0.001g/L,Na:5.3g/L。
b.取萃余液100L,用氢氧化锂调节PH值至10.5,过滤。
c.向启动后的萃取装置搅拌室加入步骤b的滤液和皂化后P507,经过萃取装置后取萃余液分析检测Li为0.00033g/L(0.33mg/L)。
d.向启动后的萃取装置搅拌室加入步骤c的有机相和0.19mol/L的硫酸锂溶液,经过萃取装置后,水相流向步骤c搅拌室。
e.向启动后的萃取装置搅拌室加入步骤d的有机相和2.15mol/L的硫酸溶液,经过萃取装置后,水相为高浓度锂液,有机相为空白有机。获得浓度为20.17g/L锂液27350mL,减去调PH值所用氢氧化锂后萃取收率99.66%。
f.将锂液升温至95℃,用氢氧化锂调节PH值至11.9,保持90℃静置反应2小时后过滤。
g.反应器内加入步骤f滤液,加料完成后通入压缩空气并升温进行蒸发,压缩空气0.75MPa,流量18.3m 3/h,当反应器内有微细结晶,停止压缩空气和升温,将反应器内锂液放出冷却。
h.锂液冷却至室温后进行分离和烘干,母液继续返步骤g参与反应。所以锂的综合收率为99.66%。
i.碳酸锂经烘干后分析检测结果如下:Li 2CO 3:99.53%,Fe:0.0005%,Al:0.0007%,Zn:0.0005%,Ni:0.0005%,Cu:0.0005%,Pb:0.0003%,Ca:0.0009%,Mg:0.0017%,Na:0.0037%,K:0.0001%,Si:0.0019%,SO 4 2-:0.023%,Cl -:0.001%。
实施例5:如图2-4,从P507萃余液中提取制备电池级碳酸锂的萃取装置,设有搅拌室5,搅拌室5通过过渡槽6相连有澄清室7,在搅拌室5内设有搅拌机,搅拌室5为正方体,澄清室7为长方体,澄清室5长宽比为4-5:1,搅拌室5与澄清室7的体积比为1:4.5-5.5,所述搅拌机由主搅拌机1和副搅拌机2所组成,主搅拌机1设有搅拌叶4,搅拌叶4制成双层十字形,副搅拌机2的搅拌体制成筒状搅拌体3,筒状搅拌体3的筒壁上均匀分布有直径为5-10mm圆形小孔,搅拌叶4套设在筒状搅拌体3内。
实施例6:如图2-4,从P507萃余液中提取制备电池级碳酸锂的萃取装置,设有搅拌室5,搅拌室5通过过渡槽6相连有澄清室7,在搅拌室5内设有搅拌机,搅拌室5为正方体,澄清室7为长方体,澄清室7长宽比为4-5:1,搅拌室5与澄清室7的体积比为1:4.5-5.5,所述搅拌机由主搅拌机1和副搅拌机2所组成,主搅拌机1由主搅拌机驱动电机12和搅拌叶4所组成,搅拌叶4为双层十字形。副搅拌机2由副搅拌机驱动电机11、与驱动电机11进行驱动连接的副搅拌机驱动轮10、与驱动轮10进行传动连接的副搅拌机传动轮9、与传动轮9连接的筒状搅拌体3所组成。副搅拌机传动轮9设有中心孔,主搅拌机1搅拌叶4轴从传动轮9的中心孔穿过。传动轮9的下面垫上一个支撑轴承。驱动轮10与传动轮9采用齿轮连接或摩擦连接。主搅拌机驱动电机12和副搅拌机驱动电机11通过支架固定在搅拌室5的顶盖上。主搅拌机1的转速为1000-2000转/分,副搅拌机2的转速为100-200转/分,主搅拌机1的搅拌叶4的最大直径为搅拌室5边长的0.28-0.33,副搅拌机2的筒状搅拌体3的直径为搅拌室5边长的0.65-0.75。筒状搅拌体3的筒壁上均匀分布有直径为5-10mm圆形小孔。每平方厘米设1个。搅拌叶4套设在筒状搅拌体3内。澄清室内交错设置有两块条板状稳流栏栅8,左边第一块稳流栏栅的位置距澄清室7过渡槽6流入口端的距离为澄清室7长度的1/4,右边第二块稳流栏栅为澄清室7长度的位置距澄清室7过渡槽6流入口端的距离为澄清室7长度的1/2。稳流栏栅8为常规栏栅。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明已投入工业化生产应用,锂的回收率在99%以上,制备的碳酸锂产品达到电池级碳酸锂标准要求。

Claims (11)

  1. 从P507萃余液中提取制备电池级碳酸锂的方法,包括以下步骤:调杂、萃取、纯化、反萃取、碱化、结晶、分离、烘干,其特征在于:
    所述调杂:先将P507萃余液用氢氧化锂或碱调节PH值到8.5-10.5,过滤,留滤液备用;
    所述萃取:用皂化后的P507与上调杂过滤后的液体进行混合,混合后静置分相,P507有机相留用,水相检测锂离子浓度,小于1mg/L即可送入废水处理;
    所述纯化:取萃取后有机相用0.1-0.25mol/L硫酸锂溶液进行纯化洗涤,洗涤后静置分相,P507有机相留用,水相并入萃取;
    所述反萃取:取纯化洗涤后的P507有机相采用稀硫酸进行反萃取,两相分离后得到空白有机和硫酸锂溶液;
    所述碱化:取锂溶液升温至85-95℃,加入氢氧化锂或碱调节PH值至9.0-13.0,保温85-95℃静置2-8小时后过滤,滤液备用;
    所述结晶:碱化后滤液通入压缩空气,压缩空气压力0.2-0.8MPa,压缩空气气流量8-30m3/h,同时进行蒸发浓缩,当浓缩液中有微细结晶,放料冷却。
  2. 根据权利要求1所述的从P507萃余液中提取制备电池级碳酸锂的方法,其特征在于:所述调杂:先将P507萃余液用氢氧化锂或碱调节PH值到9-10,过滤,留滤液备用。
  3. 根据权利要求1所述的从P507萃余液中提取制备电池级碳酸锂的方法,其特征在于:在纯化步骤中,取萃取后有机相用0.15-0.20mol/L硫酸锂溶液进行纯化洗涤。
  4. 根据权利要求1所述的从P507萃余液中提取制备电池级碳酸锂的方法,其特征在于:所述反萃取:取纯化洗涤后的P507有机相采用稀液碱进行反萃取,两相分离后得到空白有机和氢氧化锂溶液。
  5. 根据权利要求1所述的从P507萃余液中提取制备电池级碳酸锂的方法,其特征在于:所述碱化:取锂溶液升温至90℃,加入氢氧化锂或碱调节PH值至10.0-12.0,保温90℃静置4-6小时后过滤,滤液备用。
  6. 根据权利要求1所述的从P507萃余液中提取制备电池级碳酸锂的方法,其特征在于:在结晶步骤中,压缩空气压力0.4-0.6MPa,压缩空气气流量10-20m 3/h。
  7. 从P507萃余液中提取制备电池级碳酸锂的萃取装置,设有搅拌室,搅拌室通过过渡槽相连有澄清室,在搅拌室内设有搅拌机,其特征在于:搅拌室为正方体,澄清室为长方体,澄清室长宽比为4-5:1,搅拌室与澄清室的体积比为1:4.5-5.5,所述搅拌机由主搅拌机和副搅拌机所组成,主搅拌机设有双层十字形搅拌叶,副搅拌机设有筒状搅拌体,所述筒状搅拌体的筒壁上均匀分布有直径为5-10mm圆形小孔,搅拌叶套设在筒状搅拌体内。
  8. 根据权利要求7所述的从P507萃余液中提取制备电池级碳酸锂的萃取装置,其特征在于:所述主搅拌机的转速为1000-2000转/分,副搅拌机的转速为100-200转/分。
  9. 根据权利要求7所述的从P507萃余液中提取制备电池级碳酸锂的萃取装置,其特征在于:所述主搅拌机的搅拌叶的直径为搅拌室边长的0.28-0.33,副搅拌的筒状搅拌体3直径为搅拌室边长的0.65-0.75。
  10. 根据权利要求7所述的从P507萃余液中提取制备电池级碳酸锂的萃取装置,其特征在于:所述澄清室内设置有两块条板状稳流栏栅,第一块稳流栏栅的位置距澄清室过渡槽流入口端的距离为澄清室长度的1/4,第二块稳流栏栅为澄清室长度的位置距澄清室过渡槽流入口端的距离为澄清室长度的1/2。
  11. 根据权利要求1-10所述的从P507萃余液中提取制备电池级碳酸锂的方法及萃取装置所制备的电池级碳酸锂。
     
PCT/CN2022/087892 2021-04-25 2022-04-20 从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置 WO2022228233A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2024502242A JP2024514986A (ja) 2021-04-25 2022-04-20 P507ラフィネートからの電池用炭酸リチウムの抽出方法及び抽出装置
KR1020237033088A KR20230165230A (ko) 2021-04-25 2022-04-20 P507 라피네이트로부터 배터리급 탄산 리튬을 추출하여 제조하는 방법 및 추출 장치
US18/476,064 US20240018623A1 (en) 2021-04-25 2023-09-27 Method and extraction device for extracting and preparing battery-grade lithium carbonate from p507 raffinate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110446038.1 2021-04-25
CN202110446038.1A CN113003589B (zh) 2021-04-25 2021-04-25 从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/476,064 Continuation US20240018623A1 (en) 2021-04-25 2023-09-27 Method and extraction device for extracting and preparing battery-grade lithium carbonate from p507 raffinate

Publications (1)

Publication Number Publication Date
WO2022228233A1 true WO2022228233A1 (zh) 2022-11-03

Family

ID=76389248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087892 WO2022228233A1 (zh) 2021-04-25 2022-04-20 从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置

Country Status (5)

Country Link
US (1) US20240018623A1 (zh)
JP (1) JP2024514986A (zh)
KR (1) KR20230165230A (zh)
CN (1) CN113003589B (zh)
WO (1) WO2022228233A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115947354A (zh) * 2022-12-30 2023-04-11 神华准能资源综合开发有限公司 从粉煤灰生产氧化铝的含锂废水中制备电池级碳酸锂的方法
CN116409769A (zh) * 2023-04-20 2023-07-11 中南大学 一种利用粗磷酸锂制备电池级磷酸铁和碳酸锂的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113003589B (zh) * 2021-04-25 2023-04-25 湖南金源新材料股份有限公司 从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置
CN114956420B (zh) * 2022-05-13 2024-02-02 湖南金源新材料循环利用有限公司 一种含钠锂冶金废水综合回收工艺
CN114956425B (zh) * 2022-05-31 2024-07-02 昆山三一环保科技有限公司 废旧锂电池回收废水的处理系统及其处理方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201704381U (zh) * 2010-05-26 2011-01-12 江苏凯力克钴业股份有限公司 萃取箱
CN202131345U (zh) * 2011-06-09 2012-02-01 东华大学 一种从电路板浸取液中萃取铜的萃取槽
CN202387248U (zh) * 2011-06-07 2012-08-22 山东梁山拓金再生资源有限公司 一种工业化应用的新型箱式萃取槽
CN107058742A (zh) * 2017-04-01 2017-08-18 司马忠志 一种从废旧锂离子电池回收锂的方法
CN108408745A (zh) * 2018-04-02 2018-08-17 方嘉城 一种废旧锂电池制备电池级碳酸锂的方法
CN207793370U (zh) * 2017-12-27 2018-08-31 青海柴达木兴华锂盐有限公司 一种用于箱式萃取法从盐湖卤水提锂的萃取槽强化混合室
CN108517422A (zh) * 2018-04-04 2018-09-11 长沙矿冶研究院有限责任公司 一种从含锂多金属混合溶液中高效回收锂的方法
CN109576499A (zh) * 2019-01-30 2019-04-05 广东省稀有金属研究所 一种从电池电极材料浸出液中回收锂的方法
CN110066925A (zh) * 2019-04-28 2019-07-30 浙江天能新材料有限公司 一种废旧镍钴锰三元锂电池中有价金属的回收方法
CN209798035U (zh) * 2018-12-24 2019-12-17 格林美(江苏)钴业股份有限公司 一种用于回收电积钴工艺中洗渣液的萃取装置
CN110616331A (zh) * 2019-10-16 2019-12-27 衢州华友资源再生科技有限公司 一种动力锂离子电池全金属回收循环利用的方法
CN111057848A (zh) * 2018-10-16 2020-04-24 中国科学院过程工程研究所 一种溶剂萃取从含锂溶液中提取锂的方法
CN111099641A (zh) * 2020-01-15 2020-05-05 孟元 一种萃取锂离子用于制备高纯度碳酸锂的方法
CN111519031A (zh) * 2020-04-29 2020-08-11 江苏北矿金属循环利用科技有限公司 一种从废旧动力锂离子电池黑粉中回收镍钴锰锂的方法
CN113003589A (zh) * 2021-04-25 2021-06-22 湖南金源新材料股份有限公司 从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置
CN214653684U (zh) * 2021-04-25 2021-11-09 湖南金源新材料股份有限公司 从p507萃余液中提取制备电池级碳酸锂的萃取装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048507A (en) * 1997-12-09 2000-04-11 Limtech Process for the purification of lithium carbonate
CN202849512U (zh) * 2012-10-19 2013-04-03 杭州中环化工设备有限公司 串联萃取箱

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201704381U (zh) * 2010-05-26 2011-01-12 江苏凯力克钴业股份有限公司 萃取箱
CN202387248U (zh) * 2011-06-07 2012-08-22 山东梁山拓金再生资源有限公司 一种工业化应用的新型箱式萃取槽
CN202131345U (zh) * 2011-06-09 2012-02-01 东华大学 一种从电路板浸取液中萃取铜的萃取槽
CN107058742A (zh) * 2017-04-01 2017-08-18 司马忠志 一种从废旧锂离子电池回收锂的方法
CN207793370U (zh) * 2017-12-27 2018-08-31 青海柴达木兴华锂盐有限公司 一种用于箱式萃取法从盐湖卤水提锂的萃取槽强化混合室
CN108408745A (zh) * 2018-04-02 2018-08-17 方嘉城 一种废旧锂电池制备电池级碳酸锂的方法
CN108517422A (zh) * 2018-04-04 2018-09-11 长沙矿冶研究院有限责任公司 一种从含锂多金属混合溶液中高效回收锂的方法
CN111057848A (zh) * 2018-10-16 2020-04-24 中国科学院过程工程研究所 一种溶剂萃取从含锂溶液中提取锂的方法
CN209798035U (zh) * 2018-12-24 2019-12-17 格林美(江苏)钴业股份有限公司 一种用于回收电积钴工艺中洗渣液的萃取装置
CN109576499A (zh) * 2019-01-30 2019-04-05 广东省稀有金属研究所 一种从电池电极材料浸出液中回收锂的方法
CN110066925A (zh) * 2019-04-28 2019-07-30 浙江天能新材料有限公司 一种废旧镍钴锰三元锂电池中有价金属的回收方法
CN110616331A (zh) * 2019-10-16 2019-12-27 衢州华友资源再生科技有限公司 一种动力锂离子电池全金属回收循环利用的方法
CN111099641A (zh) * 2020-01-15 2020-05-05 孟元 一种萃取锂离子用于制备高纯度碳酸锂的方法
CN111519031A (zh) * 2020-04-29 2020-08-11 江苏北矿金属循环利用科技有限公司 一种从废旧动力锂离子电池黑粉中回收镍钴锰锂的方法
CN113003589A (zh) * 2021-04-25 2021-06-22 湖南金源新材料股份有限公司 从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置
CN214653684U (zh) * 2021-04-25 2021-11-09 湖南金源新材料股份有限公司 从p507萃余液中提取制备电池级碳酸锂的萃取装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIROLAINEN SAMI; FALLAH FINI MOJTABA; LAITINEN ANTERO; SAINIO TUOMO: "Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co", SEPARATION AND PURIFICATION TECHNOLOGY, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 179, 1 January 1900 (1900-01-01), NL , pages 274 - 282, XP029942388, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2017.02.010 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115947354A (zh) * 2022-12-30 2023-04-11 神华准能资源综合开发有限公司 从粉煤灰生产氧化铝的含锂废水中制备电池级碳酸锂的方法
CN116409769A (zh) * 2023-04-20 2023-07-11 中南大学 一种利用粗磷酸锂制备电池级磷酸铁和碳酸锂的方法

Also Published As

Publication number Publication date
CN113003589A (zh) 2021-06-22
KR20230165230A (ko) 2023-12-05
JP2024514986A (ja) 2024-04-03
US20240018623A1 (en) 2024-01-18
CN113003589B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2022228233A1 (zh) 从p507萃余液中提取制备电池级碳酸锂的方法及萃取装置
CN102659144B (zh) 高纯级单水氢氧化锂的制备方法
WO2012083678A1 (zh) 高纯碳酸锂的制备方法
CN105668592B (zh) 低钠高纯度氯化钾的生产方法
CN108821255B (zh) 一种磷酸铁的制备方法
US11970405B2 (en) Method for producing lithium carbonate
KR102085016B1 (ko) 황산 이온 불순물을 제거하는 탄산리튬의 정제 방법
CN111620354A (zh) 一种用碳酸锂和石灰乳生产氢氧化锂的工艺
CN113929148B (zh) 一种铼粉还原用的超细高纯铼酸铵的制备方法
CN108358221A (zh) 一种用硫酸镁亚型盐湖卤水制取氯化锂的工艺
CN107963669B (zh) 一种工业级硫酸锰的除钙方法
CN110550646A (zh) 一种硫酸铯和硫酸铷的制备方法
JP2021531225A (ja) リチウム鉱石から炭酸リチウムを調製するための方法およびシステム
CN114774702B (zh) 从低含锂量的电池废料中回收锂的方法
CN114959302B (zh) 采用红土镍矿制备硫酸镍/钴的方法
CN102633293A (zh) 一种多级循环免蒸发硫酸铜精制方法
CN115849411A (zh) 一种氢氧化锂连续化生产工艺
CN111039448B (zh) 臭氧去除酸性溶液中锰杂质的方法
CN116964247A (zh) 直接生产氢氧化锂的系统和方法
CN114774715B (zh) 从锂溶液中分离锂与三元金属离子m的方法
CN114774714B (zh) 从锂溶液中分离锂与三元金属离子m的装置
CN115215357B (zh) 一种由粗品硫酸锂制备电池级单水氢氧化锂的方法
CN115893456B (zh) 一种锂云母提锂浓缩硫酸钠钾溶液闪蒸结晶的方法
CN111606337B (zh) 一种单分散碳酸锂晶体的结晶方法及采用多级梯度结晶提高产品收率的方法
CN118221140A (zh) 从含锂溶液中提取碳酸锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024502242

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794704

Country of ref document: EP

Kind code of ref document: A1