WO2022222790A1 - 摄像头结构及电子设备 - Google Patents

摄像头结构及电子设备 Download PDF

Info

Publication number
WO2022222790A1
WO2022222790A1 PCT/CN2022/086344 CN2022086344W WO2022222790A1 WO 2022222790 A1 WO2022222790 A1 WO 2022222790A1 CN 2022086344 W CN2022086344 W CN 2022086344W WO 2022222790 A1 WO2022222790 A1 WO 2022222790A1
Authority
WO
WIPO (PCT)
Prior art keywords
pan
tilt
axis
circuit board
bracket
Prior art date
Application number
PCT/CN2022/086344
Other languages
English (en)
French (fr)
Inventor
杨泽
张州辰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022222790A1 publication Critical patent/WO2022222790A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation

Definitions

  • the application belongs to the technical field of camera pan-tilts, and in particular relates to a camera structure and an electronic device.
  • micro-cloud platform on electronic equipment has greatly improved the experience of consumers when taking pictures by hand;
  • hand shake can be decomposed into three directions of space X, Y, and Z, with a total of 6 degrees of freedom (movement along the three axes of X/Y/Z and rotation around the three axes of X/Y/Z: Rx, Ry, Rz).
  • the jitter in the other 5 degrees of freedom has a great impact on handheld photography, especially when shooting at night and video, and ultimately affects the imaging effect and consumer experience.
  • the micro-gimbal camera used by the device is a two-axis gimbal, which can only prevent the jitter of 4 degrees of freedom, but cannot prevent the jitter (Rz) of rotation along the Z axis, so when there is jitter in the Rz direction, the The image quality of the PTZ camera is poor.
  • the purpose of the embodiments of the present application is to provide a camera structure and an electronic device, which can solve the problem of poor anti-shake effect of the micro-cloud-tilt camera in the related art.
  • an embodiment of the present application provides a camera structure, including: a universal shaft and a pan-tilt outer bracket, the pan-tilt outer bracket includes a first accommodating space and a second accommodating space, the first accommodating space and The second accommodating spaces are juxtaposed and communicated with each other, and the camera structure further includes: a pan-tilt inner bracket, a pan-tilt carrier and a camera assembly accommodated in the first accommodating space, and accommodated in the second accommodating space the first driving mechanism, the second driving mechanism and the first flexible circuit board;
  • the first flexible circuit board forms a bent elastic structure
  • the camera assembly is elastically connected to the outer bracket of the gimbal through the first flexible circuit board, and the camera assembly is fixedly connected to the gimbal carrier ;
  • the two supporting parts of the universal shaft axially distributed along the first shaft are respectively hinged with the outer bracket of the pan/tilt head, and the two supporting parts of the universal shaft axially distributed along the second shaft are respectively connected to the pan/tilt head an inner frame hinged, wherein the first axis intersects the second axis;
  • the first driving mechanism is respectively connected with the outer bracket of the pan-tilt and the inner bracket of the pan-tilt, so as to drive the inner bracket of the pan-tilt to rotate relative to the outer bracket of the pan-tilt along the first axis and/or along the first axis.
  • the second axis rotates;
  • pan-tilt carrier is slidably connected to the bottom of the pan-tilt inner bracket
  • the second driving mechanism is respectively connected with the pan-tilt inner bracket and the pan-tilt carrier to drive the pan-tilt carrier to rotate relative to the pan-tilt inner bracket along a third axis, wherein the third axis is respectively Perpendicular to the first axis and the second axis.
  • the first driving mechanism includes: a first annular yoke, a first driving coil group and a first magnet group;
  • the first driving coil group and the first magnet group are respectively located between the outer side wall of the first annular magnetic yoke and the inner side wall of the second receiving space, and the first driving coil group is fixed to the the outer bracket of the gimbal, the first annular magnetic yoke is fixed on the inner bracket of the gimbal, the first magnet group is fixed on the outer circumference of the first annular magnetic yoke, and the first magnet group is connected to the
  • the first drive coil set is adapted and set;
  • the coils in the first drive coil group are distributed on opposite sides of the first annular yoke along a first direction, the first direction is perpendicular to the third axis, and the first drive coil group
  • the coils in are distributed on opposite sides of the symmetry axis of the support in the pan-tilt head, and the symmetry axis is in the same direction as the direction from the first accommodation space to the second accommodation space;
  • the first driving coil group when the first driving coil group is supplied with current, an interaction force is generated between the first driving coil group and the first magnet group, and the first magnet group is based on the interaction
  • the force drives the pan/tilt inner support to rotate relative to the pan/tilt outer support along the first axis and/or along the second axis.
  • the camera structure further includes:
  • a first position feedback element group for detecting the rotation amount of the inner support of the gimbal relative to the outer support of the gimbal along the first axis and/or along the second axis, the first position feedback element group It is arranged within the magnetic field range of the first magnet group and the first driving coil group.
  • the second driving mechanism includes: a second annular yoke, a second driving coil group and a second magnet group;
  • the second driving coil group and the second magnet group are respectively located between the outer side wall of the second annular yoke and the inner side wall of the second receiving space, and the second driving coil group is fixed to the the pan/tilt carrier, the second annular magnetic yoke is fixed on the inner bracket of the pan/tilt, and the second magnet group is fixed on the outer circumference of the second annular magnetic yoke, and the second magnet group is
  • the second drive coil set is adapted and set;
  • the coils in the second driving coil group are distributed at intervals along a first direction, the first direction is perpendicular to the third axis, and the coils in the second driving coil group are distributed in the symmetry of the pan/tilt carrier.
  • the symmetry axis is in the same direction as the direction from the first receiving space to the second receiving space;
  • the camera structure further includes:
  • the second position feedback element group is used to detect the rotation amount of the pan/tilt carrier relative to the pan/tilt inner bracket along the third axis, and the second position feedback element group is arranged between the second magnet group and the within the magnetic field range of the second drive coil group.
  • first through holes are respectively opened on the support parts, and the axial direction of the first through holes is perpendicular to the third axis;
  • the camera structure further includes: an adapter structure, the adapter structure includes a clamping part and a first ball;
  • the first ball is inserted through the first through hole and sandwiched between two side walls of the clamping portion;
  • clamping portion is used for fixed connection with the outer bracket of the pan/tilt or the inner bracket of the pan/tilt.
  • the transfer structure further includes: a guide plate, the guide plate is fixedly connected to the first side wall of the clamping portion, and extends in a direction close to the second side wall of the clamping portion, The first side wall of the clamping portion and the second side wall of the clamping portion are opposite side walls of the clamping portion;
  • the transfer structure further includes: a limiting plate, the limiting plate is fixed on the bottom of the groove of the clamping portion, so as to limit the rotation of the supporting portion when the supporting portion rotates relative to the clamping portion The angle is smaller than the preset angle.
  • the outer bracket of the gimbal and the inner bracket of the gimbal are provided with a card slot matching the clamping part, and the clamping part is clamped in the card slot, so that the support The part is hinged with the outer bracket of the pan/tilt or the inner bracket of the pan/tilt.
  • the first flexible circuit board is respectively bent and extended in at least two different directions to form an elastic structure.
  • the first flexible circuit board includes: an elastic structure circuit board, a first bridge circuit board and a second bridge circuit board;
  • the elastic structure circuit board is connected to the circuit board of the camera assembly through the first bridge circuit board, and the elastic structure circuit board is connected by the side of the first bridge circuit board facing the second receiving space Bending and extending to form an elastic structure including at least two layers of sub-circuit boards arranged in layers, and there is a gap between any two layers of sub-circuit boards, and the elastic structure circuit board can elastically deform;
  • the elastic structure circuit board is fixed to the outer bracket of the pan/tilt through the second bridge circuit board.
  • At least two first arc-shaped baffles are disposed at the bottom of the inner support of the pan/tilt head, and the ring where the at least two first arc-shaped baffles are located is coaxial with the third axis;
  • At least two second arc-shaped baffles corresponding to the at least two first arc-shaped baffles one-to-one are arranged on the pan-tilt carrier, one of the first arc-shaped baffles and one of the second arc-shaped baffles
  • the baffle is an arc baffle group
  • the camera structure further includes: a second ball
  • the second ball is clamped in any one of the arc baffle groups.
  • the camera structure further includes: a rolling support frame;
  • the rolling support frame is fixed on the inner bracket of the pan-tilt head, and abuts with the side of the pan-tilt carrier that faces away from the inner bracket of the pan-tilt head, so as to limit the movement of the pan-tilt carrier along the third axis. direction move.
  • an embodiment of the present application provides an electronic device, where the electronic device includes the camera structure described in the first aspect.
  • the gimbal outer bracket includes two side-by-side first accommodation spaces and a second accommodation space, and the gimbal inner bracket, the gimbal carrier and the camera assembly are accommodated in the first accommodation space, and the A driving mechanism, a second driving mechanism and a first flexible circuit board are accommodated in the second accommodating space; the camera assembly is elastically connected to the outer bracket of the pan/tilt through the first flexible circuit board having an elastic structure, and all the The camera assembly is fixedly connected with the pan/tilt carrier.
  • the camera module can be rotated along the first axis, the second axis and the third axis respectively relative to the outer bracket of the gimbal, so as to improve the degree of freedom of the camera module, thereby improving the anti-shake effect of the camera; at the same time, it can also reduce the
  • the thickness of the camera structure in the Z-axis direction is convenient for being installed in an electronic device with a thinner thickness, which is beneficial to the development trend of light and thin electronic devices.
  • FIG. 1 is a side view of a camera structure provided by an embodiment of the present application.
  • FIG. 2 is a disassembled diagram of a camera structure provided by an embodiment of the present application.
  • 3a is a top view of a camera structure provided by an embodiment of the present application.
  • Figure 3b is a cross-sectional view along the direction A-A in Figure 3a;
  • Figure 3c is a cross-sectional view along the B-B direction in Figure 3a;
  • 3d is a bottom view of a camera structure provided by an embodiment of the present application.
  • Figure 3e is a structural diagram of the outer bracket of the gimbal
  • Figure 4a is a structural diagram of a cardan shaft
  • Fig. 4b is the assembly structure diagram of the cardan shaft and the transfer structure
  • Figure 4c is a side view of the switching structure
  • Figure 4d is a front view of the switching structure
  • Figure 4e is a cross-sectional view along the C-C direction in Figure 4d;
  • Fig. 5 is the assembly structure diagram of the universal shaft, the inner bracket of the pan/tilt head, the transfer structure, the second magnetic yoke, the first magnet group and the second magnet group;
  • Fig. 6a is the assembly drawing of the universal shaft, the outer bracket of the gimbal and the inner bracket of the gimbal;
  • Figure 6b is a disassembled view of the first drive coil group
  • Fig. 7a is the assembly structure diagram of the pan/tilt carrier and the second drive coil group
  • Figure 7b is a bottom view of the bracket in the gimbal
  • Fig. 7c is the assembly structure diagram of the gimbal carrier, the gimbal inner bracket and the gimbal outer bracket;
  • Fig. 7d is the assembly structure diagram of the gimbal carrier and the support in the gimbal;
  • Fig. 7e is the assembly structure diagram of the pan/tilt carrier, the pan/tilt inner bracket and the rotating carrier;
  • FIG. 8 is an assembly structure diagram of the first flexible circuit board and the camera assembly.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • FIG. 1 is a structural diagram of a camera structure provided by an embodiment of the present application
  • FIG. 2 is a disassembled view of a camera structure provided by an embodiment of the present application
  • FIG. 3a is a schematic diagram of the present application A top view of a camera structure provided by the embodiment
  • Fig. 3b is a cross-sectional view along the A-A direction in Fig. 3a
  • Fig. 3c is a cross-sectional view along the B-B direction in Fig. 3a
  • Fig. 3d is a camera structure provided by an embodiment of the application
  • Figure 3e is the structure diagram of the outer bracket of the gimbal.
  • the camera structure provided by the embodiment of the present application includes: a universal shaft 2 and a pan-tilt outer bracket 9 .
  • the pan-tilt outer bracket 9 includes a first accommodation space 906 and a second accommodation space 905 .
  • the first accommodation space 906 and the second accommodation space 905 Side by side and connected to each other, the camera structure further includes: the pan-tilt inner bracket 5 , pan-tilt carrier 10 and camera assembly 20 accommodated in the first accommodating space 906 ; A driving mechanism (not numbered), a second driving mechanism (not numbered) and the first flexible circuit board 23 .
  • the first flexible circuit board 23 forms a bent elastic structure
  • the camera assembly 20 is elastically connected to the gimbal outer bracket 9 through the first flexible circuit board 23
  • the camera assembly 20 is fixedly connected to the gimbal carrier 10 .
  • the two supporting parts 25 of the universal shaft 2 distributed along the axial direction of the first shaft are respectively hinged with the outer bracket 9 of the gimbal, and the two supporting parts 25 of the universal shaft 2 distributed along the axial direction of the second shaft are respectively connected to the inner frame of the gimbal.
  • the bracket 5 is hinged, wherein the first axis intersects the second axis; the first drive mechanism is respectively connected with the outer bracket 9 of the gimbal and the inner bracket 5 of the gimbal to drive the inner bracket 5 of the gimbal relative to the outer bracket of the gimbal 9 Rotation along said first axis and/or rotation along said second axis.
  • pan-tilt carrier 10 is slidably connected with the bottom of the pan-tilt inner bracket 5; the second driving mechanism is respectively connected with the pan-tilt inner bracket 5 and the pan-tilt carrier 10 to drive the pan-tilt carrier 10 relative to the pan-tilt carrier 10.
  • the inner support 5 of the PTZ rotates along a third axis, wherein the third axis is perpendicular to the first axis and the second axis, respectively.
  • the first axis may extend in the same direction as the H line as shown in FIG. 1
  • the second axis may extend in the same direction as the M line as shown in FIG. 1
  • the third axis may be as shown in FIG. Z axis shown in 1.
  • the four support parts 25 of the universal joint shaft 2 may be located on the four corners of the square, respectively. At this time, the first axis and the second axis are perpendicular.
  • the universal joint The structure of the axis 2 can be diversified, and the first axis and the second axis may not be perpendicular to each other, for example, the included angle between the first axis and the second axis is greater than 0° and less than 180°.
  • the above-mentioned driving pan/tilt inner support 5 rotates relative to the pan/tilt outer support 9 along the first axis and/or along the second axis, which can be understood as: driving the pan/tilt inner support 5. It rotates along the X-axis or along the Y-axis relative to the pan-tilt outer bracket 9, wherein the pan-tilt outer bracket 9 can be in a rectangular structure, and the above-mentioned X-axis and Y-axis are respectively perpendicular to the two rectangular sides on the pan-tilt outer bracket 9. parallel.
  • the inner bracket 5 of the gimbal rotates relative to the outer bracket 9 of the gimbal along the first axis, it has rotational components along the X-axis and the Y-axis; During the rotation of the pan/tilt outer bracket 9 along the second axis, it also has rotational components along the X-axis and the Y-axis. At this time, if it is only necessary to drive the inner bracket 5 of the gimbal to rotate relative to the outer bracket 9 of the gimbal along the X axis, then the inner bracket 5 of the gimbal can be rotated along the second axis relative to the outer bracket 9 of the gimbal along the Y axis.
  • the component of the direction and the component along the Y-axis direction during the rotation of the inner bracket 5 of the pan/tilt relative to the outer bracket 9 of the pan/tilt along the second axis cancel each other out, so as to realize the drive of the inner bracket 5 of the pan/tilt relative to the outer bracket 9 of the pan/tilt.
  • the X axis rotates.
  • the above-mentioned camera assembly 20 is fixedly connected to the pan-tilt carrier 10 , which can be understood as: the outer wall of the camera assembly 20 is attached to and fixedly connected to the inner wall of the pan-tilt carrier 10 .
  • the camera structure provided by the above embodiments of the present application may include: a casing 1 , and the casing 1 may include a top casing 1 a and a bottom casing 1 b.
  • the bottom case 1b is recessed in a direction away from the top case 1a to form a receiving space between the top case 1a and the bottom case 1b, and the universal shaft 2, the outer bracket 9 of the pan/tilt and the outer bracket 9 are accommodated in the outer bracket 9 of the pan/tilt head.
  • the PTZ inner bracket 5 , the PTZ carrier 10 , the first driving mechanism 1 , the second driving mechanism 1 , the camera assembly 20 and the first flexible circuit board 23 can all be accommodated in the accommodation space of the housing 1 .
  • the top shell 1a, the universal shaft 2, the outer bracket 9 of the pan/tilt, the inner bracket 5 of the pan/tilt, and the pan/tilt carrier 10 are all provided with light-passing holes, so that the lowermost camera assembly 20 can collect image information through the light-passing holes , and even the head of the camera assembly 20 (ie, the top along the Z axis in FIG. 1 ) is exposed to the top case 1a through the light-passing hole.
  • the camera structure provided by the embodiment of the present application can be enclosed by the casing 1 to form an integral structure, and the camera assembly 20 and the first flexible circuit board 23 and the like inside the casing 1 can also be protected.
  • first flexible circuit board 23 constitutes a bending elastic structure, and the first flexible circuit board 23 may be bent and extended in at least two different directions respectively to constitute a three-dimensional elastic structure.
  • first end and the end of the first flexible circuit board 23 can be respectively connected to the gimbal outer bracket 9 and the camera assembly 20.
  • first flexible circuit board 23 is bent and extended in at least two different directions, when the camera assembly When the 20 is displaced or rotated in multiple directions relative to the outer bracket 9 of the gimbal, the first flexible circuit board 23 can be deformed in multiple directions, thereby reducing the displacement of the camera assembly 20 relative to the outer bracket 9 of the gimbal in multiple directions or resistance to rotation.
  • the above-mentioned first driving mechanism and the second driving mechanism may be a motor driving mechanism, an electromagnetic driving mechanism, etc., respectively.
  • the first driving mechanism and the second driving mechanism are electromagnetic driving mechanisms.
  • a mechanism is used as an example for description, and no specific limitation is construed here.
  • Rx, Ry, and Rz represent directions of rotation along the X-axis, the Y-axis, and the Z-axis, respectively.
  • the gimbal carrier 10 is independently driven to rotate along the Rz axis by the second driving mechanism, so as to realize the anti-shake of the Rz-axis, so that the anti-shake system of the Rz-axis is independent from the anti-shake systems of Rx and Ry , in this way, when the Rx and Ry axes perform the anti-shake function, the position feedback system of Rz is not affected, thereby effectively improving the anti-shake accuracy of the Rz axis, and then more effectively improving the night shooting and video shooting. quality, and further enhance the consumer experience.
  • the two support parts 25 of the universal joint shaft 2 distributed along the axial direction of the first axis are respectively hinged with the outer bracket 9 of the pan/tilt head, and the two support parts 25 of the universal joint shaft 2 distributed along the axial direction of the second axis are respectively connected to the pan/tilt head
  • the articulation of the inner bracket 5 can be understood as: the two supporting parts 25 of the universal joint shaft 2 axially distributed along the first axis constitute the first rotation axis, so that when the two supporting parts 25 are hinged on the outer bracket 9 of the pan/tilt head , the universal shaft 2 can be rotated along the first rotation axis relative to the outer bracket 9 of the pan/tilt head; and the two supporting parts 25 of the universal shaft 2 axially distributed along the second axis constitute the second rotation axis, so that when these two When the supporting parts 25 are hinged on the inner bracket 5 of the gimbal, the universal shaft 2 can rotate relative to the inner bracket 5 of the gimbal along the second rotation
  • the rotation amount on the first rotation axis and the second rotation axis can be decomposed into the rotation amount along the X axis and the Y axis in Fig. 1, that is, the Rx and Ry axes rotation in the direction.
  • the camera assembly 20 can be rotated along the RZ axis direction relative to the inner bracket 5 of the PTZ through the PTZ carrier 10 . Therefore, the rotation of the camera assembly 20 in the directions of the Rx, Ry and Rz axes, respectively, is achieved.
  • the shaking parameters such as the shaking direction and shaking distance of the camera can be obtained, and accordingly, the camera structure provided in the embodiment of the present application can be controlled to rotate correspondingly in the directions of Rx, Ry, and Rz, so as to realize the rotation along the Rx, Ry directions. And anti-shake in the Rz axis direction.
  • first accommodation space 906 and the second accommodation space 905 are arranged side by side, and the head of the camera assembly 20 can protrude out of the outer bracket 9 through the light hole on the upper side of the outer bracket 9, that is, Said, the first drive mechanism and the second drive mechanism can be aligned with the rear of the camera assembly 20 (ie, below the Z axis in FIG.
  • the electromagnetic drive modules in the first drive mechanism and the second drive mechanism can be Set it to an area away from the head of the gimbal to allow more non-magnetic areas on the head of the gimbal, so that the camera module on the gimbal can choose more types of drive motors, such as: optional optical anti-magnetic Shake (Optical Image Stabilization, OIS) camera module.
  • OIS optical Image Stabilization
  • the camera structure provided in the embodiments of the present application can be combined with the anti-shake functions along the Rx, Ry, and Rz directions to construct a 5-axis anti-shake camera system (that is, along the X, Y, Rx, Ry, and Rz directions, respectively).
  • Anti-shake can drive the camera system respectively to compensate or combine the 5 degrees of freedom jitter, to avoid the influence of time difference and the inability to switch the compensation state in the composite motion compensation, so that the picture and video quality can be better. , in particular, it can more effectively improve the picture quality of the camera in the case of hand shaking during night shooting, and improve the overall consumer experience.
  • the first driving mechanism includes: a first annular magnetic yoke 22 , a first driving coil group 7 and a first magnet group 21 ;
  • the first driving coil group 7 and the first magnet group 21 are respectively located between the outer side wall of the first annular yoke 22 and the inner side wall of the second receiving space 905, and the first driving coil group 7 is fixed to the outer bracket 9 of the pan/tilt head,
  • the first annular magnetic yoke 22 is fixed to the inner bracket 5 of the pan/tilt head, the first magnet group 21 is fixed to the outer periphery of the first annular magnetic yoke 22, and the first magnet group 21 is adapted to the first driving coil group 7;
  • the coils in the first driving coil group 7 are distributed on opposite sides of the first annular yoke 22 along the first direction, the first direction is perpendicular to the third axis, and the coils in the first driving coil group 7 are distributed on the pan/tilt head
  • the opposite sides of the axis of symmetry of the inner bracket 6, the axis of symmetry is in the same direction as the direction from the first accommodation space 906 to the second accommodation space 905;
  • the first driving coil group 7 passes current, an interaction force is generated between the first driving coil group 7 and the first magnet group 21, and the first magnet group 21 drives the pan/tilt based on the interaction force
  • the inner bracket 5 rotates along the first axis and/or along the second axis relative to the outer bracket 9 of the pan/tilt head.
  • the above-mentioned first direction may be in the same direction as the Y axis as shown in FIG. It can act on the first magnet group 21, and a magnetic circuit is generated between the first annular yoke 22 and the first magnet group 21, or the magnets in the first magnet group 21 correspond to the coils in the first driving coil group 7 one-to-one set, and the magnets and coils corresponding to each other are set facing each other.
  • a current whose magnitude and direction are respectively controllable can be passed into the first driving coil group 7 , so that the first magnet group 21 fixed on the first annular magnetic yoke 22 and the first magnet group 21 fixed on the outer bracket 9 of the pan/tilt head can be connected to each other.
  • a direction-controllable and size-controllable interaction force is generated between the first driving coil group 7, which can then drive the first annular magnetic yoke 22 (the first magnet group 21) to generate a direction-controllable Rx relative to the gimbal outer bracket 9 , Ry axis rotational motion, and then can directly drive the gimbal inner bracket 5 (camera assembly 20 ) to generate Rx, Ry axis rotational motion for Rx, Ry axis anti-shake.
  • the first magnet group 21 may include two first magnets (respectively 21A and 21B), and correspondingly, the first driving coil group 7 may include two first coils ( 7A and 7B respectively), then the first coil 7A is disposed opposite to the first magnet 21A, and the first coil 7B is disposed opposite to the first magnet 21B.
  • second through holes 903 may be respectively opened on opposite two side walls of the second receiving space 905 of the outer bracket 9 of the pan/tilt head, so that the coils in the first driving coil group 7 are respectively embedded in the second through holes 903 . inside the through hole 903 , so as to realize the fixed connection between the first driving coil group 7 and the outer bracket 9 of the pan/tilt head.
  • first annular magnetic yoke 22 is fixed to the inner bracket 5 of the pan/tilt head, and the first annular magnetic yoke 22 may be directly or indirectly fixed on the outer wall of the inner bracket 5 of the pan/tilt head 5 facing the second receiving space 905, for example :
  • a rolling support frame 18 fixed on the inner bracket 5 of the pan/tilt head may be provided, so that the first annular magnetic yoke 22 is fixed on the inner bracket 5 of the pan/tilt head through the rolling support frame 18 .
  • the first driving coil group 7 can be connected with the first driving circuit board 6, and the first driving circuit board 6 can be attached to the first driving circuit board 6.
  • the outer side of the outer bracket 9 of the pan/tilt head, and the first driving coil group 7 is installed on the first driving circuit board 6 through the above-mentioned second through hole 903 , so that the first driving coil group 7 can be connected to the first driving coil group 7 through the first driving circuit board 6 .
  • the magnitude and direction of the current flowing into the first driving coil group 7 may be controlled by the controller in the electronic device equipped with the three-axis pan/tilt provided by the embodiment of the present application.
  • the first driving circuit The outer side of the board 6 can also be provided with a first interface 604, so as to realize the data communication connection with the controller in the electronic device through the first interface 604. Specifically, as shown in FIG.
  • the first driving circuit board 6 includes a first driving The sub-circuit board 601, the second driving sub-circuit board 603, the connecting board 602 and the first interface 604, the first interface 604 is connected to the first driving circuit board 603, and the two driving sub-circuit boards 601 and 603 are connected by The boards 602 are connected to each other, and the coil 7A in the first driving coil group 7 is connected to the first driving sub-circuit board 601 , and the coil 7B in the first driving coil group 7 is connected to the second driving sub-circuit board 603 .
  • a first position feedback element group (8A and 8B) can also be assembled on the first driving circuit board 6, so as to pass the first position feedback element group (8A and 8B)
  • the rotation amount of the inner bracket 5 of the gimbal relative to the outer bracket 9 of the gimbal along the Rx axis and the Ry axis direction is detected, so as to facilitate the precise control of the lifting rotation amount.
  • the above-mentioned first position feedback element group 8 can be a Hall element, and it can be arranged within the magnetic field range of the first magnet group 21 and the first driving coil group 7, so as to determine the first position by inducing the change of the magnetic field.
  • the displacement of the magnet group 21 relative to the first driving coil group 7 is used to determine the rotation amount of the inner bracket 5 of the gimbal relative to the outer bracket 9 of the gimbal along the Rx axis and the Ry axis.
  • the above-mentioned first position feedback element group 8 can also be a driving chip, which can not only control the input current of a controllable size and direction to the first driving coil group 7, but also feedback Rx The amount of rotation in the direction of the axis and Ry axis.
  • the second driving mechanism includes: a second annular magnetic yoke (in this embodiment, the second annular magnetic yoke and the first annular magnetic yoke are the same magnetic yoke 22, and for the convenience of description, hereinafter collectively referred to as the first annular magnetic yoke). 22), the second drive coil group 15 and the second magnet group 17;
  • the second driving coil group 15 and the second magnet group 17 are respectively located between the outer side wall of the first annular magnetic yoke 22 and the inner side wall of the second receiving space 905 , and the second driving coil group 15 is fixed to the pan-tilt carrier 10 .
  • a ring-shaped magnetic yoke 22 is fixed to the inner bracket 5 of the pan/tilt head, and the second magnet group 17 is fixed to the outer periphery of the first ring-shaped magnetic yoke 22, and the second magnet group 17 is matched with the second driving coil group 15;
  • the coils in the second driving coil group 15 are distributed at intervals along a first direction, the first direction is perpendicular to the third axis, and the coils in the second driving coil group 15 are distributed on opposite sides of the symmetry axis of the pan-tilt carrier 10 , the symmetry axis is in the same direction as the direction from the first accommodation space 906 to the second accommodation space 905;
  • first annular magnetic yoke and the second annular magnetic yoke are the same magnetic yoke 22
  • the first magnet group 21 and the second magnet group 17 are respectively fixed to the first annular magnetic yoke
  • the number of magnetic yokes in the camera structure provided by the embodiment of the present application can be reduced, so as to reduce its volume and cost.
  • the first annular magnetic yoke and the second annular magnetic yoke may be different magnetic yokes, which are not specifically limited herein.
  • a through hole may be opened on the first annular magnetic yoke 22, so that the buckle structure 502 extending from the outer sidewall of the inner bracket 5 of the pan/tilt head toward the second receiving space is connected to the through hole. hole snap.
  • the pan-tilt carrier 10 is movably connected to the bottom of the pan-tilt inner bracket 5 , so that the second driving coil group 15 fixed to the pan-tilt carrier 10 is located between the outer side wall of the pan-tilt inner bracket 5 and the first annular magnetic yoke 22 , so that when the second driving coil group 15 is supplied with a current whose magnitude and direction can be controlled, the second driving coil group 15 can be connected to the second driving coil group 15 fixed on the first annular yoke 22 and facing the second driving coil group 15 side.
  • An interaction force is generated between the two magnet groups 17 , so that based on the interaction force of the second magnet group 17 , the gimbal carrier 10 is driven to rotate relative to the inner bracket 5 of the gimbal along the third axis.
  • the second driving coil group 15 can be connected with the second driving circuit board 13, and the second driving circuit board 13 can be attached to the
  • the second driving coil group 15 is mounted on the second driving circuit board 13 on the outer side wall of the pan-tilt carrier 10 , and the second driving coil group 15 is connected to the second driving circuit board 13 on the second driving circuit board 13 .
  • the chip 16 is used to control the magnitude and direction of the current input to the second driving coil group 15 through the second driving chip 16 .
  • a second position feedback element group (in this embodiment, the second position feedback element group and the second driving chip 16 are the same element) can also be assembled on the second driving circuit board 13, so as to pass the The second driving chip 16 acquires the rotational amount of the pan/tilt carrier 10 relative to the pan/tilt inner bracket 5 along the third axis, so as to facilitate precise control of the rotational amount of the Rz axis.
  • the above-mentioned second position feedback element group may also be a different component from the second driving chip 16 , for example, the second position feedback element group includes a Hall element, which can be arranged on the second driving coil Within the range of the magnetic field of the group 15 and the second magnet group 17, the displacement of the second driving coil group 15 relative to the second magnetic yoke 22 can be determined by the change of the induced magnetic field, so as to determine the relative position of the gimbal carrier 10 relative to the gimbal inner bracket. 5 The amount of rotation in the direction of the Rz axis.
  • the above-mentioned first position feedback element group 8 may also be a driving chip, which can not only control the input of a current whose magnitude and direction are controllable to the second driving coil group 15, but also feedback The amount of rotation in the Rx and Ry directions.
  • the above-mentioned second driving circuit board 13 may be in a bent structure, so as to be attached to the adjacent two side walls of the pan/tilt carrier 10 (for example, the outer side wall and the bottom wall as shown in FIG. 7a ). )superior.
  • a circuit board reinforcement 12 matching the structure of the second driving circuit board 13 can also be provided, so that the second driving circuit board 13 can be lifted by attaching the second driving circuit board 13 to the circuit board reinforcement 12 structural strength.
  • the second driving mechanism further includes: an inner magnetic yoke 14 ; the inner magnetic yoke 14 is fixed to the pan/tilt carrier 10 and forms a magnetic circuit with the second magnet group 17 .
  • the inner magnetic yoke 14 can be fixed on the side of the second driving circuit board 13 facing away from the second driving coil group 15 , for example, as shown in FIG.
  • the groove 1004 is formed so that the inner magnetic yoke 14 is embedded in the groove 1004 and sandwiched between the pan-tilt carrier 10 and the second driving circuit board 13 .
  • the function of the above-mentioned inner magnetic yoke 14 is to increase the driving force of the second driving mechanism, so as to improve the anti-shake effect of the camera structure provided in the embodiment of the present application along the Rz axis direction.
  • the support portion 25 is respectively provided with first through holes 251, and the axial direction of the first through holes 251 is perpendicular to the third axis;
  • the camera head structure further includes: an adapter structure, and the adapter structure includes a clamping part 3 and a first ball 4;
  • the first ball 4 passes through the first through hole 251 and is sandwiched between two side walls of the clamping portion 3;
  • clamping portion 3 is used for fixed connection with the outer bracket 9 of the pan/tilt or the inner bracket 5 of the pan/tilt.
  • the four corners of the universal shaft 2 respectively extend in the opposite direction of the z-axis, so as to be respectively connected with a transition structure.
  • the first ball 4 can be clamped in the first through hole 251 first, and then inserted into the clamping portion 3 together.
  • the opposite side walls of the clamping portion 3 may be recessed in a direction away from each other, so that when the first ball 4 is clamped in the clamping portion 3 , it can be retained in the clamping portion 3 .
  • the position remains unchanged.
  • ball retaining structures 303 and 307 are respectively provided on the opposite side walls of the clamping portion 3, wherein 307 is located on the opposite side of 303, and the side walls where 303 and 307 are located are elastically connected to facilitate assembly.
  • An opening 306 is provided at the bottom of the first ball 4 and the supporting portion 25 and the clamping portion 3 to reduce the magnitude of the elastic force between the opposite two side walls of the clamping portion 3 .
  • the transition structure further includes: a guide plate 302 , the guide plate 302 is fixedly connected with the first side wall of the clamping part 3 , and faces the first side wall close to the clamping part 3 .
  • the direction of the two side walls extends, and the first side wall of the clamping part 3 and the second side wall of the clamping part 3 are the opposite side walls of the clamping part 3;
  • the transfer structure further includes: a limit plate 304 , the limit plate 304 is fixed on one end of the clamping part 3 away from the universal joint shaft 2 (for example: the bottom of the groove of the clamping part), so as to be opposite to the support part 25 .
  • the rotation angle of the limiting support part 25 is smaller than the preset angle.
  • the first side wall of the clamping portion 3 may be located on the side of the clamping portion 3 away from the center of the universal joint shaft 2 , and the number of the guide plates 302 is two, and the two guide plates 302 are located on the clamping portion 3 3, so as to align the support portion 25 between the two guide plates 302 during the assembly process, so as to play a guiding role.
  • the end of the limiting plate 304 that is not fixed to the clamping portion 3 can be inclined outward, so that when the supporting portion 25 rotates around the first ball 4 by a predetermined angle, the supporting portion 25 abuts against the limiting plate 304 , thereby Further rotation of the support portion 25 is restricted.
  • the outer bracket 9 of the gimbal and the inner bracket 5 of the gimbal are provided with card slots (501, 901) matching the clamping part 3, and the clamping part 3 is clamped on the card. into the grooves ( 501 , 901 ), so that the support portion 25 is hinged with the outer bracket 9 of the gimbal or the inner bracket 5 of the gimbal.
  • the clamping parts 3 corresponding to the two supporting parts 25 located on the first axis of the universal shaft 2 are respectively clamped in the two clamping grooves 901 on the diagonal line of the outer bracket 9 of the pan/tilt head
  • the clamping parts 3 corresponding to the two supporting parts 25 located on the second axis of the universal shaft 2 are respectively clamped in the two clamping grooves 501 on the diagonal line of the bracket 5 in the pan/tilt head.
  • the gimbal outer bracket 9 and the gimbal inner bracket 5 can be lowered in the z-axis direction. Therefore, the overall size of the camera structure provided by the embodiments of the present application is reduced.
  • the first flexible circuit board 23 includes: an elastic structure circuit board 231 , a first bridge circuit board 232 and a second bridge circuit board 233 ;
  • the elastic structure circuit board 231 is connected to the circuit board 201 of the camera assembly 20 through the first bridge circuit board 232 , and the elastic structure circuit board 231 is formed by bending and extending the side of the first bridge circuit board 232 facing the second receiving space 905 . , so as to form an elastic structure including at least two layers of sub-circuit boards arranged in layers, and there is a gap between any two layers of sub-circuit boards, and the elastic structure circuit board 231 can elastically deform;
  • the elastic structure circuit board 231 is fixed to the outer bracket 9 of the gimbal through the second bridge circuit board 233 .
  • the first flexible circuit board 23 communicates with the circuit board at the bottom of the camera assembly 20 to transmit data signals and electrical signals of the camera assembly 20 through the first flexible circuit board 23 , and the first flexible circuit board 23 communicates with the pan/tilt head.
  • the outer bracket 9 is movably connected, so that the first flexible circuit board 23 can rotate with the pan-tilt carrier 10 .
  • the above-mentioned elastic structure circuit board 231 is formed by bending and extending the side of the first bridge circuit board 232 facing the second receiving space 905 . It can be understood that the elastic structure circuit board 231 is formed by the first bridge circuit board 232 facing the One side of the two accommodating spaces 905 is respectively bent in at least two different directions to form a three-dimensional spring structure that can move along the axial directions of the X, Y, and Z axes, and can rotate along the Rx, Ry, and Rz axes, respectively.
  • the first bridge circuit board 232 is connected to the circuit board 201 at the bottom of the camera assembly 20 , and the first bridge circuit board 232 extends toward the second receiving space 905 with a first The sub-circuit board 2321 and the second sub-circuit board 2322, wherein there is a gap between the first sub-circuit board 2321 and the second sub-circuit board 2322, and the first sub-circuit board 2321 and the second sub-circuit board 2322 are respectively along the X-axis
  • the direction and the opposite direction of the X axis are bent back and forth to form the first elastic structure circuit boards (2311 and 2312) stacked in the axial direction of the Z axis, and the first elastic structure circuit boards (2311 and 2312) There is a gap between two adjacent layers of circuit boards.
  • the uppermost circuit board in the two first elastic structure circuit boards (2311 and 2312) is bent back and forth along the Y-axis direction and the opposite direction of the Y-axis respectively to form
  • the second elastic structure circuit boards (2313 and 2314) are stacked in the axial direction of the X axis, and there is a gap between two adjacent layers of circuit boards in the second elastic structure circuit board (2313 and 2314);
  • the rear ends of the second elastic structure circuit boards ( 2313 and 2314 ) are fixed to the outer side of the outer bracket 9 of the gimbal through the second bridge circuit board 233 .
  • the first flexible circuit board 23 is bent and extended in at least two different directions to have multiple degrees of freedom.
  • the camera assembly 20 is connected to the cloud external support 9 through the first flexible circuit board 23 , the first flexible circuit board 23 will not hinder the movement of the camera assembly 20 along the X, Y, and Z axes, and will not hinder the rotational movement of the camera assembly 20 along the Rx, Ry, and Rz axes, so as to elevate the camera assembly 20 flexibility, and at the same time, the camera assembly 20 can be elastically connected to the pan-tilt outer bracket 9 through the first circuit board 23 to maintain the posture of the camera assembly 20 .
  • first flexible circuit board 23 and the circuit board 201 of the camera assembly 20 may be an integral structure, and after the first flexible circuit board 23 is unfolded, it may be located in the same plane.
  • an interface or pad 24 for connecting to an external circuit may also be provided on the second bridge circuit board 233 , wherein, taking the pad as an example, it may be connected to the second bridge circuit board 233 by soldering. And the pad 24 can pass through the through hole on the housing 1 to extend to the outside of the housing 1, so that the first flexible circuit board 23 can be connected to the one equipped with the camera structure provided by the embodiment of the present application through the pad 24. Internal circuit connections of electronic equipment.
  • the first flexible circuit board 23 is bent and extended in at least two different directions to form a three-dimensional spring structure with a high degree of freedom, and the three-dimensional spring structure is arranged in the second receiving space 905 , and the magnetic yokes 22 in the first driving mechanism and the second driving mechanism are arranged to surround the three-dimensional spring structure and are located in the annular magnetic yoke in the second receiving space 905, so that the second receiving space 905 can be efficiently used, and It can be avoided that the first flexible circuit board 23 , the first driving mechanism and the second driving mechanism are arranged in the same longitudinal direction with the camera assembly 20 , the universal shaft 2 , the outer bracket 9 of the gimbal, the inner bracket 5 of the gimbal, and the bearing 10 of the gimbal. In the space, the thickness of the camera structure provided in the embodiment of the present application in the Z-axis direction can be greatly reduced.
  • At least two first arc-shaped baffles 504 are disposed at the bottom of the bracket 5 in the pan-tilt head, and the at least two first arc-shaped baffles 504 are located in a ring with the third axis is coaxial;
  • At least two second arc-shaped baffles 1002 corresponding to at least two first arc-shaped baffles 504 are disposed on the pan-tilt carrier 10 , one first arc-shaped baffle 504 and one second arc-shaped baffle 504 is an arc baffle group;
  • the camera structure further includes: a second ball 11;
  • a second ball 11 is sandwiched in any one of the arc baffle groups.
  • the second ball 11 can only rotate around the Z axis under the limiting action of the arc baffle group, so that when the gimbal carrier is stressed, it can only rotate around the Z axis, thereby improving the anti-shake in the direction of the Rz axis. accuracy of movement.
  • one end of the second arc-shaped baffle 1002 may be provided with a rotation limiting portion 1003 to limit the rotation amount of the gimbal carrier 10 relative to the gimbal inner bracket 5 along the Rz axis direction.
  • the camera structure further includes: a rolling support frame 18;
  • the rolling support frame 18 is fixed to the pan-tilt inner bracket 5 and abuts against the side of the pan-tilt carrier 10 facing away from the pan-tilt inner bracket 5 to restrict the pan-tilt carrier 10 from moving in the direction of the third axis.
  • pan-tilt carrier 10 is sandwiched between the rolling support frame 18 and the pan-tilt inner bracket 5 to limit the pan-tilt inner bracket 5 to drive the camera assembly 20 to move along the Z axis, thereby improving the accuracy of the camera structure Spend.
  • a groove or a through hole may be formed on the bottom surface of the pan/tilt carrier 10 that fits with the rolling support frame 18 , and a second ball 19 is sandwiched in the groove or through hole to reduce rolling.
  • the friction force between the support frame 18 and the pan-tilt carrier 10 increases the sensitivity of the second driving mechanism for driving the pan-tilt carrier 10 .
  • the rolling support frame 18 is an integral structure, which specifically includes: a buckling structure 1801 for buckling with the bracket 5 in the pan/tilt head, a platform 1803 for supporting the second ball 19, and a
  • the mounting plate 1805 for fixing the first magnetic yoke 22 is provided with a third through hole, so that the buckle structure 502 on the inner bracket 5 of the gimbal passes through the third through hole and is respectively connected to the mounting plate 1805 It is fixedly connected with the first annular magnetic yoke 22 .
  • the first annular magnetic yoke 22 can be fixed to the inner bracket 5 of the gimbal by being sandwiched between the inner bracket 5 of the gimbal and the mounting plate 1805 .
  • the second magnet group 15 can be adsorbed on the first annular magnetic yoke 22
  • the magnets in the first magnet group 21 can be distributed and adsorbed on two opposite outer side walls of the first annular magnetic yoke 22 distributed along the X-axis.
  • the camera structure provided by the embodiments of the present application has the following beneficial effects: the camera module can be driven to rotate in the Rx, Ry, and Rz directions, and in addition to preventing the jitter in the Rx, Ry, and Rz directions, it can also be combined with corresponding Algorithm processing to achieve translational shaking along the X-axis and Y-axis, therefore, the anti-shake effect along the 5-axis direction can be achieved in total; set the electromagnetic drive module (the first drive mechanism and the second drive mechanism) to One side of the camera structure leaves more non-magnetic areas on the other three sides of the camera structure, which is convenient for the layout of the multi-axis anti-shake mechanism; the first flexible circuit board 23 is folded along the "S" shape to reduce the circuit The stress of the board in multiple directions; a pan-tilt carrier structure and its driving structure that can rotate in the Rz direction are set in the middle of the camera structure, and the motions of it and Rx and Ry are independent of each other, which can effectively reduce the three-axi
  • Adopting the support structure of the clamping part with double-sided clamping of the first ball 4 can reduce the influence of multi-degree-of-freedom serial motion jitter, thereby reducing the change of the external parameters of the camera, and providing strong support for the multi-camera fusion algorithm.
  • An embodiment of the present application further provides an electronic device, where the electronic device includes any camera structure as shown in FIG. 1 to FIG. 8 .
  • the electronic device in this embodiment of the present application may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • assistant, PDA personal digital assistant
  • the non-mobile electronic device may be a personal computer (personal computer, PC), a television (television, TV), a teller machine or a self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the electronic device provided by the embodiment of the present application includes any camera structure as shown in FIG. 1 to FIG. 8 , and has the same beneficial effects as any of the camera structures shown in FIG. 1 to FIG. 8 . Repeat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开了一种摄像头结构及电子设备,属于摄像头技术领域。摄像头结构包括:万向轴、云台外支架、云台内支架、云台载体、摄像头组件、第一驱动机构、第二驱动机构和第一柔性电路板;第一柔性电路板呈弹性结构,摄像头组件通过第一柔性电路板与云台外支架弹性连接,且摄像头组件与云台载体固定连接;万向轴沿第一轴轴向分布的两个支撑部分别与所述云台外支架铰接,万向轴沿第二轴轴向分布的两个支撑部分别与云台内支架铰接;第一驱动机构用于驱动云台内支架相对云台外支架沿第一轴转动和/或沿第二轴转动;云台载体与云台内支架滑动连接;第二驱动机构用于驱动云台载体相对云台内支架沿第三轴转动。

Description

摄像头结构及电子设备
相关申请的交叉引用
本申请主张在2021年04月19日在中国提交的中国专利申请No.202110417594.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于摄像头云台技术领域,具体涉及一种摄像头结构及电子设备。
背景技术
随着电子设备的不断发展,人们对电子设备的拍照性能的要求越来越高,微云台在电子设备上的应用,很大程度上提升了消费者手持拍照时提升拍照画质的体验;一般手抖可分解到空间X、Y、Z这3个方向上,共6个自由度(沿X/Y/Z三轴的移动和绕X/Y/Z三轴的旋转:Rx、Ry、Rz)。其中,除对焦方向(Z轴)的轴向抖动外,另外5个自由度的抖动均对手持拍照,尤其夜拍和视频拍摄时构成较大影响,最终影响成像效果和消费者体验,目前电子设备(例如:手机)使用的微云台摄像头为两轴云台,只能防止4个自由度的抖动,不能防止沿Z轴旋转的抖动(Rz),从而在有Rz方向的抖动时,微云台摄像头的成像画质较差。
由此可知,相关技术中的微云台摄像头的防抖动效果较差。
发明内容
本申请实施例的目的是提供一种摄像头结构及电子设备,能够解决相关技术中的微云台摄像头存在的防抖动效果较差的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种摄像头结构,包括:万向轴和云台外支架,所述云台外支架包括第一收容空间和第二收容空间,所述第一收容空间与所述第二收容空间并列且相互连通,所述摄像头结构还包括:收容于所述第一收容空间内的云台内支架、云台载体和摄像头组件,以及收容于所 述第二收容空间内的第一驱动机构、第二驱动机构和第一柔性电路板;
所述第一柔性电路板构成弯折状的弹性结构,所述摄像头组件通过所述第一柔性电路板与所述云台外支架弹性连接,且所述摄像头组件与所述云台载体固定连接;
所述万向轴沿第一轴轴向分布的两个支撑部分别与所述云台外支架铰接,所述万向轴沿第二轴轴向分布的两个支撑部分别与所述云台内支架铰接,其中,所述第一轴与所述第二轴相交;
所述第一驱动机构分别与所述云台外支架和所述云台内支架连接,以驱动所述云台内支架相对所述云台外支架沿所述第一轴转动和/或沿所述第二轴转动;
所述云台载体与所述云台内支架的底部滑动连接;
所述第二驱动机构分别与所述云台内支架和所述云台载体连接,以驱动所述云台载体相对所述云台内支架沿第三轴转动,其中,所述第三轴分别与所述第一轴和所述第二轴垂直。
可选的,所述第一驱动机构包括:第一环形磁轭、第一驱动线圈组和第一磁石组;
所述第一驱动线圈组和所述第一磁石组分别位于所述第一环形磁轭的外侧壁与所述第二收容空间的内侧壁之间,且所述第一驱动线圈组固定于所述云台外支架,所述第一环形磁轭固定于所述云台内支架,所述第一磁石组固定于所述第一环形磁轭的外周,且所述第一磁石组与所述第一驱动线圈组适配设置;
所述第一驱动线圈组中的线圈分布于所述第一环形磁轭的沿第一方向的相对两侧,所述第一方向与所述第三轴垂直,且所述第一驱动线圈组中的线圈分布于所述云台内支架的对称轴的相对两侧,所述对称轴与沿所述第一收容空间到所述第二收容空间的方向同向;
其中,在所述第一驱动线圈组通入电流的情况下,在所述第一驱动线圈组与所述第一磁石组之间产生相互作用力,所述第一磁石组基于所述相互作用力驱动所述云台内支架相对所述云台外支架沿所述第一轴转动和/或沿所述第二轴转动。
可选的,所述摄像头结构还包括:
第一位置反馈元件组,用于检测所述云台内支架相对所述云台外支架沿所述第一轴和/或沿所述第二轴的旋转量,所述第一位置反馈元件组设置于所述第一磁石组与所述第一驱动线圈组的磁场范围内。
可选的,所述第二驱动机构包括:第二环形磁轭、第二驱动线圈组和第二磁石组;
所述第二驱动线圈组和所述第二磁石组分别位于所述第二环形磁轭的外侧壁与所述第二收容空间的内侧壁之间,且所述第二驱动线圈组固定于所述云台载体,所述第二环形磁轭固定于所述云台内支架,且所述第二磁石组固定于所述第二环形磁轭的外周,且所述第二磁石组与所述第二驱动线圈组适配设置;
所述第二驱动线圈组中的线圈沿第一方向间隔分布,所述第一方向与所述第三轴垂直,且所述第二驱动线圈组中的线圈分布于所述云台载体的对称轴的相对两侧,所述对称轴与沿所述第一收容空间到所述第二收容空间的方向同向;
其中,在所述第二驱动线圈组通入电流的情况下,在所述第二驱动线圈组与所述第二磁石组之间产生相互作用力,所述第二磁石组基于所述相互作用力驱动所述云台载体相对所述云台内支架沿所述第三轴转动。
可选的,所述摄像头结构还包括:
第二位置反馈元件组,用于检测所述云台载体相对所述云台内支架沿所述第三轴的旋转量,所述第二位置反馈元件组设置于所述第二磁石组与所述第二驱动线圈组的磁场范围内。
可选的,所述支撑部上分别开设有第一通孔,所述第一通孔的轴向与所述第三轴垂直;
所述摄像头结构,还包括:转接结构,所述转接结构包括夹持部和第一滚珠;
所述第一滚珠穿设于所述第一通孔内,且夹设于夹持部的两个侧壁之间;
其中,所述夹持部用于与所述云台外支架或所述云台内支架固定连接。
可选的,所述转接结构还包括:导向板,所述导向板与所述夹持部的第 一侧壁固定连接,并向靠近所述夹持部的第二侧壁的方向延伸,所述夹持部的第一侧壁和所述夹持部的第二侧壁为所述夹持部的相对两侧壁;
和/或,
所述转接结构还包括:限位板,所述限位板固定于所述夹持部的槽底部,以在所述支撑部相对所述夹持部转动时,限制所述支撑部的旋转角度小于预设角度。
可选的,所述云台外支架和所述云台内支架上设置有与所述夹持部匹配的卡槽,所述夹持部卡设于所述卡槽内,以使所述支撑部与所述云台外支架或所述云台内支架铰接。
可选的,所述第一柔性电路板沿至少两个不同的方向分别弯折延伸,以构成弹性结构。
可选的,所述第一柔性电路板包括:弹性结构电路板、第一桥接电路板和第二桥接电路板;
所述弹性结构电路板通过所述第一桥接电路板与所述摄像头组件的电路板连接,且所述弹性结构电路板由所述第一桥接电路板的朝向所述第二收容空间的一侧弯折延伸而形成,以构成包括至少两层层叠设置的子电路板的弹性结构,且任意两层子电路板之间具有间隙,所述弹性结构电路板能够发生弹性形变;
所述弹性结构电路板通过所述第二桥接电路板固定于所述云台外支架。
可选的,所述云台内支架的底部设置有至少两个第一弧形挡板,所述至少两个第一弧形挡板所在的圆环与所述第三轴同轴;
所述云台载体上设置有与所述至少两个第一弧形挡板一一对应的至少两个第二弧形挡板,一个所述第一弧形挡板与一个所述第二弧形挡板为一个弧形挡板组;
所述摄像头结构还包括:第二滚珠;
任一个所述弧形挡板组内均夹设有所述第二滚珠。
可选的,所述摄像头结构还包括:滚动支撑架;
所述滚动支撑架固定于所述云台内支架,并与所述云台载体的背向所述云台内支架的一侧抵接,以限制所述云台载体沿所述第三轴的方向移动。
第二方面,本申请实施例提供了一种电子设备,该电子设备包括如第一方面所述的摄像头结构。
在本申请实施例中,云台外支架包括两个并列设置的第一收容空间和第二收容空间,将云台内支架、云台载体和摄像头组件收容于第一收容空间内,且将第一驱动机构、第二驱动机构和第一柔性电路板收容于所述第二收容空间内;以通过呈弹性结构的第一柔性电路板将摄像头组件与所述云台外支架弹性连接,且所述摄像头组件与所述云台载体固定连接。这样,摄像头模组能够相对云台外支架分别沿第一轴、第二轴和第三轴转动,以提升摄像头模组的自由度,从而提升摄像头的防抖动效果;同时,还可以减小摄像头结构在Z轴方向上的厚度,以便于安装在厚度较薄的电子设备内,从而有利于电子设备的轻薄化发展趋势。
附图说明
图1是本申请实施例提供的一种摄像头结构的侧视图;
图2是本申请实施例提供的一种摄像头结构的拆分图;
图3a是本申请实施例提供的一种摄像头结构的俯视图;
图3b是沿图3a中A-A方向的剖面图;
图3c是沿图3a中B-B方向的剖面图;
图3d是本申请实施例提供的一种摄像头结构的仰视图;
图3e是云台外支架的结构图;
图4a是万向轴的结构图;
图4b是万向轴和转接结构的装配结构图;
图4c是转接结构的侧视图;
图4d是转接结构的主视图;
图4e是沿图4d中C-C方向的剖面图;
图5是万向轴、云台内支架、转接结构、第二磁轭、第一磁石组以及第二磁石组的装配结构图;
图6a是万向轴、云台外支架以及云台内支架的装配图;
图6b是第一驱动线圈组的拆分图;
图7a是云台载体与第二驱动线圈组的装配结构图;
图7b是云台内支架的仰视图;
图7c是云台载体、云台内支架和云台外支架的装配结构图;
图7d是云台载体与云台内支架的装配结构图;
图7e是云台载体、云台内支架和旋转承载架的装配结构图;
图8是第一柔性电路板与摄像头组件的装配结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的摄像头结构和电子设备进行详细地说明。
请参阅图1至图3e,其中,图1是本申请实施例提供的一种摄像头结构的结构图;图2是本申请实施例提供的一种摄像头结构的拆分图;图3a是本申请实施例提供的一种摄像头结构的俯视图;图3b是沿图3a中A-A方向的剖面图;图3c是沿图3a中B-B方向的剖面图;图3d是本申请实施例提供的一种摄像头结构的仰视图;图3e是云台外支架的结构图。本申请实施例提供的摄像头结构包括:万向轴2和云台外支架9,云台外支架9包括第一收容空间906和第二收容空间905,第一收容空间906与第二收容空间905并列 且相互连通,摄像头结构还包括:收容于所述第一收容空间906内的云台内支架5、云台载体10和摄像头组件20,以及收容于所述第二收容空间906内的第一驱动机构(未编号)、第二驱动机构(未编号)和第一柔性电路板23。
其中,第一柔性电路板23构成弯折状的弹性结构,摄像头组件20通过第一柔性电路板23与云台外支架9弹性连接,且摄像头组件20与云台载体10固定连接。
另外,万向轴2沿第一轴轴向分布的两个支撑部25分别与云台外支架9铰接,万向轴2沿第二轴轴向分布的两个支撑部25分别与云台内支架5铰接,其中,所述第一轴与所述第二轴相交;第一驱动机构分别与云台外支架9和云台内支架5连接,以驱动云台内支架5相对云台外支架9沿所述第一轴转动和/或沿所述第二轴转动。
另外,云台载体10与云台内支架5的底部滑动连接;第二驱动机构分别与所述云台内支架5和所述云台载体10连接,以驱动所述云台载体10相对所述云台内支架5沿第三轴转动,其中,所述第三轴分别与所述第一轴和所述第二轴垂直。
在具体实施中,上述第一轴可以与如图1中所示H线同向延伸,上述第二轴可以与如图1中所示M线同向延伸,且上述第三轴可以是如图1中所示Z轴。本实施例中,上述万向轴2的4个支撑部25可以分别位于正方形的4个顶角上,此时,上述第一轴和第二轴垂直,当然,在实际应用中,上述万向轴2的结构可以多样化,且第一轴和第二轴也可以不相互垂直,例如:第一轴和第二轴之间的夹角大于0°且小于180°。
在实施中,如图1所示,上述驱动云台内支架5相对云台外支架9沿所述第一轴转动和/或沿所述第二轴转动,可以理解为:驱动云台内支架5相对云台外支架9沿X轴转动或者沿Y轴转动,其中,云台外支架9可以呈矩形结构,上述X轴和Y轴分别与云台外支架9上相互垂直的两条矩形边平行。
具体的,在云台内支架5相对云台外支架9沿所述第一轴转动的过程中,其具有沿X轴和Y轴方向上的旋转分量;同理,在云台内支架5相对云台外支架9沿所述第二轴转动的过程中,其也具有沿X轴和Y轴方向上的旋转分量。此时,若仅需要驱动云台内支架5相对云台外支架9沿X轴转动,则可 以使云台内支架5相对云台外支架9沿所述第二轴转动的过程中沿Y轴方向的分量,与云台内支架5相对云台外支架9沿所述第二轴转动的过程中沿Y轴方向的分量相互抵消,从而实现驱动云台内支架5相对云台外支架9沿X轴转动。
上述摄像头组件20与云台载体10固定连接,可以理解为:摄像头组件20的外壁与云台载体10的内壁贴合并固定连接。
在实际应用中,如图1和图2所示,上述本申请实施例提供的摄像头结构可以包括:壳体1,该壳体1可以包括顶壳1a和底壳1b。其中,底壳1b向远离顶壳1a的方向凹陷,以在顶壳1a与底壳1b之间形成收容空间,而上述万向轴2、云台外支架9和收容于云台外支架9内的云台内支架5、云台载体10、第一驱动机构1、第二驱动机构1、摄像头组件20以及第一柔性电路板23均可以收容于该壳体1的收容空间内。另外,顶壳1a、万向轴2、云台外支架9、云台内支架5以及云台载体10均开设有通光孔,以使最下方的摄像头组件20通过该通光孔采集图像信息,甚至通过该通光孔使摄像头组件20的头部(即沿图1中Z轴的上方)外露于顶壳1a。
这样,可以通过壳体1将本申请实施例提供的摄像头结构封闭呈整体结构,且通过该壳体1还能够保护其内部的摄像头组件20和第一柔性电路板23等。
另外,上述第一柔性电路板23构成弯折状的弹性结构,可以是第一柔性电路板23沿至少两个不同的方向分别弯折延伸,以构成立体的弹性结构。
其中,第一柔性电路板23的首端和末端可以分别连接云台外支架9和摄像头组件20,这样,鉴于第一柔性电路板23沿至少两个不同的方向分别弯折延伸,当摄像头组件20相对云台外支架9沿多个方向发生位移或者旋转时,第一柔性电路板23能够沿多个方向发生形变,从而减少对摄像头组件20相对云台外支架9沿多个方向发生位移或者旋转的阻力。
在具体实施中,上述第一驱动机构和第二驱动机构,分别可以是电机驱动机构、电磁驱动机构等,为便于说明,以下实施例中仅以第一驱动机构和第二驱动机构是电磁驱动机构为例进行说明,在此不构成具体限定。
另外,图1所示坐标轴中,Rx、Ry和Rz分别表示沿X轴、Y轴和Z轴 旋转的方向。
本申请实施例中,通过第二驱动机构独立的驱动云台载体10沿Rz轴方向旋转,以实现Rz轴防抖,以使Rz轴防抖系统相对于Rx和Ry的防抖系统是独立的,这样,当Rx、Ry轴执行防抖功能时,Rz的位置反馈系统不受影响,从而有效提高Rz轴的防抖精度,进而更有效提升夜拍,视频拍摄时手抖情况下的拍照画质,进一步提升消费者使用体验。
另外,上述万向轴2沿第一轴轴向分布的两个支撑部25分别与云台外支架9铰接,万向轴2沿第二轴轴向分布的两个支撑部25分别与云台内支架5铰接,可以理解为:万向轴2沿第一轴轴向分布的两个支撑部25构成第一旋转轴,这样,当这两个支撑部25铰接于云台外支架9上时,该万向轴2可以相对云台外支架9沿该第一旋转轴转动;且万向轴2沿第而轴轴向分布的两个支撑部25构成第二旋转轴,这样,当这两个支撑部25铰接于云台内支架5上时,该万向轴2可以相对云台内支架5沿该第二旋转轴转动,也就实现了云台内支架5能够相对云台外支架9分别沿第一旋转轴和第二旋转轴转动,该第一旋转轴和第二旋转轴上的转动量可以分解成沿图1中X轴和Y轴方向上的旋转量,即Rx和Ry轴方向上的转动。
在此基础上,摄像头组件20能够通过云台载体10相对云台内支架5沿RZ轴方向转动。因此,实现了摄像头组件20分别沿Rx、Ry以及Rz轴方向上的转动。在实际拍摄中,可以获取摄像头的抖动方向以及抖动距离等抖动参数,并据此控制本申请实施例提供的摄像头结构分别沿Rx、Ry以及Rz方向旋转对应的转动量,以实现沿Rx、Ry以及Rz轴方向上的防抖。
进一步的,鉴于第一收容空间906和第二收容空间905并列设置,而摄像头组件20的头部可以经云台外支架9上侧的通光孔伸出到云台外支架9外,也就是说,可以将第一驱动机构和第二驱动机构与摄像头组件20的尾部(即沿图1中Z轴的下方)对齐,这样,可以使第一驱动机构和第二驱动机构中的电磁驱动模块设置到远离云台头部的区域,以在云台头部让出更多的无磁区域,便于该云台搭载的摄像头模组能够选择更多类型的驱动马达,例如:可选择搭载光学防抖(Optical Image Stabilization,OIS)摄像头模组。这样,可以结合本申请实施例提供的摄像头结构沿Rx、Ry和Rz方向的防抖动功能 与,以组合构建为5轴防抖摄像头系统(即分别沿X、Y、Rx、Ry和Rz方向的防抖),进而可分别驱动摄像头系统对5个自由度的抖动进行分别补偿或组合补偿,避免合成运动补偿存在时差和补偿状态不能及时切换的影响,使得拍摄的图片和视频画质更好,尤其可更有效提升夜拍时手抖情况下的拍照画质,整体提升消费者使用体验。
可选的,如图2和图3b所示,第一驱动机构包括:第一环形磁轭22、第一驱动线圈组7和第一磁石组21;
第一驱动线圈组7和第一磁石组21分别位于第一环形磁轭22的外侧壁与第二收容空间905的内侧壁之间,且第一驱动线圈组7固定于云台外支架9,第一环形磁轭22固定于云台内支架5,第一磁石组21固定于第一环形磁轭22的外周,且第一磁石组21与第一驱动线圈组7适配设置;
第一驱动线圈组7中的线圈分布于第一环形磁轭22的沿第一方向的相对两侧,第一方向与第三轴垂直,且第一驱动线圈组7中的线圈分布于云台内支架6的对称轴的相对两侧,所述对称轴与沿第一收容空间906到第二收容空间905的方向同向;
其中,在第一驱动线圈组7通入电流的情况下,在第一驱动线圈组7与第一磁石组21之间产生相互作用力,第一磁石组21基于所述相互作用力驱动云台内支架5相对云台外支架9沿所述第一轴转动和/或沿所述第二轴转动。
在具体实施中,上述第一方向可以与如图1所示的Y轴同向,且第一磁石组21与第一驱动线圈组7适配设置可以理解为第一驱动线圈组7产生的磁场能够作用于第一磁石组21,且第一环形磁轭22与第一磁石组21之间产生磁回路,或者第一磁石组21中的磁石与第一驱动线圈组7中的线圈一一对应设置,且相互对应的磁石和线圈正对设置。
在实施中,可以向第一驱动线圈组7中通入大小和方向分别可控的电流,以使固定在第一环形磁轭22上的第一磁石组21与固定在云台外支架9上的第一驱动线圈组7之间产生方向可控且大小可控的相互作用力,进而可驱动第一环形磁轭22(第一磁石组21)相对云台外支架9产生方向可控的Rx、Ry轴旋转运动,进而可直接带动云台内支架5(摄像头组件20)产生Rx、Ry轴的旋转运动进行Rx、Ry轴的防抖。
具体的,如图5和6b所示,第一磁石组21可以包括两个第一磁石分别为(分别为21A和21B),对应的,第一驱动线圈组7可以包括两个第一线圈(分别为7A和7B),则第一线圈7A与第一磁石21A正对设置,且第一线圈7B与第一磁石21B正对设置。此时,当第一磁石21A和21B的受力方向相同,且同为与Z轴同向或者与-Z轴同向的情况下,则驱动云台内支架5相对云台外支架9沿Ry方向转动;当第一磁石21A和21B的受力方向不同,即一个与Z轴同向,另一个与-Z轴同向,的情况下,则驱动云台内支架5相对云台外支架9沿Rx轴方向转动。
在具体实施中,可以在云台外支架9的第二收容空间905的相对两侧壁上分别开设第二通孔903,以使第一驱动线圈组7中的线圈分别嵌设在该第二通孔903内,从而实现第一驱动线圈组7与云台外支架9固定连接。
另外,上述第一环形磁轭22固定于云台内支架5,可以是将第一环形磁轭22直接或者间接的固定在云台内支架5的朝向第二收容空间905的外侧壁上,例如:如图7e所示,可以设置固定于云台内支架5的滚动支撑架18,以使第一环形磁轭22通过该滚动支撑架18固定于云台内支架5上。
进一步的,为了实现向第一驱动线圈组7通入大小和方向可控的电流,可以将第一驱动线圈组7与第一驱动电路板6连接,该第一驱动电路板6可以贴设于云台外支架9的外侧,并使第一驱动线圈组7穿过上述第二通孔903安装于第一驱动电路板6上,以通过该第一驱动电路板6向第一驱动线圈组7提供大小和方向可控的电流。
在实施中,可以通过装配有本申请实施例提供的三轴云台的电子设备中的控制器对通入第一驱动线圈组7的电流的大小和方向进行控制,此时,第一驱动电路板6的外侧还可以设置第一接口604,以通过该第一接口604实现与电子设备中控制器的数据通信连接,具体的,如图6b所示,第一驱动电路板6包括第一驱动子电路板601、第二驱动子电路板603、连接板602和第一接口604,该第一接口604连接于第一驱动电路板603,且两个驱动子电路板601和603之间通过连接板602相互连通,且第一驱动线圈组7中的线圈7A连接于第一驱动子电路板601上,第一驱动线圈组7中的线圈7B连接于第二驱动子电路板603上。
另外,如图6b所示,在实际应用中,还可以在第一驱动电路板6上装配第一位置反馈元件组(8A和8B),以通过该第一位置反馈元件组(8A和8B)检测云台内支架5相对云台外支架9沿Rx轴和Ry轴方向的转动量,从而便于提升转动量的精确控制。
在实施中,上述第一位置反馈元件组8可以是霍尔元件,且其可以设置在第一磁石组21与第一驱动线圈组7的磁场范围内,以通过感应磁场的变化来确定第一磁石组21相对第一驱动线圈组7的位移量,从而据此确定云台内支架5相对云台外支架9沿Rx轴和Ry轴方向的转动量。
当然,在具体实施中,上述第一位置反馈元件组8还可以是驱动芯片,该驱动芯片除了能够控制向第一驱动线圈组7输入大小和方向可控的电流之外,其还能够反馈Rx轴和Ry轴方向的旋转量。
可选的,第二驱动机构包括:第二环形磁轭(本实施方式中,第二环形磁轭与第一环形磁轭为同一磁轭22,为便于说明,以下统称为第一环形磁轭22)、第二驱动线圈组15和第二磁石组17;
第二驱动线圈组15和第二磁石组17分别位于第一环形磁轭22的外侧壁与第二收容空间905的内侧壁之间,且第二驱动线圈组15固定于云台载体10,第一环形磁轭22固定于云台内支架5,且第二磁石组17固定于第一环形磁轭22的外周,且第二磁石组17与第二驱动线圈组15适配设置;
第二驱动线圈组15中的线圈沿第一方向间隔分布,第一方向与所述第三轴垂直,且第二驱动线圈组15中的线圈分布于云台载体10的对称轴的相对两侧,所述对称轴与沿第一收容空间906到第二收容空间905的方向同向;
其中,在第二驱动线圈组15通入电流的情况下,在第二驱动线圈组15与第二磁石组17之间产生相互作用力,第二磁石组17基于所述相互作用力驱动云台载体10相对云台内支架5沿所述第三轴转动。
需要说明的是,本申请实施例中,鉴于上述第一环形磁轭与第二环形磁轭为同一磁轭22,且第一磁石组21和第二磁石组17分别固定于该第一环形磁轭22的外周,这样,可以减少本申请实施例提供的摄像头结构中磁轭的数量,以缩小其体积并降低成本。当然,在空间和成本允许的情况下,第一环形磁轭与第二环形磁轭可以是不同磁轭,在此不构成具体限定。
在实施中,如图7b所示,可以在第一环形磁轭22上开设通孔,以使从云台内支架5的朝向第二收容空间的外侧壁延伸出来的卡扣结构502与该通孔卡接。同时,云台载体10活动连接于云台内支架5的底部,从而使固定于云台载体10的第二驱动线圈组15位于云台内支架5的外侧壁与第一环形磁轭22之间,从而在该第二驱动线圈组15通入大小和方向可控的电流时,能够使第二驱动线圈组15与固定于第一环形磁轭22的朝向第二驱动线圈组15一侧的第二磁石组17之间产生相互作用力,从而基于第二磁石组17在该相互作用力驱动云台载体10相对云台内支架5沿所述第三轴转动。
进一步的,为了实现向第二驱动线圈组15通入大小和方向可控的电流,可以将第二驱动线圈组15与第二驱动电路板13连接,该第二驱动电路板13可以贴设于云台载体10的外侧壁上,并使第二驱动线圈组15安装于第二驱动电路板13上,且在该第二驱动电路板13上设置与第二驱动线圈组15连接的第二驱动芯片16,以通过该第二驱动芯片16控制输入第二驱动线圈组15的电流的大小和方向。
另外,在实际应用中,还可以在第二驱动电路板13上装配第二位置反馈元件组(本实施例中,第二位置反馈元件组与第二驱动芯片16为同一元器件),以通过第二驱动芯片16获取云台载体10相对云台内支架5沿所述第三轴的转动量,从而便于提升Rz轴转动量的精确控制。
当然,在具体实施中,上述第二位置反馈元件组还可以是与第二驱动芯片16不同的元器件,例如:第二位置反馈元件组包括霍尔元件,且其可以设置在第二驱动线圈组15和第二磁石组17的磁场范围内,以通过感应磁场的变化来确定第二驱动线圈组15相对第二磁轭22的位移量,从而据此确定云台载体10相对云台内支架5沿Rz轴方向的转动量。
相应的,在具体实施中,上述第一位置反馈元件组8还可以是驱动芯片,该驱动芯片除了能够控制向第二驱动线圈组15输入大小和方向可控的电流之外,其还能够反馈Rx和Ry方向的旋转量。
进一步的,如图7a所示,上述第二驱动电路板13可以呈弯折结构,以贴设于云台载体10相邻两侧壁(例如:如图7a中所示的外侧壁和底壁)上。另外,还可以设置与第二驱动电路板13的结构匹配的电路板补强12,以通 过使第二驱动电路板13贴设在该电路板补强12上,来提升第二驱动电路板13的结构强度。
可选的,如图2所示,第二驱动机构还包括:内磁轭14;该内磁轭14固定于云台载体10,并与第二磁石组17构成磁回路。
在实施中,上述内磁轭14可以固定于第二驱动电路板13的背向第二驱动线圈组15的一侧,例如:如图7a所示,在云台载体10的外侧壁上设置凹槽1004,以使内磁轭14嵌设于该凹槽1004内,并夹设于云台载体10与第二驱动电路板13之间。
上述内磁轭14的作用是增加第二驱动机构的驱动力,以提升本申请实施例提供的摄像头结构沿Rz轴方向的防抖效果。
可选的,如图4a和图4b所示,支撑部25上分别开设有第一通孔251,所述第一通孔251的轴向与所述第三轴垂直;
所述摄像头结构还包括:转接结构,所述转接结构包括夹持部3和第一滚珠4;
第一滚珠4穿设于第一通孔251内,且夹设于夹持部3的两个侧壁之间;
其中,夹持部3用于与云台外支架9或云台内支架5固定连接。
具体如图4a所示,万向轴2的4个角分别沿z轴的反方向延伸,以分别与一个转接结构连接。在装配过程中,可以先将第一滚珠4卡设于第一通孔251内,然后一同插入夹持部3内。
另外,如图4c所示,夹持部3的相对两侧壁上可以向相互远离的方向凹陷,以使第一滚珠4卡设于夹持部3内时,能够在夹持部3中保持位置不变,具体的,夹持部3的相对两侧壁上分别设置滚珠保持结构303和307,其中,307位于303的对侧,且303与307所在的侧壁进行弹性连接,以便于装配第一滚珠4和支撑部25,夹持部3的底部设置有开口306,以降低夹持部3的相对两侧壁之间的弹力大小。
进一步的,如图4c、图4d和图4e所示,转接结构还包括:导向板302,导向板302与夹持部3的第一侧壁固定连接,并向靠近夹持部3的第二侧壁的方向延伸,夹持部3的第一侧壁和夹持部3的第二侧壁为所夹持部3的相对两侧壁;
和/或,
所述转接结构还包括:限位板304,限位板304固定于夹持部3的远离万向轴2的一端(例如:夹持部的槽底部),以在支撑部25相对所述夹持部3转动时,限制支撑部25的旋转角度小于预设角度。
在实施中,上述夹持部3的第一侧壁可以位于夹持部3上远离万向轴2中心一侧,且该导向板302的数量为两个,两个导向板302位于夹持部3的第一侧壁的相对两侧,以在装配的过程中,使支撑部25对准两个导向板302之间,从而起到导向的作用。
另外,上述限位板304的未与夹持部3固定一端,可以向外倾斜,以使支撑部25绕第一滚珠4旋转预设角度时,支撑部25与限位板304抵接,从而限制支撑部25进一步旋转。
可选的,如图5和图6a所示,云台外支架9和云台内支架5上设置有与夹持部3匹配的卡槽(501、901),夹持部3卡设于卡槽(501、901)内,以使支撑部25与云台外支架9或云台内支架5铰接。
具体的,位于万向轴2的第一轴轴向上的两个支撑部25所对应的夹持部3分别卡设于云台外支架9的对角线上的两个卡槽901内,位于万向轴2的第二轴轴向上的两个支撑部25所对应的夹持部3分别卡设于云台内支架5的对角线上的两个卡槽501内。
本实施方式,通过在云台外支架9和云台内支架5开设卡槽(501、901)的方式,能够降低万向轴2、云台外支架9和云台内支架5沿z轴方向上的高度,从而减小本申请实施例提供的摄像头结构的整体尺寸。
可选的,如图8所示,第一柔性电路板23包括:弹性结构电路板231、第一桥接电路板232和第二桥接电路板233;
弹性结构电路板231通过第一桥接电路板232与摄像头组件20的电路板201连接,且弹性结构电路板231由第一桥接电路板232的朝向第二收容空间905的一侧弯折延伸而形成,以构成包括至少两层层叠设置的子电路板的弹性结构,且任意两层子电路板之间具有间隙,弹性结构电路板231能够发生弹性形变;
弹性结构电路板231通过第二桥接电路板233固定于云台外支架9。
在具体实施中,第一柔性电路板23与摄像头组件20底部的电路板连通,以通过第一柔性电路板23传输摄像头组件20的数据信号和电信号,且第一柔性电路板23与云台外支架9活动连接,以使第一柔性电路板23能够跟随云台载体10旋转。
另外,上述弹性结构电路板231由第一桥接电路板232的朝向第二收容空间905的一侧弯折延伸而形成,可以理解为,弹性结构电路板231由第一桥接电路板232的朝向第二收容空间905的一侧分别沿至少两个不同的方向弯折以构成能够分别沿X、Y、Z轴的轴向移动,且能够分别沿Rx、Ry、Rz轴旋转的立体弹簧结构。
例如:如图3d和图8所示,第一桥接电路板232与摄像头组件20底部的电路板201连接,且该第一桥接电路板232的朝向第二收容空间905的一侧延伸出第一子电路板2321和第二子电路板2322,其中,第一子电路板2321和第二子电路板2322之间具有间隙,且第一子电路板2321和第二子电路板2322分别沿X轴方向和X轴的反方向来回弯折,以构成在Z轴的轴向上层叠设置的第一弹性结构电路板(2311和2312),且该第一弹性结构电路板(2311和2312)中的相邻两层电路板之间具有间隙,此时,两个第一弹性结构电路板(2311和2312)中最上层的电路板分别沿Y轴方向和Y轴的反方向来回弯折,以构成在X轴的轴向上层叠设置的第二弹性结构电路板(2313和2314),且第二弹性结构电路板(2313和2314)中相邻两层电路板之间具有间隙;最后,将两个第二弹性结构电路板(2313和2314)的尾端通过第二桥接电路板233固定于云台外支架9的外侧。
由此可见,第一柔性电路板23分别沿至少两个不同的方向弯折延伸,以具有多个方向上的自由度,这样,摄像头组件20通过第一柔性电路板23连接于云端外支架9时,第一柔性电路板23不会阻碍摄像头组件20分别沿X、Y、Z轴轴向的运动,且不会阻碍摄像头组件20分别沿Rx、Ry、Rz轴旋转的运动,以提升摄像头组件20的灵活性,同时,又能够实现将摄像头组件20通过该第一电路板23与云台外支架9弹性连接,以保持摄像头组件20的姿态。
另外,上述第一柔性电路板23与摄像头组件20的电路板201可以是一 体结构,且第一柔性电路板23展开后,可以位于同一平面内。
进一步的,还可以在第二桥接电路板233上设置用于与外部电路连接的接口或者焊盘24,其中,以焊盘为例,其可以通过焊接的方式与第二桥接电路板233连接。且该焊盘24可以穿过壳体1上的通孔,以延伸至壳体1外,以便于通过该焊盘24将第一柔性电路板23与装配有本申请实施例提供的摄像头结构的电子设备的内部电路连接。
本实施方式中,通过将第一柔性电路板23分别沿至少两个不同的方向弯折延伸,并构成自由度较高的立体弹簧结构,且将该立体弹簧结构设置在第二收容空间905内,且将第一驱动机构和第二驱动机构中的磁轭22设置为环绕在该立体弹簧结构外,且位于第二收容空间905内的环形磁轭,可以高效利用第二收容空间905,且能够避免将第一柔性电路板23、第一驱动机构和第二驱动机构分别与摄像头组件20、万向轴2、云台外支架9、云台内支架5以及云台承载10设置在同一纵向空间内,可以大大减小本申请实施例提供的摄像头结构在Z轴轴向上的厚度。
可选的,如图7a和图7b所示,云台内支架5的底部设置有至少两个第一弧形挡板504,所述至少两个第一弧形挡板504所在的圆环与所述第三轴同轴;
云台载体10上设置有与至少两个第一弧形挡板504一一对应的至少两个第二弧形挡板1002,一个第一弧形挡板504与一个第二弧形挡板504为一个弧形挡板组;
所述摄像头结构还包括:第二滚珠11;
任一个所述弧形挡板组内均夹设有第二滚珠11。
其中,第二滚珠11在弧形挡板组的限位作用下,仅能够绕Z轴转动,从而使云台载体受力时,仅能够绕Z轴转动,从而提升沿Rz轴方向上防抖动的精确度。
进一步的,第二弧形挡板1002的一端可以设置旋转限位部1003,以限制云台载体10相对云台内支架5沿Rz轴方向的旋转量。
当然,在具体实施中,也可以通过在云台内支架5和云台载体10之间设置滑轨和滑块的方式来限制云台载体10相对云台内支架5绕z轴旋转,在此 不再赘述。
可选的,如图7c所示,摄像头结构还包括:滚动支撑架18;
滚动支撑架18固定于云台内支架5,并与云台载体10的背向云台内支架5的一侧抵接,以限制云台载体10沿所述第三轴的方向移动。
本实施方式中,云台载体10夹设于滚动支撑架18与云台内支架5之间,以限制云台内支架5带动摄像头组件20沿Z轴的轴向移动,从而提升摄像头结构的精确度。
进一步的,如图7d所示,云台载体10的与滚动支撑架18贴合的底面上可以开设凹槽或者通孔,并在该凹槽或者通孔内夹设第二滚珠19,减少滚动支撑架18与云台载体10之间的摩擦力,从而提升第二驱动机构驱动云台载体10的灵敏度。
具体的,如图7e所示,滚动支撑架18呈一体结构,其具体包括:用于与云台内支架5扣合的扣合结构1801、用于支撑第二滚珠19的平台1803、以及用于固定第一磁轭22的安装板1805,该安装板1805上开设有第三通孔,以使云台内支架5上的卡扣结构502穿过该第三通孔后分别与安装板1805和第一环形磁轭22固定连接。
第一环形磁轭22可以通过夹设于云台内支架5和安装板1805之间的方式固定于所述云台内支架5,另外,第二磁石组15可以吸附在第一环形磁轭22的朝向云台内支架5的一侧,第一磁石组21中的磁石可以分布吸附在第一环形磁轭22的沿X轴向分布的相对两外侧壁上。
综上可知,本申请实施例提供的摄像头结构具有以下有益效果:能够驱动摄像头模组进行Rx、Ry、Rz方向的转动,其除了可以防Rx、Ry、Rz方向的抖动外,还可以结合相应的算法处理,来实现沿X轴和Y轴轴向的平移抖动,因此,总共可具有沿5轴方向上的防抖效果;将电磁驱动模块(第一驱动机构和第二驱动机构)设置到摄像头结构中的一侧,使摄像头结构的其它三侧留出更多的无磁区域,便于多轴防抖机构的布局;使第一柔性电路板23沿:“S”形折叠,以降低电路板在多个方向的应力;在摄像头结构的中部设置可进行Rz方向的旋转的云台载体结构及其驱动结构,且其与Rx、Ry的运动是相互独立的,可有效减少三轴同步驱动的串扰影响;第二驱动线圈组 15和驱动元件设置在云台载体10上,可以通过第一柔性电路板23引出,以与外部电路连接,而第一驱动线圈组7和第一位置反馈元件组8设置在摄像头结构的一侧,且固定在云台外支架9上,可以直接引出,以与外部电路连接。采用具有双面夹持第一滚珠4的夹持部支撑结构,可降低多自由度串动抖动的影响,从而降低摄像头外参的变化,为多摄融合算法提供有力支持。
本申请实施例还提供一种电子设备,该电子设备包括如图1至图8中任一种摄像头结构。
本申请实施例中的电子设备可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的电子设备包括如图1至图8中任一种摄像头结构,且具有与如图1至图8中任一种摄像头结构相同的有益效果,为避免重复,在此不再赘述。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (13)

  1. 一种摄像头结构,包括:万向轴和云台外支架,所述云台外支架包括第一收容空间和第二收容空间,所述第一收容空间与所述第二收容空间并列且相互连通,所述摄像头结构还包括:收容于所述第一收容空间内的云台内支架、云台载体和摄像头组件,以及收容于所述第二收容空间内的第一驱动机构、第二驱动机构和第一柔性电路板;
    所述第一柔性电路板构成弯折状的弹性结构,所述摄像头组件通过所述第一柔性电路板与所述云台外支架弹性连接,且所述摄像头组件与所述云台载体固定连接;
    所述万向轴沿第一轴轴向分布的两个支撑部分别与所述云台外支架铰接,所述万向轴沿第二轴轴向分布的两个支撑部分别与所述云台内支架铰接,其中,所述第一轴与所述第二轴相交;
    所述第一驱动机构分别与所述云台外支架和所述云台内支架连接,以驱动所述云台内支架相对所述云台外支架沿所述第一轴转动和/或沿所述第二轴转动;
    所述云台载体与所述云台内支架的底部滑动连接;
    所述第二驱动机构分别与所述云台内支架和所述云台载体连接,以驱动所述云台载体相对所述云台内支架沿第三轴转动,其中,所述第三轴分别与所述第一轴和所述第二轴垂直。
  2. 根据权利要求1所述的摄像头结构,其中,所述第一驱动机构包括:第一环形磁轭、第一驱动线圈组和第一磁石组;
    所述第一驱动线圈组和所述第一磁石组分别位于所述第一环形磁轭的外侧壁与所述第二收容空间的内侧壁之间,且所述第一驱动线圈组固定于所述云台外支架,所述第一环形磁轭固定于所述云台内支架,所述第一磁石组固定于所述第一环形磁轭的外周,且所述第一磁石组与所述第一驱动线圈组适配设置;
    所述第一驱动线圈组中的线圈分布于所述第一环形磁轭的沿第一方向的相对两侧,所述第一方向与所述第三轴垂直,且所述第一驱动线圈组中的线 圈分布于所述云台内支架的对称轴的相对两侧,所述对称轴与沿所述第一收容空间到所述第二收容空间的方向同向;
    其中,在所述第一驱动线圈组通入电流的情况下,在所述第一驱动线圈组与所述第一磁石组之间产生相互作用力,所述第一磁石组基于所述相互作用力驱动所述云台内支架相对所述云台外支架沿所述第一轴转动和/或沿所述第二轴转动。
  3. 根据权利要求2所述的摄像头结构,其中,还包括:
    第一位置反馈元件组,用于检测所述云台内支架相对所述云台外支架沿所述第一轴和/或沿所述第二轴的旋转量,所述第一位置反馈元件组设置于所述第一磁石组与所述第一驱动线圈组的磁场范围内。
  4. 根据权利要求1所述的摄像头结构,其中,所述第二驱动机构包括:第二环形磁轭、第二驱动线圈组和第二磁石组;
    所述第二驱动线圈组和所述第二磁石组分别位于所述第二环形磁轭的外侧壁与所述第二收容空间的内侧壁之间,且所述第二驱动线圈组固定于所述云台载体,所述第二环形磁轭固定于所述云台内支架,且所述第二磁石组固定于所述第二环形磁轭的外周,且所述第二磁石组与所述第二驱动线圈组适配设置;
    所述第二驱动线圈组中的线圈沿第一方向间隔分布,所述第一方向与所述第三轴垂直,且所述第二驱动线圈组中的线圈分布于所述云台载体的对称轴的相对两侧,所述对称轴与沿所述第一收容空间到所述第二收容空间的方向同向;
    其中,在所述第二驱动线圈组通入电流的情况下,在所述第二驱动线圈组与所述第二磁石组之间产生相互作用力,所述第二磁石组基于所述相互作用力驱动所述云台载体相对所述云台内支架沿所述第三轴转动。
  5. 根据权利要求4所述的摄像头结构,其中,还包括:
    第二位置反馈元件组,用于检测所述云台载体相对所述云台内支架沿所述第三轴的旋转量,所述第二位置反馈元件组设置于所述第二磁石组与所述第二驱动线圈组的磁场范围内。
  6. 根据权利要求1所述的摄像头结构,其中,所述支撑部上分别开设有 第一通孔,所述第一通孔的轴向与所述第三轴垂直;
    所述摄像头结构,还包括:转接结构,所述转接结构包括夹持部和第一滚珠;
    所述第一滚珠穿设于所述第一通孔内,且夹设于夹持部的两个侧壁之间;
    其中,所述夹持部用于与所述云台外支架或所述云台内支架固定连接。
  7. 根据权利要求6所述的摄像头结构,其中,所述转接结构还包括:导向板,所述导向板与所述夹持部的第一侧壁固定连接,并向靠近所述夹持部的第二侧壁的方向延伸,所述夹持部的第一侧壁和所述夹持部的第二侧壁为所述夹持部的相对两侧壁;
    和/或,
    所述转接结构还包括:限位板,所述限位板固定于所述夹持部的远离所述万向轴的一端,以在所述支撑部相对所述夹持部转动时,限制所述支撑部的旋转角度小于预设角度。
  8. 根据权利要求6或7所述的摄像头结构,其中,所述云台外支架和所述云台内支架上设置有与所述夹持部匹配的卡槽,所述夹持部卡设于所述卡槽内,以使所述支撑部与所述云台外支架或所述云台内支架铰接。
  9. 根据权利要求1所述的摄像头结构,其中,所述第一柔性电路板沿至少两个不同的方向分别弯折延伸,以构成弹性结构。
  10. 根据权利要求9所述的摄像头结构,其中,所述第一柔性电路板包括:弹性结构电路板、第一桥接电路板和第二桥接电路板;
    所述弹性结构电路板通过所述第一桥接电路板与所述摄像头组件的电路板连接,且所述弹性结构电路板由所述第一桥接电路板的朝向所述第二收容空间的一侧弯折延伸而形成,以构成包括至少两层层叠设置的子电路板的弹性结构,且任意两层子电路板之间具有间隙,所述弹性结构电路板能够发生弹性形变;
    所述弹性结构电路板通过所述第二桥接电路板固定于所述云台外支架。
  11. 根据权利要求1所述的摄像头结构,其中,所述云台内支架的底部设置有至少两个第一弧形挡板,所述至少两个第一弧形挡板所在的圆环与所述第三轴同轴;
    所述云台载体上设置有与所述至少两个第一弧形挡板一一对应的至少两个第二弧形挡板,一个所述第一弧形挡板与一个所述第二弧形挡板为一个弧形挡板组;
    所述摄像头结构还包括:第二滚珠;
    任一个所述弧形挡板组内均夹设有所述第二滚珠。
  12. 根据权利要求11所述的摄像头结构,其中,还包括:滚动支撑架;
    所述滚动支撑架固定于所述云台内支架,并与所述云台载体的背向所述云台内支架的一侧抵接,以限制所述云台载体沿所述第三轴的方向移动。
  13. 一种电子设备,包括如权利要求1-12中任一项所述的摄像头结构。
PCT/CN2022/086344 2021-04-19 2022-04-12 摄像头结构及电子设备 WO2022222790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110417594.6 2021-04-19
CN202110417594.6A CN112954186B (zh) 2021-04-19 2021-04-19 摄像头结构及电子设备

Publications (1)

Publication Number Publication Date
WO2022222790A1 true WO2022222790A1 (zh) 2022-10-27

Family

ID=76233007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086344 WO2022222790A1 (zh) 2021-04-19 2022-04-12 摄像头结构及电子设备

Country Status (2)

Country Link
CN (1) CN112954186B (zh)
WO (1) WO2022222790A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113286062B (zh) * 2021-04-19 2023-07-07 维沃移动通信有限公司 摄像头结构和电子设备
CN112954186B (zh) * 2021-04-19 2023-07-07 维沃移动通信有限公司 摄像头结构及电子设备
CN113339663A (zh) * 2021-07-06 2021-09-03 辽宁中蓝光电科技有限公司 一种新型摄像头防抖云台及防抖方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010287A (ja) * 2012-06-29 2014-01-20 Mitsumi Electric Co Ltd カメラモジュール駆動装置およびカメラ付き携帯端末
CN105278208A (zh) * 2014-06-20 2016-01-27 三星电机株式会社 相机模块
CN112083617A (zh) * 2019-06-14 2020-12-15 日本电产三协株式会社 带抖动修正功能的光学单元
CN112637469A (zh) * 2020-12-23 2021-04-09 维沃移动通信有限公司 摄像头模组和电子设备
CN112954186A (zh) * 2021-04-19 2021-06-11 维沃移动通信有限公司 摄像头结构及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243415A (ja) * 2005-03-04 2006-09-14 Casio Comput Co Ltd カメラ装置
CN107340667B (zh) * 2017-08-25 2020-04-21 高瞻创新科技有限公司 一种整合相机模组的防抖微型云台
WO2020050650A1 (ko) * 2018-09-05 2020-03-12 엘지이노텍 주식회사 카메라 모듈
CN210431574U (zh) * 2019-08-20 2020-04-28 华为技术有限公司 一种光学防抖模组和电子设备
JP7393158B2 (ja) * 2019-09-05 2023-12-06 ニデックインスツルメンツ株式会社 振れ補正機能付き光学ユニット
CN111586269B (zh) * 2020-05-07 2022-02-18 Oppo广东移动通信有限公司 成像装置及电子设备
CN111917966A (zh) * 2020-08-26 2020-11-10 东莞市亚登电子有限公司 摄像模组及其电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010287A (ja) * 2012-06-29 2014-01-20 Mitsumi Electric Co Ltd カメラモジュール駆動装置およびカメラ付き携帯端末
CN105278208A (zh) * 2014-06-20 2016-01-27 三星电机株式会社 相机模块
CN112083617A (zh) * 2019-06-14 2020-12-15 日本电产三协株式会社 带抖动修正功能的光学单元
CN112637469A (zh) * 2020-12-23 2021-04-09 维沃移动通信有限公司 摄像头模组和电子设备
CN112954186A (zh) * 2021-04-19 2021-06-11 维沃移动通信有限公司 摄像头结构及电子设备

Also Published As

Publication number Publication date
CN112954186A (zh) 2021-06-11
CN112954186B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2022222790A1 (zh) 摄像头结构及电子设备
WO2022222791A1 (zh) 摄像头结构及电子设备
US11579463B2 (en) Reflecting module for OIS and camera module including the same
WO2022222818A1 (zh) 摄像头结构和电子设备
TWI544233B (zh) 相機鏡頭模組
EP4016984A1 (en) Optical image stabilization module and electronic device
TWI572938B (zh) 鏡頭驅動裝置
CN110426825B (zh) 镜头系统
CN109564373B (zh) 致动器、摄像机模块及摄像机搭载装置
WO2016006780A1 (ko) 카메라 렌즈 모듈
CN116661090A (zh) 镜头系统
CN212009106U (zh) 光学系统
WO2018107725A1 (zh) 摄像单元、摄像头模组及移动终端
WO2023011173A1 (zh) 防抖机构、拍摄装置以及电子设备
US20230336853A1 (en) Camera module and electronic device
JP2023531050A (ja) カメラモジュール及び電子装置
WO2023124783A1 (zh) 摄像组件和电子设备
WO2023226276A1 (zh) 一种微型防抖云台相机模组
CN215344785U (zh) 防抖机构、拍摄装置以及电子设备
CN115914832A (zh) 防抖马达、摄像模组和电子设备
CN216817096U (zh) 光学系统
WO2023232001A1 (zh) 一种驱动装置及摄像模组
CN116055878A (zh) 驱动组件和摄像模组
CN116055880A (zh) 驱动组件和摄像模组
CN116055833A (zh) 驱动组件和摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE