WO2022224797A1 - 積層体、および積層体の製造方法 - Google Patents

積層体、および積層体の製造方法 Download PDF

Info

Publication number
WO2022224797A1
WO2022224797A1 PCT/JP2022/016559 JP2022016559W WO2022224797A1 WO 2022224797 A1 WO2022224797 A1 WO 2022224797A1 JP 2022016559 W JP2022016559 W JP 2022016559W WO 2022224797 A1 WO2022224797 A1 WO 2022224797A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxygen
laminate
aluminum
substrate
Prior art date
Application number
PCT/JP2022/016559
Other languages
English (en)
French (fr)
Inventor
佐藤義和
室伏義郎
徳永幸大
佐藤誠
Original Assignee
東レフィルム加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レフィルム加工株式会社 filed Critical 東レフィルム加工株式会社
Priority to CN202280028837.XA priority Critical patent/CN117203050A/zh
Priority to JP2022524570A priority patent/JPWO2022224797A1/ja
Priority to US18/285,870 priority patent/US20240183021A1/en
Priority to EP22791572.5A priority patent/EP4328016A1/en
Priority to KR1020237026942A priority patent/KR20230173651A/ko
Publication of WO2022224797A1 publication Critical patent/WO2022224797A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Definitions

  • the present invention relates to a laminate having excellent barrier properties against oxygen and water vapor, which can be suitably used as a packaging material for foods, pharmaceuticals, electronic components, etc., and a method for producing the laminate.
  • PVD method such as a vacuum deposition method, a sputtering method, an ion plating method, or a plasma chemical vapor deposition method, a thermal chemical vapor deposition method, or a photochemical vapor deposition method is applied to the surface of the film substrate.
  • Gas barrier films formed by forming inorganic compound films such as silicon oxide and aluminum oxide formed by chemical vapor deposition methods (CVD methods) such as It is used to package various items such as pharmaceuticals and industrial goods.
  • Patent Document 1 As a method for achieving high gas barrier properties, there is a method of providing an undercoat layer between the substrate and the inorganic compound layer for the purpose of flattening the substrate and improving adhesion (Patent Document 1), and a method of providing a flat surface between the substrate and the gas barrier layer.
  • Patent Document 2 proposes a method of forming a plurality of layers on a substrate and further providing a gas barrier film layer thereon by curing a polymerizable acrylic monomer or a mixture of a monomer and an oligomer (Patent Document 3). It is
  • JP-A-2000-043182 JP 2005-324469 A Japanese Patent Application Laid-Open No. 2008-036948
  • the method using the undercoat layer described in Patent Document 1 is advantageous in reducing defects in the inorganic compound layer and improving adhesion to the substrate surface by smoothing the substrate surface, but it increases the number of manufacturing steps. Since then, there have been problems with productivity.
  • the method using a laminated structure has less variation in barrier properties and is superior in mechanical properties, but it also has a problem in productivity due to an increase in the number of manufacturing processes. . Further, the increase in the number of processes causes cost increase from the viewpoint of quality assurance in each process.
  • An object of the present invention is to provide a laminate and a method for producing the laminate that are highly productive and exhibit gas barrier properties with little variation even in a thin film configuration, in view of the background of the prior art.
  • At least one side of the substrate has an A layer, the A layer contains at least aluminum (Al) and oxygen (O), and the depth direction in the A layer is 5.0 to Aluminum (Al) and oxygen A laminated body in which portions having different composition ratios of (O) O/Al are present.
  • FIG. 4 is a schematic diagram schematically showing an example of an oxygen gas introduction pipe in a roll-up vacuum vapor deposition apparatus for producing a laminate.
  • FIG. 4 is a schematic diagram schematically showing an example of an oxygen gas introduction pipe in a roll-up vacuum vapor deposition apparatus for producing a laminate.
  • FIG. 4 is a schematic diagram schematically showing an example of an oxygen gas introduction pipe in a roll-up vacuum vapor deposition apparatus for producing a laminate.
  • a preferred embodiment of the laminate of the present invention has an A layer on at least one side of the substrate, the A layer contains at least aluminum (Al) and oxygen (O), and in the depth direction in the A layer When 5.0 to 25.0%, 40.0 to 60.0%, and 75.0 to 95.0% of the length are defined as the X section, Y section, and Z section, respectively. , and a laminate in which there are portions where the composition ratio O/Al of aluminum (Al) and oxygen (O) is different.
  • the elements contained in the A layer may contain other elements as long as they contain at least aluminum (Al) and oxygen (O). For example, it may contain hydrogen (H), carbon (C), nitrogen (N), silicon (Si), and the like.
  • Layer A contains aluminum (Al) and oxygen (O) is evaluated by HR-RBS (High Resolution Rutherford Backscattering Spectrometry) / HR-HFS (High Resolution Hydrogen Forward scattering Spectrometry) method under the conditions described in Examples. It means that the content ratio of any element is 5.0 atm % or more in 100.0 atm % of the total atoms constituting the A layer, which is detected when performing the above.
  • HR-RBS High Resolution Rutherford Backscattering Spectrometry
  • HR-HFS High Resolution Hydrogen Forward scattering Spectrometry
  • the object is irradiated with high-speed ions, and the energy spectra of the ions Rutherford backscattered by the nuclei in the solid and the forward scattered hydrogen atoms due to elastic recoil are obtained.
  • It is a method of obtaining the elemental composition contained in the target object. Detailed evaluation conditions are as described in Examples. By this method, it is possible to obtain a graph of the composition ratio in the depth direction. , the composition of the A layer is calculated from a position deeper than the surface layer 0.4 nm.
  • the interface between the A layer and the substrate is affected by the substrate, when the average carbon content of the substrate is C 1 and the average carbon content of the A layer is C 2 , (C 1 + C 2 ) / 2 is the reference interface between the A layer and the substrate, and the area from the reference interface to the surface layer of 0.4 nm is the measurement area of the A layer in the HR-RBS/HR-HFS method.
  • the average composition of the A layer is calculated by averaging the measurement results at each measurement point in the measurement area. Specifically, first, an appropriate provisional interface is used as a reference interface between the A layer and the base material, and the average carbon content between the A layer and the base material is determined.
  • the average carbon content of the A layer and the substrate is determined. By repeating this, the reference interface when each average carbon content converges is defined as the reference interface between the A layer and the substrate.
  • the reference interface when there is a layer adjacent to the A layer, such as when there is another layer between the A layer and the base material, the average carbon content of the A layer and the adjacent layer is used as the standard. Find the interface. When there are adjacent layers on both sides of the layer A, each reference interface obtained in the same manner as described above is used instead of the 0.4 nm surface layer.
  • the X portion refers to a portion that is 5.0 to 25.0% on the length basis with respect to the thickness of the inorganic compound layer specified by the HR-RBS/HR-HFS method.
  • the Y portion refers to the center portion of 40.0 to 60.0% of the A layer thickness.
  • the Z portion refers to a portion of 75.0 to 95.0% of the thickness.
  • the interface between the A layer and the other layer is 0%.
  • the interface between the layer adjacent to the layer A and the layer A is set to 0%.
  • the interface with each adjacent layer is appropriately set to 0% or 100%. Also, the composition of each portion is calculated by averaging the measurement results at each measurement point in each portion.
  • the X section, Y section, and Z section are defined as follows.
  • the X portion refers to a portion that is 5.0 to 25.0% on the length basis with respect to the A layer thickness specified from a cross-sectional observation image by STEM (scanning transmission electron microscope).
  • the Y portion refers to the center portion of 40.0 to 60.0% of the A layer thickness.
  • the Z portion refers to a portion of 75.0 to 95.0% of the thickness.
  • the A layer thickness uses a value measured from a cross-sectional observation image by STEM (scanning transmission electron microscope), and when the base material can be specified, for example, when the laminate has a two-layer structure consisting of the A layer and the base material, A The interface between the layer and the substrate side is 0%, and the outermost surface is 100%. When there is another layer between the A layer and the substrate, the interface between the A layer and the other layer is 0%. When there are a plurality of other layers, the interface between the layer adjacent to the layer A and the layer A is set to 0%. When there are adjacent layers on both sides of layer A, the interface with each adjacent layer is appropriately set to 0% or 100%.
  • composition ratio O/Al of aluminum (Al) and oxygen (O) differs means that the above-defined X section, Y section, and Z section measured by the HR-RBS/HR-HFS method. It means that there is a difference of 0.10 or more in any of the values of the composition ratio O/Al.
  • the difference being 0.50 or less reduces the locations where Al peroxide is abundant and where Al suboxide is abundant relative to the average composition of the A layer. This is preferable because it provides a film with good barrier properties and less variation.
  • any one of the values of the X part, Y part, and Z part has a difference of 0.15 or more.
  • Specific measurement conditions for the element ratio of Al and O in the A layer are as described in Examples.
  • the portion of ⁇ 60.0% and the portion of 75.0% to 95.0% are defined as the X part, the Y part, and the Z part, respectively, the composition ratio O / Al of aluminum (Al) and oxygen (O) Assume that the laminate has different parts.
  • one layer refers to a portion having a boundary surface distinguishable from adjacent portions in the thickness direction and having a finite thickness. More specifically, it refers to those distinguished by a discontinuous interface when a cross section of the A layer is observed with a scanning transmission electron microscope (STEM) as described in Examples. Even if the composition changes in the thickness direction of layer A, it is treated as one layer if there is no boundary surface between them.
  • STEM scanning transmission electron microscope
  • the A layer contains at least aluminum (Al) and oxygen (O).
  • Al aluminum
  • O oxygen
  • the amount of oxygen gas introduced is preferably 2 to 19 L/min.
  • the method of introducing oxygen gas it is preferable to use a tubular shape having a one-way introduction direction as shown in FIG. Since the gas inlet has a tubular shape as shown in FIG.
  • the directivity of the gas introduced from the gas inlet is high, and the target position can be efficiently oxidized.
  • the oxygen gas introduced from the gas inlet can be uniformly permeated into the aluminum vapor. may be inferior to that of
  • a ratio of O/Al is preferred.
  • the composition ratio O/Al the composition ratio O/Al in the X part > the composition ratio O/Al in the Y part and/or the composition ratio O/Al in the Y part ⁇ the composition ratio O/Al in the Z part. It is more preferable to have
  • the A layer of the present invention further contains hydrogen (H), and the peak intensity near 530 eV of the oxygen K-edge spectrum of electron energy loss spectroscopy (EELS) analysis in each of the X part, Y part, and Z part is IX ( 530), I Y (530), I Z (530), and the peak intensities near 540 eV of the oxygen K-edge spectrum of EELS analysis in the X, Y, and Z portions in the A layer, respectively, are IX (540), I When Y (540) and I Z (540), I Y (530)/I Y (540)> IX (530)/ IX (540) and/or I Y (530)/I Y (540) )>I Z (530)/I Z (540).
  • the EELS analysis is measured by STEM-EELS (Scanning Transmission Electron Microscopy-Electron Energy Loss Spectroscopy) described above.
  • the stack has an A layer, said A layer being at least aluminum (Al) and oxygen (O) and further contains hydrogen (H), and the peak intensity near 530 eV of the oxygen K-edge spectrum of electron energy loss spectroscopy (EELS) analysis in each of the X part, Y part, and Z part is IX (530), I Y (530) and I Z (530), and the peak intensities near 540 eV of the oxygen K-edge spectrum of EELS analysis in the X portion, Y portion, and Z portion in the A layer, respectively, are I X (540) and I Y ( 540) and I Z (540), then I Y (530)/I Y (540)> IX (530
  • the peak near 530 eV is derived from hydroxide
  • the peak near 540 eV is a mixed peak of Al and O. That is, when the respective peak intensities are I(530) and I(540), the larger the value of I(530)/I(540), the larger the amount of hydroxide in the film. It indicates that the amount of hydroxide in the film is small.
  • the introduction position, introduction amount, and introduction method of oxygen gas are appropriately selected.
  • the details are the same as those described above.
  • a tubular oxygen gas introduction pipe having a one-way introduction direction is used to introduce more oxygen upstream of the substrate and/or introduce more oxygen directly above the evaporation source.
  • I X (530)/I X (540) can be made lower than otherwise.
  • I Y (530)/I Y (540) can be made lower than otherwise.
  • I Z (530)/I Z (540) By introducing more oxygen downstream of the substrate and/or more oxygen directly above the evaporation source, I Z (530)/I Z (540) can be made lower than otherwise. In addition, the value of I(530)/I(540) can be reduced overall by increasing the degree of pressure reduction, that is, by decreasing the atmospheric pressure.
  • the layer A containing hydrogen (H) means that the average composition of the layer A is 5.0 atm% or more when evaluated by the HR-RBS/HR-HFS method under the conditions described in the examples. It means to contain. By containing hydrogen (H), flexibility can be imparted to the laminate.
  • the A layer is formed on a film containing a substrate, and in the X section and the Z section in the A layer, IX (530)/ IX (540) ⁇ 0.15 and/or I Z ( 530)/I Z (540) ⁇ 0.25. from the X portion close to the substrate and/or the substrate by IX (530)/ IX (540) ⁇ 0.15 and/or The amount of hydroxide in the distant Z portion is reduced and the film becomes dense, resulting in good barrier properties.
  • I X (530)/I X (540) ⁇ 0.11 and/or I Z (530)/I Z (540) ⁇ 0.20 are more preferable, and IX (530)/I More preferably, X (540) ⁇ 0.083 and/or I Z (530)/I Z (540) ⁇ 0.15.
  • a preferred positional aspect of the laminate of the present invention has an A layer on at least one side of the substrate, the A layer contains at least aluminum (Al) and oxygen (O), and the EELS analysis in the A layer
  • the laminate satisfies I(530)/I(540) ⁇ 1.50, where I(530) is the peak intensity near 530 eV of the oxygen K-edge spectrum and I(540) is the peak intensity near 540 eV.
  • EELS analysis is electron energy loss spectroscopy, in which electrons are injected into a measurement sample, and electrons (inelastic scattered electrons) after the incident electrons have lost energy due to interaction with the measurement sample are analyzed by spectroscopy.
  • This is a method for analyzing the elemental composition and chemical bonding state of the measurement sample.
  • Inelastic scattering to be analyzed is inner-shell electron excitation (50 eV ⁇ ), interband transition due to valence electron excitation (0 to 10 eV), and plasmon excitation due to electron collective vibration (10 to 50 eV).
  • the oxygen K-edge spectrum refers to the absorption spectrum of the core electron region in the EELS spectrum.
  • the peak intensity I(530) near 530 eV is the peak top intensity detected between 528.0 and 531.0 eV. However, when multiple peak tops are detected between 528.0 and 531.0, the intensity at the peak top with the highest peak intensity is adopted, and when no peak top is detected, the intensity at 530 eV is adopted.
  • the peak intensity I (540) near 540 eV is the peak top intensity detected between 535.0 and 545.0 eV. However, when multiple peak tops are detected between 535.0 and 545.0 eV, the intensity at the peak top with the highest peak intensity is adopted, and when no peak top is detected, the intensity at 540 eV is adopted.
  • the peak near 530 eV is the peak derived from hydroxide
  • the peak near 540 eV is the mixed peak of Al and O. That is, when the respective peak intensities are I(530) and I(540), the larger the value of I(530)/I(540), the larger the amount of hydroxide in the film. It indicates that the amount of hydroxide in the film is small.
  • I(530)/I(540) in the X section, Y section, and Z section in layer A are IX, IY, and IZ
  • the sum of IX , IY , and IZ (I X + I Y + I Z ) is defined as I(530)/I(540) of the A layer.
  • the detailed EELS analysis method is as described in Examples.
  • I(530)/I(540) ⁇ 1.50 in the A layer the number of places with a large amount of hydroxide in the entire film in the A layer is reduced, so that the barrier property is less variable and the barrier property is improved. It becomes a good laminate.
  • I(530)/I(540)>1.50 in the A layer the amount of hydroxide increases in a certain region in the film, and accordingly, voids and defects are likely to occur, and the region is a water vapor permeation path. As a result, variations in barrier properties tend to occur. From the above viewpoint, I(530)/I(540) in layer A is more preferably 1.00 or less, and still more preferably 0.50 or less. In addition, if the amount of hydroxide is too small, the layer A becomes hard and easily cracked, so I(530)/I(540) in the layer A is preferably 0.20 or more.
  • Electron energy loss spectroscopy is measured by STEM-EELS (Scanning Transmission Electron Microscopy-Electron Energy Loss Spectroscopy).
  • the FIB method Flucused Ion Beam method
  • FIB method “Focused Ion Beam method”
  • p. 118-119 prepare a sample for cross-sectional observation using a microsampling system. At that time, the sample is handled entirely in a glove box (under a nitrogen atmosphere) except when carbon deposition is carried out for the purpose of imparting conductivity to the surface.
  • Detailed measurement conditions are as described in Examples.
  • the position of the layer containing aluminum (Al) and oxygen (O) is roughly grasped by the above-mentioned HR-RBS/HR-HFS method, and the interface of the layer is grasped by STEM measurement.
  • EELS measurement is performed on the X portion, Y portion, and Z portion of the layer, I(530) and I(540) of each portion of the layer are obtained, and I(530)/I(540) of the layer is obtained.
  • At least one layer has an A layer if I(530)/I(540) ⁇ 1.50, and the A The layer contains at least aluminum (Al) and oxygen (O), and the peak intensity near 530 eV of the oxygen K-edge spectrum of the EELS analysis in the A layer was defined as I (530), and the peak intensity near 540 eV was defined as I (540). and I(530)/I(540) ⁇ 1.50.
  • the A layer contains at least aluminum (Al) and oxygen (O), and the following method can be preferably cited as a means for achieving I(530)/I(540) ⁇ 1.50 in the A layer.
  • one layer refers to a portion having a boundary surface distinguishable from adjacent portions in the thickness direction and having a finite thickness. More specifically, it refers to those distinguished by a discontinuous interface when a cross section of the A layer is observed with a scanning transmission electron microscope (STEM) as described in Examples. Even if the composition changes in the thickness direction of layer A, it is treated as one layer if there is no interface between them.
  • an appropriate amount of oxygen is introduced into the aluminum vapor when forming the A layer by an appropriate method. This can be achieved by covering the downstream side of the material with an anti-adhesion plate. If the amount of oxygen gas introduced is small, the amount of metal Al and suboxide Al increases, and the aforementioned portions are likely to be hydroxylated by exposure to the atmosphere after the formation of the A layer, so the amount of hydroxide in the A layer increases. On the other hand, when a large amount of oxygen gas is introduced, the amount of oxygen having dangling bonds increases, and H is bonded to the above-mentioned portions due to exposure to the atmosphere after the formation of the A layer, resulting in hydroxylation.
  • the degree of pressure reduction is set to 5.0 ⁇ 10 -3 Pa or less
  • the substrate conveying speed is 400 m / min
  • the substrate width is 1.0 m.
  • the amount of oxygen gas introduced is preferably 2 to 19 L/min when evaporating aluminum with a target thickness of the A layer of 8 nm.
  • the upstream side of the substrate and the surface portion of the A layer (Z portion), which greatly affect the film quality of the interface portion (X portion) of the A layer, are the reasons for covering the substrate upstream side and the substrate downstream side with the adhesion prevention plate. Since the aluminum vapor density is low on the downstream side of the base material, which greatly affects the film quality, the film quality tends to differ from the central part (Y part), which is likely to cause variations. Therefore, the variation can be reduced by covering the base material upstream side and the base material downstream side with the adhesion preventing plate.
  • the oxygen gas directly above the evaporation source. From the above point of view, it is more preferable to introduce from the substrate upstream side and/or downstream side in addition to directly above the evaporation source.
  • the thickness of the A layer is preferably 15.0 nm or less. When the thickness of the A layer is 15.0 nm or less, the barrier properties are good and the bending resistance is excellent. From the same point of view, it is more preferably 10.0 nm or less, further preferably 8.0 nm or less, and particularly preferably 7.0 nm or less.
  • the thickness of the A layer can be measured from a cross-sectional image observed with a scanning transmission electron microscope (STEM).
  • the thickness of the layer A is X (nm) and the water vapor permeability is Y (g/m 2 /day), it is preferable that X ⁇ Y ⁇ 20.0.
  • X ⁇ Y ⁇ 20.0 even a thin film can exhibit barrier properties. From the viewpoint of productivity and cost, X ⁇ Y ⁇ 15.0 is more preferable, and X ⁇ Y ⁇ 8.0 is even more preferable.
  • the water vapor transmission rate can be measured under a 40° C. 90% RH environment with a water vapor transmission rate meter. In addition, day in the said measurement unit corresponds to 24 hours.
  • the total light transmittance of the laminate is preferably 85.0% or more. When the total light transmittance of the laminate is 85.0% or more, the visibility of the contents is excellent. A total light transmittance can be measured using a haze meter.
  • the composition ratio of aluminum (Al) and oxygen (O) is 1.20 ⁇ O/Al ⁇ 2.20.
  • the ratio of aluminum present as aluminum oxide or aluminum hydroxide instead of metallic aluminum in the A layer increases, so that transparency and barrier properties are good. becomes.
  • the layer A has an average composition of aluminum (Al) atom concentration:oxygen (O) atom concentration:hydrogen (H) atom concentration of 15.0 to 40.0. 0: 40.0 to 55.0: 10.0 to 35.0 (atm%) is preferred.
  • the average composition of the layer A is measured by the HR-RBS/HR-HFS method. Specific measurement conditions are as described in Examples. From the same point of view, it is more preferable that the ratio of Al atomic concentration: O atomic concentration: H atomic concentration is 20.0 to 35.0: 40.0 to 55.0: 15.0 to 30.0 (atm%). . Further, it is preferable that both the concentrations of nitrogen (N) atoms and carbon (C) atoms are 5 atm % or less.
  • the method for forming the A layer is not particularly limited, and vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, atomic layer deposition, plasma polymerization, A pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used. From the viewpoint of production cost, gas barrier property, etc., it is preferable to use a vacuum deposition method.
  • the A layer can be formed on at least one side of the base material by evaporating aluminum using a vacuum deposition method and introducing oxygen into the aluminum vapor.
  • a vacuum deposition method examples include electron beam (EB) evaporation, resistance heating, induction heating, and the like, but are not limited to these.
  • EB electron beam
  • the gas to be introduced contains oxygen, it may contain other gas such as an inert gas for film quality control.
  • oxygen from the upstream side and/or the downstream side of the substrate It is preferable to introduce oxygen from the upstream side and/or the downstream side of the substrate. It is preferable to introduce oxygen from the position in the direction of aluminum evaporation gas. By introducing oxygen as described above, the film quality of the X portion and/or the Z portion of the A layer is improved, and the barrier property and adhesion are improved. As for the oxygen introduction position, it is more preferable to introduce oxygen from the upstream side of the substrate, or from the upstream and downstream sides of the substrate.
  • An example of the method of forming the layer A according to FIG. 2 is shown.
  • An aluminum oxide deposition layer is provided as a layer A on the surface of the substrate 1 by an electron beam (EB) heating deposition method.
  • EB electron beam
  • aluminum granules are set in the evaporation source 15 as a vapor deposition material.
  • the unwinding roll 5 is set so that the surface of the substrate 1 on which the layer A is provided faces the evaporation source 15, and the unwinding guide rolls 6, 7, 8 are used to Pass through the main drum 9.
  • the pressure inside the vacuum deposition apparatus 3 is reduced by a vacuum pump to obtain 5.0 ⁇ 10 ⁇ 3 Pa or less.
  • the ultimate degree of vacuum is preferably 5.0 ⁇ 10 ⁇ 2 Pa or less.
  • the degree of ultimate vacuum By setting the degree of ultimate vacuum to 5.0 ⁇ 10 ⁇ 3 Pa or less, the amount of residual gas in the vacuum deposition apparatus is reduced, and the film quality of the A layer is improved.
  • the temperature of the main drum 9 is set to -30°C. From the viewpoint of preventing the substrate from being damaged by heat, the temperature is preferably 20° C. or lower, more preferably 0° C. or lower.
  • an electron gun (EB gun) 17 is used as a heating source to melt aluminum in the evaporation source.
  • a linear anode layer type ion source 14 (ALS1000L, Veeco, USA) installed at a distance of 50 mm from the film running surface introduced oxygen at 8 L/min, and the anode voltage was 10 kV.
  • the substrate surface is treated by operating at a current of 8.6A.
  • the layer A is formed on the surface of the substrate 1 by adjusting the EB gun, the acceleration current, the film transport speed, and the amount of oxygen gas introduced so that the thickness of the layer A to be formed is 5 nm.
  • the introduction position of the oxygen gas one or more of the oxygen gas introduction pipes 16a to 16d are used depending on the target film quality. As shown in FIG.
  • the oxygen gas introducing pipe has a tubular shape in which the introduction direction is unidirectional. It is preferable to use 16a and/or 16b from the viewpoint of improving the film quality in the initial stage of vapor deposition and improving adhesion and barrier properties. From the viewpoint of improving the film quality of the entire A layer and improving the barrier property, it is preferable to use 16a and/or 16c after using 16d. After that, it is taken up on a take-up roll 13 through guide rolls 10, 11, 12. - ⁇ The substrate surface treatment by the ion source and the vapor deposition of the A layer may be carried out in the same transport, or may be carried out in separate transports.
  • the substrate used in the present invention preferably has a film form from the viewpoint of ensuring flexibility.
  • the structure of the film may be a monolayer film or a film having two or more layers, for example, formed by a coextrusion method.
  • unstretched, uniaxially stretched or biaxially stretched film may be used.
  • the material of the substrate used in the present invention is not particularly limited, it is preferable that the main constituent is an organic polymer.
  • Organic polymers that can be suitably used in the present invention include, for example, crystalline polyolefins such as polyethylene and polypropylene, amorphous cyclic polyolefins having a cyclic structure, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyamides, polycarbonates, Various polymers such as polystyrene, polyvinyl alcohol, saponified ethylene-vinyl acetate copolymer, polyacrylonitrile, and polyacetal can be used.
  • the organic polymer may be either a homopolymer or a copolymer. As the organic polymer, only one type may be used, or a plurality of types may be blended and used.
  • the surface of the substrate on which layer A is to be formed is treated with corona treatment, plasma treatment, ultraviolet treatment, ion bombardment treatment, solvent treatment, organic matter, inorganic matter, or a mixture thereof in order to improve adhesion and smoothness.
  • a pretreatment such as treatment for forming an anchor coat layer may be applied.
  • a coating layer of an organic material, an inorganic material, or a mixture thereof is laminated for the purpose of improving slipperiness during winding of the substrate and scratching resistance of the substrate. may
  • the thickness of the base material used in the present invention is not particularly limited, it is preferably 200 ⁇ m or less from the viewpoint of ensuring flexibility, and preferably 5 ⁇ m or more from the viewpoint of ensuring strength against tension and impact. Further, the thickness of the substrate is preferably 10 ⁇ m or more from the viewpoint of ease of processing and handling of the film, and 25 ⁇ m or less from the viewpoint of use as a packaging material.
  • an overcoat layer is formed for the purpose of improving scratch resistance, printability, retort resistance, etc. within a range that does not reduce gas barrier properties.
  • a laminated structure in which an adhesive layer or a film made of an organic polymer compound for bonding is laminated may be used.
  • the outermost surface here means the surface of the A layer after the A layer is laminated on the base material.
  • the laminate of the present invention can be suitably used as a gas barrier film because it has excellent barrier properties against oxygen and water vapor, has little variation, and is low in cost.
  • the laminate of the present invention can be suitably used as a packaging material for foods, medicines, electronic parts and the like.
  • EELS analysis of the A layer was performed using an EELS detector (GATAN GIF Quantum). As specific measurement conditions, each point (X part, Y part, Z part) was analyzed at an acceleration voltage of 200 kV, a beam diameter of 0.2 nm ⁇ , and an energy resolution of 0.5 eV FWHM (full width at half maximum). absorption spectrum was obtained. With respect to the thickness of the A layer, the interface with the substrate side of the A layer is 0%, the outermost surface is 100%, the X part is 5 to 25%, the Y part is 40 to 60%, and the Z part is 75 to 95%. %, and the average value of the area was used as the analysis result.
  • Oxygen permeability (cc/m 2 /day)
  • OX-TRAN2/20 manufactured by MOCON in accordance with JISK7126-2 (enacted on August 20, 2006). was measured under the conditions of Five samples collected from different positions were averaged, and the value was defined as the oxygen permeability (cc/m 2 /day). In addition, the standard deviation of 5 points was calculated as the variation.
  • Total light transmittance The total light transmittance of the laminate was measured based on JISK7361 (established in 1997) using a haze meter NDH4000 manufactured by Nippon Denshoku Industries Co., Ltd. The measurement was performed twice, the obtained data were averaged, rounded off to the second decimal place, the average value at the level concerned was obtained, and the value was taken as the total light transmittance (%).
  • At least one side of the substrate has an A layer
  • the A layer contains at least aluminum (Al) and oxygen (O)
  • the depth direction in the A layer is 5.0 to Aluminum (Al) and oxygen Examples and comparative examples are shown for laminates in which there are portions where the composition ratio O/Al of (O) is different.
  • Example 1 (Formation of layer A) Using the roll-up type vacuum vapor deposition apparatus 3 shown in FIG. 2, an aluminum oxide vapor deposition layer was formed as the layer A by electron beam (EB) vapor deposition, aiming at a thickness of 8 nm.
  • EB electron beam
  • Granular aluminum manufactured by Vacuum Metallurgical Co., Ltd., purity 99.99%) having a size of about 2 to 5 mm was set in the evaporation source 15 as a vapor deposition material.
  • the surface of the base material 1 on which the layer A is provided is set on the unwinding roll 5 so as to face the evaporation source 15. passed through drum 9.
  • the temperature of the main drum was controlled to -30°C.
  • the pressure inside the vacuum deposition apparatus 3 was reduced by a vacuum pump to obtain 3.0 ⁇ 10 ⁇ 3 Pa.
  • using an electron gun 17 as a heating source, the aluminum was melted until it was no longer granular.
  • the linear anode layer type ion source 14 (ALS1000L, Veeco, USA) installed at a distance of 50 mm from the film running surface is operated at an anode voltage of 10 kV and an anode current of 8.6 A, with oxygen introduced at 8 L/min.
  • the surface of the base material was treated.
  • the power source for the ion source used was SH type from Grassmann High Voltage Co., USA.
  • a total of 10 L/min of oxygen gas is introduced from the oxygen gas introduction pipes 16a and 16b at a ratio of 1:9 (that is, 1 L/min from the oxygen gas introduction pipe 16a and 9 L/min from the oxygen gas introduction pipe 16b).
  • the input power, the input current, and the transport speed are adjusted so that the target thickness of the A layer to be formed is 8 nm, and A is formed on the surface of the substrate 1. formed a layer.
  • the oxygen gas introduction pipe a tubular shape as shown in FIG. 4 was used. After that, it was taken up on a take-up roll 13 through guide rolls 10, 11, 12.
  • Example 2 A laminate was obtained in the same manner as in Example 1, except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced from the oxygen gas introduction pipes 16a and 16c at a ratio of 1:1.
  • Example 3 A laminate was obtained in the same manner as in Example 1, except that when forming the A layer, oxygen gas was introduced only through the oxygen gas introduction pipe 16a at a total rate of 10 L/min.
  • Example 4 A laminate was obtained in the same manner as in Example 1, except that the pressure in the vacuum apparatus was reduced to 8.0 ⁇ 10 ⁇ 3 Pa to form layer A.
  • Example 5 A laminate was obtained in the same manner as in Example 1, except that the pressure in the vacuum apparatus was reduced to 3.0 ⁇ 10 ⁇ 2 Pa to form layer A.
  • Example 6 A laminate was obtained in the same manner as in Example 1, except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced through the oxygen gas introduction pipes 16a and 16b at a ratio of 1:4.
  • Example 7 A laminate was obtained in the same manner as in Example 1, except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced from the oxygen gas introduction pipes 16a and 16b at a ratio of 0.5:9.5. .
  • Example 8 A laminate was obtained in the same manner as in Example 1, except that the thickness of the A layer to be formed was targeted to be 5 nm.
  • Example 9 A laminate was obtained in the same manner as in Example 1, except that the thickness of the A layer to be formed was aimed at 13 nm.
  • Example 10 A laminate was obtained in the same manner as in Example 1, except that when forming the A layer, oxygen gas was introduced only through the oxygen gas introduction pipe 16b at a total rate of 10 L/min.
  • Example 11 A laminate was obtained in the same manner as in Example 1, except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced through the oxygen gas introduction pipes 16b and 16c at a ratio of 9:1.
  • Example 12 A laminate was obtained in the same manner as in Example 1, except that when the layer A was formed, oxygen gas was introduced only through the oxygen gas introduction pipe 16c at a total rate of 10 L/min.
  • Example 13 A laminate was obtained in the same manner as in Example 1, except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced from the oxygen gas introduction pipes 16a, 16b, and 16c at a ratio of 1:8:1. .
  • Example 14 A laminate was obtained in the same manner as in Example 2 except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced from the oxygen gas introduction pipes 16a and 16c at a ratio of 0.5:9.5. .
  • Example 15 A laminate was obtained in the same manner as in Example 2 except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced from the oxygen gas introduction pipes 16a and 16c at a ratio of 9.5:0.5. .
  • Example 1 A laminate was obtained in the same manner as in Example 1, except that oxygen gas was not introduced during formation of the A layer.
  • Example 2 A laminate was obtained in the same manner as in Example 1, except that the total amount of oxygen gas introduced from the oxygen gas introduction pipes 16a and 16b was 1 L/min when forming the A layer.
  • Example 3 A laminate was obtained in the same manner as in Example 1, except that the total amount of oxygen gas introduced from the oxygen gas introduction pipes 16a and 16b was 20 L/min when forming the A layer.
  • Example 4 A layered product was obtained in the same manner as in Example 1, except that the pinhole-shaped oxygen gas introduction pipes 16a and 16b shown in FIG. 3 were used when forming the A layer.
  • At least one side of the substrate has an A layer
  • the A layer contains at least aluminum (Al) and oxygen (O)
  • the peak intensity near 530 eV of the oxygen K-edge spectrum of EELS analysis in the A layer is I(530)
  • peak intensity near 540 eV is I(540).
  • Example 16 (Formation of layer A) Using the roll-up type vacuum vapor deposition apparatus 3 shown in FIG. 2, an aluminum oxide vapor deposition layer was formed as the layer A by electron beam (EB) vapor deposition, aiming at a thickness of 8 nm.
  • EB electron beam
  • Granular aluminum manufactured by Vacuum Metallurgical Co., Ltd., purity 99.99%) having a size of about 2 to 5 mm was set in the evaporation source 15 as a vapor deposition material.
  • the surface of the base material 1 on which the layer A is provided is set on the unwinding roll 5 so as to face the evaporation source 15. passed through drum 9.
  • the temperature of the main drum was controlled to -30°C.
  • the pressure inside the vacuum deposition apparatus 3 was reduced by a vacuum pump to obtain 3.0 ⁇ 10 ⁇ 3 Pa.
  • using an electron gun 17 as a heating source, the aluminum was melted until it was no longer granular.
  • the linear anode layer type ion source 14 (ALS1000L, Veeco, USA) installed at a distance of 50 mm from the film running surface is operated at an anode voltage of 10 kV and an anode current of 8.6 A, with oxygen introduced at 8 L/min.
  • the surface of the base material was treated.
  • the power source for the ion source used was SH type from Grassmann High Voltage Co., USA.
  • a total of 10 L/min of oxygen gas is introduced from the oxygen gas introduction pipes 16a and 16d at a ratio of 1:9 (that is, 1 L/min from the oxygen gas introduction pipe 16a and 9 L/min from the oxygen gas introduction pipe 16d).
  • a layer A is formed on the surface of the substrate 1 by adjusting the input power, the input current, and the transport speed so that the target thickness of the A layer to be formed is 8 nm. formed.
  • As the oxygen gas introduction tube a pinhole-shaped one as shown in FIG. 3 was used. After that, it was taken up on a take-up roll 13 through guide rolls 10, 11, 12.
  • Example 17 A laminate was obtained in the same manner as in Example 16, except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced through the oxygen gas introduction pipes 16a and 16d at a ratio of 1:4.
  • Example 18 A laminate was obtained in the same manner as in Example 16, except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced from the oxygen gas introduction pipes 16a and 16d at a ratio of 0.5:9.5. .
  • Example 19 A laminate was obtained in the same manner as in Example 16, except that the thickness of the A layer to be formed was targeted to be 5 nm.
  • Example 20 A laminate was obtained in the same manner as in Example 16, except that the thickness of the A layer to be formed was aimed at 13 nm.
  • Example 21 A laminate was obtained in the same manner as in Example 16, except that when forming the A layer, oxygen gas was introduced only through the oxygen gas introduction pipe 16d at a total rate of 10 L/min.
  • Example 22 A laminate was obtained in the same manner as in Example 16, except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced through the oxygen gas introduction pipes 16d and 16c at a ratio of 9:1.
  • Example 23 A laminate was obtained in the same manner as in Example 16, except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced from the oxygen gas introduction pipes 16a, 16d, and 16c at a ratio of 1:8:1. .
  • Example 24 A laminate was obtained in the same manner as in Example 16, except that when forming the A layer, a total of 10 L/min of oxygen gas was introduced from the oxygen gas introduction pipes 16a, 16d, and 16c at a ratio of 3:4:3. .
  • Example 5 A laminate was obtained in the same manner as in Example 16, except that the total amount of oxygen gas introduced from the oxygen gas introduction pipes 16a and 16d was 1 L/min when forming the A layer.
  • Example 6 A laminate was obtained in the same manner as in Example 16, except that the total amount of oxygen gas introduced from the oxygen gas introduction pipes 16a and 16d was 20 L/min when forming the A layer.
  • Example 7 A laminate was obtained in the same manner as in Example 16, except that when the layer A was formed, the oxygen gas introduction pipes 16a and 16d were tubular in one direction as shown in FIG. .
  • Example 8 A laminate was obtained in the same manner as in Example 16, except that the anti-adhesion plate 18 was not used when forming the A layer.
  • Example 1 portions with different O/Al exist, and the film quality was different in any of the X, Y, and Z portions.
  • Examples 2 and 3 since the oxygen gas introduction pipe 16b is not used compared to Example 1, the degree of oxidation of the Y portion of the A layer is lower, so the Y portion of I(530)/I(540) is considered to be larger than that of Example 1.
  • Examples 4 and 5 it is considered that I(530)/I(540) increased as a whole because the degree of ultimate vacuum before vapor deposition was not as high as in Example 1.
  • Example 10 the degree of oxidation of the X portion of the A layer was particularly low compared to Example 1, and the value of I(530)/I(540) of the X portion was higher than in Example 1. Conceivable.
  • Comparative Example 1 since the A layer was formed without introducing oxygen, the content ratio of the oxygen (O) element in 100.0 atm % of the total atoms constituting the A layer was 4.2 atm % and 5.0 atm %. Therefore, unlike the layer A of the present invention, an aluminum (Al) layer containing no oxygen (O) was formed. Compared with Example 1 in Comparative Example 2, and in Comparative Example 5 with Example 16, the amount of oxygen introduced was extremely small, so that the degree of oxidation was lowered and a layer A containing a large amount of Al suboxide was formed. It is considered that the film has a large variation in film quality. Compared to Example 1 in Comparative Example 3, and in Comparative Example 6 compared to Example 16, the amount of introduced oxygen was extremely large. It is thought that
  • the laminate of the present invention has excellent gas barrier properties against oxygen gas, water vapor, etc., it can be suitably used as a packaging material for foods, pharmaceuticals, electronic parts, etc., but the application is not limited to these.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

基材の少なくとも片側に、A層を有し、前記A層は少なくともアルミニウム(Al)、および、酸素(O)を含み、A層中の深さ方向において長さ基準5.0~25.0%の箇所、40.0~60.0%の箇所、75.0~95.0%の箇所をそれぞれX部、Y部、Z部と規定したときに、アルミニウム(Al)と酸素(O)の組成比率O/Alの異なる箇所が存在する積層体。 生産性が高く、かつ薄膜な構成でも、ガスバリア性を少ないばらつきで発現する積層体および積層体の製造方法を提供する。

Description

積層体、および積層体の製造方法
 本発明は、食品、医薬品、電子部品などの包装材料として好適に使用できる、酸素および水蒸気に対する優れたバリア性を備える積層体、および積層体の製造方法に関する。
 フィルム基材の表面に、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理気相成長法(PVD法)、あるいはプラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(CVD法)等により形成された酸化ケイ素、酸化アルミニウム等の無機化合物膜を形成してなるガスバリアフィルムは、水蒸気や酸素などの各種ガスの遮断を必要とする食品、医薬品および工業用品等の種々の物品を包装するために用いられている。
 高いガスバリア性を満たす方法として、基材の平坦化や密着性向上を目的として基材と無機化合物層の間にアンダーコート層を設ける方法(特許文献1)や基材とガスバリア層の間に平坦化層を備え、更にガスバリア層の外面に積層される他の金属アルコキシドおよび/またはその加水分解物を含む組成物を用いたゾル・ゲル法により形成されている平坦化層とを設ける方法(特許文献2)、基材上を複数層形成し、さらにその上に重合可能なアクリル系のモノマーまたはモノマーとオリゴマーとの混合物を硬化させてなるガスバリア性被膜層を設ける方法(特許文献3)が提案されている。
特開2000-043182号公報 特開2005-324469号公報 特開2008-036948号公報
 しかしながら、特許文献1に記載のアンダーコート層を用いる方法は、基材表面の平滑化により無機化合物層の欠陥減少や基材表面との密着性向上には優位であるが、製造工程が増えることから生産性に問題があった。また、特許文献2、3に記載のように、積層構成を用いる方法は、バリア性のばらつきの少なさや機械特性に優位であるが、こちらも製造工程が増えることから生産性に問題があった。さらに工程数が増えることにより、各工程における品質保証などの観点からもコストアップの要因となる。
 本発明の課題は、かかる従来技術の背景に鑑み、生産性が高くかつ薄膜な構成でもガスバリア性を少ないばらつきで発現する積層体および積層体の製造方法を提供することである。
 本発明の好ましい態様は以下である。
(1)基材の少なくとも片側に、A層を有し、前記A層は少なくともアルミニウム(Al)、および、酸素(O)を含み、A層中の深さ方向において長さ基準5.0~25.0%の箇所、40.0~60.0%の箇所、75.0~95.0%の箇所をそれぞれX部、Y部、Z部と規定したときに、アルミニウム(Al)と酸素(O)の組成比率O/Alの異なる箇所が存在する積層体。
(2)基材の少なくとも片側に、A層を有し、前記A層は少なくともアルミニウム(Al)、並びに酸素(O)を含み、A層におけるEELS分析の酸素K端スペクトルの530eV付近のピーク強度をI(530)、540eV付近のピーク強度をI(540)としたとき、I(530)/I(540)≦1.50である積層体。
(3)真空蒸着法によりアルミニウムを蒸発させ、アルミニウム蒸気中に酸素を導入することで、基材の少なくとも片面に蒸着層を形成する、上記に記載の積層体の製造方法。
 本発明によれば、生産性が高くかつ薄膜な構成でもガスバリア性を少ないばらつきで発現する積層体および積層体の製造方法を提供することができる。
本発明の積層体の一例を示した断面図である。 本発明の積層体を製造するための巻き取り式真空蒸着装置を模式的に示す概略図である。 積層体を製造するための巻き取り式真空蒸着装置内の酸素ガス導入管の一例を模式的に示す概略図である。 積層体を製造するための巻き取り式真空蒸着装置内の酸素ガス導入管の一例を模式的に示す概略図である。 積層体を製造するための巻き取り式真空蒸着装置内の酸素ガス導入管の一例を模式的に示す概略図である。
 以下に本発明の詳細を説明する。
 [積層体]
 本発明の積層体の好ましい一態様は、基材の少なくとも片側に、A層を有し、前記A層は少なくともアルミニウム(Al)、および酸素(O)を含み、A層中の深さ方向において長さ基準5.0~25.0%の箇所、40.0~60.0%の箇所、75.0~95.0%の箇所をそれぞれX部、Y部、Z部と規定したときに、アルミニウム(Al)と酸素(O)の組成比率O/Alの異なる箇所が存在する積層体、である。A層に含まれる元素は、少なくともアルミニウム(Al)および酸素(O)を含んでいれば、他の元素を含んでいても構わない。例えば、水素(H)、炭素(C)、窒素(N)、ケイ素(Si)などを含んでいても構わない。
 A層がアルミニウム(Al)、および酸素(O)を含む、とは実施例に記載の条件でHR-RBS(High Resolution Rutherford Backscattering Spectrometry)/HR-HFS(High Resolution Hydrogen Forward scattering Spectrometry)法で評価を行った場合に検出される、A層を構成する全原子100.0atm%中に、いずれの元素に関しても、元素の含有比率が5.0atm%以上であることをいう。
 HR-RBS/HR-HFS法は、対象物に高速のイオンを照射し、固体中の原子核によりラザフォード後方散乱されたイオンと、弾性的な反跳により前方に散乱された水素原子のエネルギースペクトルを取得し、対象物に含まれる元素組成を得る手法である。詳細な評価条件は実施例に記載の通りである。本手法によって、深さ方向に対する組成比率のグラフを得ることができるが、例えば積層体がA層と基材による2層構造の場合、A層の表層0.4nmまでの領域は表面汚染の情報を含むため、表層0.4nmより深い位置からA層の組成を算出していく。また、A層の基材との界面は基材の影響をうけるので、基材の平均炭素量CとA層の平均炭素量Cとした場合、(C+C)/2の箇所をA層と基材の基準界面とし、基準界面から表層0.4nmまでの領域をHR-RBS/HR-HFS法におけるA層の測定領域とする。特に断りのない限り、当該測定領域における各測定点における測定結果を平均してA層の平均組成を算出するものとする。具体的には、まずは適宜仮の界面として、界面と思わしき場所をA層と基材との基準界面として、A層と基材の平均炭素量を求める。求めた平均炭素量から導かれるA層と基材との基準界面を用いてA層と基材の平均炭素量を求める。これを繰り返して、各平均炭素量が収束するときの基準界面をA層と基材の基準界面とする。また、A層と基材との間に別の層を有する場合のように、A層と隣接する層がある場合は、上記同様の考え方でA層と当該隣接する層の平均炭素量から基準界面を求める。A層の両面にそれぞれ隣接する層がある場合は、表層0.4nmの箇所の代わりに、上記同様に求めたそれぞれの基準界面を用いる。
 HR-RBS/HR-HFS法にて測定する際、A層において、X部、Y部、Z部をそれぞれ以下のように定義する。X部は、HR-RBS/HR-HFS法にて特定される無機化合物層の厚みに対して、長さ基準で5.0~25.0%の箇所を指す。Y部は、A層厚みに対して、中央の40.0~60.0%の箇所を指す。さらに、Z部は、当該厚みに対して、75.0~95.0%の箇所を指す。基材を特定できる場合、例えば積層体がA層と基材による2層構造の場合、A層の基材側との界面を0%、最表面を100%とする。A層と基材との間に別の層を有する場合は、A層の当該別の層との界面を0%とする。別の層が複数ある場合はA層と隣接する層とA層との界面を0%とする。A層の両面にそれぞれ隣接する層がある場合は、各隣接する層との界面を適宜0%、100%とする。また、それぞれの部位における各測定点における測定結果を平均してそれぞれの部位の組成を算出するものとする。
 また、後述するEELS測定の際、A層において、X部、Y部、Z部はそれぞれ以下のように定義する。X部は、STEM(走査透過型電子顕微鏡)による断面観察像から特定されるA層厚みに対して、長さ基準で5.0~25.0%の箇所を指す。Y部は、A層厚みに対して、中央の40.0~60.0%の箇所を指す。さらに、Z部は、当該厚みに対して、75.0~95.0%の箇所を指す。なお、A層厚みはSTEM(走査透過型電子顕微鏡)による断面観察像から測定した値を使用し、基材を特定できる場合、例えば積層体がA層と基材による2層構造の場合、A層の基材側との界面を0%、最表面を100%とする。A層と基材との間に別の層を有する場合は、A層の当該別の層との界面を0%とする。別の層が複数ある場合はA層と隣接する層とA層との界面を0%とする。A層の両面にそれぞれ隣接する層がある場合は、各隣接する層との界面を適宜0%、100%とする。
 アルミニウム(Al)と酸素(O)の組成比率O/Alの異なる箇所が存在するとは、HR-RBS/HR-HFS法にて測定された、上記で定義したX部、Y部、Z部のそれぞれの組成比率O/Alの値のいずれかが、0.10以上差異があることを言う。一方で組成比率O/Alの異なる箇所が存在した場合、差異が0.50以下であることによりA層の平均的組成に対して過酸化Alが多い箇所や亜酸化Alが多い箇所が少なくなりバリア性が良好でよりばらつきの少ない膜になるため好ましい。
 組成比率O/AlがA層中の深さ方向において異なる箇所が存在することにより緻密な箇所と比較的疎であり柔軟性の高い箇所を同一膜中に混在させることができる。A層全体が深さ方向においてすべて緻密な膜であった場合、硬い膜となることから割れやすく面内ばらつきが発生しやすい膜となる場合がある。一方で、深さ方向において、緻密な箇所と柔軟性の高い箇所を同一膜中に混在させることにより、割れにくくバリア性も良好な面内ばらつきの少ない膜を実現出来る。
 同様の観点より、X部、Y部、Z部のそれぞれの値のいずれかが、0.15以上差異があることが好ましい。また、差異のある箇所としては、X部とY部とで0.10以上差異があること、および/またはZ部とY部とで0.10以上差異があることが好ましい。A層中のAlとOの元素比の具体的な測定条件は実施例に記載の通りである。なお、アルミニウム(Al)、および、酸素(O)を含む層が複数ある場合には、少なくとも1つの層において、組成比率O/AlがA層中の深さ方向において異なる箇所が存在すれば、A層を有し、前記A層は少なくともアルミニウム(Al)、および、酸素(O)を含み、A層中の深さ方向において長さ基準5.0~25.0%の箇所、40.0~60.0%の箇所、75.0~95.0%の箇所をそれぞれX部、Y部、Z部と規定したときに、アルミニウム(Al)と酸素(O)の組成比率O/Alの異なる箇所が存在する積層体、であるとする。なお、1つの層とは、厚み方向に向かって、隣接する部位と区別可能な境界面を有し、かつ有限の厚みを有する部位を指す。より具体的には、実施例に記載のとおりにA層の断面を走査透過型電子顕微鏡(STEM)にて観察した際、不連続な境界面により区別されるものを指す。A層の厚み方向に組成が変わっていても、その間に前述の境界面がない場合には、1つの層として取り扱う。
 A層は少なくともアルミニウム(Al)、および、酸素(O)を含み、A層中の深さ方向においてX部、Y部、Z部を規定したときに、アルミニウム(Al)と酸素(O)の組成比率O/Alの異なる箇所が存在する積層体とする達成手段として、酸素ガスの導入位置と導入量、導入方法を適切にすることを好ましく挙げることができる。具体的には、図2に示す巻き取り式真空蒸着装置3を例とすると、酸素ガスの導入量として、A層形成時に、5.0×10-3Pa以下の減圧度とし、基材搬送速度が400m/min、基材幅1.0m、A層狙い厚み8nmでアルミニウムを蒸発させた際に、導入酸素ガス量が2~19L/minであることが好ましい。酸素ガスの導入方法としては、X部、Y部、Z部それぞれの箇所にピンポイントで酸素を導入する観点から図4のように導入方向が一方向の管状形状のものを用いることが好ましい。図4のようにガス導入口が管状形状であることにより、ガス導入口から導入したガスの指向性が高く、狙った位置を効率的に酸化させることが出来る。図3のようにピンホール形状とすることで、ガス導入口から導入した酸素ガスを、アルミ蒸気中に均一に浸透させることが出来るが、狙った箇所をピンポイントで酸化させる観点では、管状形状のものと比較して劣る可能性がある。
 特にバリア性ばらつきを低減させる観点より、組成比率O/Alについて、X部の組成比率O/Al≠Y部の組成比率O/Alおよび/またはY部の組成比率O/Al≠Z部の組成比率O/Alであることが好ましい。同様の観点より、組成比率O/Alについて、X部の組成比率O/Al>Y部の組成比率O/Alおよび/またはY部の組成比率O/Al<Z部の組成比率O/Alであることがより好ましい。
 本発明のA層中には、さらに水素(H)を含み、X部、Y部、Z部それぞれにおける電子エネルギー損失分光(EELS)分析の酸素K端スペクトルの530eV付近のピーク強度をI(530)、I(530)、I(530)、A層中のX部、Y部、Z部それぞれにおけるEELS分析の酸素K端スペクトルの540eV付近のピーク強度をI(540)、I(540)、I(540)としたとき、I(530)/I(540)>I(530)/I(540)および/またはI(530)/I(540)>I(530)/I(540)であることが好ましい。尚、EELS分析は、前述のSTEM-EELS(Scanning Transmission Electron Microscopy-Electron Energy Loss Spectroscopy)により測定される。
 アルミニウム(Al)、および酸素(O)を含む層が複数あるときは、少なくとも1つの層において、I(530)/I(540)>I(530)/I(540)および/またはI(530)/I(540)>I(530)/I(540)であれば、その積層体はA層を有し、前記A層は少なくともアルミニウム(Al)、および酸素(O)を含み、さらに水素(H)を含み、X部、Y部、Z部それぞれにおける電子エネルギー損失分光(EELS)分析の酸素K端スペクトルの530eV付近のピーク強度をI(530)、I(530)、I(530)とし、A層中のX部、Y部、Z部それぞれにおけるEELS分析の酸素K端スペクトルの540eV付近のピーク強度をI(540)、I(540)、I(540)としたとき、I(530)/I(540)>I(530)/I(540)および/またはI(530)/I(540)>I(530)/I(540)である、とする。
 EELS分析における酸素K端スペクトルの、530eV付近のピークは水酸化物由来のものであり、540eV付近のピークはAlおよびOの混成ピークである。つまり、それぞれのピーク強度をI(530)、I(540)とした場合、I(530)/I(540)の値が大きいほど膜中の水酸化物量が多いことを表し、値が小さいほど膜中の水酸化物量が少ないことを表す。
 I(530)/I(540)>I(530)/I(540)および/またはI(530)/I(540)>I(530)/I(540)であるとは、Y部よりも外側部分(X部および/またはZ部)の水酸化物量が少ないことを表す。Y部よりも外側部分(X部および/またはZ部)の水酸化物量が少ないことにより、Y部よりも外側部分(X部および/またはZ部)の緻密性が高くなり、外部からA層中への水分侵入を防ぐことが出来る。つまり、外部からA層中への水分侵入を防ぐことは、A層の膜質変化を最小限に抑えることに繋がることから膜質ばらつきを少なくすることができる。その結果水蒸気透過度に関するばらつきをより低減することができる。上記した膜質およびバリア性のばらつきの観点より、I(530)/I(540)>I(530)/I(540)であることがより好ましく、I(530)/I(540)>I(530)/I(540)およびI(530)/I(540)>I(530)/I(540)であることがさらに好ましい。
 上記態様とするための達成手段として、酸素ガスの導入位置と導入量、導入方法を適切にすることが挙げられ、詳細は上記した内容と同様であるが、図2に示す巻き取り式真空蒸着装置3を例とすると、図4のように導入方向が一方向の管状形状の酸素ガス導入管を用い、基材上流側へ多く酸素を導入する、および/または蒸発源直上へ多く酸素を導入することにより、そうしない場合と比べてI(530)/I(540)を低くすることができる。蒸発源直上へ多く酸素を導入することにより、そうしない場合と比べてI(530)/I(540)を低くすることができる。基材下流側へ多く酸素を導入する、および/または蒸発源直上へ多く酸素を導入することにより、そうしない場合と比べてI(530)/I(540)を低くすることができる。また、より減圧度を高める、つまり雰囲気圧力を低くすることで全体的にI(530)/I(540)の値を低くすることができる。
 A層中に水素(H)を含むとは、実施例に記載の条件でHR-RBS/HR-HFS法で評価を行った場合に、A層中の平均組成として5.0atm%以上水素を含有することをいう。水素(H)を含むことで、積層体に柔軟性を付与することが出来る。
 基材を含むフィルムに対して前記A層が形成されており、前記A層中のX部およびZ部において、I(530)/I(540)≦0.15および/またはI(530)/I(540)≦0.25、であることが好ましい。I(530)/I(540)≦0.15および/またはI(530)/I(540)≦0.25であることにより、基材に近いX部および/または基材から遠いZ部における水酸化物量が少なくなり、緻密膜となるため、バリア性が良好となる。バリア性の観点より、I(530)/I(540)≦0.11および/またはI(530)/I(540)≦0.20がより好ましく、I(530)/I(540)≦0.083および/またはI(530)/I(540)≦0.15がさらに好ましい。
 また、本発明の積層体の好ましい位置態様は、基材の少なくとも片側に、A層を有し、前記A層は少なくともアルミニウム(Al)、並びに酸素(O)を含み、A層におけるEELS分析の酸素K端スペクトルの530eV付近のピーク強度をI(530)、540eV付近のピーク強度をI(540)としたとき、I(530)/I(540)≦1.50である積層体である。
 EELS分析とは、電子エネルギー損失分光分析のことであり、測定試料へ電子を入射し、その入射電子が測定試料との相互作用によりエネルギーを失った後の電子(非弾性散乱電子)を分光分析することで、測定試料の元素組成や化学結合状態を解析する手法である。分析対象となる非弾性散乱は、内殻電子励起(50eV~)、価電子の励起によるバンド間遷移(0~10eV)、電子の集団振動によるプラズモン励起(10~50eV)である。酸素K端スペクトルは、EELSスペクトルにおける内殻電子領域の吸収スペクトルを指す。なお、530eV付近のピーク強度I(530)とは、528.0~531.0eVの間に検出されるピークトップの強度である。ただし、528.0~531.0の間に複数のピークトップが検出される場合は最もピーク強度の高いピークトップにおける強度を採用し、ピークトップが検出されない場合は530eVにおける強度を採用する。540eV付近のピーク強度I(540)とは、535.0~545.0eVの間に検出されるピークトップの強度である。ただし、535.0~545.0eVの間に複数のピークトップが検出される場合は最もピーク強度の高いピークトップにおける強度を採用し、ピークトップが検出されない場合は540eVにおける強度を採用する。
 EELS分析における酸素K端スペクトルの、530eV付近のピークは水酸化物由来のピークであり、540eV付近のピークはAlおよびOの混成ピークである。つまり、それぞれのピーク強度をI(530)、I(540)とした場合、I(530)/I(540)の値が大きいほど膜中の水酸化物量が多いことを表し、値が小さいほど膜中の水酸化物量が少ないことを表す。A層中のX部、Y部、Z部におけるI(530)/I(540)の値をI,I,Iとしたときに、I,I,Iの和(I+I+I)を、A層のI(530)/I(540)と定義する。なお、詳細なEELS分析方法は実施例に記載のとおりである。A層においてI(530)/I(540)≦1.50であることにより、A層中の膜全域における水酸化物量の多い箇所が少なくなることから、バリア性のばらつきが少なくかつバリア性の良好な積層体となる。A層においてI(530)/I(540)>1.50であると、膜中のある領域において水酸化物量が多くなることやそれに伴い空隙や欠損が生じやすくなり、前記領域が水蒸気透過経路となりうることからバリア性のばらつきが生じやすくなる。上記観点より、A層においてI(530)/I(540)は1.00以下であることがより好ましく、さらに好ましくは0.50以下である。また、水酸化物量が少なすぎるとA層が硬くなりやすく割れやすくなることから、A層においてI(530)/I(540)は0.20以上であることが好ましい。
 電子エネルギー損失分光(EELS)は、STEM-EELS(Scanning Transmission Electron Microscopy-Electron Energy Loss Spectroscopy)により測定される。STEM-EELSを測定する前の試料の前処理としては、FIB法(Focused Ion Beam法)を用いる。具体的には「高分子表面加工学」(岩森暁著)p.118~119に記載の方法に基づいて、マイクロサンプリングシステムを使用して断面観察用サンプルを作製する。その際、試料は表面に導電性を付与する目的で実施するカーボン蒸着を施す時を除き、全てグローブボックス中(窒素雰囲気下)で扱う。詳細な測定条件は実施例の通りである。前述のHR-RBS/HR-HFS法により、アルミニウム(Al)、および酸素(O)を含む層の位置の概略を把握しておき、STEM測定にてその層の界面を把握する。当該層のX部、Y部、Z部についてEELS測定を行い、当該層各部のI(530)、I(540)を求め、当該層のI(530)/I(540)を求める。アルミニウム(Al)、および酸素(O)を含む層が複数あるときは、少なくとも1つの層において、I(530)/I(540)≦1.50であれば、A層を有し、前記A層は少なくともアルミニウム(Al)、および酸素(O)を含み、A層におけるEELS分析の酸素K端スペクトルの530eV付近のピーク強度をI(530)、540eV付近のピーク強度をI(540)としたとき、I(530)/I(540)≦1.50である積層体、であるとする。
 前記A層は少なくともアルミニウム(Al)、および酸素(O)を含み、A層におけるI(530)/I(540)≦1.50とする達成手段として、以下の方法を好ましく挙げることができる。なお、1つの層とは、厚み方向に向かって、隣接する部位と区別可能な境界面を有し、かつ有限の厚みを有する部位を指す。より具体的には、実施例に記載のとおりにA層の断面を走査透過型電子顕微鏡(STEM)にて観察した際、不連続な境界面により区別されるものを指す。A層の厚み方向に組成が変わっていても、その間に前述の境界面がない場合には、1つの層として取り扱う。
 A層中に含まれる水酸化物量、酸化物量を適量にするために、A層を形成する際にアルミ蒸気中に適当な酸素量を適切な方法で導入したうえで、基材上流側および基材下流側を防着板で覆うことにより達成できる。導入酸素ガスが少ないと、金属Alや亜酸化Alが多くなり、A層形成後の大気曝露により前記箇所が水酸化されやすくなることから、A層中の水酸化物量が多くなる。一方、導入酸素ガスが多いと、ダングリングボンドを有した酸素が多くなり、A層形成後の大気曝露により前記箇所にHが結合することで水酸化されることから、A層中の水酸化物量が多くなる。適当な酸素量を適切な方法で導入する方法として、例えばA層形成時において、5.0×10-3Pa以下の減圧度とし、基材搬送速度が400m/min、基材幅1.0m、A層狙い厚み8nmでアルミニウムを蒸発させた際に、導入酸素ガス量が2~19L/minであることが好ましい。また、酸素ガスの導入方法としては、図3のようなピンホール形状とすることが好ましい。ピンホール形状とすることで、ガス導入口から導入した酸素ガスを、アルミ蒸気中に均一に浸透させることができ、アルミ蒸気と酸素ガスを効率的にばらつきなく反応させることができる。酸素ガスの導入には、図4のように導入方向が一方向の管状形状のものや、図5のように導入方向が複数の管状形状のものを用いることも出来るが、それらの形状はガス導入口から導入したガスの指向性が高く、アルミ蒸気中に導入した際にアルミ蒸気との反応ムラが出来やすく膜中のばらつきが出来やすくなることがある。
 また、基材上流側および基材下流側を防着板で覆う理由として、A層の界面部(X部)の膜質に大きく影響する基材上流側、およびA層の表面部(Z部)の膜質に大きく影響する基材下流側はアルミ蒸気密度が低く膜質が中央部(Y部)と差異が出来やすいことから、ばらつきの原因となりやすい。そのため、基材上流側および基材下流側を防着板で覆うことによりばらつきを低くすることができる。
 A層全体の膜質を向上させる観点より、酸素ガスは蒸発源直上から導入することが好ましい。上記観点より、蒸発源直上に加えて基材上流側および/または下流側から導入することがより好ましい。
 A層の厚みは15.0nm以下であることが好ましい。A層の厚みが15.0nm以下であることで、バリア性が良好かつ折曲げ耐性に優れる。同様の観点より、10.0nm以下がより好ましく、8.0nm以下がさらに好ましく、7.0nm以下が特に好ましい。A層の厚みは、走査透過型電子顕微鏡(STEM)による断面観察像から測定することが可能である。
 前記A層の厚みをX(nm)、水蒸気透過度をY(g/m/day)としたときに、X×Y≦20.0であることが好ましい。X×Y≦20.0であることで薄膜でもバリア性を発現することが可能となる。生産性、コストの観点より、X×Y≦15.0がより好ましく、X×Y≦8.0がさらに好ましい。水蒸気透過度は、水蒸気透過率計により40℃90%RH環境下で測定することが可能である。なお、上記測定単位におけるdayは24時間に相当する。
 積層体の全光線透過率は、85.0%以上であることが好ましい。積層体の全光線透過率が85.0%以上であることで、内容物の視認性に優れる。全光線透過率はヘイズメーターを用いて測定することができる。
 A層の平均組成について、アルミニウム(Al)と酸素(O)の組成比率が1.20≦O/Al≦2.20であることが好ましい。1.20≦O/Al≦2.20であることにより、A層中において金属アルミニウムではなく、酸化アルミニウムや水酸化アルミニウムとして存在するアルミニウムの割合が多くなることから、透明性およびバリア性が良好となる。透明性およびバリア性の観点より、1.40≦O/Al≦2.10であることがより好ましい。A層中のAlとOの元素比は、HR-RBS/HR-HFS法で測定することとする。具体的な測定条件は実施例に記載の通りである。また、仮にO/Al=1.5である場合であっても、必ずしもアルミニウムが完全な酸化物であるわけではなく、水酸化物を含有していたり、亜酸化Alや過酸化Alを含有している可能性がある。これは蒸着時の雰囲気における水分や、蒸着後の水分の付着を防いだとしても、蒸着槽内の残留水分や基材に含まれている水分などが、蒸着時や蒸着後に膜中に取り込まれるためであると考えられる。
 バリア性および柔軟性を確保する観点より、A層は、前記A層の平均組成について、アルミニウム(Al)原子濃度:酸素(O)原子濃度:水素(H)原子濃度が15.0~40.0:40.0~55.0:10.0~35.0(atm%)であることが好ましい。前記A層の平均組成はHR-RBS/HR-HFS法で測定することとする。具体的な測定条件は実施例に記載の通りである。同様の観点より、Al原子濃度:O原子濃度:H原子濃度が20.0~35.0:40.0~55.0:15.0~30.0(atm%)であることがより好ましい。また、窒素(N)原子、炭素(C)原子の濃度がいずれも5atm%以下であることが好ましい。
 [A層の製造方法一例]
 A層の形成方法については、特に限定はなく、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、原子層堆積法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。製造コスト、ガスバリア性等の観点から、真空蒸着法を用いることが好ましい。
 A層は、真空蒸着法によりアルミニウムを蒸発させ、アルミニウム蒸気中に酸素を導入することで、基材の少なくとも片面に形成できる。真空蒸着法によりアルミニウムを蒸発させる方法としては、電子線(EB)蒸着法、抵抗加熱法、誘導加熱法などが挙げられるが、それらに限定されるものではない。前記方法でアルミニウムの蒸発量を調整したうえで、アルミニウム蒸発ガス中に酸素を導入することで酸素量や膜質を制御したA層を得ることができる。導入するガスとしては、酸素を含んでいれば、膜質制御のために他のガスとして不活性ガスなどを含んでいても構わない。
 基材上流側および/または下流側より酸素を導入することが好ましい。前記位置からアルミニウムの蒸発ガス方向に向かって酸素を導入することが好ましい。前記のように酸素を導入することで、A層のX部および/またはZ部の膜質が良好になりバリア性や密着性が向上する。酸素導入位置として、基材上流側もしくは、基材上流側および下流側から酸素を導入することがより好ましい。
 巻き取り式真空蒸着装置図2によるA層の形成方法の一例を示す。電子線(EB)加熱蒸着法により、基材1の表面にA層として、酸化アルミニウム蒸着層を設ける。まず蒸着材料として、アルミニウム顆粒を蒸発源15にセットする。巻き取り室4の中で、巻き出しロール5に前記基材1のA層を設ける側の面が蒸発源15に対向するようにセットし、巻き出しガイドロール6,7,8を介して、メインドラム9に通す。次に、真空ポンプにより、真空蒸着装置3内を減圧し、5.0×10-3Pa以下を得る。到達真空度は5.0×10-2Pa以下が好ましい。到達真空度は5.0×10-3Pa以下であることにより、真空蒸着装置内の残留ガスが少なくなり、A層の膜質が向上する。メインドラム9の温度は一例として、-30℃に設定する。基材の熱負けを防ぐ観点から、20℃以下が好ましく、より好ましくは0℃以下である。次に、加熱源として電子銃(EB銃)17を用い、蒸発源内のアルミニウムの溶かし込みを行う。アルミニウム顆粒が全て溶融した後、フィルム走行面から50mmの距離に設置されたリニア型アノードレイヤータイプのイオン源14(米Veeco社、ALS1000L)を、酸素を8L/min導入し、アノード電圧10kV、アノード電流8.6Aで動作させて基材表面を処理する。その後、EB銃、形成するA層の厚みが5nmとなるように加速電流とフィルム搬送速度、酸素ガス導入量を調整し、前記基材1の表面上にA層を形成する。酸素ガスの導入位置は狙い膜質に応じて酸素ガス導入管16a~dのうちから単独もしくは複数用いる。酸素ガス導入管は図4のように導入方向が一方向の管状形状のものを用いる。蒸着初期の膜質を向上させ、密着性およびバリア性を良好にする観点より、16aおよびまたは16bを用いることが好ましい。A層全体の膜質を向上させ、バリア性を良好にする観点より、16dを用いたうえで16aおよび/または16cを用いることが好ましい。その後、ガイドロール10,11,12を介して巻き取りロール13に巻き取る。イオン源による基材表面処理とA層の蒸着は同一搬送内で実施してもよいし、別搬送で行ってもよい。
 [基材]
 本発明に用いられる基材は、柔軟性を確保する観点からフィルム形態を有することが好ましい。フィルムの構成としては、単層フィルム、または2層以上の、例えば、共押し出し法で製膜したフィルムであってもよい。フィルムの種類としては、無延伸、一軸延伸あるいは二軸延伸フィルム等を使用してもよい。
 本発明に用いられる基材の素材は特に限定されないが、有機高分子を主たる構成成分とするものであることが好ましい。本発明に好適に用いることができる有機高分子としては、例えば、ポリエチレン、ポリプロピレン等の結晶性ポリオレフィン、環状構造を有する非晶性環状ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリアミド、ポリカーボネート、ポリスチレン、ポリビニルアルコール、エチレン酢酸ビニル共重合体のケン化物、ポリアクリロニトリル、ポリアセタール等の各種ポリマーなどを挙げることができる。これらの中でも、透明性や汎用性に優れたポリエチレンテレフタレート、ポリプロピレンを用いることが好ましい。また、前記有機高分子は、単独重合体、共重合体のいずれでもよいし、有機高分子として1種類のみを用いてもよいし、複数種類をブレンドして用いてもよい。
 基材のA層を形成する側の表面には、密着性や平滑性を良くするためにコロナ処理、プラズマ処理、紫外線処理、イオンボンバード処理、溶剤処理、有機物もしくは無機物またはそれらの混合物で構成されるアンカーコート層の形成処理、等の前処理が施されていてもよい。また、A層を形成する側の反対側には、基材の巻き取り時の滑り性の向上や基材の耐擦傷性を目的として、有機物や無機物あるいはこれらの混合物のコーティング層が積層されていてもよい。
 本発明に使用する基材の厚みは特に限定されないが、柔軟性を確保する観点から200μm以下が好ましく、引張りや衝撃に対する強度を確保する観点から5μm以上が好ましい。さらに、フィルムの加工やハンドリングの容易性から基材の厚みは10μm以上、包装材料に使用する観点より25μm以下がより好ましい。
 [その他の層]
 本発明の積層体の最表面の上、つまりA層の上には、ガスバリア性が低下しない範囲で耐擦傷性、印刷性、耐レトルト性等の向上を目的としたオーバーコート層を形成してもよいし、貼合するための有機高分子化合物からなる粘着層やフィルムをラミネートした積層構成としてもよい。なお、ここでいう最表面とは、基材上にA層が積層された後の、A層の表面をいう。
 [積層体の用途]
 本発明の積層体は、酸素および水蒸気に対する優れたバリア性を備え、ばらつきが少なくかつ低コストであることから、ガスバリア性フィルムとして好適に用いることができる。本発明の積層体は、食品、医薬品、電子部品などの包装材料として好適に使用できる。
 以下、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。
 [評価方法]
 (1)走査透過型電子顕微鏡(STEM)観察
 マイクロサンプリングシステム(FEI製 Helios G4)を使用して断面観察用サンプルをFIB法により作製した。走査透過型電子顕微鏡(JEOL製 JEM-ARM200F)により、加速電圧200kVとして、観察用サンプルの断面を観察し、積層体のA層を特定し、その厚みを測定した。
 (2)EELS分析
 A層のEELS分析は、EELS検出器(GATAN GIF Quantum)を用いて実施した。具体的な測定条件としては、加速電圧200kV、ビーム径0.2nmφ、エネルギー分解能0.5eV FWHM(半値全幅)にて、各箇所(X部、Y部、Z部)分析を行い、酸素K端の吸収スペクトルを得た。A層の厚みに対して、A層の基材側との界面を0%、最表面を100%とし、X部は5~25%、Y部は40~60%、Z部は75~95%の位置にて分析を実施し、該領域の平均値を分析結果として用いた。
 その後、530eV付近のピーク強度I(530)、I(530)、I(530)、および540eV付近のピーク強度I(540)、I(540)、I(540)から、IとしてI(530)/I(540),IとしてI(530)/I(540),IとしてI(530)/I(540)を算出し、A層のI(530)/I(540)としてI+I+Iを求めた。
 (3)A層の組成
 積層体のA層の組成分析は、HR-RBS/HR-HFS法により行った。詳細な測定条件は下記とした。
<HR-RBS測定>
装置     : (株)神戸製鋼所製RBS分析装置 HRBS500
入射イオン  : He
入射エネルギー: 450eV
入射角    : 60deg
散乱角    : 60deg
試料電流   : 30nA
照射量    : 12.5μC
<HR-HFS測定>
装置     : (株)神戸製鋼所製RBS分析装置 HRBS500
入射イオン  : N
入射エネルギー: 480eV
入射角    : 70deg
散乱角    : 30deg
試料電流   : 2nA
照射量    : 0.4μC。
 (4)酸素透過度(cc/m/day)
 積層体の酸素透過度は、JISK7126-2(制定2006年8月20日)に準じて、モコン(MOCON)社製酸素透過率測定装置OX-TRAN2/20を用いて、23℃、0%RHの条件にて測定した。異なる位置から採取したサンプル5点を平均し、その値を酸素透過度(cc/m/day)とした。また、ばらつきとして5点の標準偏差を算出した。
 (5)水蒸気透過度(g/m/day)
 積層体の水蒸気透過度は、JISK7129B(制定2008年3月20日)に準じて、モコン(MOCON)社製水蒸気透過率測定装置Permatran-W3/30を用いて、40℃、90%RHの条件にて測定した。異なる位置から採取したサンプル5点を平均し、その値を水蒸気透過度(g/m/day)とした。また、ばらつきとして5点の標準偏差を算出した。
 (6)全光線透過率
 積層体の全光線透過率は、JISK7361(1997年制定)に基づき、日本電色工業社製ヘイズメーターNDH4000を用いて、全光線透過線透過率の測定を実施した。測定は2回行い、得たデータを平均し、小数点第2位を四捨五入し、当該水準における平均値を求め、その値を全光線透過率(%)とした。
 最初に、基材の少なくとも片側に、A層を有し、前記A層は少なくともアルミニウム(Al)、および、酸素(O)を含み、A層中の深さ方向において長さ基準5.0~25.0%の箇所、40.0~60.0%の箇所、75.0~95.0%の箇所をそれぞれX部、Y部、Z部と規定したときに、アルミニウム(Al)と酸素(O)の組成比率O/Alの異なる箇所が存在する積層体についての実施例、比較例を示す。
 (実施例1)
 (A層の形成)
 図2に示す巻き取り式真空蒸着装置3を使用し、電子線(EB)蒸着法により、A層として酸化アルミニウム蒸着層を厚み8nm狙いで設けた。基材としては、厚み12μmのポリエチレンテレフタレートフィルム(東レ株式会社製“ルミラー”(登録商標)P60)を用いた。
 具体的な操作は以下の通りである。蒸着材料として、2~5mm程度の大きさの顆粒状のアルミニウム(真空冶金(株)製、純度99.99%)を蒸発源15にセットした。巻き取り室4の中で、巻き出しロール5に前記基材1のA層を設ける側の面が蒸発源15に対向するようにセットし、巻き出しロール6,7,8を介して、メインドラム9に通した。このとき、メインドラムは温度-30℃に制御した。次に、真空ポンプにより真空蒸着装置3内を減圧し、3.0×10-3Paを得た。次に、加熱源として電子銃17を用い、アルミニウムが顆粒状でなくなるまで溶融した。その後、フィルム走行面から50mmの距離に設置されたリニア型アノードレイヤータイプのイオン源14(米Veeco社、ALS1000L)を、酸素を8L/min導入し、アノード電圧10kV、アノード電流8.6Aで動作させて基材表面を処理した。イオン源用電源は、米グラスマン・ハイボルテージ社SHタイプを用いた。次に、酸素ガス導入管16a,16bより合計10L/minの酸素ガスを1:9の比率で導入(すなわち、酸素ガス導入管16aからは1L/min、酸素ガス導入管16bからは9L/minの比率で酸素ガスを導入することである。)し、形成するA層の狙い厚みが8nmとなるように投入電力、投入電流および搬送速度を調整して、前記基材1の表面上にA層を形成した。酸素ガス導入管としては、図4のように管状形状のものを用いた。その後、ガイドロール10,11,12を介して巻き取りロール13に巻き取った。
 (実施例2)
 A層を形成する際、酸素ガス導入管16a,16cより合計10L/minの酸素ガスを1:1の比率で導入した以外は、実施例1と同様にして積層体を得た。
 (実施例3)
 A層を形成する際、酸素ガスを、酸素ガス導入管16aのみから合計10L/min導入した以外は、実施例1と同様にして積層体を得た。
 (実施例4)
 真空装置内を8.0×10-3Paまで減圧してA層を形成した以外は、実施例1と同様にして積層体を得た。
 (実施例5)
 真空装置内を3.0×10-2Paまで減圧してA層を形成した以外は、実施例1と同様にして積層体を得た。
 (実施例6)
 A層を形成する際、酸素ガス導入管16a,16bより合計10L/minの酸素ガスを1:4の比率で導入した以外は、実施例1と同様にして積層体を得た。
 (実施例7)
 A層を形成する際、酸素ガス導入管16a,16bより合計10L/minの酸素ガスを0.5:9.5の比率で導入した以外は、実施例1と同様にして積層体を得た。
 (実施例8)
 形成するA層の厚みを5nm狙いで蒸着した以外は、実施例1と同様にして積層体を得た。
 (実施例9)
 形成するA層の厚みを13nm狙いで蒸着した以外は、実施例1と同様にして積層体を得た。
 (実施例10)
 A層を形成する際、酸素ガスを、酸素ガス導入管16bのみから合計10L/min導入した以外は、実施例1と同様にして積層体を得た。
 (実施例11)
 A層を形成する際、酸素ガス導入管16b,16cより合計10L/minの酸素ガスを9:1の比率で導入した以外は、実施例1と同様にして積層体を得た。
 (実施例12)
 A層を形成する際、酸素ガスを、酸素ガス導入管16cのみから合計10L/min導入した以外は、実施例1と同様にして積層体を得た。
 (実施例13)
 A層を形成する際、酸素ガス導入管16a,16b,16cより合計10L/minの酸素ガスを1:8:1の比率で導入した以外は、実施例1と同様にして積層体を得た。
 (実施例14)
 A層を形成する際、酸素ガス導入管16a,16cより合計10L/minの酸素ガスを0.5:9.5の比率で導入した以外は、実施例2と同様にして積層体を得た。
 (実施例15)
 A層を形成する際、酸素ガス導入管16a,16cより合計10L/minの酸素ガスを9.5:0.5の比率で導入した以外は、実施例2と同様にして積層体を得た。
 (比較例1)
 A層形成時に酸素ガスを導入しない以外は、実施例1と同様にして積層体を得た。
 (比較例2)
 A層を形成する際、酸素ガス導入管16a,16bより酸素ガス導入量を合計1L/minとした以外は、実施例1と同様にして積層体を得た。
 (比較例3)
 A層を形成する際、酸素ガス導入管16a,16bより酸素ガス導入量を合計20L/minとした以外は、実施例1と同様にして積層体を得た。
 (比較例4)
 A層を形成する際、酸素ガス導入管16a,16bとして、図3のようなピンホール形状のものを使用した以外は、実施例1と同様にして積層体を得た。
 各実施例および比較例で得られた積層体に関しては、試験片を切り出し、各種評価を実施した。結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 次に、基材の少なくとも片側に、A層を有し、前記A層は少なくともアルミニウム(Al)、並びに酸素(O)を含み、A層におけるEELS分析の酸素K端スペクトルの530eV付近のピーク強度をI(530)、540eV付近のピーク強度をI(540)としたとき、I(530)/I(540)≦1.50である積層体についての実施例、比較例を示す。
 (実施例16)
 (A層の形成)
 図2に示す巻き取り式真空蒸着装置3を使用し、電子線(EB)蒸着法により、A層として酸化アルミニウム蒸着層を厚み8nm狙いで設けた。基材としては、厚み12μmのポリエチレンテレフタレートフィルム(東レ株式会社製“ルミラー”(登録商標)P60)を用いた。
 具体的な操作は以下の通りである。蒸着材料として、2~5mm程度の大きさの顆粒状のアルミニウム(真空冶金(株)製、純度99.99%)を蒸発源15にセットした。巻き取り室4の中で、巻き出しロール5に前記基材1のA層を設ける側の面が蒸発源15に対向するようにセットし、巻き出しロール6,7,8を介して、メインドラム9に通した。このとき、メインドラムは温度-30℃に制御した。次に、真空ポンプにより真空蒸着装置3内を減圧し、3.0×10-3Paを得た。次に、加熱源として電子銃17を用い、アルミニウムが顆粒状でなくなるまで溶融した。その後、フィルム走行面から50mmの距離に設置されたリニア型アノードレイヤータイプのイオン源14(米Veeco社、ALS1000L)を、酸素を8L/min導入し、アノード電圧10kV、アノード電流8.6Aで動作させて基材表面を処理した。イオン源用電源は、米グラスマン・ハイボルテージ社SHタイプを用いた。次に、酸素ガス導入管16a,16dより合計10L/minの酸素ガスを1:9の比率で導入(すなわち酸素ガス導入管16aからは1L/min、酸素ガス導入管16dからは9L/minの比率で酸素ガスを導入することである。)し、形成するA層の狙い厚みが8nmとなるように投入電力、投入電流および搬送速度を調整して、前記基材1の表面上にA層を形成した。酸素ガス導入管としては、図3のようにピンホール形状のものを用いた。その後、ガイドロール10,11,12を介して巻き取りロール13に巻き取った。
 (実施例17)
 A層を形成する際、酸素ガス導入管16a,16dより合計10L/minの酸素ガスを1:4の比率で導入した以外は、実施例16と同様にして積層体を得た。
 (実施例18)
 A層を形成する際、酸素ガス導入管16a,16dより合計10L/minの酸素ガスを0.5:9.5の比率で導入した以外は、実施例16と同様にして積層体を得た。
 (実施例19)
 形成するA層の厚みを5nm狙いで蒸着した以外は、実施例16と同様にして積層体を得た。
 (実施例20)
 形成するA層の厚みを13nm狙いで蒸着した以外は、実施例16と同様にして積層体を得た。
 (実施例21)
 A層を形成する際、酸素ガスを、酸素ガス導入管16dのみから合計10L/min導入した以外は、実施例16と同様にして積層体を得た。
 (実施例22)
 A層を形成する際、酸素ガス導入管16d,16cより合計10L/minの酸素ガスを9:1の比率で導入した以外は、実施例16と同様にして積層体を得た。
 (実施例23)
 A層を形成する際、酸素ガス導入管16a,16d,16cより合計10L/minの酸素ガスを1:8:1の比率で導入した以外は、実施例16と同様にして積層体を得た。
 (実施例24)
 A層を形成する際、酸素ガス導入管16a,16d,16cより合計10L/minの酸素ガスを3:4:3の比率で導入した以外は、実施例16と同様にして積層体を得た。
 (比較例5)
 A層を形成する際、酸素ガス導入管16a,16dより酸素ガス導入量を合計1L/minとした以外は、実施例16と同様にして積層体を得た。
 (比較例6)
 A層を形成する際、酸素ガス導入管16a,16dより酸素ガス導入量を合計20L/minとした以外は、実施例16と同様にして積層体を得た。
 (比較例7)
 A層を形成する際、酸素ガス導入管16a,16dとして、図4のように、導入方向が一方向の管状形状のものを用いた以外は、実施例16と同様にして積層体を得た。
 (比較例8)
 A層を形成する際、防着板18を使用しなかった以外は、実施例16と同様にして積層体を得た。
 各実施例および比較例で得られた積層体に関しては、試験片を切り出し、各種評価を実施した。結果を表4、5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~15は、O/Alの異なる箇所が存在しており、X部、Y部、Z部のいずれかで膜質が異なる結果であった。実施例2、3は、実施例1と比較して酸素ガス導入管16bを用いないことでA層のY部の酸化度が低くなることから、Y部のI(530)/I(540)の値が実施例1よりも大きくなったと考えられる。また、実施例4、5は、実施例1と比較して蒸着前の到達真空度が高くないことにより、全体的にI(530)/I(540)が大きくなったと考えられる。実施例10~12は、実施例1と比較して特にA層のX部の酸化度が低くなり、X部のI(530)/I(540)の値が実施例1よりも大きくなったと考えられる。実施例16~24のように酸素ガス導入管の位置や形状を変更したり、酸素ガス導入量や導入比率を変更することで、X部、Y部、Z部の各膜質やA層の平均組成、ガスバリア性を制御することができた。
 比較例1は、酸素を導入せずにA層を形成したため、A層を構成する全原子100.0atm%中の酸素(O)元素の含有比率が4.2atm%であり、5.0atm%未満であっため本発明のA層とは異なり、酸素(O)を含まないアルミニウム(Al)の層となってしまった。比較例2は実施例1と比較して、また比較例5は実施例16と比較して、極端に導入酸素量が少ないことにより酸化度が低くなり、亜酸化Alが多いA層が形成され膜質ばらつきが大きい膜となったと考えられる。比較例3は実施例1と比較して、また比較例6は実施例16と比較して極端に導入酸素量が多いことにより、欠陥の多いA層が形成され、膜質ばらつきが大きい膜となったと考えられる。
 本発明の積層体は、酸素ガス、水蒸気等に対するガスバリア性に優れているため、食品、医薬品、電子部品などの包装材料として好適に使用できるが、用途がこれらに限定されるものではない。
1 基材
2 A層
3 巻き取り式真空蒸着装置
4 巻き取り室
5 巻き出しロール
6,7,8 巻き出し側ガイドロール
9 メインドラム
10,11,12 巻き取り側ガイドロール
13 巻き取りロール
14 イオン源
15 蒸発源
16a,16b,16c,16d 酸素ガス導入管
17 電子銃(EB銃)
18 防着板
19 酸素ガス導入管
20 ガス導入口
 

Claims (12)

  1. 基材の少なくとも片側に、A層を有し、前記A層は少なくともアルミニウム(Al)、および、酸素(O)を含み、
    A層中の深さ方向において長さ基準5.0~25.0%の箇所、40.0~60.0%の箇所、75.0~95.0%の箇所をそれぞれX部、Y部、Z部と規定したときに、
    アルミニウム(Al)と酸素(O)の組成比率O/Alの異なる箇所が存在する積層体。
  2. 前記A層中に、さらに水素を含み、X部、Y部、Z部それぞれにおける電子エネルギー損失分光(EELS)分析の酸素K端スペクトルの530eV付近のピーク強度をI(530)、I(530)、I(530)、
    A層中のX部、Y部、Z部それぞれにおけるEELS分析の酸素K端スペクトルの540eV付近のピーク強度をI(540)、I(540)、I(540)としたとき、
    (530)/I(540)>I(530)/I(540)および/またはI(530)/I(540)>I(530)/I(540)
    である請求項1に記載の積層体。
  3. 前記A層中のX部およびZ部において、I(530)/I(540)≦0.15および/またはI(530)/I(540)≦0.25である請求項1または2に記載の積層体。
  4. 基材の少なくとも片側に、A層を有し、前記A層は少なくともアルミニウム(Al)、並びに酸素(O)を含み、A層におけるEELS分析の酸素K端スペクトルの530eV付近のピーク強度をI(530)、540eV付近のピーク強度をI(540)としたとき、I(530)/I(540)≦1.50である積層体。
  5. 前記A層の厚みをX(nm)、水蒸気透過度をY(g/m/day)としたときに、X×Y≦20.0である、請求項4に記載の積層体。
  6. 前記積層体の全光線透過率が85.0%以上である請求項1~5のいずれかに記載の積層体。
  7. 前記A層の平均組成について、アルミニウム(Al)と酸素(O)の組成比率O/Alが、1.20≦O/Al≦2.20である請求項1~6のいずれかに記載の積層体。
  8. 前記A層の厚みが15.0nm以下である請求項1~7のいずれかに記載の積層体。
  9. 前記A層は水素(H)を含み、前記A層の平均組成について、アルミニウム(Al)原子濃度:酸素(O)原子濃度:水素(H)原子濃度が15.0~40.0:40.0~55.0:10.0~35.0(atm%)である請求項1~8のいずれかに記載の積層体。
  10. 真空蒸着法によりアルミニウムを蒸発させ、アルミニウム蒸気中に酸素を導入することで、基材の少なくとも片面に蒸着層を形成する請求項1~9のいずれかに記載の積層体の製造方法。
  11. 基材上流側および/または下流側より酸素を導入する請求項10に記載の積層体の製造方法。
  12. 蒸発源直上より酸素を導入する請求項10に記載の積層体の製造方法。
     
PCT/JP2022/016559 2021-04-19 2022-03-31 積層体、および積層体の製造方法 WO2022224797A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280028837.XA CN117203050A (zh) 2021-04-19 2022-03-31 层叠体、及层叠体的制造方法
JP2022524570A JPWO2022224797A1 (ja) 2021-04-19 2022-03-31
US18/285,870 US20240183021A1 (en) 2021-04-19 2022-03-31 Laminate and method of manufacturing laminate
EP22791572.5A EP4328016A1 (en) 2021-04-19 2022-03-31 Laminate and method for manufacturing laminate
KR1020237026942A KR20230173651A (ko) 2021-04-19 2022-03-31 적층체 및 적층체의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-070170 2021-04-19
JP2021-070171 2021-04-19
JP2021070171 2021-04-19
JP2021070170 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022224797A1 true WO2022224797A1 (ja) 2022-10-27

Family

ID=83722304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016559 WO2022224797A1 (ja) 2021-04-19 2022-03-31 積層体、および積層体の製造方法

Country Status (5)

Country Link
US (1) US20240183021A1 (ja)
EP (1) EP4328016A1 (ja)
JP (1) JPWO2022224797A1 (ja)
KR (1) KR20230173651A (ja)
WO (1) WO2022224797A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106504A1 (ja) * 2022-11-17 2024-05-23 株式会社クラレ 蒸着フィルム、多層構造体、包装材、真空包装袋及び真空断熱体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222849A (ja) * 1987-03-13 1988-09-16 東レ株式会社 包装用フイルム
JPH10323933A (ja) * 1997-03-21 1998-12-08 Toppan Printing Co Ltd 酸化アルミニウム蒸着フィルム
JP2000043182A (ja) 1998-07-31 2000-02-15 Toppan Printing Co Ltd 強密着ガスバリア透明積層体および包装材料および包装体
JP2005324469A (ja) 2004-05-14 2005-11-24 Keiwa Inc 高バリア性シート
JP2008036948A (ja) 2006-08-04 2008-02-21 Toppan Printing Co Ltd ガスバリア性積層フィルム
JP2008121122A (ja) * 2007-12-12 2008-05-29 Dainippon Printing Co Ltd 透明バリア性フィルム
JP2013028018A (ja) * 2011-07-27 2013-02-07 Daicel Corp ガスバリアフィルム及びデバイス
JP2013234365A (ja) * 2012-05-09 2013-11-21 Mitsubishi Plastics Inc ガスバリア性フィルムの製造方法
JP2017177343A (ja) * 2016-03-28 2017-10-05 東レフィルム加工株式会社 積層フィルムおよびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222849A (ja) * 1987-03-13 1988-09-16 東レ株式会社 包装用フイルム
JPH10323933A (ja) * 1997-03-21 1998-12-08 Toppan Printing Co Ltd 酸化アルミニウム蒸着フィルム
JP2000043182A (ja) 1998-07-31 2000-02-15 Toppan Printing Co Ltd 強密着ガスバリア透明積層体および包装材料および包装体
JP2005324469A (ja) 2004-05-14 2005-11-24 Keiwa Inc 高バリア性シート
JP2008036948A (ja) 2006-08-04 2008-02-21 Toppan Printing Co Ltd ガスバリア性積層フィルム
JP2008121122A (ja) * 2007-12-12 2008-05-29 Dainippon Printing Co Ltd 透明バリア性フィルム
JP2013028018A (ja) * 2011-07-27 2013-02-07 Daicel Corp ガスバリアフィルム及びデバイス
JP2013234365A (ja) * 2012-05-09 2013-11-21 Mitsubishi Plastics Inc ガスバリア性フィルムの製造方法
JP2017177343A (ja) * 2016-03-28 2017-10-05 東レフィルム加工株式会社 積層フィルムおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATORU IWAMORI, POLYMER SURFACE PROCESSING, pages 118 - 119

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106504A1 (ja) * 2022-11-17 2024-05-23 株式会社クラレ 蒸着フィルム、多層構造体、包装材、真空包装袋及び真空断熱体

Also Published As

Publication number Publication date
EP4328016A1 (en) 2024-02-28
JPWO2022224797A1 (ja) 2022-10-27
US20240183021A1 (en) 2024-06-06
KR20230173651A (ko) 2023-12-27

Similar Documents

Publication Publication Date Title
JP5966928B2 (ja) ガスバリア性フィルム
KR101871536B1 (ko) 가스 배리어성 필름
CN108503870B (zh) 阻气性膜
JP5857797B2 (ja) ガスバリア性フィルム
JP2017177343A (ja) 積層フィルムおよびその製造方法
WO2022224797A1 (ja) 積層体、および積層体の製造方法
KR20160114039A (ko) 가스 배리어성 필름
JP5538361B2 (ja) 透明バリア層システム
JP6442839B2 (ja) 耐湿熱性ガスバリアフィルムおよびその製造方法
Jarvis et al. Influence of the polymeric substrate on the water permeation of alumina barrier films deposited by atomic layer deposition
JP2007062305A (ja) 透明ガスバリア基板
Singh et al. Ultra-thin hybrid organic/inorganic gas barrier coatings on polymers
JP2023127642A (ja) 積層体およびそれを用いた包装体
Cho et al. Gas barrier and mechanical properties of a single‐layer silicon oxide film prepared by roll‐to‐roll PECVD system
Kim et al. Flexible Al2O3/plasma polymer multilayer moisture barrier films deposited by a spatial atomic layer deposition process
JP6586720B2 (ja) 薄膜評価用構造体及び薄膜評価方法
JP2014114467A (ja) ガスバリア性フィルムの製造方法
JP2021055125A (ja) アルミニウム蒸着フィルムの製造方法
WO2015146262A1 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
CN117203050A (zh) 层叠体、及层叠体的制造方法
JP2023144362A (ja) 積層体、および積層体の製造方法
JP5286143B2 (ja) 硬質化樹脂基板、窓ガラス代替物
JP5953921B2 (ja) ガスバリア性フィルム
KR20160022813A (ko) 시트, 무기물 적층 시트 및 그것을 이용하여 이루어지는 전자 디바이스
JP2021186982A (ja) アルミニウム蒸着フィルムおよびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022524570

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18285870

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280028837.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2301006781

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202347075924

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022791572

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022791572

Country of ref document: EP

Effective date: 20231120