WO2022227119A1 - 一种含硫锂电池正极材料及其制备方法与锂电池 - Google Patents

一种含硫锂电池正极材料及其制备方法与锂电池 Download PDF

Info

Publication number
WO2022227119A1
WO2022227119A1 PCT/CN2021/093231 CN2021093231W WO2022227119A1 WO 2022227119 A1 WO2022227119 A1 WO 2022227119A1 CN 2021093231 W CN2021093231 W CN 2021093231W WO 2022227119 A1 WO2022227119 A1 WO 2022227119A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
positive electrode
electrode material
lithium battery
lithium
Prior art date
Application number
PCT/CN2021/093231
Other languages
English (en)
French (fr)
Inventor
张琨
夏定国
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Publication of WO2022227119A1 publication Critical patent/WO2022227119A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium batteries, in particular to a positive electrode material of a sulfur-containing lithium battery, a preparation method thereof, and a lithium battery.
  • the new lithium-ion battery has the advantages of high safety, good cyclability, long life, environmentally friendly and recyclable.
  • Lithium-ion batteries typically include an anode, a cathode, a separator, and an electrolyte.
  • Lithium-ion batteries generally have a carbon negative electrode (or anode) and a transition metal oxide positive electrode (or cathode).
  • the cathode and anode are generally layered structures to accommodate lithium ions, which are transported between the cathode and anode for energy transport during charging and discharging.
  • cathode materials are a key factor in determining battery safety, capacity and price.
  • price in the current commercial production of lithium-ion batteries, the cost of cathode materials accounts for about 20%-40% of the cost of the entire battery.
  • the reduction in the price of cathode materials directly determines the reduction in the price of lithium-ion batteries, especially for Power lithium-ion batteries used in new energy vehicles.
  • lithium-ion batteries, especially power-type lithium-ion batteries have special requirements in terms of high current discharge, specific energy, safety, etc., and the current research or application of positive electrode materials have not fully met the requirements, so it is greatly restricted. The development of lithium-ion power batteries.
  • the positive electrode of first-generation lithium-ion batteries was lithium cobalt oxide (LiCoO 2 ), a layered compound in which oxygen atoms are formed in a close-packed form that forms octahedral voids as many as there are oxygen atoms. Transition metal layers and lithium layers are alternately arranged in the structure.
  • the high-voltage stability of lithium cobaltate is weak, and when half of the lithium is removed from the lithium cobaltate (voltages higher than 4.3 V), the layered compound becomes unstable due to oxygen loss.
  • Cobalt is expensive, increasing the cost of lithium cobalt oxide. By adding nickel and manganese elements, its performance and cost are further optimized. This optimized cathode material is called a ternary material (NCM).
  • the original ternary material was LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM333).
  • NCM333 LiNi 1/3 Co 1/3 Mn 1/3 O 2
  • the improvement of the structure and composition of the ternary material is divided into two directions, one is to increase the nickel content, reduce the cobalt content, and increase the stability of the layered structure; the other is to increase the relative content of lithium and manganese, as in Argonne Lithium-rich manganese-based materials proposed by the National Laboratory (Argonne Nantional Lab).
  • This material is occupied by lithium in the transition metal layer to form a lithium-rich phase, and the lithium-rich phase and the non-lithium-rich phase form an atomic-level solid solution or a nanometer two-phase structure.
  • This material has the general formula x LiMO 2 -(1-x)Li 2 MnO 3 , where 0 ⁇ x ⁇ 1, and where M is one or more ions.
  • Li-rich manganese-based cathode materials is related to its composition, especially the content of Li 2 MnO 3 .
  • High Li 2 MnO 3 composition can bring higher capacity due to the introduction of Li-O-Li configuration in the material and the redox of oxygen.
  • the redox of oxygen brings irreversible oxygen release and side reaction with the electrolyte, which leads to the decline of its Coulombic efficiency, the decline of stability, the decline of voltage and the poor rate performance, etc., which lead to its delayed commercialization. failed to achieve. Therefore, there is an urgent need to provide a stable, high-rate Li-rich manganese-based material.
  • Proper anionic sulfur doping to replace the lattice oxygen sites can suppress the irreversibility of oxygen redox in the material, increase the lattice spacing, improve the electrical conductivity, etc., and thus can improve the specific capacity density and rate performance of the cathode material.
  • the doping of sulfur anions is experimentally difficult to achieve due to the easy oxidation of anionic sulfur.
  • Existing sulfur-containing cathode materials mainly dope polyanionic groups of sulfur into the lattice phase and the surface, where sulfur is positive. Sulfate ions can inhibit the contact between the material and the electrolyte, reduce side reactions, and improve the conductivity of the material, so it has a certain improvement in stability and rate performance. For example, Kang et al.
  • sulfur-containing cathodes are all doped and coated with sulfur-based positive-valent polyanions, and sulfur is not doped into the lattice in the form of negative-valent anions, so the modification effect on the cathode material is limited.
  • polyanionic sulfuric acid has no redox activity itself, which will cause a loss in the capacity of the cathode material. Based on the above existing sulfur-containing cathode materials, there is no report on anionic sulfur-doped lithium-rich cathode materials.
  • the purpose of the present invention is to provide a sulfur-containing lithium battery positive electrode material with high energy density and high discharge capacity during the charging and discharging process of the battery, aiming at the deficiencies of the prior art.
  • sulfur is doped into the positive electrode material as an anion, and through the enhancement of the covalent interaction between the anion and the metal, on the one hand, the activity of oxygen redox is suppressed, the side reactions at the interface are reduced, and the positive electrode material is greatly improved.
  • the rate performance of the cathode material has been significantly improved.
  • Another object of the present invention is to provide a method for preparing the above-mentioned lithium battery positive electrode material.
  • Another object of the present invention is to provide a lithium battery comprising the above-mentioned lithium battery positive electrode material.
  • the lithium battery based on the above-mentioned sulfur-containing cathode material has good cycle performance and high rate.
  • the sulfur-containing cathode material is prepared by fully reacting an undoped sulfur-containing cathode material in a solution containing anionic sulfur by a liquid-phase method, and drying the cathode material.
  • sulfur exists in the form of anion Sn- , and in many cases, 0 ⁇ n ⁇ 2.
  • the cathode material of the sulfur-containing lithium battery is charged and discharged at 30°C, 2.1-4.8V, and 0.1C, and the discharge capacity is greater than 300mAh/g.
  • the lithium battery cathode material is charged and discharged at 30° C., 2.1-4.8V, and 1C, and the discharge capacity is more than 80% of the 0.1C discharge capacity.
  • the present invention also provides a method for preparing the above-mentioned sulfur-containing lithium battery positive electrode material.
  • the lithium-rich manganese-based lithium battery positive electrode material is added to a solution containing anionic sulfur for liquid-phase reaction, stirred evenly, and filtered to obtain a sulfur-containing lithium battery positive electrode material. Just dry.
  • the solution containing anionic sulfur is obtained by dissolving a soluble salt of sulfur in a solvent, wherein the soluble salt of sulfur is preferably a sulfide, including but not limited to anhydrous sodium sulfide, sodium sulfide nonahydrate , thiourea, thioacetamide, etc.; the solvent includes one or more of water and ethanol.
  • the soluble salt of sulfur is preferably a sulfide, including but not limited to anhydrous sodium sulfide, sodium sulfide nonahydrate , thiourea, thioacetamide, etc.
  • the solvent includes one or more of water and ethanol.
  • the concentration of the solution containing anionic sulfur is 0.01 mol/L to 0.5 mol/L, and the anionic sulfur can be S 2- or the like.
  • the concentration range of the positive electrode material of the lithium-rich manganese-based lithium battery in the solution containing anionic sulfur is 0.002-0.01 g/mL.
  • the stirring speed of the liquid-phase reaction is 300-500 rpm
  • the reaction temperature is 30-40° C.
  • the time is 0.5-1 hour.
  • the temperature of the vacuum drying is 100-150° C., and the drying time is 12-24 h.
  • the present invention also provides a lithium ion battery, comprising a positive electrode material, a negative electrode material, a separator and an electrolyte, wherein the positive electrode material is the above-mentioned sulfur-containing lithium battery positive electrode material.
  • the present invention has the following advantages and beneficial effects:
  • sulfur element is doped in the lithium-rich manganese-based positive electrode material by liquid phase method for the first time, and the sulfur doping in the form of anion is realized.
  • the present invention synthesizes a lithium-rich manganese-based cathode material with anionic sulfur.
  • Anionic sulfur has a relatively tight chemical bond with metal and has a larger lattice, so as to achieve more stable anionic redox and faster lithium ion migration, and finally make the modified lithium-rich manganese-based cathode material. It has high cycle stability and rate capability.
  • liquid-phase method for doped sulfur element synthesis steps adopted in the present invention is relatively simple, easy to operate, and does not need to be synthesized by sintering at high temperature, and has the advantages of large-scale production capability and energy saving and emission reduction.
  • FIG. 1 is a charge-discharge curve diagram of a half-cell based on the lithium-rich manganese-based cathode material prepared in Example 1 and Example 2.
  • FIG. 2 is a half-cell charge-discharge cycle curve diagram of the lithium-rich manganese-based cathode materials prepared based on Example 1 and Example 2.
  • FIG. 2 is a half-cell charge-discharge cycle curve diagram of the lithium-rich manganese-based cathode materials prepared based on Example 1 and Example 2.
  • Example 3 is a graph showing the charge-discharge rate performance of half cells based on the lithium-rich manganese-based cathode materials prepared in Example 1 and Example 2.
  • FIG. 4 is a high-temperature cycle performance diagram of the half-cell based on the lithium-rich manganese-based cathode material prepared in Example 1 and Example 2.
  • FIG. 4 is a high-temperature cycle performance diagram of the half-cell based on the lithium-rich manganese-based cathode material prepared in Example 1 and Example 2.
  • Example 5 is a charge-discharge cycle curve diagram of a half-cell based on the lithium-rich manganese-based cathode material prepared in Example 3 with a sulfur doping amount of 0.04 at%.
  • Example 6 is a comparison diagram of the half-cell charge-discharge cycle curves of the anionic sulfur-containing cathode material prepared in Example 2 and the polyanionic sulfate-doped lithium-rich manganese-based cathode material prepared in the comparative example.
  • the properties of the positive electrode materials prepared in the examples were measured by the preparation of button batteries;
  • the electrochemical performance of the cathode material is demonstrated by a coin-type half-cell.
  • the positive electrode of the half cell is made of positive electrode material: conductive agent (Super P): binder (PVDF) in a mass ratio of 80:10:10.
  • the half-cell cathode preparation procedure is as follows: the cathode material is mixed with Super P, polyvinylidene fluoride PVDF to form a homogeneous powder mixture. The powder mixture was added to NMP and mixed to form a slurry. The slurry was applied to an aluminum foil current collector to form a thin film. The coated positive electrode was dried under vacuum at 90 °C for 6 h to remove NMP. The dried positive electrode material-coated aluminum foil was then cut into discs, rolled and weighed, dried in a vacuum oven at 110 °C overnight, and finally transferred to an argon-filled glove box.
  • the prepared positive electrode is used as the positive electrode of the lithium battery, and the lithium sheet is used as the negative electrode.
  • the electrolyte is LB-372 type high-voltage electrolyte from Duoduo Reagent Company.
  • the diaphragm is a Whatman fiberglass diaphragm.
  • the obtained lithium-rich manganese-based cathode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 was assembled into an R2032 coin half cell, and the charge-discharge test was carried out at 30°C, 2.1-4.8V, and 0.1C.
  • the charge-discharge curve is shown in the figure The charge-discharge curve of the sample S0 in 1, it can be seen from Fig. 1 that the discharge capacity is 300mAh/g.
  • lithium-rich cathode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.002 doped with anionic sulfur by liquid phase method, the specific steps are as follows:
  • Example 2 Utilize the lithium-rich manganese-based cathode material prepared in Example 1, add it to 0.01mol/L Na 2 S solution, the ratio of cathode material to solution is 4 g/L, stir at 400 rpm for 30 minutes, suction filtration, vacuum After drying in an oven at 120° C. for 12 hours, a lithium-rich positive electrode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.002 was obtained.
  • the obtained lithium-rich manganese-based cathode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.002 was assembled into an R2032 coin half battery, and the charge-discharge test was carried out at 30°C, 2.1-4.8V, and 0.1C.
  • the charge-discharge curve Figure 1 shows the charge-discharge curve of sample S1. It can be seen from Figure 1 that the discharge capacity is 305mAh/g, which is further improved compared to the lithium-rich cathode material sample S0 that is not doped with sulfur in Example 1.
  • the obtained lithium-rich manganese-based cathode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.002 was assembled into an R2032 coin half battery, and the charge-discharge test was carried out at 30°C, 2.1-4.8V, and 1C.
  • the cycle performance is shown in the figure. 2 in sample S1.
  • the cycle performance of the sample S0 in FIG. 2 was tested with the undoped sulfur lithium-rich cathode material in Example 1 under the same conditions.
  • the cycle life of the lithium-rich manganese-based cathode material of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.002 has been significantly improved.
  • the obtained lithium-rich manganese-based cathode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.002 was assembled into an R2032 coin half cell, and the rate performance test was carried out under the conditions of 30 ° C and 2.1 to 4.8 V, as shown in S1 in Figure 3.
  • the rate capability of sample S0 in FIG. 3 was tested with the undoped sulfur lithium-rich cathode material in Example 1 under the same conditions.
  • the rate capability 1C of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.002 exceeds 240mAh/g, which is significantly improved.
  • the obtained lithium-rich manganese-based cathode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.002 was assembled into an R2032 coin half cell, and the cycle performance was tested at 55°C, 2.1-4.8V, and 1C, as shown in Figure 4. shown in S1.
  • the high temperature performance of the sample S0 in FIG. 4 was tested with the undoped sulfur lithium-rich cathode material in Example 1 under the same conditions.
  • the high temperature cycle performance of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.002 still exceeds 250mAh/g after 50 cycles, and the stability is significantly improved.
  • lithium-rich cathode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.996 S 0.004 doped with anionic sulfur by liquid phase method, the specific steps are as follows:
  • Example 2 Utilize the lithium-rich manganese-based cathode material prepared in Example 1, add it to 0.02mol/L Na 2 S solution, the ratio of cathode material to solution is 4 g/L, stir at 400 rpm for 30 minutes, suction filtration, vacuum After drying in an oven at 120° C. for 12 hours, a lithium-rich positive electrode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.004 was obtained.
  • the obtained lithium-rich manganese-based cathode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.004 was assembled into an R2032 coin half battery, and the charge-discharge test was carried out at 30°C, 2.1-4.8V, and 1C.
  • the cycle performance is shown in the figure 5 shown. It can be seen from Figure 5 that after 200 cycles, it still has a capacity of 200mAh/g, and has good cycle performance.
  • Example 1 Utilize the lithium-rich manganese-based positive electrode material prepared in Example 1, add it to a 0.01 mol/L Na 2 S solution, the ratio of the positive electrode material to the solution is 4 g/L, stir at 400 rpm for 30 minutes, pump Filtered, dried in a vacuum oven at 120° C. for 12 h, and obtained a lithium-rich positive electrode material Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 1.998 S 0.002 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种含硫锂电池正极材料,为掺杂阴离子硫的富锂锰基正极材料,化学式为Li 1+δMn aNi bCo cS xO y,其中δ=0~0.2,a=0.45~0.7,b=0.05~0.35,c=0.05~0.3,x=0.001~0.1,y=1.9~1.999,且x+y=2,δ+a+b+c=1,通过液相法将未掺杂硫的正极材料在含阴离子硫的溶液中充分反应、烘干后制成。在该含硫锂电池正极材料中,由于阴离子硫具有与金属结合能力较紧密的化学键和较大的晶格,从而实现了更稳定的阴离子氧化还原与更快的锂离子迁移能力,使锂电池具有很高的循环稳定性和倍率性能。另外,本发明采用的液相法掺杂硫元素合成步骤简单,易于操作,并且无需在高温下烧结,具有大规模生产的能力与节能减排的优势。

Description

一种含硫锂电池正极材料及其制备方法与锂电池 技术领域
本发明涉及锂电池技术领域,具体涉及一种含硫锂电池正极材料及其制备方法与锂电池。
背景技术
全球能源危机和日益严重的环境污染,使得有必要发展以清洁能源为主的电网储存、交通工具以及便携式设备。而作为一种清洁能源,新型锂离子电池具有安全性高、循环性好、寿命长、环境友好可回收等优点。
锂离子电池通常包括阳极、阴极、隔膜和电解质。锂离子电池一般具有碳负极(或阳极)和过渡金属氧化物正极(或阴极)。阴极和阳极一般是层状结构以容纳锂离子,在充电和放电过程中,锂离子在阴极和阳极之间传送进行能量输送。
正极材料作为锂离子电池的重要部件,是决定电池安全、容量和价格的关键因素。价格方面,在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的20%-40%,正极材料价格的降低直接决定着锂离子电池价格的降低,尤其是对于应用在新能源车上的动力锂离子电池。另外,在大电流放电、比能量、安全性等方面,锂离子电池尤其是动力型锂离子电池具有特殊要求,而目前研究或正在应用的正极材料都没有完全达到要求,因此极大的制约了锂离子动力电池的发展。
第一代锂离子电池的正极是钴酸锂(LiCoO 2),这是一种层状化合物,氧原子以密堆积形式构成,这种结构形成与氧原子数量相当的八面体空隙。过渡金属层和锂层在结构中交替排布。钴酸锂的高压稳定性较弱,当一半锂从钴酸锂被移去时(电压高于4.3V),层状化合物会由于失氧变得不稳定。钴的价格昂贵,加大了钴酸锂的成本。通过加入镍和锰元素,其性能和成本得到了进一步优化。这种优化后的正极材料被称为三元材料(NCM)。
最初的三元材料是LiNi 1/3Co 1/3Mn 1/3O 2(NCM333)。为了增加容量,三元材料结构和成分的改进分两个方向,一是提高镍含量,降低钴含量,增加层状结构的稳定性;另外一个是提高锂和锰的相对含量,如在阿贡国家实验室(Argonne Nantional Lab)提出的富锂锰基材料。这种材料在过渡金属层有锂占据形成富锂相,富锂相和非富锂相形成原子级固溶体或者纳米两相结构。这种材料具有一般式x LiMO 2-(1-x)Li 2MnO 3,其中0<x<1,且其中M是一种或多种离子。
富锂锰基正极材料的性能和其成分有关,尤其是和Li 2MnO 3的含量有关。高Li 2MnO 3成 分可以带来更高的容量,这是由于材料中Li-O-Li构型的引入以及氧的氧化还原导致的。然而,氧的氧化还原又带来不可逆的氧气释放和与电解液的副反应,导致了其库伦效率的下降、稳定性的衰退、电压衰退和较差的倍率性能等,导致其商业化迟迟未能实现。因此迫切需要提供一种稳定、高倍率的富锂锰基材料。
适当的阴离子硫掺杂以替代晶格氧位可以抑制材料中氧氧化还原的不可逆程度,加大晶格间距,提高电导率等,因此可以提高正极材料的比容量密度和倍率性能。然而,由于阴离子硫易氧化的特点,硫的阴离子的掺杂在实验上难以实现。现有的含硫正极材料主要是将硫的聚阴离子基团掺杂进入晶格体相以及表面,其中硫为正价。硫酸根离子可以抑制材料和电解液的接触,降低副反应,提升材料的导电性,因此对稳定性和倍率性能有一定的提升。例如,Kang等人在富锂材料中掺杂硫酸镍,1C条件下250圈循环稳定性约为78%(ACS Appl.Mater.Interfaces 2020,12,12,13996–14004)。Zhang等人通过表面形成Mn的硫酸化合物构筑了表面氧空位,200圈后电压衰退至2.77V,相对与原始材料衰退的2.48V有提升(ACS Appl.Mater.Interfaces 2020,12,38,42660–42668)。然而,这些含硫正极都是基于硫的正价聚阴离子掺杂和包覆,硫没有以负价阴离子形式掺杂入晶格,因此对正极材料的改性作用较为有限。另一方面,聚阴离子硫酸根本身不具有氧化还原活性,会对正极材料的容量造成损失。基于以上现有含硫正极材料,目前还未有阴离子硫掺杂富锂正极材料的报道。
发明内容
本发明的目的在于针对现有技术的不足,提供了一种在电池充放电过程中具有高能量密度,并具有高放电容量的含硫锂电池正极材料。在本发明的技术方案中,硫作为阴离子掺杂入正极材料,通过阴离子与金属共价作用的增强,一方面抑制了氧氧化还原的活性,降低了界面的副反应,大幅度提升了正极材料的循环稳定性和高温稳定性;另一方面由于阴离子硫的大尺寸效应,正极材料的倍率性能得到了显著提升。
本发明的目的还在于提供制备上述锂电池正极材料的方法。
本发明的另一目的在于提供包含上述的锂电池正极材料的一种锂电池。该基于上述含硫正极材料的锂电池具有良好的循环性能和高倍率。
本发明的目的通过如下技术方案实现。
一种含硫锂电池正极材料,为富锂锰基掺硫正极材料,化学式为Li 1+δMn aNi bCo cS xO y,其中,δ=0~0.2,a=0.45~0.7,b=0.05~0.35,c=0.05~0.3,x=0.001~0.1,y=1.9~1.999,且x+y=2,δ+a+b+c=1;其中,硫以阴离子(S n-)形式在材料中掺杂。这种含硫正极材料是通过液相法 将未掺杂硫的正极材料在含阴离子硫的溶液中充分反应、烘干后制成的。
本发明的含硫锂电池正极材料中,硫以阴离子的形式S n-存在,很多情况下0<n≤2。
优选的,上述含硫锂电池正极材料Li 1+δMn aNi bCo cS xO y中,δ=0~0.2,a=0.45~0.7,b=0.05~0.35,c=0.05~0.3,x=0.001~0.05,y=1.95~1.999。
优选的,上述含硫锂电池正极材料中形成两相的固溶体或者纳米混合体,即zLiMO yS 2-y-(1-z)Li 2MnO yS 2-y,其中0<z<1,M为高于2+价的包括Ni、Co、Mn的金属元素的组合,y=1.9~1.999。
优选的,所述的含硫锂电池正极材料在30℃,2.1~4.8V,0.1C条件下进行充放电,放电容量大于300mAh/g。
优选的,所述的锂电池正极材料在30℃,2.1~4.8V,1C条件下进行充放电,放电容量是0.1C放电容量的80%以上。
本发明还提供了上述含硫锂电池正极材料的制备方法,将富锂锰基锂电池正极材料加入含阴离子硫的溶液进行液相反应,搅拌均匀,过滤,得到含硫锂电池正极材料,真空干燥即可。
上述制备方法中,所述含阴离子硫的溶液是将硫的可溶性盐溶于溶剂中获得,其中所述的硫的可溶性盐优选为硫化物,包括但不限于无水硫化钠、九水合硫化钠、硫脲、硫代乙酰胺等;所述溶剂包括水、乙醇中的一种或多种。
优选的,所述含阴离子硫的溶液的浓度为0.01mol/L~0.5mol/L,所述阴离子硫可以是S 2-等。
上述制备方法中,所述富锂锰基锂电池正极材料的通式为Li 1+δMn aNi bCo cO 2,其中,δ=0~0.2,a=0.45~0.7,b=0.05~0.35,c=0.05~0.3,δ+a+b+c=1。
优选的,所述富锂锰基锂电池正极材料在含阴离子硫的溶液中的浓度范围为0.002~0.01g/mL。
优选的,所述液相反应的搅拌速度为300~500rpm,反应温度为30~40℃,时间为0.5~1小时。
优选的,所述真空干燥的温度为100~150℃,干燥时间为12~24h。
本发明还提供了一种锂离子电池,包括正极材料、负极材料、隔膜及电解质,其中正极材料是上述含硫锂电池正极材料。
与现有技术相比,本发明具有如下优点和有益效果:
本发明首次在富锂锰基正极材料中通过液相法掺杂硫元素,实现了阴离子形态的硫掺杂。相较于现有含硫正极材料,本发明合成了具有阴离子硫的富锂锰基正极材料。阴离子硫具有与金属结合能力较紧密的化学键,并且具有较大的晶格,从而实现了更稳定的阴离子氧化还原与更快的锂离子迁移能力,最终使得改性后的富锂锰基正极材料具有很高的循环稳定性和倍率性能。另外,本发明所采用的液相法掺杂硫元素合成步骤较为简单,易于操作,并且无需在高温下烧结合成,具有大规模生产的能力与节能减排的优势。
附图说明
图1为基于实施例1和实施例2制备的富锂锰基正极材料的半电池的充放电曲线图。
图2为基于实施例1和实施例2制备的富锂锰基正极材料的半电池充放电循环曲线图。
图3为基于实施例1和实施例2制备的富锂锰基正极材料的半电池的充放电倍率性能图。
图4为基于实施例1和实施例2制备的富锂锰基正极材料的半电池的高温循环性能图。
图5为基于实施例3制备的硫掺杂量为0.04at%富锂锰基正极材料的半电池的充放电循环曲线图。
图6为基于实施例2制备的含阴离子硫正极材料以及对比例制备的聚阴离子硫酸根掺杂的富锂锰基正极材料的半电池充放电循环曲线对比图。
具体实施方式
以下结合具体实施方式及附图对本发明的技术方案作进一步详细的描述,但本发明的保护范围及实施方式不限于此。实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另行定义,所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。
实施例制备得到的正极材料通过纽扣电池的制备来测量其性能;
正极材料的电化学性能是通过纽扣型半电池来体现。半电池正极电极是将正极材料:导电剂(Super P):粘结剂(PVDF)以80:10:10的质量比例制成。
半电池正极制备程序如下:正极材料与Super P,聚偏二氟乙烯PVDF混合以形成均匀粉末混合物。将粉末混合物加入NMP并混合形成浆料。将该浆料涂布到铝箔集流体以形成薄膜。涂覆的正极电极在真空下90℃干燥6小时以除去NMP。然后将干燥的涂覆正极材料的铝箔切成圆片,辊压后称量质量,在真空烘箱中110℃干燥过夜,最终转移到氩气填充的手套箱中。
纽扣型锂电池的制备:将制备的正极作为锂电池正极,锂片用作负极。电解液是多多试剂公司的LB-372型高电压电解液。隔膜是Whatman玻璃纤维隔膜。
实施例1
无硫掺杂的富锂锰基正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 2的制备,具体步骤如下:
(1)按照化学式中各元素组分的化学计量比,将2.5709g一水合醋酸锂(5%过量)、0.6470g四水合醋酸镍、0.6476g四水合醋酸钴、2.6470g四水合醋酸锰溶解于300mL去离子水中,并加入4.9656g乙二醇和8.4056g一水合柠檬酸,得到混合溶液;
(2)将混合溶液在旋转蒸发仪蒸发至凝胶状态;
(3)将得到的凝胶在真空烘箱150℃下烘干6h,除去水分;
(4)将得到的干燥凝胶研磨成粉末,在管式炉,空气气氛下450℃保温4h,900℃反应12h,随炉冷却后,获得富锂锰基正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 2
将获得的富锂锰基正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 2组装成R2032型纽扣半电池,在30℃、2.1~4.8V、0.1C条件下进行充放电测试,充放电曲线如图1中样品S0的充放电曲线,由图1可知,放电容量为300mAh/g。
实施例2
液相法掺杂阴离子硫的富锂正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002的制备,具体步骤如下:
利用实施例1中制备的富锂锰基正极材料,将其加入0.01mol/L Na 2S溶液中,正极材料与溶液的比例为4g/L,在400rpm转速下搅拌30分钟,抽滤,真空烘箱120℃干燥12h后得到富锂正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002
将获得的富锂锰基正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002组装成R2032型纽扣半电池,在30℃、2.1~4.8V、0.1C条件下进行充放电测试,充放电曲线如图1中样品S1的充放电曲线,由图1可知,放电容量为305mAh/g,相对于实施例1中未掺杂硫的富锂正极材料样品S0,放电容量得到进一步提升。
将获得的富锂锰基正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002组装成R2032型纽扣半电池,在30℃、2.1~4.8V、1C条件下进行充放电测试,循环性能如图2中样品S1。图2中样品S0的循环性能是用实施例1中的未掺杂硫的富锂正极材料在相同条件下测试的。相对于图2中 S0样品,Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002的富锂锰基正极材料循环寿命得到了明显的提升。
将获得的富锂锰基正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002组装成R2032型纽扣半电池,在30℃、2.1~4.8V条件下进行倍率性能测试,如图3中S1。图3中样品S0的倍率性能是用实施例1中的未掺杂硫的富锂正极材料在相同条件下测试的。相对于图3中S0样品,Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002的倍率性能1C超过240mAh/g,得到了明显的提升。
将获得的富锂锰基正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002组装成R2032型纽扣半电池,在55℃、2.1~4.8V,1C条件下进行循环性能测试,如图4中S1所示。图4中样品S0的高温性能是用实施例1中的未掺杂硫的富锂正极材料在相同条件下测试的。相对于图4中S0样品,Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002的高温循环性能在50圈仍超过250mAh/g,稳定性得到了明显的提升。
实施例3
液相法掺杂阴离子硫的富锂正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.996S 0.004的制备,具体步骤如下:
利用实施例1中制备的富锂锰基正极材料,将其加入0.02mol/L Na 2S溶液中,正极材料与溶液的比例为4g/L,在400rpm转速下搅拌30分钟,抽滤,真空烘箱120℃干燥12h后得到富锂正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.004
将获得的富锂锰基正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.004组装成R2032型纽扣半电池,在30℃、2.1~4.8V、1C条件下进行充放电测试,循环性能如图5所示。由图5可知,循环200圈后仍然具有200mAh/g的容量,具有良好的循环性能。
对比例
掺杂聚阴离子硫酸根的富锂正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.992(SO 4) 0.002的制备,具体步骤如下:
(1)利用实施例1中制备的富锂锰基正极材料,将其加入0.01mol/L Na 2S溶液中,正极材料与溶液的比例为4g/L,在400rpm转速下搅拌30分钟,抽滤,真空烘箱120℃干燥12h后得到富锂正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002
(2)将获得的富锂锰基正极材料Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.998S 0.002在马弗炉中通氧气加热至300℃持续5h,使得含有的硫元素充分氧化,制得掺杂聚阴离子硫酸根的富锂正极材料 Li 1.2Mn 0.54Ni 0.13Co 0.13O 1.992(SO 4) 0.002
(3)将得到的掺杂聚阴离子硫酸根的富锂正极材料组装成R2032型纽扣半电池,在30℃、2.1~4.8V、1C条件下进行充放电测试,与实施例2循环性能做比较,如图6所示。由图6可知,相对于聚阴离子硫酸根掺杂的富锂正极材料,液相法阴离子硫掺杂的正极材料循环明显更为稳定。
以上实施例仅为本发明的较优实施例,仅在于对本发明的技术方案作进一步详细的描述,但本发明的保护范围及实施方式不限于此,任何未脱离本发明精神实质所做的变更、组合、删除、替换或修改等均将包含在本发明的保护范围内。

Claims (10)

  1. 一种含硫锂电池正极材料,为富锂锰基掺硫正极材料,化学式为Li 1+δMn aNi bCo cS xO y,其中,δ=0~0.2,a=0.45~0.7,b=0.05~0.35,c=0.05~0.3,x=0.001~0.1,y=1.9~1.999,且x+y=2,δ+a+b+c=1;硫以阴离子形式掺杂在所述正极材料中,是通过液相法将未掺杂硫的正极材料在含阴离子硫的溶液中充分反应,烘干后得到的含硫锂电池正极材料。
  2. 如权利要求1所述的含硫锂电池正极材料,其特征在于,δ=0~0.2,a=0.45~0.7,b=0.05~0.35,c=0.05~0.3,x=0.001~0.05,y=1.95~1.999。
  3. 如权利要求1所述的含硫锂电池正极材料,其特征在于,所述含硫锂电池正极材料中形成两相的固溶体或者纳米混合体,即zLiMO yS 2-y-(1-z)Li 2MnO yS 2-y,其中0<z<1,M为高于2+价的包括Ni、Co、Mn的金属元素的组合,y=1.9~1.999。
  4. 如权利要求1所述的含硫锂电池正极材料,其特征在于,所述含硫锂电池正极材料在30℃,2.1~4.8V,0.1C条件下进行充放电,放电容量大于300mAh/g;在30℃,2.1~4.8V,1C条件下进行充放电,放电容量是0.1C放电容量的80%以上。
  5. 权利要求1~4任一所述含硫锂电池正极材料的制备方法,将富锂锰基锂电池正极材料加入含阴离子硫的溶液进行液相反应,搅拌均匀,过滤,得到含硫锂电池正极材料,真空干燥即可,其中所述富锂锰基锂电池正极材料的通式为Li 1+δMn aNi bCo cO 2,δ=0~0.2,a=0.45~0.7,b=0.05~0.35,c=0.05~0.3,δ+a+b+c=1。
  6. 如权利要求5所述的制备方法,其特征在于,所述含阴离子硫的溶液是将硫的可溶性盐溶于溶剂中得到的溶液。
  7. 如权利要求6所述的制备方法,其特征在于,所述硫的可溶性盐为硫化物。
  8. 如权利要求5所述的制备方法,其特征在于,所述含阴离子硫的溶液的浓度为0.01mol/L~0.5mol/L,所述阴离子硫是S 2-
  9. 如权利要求5所述的制备方法,其特征在于,所述富锂锰基锂电池正极材料在含阴离子硫的溶液中的浓度范围为0.002~0.01g/mL;所述液相反应的搅拌速度为300~500rpm,反应温度为30~40℃,时间为0.5~1小时;真空干燥的温度为100~150℃,干燥时间为12~24h。
  10. 一种锂离子电池,包括正极材料、负极材料、隔膜及电解质,其中所述正极材料是权利要求1~4任一所述的含硫锂电池正极材料。
PCT/CN2021/093231 2021-04-30 2021-05-12 一种含硫锂电池正极材料及其制备方法与锂电池 WO2022227119A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110483025.1A CN115275193A (zh) 2021-04-30 2021-04-30 一种含硫锂电池正极材料及其制备方法与锂电池
CN202110483025.1 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022227119A1 true WO2022227119A1 (zh) 2022-11-03

Family

ID=83745651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093231 WO2022227119A1 (zh) 2021-04-30 2021-05-12 一种含硫锂电池正极材料及其制备方法与锂电池

Country Status (2)

Country Link
CN (1) CN115275193A (zh)
WO (1) WO2022227119A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157844A (ja) * 2001-11-20 2003-05-30 Sagaken Chiiki Sangyo Shien Center 非水二次電池用正極活物質、製造方法および非水二次電池
CN103943863A (zh) * 2013-01-23 2014-07-23 江南大学 阴离子掺杂改性的过锂(5:3:2)型三元锂离子电池正极材料
CN107579215A (zh) * 2017-08-17 2018-01-12 上海大学 阴阳离子共掺改性的层状富锂正极材料及其制备方法
CN109148856A (zh) * 2018-08-24 2019-01-04 南开大学 一种高循环容量抗电压衰退富锂层状正极材料的制备方法
CN111370686A (zh) * 2020-03-20 2020-07-03 昆明理工大学 一种阴阳离子共掺杂改性的富锂锰复合正极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157844A (ja) * 2001-11-20 2003-05-30 Sagaken Chiiki Sangyo Shien Center 非水二次電池用正極活物質、製造方法および非水二次電池
CN103943863A (zh) * 2013-01-23 2014-07-23 江南大学 阴离子掺杂改性的过锂(5:3:2)型三元锂离子电池正极材料
CN107579215A (zh) * 2017-08-17 2018-01-12 上海大学 阴阳离子共掺改性的层状富锂正极材料及其制备方法
CN109148856A (zh) * 2018-08-24 2019-01-04 南开大学 一种高循环容量抗电压衰退富锂层状正极材料的制备方法
CN111370686A (zh) * 2020-03-20 2020-07-03 昆明理工大学 一种阴阳离子共掺杂改性的富锂锰复合正极材料及其制备方法

Also Published As

Publication number Publication date
CN115275193A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Tang et al. Synthesis and electrochemical performance of lithium-rich cathode material Li [Li0. 2Ni0. 15Mn0. 55Co0. 1-xAlx] O2
Lei et al. Nb-doping in LiNi0. 8Co0. 1Mn0. 1O2 cathode material: Effect on the cycling stability and voltage decay at high rates
CN110474044A (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
CN103904321B (zh) 锂离子电池负极材料锰酸锂的高温固相制备方法
Yi et al. High-performance xLi2MnO3·(1-x) LiMn1/3Co1/3Ni1/3O2 (0.1⿤ x⿤ 0.5) as Cathode Material for Lithium-ion Battery
CN104241626A (zh) 锂离子电池钒酸锂负极材料的溶胶-凝胶制备方法
CN113097464B (zh) 一种ZnS-SnS@3DC复合材料及其制备方法和应用
CN112038615A (zh) 富锂锰基复合正极材料及其制备方法和应用
CN107785557B (zh) 基于镧掺杂和表面氧空位修饰联合机制的富锂锰基层状材料的制备方法及其产品和应用
CN109659538B (zh) 基于多巴胺和磷酸锂包覆的富锂锰基氧化物材料的制备及其产品和应用
CN112777611B (zh) 一种菱形相普鲁士蓝衍生物及其制备方法和应用
WO2019104948A1 (zh) 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池
WO2021184764A1 (zh) 用于锂离子电池的富锂锰基正极材料及其制备方法、正极片、锂离子电池和电动汽车
CN111799465B (zh) 一种锰基锂电池电极材料的复合包覆方法
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
WO2023060992A1 (zh) 正极边角料回收合成高安全性正极材料的方法和应用
CN109616660A (zh) 四氧化三钴负载于碳纳米片电极材料的制备方法及其产品和应用
CN115241435A (zh) 一种层状Na3M2XO6氧化物包覆改性的锰酸钠正极材料及其制备方法
WO2022227119A1 (zh) 一种含硫锂电池正极材料及其制备方法与锂电池
ZHONG et al. Synthesis and electrochemical performances of LiNi0. 6Co0. 2Mn0. 2O2 cathode materials
CN114256460A (zh) “盐包水”微反应器原理大规模制备高结晶普鲁士蓝类似物用于钠离子电池
CN113328077A (zh) 一种正极材料、其制备方法和应用
CN112186166A (zh) 一种钼/钴氧化物-碳复合材料及其制备方法、锂离子电池负极极片和锂离子电池
CN103187596A (zh) 高比容量富锂复合正极材料的稳定化方法
Sun et al. Review on Layered Manganese‐Based Metal Oxides Cathode Materials for Potassium‐Ion Batteries: From Preparation to Modification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (22.02.2024)