WO2022224549A1 - 金属基複合材料の製造方法及びプリフォームの作製方法 - Google Patents

金属基複合材料の製造方法及びプリフォームの作製方法 Download PDF

Info

Publication number
WO2022224549A1
WO2022224549A1 PCT/JP2022/004952 JP2022004952W WO2022224549A1 WO 2022224549 A1 WO2022224549 A1 WO 2022224549A1 JP 2022004952 W JP2022004952 W JP 2022004952W WO 2022224549 A1 WO2022224549 A1 WO 2022224549A1
Authority
WO
WIPO (PCT)
Prior art keywords
preform
mixture
powder
alloy
composite material
Prior art date
Application number
PCT/JP2022/004952
Other languages
English (en)
French (fr)
Inventor
睦夫 林
智璞 裴
パイリン シリパッタナキックン
Original Assignee
アドバンスコンポジット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アドバンスコンポジット株式会社 filed Critical アドバンスコンポジット株式会社
Priority to CN202280004792.2A priority Critical patent/CN115917022A/zh
Priority to US18/000,485 priority patent/US20230234894A1/en
Priority to EP22791332.4A priority patent/EP4130307A4/en
Publication of WO2022224549A1 publication Critical patent/WO2022224549A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/02Casting in, on, or around objects which form part of the product for making reinforced articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4517Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application application under inert, e.g. non-oxidising, atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • C22C1/081Casting porous metals into porous preform skeleton without foaming
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • C22C1/1021Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform the preform being ceramic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/065Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00224Green materials, e.g. porous green ceramic preforms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6027Slip casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder

Definitions

  • the present invention relates to a composite material manufacturing method for obtaining a metal matrix composite material composed of ceramic powder and metal aluminum (Al) or an Al alloy, and a method of manufacturing a preform that can be used in the manufacturing method. More specifically, the present invention relates to a technique capable of dramatically improving the productivity and quality of a metal-ceramic composite material obtained by combining an aluminum-based metal matrix with ceramic powder as a reinforcing material.
  • Composite materials composed of ceramic powder and Al alloy are a type of so-called MMC (Metal Matrix Composites), and are usually manufactured by methods such as high-pressure impregnation, casting, and non-pressure infiltration.
  • the high-pressure impregnation method is a method of forcibly infiltrating a molten metal such as an Al alloy into a ceramic powder or a molded body (preform) of the ceramic powder using a high-pressure press to form a composite of the ceramic powder and the Al alloy.
  • the high-pressure impregnation method impregnates a molten Al alloy or the like at high pressure, and thus requires an expensive device such as a press machine.
  • the product cannot be impregnated in the shape of the product by ordinary methods, it is necessary to remove the product from the press-impregnated product surrounded by the Al alloy or the like by processing, which raises the problem of high processing costs for shaping the product.
  • a ceramic powder such as silicon carbide or alumina is stirred at high speed with a molten metal such as an Al alloy to prepare a molten Al alloy containing the ceramic powder, and cast into a conventional mold such as a sand mold, a mold, or a lost wax mold. Then, a composite of ceramics and Al alloy or the like is manufactured.
  • a molten metal such as an Al alloy
  • a conventional mold such as a sand mold, a mold, or a lost wax mold.
  • a composite of ceramics and Al alloy or the like is manufactured.
  • the content of the ceramic powder in the metal matrix becomes high, the flowability of the molten metal deteriorates. There is a problem that the content of ceramics is low.
  • molten metal such as an Al alloy is infiltrated into a ceramic powder filled body or molded body (preform) in an atmosphere of Mg and nitrogen without pressure, and the preform is impregnated to form a composite. It is a way of getting a body.
  • a powder-packed body such as ceramic powder such as SiC and alumina, or a preform obtained by adding an inorganic binder such as silica to ceramic powder, molding, and firing, is placed in an atmosphere of nitrogen and Mg evaporation, and an Al alloy or the like is added.
  • a melting temperature of about 700° C.
  • a composite of the ceramic powder and the Al alloy is produced by infiltrating the molten metal such as the Al alloy into the gaps of the ceramic powder without applying pressure.
  • the principle of this non-pressure infiltration method is that by creating an atmosphere of Mg and nitrogen, the wettability of ceramics and Al alloys is improved, so-called capillary action is promoted, and the gaps (voids) in the powder packing and preform ), a molten metal such as an Al alloy is permeated without pressure.
  • the ceramic filling rate in the composite can be increased, and physical properties such as Young's modulus, thermal conductivity, and thermal expansion coefficient It is possible to manufacture a composite (MMC) of ceramics and Al alloy with high In addition, when a preform is used for manufacturing, the Al alloy can be infiltrated while maintaining the shape of the preform. For this reason, it is attracting attention as a method for producing an MMC composite with a near-net shape that does not require large-scale processing.
  • Patent Document 1 when a metal matrix composite material is produced by allowing a molten Al alloy to permeate a permeable material made of a ceramic filler material by natural permeation, the Al alloy contains at least 3% by weight of magnesium. is proposed to be Also, Al alloys containing magnesium wet the ceramics, so good bonding between the metal and the ceramics is expected.
  • Patent Document 2 a source of matrix metal is placed adjacent to a substantially non-reactive filler, and a permeation enhancer precursor is present when the matrix metal spontaneously permeates the filler.
  • a permeation enhancer precursor is present when the matrix metal spontaneously permeates the filler.
  • the permeation atmosphere contains nitrogen
  • a substance selected from calcium, magnesium and strontium is used as the permeation enhancer precursor. Spontaneous permeation can be achieved by providing such a permeation enhancer to the spontaneous system.
  • the present inventors have found that it is possible to increase the content of ceramic powder in the composite without requiring an expensive device such as a press used in the high-pressure impregnation method, and the product Focusing on the non-pressure infiltration method that can produce a metal matrix composite (MMC composite) with a near-net shape close to the shape, if the production method can be improved, it will be possible to improve the production method by "from ceramic powder and Al alloy etc. It was recognized that further use of "metal matrix composite materials" could be promoted.
  • MMC composite metal matrix composite
  • an object of the present invention is to dramatically improve a method of impregnating a preform obtained by molding and hardening a ceramic powder with a molten metal Al or an Al alloy (such as an Al alloy) without pressure
  • An object of the present invention is to develop an improved technique for non-pressure infiltration that can more simply and stably provide a "metal matrix composite material comprising a ceramic powder and an Al alloy" in a uniform state as a whole.
  • the object of the present invention is to provide a simple method of molding a mixture containing ceramic powder and baking and hardening (solidifying) the resulting molded product, which can be suitably used in a non-pressure infiltration method.
  • An object of the present invention is to provide a preform manufacturing technique that enables metal matrix composites to be manufactured more efficiently than conventional methods.
  • the present invention provides the following method for producing a composite material for producing a metal matrix composite material containing an Al alloy or the like and ceramics.
  • a mixture obtained by adding a reduced mixed solvent of an organic solvent and water is used for molding to obtain a mixture, and the mixture is baked at a temperature of 500 ° C. or less to prepare a preform, and the obtained preform is attached to the obtained preform.
  • a method for producing a composite material characterized by producing a metal matrix composite material containing aluminum and ceramics by impregnating metal aluminum or an aluminum alloy in a nitrogen atmosphere without pressure.
  • Preferred embodiments of the method for producing the composite material of the present invention described above include the following.
  • the magnesium-containing powder is contained in the mixture in a range of 0.3% or more and 10% or less on a mass basis in terms of magnesium with respect to 100 parts by mass of the ceramic powder. ] or the manufacturing method of the composite material as described in [2].
  • a method of manufacturing a composite material. [5] The method for producing a composite material according to any one of the above [1] to [4], wherein the mixed solvent with a reduced water content contains water in a range of 100 parts by mass or less with respect to 100 parts by mass of the organic solvent. .
  • a preform manufacturing method for manufacturing a ceramic preform that can be applied to the manufacture of an aluminum-based metal matrix composite material using a non-pressure infiltration method, comprising magnesium-containing powder and ceramic powder Further, a mixture containing either an inorganic binder or an organic-inorganic binder that is cured by heating at 500 ° C. or less, and an organic solvent, or a mixture of an organic solvent with a reduced water content and water
  • a method for producing a preform comprising the steps of molding a mixture to which a solvent has been added to obtain a mixture, and firing the obtained mixture at a temperature of 500° C. or less to obtain a preform.
  • the mixed solvent with reduced water content preferably contains water in the range of 100 parts by mass or less with respect to 100 parts by mass of the organic solvent.
  • the method of manufacturing a composite material, in which a molten metal such as an Al alloy is impregnated into a preform obtained by molding and hardening ceramic powder, without pressure is dramatically improved and simpler. Furthermore, it is possible to provide a technique for stably and uniformly providing a “metal matrix composite material composed of ceramic powder and Al alloy”. According to the present invention, among others, it is a simple method of molding a mixture containing ceramic powder and baking and hardening (solidifying) the resulting molded product, which can be suitably used for a non-pressure infiltration method. Thus, a novel preform manufacturing technique is provided that enables efficient and stable production of a metal matrix composite material in good condition.
  • FIG. 2 is a schematic diagram for explaining the state of arrangement in a container used in the non-pressure permeation method used in the method for producing a composite material of the present invention.
  • FIG. 2 is a first schematic diagram for explaining a state before impregnation by infiltration of molten metal into a preform by a non-pressure infiltration method performed in the method for producing a composite material of the present invention.
  • FIG. 2B is a second schematic diagram for explaining how the molten metal penetrates into the preform by the non-pressure infiltration method performed in the method for producing a composite material of the present invention and begins to impregnate the preform.
  • FIG. 2 is a schematic diagram for explaining the state of arrangement in a container used in the non-pressure permeation method used in the method for producing a composite material of the present invention.
  • FIG. 2 is a first schematic diagram for explaining a state before impregnation by infiltration of molten metal into a preform by a non-pressure infiltration method performed in the
  • FIG. 3B is a third schematic diagram for explaining how molten metal permeates into the preform and impregnation proceeds by the non-pressure impregnation method performed in the method for producing a composite material of the present invention.
  • FIG. 4 is a fourth schematic diagram for explaining how molten metal permeates and impregnates the entire preform by the non-pressure infiltration method performed in the method for producing a composite material of the present invention.
  • a mixed raw material is prepared by adding an organic binder such as polyvinyl alcohol or polyvinyl butyral and, if necessary, an inorganic binder such as colloidal silica or colloidal alumina to ceramic powder.
  • an organic binder such as polyvinyl alcohol or polyvinyl butyral
  • an inorganic binder such as colloidal silica or colloidal alumina
  • the mixed raw material described above is molded by a method such as press molding, cast molding, extrusion molding, or vibration method to obtain a mixture.
  • the obtained mixture is fired at a temperature of about 800° C. to 1200° C. to produce a preform.
  • a metal matrix composite material is prepared by the non-pressure infiltration method as follows.
  • a preform 1 and an Al alloy or the like 4 are placed in a container 3 made of carbon or the like, and the container 3 is filled with metal Mg powder.
  • the furnace While flowing nitrogen into the box furnace, the furnace is heated to a temperature of about 700° C. or higher to evaporate the Mg placed in the box furnace, and at the same time, the inside of the box furnace is maintained in a nitrogen atmosphere. Then, as shown in FIGS.
  • the Al alloy or the like 4 is melted by heating, and the molten metal penetrates into the gaps of the preform 1 through the permeation passage 2, and the preform
  • An MMC composite 5 is obtained by impregnating 1 with 4 such as an Al alloy.
  • Mg powder evaporates and reacts with nitrogen to generate Mg 3 N 2 , and the generated Mg 3 N 2 is placed in a container in a box furnace. deposited on the surface of the ceramic powder of the preform.
  • the wettability of ceramic powder and molten metal such as Al alloy is generally not good. However, if Mg 3 N 2 exists on the surface of the ceramic powder, the wettability with Al alloy or the like is dramatically improved.
  • the molten Al alloy or the like wets the ceramic powder forming the preform and permeates into the gaps (voids) of the ceramic powder forming the preform without pressure due to capillary action.
  • the generated Mg 3 N 2 and aluminum metal cause a reaction of Mg 3 N 2 + Al ⁇ Mg + AlN, and an extremely thin AlN phase is generated on the surface of the ceramics, and this AlN phase also has wettability of the molten Al alloy.
  • the Mg vapor generated by this reaction permeates the inside of the preform and repeats the same reaction, while the molten Al alloy and the like permeate the preform sequentially. In this manner, the molten Al alloy or the like permeates the entire preform without pressure and impregnates the ceramic powder.
  • the above method has the following problems.
  • the reaction described above does not occur throughout the preform from the start of permeation. That is, at the start of permeation, reaction occurs first on the surface of the preform where both Mg and N 2 are present, and then progresses inside the preform in sequence. For this reason, it takes a long time to impregnate the entire surface and inside of the preform with molten metal such as an Al alloy, resulting in poor manufacturing efficiency.
  • molten metal such as an Al alloy
  • the present inventors have dramatically improved the method of impregnating a preform obtained by molding and hardening ceramic powder with a molten metal such as an Al alloy without pressurization.
  • a molten metal such as an Al alloy without pressurization.
  • the present invention It has arrived.
  • the method for manufacturing a composite material of the present invention is characterized by the following points.
  • a mixture containing magnesium-containing powder such as metallic Mg powder and ceramic powder, and further containing either an inorganic binder or an organic-inorganic binder, which has the property that the mixture develops strength when heated to 500° C. or less. is used as a raw material, and the mixture is molded to obtain a mixture.
  • the above-mentioned "characteristic that the mixture develops strength by heating at 500°C or less” includes “characteristic that it cures by heating at 500°C or less".
  • the molded mixture is sintered at a temperature of 500 ° C.
  • the feature of the present invention resides in the discovery of a new production method that enables obtaining a preform having a useful structure that has not been available in the past. That is, by using the preform having the above configuration, it becomes possible to quickly infiltrate the molten metal such as an Al alloy into the preform without pressurization, and the preform is evenly impregnated with the Al alloy. It realized the production of a composite consisting of Each step of the method for producing a composite material of the present invention will be specifically described below.
  • the mixture used in the production method of the present invention contains magnesium-containing powder such as metal Mg powder and ceramic powder, and further has the property that the mixture develops strength when heated at 500 ° C. or less. Contains any binder of binders. These raw materials are described below.
  • ceramic powder Although the ceramic powder used in the present invention is not particularly limited, any of the following powders can be used.
  • carbides such as silicon carbide (SiC), tungsten carbide (WC) and TiC (titanium carbide), oxides such as alumina (Al 2 O 3 ), titania (TiO 2 ) and aluminum borate, aluminum nitride (AlN) and nitrides such as silicon nitride (Si 3 N 4 ) and common ceramic powders can be used.
  • the particle size of the ceramic powders mentioned above is not particularly limited, for example, those having an average particle size of 1 ⁇ m or more and 200 ⁇ m or less are suitable.
  • ceramic powders having an average particle size of less than 1 ⁇ m for example, gaps (hole diameters) formed in a mixture obtained by press molding or the like or a preform obtained by firing the mixture are too small, resulting in melting.
  • This is not suitable because the Al alloy or the like that has been treated may not permeate. That is, in the non-pressure infiltration method, it is necessary for the molten Al alloy or the like to permeate the gaps naturally by capillary action without pressure, but the gaps (pore diameter) between the particles of the ceramic powder are too small. and insufficient penetration.
  • the average particle size of the ceramic powder exceeds 200 ⁇ m, the particle size is too large, which is not optimal in the following points. If the ceramic powder is too large, it becomes difficult to perform particle filling by press molding or vibration molding when using a mixture containing the ceramic powder to form a mixture, and subsequent molding of the mixture becomes difficult. Further, when too large ceramic powder is used, the gap between particles becomes several tens of ⁇ m or more, which is too large, so that impregnation with aluminum by capillarity, which is important in the non-pressure infiltration method, is difficult to occur.
  • the size of the ceramic powder to be used so as to obtain a preform having the required physical property values.
  • ceramic powder with large particles and ceramic powder with small particles are appropriately blended according to the application to prepare a mixture, and the resulting mixture is used to appropriately control the state of filling of the ceramic powder when obtaining the mixture. , a preform having the required physical properties can be obtained.
  • the magnesium-containing powder for example, at least one powder selected from the group consisting of metallic magnesium, magnesium alloys and magnesium silicides can be used.
  • the metallic magnesium powder described above magnesium alloys such as Al--Mg-based alloys and Al--Mg--Si-based alloys, and compounds such as Mg 2 Si having a high magnesium content. Powders can be used.
  • a magnesium-containing powder having an average particle size of 0.5 ⁇ m or more and 150 ⁇ m or less.
  • a powder with a particle size of more than 150 ⁇ m is too coarse and may not be uniformly mixed with the aforementioned ceramic powder, which is not preferred.
  • the particle size is coarse, the surface area of the Mg-containing powder becomes small, and the amount of Mg 3 N 2 produced after the Mg contained in the preform reacts with nitrogen in the atmosphere and is nitrided becomes small.
  • the amount of Mg 3 N 2 produced is small, the impregnation rate of aluminum into the preform becomes slow, which is not preferable.
  • Mg-containing powder On the other hand, the finer the Mg-containing powder, the larger the surface area, and the more easily it is oxidized by oxygen in the air to form MgO. Therefore, it is desirable to use Mg-containing powder having an average particle size of 0.5 ⁇ m or more. On the other hand, if the average particle size exceeds 150 ⁇ m, the surface area of the whole becomes small, and as described above, the production amount of Mg 3 N 2 becomes small, which is not preferable.
  • the amount of the Mg-containing powder to be mixed is preferably 0.3% or more and 10% or less in terms of Mg based on 100 parts by mass of the ceramic powder. It is desirable to use the Mg-containing powder within a range of more preferably 0.5% or more and 7% or less, further 0.5% or more and 5% or less. If the mixed amount of the Mg-containing powder is as small as less than 0.3%, the amount of Mg 3 N 2 produced decreases, and the permeation rate of molten metal such as an Al alloy is not sufficiently accelerated, which is not preferable.
  • the amount of the Mg-containing powder mixed exceeds 10%, the distribution state of the Mg-containing powder in the preform produced from these raw materials is locally increased, and this causes the infiltration of the Al alloy. It is not preferred as it may result in non-uniform amounts.
  • the amount of Mg to be mixed may be determined by converting to the Mg contained therein.
  • the present invention uses the above-mentioned Mg-containing powder and ceramic powder as a mixture to be used for producing a preform, and furthermore, an inorganic binder or an organic It is characterized by using a binder containing any one of inorganic binders.
  • organic/inorganic binders having the above properties include silicone resins, Si alkoxides, Al alkoxides, and the like.
  • inorganic binders include water glass and alumina cement.
  • the mixture obtained by molding the mixture containing these binders must be fired at a temperature of 500°C or less to prepare a preform.
  • a binder is used that has the property that the mixture develops strength when heated at 500° C. or less so that the preform develops strength at a firing temperature of 500° C. or less.
  • an organic binder such as polyvinyl alcohol, polyvinyl butyral, cellulose, etc. may be added to the mixture so that the mixture containing the above binder can be easily molded.
  • These organic binders are burned in the subsequent firing process at a temperature of 500° C. or lower, and do not contribute to the strength of the preform. Therefore, in the production method of the present invention, it is inevitable to use an inorganic-organic binder or an inorganic binder having the above-described characteristics for preparing the mixture.
  • Silicone resin has a polysiloxane structure composed of Si (silicon), oxygen, and an organic compound represented by the chemical formula "Si-OR" (R is an organic substance), and functions as an organic binder at low temperatures. After firing at high temperature, it functions as an inorganic binder.
  • Si-alkoxide represented by Si(OC 2 H 5 ) 4 changes from a monomer to a polymer (silicone resin) at a low temperature, when the mixture is molded into a mixture, the mixture has a molding strength. can be maintained, and after firing the mixture, it finally becomes SiO 2 and functions as an inorganic binder.
  • a solid silicone resin When a solid silicone resin is used, it is dissolved in an alcohol such as ethanol or isopropyl alcohol (IPA) or an organic solvent such as xylene or toluene.
  • IPA isopropyl alcohol
  • Polymers of Si-alkoxides are liquids and can be used as is or after dilution.
  • a silicone resin dissolved in an organic solvent in advance or a silicone resin itself in a liquid form can be used as they are.
  • the binder described above may be used after being diluted by adding an organic solvent or water, if necessary. This point will be described later.
  • water glass sodium silicate
  • inorganic binder water glass (sodium silicate) can be suitably used as the inorganic binder.
  • a solution form so-called No. 1 water glass, No. 2 water glass, No. 3 water glass so that it can be easily mixed with other materials.
  • alumina cement it is preferable to dissolve the alumina cement in a small amount of water and mix it with other raw materials such as ceramic powder.
  • the amount of the binder used in the present invention is not particularly limited, although it depends on the molding method for producing the mixture. Regardless of whether an inorganic binder or an organic-inorganic binder is used, when the mixture is fired to form a preform, it becomes an inorganic oxide such as SiO 2 and remains in the preform and is included in the composite. It will be. Therefore, it is preferable to appropriately select the type of binder in consideration of the ceramics used as the composite raw material. For example, when using non - oxide ceramics such as SiC and Si3N4 , or when using oxide ceramics such as Al2O3 and TiO2 , a silica-based binder such as silicone resin or water glass is used. If used, there is no problem in this regard.
  • the amount of the binder to be used may be appropriately determined in consideration of the workability in molding the mixture, the hardness of the preform after firing, and the like. For example, it is preferable to add in an amount of about 0.3 parts by mass or more and 110 parts by mass or less to 100 parts by mass of the ceramic powder.
  • the mixture composed of the above-mentioned raw materials constituting the present invention is used to obtain a mixture by molding using the mixture, and the mixture is fired at a temperature of 500° C. or less to produce a preform. Therefore, in addition to the above materials, an organic solvent or a mixed solvent of water and an organic solvent can be used for the purpose of improving the moldability of the mixture.
  • an organic solvent lower alcohols such as ethanol and isopropyl alcohol, linear alkanes such as normal hexane, and the like can be used.
  • a mixed solvent of water and these organic solvents can also be used.
  • the Mg in the Mg-containing powder in the mixture reacts with water to form hydroxides, resulting in It was found that the function as a permeation (impregnation) accelerator, which is necessary in , may be impaired. That is, for example, when metallic Mg powder is used, if the Mg powder in the mixture contains a large amount of water, hydrolysis occurs in the reaction Mg+2H 2 O ⁇ 2Mg(OH) 2 +H 2 , resulting in Useful Mg 3 N 2 may not be produced, and the effect of accelerating the impregnation of the molten Al alloy may be impaired.
  • an organic solvent containing no water or a mixed solvent with a reduced water content so that the Mg-containing powder constituting the mixture is not hydrolyzed.
  • a mixed solvent of water and an organic solvent it is important to reduce the amount of water used to 100 parts by mass or less with respect to 100 parts by mass of the organic solvent.
  • the Mg-containing powder in the mixture hardly reacts with water not only in the case of the above-mentioned organic solvents but also in the case of using a mixed solvent with a reduced water content.
  • the Mg-containing powder exists as it is. Therefore, by firing the mixture, it becomes possible to manufacture a preform that can be suitably used for non-pressure infiltration.
  • the mixture having the above structure is molded to obtain a mixture, and the mixture is fired at a temperature of 500° C. or less to produce a preform.
  • a mixture is obtained using the mixture having the above-described structure, and the obtained mixture is baked at the temperature specified in the present invention to obtain a preform. It is possible to provide a useful preform that has not existed in the prior art, comprising Mg-containing powder in a state in which the function as a permeation (impregnation) accelerator can be stably and sufficiently exhibited when used in . This point will be described below.
  • a preform containing metal Mg powder or the like is not used when manufacturing an MMC product using a preform close to the shape of the product by using a non-pressure infiltration method. I didn't.
  • a preform having a shape close to the product obtained by molding a mixture containing ceramic powder is used, and Mg, which is a permeation (impregnation) accelerator, is placed in an atmosphere in which non-pressure infiltration is performed.
  • MMC products were obtained by impregnating the preform with a molten Al alloy without pressure in a nitrogen atmosphere.
  • the reason why the preform containing metal Mg powder and the like has not been used in the prior art is due to the following reasons. This is due to the fact that the conventional technology has not been able to develop a preform containing metal Mg powder or the like that stably and sufficiently functions as a permeation (impregnation) accelerator when a non-pressure impregnation method is carried out. .
  • the present invention has been made in view of such technical problems, and according to the present invention, it is a simple means, has sufficient strength that can be suitably used in a non-pressure osmosis method, and has osmosis. (Impregnation) It is possible to provide a preform containing the Mg-containing powder in a state where it can stably exhibit its function as an accelerator.
  • the production method of the present invention there is no particular limitation on the method of obtaining a mixture having a desired shape by using the mixture having the composition containing the raw materials described above.
  • conventional methods such as press molding, CIP molding (cold isostatic pressing), casting, and vibration molding can be used.
  • the mixtures that make up the present invention contain a unique binder, either an inorganic binder or an organic-inorganic binder, that has the property that the mixture develops strength, such as curing on heating below 500°C. include.
  • the resulting mixture, and further the preform obtained by firing the mixture after that are excellent in handleability and easy to handle.
  • the preform obtained by firing the mixture does not collapse when impregnated (impregnated) with a molten Al alloy at a high temperature using a non-pressure infiltration method. , which is firmly solidified and has excellent properties.
  • the following method can be mentioned as an example of preparing the mixture.
  • an organic/inorganic binder such as silicone resin is added to the ceramic powder and metal Mg powder as described above, and then an organic solvent such as alcohol or a mixed solvent containing a small amount of water is added as necessary, Mix uniformly to prepare a slurry.
  • the slurry obtained as described above is cast into a gypsum mold, a metal mold, a rubber mold, a resin mold, or the like to obtain a mixture, or after vibration sedimentation molding, the solvent is removed by drying.
  • a method of obtaining a mixture by molding may be mentioned.
  • the mixture can be molded by allowing the gypsum mold to absorb the solvent in the mixture.
  • the mixture is fired under specific temperature conditions, making it possible to produce a preform that can be suitably used in the manufacturing method of the present invention.
  • the slurry obtained as described above is dried, pulverized, etc. to prepare a mixed powder, the mixed powder is filled in a mold, and press molding or CIP molding is performed. A method of obtaining a mixture can also be effectively used.
  • Press, CIP molding method A slurry composed of the mixture described above is dried at a temperature of 150° C. or less, and after drying, it is loosened so as to facilitate molding or lightly pulverized to prepare a powder raw material for press molding.
  • the obtained powdery raw material for press molding is put into a press mold and press molding or CIP molding is performed by applying a load.
  • an organic binder may be used in combination with the slurry.
  • Water glass hardening method When water glass (sodium silicate) is used as the inorganic binder, the mixture can be obtained as follows. A mixture of ceramic powder, water glass, and Mg powder is placed in a mold, pressed, and then hardened by blowing in carbon dioxide gas to form a strongly solidified mixture. This is the method used to make sand such as silica into molds for gravity casting. In the manufacturing method of the present invention, this method can be used to obtain a mixture, and then the mixture removed from the mold can be fired to obtain a preform.
  • Vibratory sedimentation method A slurry composed of the mixture described above is placed in a rubber mold or the like, vibration-molded, the solvent on the top is removed, and then dried to prepare a mixture. The obtained mixture is sintered to form a preform, which can be favorably used in the manufacturing method of the present invention.
  • Preform preparation process In the production method of the present invention, the desired shape of the mixture containing the specific raw materials defined in the present invention obtained as described above is removed from the mold, dried as necessary, and heated to 500 ° C. A preform is obtained by sintering at the following temperature, and the obtained preform is impregnated with a molten metal such as an Al alloy without pressurization to contain aluminum and ceramics. It is characterized by obtaining a metal matrix composite material.
  • a preform is produced by baking and hardening a mixture having a unique composition in the air at a temperature of 500° C. or less. According to the study of the present inventors, the firing temperature should be avoided to exceed 500°C.
  • the firing temperature exceeds 500 ° C.
  • the Mg-containing powder contained in the mixture is oxidized in the air, resulting in 2Mg + O 2 ⁇ 2MgO, and the preform after firing is used.
  • the post-process of infiltrating and impregnating the preform with a molten metal such as an Al alloy the effect of promoting Al impregnation is not exhibited.
  • the organic/inorganic binder such as silicone resin or silicon alkoxide
  • the organic substances in the structure are combusted and decomposed at around 500° C. to form amorphous silica SiO 2 .
  • the obtained preform exhibits strength.
  • water glass or alumina cement is used as the binder
  • the mixture hardens at room temperature, but hardening at room temperature does not provide sufficient strength.
  • the production method of the present invention since the mixture is fired at a temperature of 500° C. or less, it is cured while removing unnecessary moisture and organic matter from the mixture, and amorphous silica and alumina are obtained after firing.
  • the strength of the preform can be made sufficient. For this reason, the preform after sintering is rapidly permeated with molten metal such as an Al alloy in the subsequent non-pressure impregnation process performed at high temperature, and when the preform is completely impregnated with molten metal, it exhibits sufficient strength, Moreover, it is possible to provide a composite material that is uniform throughout.
  • molten metal such as an Al alloy
  • the preform to be subjected to the non-pressure infiltration method by setting the firing temperature of the mixture molded from the mixture of the unique raw material composition containing the ceramic powder described above, which characterizes the present invention, to 500 ° C. or less.
  • the firing temperature of the mixture molded from the mixture of the unique raw material composition containing the ceramic powder described above, which characterizes the present invention to 500 ° C. or less.
  • Ceramic preforms are generally manufactured by the following method. Inorganic binders such as colloidal silica and colloidal alumina and, if necessary, organic binders are added to ceramic powder, mixed, and molded by press molding or the like to produce a molded body, after which the strength of the preform is exhibited. For this reason, a method of preparing a preform by sintering a compact at a high temperature of 900° C. or higher is generally used. According to the studies of the present inventors, when a molded body is prepared by using ceramic powder containing Mg-containing powder as a raw material and fired by the above-described general method, the contained Mg-containing powder is oxidized to form MgO. becomes.
  • Inorganic binders such as colloidal silica and colloidal alumina and, if necessary, organic binders are added to ceramic powder, mixed, and molded by press molding or the like to produce a molded body, after which the strength of the preform is exhibited. For this reason,
  • Mg in the molded body evaporates and does not remain in the preform after firing in a predetermined amount, and Mg is contained in the raw material of the molded body. The effect of adding powder is reduced. It is also conceivable to bake the compact in a nitrogen atmosphere furnace. However, according to studies by the present inventors, Mg 3 N 2 is generated at about 550° C., but reacts with moisture in the air when the preform is taken out from the furnace after firing into the air.
  • a mixture (molding) containing ceramic powder containing Mg-containing powder such as metal Mg powder is used for producing a preform.
  • the sintering temperature 500° C. or lower
  • the remarkable effect of the present invention was realized. That is, by setting the firing temperature to 500 ° C. or less, the components such as the metal Mg powder contained in the mixture before firing are not oxidized and evaporated when fired.
  • the production of Mg 3 N 2 required in the process is well done. This can be confirmed by the fact that the composite obtained by the manufacturing method of the present invention has excellent permeation of the molten aluminum alloy into the ceramic preform.
  • the speed of Al non-pressure infiltration into the ceramic preform is dramatically increased, and the composite obtained is such that the molten Al alloy or the like is uniform throughout the preform. It can be confirmed that the impregnation state is good.
  • the preforms produced by the above-described methods may be removed from the mold and used as they are, or machined as necessary to make the preform shape closer to the product shape.
  • the non-pressure permeation step in the production method of the present invention is obtained by baking a mixture obtained by molding a mixture containing the material specified in the present invention at 500 ° C. or less, which can withstand the non-pressure permeation step.
  • a preform having sufficient strength is used, and the preform contains Mg-containing powder functioning as a permeation (impregnation) accelerator.
  • a preform 1 having a unique configuration characterizing the present invention and an Al alloy or the like 4 are placed in a container 3 made of carbon or the like, and the container 3 is placed in an atmosphere. is installed in a furnace (not shown) that can control Then, as shown in FIGS. 2(b) to 2(d), the container 3 is held in a nitrogen atmosphere furnace at 700 to 900° C. for about 2 to 10 hours, and the preform is passed through the penetration path 2. A melted Al alloy or the like 4 is permeated into the gap 1 to impregnate the gap.
  • the amount of the Al alloy or the like 4 placed in the container 3 must be greater than or equal to the volume that fills the gaps (voids) between the particles of the preform 1 . Generally, about 1.2 times or more of the air gap is required.
  • a composite (MMC) 5 is obtained by impregnating a preform 1 with an alloy or the like 4 .
  • the composite obtained by the production method of the present invention has no voids and is a composite of ceramics and Al alloy or the like.
  • a preform containing Mg-containing powder that functions as a permeation (impregnation) accelerator is used, so the impregnation speed of the preform made of Al alloy or the like is remarkably faster than in the conventional method.
  • impregnation permeation
  • the manufacturing method of the present invention since the speed of impregnation into the inside of the preform is slow, the entire periphery of the preform other than the permeation (impregnation) entrance is surrounded by Al alloy or the like. There is also the problem that it is not easy to remove excess Al alloy or the like.
  • the molten Al alloy or the like is impregnated only from the inlet portion of the preform in a short period of time. Surrounding is greatly reduced.
  • the composite (MMC) can be produced near-net, so that the load of the subsequent processing is reduced, and the productivity can be dramatically improved. Become.
  • w% is based on mass
  • v% is based on volume.
  • the average particle size in this specification is a value measured with a laser diffraction particle size distribution analyzer.
  • Example 1 Silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KR-220L) was dissolved in advance in isopropyl alcohol (IPA) to prepare a 30 wt % binder solution.
  • IPA isopropyl alcohol
  • ceramic powder 4000 g of SiC powder with an average particle size of 50 ⁇ m and 1200 g of SiC powder with an average particle size of 14 ⁇ m are used, and Mg powder with an average particle size of 75 ⁇ m is added to the ceramic powder (SiC powder) at a rate of 2 w%.
  • 104 g was added so as to be contained in , to obtain a mixture containing Mg powder and ceramic powder.
  • the preform 1 prepared above (hereinafter referred to as preform body 1) was placed in a carbon container 3 having a depth of 200 mm ⁇ 200 mm ⁇ 80 mm.
  • a preform of 20 mm ⁇ 20 mm ⁇ height 20 mm obtained by cutting and processing a preform made of the same material as the preform main body 1 by the same method as the preform main body 1 was placed.
  • Three permeation paths 2 for infiltrating an alloy or the like are installed, and the preform body 1 is supported and floated.
  • a composite (MMC) in which the preform was impregnated with an Al alloy was taken out from the atmosphere furnace. Then, the three infiltration channels 2 used to support the preform body 1 were removed to obtain a composite (MMC) 5 in which the Al alloy 4 permeated the preform body 1 .
  • MMC composite
  • AC3A of the Al alloy 4 placed in the container 3 is melted, and the melted Al alloy 4 permeates the preform body 1, which is a porous body, through the permeation path 2 without pressure.
  • the bulk specific gravity was measured by the Archimedes method, the inside was cut with a diamond cutter, and the cut surface was observed under a microscope. As a result, by observing the cut surface, it was confirmed that the Al alloy was completely impregnated into the preform main body. Also, from the calculation results of the bulk specific gravity, it was confirmed that the composite (MMC) was composed of 63 v% SiC and 37 v% AC3A.
  • Example 2 To 4000 g of alumina powder having an average particle size of 15 ⁇ m, 120 g of Mg powder having an average particle size of 75 ⁇ m was added so as to contain 3% by weight of the alumina powder to obtain a mixture containing Mg powder and ceramic powder. .
  • a slurry was prepared in the same manner as in Example 1 using the mixture. Specifically, a slurry was prepared by using a binder solution in the mixture obtained above in the following manner. In this example, 400 g of the same 30 wt % binder solution of the silicone resin used in Example 1 and 1400 g of IPA were added so that the silicone resin was blended at 3 wt %.
  • a slurry was prepared by uniformly mixing with a ball mill.
  • Example 2 In the same manner as in Example 1, the preform obtained above was placed in a carbon container with the preform main body floating in the percolation channel, and the same Al alloy was prepared in the same manner as in Example 1. to obtain a composite. The inside of the obtained composite was cut, the cut surface was observed under a microscope, and the bulk specific gravity was measured. As a result, by observing the cut surface, it was confirmed that the Al alloy was completely impregnated into the preform main body. Also, from the calculation results of the bulk specific gravity, it was confirmed that the composite (MMC) was composed of 50 v% alumina and 50 v% Al alloy.
  • Example 3 To 2000 g of SiC powder with an average particle size of 50 ⁇ m and 600 g of SiC powder with an average particle size of 14 ⁇ m, 78 g of Mg powder with an average particle size of 75 ⁇ m was added, and 80 g of liquid water glass No. 3 was added and stirred with a stirrer. did. The obtained mixture was placed in a silicone resin mold of 100 mm ⁇ 100 mm ⁇ 100 mm depth, filled with tapping with a stick, and carbon dioxide gas was blown into the filling to permeate and solidify, resulting in a mold of 100 mm ⁇ 100 mm ⁇ 52 mm. A mixture was obtained. The resulting mixture was dried at 60° C. for about 8 hours. Then, a preform was produced in the same manner as in Example 1, except that the temperature was raised to 450° C. at a rate of 50° C./hour and held for 4 hours after reaching the temperature to bake the mixture.
  • the preform obtained above was permeated with molten Al alloy in the same manner as in Example 1 to obtain a composite. Then, the inside of the obtained composite was cut, the cut surface was observed under a microscope, and the bulk specific gravity was measured. As a result, from the calculation results of the bulk specific gravity, it was confirmed that a composite (MMC) with a SiC filling rate of 54 v% and an Al alloy of 46 v% could be produced. Also, when the cut surface was observed, it was confirmed that even in this example using a preform solidified with water glass used as a binder, a composite (MMC) in which the Al alloy was completely impregnated into the gaps of the preform body could be manufactured. did.
  • Example 4 In a preform having a SiC powder filling rate of 63 v% produced in the same manner as in Example 1, instead of the Al alloy AC3A used in Example 1, the Al alloy AC4C was used in Example 4.
  • Al-3Mg which is an Al alloy containing magnesium, was used for each, and in the same manner as in Example 1, the Al alloy was infiltrated into the preform body through the infiltration channel without pressure. .
  • a composite (MMC) in which the Al alloy completely penetrated to a height of 50 mm was obtained in each example.
  • a composite (MMC) containing 60 v% SiC and 40 v% Al alloy was obtained in each example.
  • Example 6 In the same manner as in Example 1, 4000 g of SiC powder having an average particle size of 50 ⁇ m and 1200 g of SiC powder having an average particle size of 14 ⁇ m were used as the ceramic powder, and Mg powder having an average particle size of 75 ⁇ m was used as the ceramic powder. 52g was added so as to be contained in an amount of 1w% with respect to the total weight of the powder, thereby forming a mixture containing the Mg powder and the SiC powder.
  • An oligomer of ethyl silicate Si(OC 2 H 5 ) 4 (contains 40 wt% in terms of SiO 2 ) was used as an organic/inorganic binder in the mixture, and the organic/inorganic binder contained 2 wt% as SiO 2 with respect to the ceramic powder. 260 g was added as compounded. Further, 1200 g of isopropyl alcohol (IPA) was added, and in the same manner as in Example 1, the mixture was uniformly mixed with a ball mill to prepare a slurry.
  • IPA isopropyl alcohol
  • Example 2 Using the slurry obtained above, the slurry was dried and pulverized (pulverized) in the same manner as in Example 1 to prepare a powder raw material for press molding. Then, using the obtained powder material for press molding, press molding was performed in the same manner as in Example 1 to prepare a mixture having a shape of 100 mm ⁇ 100 mm ⁇ 50 mm. The obtained mixture was placed in an electric furnace in an air atmosphere and fired at 430° C. to prepare a preform. Using the obtained preform, under the same operation and conditions as in Example 1, the aluminum alloy AC3A was impregnated into the preform without pressure to obtain a composite. The obtained composite was confirmed to be MMC containing 64 v% SiC and 36% AC3A from the calculation results of the bulk specific gravity.
  • Example 1 A preform was produced in the same manner as in Example 1, except that Mg powder was not added when producing the powder raw material for press molding. Then, using the obtained preform, in the same procedure as in Example 1, Al alloy AC3A was used to infiltrate the Al alloy without pressure. As a result, the preform was not impregnated with the Al alloy.
  • Example 2 A preform of 100 mm ⁇ 100 mm ⁇ 50 mm was produced in the same manner as in Example 1, except that Mg powder was not added when producing the powder raw material for press molding. Then, the Al alloy was permeated into the preform obtained above without pressure using Al alloy AC3A as follows. Specifically, when the preform was placed in the container 3 as shown in FIG. Al alloy was infiltrated into the preform. The above-described method has been conventionally used and is called the rank-side method.
  • the state of the preform was observed. As a result, about 8 mm (16%) of the preform with a thickness of 50 mm was permeated with the Al alloy from the bottom, but was not completely impregnated. In addition, the preform was not near-net because the Al alloy surrounded the preform.
  • Comparative Example 3 As in Comparative Example 2, the rank side method was used to permeate the preform with an Al alloy. Specifically, a preform obtained in the same manner as in Comparative Example 2 to which no Mg powder was added was used, and when the preform was placed in the container 3 as shown in FIG. 100 g of SiC powder mixed with 5% was spread, and the same method as in Example 1 was used for the rest, and the preform was impregnated with an Al alloy.
  • the state of the preform was observed under a microscope. As a result, about 10 mm (20%) of the preform with a thickness of 50 mm was permeated with the Al alloy from the lower part, but the gaps were not impregnated as a whole. Also, the preform was surrounded by the Al alloy, and a near-net MMC was not obtained.
  • Example 4 a powder raw material for press molding obtained by the same method as in Example 1 was used, and a mixture of 100 mm ⁇ 100 mm ⁇ 50 mm was obtained in the same manner as in Example 1. was placed in an electric furnace in an air atmosphere, dried at 60° C. for 8 hours, and then fired to prepare a preform. At that time, the firing temperature when preparing the preform performed in Example 1 was 550 ° C. in Comparative Example 4 and 600 ° C. in Comparative Example 5, and both examples were higher than specified in the present invention. Baked at temperature. Using the preforms obtained by changing the firing temperature as described above, each preform was impregnated with the Al alloy AC3A in the same manner as in Example 1 except for this.
  • the state of the preform used for each was observed.
  • the Al alloy did not permeate the gaps at all.
  • the inventors of the present invention have found that, in particular, when the preform is baked at a temperature exceeding 500°C, the Mg contained in the mixture is oxidized, and the Mg in the preform is oxidized. It is believed that the effect of promoting penetration (impregnation) obtained by the presence of is impaired.
  • Alcohol-based colloidal silica (5 m ⁇ ) was used instead of silicone resin as the binder used when producing the powder raw material for press molding, except that it was added and mixed to a concentration of 5% with respect to the ceramic powder.
  • Comparative Example 7 Using the mixture obtained in Comparative Example 6 and using colloidal silica as a binder, the mixture was sintered at 1000° C. by changing the sintering temperature. However, using the obtained preform, in the same manner as in Example 1, an attempt was made to infiltrate the molten Al alloy using the Al alloy AC3A without pressure, but the Al alloy did not infiltrate at all. I didn't. This is probably because Mg in the mixture was completely oxidized when fired at 1000° C., and Mg no longer existed in the preform.
  • Preform or preform body 2 Penetration channel 3: Container made of carbon, etc. 4: Al alloy, etc. 5: Composite (MMC) (preform impregnated with Al alloy, etc. and combined)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

セラミックス粉末を成型・硬化して得たプリフォームにAl合金等の溶湯を非加圧で浸透させる方法を飛躍的に改良し、より簡便に、安定して全体に均一な状態の「セラミックス粉末とAl合金等からなる金属基複合材料」を得る技術に関し、「Mg含有粉末とセラミックス粉末とを含み、500℃以下の加熱で硬化する、無機バインダーまたは有機無機バインダーのいずれかを含む混合物を用いて成型して混合体を得、該混合体を500℃以下の温度で焼成してプリフォームを作製し、得られたプリフォームに、Al合金等を非加圧で浸透させて、アルミニュウムとセラミックスとを含有してなる金属基複合材料を製造する製造方法、及び、上記プリフォームの作製方法。」を提供する。

Description

金属基複合材料の製造方法及びプリフォームの作製方法
 本発明は、セラミックス粉末と、金属アルミニュウム(Al)またはAl合金からなる金属基複合材料を得るための複合材料の製造方法、及び、該製造方法に用いることができるプリフォームの作製方法に関する。詳しくは、アルミニュウム系の金属マトリックスに、セラミックス粉末を強化材として複合化させてなる金属-セラミックス複合材料を、生産性及び品質を飛躍的に向上させることができる技術に関する。
 近年、Al合金等にセラミックスを複合化させたアルミニュウム系の金属基複合材料は、軽量、高強度、高剛性であることから、機械部品として、半導体液晶製造装置やロボットアーム等として広く使用されている。また、高熱伝導、低熱膨張材料として、ヒートシンク、放熱スプレッダー等に広く使用されるようになってきている。
 セラミックス粉末とAl合金等からなる複合材料は、いわゆるMMC(Metal Matrix Composites=金属基複合材料)の一種であり、通常、高圧含浸法、鋳造法、非加圧浸透法などの方法で製造されている。
 高圧含浸法は、セラミックス粉末またはセラミックス粉末の成型体(プリフォーム)に、Al合金等の溶湯を高圧プレスで強制的に浸透させて、セラミックス粉末とAl合金等とを複合化させる方法である。高圧含浸法は、溶融したAl合金等を高圧で含浸させるので、プレス機等の高価な装置が必要である。更に、通常の方法では製品形状で含浸できないため、Al合金等が取り囲んだプレス含浸品から製品を加工で取り外す必要があり、製品形状にするための加工コストがかかるといった問題がある。
 鋳造法では、炭化けい素またはアルミナ等のセラミックス粉末をAl合金等の溶湯で高速撹拌を行ってセラミックス粉末含有Al合金溶湯を作製し、砂型、金型、ロストワックス型等慣用の型に鋳造して、セラミックスとAl合金等との複合体を製造する。この方法では、金属マトリックス中のセラミックス粉末の含有量が高くなると溶湯の流れ性が悪くなるので、一般的に複合体中のセラミックス粉末の含有量は30v%が上限とされており、複合体中のセラミックスの含有率が低いという問題がある。
 非加圧浸透法は、セラミックス粉末の充填体や成型体(プリフォーム)に、Mgと窒素の雰囲気中、非加圧でAl合金等の溶湯を浸透させて、プリフォーム等に含浸させて複合体を得る方法である。例えば、SiC、アルミナ等のセラミックス粉末などの粉末充填体、または、セラミックス粉末にシリカ等の無機バインダーを添加・成型・焼成して得たプリフォームに、窒素とMg蒸発雰囲気で、Al合金等が溶解する約700℃以上の温度にして、非加圧で、セラミックス粉末の隙間にAl合金等の溶湯を浸透させて、セラミックス粉末とAl合金等の複合体を製造する。この非加圧浸透法の原理は、Mgと窒素の雰囲気とすることで、セラミックスとAl合金等の濡れ性を向上させ、いわゆる毛管現象を促進させて、粉末充填体やプリフォームの隙間(空隙)内に、Al合金等の溶湯を非加圧で浸透させるものである。
 非加圧浸透法では、セラミックス充填率を高くして空隙を少なくすることにより、複合体中のセラミックスの充填率を高くすることができ、ヤング率、熱伝導率、熱膨張係数等の物性値が高いセラミックスとAl合金の複合体(MMC)の製造ができる。また、プリフォームを使用して製造した場合は、プリフォームの形状のままAl合金を浸透させることができる。このため、大きな加工を必要としない製品形状に近いニアネットでMMC複合体を製造する方法として、注目されている。
 非加圧浸透法については、従来より種々の検討がされている。例えば、特許文献1では、セラミックスフィラー材料による透過性材料に、溶融Al合金を自然浸透により浸透させることで金属マトリックス複合材料を製造する場合に、Al合金を、少なくとも3重量%のマグネシウムを含むものにすることを提案している。また、マグネシウムを含むAl合金は、セラミックスを湿潤させるので、金属とセラミックスとの間に良好な接合が期待されるとしている。
 また、特許文献2では、実質的に非反応性充填材に隣接して、マトリックス金属の源を配置し、マトリックス金属を該充填材に自発的に浸透させる際に、浸透増進剤前駆体を存在させることを提案している。その中で、浸透用雰囲気が窒素を含む場合に、浸透増進剤前駆体として、カルシウム、マグネシウム及びストロンチウムから選ばれる物質を使用するとしている。そして、このような浸透増進剤が自発系に提供されることで、自発浸透を行うことができるとしている。
特許第2641901号公報 特許第2930991号公報
 上記した従来技術において、本発明者らは、高圧含浸法で使用するプレス機等のような高価な装置を必要とせずに、複合体中のセラミックス粉末の含有率を高めることが可能で、製品形状に近いニアネットで金属基複合材料(MMC複合体)を製造することが可能な非加圧浸透法に注目し、該製造方法をより優れたものにできれば、「セラミックス粉末とAl合金等からなる金属基複合材料」のさらなる利用を促進できるとの認識をもった。
 したがって、本発明の目的は、特にセラミックス粉末を成型・硬化して得たプリフォームに、金属AlまたはAl合金(Al合金等)の溶湯を非加圧で浸透させる方法を飛躍的に改良し、より簡便に、且つ、安定して全体に均一な状態の「セラミックス粉末とAl合金等からなる金属基複合材料」を提供できる非加圧浸透法の改良技術を開発することにある。本発明の目的は、中でも、セラミックス粉末を含有する混合物を成型し、得られた成型物を焼成して硬化(固化)させる簡便な方法で、非加圧浸透法に好適に利用でき、これにより従来方法よりも効率的に金属基複合材料を製造することが可能になるプリフォームの作製技術を提供することにある。
 上記の目的は、以下の複合材料の製造方法によって達成される。すなわち、本発明は、Al合金等とセラミックスとを含有してなる金属基複合材料を製造する下記の複合材料の製造方法を提供する。
[1]マグネシウム含有粉末とセラミックス粉末とを含み、更に、500℃以下の加熱で硬化する、無機バインダーまたは有機無機バインダーのいずれかのバインダーを含む混合物に、更に、有機溶媒、或いは、水分量を低減した有機溶媒と水との混合溶媒を加えた混合物を用いて成型して混合体を得、該混合体を500℃以下の温度で焼成してプリフォームを作製し、得られたプリフォームに、金属アルミニュウムまたはアルミニュウム合金を窒素雰囲気で非加圧浸透させて、アルミニュウムとセラミックスとを含有してなる金属基複合材料を製造することを特徴とする複合材料の製造方法。
 上記した本発明の複合材料の製造方法の好ましい形態としては、下記が挙げられる。
[2]前記マグネシウム含有粉末が、金属マグネシウム、マグネシウム合金及びマグネシウムケイ化物からなる群から選ばれる少なくともいずれかの、平均粒子径が0.5μm以上、150μm以下の粉末である上記[1]に記載の複合材料の製造方法。
[3]前記混合物に、前記マグネシウム含有粉末を、前記セラミックス粉末100質量部に対して、マグネシウム換算で、質量基準で、0.3%以上、10%以下となる範囲内で含有させる上記[1]または[2]に記載の複合材料の製造方法。
[4]前記無機バインダーが水ガラスであり、前記有機無機バインダーが、シリコーン樹脂、Siアルコキシド及びAlアルコキシドからなる群から選ばれるいずれかである上記[1]~[3]のいずれかに記載の複合材料の製造方法。
[5]前記水分量を低減した混合溶媒は、有機溶媒100質量部に対して水を100質量部以下の範囲で含む上記[1]~[4]のいずれかに記載の複合材料の製造方法。
 また、本発明は、別の実施形態として、下記のプリフォームの作製方法を提供する。
[6]非加圧浸透法を利用してのアルミニュウム系の金属基複合材料の製造に適用できるセラミックス製のプリフォームを作製するためのプリフォームの作製方法であって、マグネシウム含有粉末とセラミックス粉末とを含み、更に、500℃以下の加熱で硬化する、無機バインダーまたは有機無機バインダーのいずれかのバインダーを含む混合物に、更に、有機溶媒、或いは、水分量を低減した有機溶媒と水との混合溶媒を加えた混合物を用いて成型して混合体を得、得られた混合体を500℃以下の温度で焼成してプリフォームを得ることを特徴とするプリフォームの作製方法。前記水分量を低減した混合溶媒は、有機溶媒100質量部に対して水を100質量部以下の範囲で含むものであることが好ましい。
 本発明によれば、特に、セラミックス粉末を成型・硬化して得たプリフォームに、Al合金等の溶湯を非加圧で浸透させる複合材料の製造方法を飛躍的に改良されて、より簡便に、且つ、安定して、全体に均一な「セラミックス粉末とAl合金等からなる金属基複合材料」を提供する技術の提供が可能になる。本発明によれば、中でも、セラミックス粉末を含有する混合物を成型し、得られた成型物を焼成して硬化(固化)させる簡便な方法で、非加圧浸透法に好適に利用でき、利用することで、効率的に安定して良好な状態の金属基複合材料を製造することが可能になる新規なプリフォームの作製技術が提供される。
本発明の複合材料の製造方法で使用する非加圧浸透法に用いる容器内の配置状態を説明するための模式図である。 本発明の複合材料の製造方法で行う非加圧浸透法によってプリフォームへ溶湯金属が浸透し、含浸する前の様子を説明するための第1の模式図である。 本発明の複合材料の製造方法で行う非加圧浸透法によってプリフォームへ溶湯金属が浸透し、含浸し始める様子を説明するための第2の模式図である。 本発明の複合材料の製造方法で行う非加圧浸透法によってプリフォームへ溶湯金属が浸透し、含浸が進んでいる様子を説明するための第3の模式図である。 本発明の複合材料の製造方法で行う非加圧浸透法によってプリフォーム全体に溶湯金属が浸透し、含浸した様子を説明するための第4の模式図である。
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態に限定されるものではない。
 まず、本発明で検討したセラミックス粉末とAl合金等からなる金属基複合材料(以下、単に複合材料或いは複合体とも呼ぶ)を製造するための、従来より行われている、プリフォームを用いた非加圧浸透法の一般的な手順の概略について説明する。まず、セラミックス粉末に、ポリビニルアルコール、ポリビニルブチラール等の有機バインダー及び必要に応じて、コロイダルシリカ、コロイダルアルミナ等の無機バインダーを添加した混合原料を用意する。次に、上記した混合原料を、プレス成型、鋳込み成形、押し出し成型、振動法などの方法で成型し、混合体を得る。そして、得られた混合体を約800℃~1200℃程度の温度で焼成してプリフォームを作製する。
 上記のようにして得たプリフォームを用い、下記のようにして非加圧浸透法で金属基複合材料を調製する。図1及び図2(a)に示したように、カーボン製等の容器3の中に、プリフォーム1と、Al合金等4を配置し、この容器3を、金属Mg粉末が挿入されているボックス炉(不図示)内に入れる。このボックス炉内に窒素を流しながら、加熱して約700℃以上の温度にして、ボックス炉内に配置させたMgを蒸発させると同時にボックス炉内を窒素雰囲気の状態にして保持する。すると、図2(b)~図2(d)に示したように、加熱によってAl合金等4が溶解し、溶湯が、浸透道2を介してプリフォーム1の隙間に浸透して、プリフォーム1にAl合金等4が含浸してなるMMC複合体5が得られる。
 以下に、このMMC複合体を製造に利用されている非加圧浸透法の原理を説明する。上記プリフォームに溶融したAl合金等の浸透を行う雰囲気では、Mg粉末が蒸発して窒素と反応してMg32を生成し、生成したMg32は、ボックス炉内の容器に配置させたプリフォームのセラミックス粉末表面に沈着する。セラミックス粉末とAl合金等の溶湯の濡れ性は一般的にはよくない。しかし、Mg32がセラミックス粉末表面に存在すると、Al合金等との濡れ性が飛躍的に向上する。この結果、Al合金等の溶湯が、プリフォームを構成しているセラミックス粉末に濡れて、プリフォームを構成しているセラミックス粉末の隙間(空隙)内に毛管現象で非加圧浸透する。また、生成したMg32とアルミニュウム金属は、Mg32+Al→Mg+AlNの反応を起こし、セラミックス表面には極薄いAlN相が生成して、このAlN相もAl合金の溶湯の濡れ性を向上させる。この反応で生じたMg蒸気は、プリフォームの内部に浸透して同じような反応を繰り返しながら、溶融したAl合金等が順次プリフォーム内に浸透する。このようにして、Al合金等の溶湯が、非加圧でプリフォーム全体に浸透し、セラミックス粉末内に含浸していくことになる。
 しかしながら、本発明者らの検討によれば、上記の方法には下記のような課題がある。まず、上記した反応は、浸透開始時からプリフォーム全体に生じるものではない。すなわち、浸透開始時においては、MgとN2の両方が存在するプリフォーム表面で最初に反応して、順次、プリフォーム内部に進行していく。このため、プリフォームの表面及び内部の全体にAl合金等の溶湯を含浸させるには長時間を必要とし、製造効率に劣るといった課題がある。また、プリフォーム内にMg32が生成しない部分が生じて、プリフォーム全体にAl合金等が浸透しないことが原因して不均一なAl合金等の含浸体となり、良好な複合材料が製造できない場合があった。
 本発明者らは、これらの課題を解決して、セラミックス粉末を成型硬化して得たプリフォームに、Al合金等の溶湯を非加圧で浸透させる方法を飛躍的に改良し、プリフォームへの溶湯の迅速な浸透を可能にして、安定して均一な品質を向上させた「セラミックス粉末とAl合金等からなる複合材料」を提供する技術を開発すべく、鋭意検討した結果、本発明に至ったものである。
 本発明の複合材料の製造方法は、下記の点を特徴とする。まず、金属Mg粉末等のマグネシウム含有粉末と、セラミックス粉末とを含み、更に、500℃以下の加熱で混合物が強度を発現する特性を有する、無機バインダーまたは有機無機バインダーのいずれかのバインダーを含む混合物を原料に用い、該混合物を成型して混合体を得るように構成したことを特徴とする。上記の「500℃以下の加熱で混合物が強度を発現する特性」としては、「500℃以下の加熱で硬化する特性」などが挙げられる。さらに、成型した混合体を500℃以下の温度で焼成してプリフォームを作製し、得られたプリフォームに、Al合金等の溶湯を非加圧で浸透させて、アルミニュウム合金とセラミックスと有してなる複合体を製造することを特徴とする。特に、本発明の特徴は、上記構成によって、従来にない有用な構成のプリフォームが得られる新たな作製方法を見出したことにある。すなわち、上記構成のプリフォームを使用することで、Al合金等の溶湯をプリフォーム内に、非加圧で迅速に浸透させることが可能になり、プリフォーム内に均一にAl合金等が含侵してなる複合体の製造を実現したものである。以下、本発明の複合材料の製造方法の各工程について、具体的に説明する。
<マグネシウム含有粉末とセラミックス粉末とを含む混合物の調製>
 本発明の製造方法で使用する混合物は、金属Mg粉末等のマグネシウム含有粉末と、セラミックス粉末とを含み、更に、500℃以下の加熱で混合物が強度を発現する特性を有する、無機バインダーまたは有機無機バインダーのいずれかのバインダーを含む。以下、これらの原料について説明する。
(セラミックス粉末)
 本発明で用いるセラミックス粉末は、特に限定されないが、下記に挙げるようなものをいずれも使用することができる。例えば、炭化ケイ素(SiC)、炭化タングステン(WC)及びTiC(炭化チタン)等の炭化物、アルミナ(Al23)、チタニア(TiO2)及びホウ酸アルミニュウム等の酸化物、窒化アルミニュウム(AlN)及び窒化ケイ素(Si34)等の窒化物など、一般的なセラミックス粉末を使用することができる。
 上記に挙げたようなセラミックス粉末の粒子径は、特に限定されないが、例えば、平均粒子径が1μm以上、200μm以下程度のものが適当である。平均粒子径が1μm未満のセラッミクス粉末では、例えば、プレス成型等して得た混合体や、該混合体を焼成して得たプリフォーム中に形成される隙間(孔径)が小さすぎて、溶融させたAl合金等が浸透しない場合があるので適当ではない。すなわち、非加圧浸透法では、溶融したAl合金等が、非加圧で、自然に毛管現象で隙間に浸透させることが必要であるが、セラミックス粉末の粒子間の隙間(孔径)が小さ過ぎると、浸透が不十分となる。一方、セラミックス粉末の平均粒子径が200μm超では粒子径が大きすぎるので、下記の点で最適ではない。セラミックス粉末が大きすぎると、これを含む混合物を用いて混合体とする際に、プレス成型や、振動成型で粒子充填を行うことが困難となり、その後に行う混合体の成型が難しくなる。また、大きすぎるセラミックス粉末を用いた場合は、粒子間の隙間が数十μm以上と、隙間間隔が大きくなりすぎるので、非加圧浸透法において重要な毛管現象でのアルミニュウム含浸が起こりにくくなる。
 本発明の製造方法では、使用するセラミックス粉末の大きさを調整し、必要な物性値を具備するプリフォームを得るようにすることも好ましい形態である。例えば、大きな粒子と、小さな粒子のセラッミクス粉末を、用途に応じて適宜に配合して混合物を調製し、得られた混合物によって、混合体を得る際のセラミックス粉末の充填状態を適宜にコントロールすることで、必要な物性値を具備するプリフォームを得ることができる。
(マグネシウム含有粉末)
 本発明の製造方法では、マグネシウム含有粉末として、例えば、金属マグネシウム、マグネシウム合金及びマグネシウムケイ化物からなる群から選ばれる少なくともいずれかの粉末を使用することができる。具体的には、例えば、先に説明した金属マグネシウム粉末以外に、Al-Mg系合金、Al-Mg-Si系合金等のマグネシウム合金や、マグネシウムの含有量が高いMgSi等の化合物などの粉末を使用することができる。
 また、平均粒子径が、0.5μm以上、150μm以下のマグネシウム含有粉末を使用することが好ましい。150μm超の粉末では粗すぎて、先に述べたセラミックス粉末と均一に混合できない場合があるので、好ましくない。更に、粒子径が粗いとMg含有粉末の表面積が小さくなり、プリフォーム内に含有させたMgが雰囲気内の窒素と反応して窒化された後のMg32の生成量が少なくなる。ここでMg32の生成量が少ないと、プリフォームへのアルミニュウム含浸速度が遅くなるので好ましくない。一方、Mg含有粉末は、細かい程表面積が大きくなり、空気中の酸素で酸化され易くなってMgOとなり、Mg量が少なくなるので好ましくない。このため、平均粒子径が0.5μm以上のMg含有粉末を用いることが望ましい。また、平均粒子径が150μm超では、全体の表面積が小さくなり、先に述べたように、Mg32の生成量が少なくなるので好ましくない。
 Mg含有粉末の混合量としては、質量基準で、セラミックス粉末100質量部に対し、Mg換算で、0.3%以上、10%以下となる範囲内で使用することが好ましい。より好ましくは0.5%以上、7%以下、更には0.5%以上、5%以下、となる範囲内でMg含有粉末を使用することが望ましい。Mg含有粉末の混合量が0.3%未満と少ないと、Mgの生成量が少なくなり、Al合金等の溶湯の浸透速度が十分に促進されないので、好適ではない。一方、Mg含有粉末の混合量が10%超であると、これらの原料で作製したプリフォーム中におけるMg含有粉末の分布状態が局部的に多くなり、このことに起因して浸透したAl合金の量が不均一になる恐れがあるので、好適ではない。先に挙げたようなMg合金やMg含有化合物を用いる場合は、これらに含まれるMgに換算して、混合量を決定すればよい。
(バインダー)
 本発明は、プリフォームの作製に使用する混合物として、上記したMg含有粉末及びセラミックス粉末に、更に、500℃以下の加熱で硬化するような、混合物が強度を発現する特性を有する無機バインダーまたは有機無機バインダーのいずれかのバインダーを含むものを使用したことを特徴とする。上記した特性を有する有機無機バインダーとしては、例えば、シリコーン樹脂や、Siアルコキシド、Alアルコキシド等が挙げられる。また、無機バインダーとしては、水ガラス、アルミナセメント等が挙げられる。
 本発明の製造方法では、その後の工程で、これらのバインダーを含む混合物を成型して得られた混合体を、500℃以下の温度で焼成してプリフォームを調製することを要する。このため、500℃以下の焼成温度でプリフォームが強度を発現するように、500℃以下の加熱で混合物が強度を発現する特性を有するバインダーを用いる。本発明では、上記バインダーを含む混合物を成型し易いように、更に、混合物に、ポリビニルアルコール、ポリビニルブチラール及びセルロース等のような有機バインダーを加えてもよい。これらの有機バインダーは、その後に行う500℃以下の温度で行う焼成工程で燃焼されてしまい、プリフォームの強度の発現には寄与しない。このため、本発明の製造方法では、混合物の調製に、上記した特性を有する、無機有機バインダーや無機バインダーを使用することが不可避である。
 上記の特性を有する本発明で好適に利用できるバインダーについて、例を挙げて説明する。シリコーン樹脂は、「Si-O-R」(Rは有機物)の化学式で表される、Si(シリコン)、酸素、有機化合物で構成されたポリシロキサン構造を有し、低温では有機バインダーとして機能し、高温で焼成した後は、無機バインダーとして機能する。また、Si(OC254で代表されるSi-アルコキシドは、低温でモノマーからポリマー(シリコーン樹脂)になるので、混合物を成型して混合体とした場合に、該混合体は成型強度を保つことができ、該混合体を焼成した後には、最終的にSiO2となり、無機バインダーとして機能する。固体状のシリコーン樹脂を用いる場合は、エタノール、イソプロピルアルコール(IPA)等のアルコールや、キシレンやトルエン等の有機溶媒に溶解して使用する。Si-アルコキシドのポリマーは液体であり、そのままか、希釈して使用することができる。本発明の製造方法において、シリコーン樹脂を予め有機溶媒に溶解したものや、シリコーン樹脂そのものが液体状のものは、いずれもそのまま使用できる。上記したバインダーは、必要に応じて有機溶媒や水を添加し希釈して使用してもよい。この点については後述する。
 本発明では、無機バインダーとして、水ガラス(珪酸ナトリュウム)を好適に使用することができる。その場合は、他の材料と混合し易いように、溶液状のもの、いわゆる1号水ガラス、2号水ガラス、3号水ガラスを使用することが好ましい。また、無機バインダーとして、アルミナセメントを使用する場合は、アルミナセメントを少量の水に溶かして、セラミックス粉末等の他の原料に混合することが好ましい。
 本発明で使用する上記したバインダーの量は、混合体を作製するための成型方法にもよるが、特に限定されない。無機バインダーまたは有機無機バインダーのいずれを使用した場合も、混合体を焼成してプリフォームにした際に、SiO2等の無機酸化物になってプリフォーム中に残留し、複合体中に含まれることになる。したがって、複合化原料に用いるセラミックスとの兼ね合いでバインダーの種類を適宜に選択することが好ましい。例えば、SiCやSi等の非酸化物系セラミックスを使用する場合や、AlやTiO等の酸化物セラミックスを使用する場合は、シリコーン樹脂や水ガラス等のシリカ系バインダーを用いれば、この点についての問題はない。バインダーの使用量は、混合物を成型する際の加工性や、焼成後のプリフォームの硬さなどを考慮して適宜に決定すればよい。例えば、セラミックス粉末100質量部に対して、0.3質量部以上、110質量部以下程度の量で添加して使用することが好ましい。
(溶媒)
 本発明を構成する上記した原料からなる混合物は、該混合物を用いて成型して混合体を得、該混合体を500℃以下の温度で焼成してプリフォームを作製するためのものである。このため、混合体の成型性を高めるなどの目的で、上記した材料に加えて、更に、有機溶媒や、水と有機溶媒との混合溶媒を使用することができる。有機溶媒としては、エタノール、イソプロピルアルコール等の低級アルコール類や、ノルマルヘキサン等の直鎖状アルカン類などが使用できる。また、本発明では、水とこれらの有機溶媒との混合溶媒を用いることもできる。
 しかし、本発明者らの検討によれば、水を使用すると、使用量にもよるが、混合物中のMg含有粉末中のMgが水と反応して水酸化物となってしまい、プリフォーム内で必要になる、浸透(含浸)促進剤としての機能が損なわれることがあることがわかった。すなわち、例えば、金属Mg粉末を用いた場合、混合物中のMg粉末は水分が多いと、Mg+2H2O→2Mg(OH)2+H2の反応で加水分解が起こり、その結果、非加圧浸透において有用なMg32を生成しなくなり、溶融したAl合金の含浸が促進される効果が損なわれる場合がある。このため、混合物を構成するMg含有粉末が加水分解されないように、混合物に用いる溶媒には、水分を含まない有機溶剤を用いるか、水分量を低減した混合溶媒を用いることが好ましい。具体的には、水と有機溶媒との混合溶媒を使用する場合は、有機溶媒100質量部に対して、水の使用量を100質量部以下に低減することが肝要である。本発明者らの検討によれば、上記に挙げたような有機溶媒の場合は勿論、水分量を低減した混合溶媒を用いた場合も、混合物中のMg含有粉末は水とほとんど反応せず、該混合物を成型して得た混合体中には、Mg含有粉末の状態のまま存在する。このため、該混合体を焼成することで、非加圧浸透に好適に用いることができるプリフォームの製造が可能になる。
<混合体及びプリフォームの作製>
 本発明では、上記のような構成の混合物を用いて成型して混合体を得、該混合体を500℃以下の温度で焼成してプリフォームを作製する。本発明では、先に述べた構成の混合物を用いて混合体を得、得られた混合体を本発明で規定する温度で焼成してプリフォームを得たことで、次の非加圧浸透工程で使用した際に、浸透(含浸)促進剤としての機能を安定して十分に発現できる状態のMg含有粉末を含んでなる、従来技術になかった有用なプリフォームの提供を実現した。以下に、この点について説明する。
 非加圧浸透法を利用して、Al合金等とセラミックスとを含有してなる金属基複合材料のMMC製品を得る場合、単純形状の製品の作製では、例えば、セラミックス粉末とMg粉末とを含む混合物をカーボン箱等に入れて、該箱内の混合物に、溶融したAl合金等を浸透させて製造することも可能であると考えられる。一方、複雑な形状のMMC製品を製造する場合は、セラミックス粉末を含む混合物を成型して、硬化させ、製品に近い形状のプリフォームを作製して、或いは、必要に応じて、上記のようにして得られたプリフォームに機械加工を施して、より製品形状に近いプリフォームに加工して、これらのプリフォームにAl合金等の溶湯を含浸させる製法が求められる。すなわち、このように製品形状に近いプリフォームにAl合金等を含浸させて製品を製造できれば、製品の加工代を低減でき、ひいては製品コストを低減することができ、製品を安価に提供することが可能になる。
 しかしながら、従来技術では、非加圧浸透法を利用して、製品形状に近いプリフォームを用いてMMC製品を製造する場合に、金属Mg粉末等を含んだプリフォームを利用することは行われていなかった。先に述べたように、従来技術では、セラミックス粉末を含む混合物を成型して得た製品に近い形状のプリフォームを用い、非加圧浸透を行う雰囲気内に浸透(含浸)促進剤であるMgを存在させて、窒素の雰囲気中、非加圧で溶融したAl合金を上記プリフォームに浸透することでMMC製品を得ていた。本発明者らの検討によれば、従来技術で、金属Mg粉末等を含んだプリフォームを利用することが行われていなかった理由は、下記のことに原因がある。従来技術では、非加圧浸透法を実施した場合に、浸透(含浸)促進剤としての機能が安定して十分に発現する金属Mg粉末等を含むプリフォームの開発が実現できていなかったことによる。本発明は、かかる技術課題に対しなされたものであり、本発明によれば、簡便な手段で、非加圧浸透法において好適に利用することができる、十分な強度を有し、しかも、浸透(含浸)促進剤としての機能を安定して発現できる状態のMg含有粉末を含んでなるプリフォームの提供が可能になる。
(混合体の調製工程)
 本発明の製法において、先述した原料を含む構成の混合物を用い、所望の形状の混合体を得る方法は、特に限定されない。例えば、プレス成型、CIP成型(冷間等方圧加圧)、鋳込み成形、振動成型などの慣用な方法を用いることができる。本発明を構成する混合物は、先に述べたように、500℃以下の加熱で硬化するなどの、混合物が強度を発現する特性を有する、無機バインダーまたは有機無機バインダーのいずれかの特有のバインダーを含む。このため、得られる混合体、更に、その後に混合体を焼成して得られるプリフォームは、ハンドリング性に優れ、扱い易い性状のものになる。更に、特に、混合体を焼成して得られるプリフォームは、非加圧浸透法を利用して、高温で、溶融したAl合金を浸透(含浸)させた場合において、プリフォームが崩れることがない、強固に固化された優れた性状のものになる。
 本発明の製法において、混合体を調製する際の一例としては、下記のような方法が挙げられる。まず、先述したような、セラミックス粉末及び金属Mg粉末に、シリコーン樹脂などの有機無機バインダーを加え、更に、アルコール等の有機溶媒、或いは、必要に応じて少量の水を含む混合溶媒を添加し、均一に混合してスラリーを作製する。そして、上記のようにして得たスラリーを、石膏型、金型、ゴム型、樹脂型等に鋳込み成型して、混合体を得るか、或いは、振動沈降成型した後、溶媒を乾燥除去して成型して混合体を得る方法が挙げられる。また、上記スラリーを石膏型に流し込む製法によれば、混合物中の溶媒を石膏型に吸収させて混合体を成型することができる。いずれの場合も、後述するように、型から混合体を外した後、混合体を特有の温度条件で焼成することで、本発明の製法に好適に用いることができるプリフォームの作製が可能になる。また、これらの方法に限らず、上記のようにして得たスラリーを乾燥して、粉砕等して混合粉末を調製し、混合粉末を金型に充填して、プレス成型またはCIP成型を行って混合体を得る方法も有効に利用できる。
 上記した混合体の作製方法について、より具体的に説明する。
「プレス、CIP成型法」
 先に説明した混合物からなるスラリーを、150℃以下の温度で乾燥し、乾燥後、成型し易いようにほぐすか、軽く粉砕してプレス成型用の粉体原料を調製する。得られたプレス成型用の粉体原料をプレス型に入れ、荷重をかけて、プレス成型またはCIP成型を行う。この場合に、無機バインダーだけでは混合体を成型しにくい場合には、上記したスラリーに適宜に有機バインダー併用してもよい。
「水ガラス硬化法」
 水ガラス(珪酸ナトリュウム)を無機バインダーとして使用した場合、下記のようにして混合体を得ることができる。セラミックス粉末と、水ガラスと、Mg粉末との混合物を型に入れて押し固めた後、炭酸ガスを吹き込み硬化させることで、強固に固化された混合体とすることができる。この方法は、シリカ等の砂を重力鋳造用型にするために使用されている方法である。本発明の製造方法では、この方法を利用して混合体を得、その後に型から外した混合体を焼成してプリフォームを得ることができる。
「振動沈降法」
 先に説明した混合物からなるスラリーを、ゴム型等に入れて振動成型し、上部の溶媒を除去した後、乾燥して混合体を作製する。得られた混合体は、焼成してプリフォームとすることで、本発明の製造方法において良好に利用できるものになる。
(プリフォームの調製工程)
 本発明の製造方法は、上記のようにして得た所望の形状の、本発明で規定する特有の原料を含んでなる混合体を型から外した後、必要に応じて乾燥して、500℃以下の温度で焼成してプリフォームを得、得られたプリフォームを用い、該プリフォームに非加圧で、Al合金等の溶湯を浸透(含浸)させて、アルミニュウムとセラミックスとを含有してなる金属基複合材料を得ることを特徴とする。本発明では、特有の構成の混合体を、500℃以下の温度で、空気中で焼成硬化させてプリフォームを作製する。本発明者らの検討によれば、焼成温度を500℃超とすることは避けなければならない。すなわち、焼成温度を500℃超とした場合は、混合体中に含有させたMg含有粉末が空気中で酸化されて、2Mg+O2→2MgOとなってしまい、焼成後のプリフォームを用いて行う、Al合金等の溶湯をプリフォームに浸透・含浸させる後工程でAl含浸促進効果が発揮されなくなる。
 本発明者らの検討によれば、バインダーとして、シリコーン樹脂やシリコンアルコキシド等の有機無機バインダーを用いた場合は、500℃付近で、その構造中の有機物が燃焼分解して非晶質シリカSiO2となり、この結果、得られるプリフォームは、強度を発揮するものになる。一方、バインダーに、水ガラス、アルミナセメントを使用した場合は、混合体は常温で硬化するが、常温での硬化では十分な強度のものにはならない。これに対して、本発明の製法では、500℃以下の温度で焼成するため、不要な水分や有機物を混合体から除去しながら硬化して、非晶質なシリカ、アルミナとして、焼成後に得られるプリフォームの強度を十分なものにできる。このため、焼成後のプリフォームは、その後に高温で行う非加圧浸透工程で、Al合金等の溶湯が速やかに浸透していき、全体的に溶湯が含浸した場合に十分な強度を示し、しかも全体に均一な状態の複合材料の提供を可能にできる。
 以下に、本発明を特徴づける、先に述べたセラミックス粉末を含む特有の原料構成の混合物から成型してなる混合体の焼成温度を500℃以下にして、非加圧浸透法に供するプリフォームの作製をしたことで、従来の製造方法によっては得ることができなかった本発明の顕著な効果が実現できた理由について説明する。
 一般的に、セラミックス製のプリフォームは、下記のような方法で作製されている。セラミックス粉末に、コロイダルシリカ、コロイダルアルミナ等の無機バインダー及び必要に応じて有機バインダーを添加、混合して、プレス成型等で成型して成型体を作製し、その後に、プリフォームの強度を発揮させるために900℃以上の高温で成型体を焼成してプリフォームを作成する方法が、一般的である。本発明者らの検討によれば、上記した一般的な方法で、Mg含有粉末を含むセラミックス粉末を原料に用いて成型体を作成し、焼成すると、含有させたMg含有粉末が酸化されてMgOとなってしまう。このため、非加圧浸透工程で、プリフォームを構成するセラッミクス粉末に対して、Al合金との濡れ性を飛躍的に向上させることができるMg32が生成しない。このため、上記一般的な方法で得たプリフォームの場合は、Al合金等の溶湯を非加圧で含浸させることはできない。
 ここで、Mgの酸化を防ぐ方法として、アルゴン等の不活性雰囲気中で上記成型体を焼成することも考えられる。しかしながら、本発明者らの検討によれば、600℃以上の温度では、成型体中のMgが蒸発してしまい、焼成後のプリフォーム中に所定量残存しなくなり、成型体の原料にMg含有粉末を添加したことによる効果が低下する。また、窒素雰囲気炉中で成型体を焼成することも考えられる。しかし、本発明者らの検討によれば、約550℃でMg32が生成するが、焼成後に炉内から、プリフォームを空気中に取り出した際に、空気中の湿分と反応してMg(OH)2となり、この場合も同じく、プリフォーム中の、浸透(含浸)促進剤として機能し得るMg量が低減する。一方、成型体の調製原料に有機バインダーを添加し、併用した場合は、有機物とMgが反応してMgOとなり、その後に行う非加圧浸透工程で効果的に機能するMg32の生成ができなくなる。上記したように、これまで、非加圧浸透工程で、セラミックス製のプリフォームのAl合金等の溶湯との濡れ性を飛躍的に向上させることができる、浸透(含浸)促進剤として機能し得る状態でMg含有粉末を含んでなるプリフォームを製造する従来技術はなかった。
 上記従来技術に対し、先に述べたように、本発明の製造方法では、金属Mg粉末等のMg含有粉末を含有したセラミックス粉末を含む混合体(成型体)を、プリフォームを作製する際の焼成温度を500℃以下としたことで、本発明の顕著な効果を実現した。すなわち、焼成温度を500℃以下にしたことで、焼成前の混合体に含有させた金属Mg粉末等の成分は、焼成した場合に酸化及び蒸発することがないので、その後に行う非加圧浸透工程で必要になるMg32の生成が良好に行われる。このことは、本発明の製造方法によって得られる複合体が、セラミックス製のプリフォームへのAl合金の溶湯の浸透が良好に行われたものになることで確認できる。具体的には、本発明の製造方法では、セラミックス製のプリフォームへのAl非加圧浸透の速度が飛躍的に大きくなり、得られる複合体は、プリフォーム全体へ溶融したAl合金等が均一に浸透しており、含浸状態が良好なものであることで確認できる。
<非加圧浸透工程>
 上記したような方法で作製したプリフォームは、成型方法にもよるが、型から外してそのまま使用するか、必要に応じて機械加工を施して、製品形状により近いプリフォーム形状にして、非加圧浸透工程での使用に供する。本発明の製造方法における非加圧浸透工程は、本発明で規定する材料を含む混合物を成型して得た混合体を500℃以下で焼成したことで得た、非加圧浸透工程に耐え得る十分な強度を有するプリフォームを用い、該プリフォーム中には、浸透(含浸)促進剤として機能するMg含有粉末が含まれていること以外、通常の方法と同様である。
 図1及び図2(a)に示したようにして、本発明を特徴づける特有の構成のプリフォーム1と、Al合金等4をカーボン製などの容器3に入れて、この容器3を、雰囲気を制御できる炉内(不図示)に設置する。そして、図2(b)~図2(d)に示したようにして、容器3を700~900℃の窒素雰囲気の炉内に約2~10時間保持し、浸透道2を介してプリフォーム1の隙間に溶融したAl合金等4を浸透させて、含浸させる。容器3内に配置させるAl合金等4の量は、プリフォーム1の粒子間の隙間(空隙)を満たす体積以上であることが必要である。一般的には、空隙の約1.2倍以上が必要である。図2(d)に示したように、Al合金等4がプリフォーム1の隙間全体に含浸した後、冷却して残存Al合金等4を外す(除く)処理をして(不図示)、Al合金等4がプリフォーム1に含浸してなる複合体(MMC)5を得る。本発明の製造方法によって得られた複合体には空隙がなく、セラミックスとAl合金等からなる複合体になる。
 本発明の製造方法では、浸透(含浸)促進剤として機能する状態のMg含有粉末を含んだプリフォームを使用するので、Al合金等のプリフォームへの含浸スピードが従来法より著しく速くなる。本発明者らの検討によれば、例えば、厚みが50mmや100mmである形状のプリフォームに対しても、2~7時間で均一含浸する。これに対し、Mgを含まない従来法のプリフォームを使用した場合は、含浸速度が遅く、本発明で用いる本発明の構成のプリフォームと同一形状のプリフォームに、従来法によってAl合金等の溶湯を含浸させるためには、約3~10倍の長い含浸時間が必要になる。また、従来法では、プリフォーム内部への含浸速度が遅いため、浸透(含浸)する入口以外のプリフォームの周囲全体にAl合金等が取り囲む状態になるため、含浸後に、得られた複合体から余分なAl合金等をとり除くことが容易ではないという問題も生じる。これに対して、本発明の製造方法によれば、溶融したAl合金等が短時間でプリフォームの入口部のみから含浸するので、含浸に寄与しないAl合金等が得られた複合体の周囲を取り囲むことが格段に低減される。このように、本発明の製造方法によれば、ニアネットで複合体(MMC)を生産できるので、その後に行う加工などの負荷が低減されて、生産性を飛躍的に向上させることが可能になる。
 以下、実施例及び比較例を挙げて、前述の一実施形態のさらなる具体例を説明するが、本発明は以下の実施例に限定されるものではない。文中、w%とあるのは質量基準であり、v%とあるのは容積基準である。本明細書中における平均粒子径は、レーザー回折式粒度分布測定器で測定した値である。
[実施例1]
 予め、シリコーン樹脂(信越化学社製、商品名:KR-220L)をイソプロピルアルコール(IPA)に溶解して、30w%のバインダー溶液を用意した。セラミックス粉末として、平均粒子径50μmのSiC粉末4000gと、平均粒子径14μmのSiC粉末1200gとを用い、平均粒子径が75μmのMg粉末を、上記セラミックス粉末(SiC粉末)に対して2w%の割合で含まれるように104g加えて、Mg粉末とセラミックス粉末とを含んでなる混合物とした。該混合物に更に、シリコーン樹脂が、上記セラミックス粉末に対して2w%配合されるように、先に用意した30w%のバインダー溶液を346g加えた。そして、これに更にIPAを1300g加え、ボールミルで均一に混合してスラリーを調製した。得られたスラリーをステンレス製の容器に入れ、自然乾燥してIPAをほぼ除去した後、更に、60℃の乾燥器で8時間乾燥した。乾燥後、乾燥物を、20mmΦのプラスチックボールを入れたボールミルで粉砕(解砕)して、プレス成型用の粉体原料を作製した。
 上記で得たプレス成型用の粉体原料1000gを、100mm×100mm×深さ100mmのプレス型に入れ、150kg/cm2の圧力でプレス成型して、100mm×100mm×50mmの混合体を得た。上記のようにして得られた混合体を空気雰囲気の電気炉に入れ、50℃/時間の速度で500℃まで昇温して、500℃で4時間保持して焼成し、その後に冷却してプリフォームを作製した。得られたプリフォームは、SiC粉末の充填率が63v%であった。
 図1に示したように、上記で調製したプリフォーム1(以下、プリフォーム本体1と呼ぶ)を、200mm×200mm×80mm深さのカーボン製の容器3内に配置した。その際、プリフォーム本体1の下に、該プリフォーム本体1と同様の方法で作製した、同様の材料からなるプリフォームから、切断・加工して得た20mm×20mm×高さ20mmの、Al合金等を浸透させるための浸透道2を3個設置し、プリフォーム本体1を支えて浮かした状態にした。このようにして容器3内に配置したプリフォーム本体1の横に、切断して重さを調整した1000gのAl合金4としてAC3Aを置き、該容器3を、内部が600mm×600mm×高さ500mmの窒素雰囲気炉に設置した。そして、該雰囲気炉に、5L/分で窒素を流しながら、室温から10℃/分で800℃まで昇温後、この温度で5時間保持した。
 800℃で5時間保持後、室温まで冷却した後、雰囲気炉内から、プリフォームにAl合金が浸透されてなる複合体(MMC)を取り出した。そして、プリフォーム本体1を支えるために用いた3個の浸透道2を除去して、プリフォーム本体1に、Al合金4が浸透してなる複合体(MMC)5を得た。上記したようにして、800℃の温度に5時間保持させた窒素雰囲気炉内に設置させた容器3内では、容器3内に配置したAl合金4のAC3Aが溶解して、該溶解したAl合金4が、浸透道2を介して多孔質体であるプリフォーム本体1に非加圧で浸透する。
 上記のようにして得られた本実施例の複合体について、アルキメデス法で嵩比重を測定し、また、内部をダイヤモンドカッターで切断し、切断面を顕微鏡観察した。その結果、切断面の観察で、プリフォーム本体にAl合金が完全に隙間含浸されていることを確認した。また、嵩比重の計算結果から、SiCが63v%、AC3Aが37v%の複合体(MMC)であることを確認した。
[実施例2]
 平均粒子径が15μmのアルミナ粉末4000gに、平均粒子径が75μmのMg粉末を、上記アルミナ粉末に対して3w%含まれるように120g加えて、Mg粉末とセラミックス粉末とを含んでなる混合物とした。該混合物を用い、更に実施例1と同じようにしてスラリーを調製した。具体的には、下記のようにして、上記で得た混合物にバインダー溶液を用い、スラリーを調製した。本実施例では、シリコーン樹脂が3w%配合されるように、実施例1で用いたと同じシリコーン樹脂の30w%バインダー溶液を400gと、更にIPAを1400g加えて、実施例1と同様の方法で、ボールミルで均一に混合してスラリーを作製した。
 上記で作製したスラリーの約1/4を、110mm×110mm×深さ60mmの石膏型に入れ、約30分振動をかけながら、スラリー中の溶液を石膏型に吸収させて、スラリーから溶液を除去した。その後、60℃で約8時間乾燥して固化し、Mg粉末とセラミックス粉末とを含んでなる混合体を石膏型から外した。得られた混合体を実施例1と同様の条件で、500℃の温度で焼成を行った。その結果、100mm×100mm×50mmの焼成物を得た。得られた焼成物について、重量と形状を測定して、嵩比重を測定した。その結果、アルミナが50v%のプリフォームが得られた。
 上記で得たプリフォームを、実施例1と同じようにして、カーボン製の容器内に浸透道でプリフォーム本体を浮かした状態に配置させて、実施例1と同じ方法で、同様のAl合金を浸透させて複合体を得た。得られた複合体について、内部を切断して切断面を顕微鏡観察し、また、嵩比重を測定した。その結果、切断面の観察で、プリフォーム本体にAl合金が完全に隙間含浸されていることを確認した。また、嵩比重の計算結果から、アルミナが50v%、Al合金が50v%の複合体(MMC)であることを確認した。
[実施例3]
 平均粒子径が50μmのSiC粉末2000gと、平均粒子径が14μmのSiC粉末600gに、平均粒子径が75μmのMg粉末を78g加え、更に液状の水ガラス3号を80g加えて、撹拌機で撹拌した。得られた混合物を100mm×100mm×100mm深さのシリコーン樹脂製の型に入れ、つき棒でタッピングしながら充填し、充填物に炭酸ガスを吹き付け浸透して固化させて、100mm×100mm×52mmの混合体を得た。得られた混合体を60℃で約8時間乾燥した。そして、50℃/時間で450℃まで昇温し、到達後4時間保持して混合体の焼成を行ったこと以外は実施例1と同様にして、プリフォームを作製した。
 上記で得られたプリフォームに、実施例1と同じようにしてAl合金の溶湯の浸透を行い、複合体を得た。そして、得られた複合体について、内部を切断して切断面を顕微鏡観察し、また、嵩比重を測定した。その結果、嵩比重の計算結果から、SiC充填率が54v%、Al合金が46v%の複合体(MMC)が製造できたことを確認した。また、切断面を観察したところ、バインダーに用いた水ガラスで固化したプリフォームを用いた本実施例でも、プリフォーム本体にAl合金が完全に隙間含浸した複合体(MMC)を製造できることを確認した。
[実施例4、5]
 実施例1と同様にして作製したSiC粉末の充填率が63v%のプリフォームに、実施例1で用いたAl合金のAC3Aの替わりに、実施例4ではAl合金のAC4Cを用い、また、実施例5では、マグネシウムを含むAl合金であるAl-3Mgをそれぞれに用いて、実施例1と同様の方法で、浸透道を介してプリフォーム本体に非加圧で、Al合金をそれぞれ浸透させた。その結果、いずれの実施例の場合も、実施例1と同様に、Al合金が50mmの高さまで完全に浸透している複合体(MMC)が得られた。また、嵩比重の計算結果から、いずれの実施例の場合も、SiCが60v%、Al合金が40v%の複合体(MMC)が得られたことを確認した。
[実施例6]
 実施例1で用いたと同じように、セラミックス粉末に、平均粒子径が50μmのSiC粉末を4000gと、平均粒子径が14μmのSiC粉末を1200g用い、平均粒子径が75μmのMg粉末を、セラミックス粉末に対して1w%になる量で含まれるよう52g加えて、Mg粉末とSiC粉末とを含んでなる混合物とした。該混合物に、有機無機バインダーとして、エチルシリケートSi(OC254のオリゴマー(SiO2換算40w%含有)を用い、この有機無機バインダーが、上記セラミックス粉末に対して、SiO2として2w%配合されるように260g加えた。そして、更に、イソプロピルアルコール(IPA)1200gを加えて、実施例1で行ったと同様の方法で、ボールミルで均一に混合してスラリーを作製した。
 上記で得たスラリーを用い、実施例1と同じ操作で、乾燥、解砕(粉砕)して、プレス成型用の粉体原料を作製した。そして、得られたプレス成型用の粉体原料を用い、実施例1で行ったと同様にプレス成型して、100mm×100mm×50mmの形状の混合体を作製した。得られた混合体を空気雰囲気の電気炉に入れ、430℃で焼成してプリフォームを作製した。得られたプリフォームを用い、実施例1と同様の操作及び条件で、アルミ合金のAC3Aをプリフォームに非加圧で浸透させて複合体を得た。得られた複合体は、嵩比重の計算結果から、SiCが64v%、AC3Aが36%のMMCであることを確認した。
[比較例1]
 プレス成型用の粉体原料を作製する際に、Mg粉末を添加しないかったこと以外は実施例1で行ったと同じにして、プリフォームを作製した。そして、得られたプリフォームを用いて実施例1で行ったと同じ手順で、Al合金のAC3Aを用いて非加圧でAl合金を浸透させることを行った。その結果、プリフォームにAl合金が含浸しなかった。
[比較例2]
 プレス成型用の粉体原料を作製する際に、Mg粉末を添加しないかったこと以外は実施例1で行ったと同じにして、100mm×100mm×50mmのプリフォームを作製した。そして、下記のようにしてAl合金のAC3Aを用いて、非加圧で、上記で得たプリフォームにAl合金を浸透させた。具体的には、プリフォームを図1のようにして容器3内に設置する際に、プリフォームの下部及び周りにMg粉末5gを置いたこと(不図示)以外は実施例1同じ方法で、プリフォームにAl合金の浸透を行った。上記した方法は、従来より行われており、ランクサイド法と呼ばれている。
 上記の浸透工程の後に、プリフォームの状態を観察した。その結果、厚み50mmのプリフォームのうち、約8mm(16%)のところまで下部からAl合金が浸透していたが、全体には含浸していなかった。また、プリフォームの周りにAl合金が取り囲んだ状態になっており、ニアネットではなかった。
[比較例3]
 比較例2と同様にランクサイド法を用いて、プリフォームにAl合金を浸透させた。具体的には、比較例2と同様にして得たMg粉末を添加しないプリフォームを用い、該プリフォームを図1のようにして容器3内に設置する際に、プリフォームの下にMgを5%混合したSiC粉末を100g敷き、その他は実施例1と同じ方法で、プリフォームにAl合金の浸透を行った。
 上記の浸透工程の後、プリフォームの状態を顕微鏡観察した。その結果、厚み50mmのプリフォームのうち、約10mm(20%)程のところまで下部からAl合金が浸透していたが、全体には隙間含浸していなかった。また、プリフォームの周りにAl合金が取り囲んだ状態になっており、ニアネットのMMCは得られなかった。
[比較例4、5]
 本比較例では、実施例1と同じ方法で得たプレス成型用の粉体原料を用い、実施例1で行ったと同様にして、100mm×100mm×50mmの混合体を得、得られた混合体を空気雰囲気の電気炉に入れて、60℃で8時間乾燥した後、焼成してプリフォームを調製した。その際に、実施例1で行ったプリフォームを調製する際の焼成温度を、比較例4では550℃とし、比較例5では600℃として、いずれの例も、本発明で規定するよりも高い温度で焼成した。上記のようにして、焼成温度をそれぞれに変えて得たプリフォームを用い、それ以外は、実施例1で行ったと同じ方法で、それぞれのプリフォームにAl合金のAC3Aを浸透させた。
 上記浸透工程の後に、それぞれに使用したプリフォームの状態を観察した。その結果、いずれの例のプリフォームの場合も、Al合金が全く隙間に浸透していなかった。本発明者らは、この点について、特に、プリフォームの作製の際の焼成を500℃超の温度で行うと、混合体中に含有されていたMgが酸化されてしまい、プリフォーム中にMgが存在することで得られる浸透(含浸)促進の効果が損なわれたことによると考えている。
[比較例6]
 プレス成型用の粉体原料を作製する際に用いるバインダーとして、シリコーン樹脂に替えてアルコール系コロイダルシリカ(5mμ)を用い、セラミックス粉末に対して5%の濃度となるように添加混合したこと以外は実施例1と同様の方法で、プレフォームを作製することを試みた。具体的には、バインダーにコロイダルシリカを用いたこと以外は実施例1と同様の配合の混合物を用い、該混合物をプレス成型して混合体を得、得られた混合体を500℃で焼成した。しかし、500℃の温度では硬化せず、非加圧浸透法に利用できるプリフォームを作製することができなかった。
[比較例7]
 比較例6で得た、バインダーにコロイダルシリカを用いた混合体を用い、焼成温度を変えて1000℃で焼成を行ったところ硬化し、プリフォームを作製することができた。しかし、得られたプリフォームを用いて、実施例1で行ったと同様に、Al合金のAC3Aを用いて非加圧でAl合金の溶湯を浸透させることを試みたが、Al合金は全く浸透しなかった。これは、1000℃で焼成した際に、混合体中のMgが完全に酸化されてしまい、プリフォーム内にMgが存在しなくなったためと考えられる。
Figure JPOXMLDOC01-appb-I000001
符号の簡単な説明
 1:プリフォームまたはプリフォーム本体
 2:浸透道
 3:カーボン製等の容器
 4:Al合金等
 5:複合体(MMC)(Al合金等が含浸し複合化したプリフォーム)

 

Claims (5)

  1.  マグネシウム含有粉末とセラミックス粉末とを含み、更に、500℃以下の加熱で硬化する、無機バインダーまたは有機無機バインダーのいずれかのバインダーを含む混合物に、更に、有機溶媒、或いは、有機溶媒100質量部に対して水が100質量部以下の混合溶媒を加えた混合物を用いて成型して混合体を得、該混合体を500℃以下の温度で焼成してプリフォームを作製し、得られたプリフォームに、金属アルミニュウムまたはアルミニュウム合金を窒素雰囲気で非加圧浸透させて、アルミニュウムとセラミックスとを含有してなる金属基複合材料を製造することを特徴とする複合材料の製造方法。
  2.  前記マグネシウム含有粉末が、金属マグネシウム、マグネシウム合金及びマグネシウムケイ化物からなる群から選ばれる少なくともいずれかの、平均粒子径が0.5μm以上、150μm以下の粉末である請求項1に記載の複合材料の製造方法。
  3.  前記混合物に、前記マグネシウム含有粉末を、前記セラミックス粉末100質量部に対して、マグネシウム換算で、質量基準で、0.3%以上、10%以下となる範囲内で含有させる請求項1または2に記載の複合材料の製造方法。
  4.  前記無機バインダーが水ガラスであり、前記有機無機バインダーが、シリコーン樹脂、Siアルコキシド及びAlアルコキシドからなる群から選ばれるいずれかである請求項1~3のいずれか1項に記載の複合材料の製造方法。
  5.  非加圧浸透法を利用してのアルミニュウム系の金属基複合材料の製造に適用できるセラミックス製のプリフォームを作製するためのプリフォームの作製方法であって、
     マグネシウム含有粉末とセラミックス粉末とを含み、更に、500℃以下の加熱で硬化する、無機バインダーまたは有機無機バインダーのいずれかのバインダーを含む混合物に、更に、有機溶媒、或いは、有機溶媒100質量部に対して水が100質量部以下の混合溶媒を加えた混合物を用いて成型して混合体を得、得られた混合体を500℃以下の温度で焼成してプリフォームを得ることを特徴とするプリフォームの作製方法。

     
PCT/JP2022/004952 2021-04-19 2022-02-08 金属基複合材料の製造方法及びプリフォームの作製方法 WO2022224549A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280004792.2A CN115917022A (zh) 2021-04-19 2022-02-08 金属基复合材料的制造方法及预制件的制作方法
US18/000,485 US20230234894A1 (en) 2021-04-19 2022-02-08 Method for producing metal matrix composite and method for preparing preform
EP22791332.4A EP4130307A4 (en) 2021-04-19 2022-02-08 METHOD FOR PRODUCING METAL MATRIX COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING PREFORM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-070609 2021-04-19
JP2021070609A JP6984926B1 (ja) 2021-04-19 2021-04-19 金属基複合材料の製造方法及びプリフォームの作製方法

Publications (1)

Publication Number Publication Date
WO2022224549A1 true WO2022224549A1 (ja) 2022-10-27

Family

ID=79193394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004952 WO2022224549A1 (ja) 2021-04-19 2022-02-08 金属基複合材料の製造方法及びプリフォームの作製方法

Country Status (5)

Country Link
US (1) US20230234894A1 (ja)
EP (1) EP4130307A4 (ja)
JP (1) JP6984926B1 (ja)
CN (1) CN115917022A (ja)
WO (1) WO2022224549A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641901B2 (ja) 1987-05-13 1997-08-20 ランキサイド テクノロジー カンパニー エル ピー 金属マトリックス複合材料の製造方法
JP2930991B2 (ja) 1988-11-10 1999-08-09 ランキサイド テクノロジー カンパニー,リミティド パートナーシップ 金属マトリックス複合体を形成するインベストメント鋳造法
JPH11241130A (ja) * 1998-02-26 1999-09-07 Taiheiyo Cement Corp 金属−セラミックス複合材料の製造方法
JPH11264032A (ja) * 1998-03-16 1999-09-28 Taiheiyo Cement Corp 鋳造用金属−セラミックス複合材料の製造方法
JP2002194456A (ja) * 2000-12-20 2002-07-10 Taiheiyo Cement Corp 大型肉厚の金属−セラミックス複合材料の製造方法
JP2010258458A (ja) * 2010-04-26 2010-11-11 Dowa Holdings Co Ltd セラミックス絶縁基板一体型金属−セラミックス複合体放熱板及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641817A (en) * 1993-04-30 1997-06-24 Lanxide Technology Company, Lp Methods for fabricating shapes by use of organometallic, ceramic precursor binders
WO1999032680A2 (en) * 1997-12-19 1999-07-01 Lanxide Technology Company, Lp Preparation of a metal matrix composite body by a spontaneous infiltration process
CA2364391A1 (en) * 1999-12-21 2001-06-28 Toshiaki Kimura Method for producing metal-based composite material
CN1242080C (zh) * 2003-12-05 2006-02-15 浙江大学 无压渗透制备纳米碳管增强铝基复合材料的方法
CN108165836B (zh) * 2018-01-10 2019-09-27 昆明理工大学 一种SiC颗粒增强铝基复合材料的制备方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641901B2 (ja) 1987-05-13 1997-08-20 ランキサイド テクノロジー カンパニー エル ピー 金属マトリックス複合材料の製造方法
JP2930991B2 (ja) 1988-11-10 1999-08-09 ランキサイド テクノロジー カンパニー,リミティド パートナーシップ 金属マトリックス複合体を形成するインベストメント鋳造法
JPH11241130A (ja) * 1998-02-26 1999-09-07 Taiheiyo Cement Corp 金属−セラミックス複合材料の製造方法
JPH11264032A (ja) * 1998-03-16 1999-09-28 Taiheiyo Cement Corp 鋳造用金属−セラミックス複合材料の製造方法
JP2002194456A (ja) * 2000-12-20 2002-07-10 Taiheiyo Cement Corp 大型肉厚の金属−セラミックス複合材料の製造方法
JP2010258458A (ja) * 2010-04-26 2010-11-11 Dowa Holdings Co Ltd セラミックス絶縁基板一体型金属−セラミックス複合体放熱板及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130307A4

Also Published As

Publication number Publication date
JP2022165294A (ja) 2022-10-31
EP4130307A4 (en) 2024-04-03
US20230234894A1 (en) 2023-07-27
CN115917022A (zh) 2023-04-04
JP6984926B1 (ja) 2021-12-22
EP4130307A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
US6228293B1 (en) Process for producing a body having a porous matrix from at least one recrystallized material
JP4762392B2 (ja) ガスタービン用途の鋳造に用いる性能の優れたコア組成物および物品
JP4261130B2 (ja) シリコン/炭化ケイ素複合材料
JPH05105521A (ja) 炭素繊維強化窒化珪素質ナノ複合材及びその製造方法
JP5340864B2 (ja) SiC/Al系複合材料及びその製法
JP6837685B2 (ja) アルミニウム合金基複合材料の製造方法
WO2022224549A1 (ja) 金属基複合材料の製造方法及びプリフォームの作製方法
CN111868008B (zh) 以碳化硅制作具有受控孔隙率的多孔预成型件的方法以及碳化硅多孔预成型件
JP4907777B2 (ja) 金属−セラミックス複合材料
JP4612608B2 (ja) シリコン/炭化ケイ素複合材料の製造方法
JP2002249832A (ja) 金属−セラミックス複合材料およびその製造方法
JPH11172348A (ja) 金属−セラミックス複合材料及びその製造方法
JP7382105B1 (ja) 高強度金属基複合体及び高強度金属基複合体の製造方法
GB2394221A (en) Impregnating the surface of a freeze-cast ceramic
JPH11157965A (ja) 金属−セラミックス複合材料及びその製造方法
JP6452969B2 (ja) アルミニウム−炭化珪素質複合体及びその製造方法
WO2023286407A1 (ja) 高金属粉末含有アルミニュウム複合体の製造方法、プリフォームの作製方法及び高金属粉末含有アルミニュウム複合体
JPH1180860A (ja) 金属−セラミックス複合材料の製造方法
JP2012144389A (ja) SiC/Si複合材料
JP2002194456A (ja) 大型肉厚の金属−セラミックス複合材料の製造方法
JP4167318B2 (ja) 金属−セラミックス複合材料の製造方法
JPH10140263A (ja) 金属−セラミックス複合材料の製造方法
JP2007055897A (ja) シリコン/炭化ケイ素複合材料
JPH10280067A (ja) 複合材料の製造方法
JP2747630B2 (ja) 繊維強化セラミック成形体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022791332

Country of ref document: EP

Effective date: 20221104

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE