WO2015146262A1 - ガスバリアフィルムおよびガスバリアフィルムの製造方法 - Google Patents

ガスバリアフィルムおよびガスバリアフィルムの製造方法 Download PDF

Info

Publication number
WO2015146262A1
WO2015146262A1 PCT/JP2015/051833 JP2015051833W WO2015146262A1 WO 2015146262 A1 WO2015146262 A1 WO 2015146262A1 JP 2015051833 W JP2015051833 W JP 2015051833W WO 2015146262 A1 WO2015146262 A1 WO 2015146262A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic layer
barrier film
gas barrier
ratio
region
Prior art date
Application number
PCT/JP2015/051833
Other languages
English (en)
French (fr)
Inventor
誠吾 中村
望月 佳彦
向井 厚史
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201580013441.8A priority Critical patent/CN106132691B/zh
Priority to EP15768341.8A priority patent/EP3124227A4/en
Publication of WO2015146262A1 publication Critical patent/WO2015146262A1/ja
Priority to US15/270,001 priority patent/US10017854B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Definitions

  • the present invention relates to a gas barrier film and a method for producing the gas barrier film.
  • the present invention particularly relates to a gas barrier film including an inorganic layer containing Si, N, H, and O, and a method for producing the same.
  • Patent Document 1 proposes to form an interface mixed layer at the interface between the inorganic layer and the organic material substrate.
  • Patent Document 2 proposes that a stress relaxation layer for stress relaxation is laminated on a gas barrier layer.
  • Patent Document 3 describes the characteristics of a Fourier transform infrared absorption spectrum of a gas barrier film mainly composed of silicon nitride and having excellent flexibility.
  • An object of the present invention is to provide a gas barrier film having both barrier performance and flexibility, and to provide a method for producing a gas barrier film having both barrier performance and flexibility.
  • the present inventors have studied in detail the formation of the silicon hydronitride layer in the gas barrier film, and according to the composition change in the film thickness direction of the silicon hydronitride layer.
  • the present inventors have found that there is a tendency that the barrier performance and the flexibility tend to change, and have further studied, and have found the characteristics of the inorganic layer that improves the barrier performance and the flexibility, thereby completing the present invention.
  • a gas barrier film including a base film and an inorganic layer, wherein the inorganic layer includes Si, N, H, and O, and the inorganic layer includes Si, N, and H at a central portion in a film thickness direction. It includes a uniform region having a uniform ratio with O and an O ratio of 10% or less represented by the following formula with a film thickness larger than 5 nm, and the interface of either one or both of the above inorganic layers
  • the O ratio represented by the following formula increases from the uniform area side toward the interface direction, and the change amount per unit film thickness of the O ratio is 2% / nm to 8%.
  • Gas barrier film which is an oxygen-containing region / nm; O ratio: (number of O / total number of Si, N and O) ⁇ 100%.
  • O ratio (number of O / total number of Si, N and O) ⁇ 100%.
  • ⁇ 2> The gas barrier film according to ⁇ 1>, wherein each of the regions in contact with both interfaces of the inorganic layer is the oxygen-containing region.
  • ⁇ 3> The gas barrier film according to ⁇ 1> or ⁇ 2>, wherein the film thickness of the oxygen-containing region is 4 to 15 nm.
  • ⁇ 4> The gas barrier film according to any one of ⁇ 1> to ⁇ 3>, wherein the inorganic layer has a thickness of 15 to 65 nm.
  • the composition of the uniform region is SiN x H y O z : where, 0.8 ⁇ x ⁇ 1.1, 0.7 ⁇ y ⁇ 0.9, and z ⁇ 0.1;
  • the composition of the uniform region is SiN x H y O z : in the formula, 0.9 ⁇ x ⁇ 1.0, 0.8 ⁇ y ⁇ 0.9, z ⁇ 0.1; ⁇ 6>
  • the gas barrier film of> is described in the formula, 0.9 ⁇ x ⁇ 1.0, 0.8 ⁇ y ⁇ 0.9, z ⁇ 0.1;
  • One or more of the time for the electric power for supplying the high frequency to reach a maximum value from 0 kW and the time for the electric power for supplying the high frequency to reach a maximum value of 0 kW is 1.5 to 7 seconds,
  • the manufacturing method in which the electric power is continuously changed in any one or more of the above-described periods of 1.5 to 7 seconds.
  • a gas barrier film having both barrier performance and flexibility is provided.
  • the gas barrier film of the present invention is excellent in both barrier performance and flexibility.
  • the present invention also provides a method for producing a gas barrier film having both barrier performance and flexibility.
  • the present invention relates to a gas barrier film including a base film and an inorganic layer.
  • the gas barrier film may include a barrier laminate including at least one inorganic layer and at least one organic layer on the base film.
  • a gas barrier film in which an inorganic layer or an inorganic layer and an organic layer are laminated on a base film such as a plastic film is widely known.
  • a dense inorganic layer has a gas barrier function (barrier property)
  • an organic layer has a function of smoothing the surface and a function of relaxing stress.
  • a region in contact with the interface where the amount of change per unit film thickness of the O ratio is 2% / nm to 8% / nm may be referred to as an oxygen-containing region.
  • the interface is a surface in which the film thickness direction is a normal direction, and the interface of the inorganic layer includes an interface in the base film direction and an interface in the direction opposite to the base film.
  • the interface in the direction opposite to the base film may be the interface with the air layer, that is, the surface of the gas barrier film.
  • the film thickness of the oxygen-containing region may be 3 to 20 nm at any interface, and is preferably 4 to 15 nm.
  • the film thicknesses of the oxygen-containing regions at the interface in the base film direction and the interface in the direction opposite to the base film may be the same or different.
  • a film thickness is shown by the average film thickness measured with the picked-up image of the transmission electron microscope (TEM) of the cross section of a layer or a film.
  • TEM transmission electron microscope
  • the film thickness of the oxygen-containing region indicates a value calculated in combination with the XPS result measured while performing etching.
  • the film thickness of the oxygen-containing region cannot be measured by TEM, it is determined from the XPS profile. Specifically, it can be calculated from the time required for etching the inorganic layer and the film thickness measured by TEM, with the etching rate being constant.
  • the density changes that is, the stress changes in the layer due to the change in the O ratio in the layer as described above.
  • a steep change in the O ratio is thought to cause a large stress change, while a change in the O ratio that is too gradual leads to an increase in the thickness of the inorganic layer in order to obtain barrier performance, resulting in an increase in the total thickness. This is thought to lead to an increase in stress.
  • the present inventors have found that the stress is remarkably relieved by the amount of change in the O ratio within the above range.
  • the numbers of O, Si, and N are the numbers of silicon atoms (Si), nitrogen atoms (N), and oxygen atoms (O) detected by X-ray photoelectron spectroscopy (XPS) measurement, respectively.
  • the amount of change in the O ratio in the film thickness direction is calculated by performing XPS measurement while etching the inorganic layer from the interface, and measuring the film thickness of the inorganic film with a transmission electron microscope (TEM) before etching. can do.
  • TEM transmission electron microscope
  • the present inventors have found that the gas barrier function can be maintained high by maintaining a region having a low O ratio at a thickness larger than 5 nm in the central portion in the thickness direction of the silicon hydronitride layer.
  • the gas barrier function was improved by providing a region where the ratio of Si, N, H, and O is uniform and the O ratio is 10% or less, more preferably 5% or less.
  • a region where the ratio of Si, N, H, and O is uniform and the ratio of O is low may be referred to as a uniform region.
  • the film thickness of the uniform region is also preferably 6 nm or more, 7 nm or more, 8 nm or more, 9 nm or more, or 10 nm or more.
  • the ratio of Si, N, H, and O is uniform means that the change in the O ratio and the Si ratio and the N ratio represented by the following formulas are all within 5%. .
  • composition of the uniform region is expressed as SiN x H y O z , it is preferable that 0.8 ⁇ x ⁇ 1.1, 0.7 ⁇ y ⁇ 0.9, and z ⁇ 0.1. More preferably, 9 ⁇ x ⁇ 1.0, 0.8 ⁇ y ⁇ 0.9, and z ⁇ 0.1.
  • the composition of the uniform region is obtained by RBS (Rutherford backscattering) and HFS (hydrogen forward scattering) measurements. Note that the composition analysis of a film containing hydrogen can also be measured by a GD-OES (Glow Discharge Optical Emission Spectrometer).
  • the density of the inorganic layer is preferably 2.1 to 2.4 g / cm 3 . This is because the low-density inorganic layer has low barrier performance, and conversely, if the density is too high, the flexibility is lowered and peeling or cracking due to stress occurs.
  • the density of the inorganic layer shown in this specification is determined by XRR (X-ray reflectivity).
  • the density calculation by the XRR measurement may be performed by simulation using software.
  • XRR measurement can be performed by, for example, ATX (manufactured by Rigaku Corporation).
  • the simulation can be performed using, for example, analysis software GXRR (manufactured by Rigaku Corporation). It is assumed that the inorganic layer is a single layer. That is, the density means an average value of the inorganic layer density including the uniform region, the oxygen-containing region, and the intermediate region.
  • the inorganic layer can be formed by any method that can form a target thin film.
  • PVD physical vapor deposition methods
  • CVD chemical vapor deposition methods
  • the inorganic layer containing Si, N, H, and O can be formed by, for example, a plasma CVD method using silane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) as a source gas.
  • SiH 4 silane
  • NH 3 ammonia
  • H 2 hydrogen
  • direct current (DC), high frequency (RF), microwaves, and the like are supplied to form a source gas in a plasma state and deposit it on a substrate.
  • the O ratio in the oxygen-containing region of the inorganic layer can be controlled by adjusting the gas flow rate ratio, pressure, power, and the like.
  • the amount of change in the O ratio can be controlled by changing the rate of increase and / or decrease in power in the plasma CVD method.
  • a set value (maximum value) of power for RF formation for forming the inorganic layer after evacuation for example, 2. To 5 kW
  • the change amount of the oxygen atomic ratio is 2% / nm to 8% / nm.
  • the time for continuously increasing the power from 0 kW to the maximum value is preferably 1.5 seconds or more, and more preferably 1.5 to 7 seconds, for example, when the set power is 2.5 kW. More preferably, it is 1.5 to 6 seconds.
  • the control based on the rise time and / or fall time of electric power is merely an example, and depends not only on the gas flow rate ratio and pressure but also on the shape of the device such as the size of the electrode and the distance between the electrodes. What is necessary is just to find the conditions for obtaining the amount of change in the ratio.
  • the plasma distribution can be adjusted by, for example, the gas flow rate, pressure, or interelectrode distance. When there is a gas introduction part near the center of the electrode, the plasma distribution can be expanded as the gas flow rate is increased.
  • the plasma distribution is broadened because the mean free path of the plasma gas becomes longer as the pressure is lowered. If the distance between the electrodes is increased, the plasma distribution is expanded. As described above, even in roll-to-roll, conditions for obtaining an appropriate change amount of the O ratio for each apparatus can be found according to the film forming conditions and the apparatus shape.
  • the film thickness of the inorganic layer may be 15 to 65 nm per layer, and preferably 20 to 40 nm.
  • the inorganic layer may include a region other than the uniform region and the oxygen-containing region in the film thickness direction. For example, an intermediate region may be included between the uniform region and the oxygen-containing region.
  • the gas barrier film usually uses a plastic film as a base film.
  • the plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold the barrier laminate, and can be appropriately selected depending on the purpose of use and the like.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide resin.
  • Cellulose acylate resin Cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modification
  • thermoplastic resins such as polycarbonate resin, fluorene ring-modified polyester resin, and acryloyl compound.
  • the film thickness of the base film is preferably 10 ⁇ m to 250 ⁇ m, more preferably 20 ⁇ m to 130 ⁇ m.
  • the gas barrier film may include a barrier laminate including at least one of the above inorganic layers and at least one organic layer.
  • the barrier laminate may be one in which two or more organic layers and two or more inorganic layers are alternately laminated. Moreover, you may include other structural layers other than an organic layer and an inorganic layer.
  • the film thickness of the barrier laminate is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 1 ⁇ m to 5 ⁇ m.
  • the organic layer can be preferably formed by curing a polymerizable composition containing a polymerizable compound.
  • the polymerizable compound is preferably a compound having an ethylenically unsaturated bond at the terminal or side chain and / or a compound having epoxy or oxetane at the terminal or side chain.
  • a compound having an ethylenically unsaturated bond at a terminal or a side chain is particularly preferable.
  • Examples of compounds having an ethylenically unsaturated bond at the terminal or side chain include (meth) acrylate compounds, acrylamide compounds, styrene compounds, maleic anhydride, etc., (meth) acrylate compounds are preferred, Particularly preferred are acrylate compounds.
  • (meth) acrylate compound As the (meth) acrylate compound, (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate and the like are preferable.
  • styrene compound styrene, ⁇ -methylstyrene, 4-methylstyrene, divinylbenzene, 4-hydroxystyrene, 4-carboxystyrene and the like are preferable.
  • Specific examples of the (meth) acrylate compound include compounds described in paragraphs 0024 to 0036 of JP2013-43382A or paragraphs 0036 to 0048 of JP2013-43384A. Further, a polyfunctional acrylic monomer having a fluorene skeleton described in WO2013 / 047524 can also be used.
  • the polymerizable composition for forming the organic layer may contain a polymerization initiator.
  • a polymerization initiator When a polymerization initiator is used, its content is preferably 0.1 mol% or more, more preferably 0.5 to 5 mol% of the total amount of compounds involved in the polymerization. By setting it as such a composition, the polymerization reaction via an active component production
  • polymerization initiators examples include Irgacure series (for example, Irgacure 651, Irgacure 754, Irgacure 184, Irgacure 2959, Irgacure 907, Irgacure 369, Irgacure 379, Irgacure 819, commercially available from Ciba Specialty Chemicals. ), Darocur series (eg, Darocur TPO, Darocur 1173, etc.), Quantacure PDO, Ezacur series (eg, Ezacure TZM, Ezacure TZT, commercially available from Lamberti) , Ezacure KTO46, etc.).
  • Irgacure series for example, Irgacure 651, Irgacure 754, Irgacure 184, Irgacure 2959, Irgacure 907, Irgacure 369, Irgacure 379, Irga
  • the polymerizable composition for forming the organic layer may contain a silane coupling agent.
  • Silane coupling agents include reactive groups such as methoxy, ethoxy, and acetoxy groups that bond to silicon, as well as epoxy groups, vinyl groups, amino groups, halogen groups, mercapto groups, and (meth) acryloyl groups. Those having a substituent having one or more selected reactive groups as a substituent bonded to the same silicon are preferable. It is particularly preferable that the silane coupling agent has a (meth) acryloyl group.
  • silane coupling agent examples include a silane coupling agent represented by the general formula (1) described in WO2013 / 146069 and a silane coupling agent represented by the general formula (I) described in WO2013 / 027786. Is mentioned.
  • the proportion of the silane coupling agent in the solid content of the polymerizable composition is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass.
  • the organic layer may be usually prepared by applying the polymerizable composition in a layer form on a support such as a base film or an inorganic layer.
  • a coating method a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a slide coating method, or a hopper described in US Pat. No. 2,681,294 is used.
  • Extrusion coating methods also called die coating methods
  • the extrusion coating method can be preferably employed.
  • the polymerizable composition may be cured with light (for example, ultraviolet rays), an electron beam, or heat rays, and is preferably cured with light.
  • light for example, ultraviolet rays
  • an electron beam for example, an electron beam
  • heat rays for example, an electron beam
  • the light to be irradiated may be ultraviolet light from a high pressure mercury lamp or a low pressure mercury lamp.
  • the radiation energy is preferably 0.1 J / cm 2 or more, 0.5 J / cm 2 or more is more preferable.
  • the polymerizable compound is subject to polymerization inhibition by oxygen in the air, it is preferable to reduce the oxygen concentration or oxygen partial pressure during polymerization.
  • the oxygen concentration during polymerization is lowered by the nitrogen substitution method, the oxygen concentration is preferably 2% or less, and more preferably 0.5% or less.
  • the oxygen partial pressure during polymerization is reduced by the decompression method, the total pressure is preferably 1000 Pa or less, and more preferably 100 Pa or less. Further, it is particularly preferable to perform ultraviolet polymerization by irradiating energy of 0.5 J / cm 2 or more under a reduced pressure condition of 100 Pa or less.
  • the polymerization rate of the polymerizable compound in the organic layer after curing the polymerizable composition is preferably 20% by mass or more, more preferably 30% by mass or more, and particularly preferably 50% by mass or more.
  • the polymerization rate here means the ratio of the reacted polymerizable group among all the polymerizable groups (for example, acryloyl group and methacryloyl group) in the monomer mixture.
  • the polymerization rate can be quantified by an infrared absorption method.
  • the organic layer is preferably smooth and has high film hardness.
  • the smoothness of the organic layer is preferably less than 3 nm, more preferably less than 1 nm, as an average roughness (Ra value) of 1 ⁇ m square.
  • the surface of the organic layer is required to be free of foreign matters such as particles and protrusions. For this reason, it is preferable that the organic layer is formed in a clean room.
  • the degree of cleanness is preferably class 10000 or less, more preferably class 1000 or less.
  • the organic layer has a high hardness. It has been found that when the hardness of the organic layer is high, the inorganic layer is formed smoothly and as a result, the barrier ability is improved.
  • the hardness of the organic layer can be expressed as a microhardness based on the nanoindentation method.
  • the microhardness of the organic layer is preferably 100 N / mm or more, and more preferably 150 N / mm or more.
  • the film thickness of the organic layer is not particularly limited, but is preferably 50 nm to 5000 nm, more preferably 200 nm to 3500 nm from the viewpoint of brittleness and light transmittance.
  • the organic layer and the inorganic layer can be stacked by sequentially repeating the organic layer and the inorganic layer according to a desired layer configuration.
  • the gas barrier film or the barrier laminate may have a functional layer.
  • the functional layer is described in detail in paragraph numbers 0036 to 0038 of JP-A-2006-289627.
  • Examples of functional layers other than these include matting agent layers, protective layers, solvent resistant layers, antistatic layers, smoothing layers, adhesion improving layers, light shielding layers, antireflection layers, hard coat layers, stress relaxation layers, antifogging layers. , An antifouling layer, a printing layer, an easy-adhesion layer, or an easy-slip layer.
  • a first inorganic layer (silicon nitride) was formed on the first organic layer by a capacitively coupled plasma CVD method (hereinafter also simply referred to as “plasma CVD method”).
  • plasma CVD method a capacitively coupled plasma CVD method
  • An inorganic layer having the interface state and composition described in the table below was formed by adjusting main film formation parameters such as gas flow rate ratio, pressure, and RF power in the plasma CVD method.
  • a second organic layer was formed on the surface of the first inorganic layer in the same manner as the first organic layer.
  • silane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) were used as source gases.
  • the raw material gas flow rate for film formation is shown in the table.
  • the pressure is set to 50 Pa, and the pressure is automatically adjusted regardless of the gas flow rate.
  • the O ratio is controlled by changing the rising speed and falling speed of the RF power of the plasma CVD apparatus, so that a predetermined amount of change in the O ratio is applied to both the surface-side interface and the substrate-side interface of the inorganic layer. A region having the same was formed.
  • the interface 1 in the table means an oxygen-containing region on the surface side (second organic layer side) of the inorganic layer
  • the interface 2 means an oxygen-containing region on the substrate side (polyethylene terephthalate side) of the inorganic layer.
  • RBS Rutherford backscattering
  • HFS hydrogen forward scattering
  • National Electrostatics Corporation Pelletron 3SDH National Electrostatics Corporation Pelletron 3SDH
  • an inorganic film that is thicker than the thickness of the central region in the thickness direction of the inorganic layer of the gas barrier film produced above, that is, thicker than the thickness of the uniform region of the gas barrier film, is subjected to the same film formation conditions for this measurement. It produced and measured the ratio of Si, N, O, and H.
  • the density of the inorganic layer was determined by XRR (X-ray reflectivity) measurement (ATX manufactured by Rigaku Corporation). In the calculation of the density using the XRR measurement result, the substrate and the organic layer have a single density (1.3 g / cm 3 ), and the calculation was performed by simulation assuming that the inorganic film has a single density (Rigaku Corporation). Simulation software GXRR).
  • the obtained gas barrier film was bent by ⁇ 5 mm ⁇ 1000 times, and then the barrier performance was evaluated.
  • the barrier performance evaluation was performed by a method called a calcium corrosion method (refer to Asia Display / IDW'01 pp. 1435-1438) for evaluating moisture ingress by fading of metallic calcium. Specifically, after vapor-depositing metallic calcium on a glass substrate, it was sealed with a gas barrier film, and the water vapor transmission rate was calculated using a sample obtained by storage in an environment at a temperature of 25 ° C. and a humidity of 50%. That is, the water that has passed through the gas barrier film reacts with metallic calcium to produce calcium hydroxide.
  • the amount of water that has entered can be calculated from the following reaction formula by measuring the fading area of metallic calcium.
  • the water vapor transmission rate (g / m 2 ⁇ day) was calculated from the amount of ingress moisture calculated as described above, the barrier film area, and the storage time.
  • it takes time (induction time) for moisture to diffuse and reach equilibrium the above measurement was performed based on the fading area after the fading area speed of metallic calcium became constant.
  • the barrier performance was evaluated based on the standard of water vapor permeability after the following flexibility test.
  • the obtained results are shown in Tables 1 to 6 together with the conditions for producing the gas barrier film.
  • Tables 1 to 6 together with the conditions for producing the gas barrier film.
  • the result of having measured each change of Si ratio of a film thickness direction, N ratio, and O ratio by XPS is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 ガスバリアフィルムは、基材フィルムおよび無機層を含むガスバリアフィルムであって、無機層は、SiとNとHとOとを含み、膜厚方向中央部において、SiとNとHとOとの比が均一であり、Oの比率が低い均一領域を5nmよりも大きい膜厚で含み、いずれか一つ以上の界面に接する領域が、式(O比率):(Oの数/Si、NおよびOの総数)×100%;で表されるO比率が均一領域側から界面方向に向かって増加しており、かつO比率の単位膜厚当たりの変化量が2%/nm~8%/nmである酸素含有領域である。ガスバリアフィルムの製造方法は、プラズマCVD法により無機層を形成することを含み、プラズマ形成のために供給する電力が0kWから最大値に達する時間および高周波を供給する電力の最大値から0kWに達する時間を調整することを含む。

Description

ガスバリアフィルムおよびガスバリアフィルムの製造方法
 本発明は、ガスバリアフィルムおよびガスバリアフィルムの製造方法に関する。本発明は特にSiとNとHとOとを含む無機層を含むガスバリアフィルムおよびその製造方法に関する。
 水蒸気や酸素などを遮断する機能を有するガスバリアフィルムとして、無機層、特に窒化シリコン層や水素化窒化シリコン層を含むガスバリアフィルムが広く知られており、高いバリア性、耐酸化性などの耐久性、屈曲性を得るための検討が多くなされている。一般的に、緻密で硬い膜ほどバリア性が高くなるが割れやすくなるため、屈曲性との両立が難しい。
 屈曲性向上等のために特許文献1では無機層と有機材料基板の界面に界面混合層を形成することが提案されている。また、特許文献2では応力緩和のための応力緩和層をガスバリア層に積層することが提案されている。特許文献3には、窒化シリコンを主成分とするガスバリア膜であって可撓性に優れたガスバリア膜の、フーリエ変換赤外吸収スペクトルの特徴が記載されている。
特開2013-203050号公報 特開2006-68992号公報 特開2011-63851号公報
 本発明は、バリア性能と屈曲性とを両立するガスバリアフィルムを提供すること、およびバリア性能と屈曲性を両立するガスバリアフィルムの製造方法を提供することを課題とする。
 本発明者らが、上記課題の解決のために、ガスバリアフィルム中の水素化窒化シリコン層の形成について詳細に検討している過程で、水素化窒化シリコン層の膜厚方向の組成変化に応じてバリア性能と屈曲性とが変化する傾向があることを見出し、さらに検討を重ねて、バリア性能と屈曲性とが向上する無機層の特徴を見出して本発明を完成させた。
 すなわち、本発明は以下<1>~<10>を提供するものである。
<1>基材フィルムおよび無機層を含むガスバリアフィルムであって、上記無機層はSiとNとHとOとを含み、上記無機層は、膜厚方向中央部において、SiとNとHとOとの比が均一であり、かつ、以下の式で表されるO比率が10%以下である均一領域を5nmよりも大きい膜厚で含み、上記無機層のいずれか一方または両方それぞれの界面に接する領域が、以下の式で表されるO比率が上記の均一領域側から界面方向に向かって増加しており、かつO比率の単位膜厚当たりの変化量が2%/nm~8%/nmである酸素含有領域であるガスバリアフィルム; O比率:(Oの数/Si、NおよびOの総数)×100%。
<2>上記無機層の両方の界面に接する領域それぞれが、上記酸素含有領域である<1>に記載のガスバリアフィルム。
<3>上記酸素含有領域の膜厚がいずれも、4~15nmである<1>または<2>に記載のガスバリアフィルム。
<4>上記無機層の膜厚が15~65nmである<1>~<3>のいずれか一項に記載のガスバリアフィルム。
<5>上記無機層の膜厚が20~40nmである<1>~<3>のいずれか一項に記載のガスバリアフィルム。
<6>上記均一領域の組成が、SiN:式中、0.8≦x≦1.1、0.7≦y≦0.9、かつz<0.1;である<1>~<5>のいずれか一項に記載のガスバリアフィルム。
<7>上記均一領域の組成が、SiN:式中、0.9≦x≦1.0,0.8≦y≦0.9,z<0.1;である<6>に記載のガスバリアフィルム。
<8>上記無機層の密度が2.1~2.4g/cmである<1>~<7>のいずれか一項に記載のガスバリアフィルム。
<9>上記無機層と少なくとも1層以上の有機層とを含むバリア性積層体を含む<1>~<8>のいずれか一項に記載のガスバリアフィルム。
<10>SiとNとHとOとを含む無機層を含むガスバリアフィルムの製造方法であって、高周波を供給してプラズマ状態にしたシラン、アンモニア、および水素を蒸着して、上記無機層を形成することを含み、上記高周波を供給する電力が0kWから最大値に達する時間および上記高周波を供給する電力の最大値から0kWに達する時間のいずれか1つ以上を1.5~7秒とし、かつ1.5~7秒とした上記のいずれか1つ以上の時間において、電力を連続的に変化させる製造方法。
 本発明により、バリア性能および屈曲性を両立するガスバリアフィルムが提供される。本発明のガスバリアフィルムはバリア性能と屈曲性との双方が優れている。本発明はまたバリア性能と屈曲性と両立するガスバリアフィルムの製造方法を提供する。
実施例5のガスバリアフィルムの無機層について、膜厚方向のSi、N、およびOの比率のそれぞれの変化をXPSで測定した結果を示す図である。
 以下、本発明の内容について詳細に説明する。
 本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。また、本明細書において、「(メタ)アクリレート」との記載は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味を表す。「(メタ)アクリル酸」等も同様である。
(ガスバリアフィルム)
 本発明は基材フィルムおよび無機層を含むガスバリアフィルムに関する。ガスバリアフィルムは、基材フィルム上に少なくとも上記の無機層1層と少なくとも1層の有機層を含むバリア性積層体を含むものであってもよい。
 プラスチックフィルムなどの基材フィルム上に無機層、または無機層と有機層とを積層したガスバリアフィルムは広く知られている。通常、緻密な無機層がガスバリア機能(バリア性)を有し、有機層は表面を平滑化する機能や応力を緩和する機能を有する。
(無機層)
 無機層は、緻密であるほど、または膜厚が厚いほど、バリア性が高くなるが、膜の応力が大きくなるため屈曲性が低下する傾向がある。屈曲性が低下することによって、無機層にクラックが生じたり、無機層と有機層との剥離が生じたりするので、ガスバリア機能が低下する。本発明者らは、水素化窒化シリコン層の界面付近に酸素原子が検出される領域が形成されていることに着目し、かつ、この領域において、以下の式で表されるO比率(酸素原子比率)の単位膜厚当たりの変化量が2%/nm~8%/nmとなるように、界面から中央部に向かってO比率を減少させることによって、従来トレードオフの関係であった高いバリア性能と屈曲性とが両立できることを見出した。
 O比率:(Oの数/Si、NおよびOの総数)×100%
 本明細書において、O比率の単位膜厚当たりの変化量が2%/nm~8%/nmである界面に接する領域を酸素含有領域ということがある。界面は、膜厚方向を法線方向とする面であり、無機層の界面としては、基材フィルム方向の界面と基材フィルムの反対側の方向の界面とがある。基材フィルムの反対側の方向の界面は、空気層との界面、すなわち、ガスバリアフィルムの表面であってもよい。
 無機層のいずれか一方のみの界面に酸素含有領域があってもよく、無機層の両方の界面それぞれに酸素含有領域があってもよい。酸素含有領域の膜厚はいずれの界面においても、3~20nmであればよく、4~15nmであることが好ましい。基材フィルム方向の界面と基材フィルムの反対側の方向の界面の酸素含有領域の膜厚は同じであっても異なっていてもよい。
 なお、本明細書において、膜厚は、層やフィルムの断面の透過型電子顕微鏡(TEM)の撮影像で測定した平均膜厚で示される。ただし、酸素含有領域の膜厚はエッチングを行いながら測定したXPSの結果と合わせて算出した値が示される。すなわち、酸素含有領域の膜厚はTEMでは測定できないためXPSのプロファイルから決定する。具体的には、エッチング速度を一定として、無機層のエッチングに要した時間と、TEMにて測定した膜厚から計算できる。
 特定の理論に拘泥するものではないが、上述のように層中のO比率が変化していることにより、層内で密度が変化、すなわち応力が変化していると考えられる。急峻なO比率の変化は大きな応力変化を生じさせることとなると考えられ、一方で緩やかすぎるO比率の変化はバリア性能を得るために無機層膜厚の増加をもたらし、全膜厚が厚くなることで、応力増大につながると考えられる。本発明者らは、上記の範囲のO比率の変化量で応力が顕著に緩和されることを見出した。
 上記のOの数、Siの数、およびNの数はそれぞれX線光電子分光(XPS)測定により検出されるケイ素原子(Si)、窒素原子(N)、酸素原子(O)の数とする。膜厚方向のO比率の変化量は、無機層を界面からエッチングを行いながらXPS測定を行い、さらにエッチング前に透過型電子顕微鏡(TEM)により無機膜の膜厚を測定しておくことで算出することができる。
 本発明者らはさらに、水素化窒化シリコン層は膜厚方向中央部において、O比率が低い領域を5nmよりも大きい膜厚で維持することにより、ガスバリア機能を高く維持できることを見出した。具体的には、SiとNとHとOとの比が均一であり、かつ、O比率が10%以下、より好ましくは5%以下である領域を設けることにより、ガスバリア機能が向上した。本明細書において、上記のSiとNとHとOとの比が均一であるO比率が低い領域を均一領域ということがある。均一領域の膜厚は、6nm以上、7nm以上、8nm以上、9nm以上、または10nm以上であることも好ましい。
 本明細書において、SiとNとHとOとの比が均一であるとは、O比率ならびに以下の式で示されるSi比率およびN比率の変化がいずれも5%以内であることを意味する。
 Si比率:(Siの数/Si、NおよびOの総数)×100%
 N比率:(Nの数/Si、NおよびOの総数)×100%
 均一領域の組成を、SiNと表すとき、0.8≦x≦1.1、0.7≦y≦0.9、かつz<0.1であることが好ましく、0.9≦x≦1.0、0.8≦y≦0.9、かつz<0.1であることがより好ましい。
 上記の均一領域の組成は、RBS(ラザフォード後方散乱)およびHFS(水素前方散乱)測定により得たものとする。なお、水素を含んだ膜の組成解析は、GD-OES(Glowdischarge optical emission spectrometry:グロー放電発光分析装置)によっても測定できる。
 [密度]
 無機層の密度は2.1~2.4g/cmであることが好ましい。低密度の無機層はバリア性能が低く、逆に密度が高すぎると屈曲性が低下し、応力による剥離やクラックが生じるためである。
 本明細書において示される無機層の密度はXRR(X線反射率)により決定されるものである。XRR測定による密度の計算は、ソフトを用いたシミュレーションにより行うものであってもよい。XRR測定は、例えばATX(リガク社製)により行うことができる。シミュレーションは、例えば、解析ソフトGXRR(リガク社製)を使用して行うことができる。無機層は単一層であることを仮定している。すなわち、密度は均一領域、酸素含有領域、中間領域を含む無機層密度の平均値を意味する。
 無機層は、目的の薄膜を形成できる方法であればいかなる方法でも形成することができる。例えば、蒸着法、スパッタリング法、イオンプレーティング法等の物理的気相成長法(PVD)、種々の化学的気相成長法(CVD)、めっきやゾルゲル法等の液相成長法があり、プラズマCVD法が好ましい。 SiとNとHとOとを含む無機層は、例えば原料ガスとして、シラン(SiH)、アンモニア(NH)、水素(H)を使用するプラズマCVD法により形成することができる。プラズマCVD法においては、直流(DC)、高周波(RF)、マイクロ波などを供給することで原料ガスをプラズマ状態にして基板に蒸着させる。
 無機層の酸素含有領域のO比率の制御は、ガス流量比、圧力、電力などの調整により行うことができる。特に、プラズマCVD法における電力の上昇速度、および/または下降速度を変化させることでO比率の変化量を制御できる。すなわちプラズマCVD設定電力まで上昇させる時間が長いほど、O比率の変化量が小さい界面が形成される。プラズマのオンオフを毎度行う枚葉式のCVDで無機層を作製する場合は、通常、真空排気後、無機層を形成するためのRF形成のための電力の設定値(最大値)(例えば2.5kW)まで、0kWから1秒以内で上昇させる。それに対して、1秒より長い時間で連続的に電力を上昇させることで、酸素原子比率の変化量が2%/nm~8%/nmである領域を形成することができる。0kWから最大値まで連続的に電力を上昇させる時間は、例えば2.5kWの設定パワーの場合、1.5秒以上の時間であることが好ましく、1.5~7秒であることがより好ましく、1.5~6秒であることがさらに好ましい。電力の上昇時間、および/または下降時間による制御は一例に過ぎず、ガス流量比や圧力だけでなく、電極の大きさや電極間距離などの装置形状にも依存するため、装置毎に適切なO比率の変化量を得るための条件を見出せばよい。
 ロールツーロールで無機層を作製する場合、搬送方向にプラズマの分布があることが通常である。特に電極の端部では、中央付近と比べて電界が広がるため相対的に低電力で処理した場合と同様の効果となる。そして、このプラズマ分布と基材の搬送速度(成膜時間に対応)によりO比率の変化量が決定される。そのため、所望のO比率の変化量が形成されるよう、プラズマ分布と搬送速度を調整することが好ましい。プラズマ分布は、例えば、ガス流量や圧力、電極間距離によって調整することができる。電極中央付近にガス導入部がある場合、ガス流量を大きくするほどプラズマ分布を広げることができる。また、圧力を下げるほどプラズマガスの平均自由行程が長くなるためプラズマ分布が広がる。電極間距離も大きくすれば、プラズマ分布は広がる。このようにロールツーロールにおいても、成膜条件や装置形状により、装置毎に適切なO比率の変化量を得るための条件を見出すことができる。
 無機層の膜厚は、1層に付き、15~65nmであればよく、20~40nmであることが好ましい。無機層は、膜厚方向に均一領域および酸素含有領域以外の領域を含んでいてもよい。例えば、均一領域と酸素含有領域との間に中間領域を含んでいてもよい。
(基材フィルム)
 ガスバリアフィルムは、通常、基材フィルムとして、プラスチックフィルムを用いる。用いられるプラスチックフィルムは、バリア性積層体を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
 基材フィルムの膜厚は10μm~250μmであることが好ましく、20μm~130μmであることがより好ましい。
(バリア性積層体)
 ガスバリアフィルムは、少なくとも1層の上記の無機層と少なくとも1層の有機層を含むバリア性積層体を含むものであってもよい。バリア性積層体は、2層以上の有機層と2層以上の無機層とが交互に積層しているものであってもよい。また、有機層および無機層以外の他の構成層を含んでいてもよい。バリア性積層体の膜厚は0.5μm~10μmであることが好ましく、1μm~5μmであることがより好ましい。
(有機層)
 有機層は、好ましくは、重合性化合物を含む重合性組成物の硬化により形成することができる。
(重合性化合物)
 上記重合性化合物は、エチレン性不飽和結合を末端または側鎖に有する化合物、および/または、エポキシまたはオキセタンを末端または側鎖に有する化合物であることが好ましい。重合性化合物としては、エチレン性不飽和結合を末端または側鎖に有する化合物が特に好ましい。エチレン性不飽和結合を末端または側鎖に有する化合物の例としては、(メタ)アクリレート系化合物、アクリルアミド系化合物、スチレン系化合物、無水マレイン酸等が挙げられ、(メタ)アクリレート系化合物が好ましく、特にアクリレート系化合物が好ましい。
 (メタ)アクリレート系化合物としては、(メタ)アクリレート、ウレタン(メタ)アクリレートやポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート等が好ましい。
 スチレン系化合物としては、スチレン、α-メチルスチレン、4-メチルスチレン、ジビニルベンゼン、4-ヒドロキシスチレン、4-カルボキシスチレン等が好ましい。
 (メタ)アクリレート系化合物として具体的には、例えば特開2013-43382号公報の段落0024~0036または特開2013-43384号公報の段落0036~0048に記載の化合物を用いることができる。また、WO2013/047524に記載のフルオレン骨格を有する多官能アクリルモノマーを用いることもできる。
(重合開始剤)
 有機層形成のための重合性組成物は、重合開始剤を含んでいてもよい。重合開始剤を用いる場合、その含量は、重合に関与する化合物の合計量の0.1モル%以上であることが好ましく、0.5~5モル%であることがより好ましい。このような組成とすることにより、活性成分生成反応を経由する重合反応を適切に制御することができる。重合開始剤の例としてはチバ・スペシャルティー・ケミカルズ社から市販されているイルガキュア(Irgacure)シリーズ(例えば、イルガキュア651、イルガキュア754、イルガキュア184、イルガキュア2959、イルガキュア907、イルガキュア369、イルガキュア379、イルガキュア819など)、ダロキュア(Darocur)シリーズ(例えば、ダロキュアTPO、ダロキュア1173など)、クオンタキュア(Quantacure)PDO、ランベルティ(Lamberti)社から市販されているエザキュア(Ezacure)シリーズ(例えば、エザキュアTZM、エザキュアTZT、エザキュアKTO46など)等が挙げられる。 
(シランカップリング剤)
 有機層形成のための重合性組成物は、シランカップリング剤を含んでいてもよい。シランカップリング剤としては、ケイ素に結合するメトキシ基、エトキシ基、アセトキシ基等の加水分解可能な反応基とともに、エポキシ基、ビニル基、アミノ基、ハロゲン基、メルカプト基、(メタ)アクリロイル基から選択される1つ以上の反応性基を有する置換基を同じケイ素に結合する置換基として有するものが好ましい。シランカップリング剤は、(メタ)アクリロイル基を有していること特に好ましい。シランカップリング剤の具体例としては、WO2013/146069に記載の一般式(1)で表されるシランカップリング剤およびWO2013/027786に記載の一般式(I)で表されるシランカップリング剤などが挙げられる。
 シランカップリング剤の、重合性組成物の固形分(揮発分が揮発した後の残分)中に占める割合は、0.1~30質量%が好ましく、1~20質量%がより好ましい。
(有機層の作製方法)
 有機層は、通常、基材フィルムまたは無機層等の支持体の上に、上記重合性組成物を層状に塗布して作製すればよい。塗布方法としては、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スライドコート法、或いは、米国特許第2681294号明細書に記載のホッパ-を使用するエクストル-ジョンコート法(ダイコート法とも呼ばれる)が例示され、この中でもエクストル-ジョンコート法が好ましく採用できる。
 重合性組成物は、光(例えば、紫外線)、電子線、または熱線にて、硬化させればよく、光によって硬化させることが好ましい。特に、重合性組成物を25℃以上の温度(例えば、30~130℃)をかけて加熱しながら、硬化させることが好ましい。加熱により、重合性組成物の自由運動を促進させることで効果的に硬化させ、かつ、基材フィルム等にダメージを与えずに成膜することができる。
 照射する光は、高圧水銀灯もしくは低圧水銀灯による紫外線であればよい。照射エネルギーは0.1J/cm以上が好ましく、0.5J/cm以上がより好ましい。重合性化合物は空気中の酸素によって重合阻害を受けるため、重合時の酸素濃度もしくは酸素分圧を低くすることが好ましい。窒素置換法によって重合時の酸素濃度を低下させる場合、酸素濃度は2%以下が好ましく、0.5%以下がより好ましい。減圧法により重合時の酸素分圧を低下させる場合、全圧が1000Pa以下であることが好ましく、100Pa以下であることがより好ましい。また、100Pa以下の減圧条件下で0.5J/cm以上のエネルギーを照射して紫外線重合を行うことが特に好ましい。
 重合性組成物を硬化した後の有機層中における重合性化合物の重合率は20質量%以上であることが好ましく、30質量%以上がより好ましく、50質量%以上が特に好ましい。ここでいう重合率とはモノマー混合物中の全ての重合性基(例えば、アクリロイル基およびメタクリロイル基)のうち、反応した重合性基の比率を意味する。重合率は赤外線吸収法によって定量することができる。
 有機層は、平滑で、膜硬度が高いことが好ましい。有機層の平滑性は1μm角の平均粗さ(Ra値)として3nm未満であることが好ましく、1nm未満であることがより好ましい。
 有機層の表面にはパーティクル等の異物、突起が無いことが要求される。このため、有機層の成膜はクリーンルーム内で行われることが好ましい。クリーン度はクラス10000以下が好ましく、クラス1000以下がより好ましい。
 有機層の硬度は高いことが好ましい。有機層の硬度が高いと、無機層が平滑に成膜されその結果としてバリア能が向上することがわかっている。有機層の硬度はナノインデンテーション法に基づく微小硬度として表すことができる。有機層の微小硬度は100N/mm以上であることが好ましく、150N/mm以上であることがより好ましい。
 有機層の膜厚については特に限定はないが、脆性や光透過率の観点から、50nm~5000nmが好ましく、200nm~3500nmがより好ましい。
(有機層と無機層の積層)
 有機層と無機層の積層は、所望の層構成に応じて有機層と無機層を順次繰り返し成膜することにより行うことができる。
(機能層)
 ガスバリアフィルムまたはバリア性積層体は、機能層を有していてもよい。機能層については、特開2006-289627号公報の段落番号0036~0038に詳しく記載されている。これら以外の機能層の例としてはマット剤層、保護層、耐溶剤層、帯電防止層、平滑化層、密着改良層、遮光層、反射防止層、ハードコート層、応力緩和層、防曇層、防汚層、被印刷層、易接着層または易滑性層等が挙げられる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
[ガスバリアフィルムの作製]
 75μmのポリエチレンテレフタレート(東レ社製、S10)の片面に、密着改善のためのプラズマ処理を行った後、重合性化合物(化合物I)を15質量%、重合開始剤(Lamberti社、Esacure KTO46)を0.5質量%、および2-ブタノン84.5質量%を含む重合性組成物を乾燥膜厚が2000nmとなるように塗布して膜を得た。得られた膜に、酸素含有量100ppm以下の窒素雰囲気下、紫外線を照射量が0.5J/cmとなるように照射することにより硬化させ、第1の有機層を作製した。その第1の有機層上に、第1の無機層(窒化ケイ素)を容量結合プラズマCVD法(以下、単に「プラズマCVD法」ともいう。)で作製した。プラズマCVD法の、ガス流量比、圧力、RFパワーなどの主な成膜パラメータを調整することで下表に記載の界面状態や組成を持つ無機層を形成した。さらに第1の無機層表面上に、第2の有機層を第1の有機層と同様の方法で作製した。
Figure JPOXMLDOC01-appb-C000001
 上記プラズマCVD法においては、原料ガスとして、シラン(SiH)、アンモニア(NH)、水素(H)を使用した。成膜のための原料ガス流量は表中に示している。全ての実施例および比較例において、圧力は50Paに設定し、ガス流量に関わらず圧力調整を自動で行う機構となっている。
 O比率の制御は、プラズマCVD装置のRFパワーの上昇速度および下降速度を変化させることで、無機層の表面側の界面および基材側の界面の両方それぞれに、所定のO比率の変化量を有する領域を形成した。表中の界面1とは無機層の表面側(第2の有機層側)の酸素含有領域、界面2とは無機層の基材側(ポリエチレンテレフタレート側)の酸素含有領域を意味する。
[O比率の変化量の測定方法]
 X線光電子分光装置(島津製作所社製ESCA-3400)を用いて、Arイオンにより、ガスバリアフィルムを第2の有機層側の面からエッチングしながら、X線光電子分光(XPS)測定を行い、無機層界面領域に含まれる原子を検出した。測定においてケイ素原子の信号が検出された時点で無機層のエッチングが開始されたと判断した。検出したケイ素原子、窒素原子、酸素原子につき、それぞれの原子数と総原子数から、O比率を算出した。さらにTEM (H-9000NAR、日立製作所製)観察で得られた無機層の膜厚と、エッチング時間の関係から単位膜厚あたりの酸素原子比率の変化量を算出した。
[均一領域のSiとNとHとOとの比率の測定]
 RBS(ラザフォード後方散乱)およびHFS(水素前方散乱)測定(National Electrostatics Corporation製 Pelletron 3SDH)により、無機層の均一領域における組成分析を行い、無機層におけるSiとNとOとHとの比率を得た。RBS測定および HFS測定では、検出感度を得るため無機層を厚く形成する必要がある。そのため、上記で作製したガスバリアフィルムの無機層の膜厚方向中央部領域の厚みよりも厚い、すなわち、上記ガスバリアフィルムの均一領域の厚みよりも厚い無機膜を本測定のために同じ成膜条件で作製し、SiとNとOとHとの比率を測定した。
[密度測定]
 XRR(X線反射率)測定(リガク社製 ATX)により無機層の密度を決定した。XRR測定結果を用いた密度の計算において、基板と有機層は単一の密度(1.3g/cm)であり、無機膜を単一の密度と仮定して、シミュレーションにより算出した(リガク社製シミュレーションソフト GXRR)。
[屈曲性試験後のバリア性能]
 得られたガスバリアフィルムについて、φ5mm×1000回の屈曲を行ったのち、バリア性能評価を行った。バリア性能評価はカルシウム腐食法(Asia Display/IDW’01 pp.1435~1438参照)と呼ばれる、金属カルシウムの退色により水分進入を評価する方法により実施した。具体的には、ガラス基板に金属カルシウムを蒸着した後、ガスバリアフィルムで封止し、温度25℃、湿度50%の環境下で保管して得られたサンプルを用いて水蒸気透過率を算出した。すなわち、ガスバリアフィルムを通過した水分は金属カルシウムと反応し、水酸化カルシウムが生成する。金属カルシウムは水酸化カルシウムになると透明になるため、金属カルシウムの退色面積を測定することで、進入した水分量を下記の反応式より算出することができる。
 Ca + 2HO => Ca(OH) + H
 上記のように算出した進入水分量、バリアフィルム面積、および保管時間から、水蒸気透過率(g/m・day)を算出した。なお、水分が拡散し平衡に達するまでに時間(誘導時間)を要するため、上記の測定は、金属カルシウムの退色面積速度が一定になった後からの退色面積に基づいて行った。
 バリア性能は、下記の屈曲性試験後の水蒸気透過率の基準に基づいて評価した。
 A:5×10-5 未満
 B:5×10-5以上 5×10-4未満
 C:5×10-4以上
(単位は(g/m・day))
 得られた結果をガスバリアフィルムの作製条件とともに、表1~6に示す。また、表1,2中の実施例5のガスバリアフィルムの無機層について、膜厚方向のSi比率、N比率、およびO比率のそれぞれの変化をXPSで測定した結果を図1に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007

Claims (10)

  1. 基材フィルムおよび無機層を含むガスバリアフィルムであって、
    前記無機層はSiとNとHとOとを含み、
    前記無機層は、膜厚方向中央部において、SiとNとHとOとの比が均一であり、かつ、以下の式で表されるO比率が10%以下である均一領域を5nmよりも大きい膜厚で含み、
    前記無機層のいずれか一方または両方それぞれの界面に接する領域が、以下の式で表されるO比率が前記の均一領域側から界面方向に向かって増加しており、かつO比率の単位膜厚当たりの変化量が2%/nm~8%/nmである酸素含有領域であるガスバリアフィルム;
    O比率:(Oの数/Si、NおよびOの総数)×100%。
  2. 前記無機層の両方の界面に接する領域それぞれが、前記酸素含有領域である請求項1に記載のガスバリアフィルム。
  3. 前記酸素含有領域の膜厚がいずれも、4~15nmである請求項1または2に記載のガスバリアフィルム。
  4. 前記無機層の膜厚が15~65nmである請求項1~3のいずれか一項に記載のガスバリアフィルム。
  5. 前記無機層の膜厚が20~40nmである請求項1~3のいずれか一項に記載のガスバリアフィルム。
  6. 前記均一領域の組成が、SiN:式中、0.8≦x≦1.1、0.7≦y≦0.9、かつz<0.1;である請求項1~5のいずれか一項に記載のガスバリアフィルム。
  7. 前記均一領域の組成が、SiN:式中、0.9≦x≦1.0,0.8≦y≦0.9,z<0.1;である請求項6に記載のガスバリアフィルム。
  8. 前記無機層の密度が2.1~2.4g/cmである請求項1~7のいずれか一項に記載のガスバリアフィルム。
  9. 前記無機層と少なくとも1層以上の有機層とを含むバリア性積層体を含む請求項1~8のいずれか一項に記載のガスバリアフィルム。
  10. SiとNとHとOとを含む無機層を含むガスバリアフィルムの製造方法であって、
    高周波を供給してプラズマ状態にしたシラン、アンモニア、および水素を蒸着して、前記無機層を形成することを含み、
    前記高周波を供給する電力が0kWから最大値に達する時間および前記高周波を供給する電力の最大値から0kWに達する時間のいずれか1つ以上を1.5~7秒とし、かつ1.5~7秒とした前記のいずれか1つ以上の時間において、電力を連続的に変化させる製造方法。
PCT/JP2015/051833 2014-03-24 2015-01-23 ガスバリアフィルムおよびガスバリアフィルムの製造方法 WO2015146262A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580013441.8A CN106132691B (zh) 2014-03-24 2015-01-23 阻气膜及阻气膜的制造方法
EP15768341.8A EP3124227A4 (en) 2014-03-24 2015-01-23 Gas-barrier film and process for producing gas-barrier film
US15/270,001 US10017854B2 (en) 2014-03-24 2016-09-20 Gas barrier film and method of manufacturing gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-059541 2014-03-24
JP2014059541A JP6019054B2 (ja) 2014-03-24 2014-03-24 ガスバリアフィルムおよびガスバリアフィルムの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/270,001 Continuation US10017854B2 (en) 2014-03-24 2016-09-20 Gas barrier film and method of manufacturing gas barrier film

Publications (1)

Publication Number Publication Date
WO2015146262A1 true WO2015146262A1 (ja) 2015-10-01

Family

ID=54194804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051833 WO2015146262A1 (ja) 2014-03-24 2015-01-23 ガスバリアフィルムおよびガスバリアフィルムの製造方法

Country Status (5)

Country Link
US (1) US10017854B2 (ja)
EP (1) EP3124227A4 (ja)
JP (1) JP6019054B2 (ja)
CN (1) CN106132691B (ja)
WO (1) WO2015146262A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102515877B1 (ko) * 2017-12-07 2023-03-30 린텍 가부시키가이샤 워크 가공용 시트 및 가공된 워크의 제조방법
CN109468607B (zh) * 2018-11-27 2020-12-18 河北大学 一种气体阻隔薄膜的制备方法
WO2023181489A1 (ja) * 2022-03-25 2023-09-28 富士フイルム株式会社 積層体及び積層体の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196155A (ja) * 2008-02-20 2009-09-03 Dainippon Printing Co Ltd ガスバリアフィルム、ガスバリア膜の作製方法及び作製装置
JP2011184703A (ja) * 2010-03-04 2011-09-22 Fujifilm Corp ガスバリアフィルム、成膜方法、および成膜装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164372A (ja) * 1999-12-09 2001-06-19 Sony Corp プラズマ加工装置
JP2006068992A (ja) 2004-09-01 2006-03-16 Konica Minolta Holdings Inc ガスバリア性フィルム
US8586189B2 (en) * 2007-09-19 2013-11-19 Fujifilm Corporation Gas-barrier film and organic device comprising same
JP5139153B2 (ja) * 2007-09-19 2013-02-06 富士フイルム株式会社 ガスバリア性フィルムおよびこれを用いた有機デバイス
JP5394867B2 (ja) * 2009-09-17 2014-01-22 富士フイルム株式会社 ガスバリア膜およびガスバリアフィルム
EP2724854A4 (en) * 2011-06-27 2015-03-25 Konica Minolta Inc GASPERRFILM, METHOD FOR THE PRODUCTION OF GASPERRFILMS AND ELECTRONIC DEVICE
JP5730235B2 (ja) 2012-03-29 2015-06-03 富士フイルム株式会社 ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP6099524B2 (ja) * 2013-08-30 2017-03-22 富士フイルム株式会社 バリア性積層体、ガスバリアフィルム、およびその応用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196155A (ja) * 2008-02-20 2009-09-03 Dainippon Printing Co Ltd ガスバリアフィルム、ガスバリア膜の作製方法及び作製装置
JP2011184703A (ja) * 2010-03-04 2011-09-22 Fujifilm Corp ガスバリアフィルム、成膜方法、および成膜装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124227A4 *

Also Published As

Publication number Publication date
EP3124227A4 (en) 2017-03-22
JP2015182274A (ja) 2015-10-22
CN106132691B (zh) 2018-06-29
JP6019054B2 (ja) 2016-11-02
US10017854B2 (en) 2018-07-10
CN106132691A (zh) 2016-11-16
US20170009339A1 (en) 2017-01-12
EP3124227A1 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5136114B2 (ja) ガスバリア膜の作製方法及び作製装置
TWI791739B (zh) 有機無機混成膜、積層體與包含有機無機混成膜之物品
KR102255614B1 (ko) 가스 배리어성 필름
Lin et al. Moisture-resistant properties of SiNx films prepared by PECVD
WO2015098671A1 (ja) 積層フィルムおよびフレキシブル電子デバイス
JP6288518B2 (ja) ガスバリア性フィルムおよびその製造方法
JP2011143550A (ja) ガスバリアフィルム
WO2015146262A1 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
JPWO2014178332A1 (ja) ガスバリア性フィルムおよびその製造方法
JP5412850B2 (ja) ガスバリア積層体
TW201927550A (zh) 氣阻性層積體及其製造方法、電子裝置用元件以及電子裝置
Jaritz et al. Comparison of HMDSO and HMDSN as precursors for high‐barrier plasma‐polymerized multilayer coating systems on polyethylene terephthalate films
JP2018052041A (ja) 積層体
JP2014088016A (ja) ガスバリア性フィルム
JPWO2018180487A1 (ja) ガスバリアフィルムおよび成膜方法
Kuzminova et al. Barrier coatings on polymeric foils for food packaging
JP6840255B2 (ja) ガスバリアフィルム
TW201815563A (zh) 水氣阻障材
Feng et al. Deposition of Well‐Defined Fluoropolymer Nanospheres on PET Substrate by Plasma Polymerization of Heptadecafluorodecyl Acrylate and Their Potential Application as a Protective Layer
JP6593072B2 (ja) ガスバリア性フィルムおよび電子デバイス
US8318265B2 (en) Plasma mediated processing of non-conductive substrates
JP2008018681A (ja) 高比表面積ガスバリア積層体およびこれを用いた難燃性フィルム
WO2021106636A1 (ja) 積層フィルムの製造方法
CN109778149B (zh) 阻气膜、气体阻隔性薄膜、有机电致发光元件和电子纸以及气体阻隔性薄膜的制造方法
JP2017053020A (ja) 透明耐傷性膜及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768341

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015768341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768341

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE