WO2022227349A1 - 电子级氢氟酸的生产工艺及生产用装置 - Google Patents
电子级氢氟酸的生产工艺及生产用装置 Download PDFInfo
- Publication number
- WO2022227349A1 WO2022227349A1 PCT/CN2021/114039 CN2021114039W WO2022227349A1 WO 2022227349 A1 WO2022227349 A1 WO 2022227349A1 CN 2021114039 W CN2021114039 W CN 2021114039W WO 2022227349 A1 WO2022227349 A1 WO 2022227349A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrofluoric acid
- falling film
- film evaporation
- evaporation device
- pipeline
- Prior art date
Links
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 title claims abstract description 255
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000008569 process Effects 0.000 title claims abstract description 15
- 238000001704 evaporation Methods 0.000 claims abstract description 161
- 230000008020 evaporation Effects 0.000 claims abstract description 158
- 239000011552 falling film Substances 0.000 claims abstract description 112
- 230000001590 oxidative effect Effects 0.000 claims abstract description 78
- 239000007800 oxidant agent Substances 0.000 claims abstract description 77
- 238000003860 storage Methods 0.000 claims abstract description 56
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 43
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000009833 condensation Methods 0.000 claims abstract description 40
- 230000005494 condensation Effects 0.000 claims abstract description 40
- 239000007788 liquid Substances 0.000 claims abstract description 32
- 238000010992 reflux Methods 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 238000002156 mixing Methods 0.000 claims description 30
- 239000007789 gas Substances 0.000 claims description 25
- 239000012535 impurity Substances 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 239000003595 mist Substances 0.000 claims description 15
- 238000009835 boiling Methods 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 10
- 239000002912 waste gas Substances 0.000 claims description 10
- 239000010408 film Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 2
- 238000004064 recycling Methods 0.000 claims description 2
- 210000003437 trachea Anatomy 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 abstract description 11
- 238000005260 corrosion Methods 0.000 abstract description 5
- 230000007797 corrosion Effects 0.000 abstract description 5
- 230000035484 reaction time Effects 0.000 abstract description 3
- 238000000746 purification Methods 0.000 abstract description 2
- 238000005299 abrasion Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 57
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012286 potassium permanganate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/19—Fluorine; Hydrogen fluoride
- C01B7/191—Hydrogen fluoride
- C01B7/195—Separation; Purification
- C01B7/196—Separation; Purification by distillation
Definitions
- the invention relates to a production process and production device of hydrofluoric acid, in particular to a production process and production device of electronic grade hydrofluoric acid, belonging to the technical field of electronic grade chemical production process and equipment.
- Electronic grade hydrofluoric acid also known as ultrapure hydrofluoric acid
- ultrapure hydrofluoric acid is one of the key basic chemical materials in the manufacturing process of large-scale integrated circuits. It is used in many processes such as cleaning, lithography, etching and degumming. Purity and cleanliness have a very important impact on the yield, electrical properties and reliability of integrated circuits.
- the purity of industrial grade anhydrous hydrofluoric acid is as high as 99.95% or higher, but it contains anionic and cationic impurities formed by silicon, phosphorus, nitrogen, chlorine, sulfur, arsenic, boron and metal elements.
- Electronic-grade hydrofluoric acid used in the electronic industry such as integrated circuit preparation has high requirements on the content of the above impurities, and its content is required to be at the level of 10-9 (ppb), especially the content of arsenic impurities contained in it is more demanding. Harsh, usually requiring its content to be less than 10ppb.
- arsenic exists in different valence states, and each valence state exists in different components, and the boiling points of different components are different.
- an oxidizing agent usually used to oxidize arsenic to form a volatile arsenic-containing gas substance and discharge, and then rectify and purify. to prepare electronic grade hydrofluoric acid.
- the oxidant solution (usually potassium permanganate solution) used in the process is usually added directly in the industrial grade anhydrous hydrofluoric acid storage tank, and the circulating solution installed on the storage tank is utilized.
- the device realizes the large circulation mixing of the industrial grade anhydrous hydrofluoric acid and the oxidant solution in the tank, and carries out the oxidation reaction at room temperature and pressure for 4-5 hours while the large circulation mixing is carried out.
- the arsenic-containing waste gas in the state can be directly discharged from the top of the storage tank, while the excess oxidant solution and other impurities are left in the storage tank with the treated industrial grade anhydrous hydrofluoric acid.
- the shortcoming of the above-mentioned prior art device and treatment method for oxidative removal of impurities is: after the oxidant solution is added in the storage tank, it needs to be fully mixed through the large-scale cyclic reaction of the liquid in the storage tank, and its mixing and reaction time are longer, generally requiring about 4 -5h, time-consuming and energy-consuming; in addition, because the oxidant solution generally uses water as the solvent, especially the commonly used potassium permanganate solution, when the oxidant aqueous solution is added to the storage tank, the anhydrous hydrofluoric acid will be affected by moisture. Aqueous hydrofluoric acid is formed, which can easily corrode the inner wall of the steel storage tank. Usually, the storage tank needs to be scrapped and replaced after 4-5 years of use. However, the replacement of the storage tank is inconvenient and economical. Also larger.
- the liquid that has finished the reaction is usually passed into a conventional evaporating kettle for evaporation, and the evaporated hydrogen fluoride gas is condensed by the condenser, and then subjected to secondary evaporation and condensed to form a finished product.
- evaporation and condensation can be carried out by means of multi-stage evaporation and condensation.
- the evaporation temperature adopted when evaporating is generally superheated evaporation that is, the evaporation temperature is usually higher than the boiling temperature of hydrogen fluoride in the hydrofluoric acid, which is usually in the prior art.
- An evaporation temperature of 50-60° C. is used, even the temperature of water vapor is used for this evaporation temperature.
- the content of droplets in the hydrogen fluoride vapor evaporated at such a high temperature is relatively high, so multiple demisters are required at the top of the condenser or a longer demister can be used to remove all droplets, resulting in a large footprint of the equipment.
- the higher evaporation temperature leads to higher operating temperature of evaporation, higher energy consumption, and lower safety of the production process.
- the present invention provides a production process and a production device for electronic grade hydrofluoric acid.
- the production process and production device can realize low-temperature removal of arsenic impurities and low-temperature evaporation, and avoid the formation of arsenic impurities after adding an oxidant solution.
- the corrosion of the storage tank by the aqueous hydrofluoric acid can ensure the safety of operation while obtaining high-purity hydrofluoric acid and ensuring the output and efficiency.
- the invention discloses a production process of electronic grade hydrofluoric acid.
- the production process mainly comprises the following steps:
- step S1 the industrial grade anhydrous hydrofluoric acid stored in the industrial grade anhydrous hydrofluoric acid storage tank is quantitatively transported to the mixing pipeline located at the front end of the first falling film evaporation device, while the oxidant solution storage tank is stored in the oxidant solution storage tank.
- the oxidant solution is synchronously and quantitatively transported into the mixing pipeline, and the industrial grade anhydrous hydrofluoric acid and the oxidant solution are mixed in the mixing pipeline and then enter the first falling film evaporation device;
- Step S2 the industrial grade anhydrous hydrofluoric acid and the oxidant solution in the first falling film evaporation device are subjected to falling film evaporation reaction at normal temperature and pressure, wherein the arsenic impurities in the industrial grade anhydrous hydrofluoric acid and the oxidant in the oxidant solution are
- the reaction is carried out to form volatile gas, and the volatile gas is discharged from the top of the first falling film evaporation device to remove arsenic impurities; after the residual material after the reaction flows out from the heat exchange tube of the first falling film evaporation device, it is discharged from the first falling film evaporation device.
- the bottom of the film evaporation device is discharged and enters the second falling film evaporation device through the pipeline;
- Step S3 the liquid substance in the second falling film evaporation device is subjected to negative pressure evaporation at a temperature close to and lower than the boiling point of hydrofluoric acid, wherein the hydrofluoric acid vapor evaporated after the negative pressure evaporation is evaporated from the second falling film.
- the top of the evaporation device is discharged into the intake pipe of the condensing tower after passing through the mist eliminator; the high-boiling liquid containing excess oxidant solution after being evaporated by negative pressure is discharged from the bottom of the second falling film evaporation device for recovery of the oxidant solution and Recycling;
- step S4 the hydrofluoric acid vapor entering the condensing tower is condensed in the condensing tower to form electronic-grade hydrofluoric acid, and part of the electronic-grade hydrofluoric acid is returned to the air inlet pipe using the reflux assembly on the condensing tower, and Flush the hydrofluoric acid vapor introduced into the intake pipe, so that negative pressure is formed in the intake pipe and the heat exchange tube in the second falling film evaporation device connected to the intake pipe; the remaining part of the electronic grade hydrofluoric acid is The liquid discharge port is discharged to form an electronic grade hydrofluoric acid product; the tail gas formed during the condensation process is discharged from the top of the condensation tower for subsequent treatment.
- the molar amount of the oxidant in the oxidant solution is 1-1.5% excess to the molar amount of arsenic in the technical grade anhydrous hydrofluoric acid.
- the temperature of the water medium entering the water inlet in the first falling film evaporation device is 20-25°C, and the temperature of the water medium flowing out of the water outlet in the first falling film evaporation device is 18-23°C .
- the temperature of the water medium entering the water inlet in the second falling film evaporation device is 30-35°C, and the temperature of the water medium flowing out of the water outlet in the second falling film evaporation device is 23-28°C .
- the negative pressure in the heat exchange tube of the second falling film evaporation device is 0.08-0.09MPa.
- the invention also discloses an electronic-grade hydrofluoric acid production device based on the above-mentioned production process.
- the device includes a raw material storage tank, a quantitative feeding component, a first falling-film evaporation device, a second falling-film evaporation device and a condensation tower, wherein
- the discharge end of the raw material storage tank is communicated with the feed end of the first falling film evaporation device through the pipeline and the quantitative feeding component located on the pipeline, and the liquid discharge end of the first falling film evaporation device is connected with the pipeline through the pipeline.
- the feed end of the second falling film evaporation device is connected, and the gas discharge end of the first falling film evaporation device is communicated with the arsenic-containing waste gas collection device through a pipeline; the gas discharge end of the second falling film evaporation device passes through
- the pipeline is connected with the air inlet pipe on the condensation tower, and the liquid discharge end of the second falling film evaporation device is connected with the oxidant solution collection device through the pipeline; a reflux component is positioned at the bottom of the condensation tower, and the The end of the return assembly communicates with the intake pipe.
- the raw material storage tank includes an industrial grade anhydrous hydrofluoric acid storage tank and an oxidant solution storage tank.
- the oxidant solution storage tank is connected to the mixing pipeline through a pipeline, and the pipeline is provided with a first flow meter for measuring the flow rate of industrial grade anhydrous hydrofluoric acid; the oxidant solution storage tank is connected to the mixing pipeline through a pipeline.
- the mixing pipeline is connected, and the pipeline is provided with a second flow meter for measuring the flow rate of the oxidant solution.
- a mist eliminator is positioned and connected to the top of the gas discharge end of the second falling film evaporation device, and the top of the mist eliminator is communicated with the air inlet pipe of the condensation tower through a pipeline.
- the reflux component includes a circulating pump, the feed end of the circulating pump is communicated with the bottom of the condensation tower through a pipeline, and the discharge end of the circulating pump is communicated with the inlet end of the air inlet pipe through a pipeline.
- the air inlet pipe is positioned and arranged on the top of the condensation tower along the vertical direction, and the air inlet pipe is communicated with the interior of the condensation tower.
- the device and treatment process of the invention abandons the prior art method of directly adding an oxidant solution to an industrial grade anhydrous hydrofluoric acid storage tank, and using a circulation device installed on the storage tank to perform large-scale cyclic mixing and oxidation reaction.
- the advantages brought by this part of the technical solution of the present invention are:
- the present invention is provided with a flow meter on the discharge pipe of the technical grade anhydrous hydrofluoric acid storage tank and the oxidant solution storage tank, so that when the two are transported outward, quantitative transport is realized and mixed and then enters the first falling film evaporation device.
- the industrial grade anhydrous hydrofluoric acid and the oxidant solution can be accurately mixed in the mixing pipeline located at the front end of the first falling film evaporation device according to the amount participating in the reaction (or in the case of excessive oxidant), without the need for the prior art.
- the oxidation reaction of the arsenic in the industrial grade anhydrous hydrofluoric acid and the oxidant in the oxidant solution is carried out on the inner wall of the heat exchange tube of the first falling film evaporation device, and the huge ratio of the inner wall of the heat exchange tube is used.
- the surface area can make the oxidation reaction fully react in the environment of normal temperature and pressure during the process of the mixed liquid flowing from top to bottom, completely remove the arsenic in the industrial grade anhydrous hydrofluoric acid, and form the arsenic-containing waste gas and then discharge it, There will be no unclean removal of arsenic impurities, and the arsenic content can be kept below 0.3ppb.
- the device and treatment process of the present invention abandons the device in the prior art that uses a combination of a multi-stage conventional evaporation kettle and a condensing tower, and the treatment mode of high-temperature superheat evaporation and multiple evaporation and condensation.
- the present invention utilizes the second falling film evaporation device to perform negative pressure low-temperature evaporation of hydrofluoric acid, and feeds low-temperature hot water into the heating zone of the second falling film evaporation device, so that the second falling film evaporation device is close to and low in temperature. Negative pressure evaporation is carried out at the temperature of the boiling point of hydrofluoric acid, which can evaporate the hydrogen fluoride gas under the condition that the liquid does not boil. Control security to an optimal level;
- the gas discharge end of the second falling-film evaporation device is communicated with the air inlet pipe on the condensation tower, and at the same time, the reflux component on the condensing tower returns part of the electronic grade hydrofluoric acid product back into the air inlet pipe, and the reflux liquid is in the air inlet pipe.
- the downward flushing flow in the intake pipe can form a negative pressure slightly lower than normal pressure in the intake pipe and the heat exchange pipe of the second falling film evaporation device connected with the intake pipe, thereby reducing the evaporation temperature of hydrofluoric acid;
- the evaporation of hydrofluoric acid in the present invention is carried out at a lower evaporation temperature in the second falling film evaporation device, so the content of droplets in the evaporated steam is small, so only the second falling film evaporation is required.
- a single short-length mist eliminator can be installed on the gas discharge end of the device, which can greatly reduce the floor space of the equipment and reduce the loss of the mist eliminator.
- Fig. 1 is the structural representation of the device for producing electronic grade hydrofluoric acid in the present invention
- Quantitative feeding component 21. Mixing pipeline; 22. First flowmeter; 23. Second flowmeter;
- step S1 the industrial grade anhydrous hydrofluoric acid stored in the industrial grade anhydrous hydrofluoric acid storage tank is quantitatively transported to the mixing pipeline located at the front end of the first falling film evaporation device, while the oxidant solution storage tank is stored in the oxidant solution storage tank.
- the oxidant solution is simultaneously and quantitatively transported into the mixing pipeline, and the industrial grade anhydrous hydrofluoric acid and the oxidant solution are mixed in the mixing pipeline and then enter the first falling film evaporation device.
- the molar amount of the oxidant in the oxidant solution is 1-1.5% more than the molar amount of arsenic in the industrial grade anhydrous hydrofluoric acid, so as to ensure that the arsenic in the industrial grade anhydrous hydrofluoric acid is completely oxidized by the oxidant; generally, the preferred oxidant
- the molar excess of arsenic is 1.2%.
- Step S2 the industrial grade anhydrous hydrofluoric acid and the oxidant solution in the first falling film evaporation device are subjected to falling film evaporation reaction at normal temperature and pressure, wherein the arsenic impurities in the industrial grade anhydrous hydrofluoric acid and the oxidant in the oxidant solution are
- the reaction is carried out to form volatile gas, the volatile gas is discharged from the top of the first falling film evaporation device to remove arsenic impurities, and the discharged arsenic-containing waste gas is collected by the arsenic-containing waste gas collection device for centralized treatment; the remaining substances after the reaction (mainly excess oxidant, water, and industrial-grade hydrofluoric acid after removal of arsenic) after flowing out from the heat exchange tube of the first falling film evaporation device, and then discharged from the bottom of the first falling film evaporation device, and entering the first falling film evaporation device through the pipeline.
- the reaction mainly excess oxidant, water, and industrial-
- the temperature of the water medium entering the water inlet in the first falling-film evaporation device is 20-25°C
- the temperature of the water medium flowing out of the water outlet in the first falling-film evaporation device is 18-23°C
- the water at the water outlet is at a temperature of 18-23°C.
- the temperature of the medium is slightly lower than the temperature of the water medium entering the water inlet, and generally lower than 2-3 °C, which can ensure that the oxidation reaction is carried out at a lower normal temperature in the heating tube of the first falling film evaporation device.
- the normal temperature generally refers to 23-25 °C.
- step S3 the liquid substance in the second falling film evaporation device is subjected to negative pressure evaporation at a temperature close to and lower than the boiling point of hydrofluoric acid.
- the liquid material flows from top to bottom in the heat exchange tube of the second falling film evaporation device.
- low temperature evaporation is achieved under the action of the heat of the water medium outside the heat exchange tube, and at the same time, it flows back into the air inlet pipe of the condensation tower. Under the flushing of the liquid, a slight negative pressure is formed in the air inlet pipe and the heat exchange pipe of the second falling film evaporation device connected to it, so as to realize low temperature evaporation under negative pressure.
- the hydrofluoric acid vapor evaporated after the negative pressure evaporation is demisted from the top of the second falling film evaporation device by a mist eliminator, and then discharged into the air intake pipe of the condensation tower; after the negative pressure evaporation, it contains excess oxidant solution
- the high boiling point liquid is discharged from the bottom of the second falling film evaporation device, and the oxidant solution collection device is used to recover and recycle the oxidant solution.
- the temperature of the water medium entering the water inlet in the second falling film evaporation device is 30-35 °C
- the temperature of the water medium flowing out of the water outlet in the second falling film evaporation device is 23-28 °C, which can ensure the second falling film evaporation device.
- the evaporation temperature in the heat exchange tube of the falling film evaporation device is close to and lower than the boiling point of hydrofluoric acid, so that the hydrofluoric acid can be evaporated without spitting.
- the pressure of the micro-negative pressure formed in the heat exchange tube of the second falling film evaporation device is 0.08-0.09MPa.
- Step S4 the hydrofluoric acid vapor entering the condensing tower forms electronic-grade hydrofluoric acid (that is, ultrapure hydrofluoric acid) after condensing in the condensing tower, and the part in the electronic-grade hydrofluoric acid utilizes the reflux on the condensing tower.
- electronic-grade hydrofluoric acid that is, ultrapure hydrofluoric acid
- the component is returned to the intake pipe, and the hydrofluoric acid vapor introduced into the intake pipe is flushed, so that a negative pressure is formed in the intake pipe and the heat exchange pipe in the second falling film evaporation device connected with the intake pipe; the electronic stage The remaining part of the hydrofluoric acid is discharged from the liquid discharge port to form an electronic grade hydrofluoric acid product; the tail gas formed during the condensation process is discharged from the top of the condensation tower for subsequent treatment.
- the reflux ratio of electronic grade hydrofluoric acid is (4-5):1.
- the electronic-grade hydrofluoric acid product discharged from the condensation tower can also be filtered by using microporous membranes of various levels with pore sizes from large to small.
- the concentration of arsenic in the electronic grade hydrofluoric acid produced through the above production process is not higher than 0.3ppb.
- the following specific embodiments also describe in detail an electronic-grade hydrofluoric acid production device based on the above-mentioned production process.
- the device mainly includes a raw material storage tank 1, a quantitative feeding component 2, a first falling film evaporation device 3, a second Falling film evaporation device 4 and condensation tower 5.
- the discharge end of the raw material storage tank 1 is communicated with the feed end of the first falling film evaporation device 3 through a pipeline and a quantitative feeding component 2 located on the pipeline.
- the raw material storage tank 1 includes an industrial grade anhydrous hydrofluoric acid storage tank 11 and an oxidant solution storage tank 12 .
- the dosing assembly 2 includes a mixing pipe 21, a first flow meter 22, a second flow meter 23, and pipes for communicating the various components.
- the mixing pipe 21 is in fixed communication with the feed end of the first falling film evaporation device 3
- the industrial grade anhydrous hydrofluoric acid storage tank 11 is connected with the mixing pipe 21 through a pipe, and the pipe is provided with a device for measuring industrial grade anhydrous hydrogen.
- This design enables quantitative delivery and mixing before entering the first falling film evaporation device when the two are transported outward, so that the industrial grade anhydrous hydrofluoric acid and the oxidant solution can be reacted according to the amount participating in the reaction (or in the case of excessive oxidant) Precise proportion mixing in the mixing pipeline eliminates the need for full mixing in the hydrofluoric acid storage tank through a large cycle as in the prior art, which can greatly reduce the energy consumption caused by the cycle; After water hydrofluoric acid, anhydrous hydrofluoric acid is formed into hydrous hydrofluoric acid, thereby causing serious corrosion to the inner wall of the storage tank.
- the liquid discharge end of the first falling film evaporation device 3 is communicated with the feed end of the second falling film evaporation device 4 through a pipeline, and the gas discharge end of the first falling film evaporation device 3 is connected to the arsenic-containing waste gas collection device 7 through a pipeline. Connected.
- This design enables the arsenic-containing waste gas generated by the oxidation reaction in the first falling film evaporation device to enter the arsenic-containing waste gas collection device through the top discharge port for collection and centralized treatment, so that all the remaining liquid substances after the reaction flow into the second falling film. Evaporator for further processing.
- the huge specific surface area of the inner wall of the heat exchange tube can be used to The oxidation reaction is fully reacted in a normal temperature and normal pressure environment during the process of the mixed liquid flowing from top to bottom, so that it can completely remove the arsenic in the industrial grade anhydrous hydrofluoric acid in a short time to form arsenic-containing After the exhaust gas is discharged, there will be no unclean removal of arsenic impurities, which can make the arsenic content not higher than 0.3ppb.
- the gas discharge end of the second falling film evaporation device 4 is connected to the inlet pipe 51 on the condensation tower 5 through a pipeline, and the liquid discharge end of the second falling film evaporation device 4 is connected to the oxidant solution collection device 8 through a pipeline.
- a mist eliminator 6 is positioned and connected to the top of the gas discharge end of the second falling film evaporation device 4 , and the top of the mist eliminator is connected to the air inlet pipe 51 of the condensation tower 5 through a pipeline.
- the evaporated hydrofluoric acid vapor can be discharged from the top of the second falling film evaporation device through the mist eliminator to remove the liquid in the vapor, and then discharged into the air inlet pipe of the condensation tower, while containing excess oxidant solution with high boiling point
- the oxidant is collected by the oxidant solution collecting device and centrally processed to recover the oxidant.
- Pressure evaporation which can evaporate the hydrogen fluoride gas without spitting out the liquid.
- This treatment method can control the safety at the optimal level through a small liquid processing volume on the basis of ensuring the evaporation effect and output. Due to low temperature evaporation, the content of liquid droplets in the evaporated steam is small, so that the aforementioned mist eliminator only needs to be provided with a single short mist eliminator, which can greatly reduce the floor space of the equipment and reduce mist removal at the same time. loss of the device.
- the top of the condensation tower 5 is positioned with an intake pipe 51 arranged in a vertical direction, and the intake pipe 51 communicates with the interior of the condensation tower 5 .
- a reflux assembly 52 is positioned at the bottom of the condensing tower 5, and the end of the reflux assembly is communicated with the intake pipe 51.
- the reflux assembly 52 includes a circulating pump 521, and the feed end of the circulating pump is connected to the condensing tower 5 through a pipeline. The bottom of the circulating pump is communicated with the inlet end of the air inlet pipe 51 through a pipeline.
- part of the electronic-grade hydrofluoric acid products formed by condensation in the condensation tower can be returned to the intake pipe, and the reflux liquid can be flushed downward in the intake pipe, and can flow in the intake pipe and the second descending pipe connected to the intake pipe.
- a negative pressure slightly lower than normal pressure is formed in the heat exchange tube of the film evaporation device, which can reduce the evaporation temperature of hydrofluoric acid.
- the above-mentioned electronic-grade hydrofluoric acid production device based on the production process described in the present application has abandoned the method of installing a liquid circulation device on an industrial-grade hydrofluoric acid storage tank to carry out oxidation reaction in the prior art, and has abandoned the prior art.
- the conventional evaporation kettle and the condensing tower are used in multiple cascades for superheated evaporation and condensation.
- the quantitative feeding component is set on the conveying pipeline, combined with the double falling film evaporation device, and is connected in series with the condensing tower through the air inlet pipe on the condensing tower.
- the method of use can shorten the reaction time of arsenic and oxidant in hydrofluoric acid and avoid corrosion to the storage tank.
- the evaporation and purification of hydrofluoric acid can be carried out by means of low-temperature negative pressure evaporation, which reduces the number of demisters, length and loss, while increasing the safety of evaporation operations.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
本发明公开了一种电子级氢氟酸的生产工艺及生产用装置,属于电子级化学品生产工艺及设备技术领域。该生产用装置采用在输送管道上设置定量加料组件,并结合双降膜蒸发装置串联使用后,通过冷凝塔上的进气管与第二降膜蒸发装置串联使用的结构方式,采用在液体输送过程中按摩尔配比定量加料、在第一降膜蒸发装置内进行降膜蒸发氧化反应、在第二降膜蒸发装置内进行负压低温蒸发、在冷凝塔内进行冷凝回流的生产工艺,能够使氢氟酸中的砷与氧化剂的反应时长缩短并避免对储罐的腐蚀,同时能够采用负压低温蒸发的方式进行氢氟酸的蒸发纯化,降低了除雾器的数量、长度和损耗,同时增加了蒸发操作的安全性。
Description
本发明涉及一种氢氟酸的生产工艺及生产用装置,具体涉及一种电子级氢氟酸的生产工艺及生产用装置,属于电子级化学品生产工艺及设备技术领域。
电子级氢氟酸又称为超纯氢氟酸,是大规模集成电路制造过程中的关键性基础化工材料之一,在清洗、光刻、蚀刻和去胶等许多工序中都有使用,其纯度和洁净度对集成电路的成品率、电性能及可靠性都有着十分重要的影响。工业级无水氢氟酸的纯度高达99.95%或更高,但其中含有硅、磷、氮、氯、硫、砷、硼及金属元素等形成的阴、阳离子杂质。在集成电路制备等电子行业中应用的电子级氢氟酸对上述杂质含量的要求很高,要求其含量在10
-9级别(ppb),尤其是对其中所含有的砷杂质的含量要求更为苛刻,通常要求其含量低于10ppb。
砷作为一种非金属元素存在不同的价态,且各种价态均以不同的成分存在,不同成分的沸点又各有不同。现有技术中脱除工业级无水氢氟酸中的砷杂质时,通常是采用氧化剂(一般为高锰酸钾)将砷氧化形成能够挥发的含砷气体物质排出后,再通过精馏纯化来制备电子级氢氟酸。
上述现有技术在进行砷氧化除杂时,通常是直接在工业级无水氢氟酸储罐内添加制程所用的氧化剂溶液(一般为高锰酸钾溶液),利用安装在储罐上的循环装置实现罐体内工业级无水氢氟酸和氧化剂溶液的大循环混合,并在该大循环混合的同时在常温常压下进行4-5个小时的氧化反应,氧化反应后形成的呈可挥发状态的含砷废气能够直接从储罐的顶部排出,同时过量的氧化剂溶液及其他杂质随经过处理的工业级无水氢氟酸被留在储罐内。上述现有技术进行氧化除杂的装置和处理方式的缺点在于:氧化剂溶液加入储罐内后需要经过储罐内液体的大循环反应进行充分混合,其混合及反应时间较长,一般需要约4-5h,耗时且耗能;此外,由于氧化剂溶液一般均以水作为溶剂,尤其是常用的高锰酸钾溶液,当该氧化剂水溶液加入储罐内后,无水氢氟酸受水分影响会形成含 水氢氟酸,该含水氢氟酸极易对钢制储罐的内壁造成腐蚀,通常使用4-5年后就需要对该储罐进行报废更换,而储罐更换操作不便,同时经济成本也较大。
上述现有技术中完成氧化除杂反应后,通常是将反应结束的液体通入常规的蒸发釜进行蒸发,蒸发出来的氟化氢气体经冷凝器冷凝后,再进行二次蒸发并经冷凝后形成成品,其中蒸发和冷凝可以采用多级蒸发冷凝的方式进行。上述现有技术进行蒸发冷凝的装置和处理方式的缺点在于:进行蒸发时所采用的蒸发温度一般为过热蒸发,即蒸发温度通常高于氢氟酸中氟化氢的吐沸温度,现有技术中通常采用50-60℃的蒸发温度,甚至该蒸发温度采用水蒸汽的温度。这样高温蒸发出来的氟化氢蒸汽中液滴的含量较高,因此冷凝器顶部需要多个除雾器联用或使用较长的除雾器才能将所有液滴去除干净,从而导致设备的占地面积较大;同时较高的蒸发温度导致蒸发的操作温度较高,能耗高,同时导致生产过程的安全性较低。
发明内容
为解决上述技术问题,本发明提供了一种电子级氢氟酸的生产工艺及生产用装置,该生产工艺和生产用装置能够实现低温去除砷杂质和低温蒸发,避免了添加氧化剂溶液后形成的含水氢氟酸对储罐的腐蚀,同时能够在得到高纯氢氟酸并保证产量和效率的同时,保证操作的安全性。
本发明的技术方案是:
本发明公开了一种电子级氢氟酸的生产工艺,该生产工艺主要包括下述步骤:
步骤S1,将储存于工业级无水氢氟酸储罐内的工业级无水氢氟酸定量输送至位于第一降膜蒸发装置前端的混合管道内,同时将储存于氧化剂溶液储罐内的氧化剂溶液同步定量输送至所述混合管道内,所述工业级无水氢氟酸和所述氧化剂溶液在该混合管道内混合后进入第一降膜蒸发装置内;
步骤S2,第一降膜蒸发装置内的工业级无水氢氟酸和氧化剂溶液在常温常压下进行降膜蒸发反应,其中工业级无水氢氟酸中的砷杂质和氧化剂溶液中的氧化剂进行反应形成挥发性气体,该挥发性气体从第一降膜蒸发装置的顶部排 出以除去砷杂质;经反应后的剩余物质从第一降膜蒸发装置的换热管内流出后,从第一降膜蒸发装置的底部排出,并经管道进入第二降膜蒸发装置;
步骤S3,第二降膜蒸发装置内的液体物质在接近并低于氢氟酸沸点的温度下进行负压蒸发,其中经该负压蒸发后蒸发出的氢氟酸蒸汽从该第二降膜蒸发装置的顶部经除雾器后排出进入冷凝塔的进气管内;经负压蒸发后且含有过量氧化剂溶液的高沸点液体从该第二降膜蒸发装置的底部排出,进行氧化剂溶液的回收及循环利用;
步骤S4,进入冷凝塔内的氢氟酸蒸汽在该冷凝塔内进行冷凝后形成电子级氢氟酸,该电子级氢氟酸中的部分利用冷凝塔上的回流组件回流至进气管内,并对通入进气管内的氢氟酸蒸汽进行冲洗,从而使进气管及与进气管连通的第二降膜蒸发装置内的换热管内形成负压;该电子级氢氟酸中的剩余部分从排液口排出形成电子级氢氟酸产品;冷凝过程中形成的尾气从冷凝塔的顶部排出后进行后续处理。
其进一步的技术方案是:
所述步骤S1中,所述氧化剂溶液中氧化剂的摩尔量相对工业级无水氢氟酸中的砷的摩尔量过量1-1.5%。
其进一步的技术方案是:
所述步骤S2中,所述第一降膜蒸发装置中进入进水口内的水介质温度为20-25℃,且该第一降膜蒸发装置中流出出水口的水介质温度为18-23℃。
其进一步的技术方案是:
所述步骤S3中,所述第二降膜蒸发装置中进入进水口内的水介质温度为30-35℃,且该第二降膜蒸发装置中流出出水口的水介质温度为23-28℃。
其进一步的技术方案是:
所述步骤S3中,所述第二降膜蒸发装置的换热管内的负压为0.08-0.09MPa。
本发明还公开了一种基于上述生产工艺的电子级氢氟酸生产用装置,该装置包括原料储罐、定量加料组件、第一降膜蒸发装置、第二降膜蒸发装置和冷 凝塔,其中
所述原料储罐的出料端通过管道及位于管道上的所述定量加料组件与第一降膜蒸发装置的进料端连通,所述第一降膜蒸发装置的液体出料端通过管道与第二降膜蒸发装置的进料端连通,且所述第一降膜蒸发装置的气体出料端通过管道与含砷废气收集装置连通;所述第二降膜蒸发装置的气体出料端通过管道与所述冷凝塔上的进气管连通,且所述第二降膜蒸发装置的液体出料端通过管道与氧化剂溶液收集装置连通;所述冷凝塔的底部定位装设有一回流组件,且该回流组件的末端与所述进气管连通。
其进一步的技术方案是:
所述原料储罐包括工业级无水氢氟酸储罐和氧化剂溶液储罐,所述定量加料组件包括与所述第一降膜蒸发装置的进料端固定连通的一混合管道,所述工业级无水氢氟酸储罐通过管道与所述混合管道连通,且该管道上设有用于计量工业级无水氢氟酸流量的第一流量计;所述氧化剂溶液储罐通过管道与所述混合管道连通,且该管道上设有用于计量氧化剂溶液流量的第二流量计。
其进一步的技术方案是:
所述第二降膜蒸发装置的气体出料端的顶部定位连接设有一除雾器,该除雾器的顶端通过管道与所述冷凝塔的进气管连通。
其进一步的技术方案是:
所述回流组件包括一循环泵,该循环泵的进料端通过管道与所述冷凝塔的底部连通,该循环泵的出料端通过管道与所述进气管的进口端连通。
其进一步的技术方案是:
所述进气管沿竖直方向定位设置于所述冷凝塔的顶部,且该进气管与所述冷凝塔的内部连通。
本发明的有益技术效果是:
本发明所述装置和处理工艺摒弃了现有技术向工业级无水氢氟酸储罐中直接添加氧化剂溶液,并利用储罐上安装的循环装置进行大循环混合及氧化反应的方式。本发明该部分技术方案带来的优势在于:
1、本发明在工业级无水氢氟酸储罐和氧化剂溶液储罐的出料管上设置流量 计,使二者向外输送时实现定量输送并混合后再进入第一降膜蒸发装置。这样工业级无水氢氟酸和氧化剂溶液能够按照参与反应的量(或氧化剂过量的情况)在位于第一降膜蒸发装置前端的混合管道内进行精准配比混合,就不需要如现有技术一样在氢氟酸储罐内通过大循环进行充分混合,能够大大减少因循环引起的能耗;同时还能避免氧化剂溶液加入无水氢氟酸后,使无水氢氟酸形成含水氢氟酸,从而对储罐内壁造成严重的腐蚀,避免在使用一段时间后进行储罐的更换,而在实际生产中仅需对第一、二降膜蒸发装置的换热内管进行更换即可,能够大大降低储罐更换的经济成本;
2、本发明中工业级无水氢氟酸中的砷和氧化剂溶液中的氧化剂进行的氧化反应是在第一降膜蒸发装置的换热管内壁上进行的,利用换热管内壁巨大的比表面积,能够使该氧化反应在混合液体自上向下流动的过程中于常温常压环境下进行充分的反应,将工业级无水氢氟酸中的砷完全除去后形成含砷废气后排出,不会出现砷杂质去除不净的情况,能够使砷含量不高于0.3ppb。
此外,本发明所述装置和处理工艺摒弃了现有技术中采用多级常规蒸发釜和冷凝塔联用的装置,及采用高温过热蒸发和多次蒸发冷凝的处理方式。
1、本发明利用第二降膜蒸发装置进行氢氟酸的负压低温蒸发,向该第二降膜蒸发装置的加热区内通入低温热水,使第二降膜蒸发装置在接近并低于氢氟酸沸点的温度下进行负压蒸发,能够在保证液体不吐沸的情况下将氟化氢气体蒸发出来,该处理方式在保证蒸发效果和产量的基础上,通过较小的液体处理量,将安全性控制在最优水平;
2、本发明将第二降膜蒸发装置的气体出料端与冷凝塔上的进气管连通,同时冷凝塔上的回流组件将部分电子级氢氟酸成品回流至进气管内,该回流液体在进气管内向下冲洗流动,能够在进气管以及与进气管连通的第二降膜蒸发装置的换热管内形成略低于常压的负压,从而能够降低氢氟酸的蒸发温度;
3、本发明中氢氟酸的蒸发是在第二降膜蒸发装置内以较低的蒸发温度进行的,因此蒸发出来的蒸汽中液滴的含量较小,这样仅需要在第二降膜蒸发装置的气体出料端上设置单个长度较短的除雾器即可,能够大大降低设备的占地面积,同时能够降低除雾器的损耗。
图1是本发明中电子级氢氟酸生产用装置的结构示意图;
其中:
1、原料储罐;11、工业级无水氢氟酸储罐;12、氧化剂溶液储罐;
2、定量加料组件;21、混合管道;22、第一流量计;23、第二流量计;
3、第一降膜蒸发装置;
4、第二降膜蒸发装置;
5、冷凝塔;51、进气管;52、回流组件;521、循环泵;
6、除雾器;
7、含砷废气收集装置;
8、氧化剂溶液收集装置。
为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
下述具体实施例详细记载了一种电子级氢氟酸的生产工艺,该生产工艺主要包括下述步骤:
步骤S1,将储存于工业级无水氢氟酸储罐内的工业级无水氢氟酸定量输送至位于第一降膜蒸发装置前端的混合管道内,同时将储存于氧化剂溶液储罐内的氧化剂溶液同步定量输送至所述混合管道内,工业级无水氢氟酸和氧化剂溶液在该混合管道内混合后进入第一降膜蒸发装置内。其中,氧化剂溶液中氧化剂的摩尔量相对工业级无水氢氟酸中的砷的摩尔量过量1-1.5%,这样能够保证工业级无水氢氟酸中的砷完全被氧化剂氧化;通常优选氧化剂的摩尔量过量于砷摩尔量的1.2%。
步骤S2,第一降膜蒸发装置内的工业级无水氢氟酸和氧化剂溶液在常温常压下进行降膜蒸发反应,其中工业级无水氢氟酸中的砷杂质和氧化剂溶液中的氧化剂进行反应形成挥发性气体,该挥发性气体从第一降膜蒸发装置的顶部排 出以除去砷杂质,该排出的含砷废气通过含砷废气收集装置收集后进行集中处理;经反应后的剩余物质(主要为过量的氧化剂、水、除砷后的工业级氢氟酸)从第一降膜蒸发装置的换热管内流出后,接着从第一降膜蒸发装置的底部排出,并经管道进入第二降膜蒸发装置。其中,第一降膜蒸发装置中进入进水口内的水介质温度为20-25℃,且该第一降膜蒸发装置中流出出水口的水介质温度为18-23℃,同时出水口的水介质温度略低于进入进水口的水介质温度,且一般低于2-3℃,这样能够保证第一降膜蒸发装置的加热管内以较低的常温进行氧化反应,该常温一般指23-25℃。
步骤S3,第二降膜蒸发装置内的液体物质在接近并低于氢氟酸沸点的温度下进行负压蒸发。在进行蒸发时,液体物质从第二降膜蒸发装置的换热管内自上向下流动,流动过程中在换热管外部水介质热量的作用下实现低温蒸发,同时在冷凝塔进气管内回流液体的冲刷下,在进气管和与之相连的第二降膜蒸发装置的换热管内形成微负压,实现负压低温蒸发。其中经该负压蒸发后蒸发出的氢氟酸蒸汽从该第二降膜蒸发装置的顶部经除雾器除雾,然后排出进入冷凝塔的进气管内;经负压蒸发后含有过量氧化剂溶液的高沸点液体从该第二降膜蒸发装置的底部排出,利用氧化剂溶液收集装置进行氧化剂溶液的回收及循环利用。其中,第二降膜蒸发装置中进入进水口内的水介质温度为30-35℃,且该第二降膜蒸发装置中流出出水口的水介质温度为23-28℃,这样能够保证第二降膜蒸发装置的换热管内的蒸发温度接近并低于氢氟酸沸点,能够使氢氟酸在不吐沸的情况下实现蒸发。该步骤中,第二降膜蒸发装置的换热管内形成的微负压的压力为0.08-0.09MPa。
步骤S4,进入冷凝塔内的氢氟酸蒸汽在该冷凝塔内进行冷凝后形成电子级氢氟酸(即超纯氢氟酸),该电子级氢氟酸中的部分利用冷凝塔上的回流组件回流至进气管内,并对通入进气管内的氢氟酸蒸汽进行冲洗,从而使进气管及与进气管连通的第二降膜蒸发装置内的换热管内形成负压;该电子级氢氟酸中的剩余部分从排液口排出形成电子级氢氟酸产品;冷凝过程中形成的尾气从冷凝塔的顶部排出后进行后续处理。其中电子级氢氟酸的回流比为(4-5):1。
此外,还可以将从该冷凝塔中排出的电子级氢氟酸产品采用孔径自大变小 的各级微孔滤膜进行过滤。
经由上述生产工艺生产所得的电子级氢氟酸中砷的浓度不高于0.3ppb。
下述具体实施例中还详细记载了一种基于上述生产工艺的电子级氢氟酸生产用装置,该装置主要包括原料储罐1、定量加料组件2、第一降膜蒸发装置3、第二降膜蒸发装置4和冷凝塔5。
原料储罐1的出料端通过管道及位于管道上的定量加料组件2与第一降膜蒸发装置3的进料端连通。具体的,原料储罐1包括工业级无水氢氟酸储罐11和氧化剂溶液储罐12。定量加料组件2包括混合管道21、第一流量计22、第二流量计23和用于连通各部件的管道。其中混合管道21与第一降膜蒸发装置3的进料端固定连通,工业级无水氢氟酸储罐11通过管道与该混合管道21连通,该管道上设有用于计量工业级无水氢氟酸流量的第一流量计22;氧化剂溶液储罐12通过管道与混合管道21连通,且该管道上设有用于计量氧化剂溶液流量的第二流量计23。这样设计,能够使二者向外输送时实现定量输送并混合后再进入第一降膜蒸发装置,使得工业级无水氢氟酸和氧化剂溶液能够按照参与反应的量(或氧化剂过量的情况)在混合管道内进行精准配比混合,就不需要如现有技术一样在氢氟酸储罐内通过大循环进行充分混合,能够大大减少因循环引起的能耗;同时还能避免氧化剂溶液加入无水氢氟酸后,使无水氢氟酸形成含水氢氟酸,从而对储罐内壁造成严重的腐蚀。
第一降膜蒸发装置3的液体出料端通过管道与第二降膜蒸发装置4的进料端连通,且第一降膜蒸发装置3的气体出料端通过管道与含砷废气收集装置7连通。这样设计,使得通过在第一降膜蒸发装置内因氧化反应产生的含砷废气能够通过顶部的排出口进入含砷废气收集装置收集并集中处理,使得反应后的剩余液体物质全部流入第二降膜蒸发装置进行进一步处理。由于工业级无水氢氟酸中的砷和氧化剂溶液中的氧化剂进行的氧化反应是在该第一降膜蒸发装置的换热管内壁上进行的,利用换热管内壁巨大的比表面积,能够使该氧化反应在混合液体自上向下流动的过程中于常温常压环境下进行充分的反应,使其能够在短时间内将工业级无水氢氟酸中的砷完全除去后形成含砷废气后排出,不 会出现砷杂质去除不净的情况,能够使砷含量不高于0.3ppb。
第二降膜蒸发装置4的气体出料端通过管道与冷凝塔5上的进气管51连通,且第二降膜蒸发装置4的液体出料端通过管道与氧化剂溶液收集装置8连通。第二降膜蒸发装置4的气体出料端的顶部定位连接设有一除雾器6,该除雾器的顶端通过管道与冷凝塔5的进气管51连通。这样设计,能够使蒸发出的氢氟酸蒸汽从第二降膜蒸发装置的顶部经过除雾器除去蒸汽中的液体后,排出进入冷凝塔的进气管内,同时含有过量的氧化剂溶液的高沸点液体直接从第二降膜蒸发装置的底部排出后,经氧化剂溶液收集装置收集并集中处理回收氧化剂。该该第二降膜蒸发装置在进行使用时,向其加热区内通入低温热水,使位于换热管内壁上的氢氟酸液体在接近并低于氢氟酸沸点的温度下进行负压蒸发,能够在保证液体不吐沸的情况下将氟化氢气体蒸发出来,该处理方式在保证蒸发效果和产量的基础上,通过较小的液体处理量,将安全性控制在最优水平;同时由于低温蒸发,因此蒸发出来的蒸汽中液滴的含量较小,这样前述除雾器仅需设置单个长度较短的除雾器即可,能够大大降低设备的占地面积,同时能够降低除雾器的损耗。
冷凝塔5的顶部定位设有一沿竖直方向设置的进气管51,且该进气管51与冷凝塔5的内部连通。冷凝塔5的底部定位装设有一回流组件52,且该回流组件的末端与进气管51连通,具体的,回流组件52包括一循环泵521,该循环泵的进料端通过管道与冷凝塔5的底部连通,该循环泵的出料端通过管道与进气管51的进口端连通。这样设计,能够将在冷凝塔内经冷凝形成的部分电子级氢氟酸成品回流至进气管内,该回流液体在进气管内向下冲洗流动,能够在进气管以及与进气管连通的第二降膜蒸发装置的换热管内形成略低于常压的负压,从而能够降低氢氟酸的蒸发温度。
上述基于本申请所述生产工艺的电子级氢氟酸生产用装置,摒弃了现有技术中在工业级氢氟酸储罐上安装液体循环装置进行氧化反应的方式,并摒弃了现有技术中使用常规蒸发釜和冷凝塔多级联用进行过热蒸发和冷凝的方式,采用在输送管道上设置定量加料组件,并结合双降膜蒸发装置联用并通过冷凝塔上的进气管与冷凝塔串联使用的方式,能够使氢氟酸中砷与氧化剂的反应时长 缩短并避免对储罐的腐蚀,同时能够采用低温负压蒸发的方式进行氢氟酸的蒸发纯化,降低了除雾器的数量、长度和损耗,同时增加了蒸发操作的安全性。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。
Claims (10)
- 一种电子级氢氟酸的生产工艺,其特征在于,主要包括下述步骤:步骤S1,将储存于工业级无水氢氟酸储罐内的工业级无水氢氟酸定量输送至位于第一降膜蒸发装置前端的混合管道内,同时将储存于氧化剂溶液储罐内的氧化剂溶液同步定量输送至所述混合管道内,所述工业级无水氢氟酸和所述氧化剂溶液在该混合管道内混合后进入第一降膜蒸发装置内;步骤S2,第一降膜蒸发装置内的工业级无水氢氟酸和氧化剂溶液在常温常压下进行降膜蒸发反应,其中工业级无水氢氟酸中的砷杂质和氧化剂溶液中的氧化剂进行反应形成挥发性气体,该挥发性气体从第一降膜蒸发装置的顶部排出以除去砷杂质;经反应后的剩余物质从第一降膜蒸发装置的换热管内流出后,从第一降膜蒸发装置的底部排出,并经管道进入第二降膜蒸发装置;步骤S3,第二降膜蒸发装置内的液体物质在接近并低于氢氟酸沸点的温度下进行负压蒸发,其中经该负压蒸发后蒸发出的氢氟酸蒸汽从该第二降膜蒸发装置的顶部经除雾器后排出进入冷凝塔的进气管内;经负压蒸发后且含有过量氧化剂溶液的高沸点液体从该第二降膜蒸发装置的底部排出,进行氧化剂溶液的回收及循环利用;步骤S4,进入冷凝塔内的氢氟酸蒸汽在该冷凝塔内进行冷凝后形成电子级氢氟酸,该电子级氢氟酸中的部分利用冷凝塔上的回流组件回流至进气管内,并对通入进气管内的氢氟酸蒸汽进行冲洗,从而使进气管及与进气管连通的第二降膜蒸发装置内的换热管内形成负压;该电子级氢氟酸中的剩余部分从排液口排出形成电子级氢氟酸产品;冷凝过程中形成的尾气从冷凝塔的顶部排出后进行后续处理。
- 根据权利要求1所述的电子级氢氟酸的生产工艺,其特征在于:所述步骤S1中,所述氧化剂溶液中氧化剂的摩尔量相对工业级无水氢氟酸中的砷的摩尔量过量1-1.5%。
- 根据权利要求1所述的电子级氢氟酸的生产工艺,其特征在于:所述步骤S2中,所述第一降膜蒸发装置中进入进水口内的水介质温度为20-25℃,且该第一降膜蒸发装置中流出出水口的水介质温度为18-23℃。
- 根据权利要求1所述的电子级氢氟酸的生产工艺,其特征在于:所述步 骤S3中,所述第二降膜蒸发装置中进入进水口内的水介质温度为30-35℃,且该第二降膜蒸发装置中流出出水口的水介质温度为23-28℃。
- 根据权利要求1所述的电子级氢氟酸的生产工艺,其特征在于:所述步骤S3中,所述第二降膜蒸发装置的换热管内的负压为0.08-0.09MPa。
- 一种基于权利要求1至5中任一项所述生产工艺的电子级氢氟酸生产用装置,其特征在于:包括原料储罐(1)、定量加料组件(2)、第一降膜蒸发装置(3)、第二降膜蒸发装置(4)和冷凝塔(5),其中所述原料储罐(1)的出料端通过管道及位于管道上的所述定量加料组件(2)与第一降膜蒸发装置(3)的进料端连通,所述第一降膜蒸发装置(3)的液体出料端通过管道与第二降膜蒸发装置(4)的进料端连通,且所述第一降膜蒸发装置(3)的气体出料端通过管道与含砷废气收集装置(7)连通;所述第二降膜蒸发装置(4)的气体出料端通过管道与所述冷凝塔(5)上的进气管(51)连通,且所述第二降膜蒸发装置(4)的液体出料端通过管道与氧化剂溶液收集装置(8)连通;所述冷凝塔(5)的底部定位装设有一回流组件(52),且该回流组件的末端与所述进气管(51)连通。
- 根据权利要求6所述的电子级氢氟酸生产用装置,其特征在于:所述原料储罐(1)包括工业级无水氢氟酸储罐(11)和氧化剂溶液储罐(12),所述定量加料组件(2)包括与所述第一降膜蒸发装置(3)的进料端固定连通的一混合管道(21),所述工业级无水氢氟酸储罐(11)通过管道与所述混合管道(21)连通,且该管道上设有用于计量工业级无水氢氟酸流量的第一流量计(22);所述氧化剂溶液储罐(12)通过管道与所述混合管道(21)连通,且该管道上设有用于计量氧化剂溶液流量的第二流量计(23)。
- 根据权利要求6所述的电子级氢氟酸生产用装置,其特征在于:所述第二降膜蒸发装置(4)的气体出料端的顶部定位连接设有一除雾器(6),该除雾器的顶端通过管道与所述冷凝塔(5)的进气管(51)连通。
- 根据权利要求6所述的电子级氢氟酸生产用装置,其特征在于:所述回流组件(52)包括一循环泵(521),该循环泵的进料端通过管道与所述冷凝塔(5)的底部连通,该循环泵的出料端通过管道与所述进气管(51)的进口端连 通。
- 根据权利要求6所述的电子级氢氟酸生产用装置,其特征在于:所述进气管(51)沿竖直方向定位设置于所述冷凝塔(5)的顶部,且该进气管(51)与所述冷凝塔(5)的内部连通。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110463549.4 | 2021-04-28 | ||
CN202110463549.4A CN112978680B (zh) | 2021-04-28 | 2021-04-28 | 电子级氢氟酸的生产工艺及生产用装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022227349A1 true WO2022227349A1 (zh) | 2022-11-03 |
Family
ID=76340511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/114039 WO2022227349A1 (zh) | 2021-04-28 | 2021-08-23 | 电子级氢氟酸的生产工艺及生产用装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112978680B (zh) |
WO (1) | WO2022227349A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112978680B (zh) * | 2021-04-28 | 2021-07-20 | 联仕(昆山)化学材料有限公司 | 电子级氢氟酸的生产工艺及生产用装置 |
CN113233434B (zh) * | 2021-07-13 | 2021-10-22 | 联仕(昆山)化学材料有限公司 | 电子级硝酸的生产工艺及生产用装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1028087A1 (de) * | 1999-02-12 | 2000-08-16 | Bayer Ag | Verfahren zum Herstellen reiner Flusssäure |
CN102092684A (zh) * | 2011-01-06 | 2011-06-15 | 苏州晶瑞化学有限公司 | 一种制备电子级超高纯氢氟酸的方法 |
CN103991847A (zh) * | 2013-02-18 | 2014-08-20 | 福建省邵武市永晶化工有限公司 | 电子级氢氟酸制备方法 |
CN203820448U (zh) * | 2014-03-05 | 2014-09-10 | 宣城亨泰化工科技有限公司 | 电子级氢氟酸用生产系统 |
CN112978680A (zh) * | 2021-04-28 | 2021-06-18 | 联仕(昆山)化学材料有限公司 | 电子级氢氟酸的生产工艺及生产用装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100546903C (zh) * | 2007-08-06 | 2009-10-07 | 江阴市润玛电子材料有限公司 | 超高纯氢氟酸的提纯方法 |
CN102009957A (zh) * | 2010-11-20 | 2011-04-13 | 江阴市润玛电子材料有限公司 | 高收率超净高纯氢氟酸的提纯方法 |
CN102320573B (zh) * | 2011-09-19 | 2013-04-03 | 瓮福(集团)有限责任公司 | 一种制备电子级氢氟酸的方法 |
CN103613075A (zh) * | 2013-12-02 | 2014-03-05 | 浙江凯圣氟化学有限公司 | 一种超纯电子级氢氟酸的制备方法 |
CN112441567B (zh) * | 2021-01-04 | 2021-09-10 | 联仕(昆山)化学材料有限公司 | 电子级硫酸的生产工艺及生产用低温蒸发纯化吸收装置 |
-
2021
- 2021-04-28 CN CN202110463549.4A patent/CN112978680B/zh active Active
- 2021-08-23 WO PCT/CN2021/114039 patent/WO2022227349A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1028087A1 (de) * | 1999-02-12 | 2000-08-16 | Bayer Ag | Verfahren zum Herstellen reiner Flusssäure |
CN102092684A (zh) * | 2011-01-06 | 2011-06-15 | 苏州晶瑞化学有限公司 | 一种制备电子级超高纯氢氟酸的方法 |
CN103991847A (zh) * | 2013-02-18 | 2014-08-20 | 福建省邵武市永晶化工有限公司 | 电子级氢氟酸制备方法 |
CN203820448U (zh) * | 2014-03-05 | 2014-09-10 | 宣城亨泰化工科技有限公司 | 电子级氢氟酸用生产系统 |
CN112978680A (zh) * | 2021-04-28 | 2021-06-18 | 联仕(昆山)化学材料有限公司 | 电子级氢氟酸的生产工艺及生产用装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112978680B (zh) | 2021-07-20 |
CN112978680A (zh) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022227349A1 (zh) | 电子级氢氟酸的生产工艺及生产用装置 | |
CN101570318B (zh) | 一种生产电子级氢氟酸的方法 | |
WO2021129404A1 (zh) | 一种用于多晶硅制绒废酸液回收利用装置和方法 | |
CN111704109A (zh) | 连续法制备电子级氢氟酸的方法及系统 | |
CN217418195U (zh) | 一种电子级硫酸生产装置 | |
CN107140779A (zh) | 一种核电站蒸发器排污水的零排放处理系统及其处理方法 | |
CN112279220B (zh) | 一种高纯硫酸的连续生产方法 | |
RU2580919C2 (ru) | Комплексный способ получения нитрата аммония | |
CN114804036A (zh) | 一种生产g1-g5电子级硫酸的方法及系统 | |
CN212050528U (zh) | 一种氟化氢高效提纯系统 | |
CN206736141U (zh) | 一种复杂化学废液的高纯资源化工艺系统 | |
CN211871381U (zh) | 一种高纯硫酸生产系统 | |
CN209974509U (zh) | 一种薄膜太阳能电池生产废水处理系统 | |
CN109200764B (zh) | 一种制备电子级氟化氢洗涤吸收装置的使用方法 | |
CN113233434B (zh) | 电子级硝酸的生产工艺及生产用装置 | |
CN115583632A (zh) | 一种吸收法生产电子级硫酸的方法 | |
CN212594042U (zh) | 一种食品级废磷酸的二段式负压蒸发浓缩净化处理装置 | |
CN108996474B (zh) | 一种制备电子级氟化氢工艺装置 | |
CN111994881A (zh) | 一种硫酸回收方法及系统 | |
CN110395691A (zh) | 一种含焦油废酸的再生系统及再生方法 | |
CN110697814A (zh) | 一种含氨的硫酸盐废水处理系统及工艺 | |
CN221344316U (zh) | 含氟硝酸回收利用装置 | |
CN213966337U (zh) | 一种配有多效蒸发装置的物料前置处理系统 | |
CN204824176U (zh) | 一种5n级超高纯三氯氧磷的连续提纯系统 | |
WO2018142349A1 (en) | Process for removing water from a mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21938813 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21938813 Country of ref document: EP Kind code of ref document: A1 |