WO2022220518A1 - 5-[(1,1-디옥시도-4-티오몰포리닐)메틸]-2-페닐-n-(테트라하이드로-2h-피란-4-일)-1h-인돌-7-아민 황산염 및 이의 신규 결정형 - Google Patents

5-[(1,1-디옥시도-4-티오몰포리닐)메틸]-2-페닐-n-(테트라하이드로-2h-피란-4-일)-1h-인돌-7-아민 황산염 및 이의 신규 결정형 Download PDF

Info

Publication number
WO2022220518A1
WO2022220518A1 PCT/KR2022/005210 KR2022005210W WO2022220518A1 WO 2022220518 A1 WO2022220518 A1 WO 2022220518A1 KR 2022005210 W KR2022005210 W KR 2022005210W WO 2022220518 A1 WO2022220518 A1 WO 2022220518A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
sulfate
crystalline form
pattern
Prior art date
Application number
PCT/KR2022/005210
Other languages
English (en)
French (fr)
Inventor
김순하
이세연
김형진
장혜경
전상권
서무영
Original Assignee
주식회사 미토이뮨테라퓨틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미토이뮨테라퓨틱스 filed Critical 주식회사 미토이뮨테라퓨틱스
Priority to EP22788374.1A priority Critical patent/EP4324829A1/en
Publication of WO2022220518A1 publication Critical patent/WO2022220518A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/541Non-condensed thiazines containing further heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells

Definitions

  • the present invention relates to a compound of formula 1, 5-[(1,1-dioxido-4-thiomorpholinyl)methyl]-2-phenyl- N- (tetrahydro- 2H -pyran-4-yl) It relates to the sulfate salt of -1H -indole-7-amine and its crystalline form.
  • Different salts or crystalline forms of the same drug may exhibit different solid state physical properties, such as hygroscopicity, behavior against compression, stability during storage, and flowability of milled solids. These properties in turn influence their suitability as active pharmaceutical substances for the commercial production of certain solid states. For example, flowability affects the ease of handling a substance during processing into a pharmaceutical product. If the particles of the powdered compound do not flow readily, the formulation specialist will have to take that fact into account in developing the formulation of tablets or capsules, which may contain lubricating agents such as colloidal silicon dioxide, talc, starch or tribasic calcium phosphate. may require use.
  • lubricating agents such as colloidal silicon dioxide, talc, starch or tribasic calcium phosphate. may require use.
  • dissolution rate is not only taken into account in formulating syrups, elixirs and other liquid medicaments, but may also vary the outcome of treatment.
  • rate of dissolution of an active ingredient in a patient's gastric juice will vary the outcome of treatment as it places an upper limit on the rate at which an orally-administered active ingredient can reach the patient's bloodstream.
  • the compound of Formula 1 5-[(1,1-dioxido-4-thiomorpholinyl)methyl]-2-phenyl- N- (tetrahydro- 2H -pyran-4-yl)-1 H -indole-7-amine is a compound disclosed through International Patent Publication No. WO2009-025478, and is a substance known to exhibit preventive or therapeutic and ameliorating effects on cell necrosis and related diseases.
  • the compound of Formula 1 has remarkably low solubility in water as well as in various other solvents.
  • the present inventors have continuously conducted research on the salt form of the compound of Formula 1 in order to improve the solubility of the compound of Formula 1. As a result, the present inventors found the best physicochemical salt of the compound of Formula 1, and confirmed various crystalline forms of the salt and its properties.
  • the present invention also provides various crystalline forms of the sulfate salts of the compounds of formula (1).
  • the present invention also provides a process for preparing a sulfate of the compound of formula (1) and a process for preparing a crystalline form of the sulfate of the compound of formula (1).
  • Another object of the present invention is to provide a pharmaceutical composition comprising the sulfate of the compound of Formula 1 or a crystalline form thereof as an active ingredient.
  • the present invention also seeks to provide the use of a sulfate salt of a compound of formula 1 or a crystalline form thereof.
  • the present invention provides a sulfate salt of the compound of formula (1) having excellent physicochemical properties among various salts of the compound of formula (1).
  • the sulfate of the compound of Formula 1 may be represented by Formula 2 below.
  • the compound of Formula 1 of the present invention may be referred to as “Compound 1” or “Compound 1”.
  • the present invention also confirmed various crystalline forms of the sulfate salt of the compound of Formula 1, and 8 crystalline forms (crystalline forms I, II, III, IV, V, VI, VII, VIII) having different crystal structures were identified.
  • the crystalline form I of the sulfate salt of the compound of Formula 1 is from 6.63 ⁇ 0.2, 17.34 ⁇ 0.2, 17.76 ⁇ 0.2, 18.70 ⁇ 0.2, 18.93 ⁇ 0.2, 20.24 ⁇ 0.2, 20.83 ⁇ 0.2, 21.56 ⁇ 0.2, 24.66 ⁇ 0.2 and 29.00 ⁇ 0.2 Characterized by an X-ray powder diffraction pattern having 4 or more, such as 4, 5, 6, 7, 8, 9, 10 or more diffraction peaks at a selected 2 [ ⁇ ] value. do.
  • the X-ray powder diffraction pattern has a diffraction peak at a value of 2 [ ⁇ ] selected from 6.63 ⁇ 0.2, 17.34 ⁇ 0.2, 17.76 ⁇ 0.2, 18.93 ⁇ 0.2, 20.24 ⁇ 0.2, and 24.66 ⁇ 0.2 .
  • the crystalline form II of the sulfate salt of the compound of Formula 1 was obtained from 6.57 ⁇ 0.2, 13.91 ⁇ 0.2, 16.05 ⁇ 0.2, 17.36 ⁇ 0.2, 18.41 ⁇ 0.2, 19.16 ⁇ 0.2, 19.36 ⁇ 0.2, 20.11 ⁇ 0.2, 20.77 ⁇ 0.2 and 24.31 ⁇ 0.2. Characterized by an X-ray powder diffraction pattern having 4 or more, such as 4, 5, 6, 7, 8, 9, 10 or more diffraction peaks at a selected 2 [ ⁇ ] value. do.
  • the X-ray powder diffraction pattern has a diffraction peak at a value of 2 [ ⁇ ] selected from 6.57 ⁇ 0.2, 17.36 ⁇ 0.2, 19.16 ⁇ 0.2, 19.36 ⁇ 0.2, and 20.11 ⁇ 0.2.
  • the crystalline form III of the sulfate salt of the compound of Formula 1 is 7.66 ⁇ 0.2, 16.32 ⁇ 0.2, 17.53 ⁇ 0.2, 18.05 ⁇ 0.2, 18.28 ⁇ 0.2, 18.95 ⁇ 0.2, 19.49 ⁇ 0.2, 19.91 ⁇ 0.2, 21.44 ⁇ 0.2, 22.24 ⁇ 0.2, 4 or more, such as 4, 5, 6, 7, at 2 [ ⁇ ] values selected from 23.52 ⁇ 0.2, 24.29 ⁇ 0.2, 25.10 ⁇ 0.2, 27.37 ⁇ 0.2, 29.07 ⁇ 0.2 and 31.90 ⁇ 0.2; Characterized by an X-ray powder diffraction pattern having 8, 9, 10 or more diffraction peaks.
  • the X-ray powder diffraction pattern is characterized in that it has a diffraction peak at a value of 2 [ ⁇ ] selected from 7.66 ⁇ 0.2, 17.53 ⁇ 0.2, 18.28 ⁇ 0.2, and 19.91 ⁇ 0.2.
  • the crystalline form IV of the sulfate salt of the compound of Formula 1 is 6.30 ⁇ 0.2, 6.87 ⁇ 0.2, 8.58 ⁇ 0.2, 9.02 ⁇ 0.2, 10.26 ⁇ 0.2, 12.46 ⁇ 0.2, 14.71 ⁇ 0.2, 15.50 ⁇ 0.2, 17.42 ⁇ 0.2, 18.27 ⁇ 0.2, 4 or more, such as 4, 5, 6, 7, 8, 9 at 2 [ ⁇ ] values selected from 19.56 ⁇ 0.2, 20.20 ⁇ 0.2, 21.55 ⁇ 0.2, 22.28 ⁇ 0.2 and 28.31 ⁇ 0.2 It is characterized in that it is characterized by an X-ray powder diffraction pattern having 10 or more diffraction peaks.
  • the X-ray powder diffraction pattern is 2 [ ⁇ ] value, characterized in that it has a diffraction peak.
  • the crystalline form V of the sulfate salt of the compound of Formula 1 is 6.88 ⁇ 0.2, 13.50 ⁇ 0.2, 16.17 ⁇ 0.2, 17.07 ⁇ 0.2, 17.10 ⁇ 0.2, 18.30 ⁇ 0.2, 18.54 ⁇ 0.2, 19.09 ⁇ 0.2, 19.71 ⁇ 0.2, 20.15 ⁇ 0.2, 4 or more, for example, 4, 5, 6, 7, 8, 9, 10 or more diffraction peaks at 2 [ ⁇ ] values selected from 20.52 ⁇ 0.2, 25.87 ⁇ 0.2 and 28.55 ⁇ 0.2 Branches are characterized by an X-ray powder diffraction pattern.
  • the X-ray powder diffraction pattern is characterized in that it has a diffraction peak at a value of 2 [ ⁇ ] selected from 6.88 ⁇ 0.2, 18.54 ⁇ 0.2, 19.09 ⁇ 0.2, 19.71 ⁇ 0.2, and 20.15 ⁇ 0.2.
  • the crystalline form VI of the sulfate salt of the compound of Formula 1 is 4 or more at 2 [ ⁇ ] values selected from 6.51 ⁇ 0.2, 15.73 ⁇ 0.2, 17.03 ⁇ 0.2, 19.01 ⁇ 0.2, 19.85 ⁇ 0.2, 20.45 ⁇ 0.2 and 24.20 ⁇ 0.2; For example, it is characterized by being characterized by an X-ray powder diffraction pattern having 4, 5, 6 or more diffraction peaks.
  • the X-ray powder diffraction pattern is characterized in that it has a diffraction peak at a value of 2 [ ⁇ ] selected from 6.51 ⁇ 0.2, 17.03 ⁇ 0.2, 19.85 ⁇ 0.2, and 20.45 ⁇ 0.2.
  • the crystalline form VII of the sulfate salt of the compound of Formula 1 is 3 or more, for example, 3, 4, 5, or more at a value of 2 [ ⁇ ] selected from 8.15 ⁇ 0.2, 16.30 ⁇ 0.2, 16.61 ⁇ 0.2 and 24.54 ⁇ 0.2 It is characterized by being characterized by an X-ray powder diffraction pattern having a diffraction peak.
  • the X-ray powder diffraction pattern is characterized in that it has a diffraction peak at a value of 2 [ ⁇ ] selected from 16.30 ⁇ 0.2 and 16.61 ⁇ 0.2.
  • the crystalline form VIII of the sulfate of the compound of Formula 1 is 6.35 ⁇ 0.2, 6.78 ⁇ 0.2, 8.36 ⁇ 0.2, 9.40 ⁇ 0.2, 13.98 ⁇ 0.2, 15.98 ⁇ 0.2, 20.43 ⁇ 0.2, 21.15 ⁇ 0.2, 21.40 ⁇ 0.2, and Characterized by an X-ray powder diffraction pattern having 4 or more, such as 4, 5, 6, 7, 8, 9, 10 or more diffraction peaks at 2 [ ⁇ ] values selected from 21.61 ⁇ 0.2 characterized by being
  • the X-ray powder diffraction pattern has a diffraction peak at a value of 2 [ ⁇ ] selected from 6.35 ⁇ 0.2, 6.78 ⁇ 0.2, 8.36 ⁇ 0.2, 21.15 ⁇ 0.2, 21.40 ⁇ 0.2, and 21.61 ⁇ 0.2.
  • the present invention provides a method comprising: stirring a solution containing a compound of Formula 1 and a solvent selected from ethanol, methyl ethyl ketone (MEK), ethyl acetate, methanol, or acetone under heating; and
  • a solvent selected from ethanol, methyl ethyl ketone (MEK), ethyl acetate, methanol, or acetone under heating; and
  • a method for preparing a sulfate of the compound of Formula 1 comprising the step of cooling the solution after dropwise adding a solution containing the same solvent as the solvent and sulfuric acid to the solution.
  • the present invention also comprises the steps of stirring a solution containing the compound of Formula 1 and methanol under heating; and
  • the compound of Formula 1 used as a starting material may be in an amorphous form or in any crystalline form.
  • the heating may be performed by increasing the temperature to a range of 30 to 120°C.
  • the cooling can lower the temperature to a range of 0 to 25 °C.
  • the stirring may be performed for 30 minutes to 3 hours.
  • the dropwise addition may be performed for 1 to 8 hours, and the cooling may be performed for 5 to 30 hours.
  • the solution containing methanol may further contain water, and the ratio of methanol to water may be 7:3 to 9.5:0.5, but is limited thereto not.
  • a step of filtration or drying thereafter may be additionally performed in order to obtain a product with high purity by removing foreign substances, excess solvent, and the like.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising the sulfate salt of the compound of Formula 1 or a crystalline form thereof, and a pharmaceutically acceptable carrier.
  • the present invention also provides the use of the sulfate salt of the compound of Formula 1 or a crystalline form thereof in the prevention or treatment of the following diseases.
  • the present invention also provides a method for preventing or treating the following diseases, comprising administering to a subject in need of a sulfate salt of the compound of Formula 1 or a crystalline form thereof in a pharmaceutically effective amount.
  • the compound of Formula 1 is known to exhibit preventive or therapeutic and ameliorating effects on cell necrosis and related diseases.
  • the cell necrosis and related diseases are acute/chronic liver diseases (eg hepatitis, liver fibrosis, cirrhosis), neurodegenerative diseases (eg dementia, Parkinson's disease, Huntington's disease), ischemic heart disease, Reperfusion injury (Korean Patent No.
  • ischemic stroke or ischemic injury pancreatitis, bacterial/viral sepsis, diabetes or diabetic complications, diabetic vascular disease
  • diabetes in particular, are caused by substances that destroy pancreatic cells and , virus, hyperglycemia, fatty acids, diet, toxins, streptozotocin, etc.] necrotizing procolitis, cystic fibrosis, rheumatoid arthritis, degenerative arthritis, nephropathy, bacterial infection, virus Infection (eg HIV), multiple sclerosis, leukemia, lymphoma, neonatal respiratory distress syndrome, asphyxiation, tuberculosis, endometriosis, angioplasty, psoriasis, frostbite, steroid treatment complications, necrosis, tenderness, hemoglobinuria, burns, hyperthermia, Crohn's disease, celiac disease, compartment syndrome, leprosy injury, glomerulonephritis, muscular dystrophy
  • cell necrosis caused by drugs and toxic substances and related diseases include alcoholism, cocaine, drugs (eg paracetamol, antibiotics, anticancer drugs, adriamycin, puromycin, bleomycin) , NSAIDs, cyclosporine, chemical toxins (e.g. carbon tetrachloride, cyanide, methanol, ethylene glycol), toxic gases, pesticides, heavy metals (e.g. lead, mercury, cadmium) exposure and/or administration and/or or necrosis associated with self-administration, damage caused by radiation/UV exposure, and cell necrosis associated therewith.
  • drugs eg paracetamol, antibiotics, anticancer drugs, adriamycin, puromycin, bleomycin
  • NSAIDs e.g. cyclosporine
  • chemical toxins e.g. carbon tetrachloride, cyanide, methanol, ethylene glycol
  • toxic gases e.g. lead, mercury, cadmi
  • the compound of Formula 1 is a cell necrosis and related diseases, additionally acute / chronic kidney disease, traumatic brain injury, neurodegenerative diseases such as Lou Gehrig's disease, necrotizing colitis, viral infection (eg SARS-CoV) , psoriasis and skin diseases including allergic dermatitis, organ preservation/organ transplantation (refer to Korean Patent Nos. 10-1098583, 10-1941004), etc., are expected to exhibit preventive or therapeutic and improvement effects.
  • neurodegenerative diseases such as Lou Gehrig's disease, necrotizing colitis, viral infection (eg SARS-CoV) , psoriasis and skin diseases including allergic dermatitis, organ preservation/organ transplantation (refer to Korean Patent Nos. 10-1098583, 10-1941004), etc.
  • the pharmaceutical composition comprising the compound of Formula 1 has a function of regulating intracellular calcium, and can improve ER stress and mitochondrial dysfunction caused by abnormal intracellular calcium levels. Accordingly, the pharmaceutical composition comprising the compound of Formula 1 is expected to exhibit preventive or therapeutic and ameliorating effects on related diseases.
  • Related diseases include:
  • Demyelination diseases including demyelination and amyotrophic lateral sclerosis (ALS), hypertension including pulmonary arterial hypertension, stroke, prion disease, epilepsy, ataxia, Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium. Oct-Nov 2003;34(4-5):385-97. Mitochondrial disorders: challenges in diagnosis & treatment. See Indian J Med Res. 2015 Jan;141(1):13-26. )
  • IBD inflammatory bowel disease
  • metastasis reticulum stress and oxidative stress in cell fate decision and human disease
  • retinitis pigmentosa retinitis pigmentosa, optic neuropathy, cataracts, glaucoma
  • anemia cholestasis, hypoparathyroidism, pancytopenia, pancreatic disorders, lactic acidosis, lactacidaemia , Hearing loss, short stature, ileus, cardiac conduction defect, cardiomyopathy, endometriosis, infertility
  • Mitochondrial diseases the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol.
  • Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. See Biochim Biophys Acta Mol Basis Dis. 2020 May 1;1866(5):165674. )
  • the pharmaceutical composition comprising the compound of Formula 1 exhibits liver protection and liver function improvement effects, as well as chronic liver diseases such as fatty liver, liver fibrosis and cirrhosis, hepatitis caused by viruses or drugs, etc. It shows the effect of preventing or treating chronic liver disease.
  • the pharmaceutical composition according to the present invention can also be used for the treatment of liver diseases selected from liver transplantation, alcoholic or non-alcoholic fatty liver (refer to Korean Patent No.
  • composition according to the present invention is effective for treating or preventing fatty liver-derived fatty liver or acute or chronic liver disease derived from fatty liver.
  • the compound of Formula I can enhance the differentiation efficiency and maturity of stem cell-derived cardiomyocytes, including the step of culturing the stem cells.
  • the compound of Formula 1 can be used for preventing and treating mucositis.
  • treatment means stopping or delaying the progression of a disease when used in an object showing symptoms of onset
  • prevention means stopping the symptom of an onset when used in a subject that does not show symptoms of onset but is at high risk. or delay.
  • the "pharmaceutical composition” may include a pharmaceutically acceptable carrier along with the compound of the present invention, if necessary.
  • the compound of Formula 1, the sulfate thereof, or the crystalline form of the sulfate thereof according to the present invention can be administered in various oral and parenteral dosage forms during clinical administration, and when formulated, commonly used fillers, extenders, binders, wetting agents, It is prepared using a diluent or excipient such as a disintegrant or a surfactant.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, troches, and the like, and these solid preparations include one or more compounds of the present invention with at least one excipient, for example, starch, calcium carbonate, water It is prepared by mixing sucrose or lactose or gelatin.
  • lubricants such as magnesium stearate talc are also used.
  • Liquid formulations for oral administration include suspensions, oral solutions, emulsions, or syrups.
  • various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. can
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspension solutions, emulsions, lyophilized formulations, suppositories, and the like.
  • Non-aqueous solvents and suspensions may include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate.
  • injectable esters such as ethyl oleate.
  • As the base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin, glycerol, gelatin, etc. may be used.
  • the effective dose to the human body of the compound of Formula 1, the sulfate thereof, or the crystalline form of the sulfate of the present invention may vary depending on the patient's age, weight, sex, dosage form, health status and disease degree, and generally about 0.001-100 mg/kg/day, preferably 0.01-35 mg/kg/day. Based on an adult patient weighing 70 kg, it is generally 0.07-7000 mg/day, preferably 0.7-2500 mg/day, and once a day at regular time intervals according to the judgment of a doctor or pharmacist It may be administered in several divided doses.
  • the sulfate of the compound of Formula 1 according to the present invention has much higher solubility than other salts, and exhibits excellent stability and absorption rate in the body.
  • these sulfates can form various crystalline forms, and these crystalline forms are also stable even after long-term storage under various conditions and are useful for storage because their purity hardly decreases.
  • FIG. 14 is a DSC/TGA result of the hydrochloride of Compound 1
  • FIG. 15 is a DSC/TGA result of sulfate
  • FIG. 16 is a DSC/TGA result of methanesulfonate
  • FIG. 17 is a DSC/TGA result of paratoluenesulfonate.
  • Figure 18 shows the DSC/TGA results of maleate.
  • Figure 19 is the HPLC spectrum of the free form of compound 1 in the physicochemical stability test
  • Figure 20 is the HPLC spectrum of the hydrochloride of Compound 1
  • Figure 21 is the HPLC spectrum of the sulfate
  • Figure 22 is the HPLC spectrum of the methanesulfonate
  • 23 shows the HPLC spectrum of paratoluenesulfonate
  • FIG. 24 shows the HPLC spectrum of maleate.
  • FIG. 25 is the XRPD result of the free form of Compound 1 in the physicochemical stability test
  • FIG. 26 is the XRPD result of the hydrochloride of Compound 1
  • FIG. 27 is the XRPD result of the sulfate
  • FIG. 28 is the XRPD result of the methanesulfonate
  • 29 shows the XRPD results of para-toluenesulfonate
  • FIG. 30 shows the XRPD results of maleate.
  • FIG. 33 is a DSC/TGA result of the sulfate of Compound 1 produced in an ethanol solvent
  • FIG. 34 is a methylethylketone solvent
  • FIG. 35 is an ethyl acetate solvent
  • Figure 39 shows the XRPD results of the sulfate of Compound 1 produced through the slurry method (25 °C, 1 week) of Example 5-1
  • Figure 40 is through the slurry method (50 °C, 1 week)
  • 41 shows the XRPD results of the sulfate of Compound 1 produced through the slurry method (25°C, 4 weeks)
  • FIG. 42 is the slurry method (50°C, 4 weeks).
  • Figure 46 shows the DSC results of the sulfate of Compound 1 produced by the crystallization method 1 of Examples 5-6.
  • FIG. 49 shows the DVS results of the sulfate salt of Compound 1 of Example 5-7
  • FIG. 50 shows the XRPD results after the DVS test of the sulfate salt of Compound 1 of Example 5-7.
  • Figure 54 shows the XRPD results of the sulfate crystalline Form I of Compound 1.
  • Figure 55 shows the HPLC spectrum of the sulfate crystalline Form I of compound 1.
  • FIG. 56 shows a TGA/DSC graph of Form I of Sulfate Sulfate of Compound 1
  • FIG. 57 shows XRPD results before and after TGA of Form I.
  • Figure 58 shows the XRPD results of the sulfate crystalline Form II of Compound 1.
  • Figure 60 shows TGA/DSC of sulfate crystalline Form II of Compound 1
  • Figure 61 shows XRPD results before and after TGA of sulfate crystalline Form II of Compound 1.
  • Figure 62 shows the XRPD results of the sulfate crystalline form III of compound 1.
  • Figure 63 shows the HPLC spectrum of the sulfate crystalline form III of compound 1.
  • FIG. 64 shows TGA/DSC of sulfate crystalline Form III of Compound 1
  • FIG. 65 shows 1 H-NMR of sulfate crystalline Form III of Compound 1
  • FIG. 66 shows XRPD results before and after TGA of sulfate crystalline Form III.
  • Figure 67 shows the XRPD results of the sulfate crystalline form IV of compound 1.
  • Figure 68 shows the HPLC results of the sulfate crystalline Form IV of Compound 1.
  • 69 shows the TGA/DSC of sulphate crystalline Form IV of compound 1.
  • Figure 70 shows the XRPD results of the sulfate crystalline form V of compound 1.
  • FIG. 71 shows the HPLC spectrum of the sulfate crystalline Form V of Compound 1
  • FIG. 72 shows the TGA/DSC of the sulfate crystalline Form V of Compound 1
  • FIG. 73 shows the XRPD results before and after TGA of the sulfate crystalline Form V of Compound 1.
  • Figure 75 shows the HPLC spectrum of the sulfate crystalline Form VI of Compound 1
  • Figure 76 shows the TGA/DSC of the sulfate crystalline Form VI of Compound 1
  • Figure 77 shows the XRPD results after TGA of the sulfate crystalline Form VI of Compound 1.
  • Figure 80 shows the XRPD results of the sulfate crystalline form VIII of Compound 1
  • Figure 81 shows the XRPD results of the sulfate crystalline Form VIII of the compound 1.
  • FIG. 82 shows the XRPD results of the sulfate crystalline Form II of Compound 1 scaled-up to 200 mg
  • FIG. 83 shows the TGA/DSC results.
  • Figure 84 shows the XRPD result of the sulfate crystalline form III of Compound 1 scaled up by 10 g
  • Figure 85 shows the TGA/DSC result.
  • Figure 86 shows the XRPD of the sulfate crystalline Form IV of Compound 1 scaled-up to 500 mg
  • Figure 87 shows the HPLC
  • Figure 88 shows the DSC/TGA.
  • FIG. 89 shows the XRPD of the sulfate crystalline Form VI of compound 1 scaled up to 300 mg
  • FIG. 90 shows the TGA/DSC.
  • TA DSC Q2000 and Discovery DSC-2500 approximately 1 mg of sample was placed in a hermetic aluminum pan with pinhole and heated from 25 o C to 300 o C at a rate of 10 o C/min.
  • TGA Q50 or TA Q5000 was used, and approximately 4 mg of a sample was placed in an open platinum pan and heated from 30 o C to 300 o C at a rate of 10 o C/min.
  • PSD Particle size Distribution Analyzer
  • Dispersing system using RODOS under a pressure of 0.5 bar was measured with Sympatec HELOS particles size analyzer.
  • a 5 megapixel CCD Nikon LV100POL microscope equipped with a 20x physical lens was used.
  • An SMS DVS Advantage 1 was used to place 10 mg of sample into a mesh stainless steel basket.
  • the entire experimental cycle consisted of two scans (hygroscopic and dehumidified) at constant temperature (25° C. and 10% RH in the range of 40-90% (60-360 min for each humidity level) at intervals of 10% RH.
  • a method for preparing the compound of Formula 1 known in WO2009-025478 is the same as in Scheme 1.
  • P9 prepared according to Scheme 1 contains a large amount of impurities and foreign substances. Since the compound of Formula 1 has very low solubility, purification has become a very important process. In order to remove foreign substances and color of P9 obtained for research at the beginning, it was dissolved in DMSO, filtered, and EtOH was added as an anti-solvent to obtain the compound of Formula 1. In addition, the pure form without any modifications such as salt form to the compound of Formula 1 was described as "free form", and it was distinguished from the salt or crystalline form.
  • the thus-prepared compound of Formula 1 has remarkably low solubility in water as well as various solvents, as shown in Table 1 below.
  • the remarkably low solubility in various solvents adversely affects the development of pharmaceuticals, which must produce finished products in a completely dissolved state.
  • the present invention deals with the invention of a salt of the compound of Formula 1 and a crystalline form thereof in a physicochemically stable form based on a study on the compound of Formula 1 in the form of a salt for enhancing solubility of the compound of Formula 1.
  • Solvent Solubility (mg/mL) Solvent Solubility (mg/mL) 25°C 50°C 25°C 50°C Methanol (MeOH) 0.59 1.15 Tetrahydrofuran (THF) 17.40 16.26 Ethanol (EtOH) 1.41 1.08 2-Methyltetrahydrofuran (2-MeTHF) 2.78 3.41 Isopropanol (IPA) 0.32 0.54 N-Methyl pyrrolidone (NMP) 160.03 192.42 1-Butanol 0.65 1.00 Dimethyl sulfoxide (DMSO) 43.35 238.15 Acetonitrile (ACN) 3.09 4.04 Chloroform (CHCl 3 ) 4.70 4.62 Acetone 5.29 17.50 Toluene 0.02 0.02 Methyl ethyl ketone (MEK) 6.08 8.12 Heptane ⁇ LOQ ⁇ LOQ Methyl-isobutylketone (MIBK) 2.10
  • Salt screening was performed by the following procedure, and a total of 52 (4X13) screening experiments were conducted simultaneously.
  • Pattern A pattern of the compound of formula (1)
  • the salt screening result hydrochloride (Pattern 1-I), sulfate (Pattern 2-I), methanesulfonate (Pattern 4-I), paratoluenesulfonate (Pattern 6-I) ), maleate salts (patterns 7-I, 7-II), with a total of six new crystalline forms, five potential salt compounds of the compound of formula 1 were found. 14 to 18 and Table 5 show the results of additional DSC and TGA experiments for the salt compounds of the five compounds of Formula 1 above.
  • hydrochloride, sulfate, methanesulfonate, para-toluenesulfonate and maleate salts of the compounds of Formula 1 of Example 2 were confirmed by performing virtual gastrointestinal fluid solubility, physicochemical stability, and pharmacokinetic tests as follows.
  • Example 3-1 Virtual Gastrointestinal Fluid Solubility Test
  • the salts in SGF, FasSSIF, and FeSSIF showed higher solubility than the compound of Formula 1, among which sulfate was about 11 times higher in simulated gastric juice (SGF; pH 1.8) than in free form, in a fasting state.
  • the solubility was about 10-fold in simulated intestinal fluid (FaSSIF; pH6.53) and 2-fold in simulated intestinal fluid in fed state (FeSSIF; pH 4.98).
  • the sulfate salt showed the highest solubility among the salt compounds of the compound of Formula 1 in the simulated gastric juice (SGF) state related to the stomach, which is an organ that the oral dosage form is first decomposed in the body.
  • the maleate of the compound of Formula 1 was sensitive to all conditions such as heat, humidity and light irradiation conditions, and the methanesulfonate of the compound of Formula 1 was sensitive to humidity and light conditions, especially A decrease in purity of about 3% or more was observed at 40 °C RH for 1 week.
  • the hydrochloride salt of the compound of Formula 1 and the sulfate salt of the compound of Formula 1 were found to be sensitive to humidity conditions, and the paratoluenesulfonate salt of the compound of Formula 1 was found to be sensitive to light. All five salts showed color change after photostability test.
  • mice for the free form of the compound of Formula 1 and five salt compounds of the compound of Formula 1 of the present invention were conducted using mice for the free form of the compound of Formula 1 and five salt compounds of the compound of Formula 1 of the present invention, and the results are shown in Table 8 and FIG. 31 .
  • the median Tmax of the free form was found to have a half-life of 1.2 hours after being rapidly absorbed in 0.5 hours.
  • the Tmax of the methanesulfonate, sulfate, para-toluenesulfonate, and maleate salts of the compound of Formula 1 was 0.5 hours, which was equivalent to that of Compound 1 free form, whereas it was found to have a longer half-life than 2.3-3.0 hours.
  • the Tmax of hydrochloride was found to be absorbed relatively slowly in 2 hours.
  • the sulfate salt was compared with the free form and other salts, and excellent pharmacological properties It was found to be the best salt that can increase the absorption rate in the body by improving the solubility while maintaining the salt.
  • the sulfate of the compound of Formula 1 was about 11 times higher in simulated gastric juice (SGF; pH 1.8) compared to the free form of the compound of Formula 1, and simulated intestinal fluid in a fasting state (FaSSIF; pH6.53) It showed about 10-fold solubility in the fed simulated intestinal fluid (FeSSIF; pH 4.98) and 2-fold solubility.
  • the sulfate of the compound of Formula 1 showed comparable results to the free form of the compound of Formula 1 under high temperature and photostability conditions except for humidity conditions.
  • the sulfate of the compound of Formula 1 was finally selected as the final salt compound.
  • the crystalline form of the sulfate salt of the compound of Formula 1 prepared by the salt screening of Example 2 was designated as crystalline Form 2-I or Form I.
  • the crystalline form (or pattern, pattern) newly discovered in further processing and polycrystalline form studies for the sulfate of the compound of Formula 1 is 2-II, 2-III, 2-IV, 2-V, 2-VI, 2-VII and 2-VIII, respectively, meaning crystalline forms II, III, IV, V, VI, VII and VIII.
  • 500 mg of the compound of Formula 1 was dissolved in 7.5 mL of ethanol by stirring at 51 o at 500 rpm, and maintained at 50 °C for 1 hour.
  • 1.1 equivalents of ethanolic sulfuric acid solution (2.502 mL, 0.5 mol/L) was added dropwise over 4 hours, and maintained at 50°C for 22 hours. After that, after cooling to 5°C for 9 hours, it was maintained at 5°C for 24 hours.
  • the suspension was filtered to collect solids, washed with ethanol, and then dried under vacuum at 40°C for 16 hours, drying 612.0 mg. A white solid was obtained.
  • Example 4-1 the same procedure was followed except that MEK was used instead of ethanol and MEK sulfuric acid solution was used instead of ethanolic sulfuric acid solution. As a result, 518.7 mg dry powder (yellow solid) was obtained.
  • Example 4-1 the same procedure was followed except that ethyl acetate was used instead of ethanol and ethyl acetate sulfuric acid solution was used instead of ethanol sulfuric acid solution. As a result, 557.3 mg of dry white powder (white solid) was obtained.
  • Example 4-1 the same procedure was followed except that methanol/water (9/1) was used instead of ethanol and methanol/water (9/1) sulfuric acid solution was used instead of ethanolic sulfuric acid solution. As a result, 587.3 mg of dry white powder (white solid) was obtained.
  • Example 4-1 the same procedure was followed except that acetone/water (9/1) was used instead of ethanol, and acetone/water (9/1) sulfuric acid solution was used instead of ethanolic sulfuric acid solution. As a result, 563.3 mg of dry white powder (white solid) was obtained.
  • Table 10 summarizes the XRPD, DSC, and TGA of the sulfate salt of the compound of Formula 1 prepared using various solvents of Examples 4-1 to 4-5.
  • 32 shows the XRPD results of the sulfate of the compound of Formula 1 produced in the above five solvents
  • FIGS. 33 to 38 show the DSC/TGA results of the sulfate of the compound of Formula 1 for each solvent.
  • Table 12 and FIGS. 39 to 42 show the XRPD results of the sulfate salt of the compound of Formula 1 produced through the slurry method.
  • the precipitated solid was subjected to XRPD test after centrifugation. As a result of the XRPD test, it was confirmed that crystalline Form II was generated in the DMF-ethanol anti-solvent condition.
  • Table 13 and FIG. 45 show the XRPD results of the sulfate salt of the compound of Formula 1 according to the anti-solvent method.
  • Example 5-5 vapor diffusion method
  • Example 5-6 Crystallization method by melting-cooling method
  • Crystallization method 1 3 mg of the sulfate salt of the compound of formula 1 having crystalline form III is placed in an airtight aluminum pan and heated from room temperature to 230 °C at a rate of 10 °C/min, from 230 °C to 30 °C at 10 °C After cooling at a rate of C/min, it was again heated from 30 °C to 275 °C at a rate of 10 °C/min. 46 shows the DSC results of the sulfate salt of the compound of Formula 1 produced by crystallization method 1.
  • Crystallization method 2 3 mg of the sulfate salt of the compound of formula 1 having crystalline form III is placed in an airtight aluminum pan and heated from room temperature to 240 °C at a rate of 10 °C/min, from 240 °C to 30 °C at 10 °C After cooling at a rate of C/min, it was again heated from 30 °C to 275 °C at a rate of 10 °C/min. According to the XRPD results, no new crystalline form was formed. 47 shows the DSC results of the sulfate salt of the compound of Formula 1 produced by crystallization method 2. 48 shows the XRPD results of the sulfate salt of the compound of Formula 1 produced by the crystallization methods 1 and 2 above.
  • Example 5-7 Water absorption and desorption method (Dynamic Vapor Sorption (DVS) cycle)
  • FIG. 49 shows the DVS results of the sulfate salt of the compound of Formula 1
  • FIG. 50 shows the XRPD results after the DVS test of the sulfate salt of the compound of Formula 1.
  • Example 5 In addition to the crystalline forms I to III found in Examples 3 and 4, a total of four new crystalline forms were discovered through the polycrystalline form study of Example 5.
  • Form V was the crystalline form also found in systems with water activity >0.501 in the water activity method.
  • new XRPD patterns are not found in slow evaporation, anti-solvent method, vapor diffusion method, crystallization method by melting-cooling method, water absorption and desorption method, compression method, and grinding method, etc. didn't
  • Example 6 According to the salt screening of Example 3, the process study of Example 4, and the polycrystalline study of Example 5, a total of seven sulfate crystalline forms of the compound of Formula 1 were identified, and as mentioned in the summary of Example 3, the crystalline forms in turn (or pattern, pattern) was named in the order of 2-I, 2-II, 2-III, 2-IV, 2-V, 2-VI and 2-VII, which are crystalline forms I, II, III, IV, V, VI and VII. This analysis was performed in Example 6 below.
  • Example 6 Identification of the crystalline form of the sulfate salt of the compound of Formula 1
  • Figure 54 and Table 15 show the XRPD results of sulfate crystalline Form I.
  • Form I of Form I is 2[ ⁇ ] selected from 6.63 ⁇ 0.2, 17.34 ⁇ 0.2, 17.76 ⁇ 0.2, 18.70 ⁇ 0.2, 18.93 ⁇ 0.2, 20.24 ⁇ 0.2, 20.83 ⁇ 0.2, 21.56 ⁇ 0.2, 24.66 ⁇ 0.2 and 29.00 ⁇ 0.2 ], characterized in that it is specified as a powder X-ray diffraction pattern having 4 or more diffraction peaks.
  • Figure 56 shows the TGA/DSC graph of Form I
  • Figure 57 shows the XRPD results before and after TGA of Form I.
  • Form II was produced in a process study using the slurry method of ethanol of Example 5-1, the antisolvent method of DMF-EtOH of Example 5-4 and the ethanol solvent of Example 4-1.
  • Form II of Form II is 2[ ⁇ ] selected from 6.57 ⁇ 0.2, 13.91 ⁇ 0.2, 16.05 ⁇ 0.2, 17.36 ⁇ 0.2, 18.41 ⁇ 0.2, 19.16 ⁇ 0.2, 19.36 ⁇ 0.2, 20.11 ⁇ 0.2, 20.77 ⁇ 0.2 and 24.31 ⁇ 0.2 ], characterized in that it is specified as a powder X-ray diffraction pattern having 4 or more diffraction peaks.
  • the DSC of FIG. 60 showed a TGA loss of 6.5% at 100-220 °C.
  • crystalline Form 2-II was changed to an amorphous state, which was a phenomenon representing a solvate.
  • Forms of Form III are 7.66 ⁇ 0.2, 16.32 ⁇ 0.2, 17.53 ⁇ 0.2, 18.05 ⁇ 0.2, 18.28 ⁇ 0.2, 18.95 ⁇ 0.2, 19.49 ⁇ 0.2, 19.91 ⁇ 0.2, 21.44 ⁇ 0.2, 22.24 ⁇ 0.2, 23.52 ⁇ 0.2, 24.29 It is characterized as specified by a powder X-ray diffraction pattern having four or more diffraction peaks at a value of 2[ ⁇ ] selected from ⁇ 0.2, 25.10 ⁇ 0.2, 27.37 ⁇ 0.2, 29.07 ⁇ 0.2 and 31.90 ⁇ 0.2.
  • Figure 67 and Table 18 show the XRPD results of sulfate crystalline Form IV.
  • the forms of Form IV are 6.30 ⁇ 0.2, 6.87 ⁇ 0.2, 8.58 ⁇ 0.2, 9.02 ⁇ 0.2, 10.26 ⁇ 0.2, 12.46 ⁇ 0.2, 14.71 ⁇ 0.2, 15.50 ⁇ 0.2, 17.42 ⁇ 0.2, 18.27 ⁇ 0.2, 19.56 ⁇ 0.2, 20.20 It is characterized by being specified as a powder X-ray diffraction pattern having four or more diffraction peaks at 2[ ⁇ ] values selected from ⁇ 0.2, 21.55 ⁇ 0.2, 22.28 ⁇ 0.2 and 28.31 ⁇ 0.2.
  • the DSC of FIG. 69 showed a TGA loss of 4.38% and 1.80% at about 90 °C and 200 °C, respectively.
  • the results of DSC heating at 105 °C for 30 min showed that the water evaporated, indicating that Form IV was a hydroxide, but the same pattern when compared to XRPD overlaid with a DSC/TGA overlay without water removal. This indicated that sulfate crystalline Form IV could reversibly revert back to hydroxide after drying.
  • the results were consistent when comparing XRPD overlaid with DSC/TGA overlay without water removal after vacuum drying at 50°C for 5 days.
  • Form V was produced in the slurry method of Examples 5-1 and the water activity 0.501 of Examples 5-8.
  • Figure 70 and Table 19 show the XRPD results of sulfate crystalline Form V.
  • the forms of Form V are 6.88 ⁇ 0.2, 13.50 ⁇ 0.2, 16.17 ⁇ 0.2, 17.07 ⁇ 0.2, 17.10 ⁇ 0.2, 18.30 ⁇ 0.2, 18.54 ⁇ 0.2, 19.09 ⁇ 0.2, 19.71 ⁇ 0.2, 20.15 ⁇ 0.2, 20.52 ⁇ 0.2, 25.87 It is characterized in that it is specified as a powder X-ray diffraction pattern having four or more diffraction peaks at a value of 2 [ ⁇ ] selected from ⁇ 0.2 and 28.55 ⁇ 0.2.
  • the DSC of FIG. 72 showed one peak of TGA peak loss at 80-100 °C.
  • the XRPD of Form V reverted to pattern 2-III after heating to 105 °C, indicating that Form V is a hydrate and not a new pattern.
  • Form VI was prepared in DMF by a one-week slurry method at 25 °C and 50 °C.
  • Form VI is powder X having 4 or more diffraction peaks at a value of 2 [ ⁇ ] selected from 6.51 ⁇ 0.2, 15.73 ⁇ 0.2, 17.03 ⁇ 0.2, 19.01 ⁇ 0.2, 19.85 ⁇ 0.2, 20.45 ⁇ 0.2 and 24.20 ⁇ 0.2 - Characterized by being characterized by a line diffraction pattern.
  • the XRPD of Form VI was different from Form III, which means that Pattern VI may be a new pattern.
  • the DSC of FIG. 76 showed a peak of 12.87% of TGA loss up to 210°C.
  • the XRPD of Form VI changed to amorphous after heating to 210 °C by TGA (Fig. 77). It is likely a DMF solvate.
  • Form VII is characterized by being characterized by a powder X-ray diffraction pattern having three or more diffraction peaks at a value of 2 [ ⁇ ] selected from 8.15 ⁇ 0.2, 16.30 ⁇ 0.2, 16.61 ⁇ 0.2 and 24.54 ⁇ 0.2.
  • Form IV was heated to remove water and maintained for 10 minutes, and then a new crystalline form was discovered, which was designated as Form VIII.
  • Figure 80 and Table 22 show the XRPD results of sulfate crystalline Form VIII.
  • the form of Form VIII has 2 [ ⁇ ] value, characterized in that it is specified as a powder X-ray diffraction pattern having four or more diffraction peaks.
  • Form VIII was different from Form IV, and it was found to be retained under nitrogen charge protection after cooling to 25°C. However, when crystalline Form VIII disappeared after 1 hour when exposed to air, metastable Form VIII was a new pattern, indicating that it was a new crystalline form that was easy to absorb water and change to IV (FIG. 81).
  • Scale-up was carried out for four crystalline forms of the crystalline form II, III, IV and VI of the compound of formula 1. As a result, the scaled-up crystalline form could be prepared in the same way as the existing crystalline form.
  • Example 7-1 200 mg scale-up of crystalline form II of the sulfate of the compound of formula 1
  • Example 7-2 10 g scale-up of sulfate crystalline Form III of the compound of formula 1
  • Example 7-3 Sulfate crystalline Form IV of the compound of formula 1 500 mg scale-up
  • Example 7-4 300 mg Scale-up of Sulfate Crystalline Form VI of the Compound of Formula 1
  • FIG. 89 shows the XRPD results of the prepared sulfate crystalline Form VI of the compound of Formula 1, and FIG. 90 shows the TGA/DSC results.
  • crystalline Form III was stable under light and shading conditions, and was stable at 60°C for 1 month, and the purity decreased by only 0.67% at 40°C for 1 month.

Abstract

본 발명은 화학식 1의 화합물의 황산염 및 이의 결정형에 관한 것이다. 본 발명에 따른 화학식 1의 화합물의 황산염이 다른 염에 비해 용해도가 훨씬 높으면서, 우수한 안정성 및 체내 흡수율을 나타낸다. 또한, 이러한 황산염은 다양한 결정형을 형성할 수 있으며, 이러한 결정형도 다양한 조건에서 장기간 보관하여도 안정적이고 순도가 거의 감소하지 않아 보관에 유용하다.

Description

5-[(1,1-디옥시도-4-티오몰포리닐)메틸]-2-페닐-N-(테트라하이드로-2H-피란-4-일)-1H-인돌-7-아민 황산염 및 이의 신규 결정형
본 발명은 하기 화학식 1의 화합물, 5-[(1,1-디옥시도-4-티오몰포리닐)메틸]-2-페닐-N-(테트라하이드로-2H-피란-4-일)-1H-인돌-7-아민의 황산염 및 이의 결정형에 관한 것이다.
[화학식 1]
Figure PCTKR2022005210-appb-img-000001
같은 약물의 다양한 염 또는 결정형은 흡습성, 압착에 대한 거동, 보관 도중 안정성 및 밀링된 고체의 유동성과 같은 다양한 고체 상태의 물리적 특성을 나타낼 수 있다. 이러한 성질들은 다시 특정 고체 상태의 상업적 생산을 위한 활성 제약 물질로서의 적합성에 영향을 준다. 예를 들어, 유동성은 물질이 제약 제품으로 가공되는 도중 취급의 용이성에 영향을 준다. 분말화된 화합물의 입자가 쉽게 유동하지 않을 경우, 제제 전문가는 그 사실을 정제 또는 캡슐의 제제를 개발하는 데 고려해야 할 것이며, 이는 콜로이드성 이산화 규소, 탈크, 전분 또는 삼염기성 인산 칼슘과 같은 활제의 사용을 필요로 할 수 있다.
또한, 같은 약물의 상이한 염 또는 결정 형태는 용해 속도 및 생체 이용가능성과 같은 제약상 중요한 성질에 있어서 실질적인 차이를 가질 수 있다. 용해 속도는 시럽, 엘릭시르 및 기타 액체 의약을 조제하는 데 고려될 뿐만 아니라, 치료의 결과를 달라지게 할 수도 있다. 예를 들어, 환자의 위액 중 활성 성분의 용해 속도는, 그것이 경구-투여된 활성 성분이 환자의 혈류에 도달할 수 있는 속도에 상한을 부여하기 때문에, 치료의 결과를 달리하게 된다.
한편, 화학식 1의 화합물, 5-[(1,1-디옥시도-4-티오몰포리닐)메틸]-2-페닐-N-(테트라하이드로-2H-피란-4-일)-1H-인돌-7-아민은 국제특허공개공보 WO2009-025478 를 통해 개시된 화합물로, 세포괴사 및 관련 질환에 대한 예방 또는 치료 및 개선 효과를 나타내는 것으로 알려진 물질이다. 다만, 화학식 1의 화합물은 물 뿐만 아니라 다른 여러가지 용매에서 현저하게 낮은 용해도를 갖는다.
다양한 용매에서 현저하게 낮은 용해도는 완전 용해상태에서 완제품을 만들어야 하는 제약 개발 특성 상 불리한 영향을 미치게 된다. 하나의 예로 주사제 개발에 있어서는 주원료를 부형제와 함께 완전 용해 상태를 이루어야 정확한 용량의 완제품 제형의 완성을 이끌게 된다. 다른 예로 경구용 완제품의 경우에는 가장 흔하게 쓰이는 Spray drying 공법 또한 원료의약품의 완전 용해 상태를 요구하며 이러한 요구사항은 공정 중 균질한 용량의 완제품 제작을 이끌 수 있게 된다. 크림 이나 젤 또는 연고 등의 국소제형 및 패치, 흡입형 제형개발에서도 주원료의 용해도는 큰 영향을 미치게 된다.
이에, 본 발명자들은 화학식 1의 화합물의 용해도 증진을 위해 화학식 1의 화합물의 염 형태에 대한 연구를 지속적으로 수행하였다. 그 결과, 본 발명자들은 화학식 1의 화합물의 물리화학적으로 가장 우수한 염을 찾았으며, 이러한 염의 다양한 결정형 및 이의 특성을 확인하였다.
[선행기술문헌]
[특허문헌]
국제특허공개공보 WO2009-025478
본 발명의 목적은 화학식 1의 화합물의 다양한 염 중 물리화학적으로 우수한 특성을 갖는 화학식 1의 화합물의 황산염을 제공하는 것이다.
본 발명은 또한 화학식 1의 화합물의 황산염의 다양한 결정형을 제공하는 것이다.
본 발명은 또한 화학식 1의 화합물의 황산염의 제조 방법 및 화학식 1의 화합물의 황산염 결정형의 제조방법을 제공하는 것이다.
본 발명은 또한 화학식 1의 화합물의 황산염 또는 이의 결정형을 유효성분으로 포함하는 약제학적 조성물을 제공하고자 한다.
본 발명은 또한 화학식 1의 화합물의 황산염 또는 이의 결정형의 용도를 제공하고자 한다.
본 발명은 화학식 1의 화합물의 다양한 염 중 물리화학적으로 우수한 특성을 갖는 화학식 1의 화합물의 황산염을 제공한다.
[화학식 1]
Figure PCTKR2022005210-appb-img-000002
상기 화학식 1의 화합물의 황산염은 하기 화학식 2로 나타낼 수 있다.
[화학식 2]
Figure PCTKR2022005210-appb-img-000003
본 발명의 화학식 1의 화합물은 “화합물 1” 또는 “Compound 1”로 지칭될 수 있다.
본 발명은 또한, 화학식 1의 화합물의 황산염의 다양한 결정형을 확인하였으며, 서로 다른 결정 구조를 갖는 8가지(결정형 I, II, III, IV, V, VI, VII, VIII)의 결정형을 확인하였다.
화학식 1의 화합물의 황산염의 결정형 I 은 6.63±0.2, 17.34±0.2, 17.76±0.2, 18.70±0.2, 18.93±0.2, 20.24±0.2, 20.83±0.2, 21.56±0.2, 24.66±0.2 및 29.00±0.2로부터 선택되는 2[θ]값에서 4개 이상, 예컨대, 4개, 5개, 6개, 7개, 8개, 9개, 10개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 한다.
특히, 상기 X선 분말 회절 패턴은 6.63±0.2, 17.34±0.2, 17.76±0.2, 18.93±0.2, 20.24±0.2, 및 24.66±0.2로부터 선택되는 2[θ]값에서 회절 피크를 가지는 것을 특징으로 한다.
화학식 1의 화합물의 황산염의 결정형 II는 6.57±0.2, 13.91±0.2, 16.05±0.2, 17.36±0.2, 18.41±0.2, 19.16±0.2, 19.36±0.2, 20.11±0.2, 20.77±0.2 및 24.31±0.2로부터 선택되는 2[θ]값에서 4개 이상, 예컨대, 4개, 5개, 6개, 7개, 8개, 9개, 10개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 한다.
특히, 상기 X선 분말 회절 패턴은 6.57±0.2, 17.36±0.2, 19.16±0.2, 19.36±0.2, 20.11±0.2, 로부터 선택되는 2[θ]값에서 회절 피크를 가지는 것을 특징으로 한다.
화학식 1의 화합물의 황산염의 결정형 III는 7.66±0.2, 16.32±0.2, 17.53±0.2, 18.05±0.2, 18.28±0.2, 18.95±0.2, 19.49±0.2, 19.91±0.2, 21.44±0.2, 22.24±0.2, 23.52±0.2, 24.29±0.2, 25.10±0.2, 27.37±0.2, 29.07±0.2 및 31.90±0.2로부터 선택되는 2[θ]값에서 4개 이상, 예컨대, 4개, 5개, 6개, 7개, 8개, 9개, 10개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 한다.
특히, 상기 X선 분말 회절 패턴은 7.66±0.2, 17.53±0.2, 18.28±0.2, 및 19.91±0.2, 로부터 선택되는 2[θ]값에서 회절 피크를 가지는 것을 특징으로 한다.
화학식 1의 화합물의 황산염의 결정형 IV는 6.30±0.2, 6.87±0.2, 8.58±0.2, 9.02±0.2, 10.26±0.2, 12.46±0.2, 14.71±0.2, 15.50±0.2, 17.42±0.2, 18.27±0.2, 19.56±0.2, 20.20±0.2, 21.55±0.2, 22.28±0.2 및 28.31±0.2로부터 선택되는 2[θ]값에서 4개 이상, 예컨대, 4개, 5개, 6개, 7개, 8개, 9개, 10개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 한다.
특히, 상기 X선 분말 회절 패턴은 6.30±0.2, 8.58±0.2, 9.02±0.2, 12.46±0.2, 15.50±0.2, 17.42±0.2, 19.56±0.2, 21.55±0.2, 및 22.28±0.2로부터 선택되는 2[θ]값에서 회절 피크를 가지는 것을 특징으로 한다.
화학식 1의 화합물의 황산염의 결정형 V는 6.88±0.2, 13.50±0.2, 16.17±0.2, 17.07±0.2, 17.10±0.2, 18.30±0.2, 18.54±0.2, 19.09±0.2, 19.71±0.2, 20.15±0.2, 20.52±0.2, 25.87±0.2 및 28.55±0.2로부터 선택되는 2[θ]값에서 4개 이상, 예컨대, 4개, 5개, 6개, 7개, 8개, 9개, 10개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 한다.
특히, 상기 X선 분말 회절 패턴은 6.88±0.2, 18.54±0.2, 19.09±0.2, 19.71±0.2, 및 20.15±0.2로부터 선택되는 2[θ]값에서 회절 피크를 가지는 것을 특징으로 한다.
화학식 1의 화합물의 황산염의 결정형 VI는 6.51±0.2, 15.73±0.2, 17.03±0.2, 19.01±0.2, 19.85±0.2, 20.45±0.2 및 24.20±0.2로부터 선택되는 2[θ]값에서 4개 이상, 예컨대, 4개, 5개, 6개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 한다.
특히, 상기 X선 분말 회절 패턴은 6.51±0.2, 17.03±0.2, 19.85±0.2, 및 20.45±0.2 로부터 선택되는 2[θ]값에서 회절 피크를 가지는 것을 특징으로 한다.
화학식 1의 화합물의 황산염의 결정형 VII는 8.15±0.2, 16.30±0.2, 16.61±0.2 및 24.54±0.2로부터 선택되는 2[θ]값에서 3개 이상, 예컨대, 3개, 4개, 5개, 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 한다.
특히, 상기 X선 분말 회절 패턴은 16.30±0.2, 및 16.61±0.2 로부터 선택되는 2[θ]값에서 회절 피크를 가지는 것을 특징으로 한다.
화학식 1의 화합물의 황산염의 결정형 VIII는 상기 결정형이 6.35±0.2, 6.78±0.2, 8.36±0.2, 9.40±0.2, 13.98±0.2, 15.98±0.2, 20.43±0.2, 21.15±0.2, 21.40±0.2, 및 21.61±0.2로부터 선택되는 2[θ]값에서 4개 이상, 예컨대, 4개, 5개, 6개, 7개, 8개, 9개, 10개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 한다.
특히, 상기 X선 분말 회절 패턴은 6.35±0.2, 6.78±0.2, 8.36±0.2 21.15±0.2, 21.40±0.2, 및 21.61±0.2로부터 선택되는 2[θ]값에서 회절 피크를 가지는 것을 특징으로 한다.
본 발명은 하기 화학식 1의 화합물 및 에탄올, 메틸에틸케톤(MEK), 에틸 아세테이트, 메탄올, 또는 아세톤으로부터 선택되는 용매를 포함하는 용액을 가온 하에 교반하는 단계; 및
상기 용액에 상기 용매와 동일한 용매 및 황산을 포함하는 용액을 적가 후 냉각하는 단계를 포함하는 화학식 1의 화합물의 황산염의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2022005210-appb-img-000004
본 발명은 또한, 화학식 1의 화합물 및 메탄올을 포함하는 용액을 가온 하에 교반하는 단계; 및
상기 용액에 상기 메탄올 및 황산을 포함하는 용액을 적가 후 냉각하는 단계를 포함하는 화학식 1의 화합물의 황산염 결정형 III의 제조방법을 제공한다.
상기 화학식 1의 화합물의 황산염 및 이의 결정형 III의 제조 방법에 있어서, 시작물질로 사용되는 화학식 1의 화합물은 무정형 또는 임의의 형태의 결정형이어도 무방하다.
상기 화학식 1의 화합물의 황산염 및 이의 결정형 III의 제조 방법에 있어서, 가온은 30 내지 120℃의 범위까지 온도를 높여 수행할 수 있다.
또한, 상기 냉각은 0 내지 25℃ 범위까지 온도를 낮출 수 있다.
한편, 상기 화학식 1의 화합물의 황산염 및 이의 결정형 III의 제조 방법에 있어서, 상기 교반은 30분 내지 3시간동안 수행될 수 있다.
또한, 상기 적가는 1 시간 내지 8시간동안 수행될 수 있으며, 상기 냉각은 5 내지 30시간동안 수행될 수 있다.
상기 화학식 1의 화합물의 황산염의 결정형 III의 제조 방법에 있어서, 메탄올을 포함하는 용액은 물도 추가로 포함할 수 있으며, 메탄올과 물의 비율은 7:3 내지 9.5:0.5 일 수 있으나, 이에 제한되는 것은 아니다.
상기 화학식 1의 화합물의 황산염 및 이의 결정형 III의 제조 방법에 있어서, 이물질, 여분의 용매 등을 제거함으로써 고순도로 생성물을 수득하기 위하여 이후 여과 또는 건조하는 단계를 추가로 수행할 수 있다.
본 발명은 또한 상기 화학식 1의 화합물의 황산염 또는 이의 결정형, 및 약제학적으로 허용가능한 담체를 포함하는 약제학적 조성물을 제공한다.
본 발명은 또한 하기 질환의 예방 또는 치료에 있어서의 상기 화학식 1의 화합물의 황산염 또는 이의 결정형의 용도를 제공한다.
본 발명은 또한 상기 화학식 1의 화합물의 황산염 또는 이의 결정형을 필요로 하는 대상(subject)에게 약학적으로 유효한 양으로 투여하는 단계를 포함하는, 하기 질환의 예방 또는 치료하는 방법을 제공한다.
WO2009-025478에 따르면, 상기 화학식 1의 화합물은 세포괴사 및 관련 질환에 대한 예방 또는 치료 및 개선 효과를 나타내는 것으로 알려져 있다. WO2009-025478에 따르면, 상기 세포괴사 및 관련 질환은 급성/만성 간 질환 (예를 들어 간염, 간섬유화, 간경변), 신경퇴행성 질환 (예를 들어 치매, 파킨슨병, 헌팅톤병), 허혈성 심장질환, 재관류 손상 (한국 등록특허 10-1325272), 허혈성 뇌졸중 또는 허혈성 손상, 췌장염, 박테리아성/바이러스성 패혈증, 당뇨병 또는 당뇨병성 합병증, 당뇨병성 혈관 질환 [이들 당뇨병은 특히, 췌장세포 파괴 물질들에 기인하며, 바이러스, 고혈당, 지방산, 다이어트, 독소, 스트렙토조토신 (streptozotocin) 등에 의해 매개된다], 괴사성 프로콜리티스 (necrotizing procolitis), 낭포성 섬유증, 류마티스성 관절염, 퇴행성 관절염, 신증, 박테리아 감염, 바이러스 감염 (예를 들어 HIV), 다발성 경화증, 백혈병, 림프종, 신생아 호흡곤란증후군, 질식, 결핵, 자궁내막증, 혈관무력증, 건선, 동상, 스테로이드처리 합병증, 회저병, 압통, 혈색소뇨증, 화상, 고열증, 크론씨병, 셀리악병, 구획증후군, 나상맥 손상, 사구체신염, 근이양증, 대사성 유전질환, 마이코플라즈마 질환, 탄저병, 앤더슨병, 선천성 마이토콘드리아병, 페닐케톤뇨증, 태반경색, 매독, 무균성 괴사 등을 포함한다. 또한 약물 및 독성 물질에 의한 세포괴사 및 관련 질환으로는 알코올 중독 및 코카인, 약물 (예를 들어 파라세타몰 (paracetamol), 항생제, 항암제, 아드리아마이신 (adriamycin), 퓨로마이신 (puromycin), 블레오마이신 (bleomycin), NSAID, 사이클로스포린 (cyclosporine), 화학독소 (예를 들어 사염화탄소, 시아니드, 메탄올, 에틸렌 글리콜), 독가스, 농약, 중금속 (예를 들어 납, 수은, 카드뮴)에의 노출 및/또는 이들의 투여 및/또는 자가투여와 관련된 괴사, 방사능/UV에의 노출에 의한 손상 및 이와 관련된 세포괴사로 구성된 그룹에서 선택된다.
또한 상기 화학식 1의 화합물은 세포괴사 및 관련 질환 중, 추가적으로 급성/만성 신장질환, 외상성뇌손상, 신경퇴행성 질환인 루게릭병, 괴사성 대장염 (necrotizing colitis), 바이러스 감염 (예를 들어 SARS-CoV), 건선 및 알러지성 피부염을 포함하는 피부질환, 장기보존/장기이식(한국 등록특허10-1098583, 10-1941004 참조) 등에서도 예방 또는 치료 및 개선 효과를 나타낼 것으로 예상된다.
또한 화학식 1의 화합물을 포함하는 약제학적 조성물은 세포 내 칼슘 조절의 기능을 가지고, 비정상적 세포내 칼슘 레벨에 의한 ER 스트레스 및 미토콘드리아 기능 이상을 개선할 수 있다. 따라서 화학식 1의 화합물을 포함하는 약제학적 조성물은 이와 연관된 관련 질환에 대한 예방 또는 치료 및 개선 효과를 나타낼 것으로 예상된다. 관련 질환은 다음과 같다.
급성폐장애신드롬/급성 폐질환, 폐렴, 결핵, 천식, 폐동맥 고혈압, 만성폐쇄성 폐질환 (chronic obstruction pulmonary disease), 특발성 폐섬유화증 (idiopathic pulmonary fibrosis) 및 낭포성 폐섬유화증 (cystic fibrosis)을 포함하는 염증성 폐질환 (chronic Inflammatory pulmonary disease)(Mitochondrial dysfunction in fibrotic diseases. Cell Death Discov. 2020 Sep 5;6:80. Mitochondrial dysfunction in lung aging and diseases. Eur Respir Rev. 2020 Oct 15;29(157):200165. 참조, 한국 등록 특허 10-1636563 참조)
탈수초화 (demyelination)와 근위축측삭경화증 (ALS; amyotrophic lateral sclerosis)를 포함하는 탈수초질환, 폐동맥고혈압을 포함하는 고혈압, 뇌졸중, 프라이온 질병 (prion disease), 뇌전증, 운동실조 (ataxia), 편두통, 인지력 감퇴, 발작, 떨림, 정신질환 (예를 들어 우울증) (Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium. Oct-Nov 2003;34(4-5):385-97. Mitochondrial disorders: challenges in diagnosis & treatment. Indian J Med Res. 2015 Jan;141(1):13-26. 참조)
인슐린저항성, 고지혈증, 죽상동맥경화증 (atherosclerosis), 크론병과 궤양성결장염을 포함하는 염증성 장질환 (IBD; inflammatory bowel disease), 각종 암 및 암의 전이 (reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014 Jul 20;21(3):396-413. 참조)
시각장애 관련 질병 (예를 들어 색소 망막염, 시신경병, 백내장, 녹내장), 빈혈, 담즙울혈 (cholestasis), 부갑상선 기능저하증, 범혈구 감소증, 췌장 장애, 젖산 산증 (lactic acidosis), 젖산혈증 (lactacidaemia), 청력손실, 저신장, 장폐색증, 심장 전도 결함 (cardiac conduction defect), 심장근육병증 (cardiomyopathy), 자궁내막증, 불임, 조기 갱년기(Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol. 2018 Feb;19(2):77-92. Seminars in medicine of the Beth Israel Hospital, Boston. Mitochondrial DNA and disease. N Engl J Med. 1995 Sep 7;333(10):638-44. Mitochondrial injury and dysfunction in hypertension-induced cardiac damage. Eur Heart J. 2014 Dec 7; 35(46): 3258-3266. 참조)
림바그리드/베커 근위측증 (GGMD/BMD; limbar gride/Becker muscular dystrophy)와 뒤센 근위축증 (DMD; Duchenne muscular dystrophy)을 포함하는 근위측증 질환(Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim Biophys Acta Mol Basis Dis. 2020 May 1;1866(5):165674. 참조)
노화 및 노화관련 질환(Interrelation between ROS and Ca2+ in aging and age-related diseases. Redox Biology. 2020; 6:101678. 참조)
WO2009-025478에 따르면, 화학식 1의 화합물을 포함하는 약제학적 조성물은 간 보호 및 간 기능 개선 효과를 나타낼 뿐아니라 지방간, 간섬유화 및 간경변 등의 만성 간 질환, 바이러스 또는 약물로 인한 간염 등과 같은 급, 만성 간 질환의 예방 또는 치료 효과를 나타낸다. 또한, 그 결과로서 문맥 고혈압 (portal hypertension) 등의 간 질환 합병증을 예방 또는 치료할 수 있지만, 이로 한정되는 것은 아니다. 더욱 특히, 본 발명에 따른 의약 조성물은 또한, 간이식, 알콜성 또는 비알콜성 지방간 (한국 등록특허10-2006247 참조), 간섬유증, 간경변, 바이러스 또는 약물로 인한 간염 중에서 선택된 간 질환의 치료 또는 예방에 효과적이며, 알콜성 급, 만성 간 질환에 효과적이다. 또한, 본 발명에 따른 조성물은 지방산으로부터 유래된 지방간 또는 지방간으로부터 유래된 급, 만성 간질환의 치료 또는 예방에 효과적이다.
한국 등록 특허 10-1852304에 따라 화학식 I의 화합물은 줄기세포를 배양하는 단계를 포함하여 줄기세포 유래 심근세포의 분화 효율 및 성숙도를 증진시킬 수 있다.
또한, WO2016-072692에 따르면, 화학식 1의 화합물은 점막염 예방 및 치료 용도로도 사용 가능하다.
본 명세서에서, “치료”란 발병 증상을 보이는 객체에 사용될 때 질병의 진행을 중단 또는 지연시키는 것을 의미하며, “예방”이란 발병 증상을 보이지는 않지만 그러한 위험성이 높은 객체에 사용될 때 발병 징후를 중단 또는 지연시키는 것을 의미한다.
본 발명에서, 상기 “약제학적 조성물(pharmaceutical composition)”은 본 발명의 화합물과 함께 필요에 따라 약제학적으로 허용되는 담체를 포함할 수 있다.
본 발명에 따른 화학식 1의 화합물, 이의 황산염, 또는 이의 황산염의 결정형은 임상 투여시에 경구 및 비경구의 여러 가지 제형으로 투여될 수 있으며, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 제조된다.
경구투여를 위한 고형 제제에는 정제, 환제, 산제, 과립제, 캡슐제, 트로키제 등이 포함되며, 이러한 고형 제제는 하나 이상의 본 발명의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로스(sucrose) 또는 락토오스(lactose) 또는 젤라틴 등을 섞어 제조된다. 또한, 단순한 부형제 외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용된다. 경구 투여를 위한 액상 제제로는 현탁제, 내용 액제, 유제 또는 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.
비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁용제, 유제, 동결건조제제, 좌제 등이 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용될 수 있다.
또한, 본 발명의 화학식 1의 화합물, 이의 황산염, 또는 이의 황산염의 결정형의 인체에 대한 효과적인 투여량은 환자의 나이, 몸무게, 성별, 투여형태, 건강상태 및 질환 정도에 따라 달라질 수 있으며, 일반적으로 약 0.001-100 mg/kg/일이며, 바람직하게는 0.01-35 mg/kg/일이다. 몸무게가 70 ㎏인 성인 환자를 기준으로 할 때, 일반적으로 0.07-7000 mg/일이며, 바람직하게는 0.7-2500 ㎎/일이며, 의사 또는 약사의 판단에 따라 일정시간 간격으로 1일 1회 내지 수회로 분할 투여할 수도 있다.
본 발명에 따른 화학식 1의 화합물의 황산염은 다른 염에 비해 용해도가 훨씬 높으면서, 우수한 안정성 및 체내 흡수율을 나타낸다. 또한, 이러한 황산염은 다양한 결정형을 형성할 수 있으며, 이러한 결정형 또한 다양한 조건에서 장기간 보관하여도 안정적이고 순도가 거의 감소하지 않아 보관에 유용하다.
도 1 내지 13 은 화학식 1의 화합물에 대한 4종의 용매(아세톤, THF, DMSO, IPA/H2O) 하 카운터 이온별 XRPD 결과를 보여준다.
도 14는 화합물 1의 염산염의 DSC/TGA 결과를, 도 15는 황산염의 DSC/TGA 결과를, 도 16은 메탄설폰산염의 DSC/TGA 결과를, 도 17은 파라톨루엔설폰산염의 DSC/TGA 결과를, 도 18은 말레산염의 DSC/TGA 결과를 보여준다.
도 19는 물리화학적 안정성 시험에서 화합물 1의 free form의 HPLC 스펙트럼을, 도 20은 화합물 1의 염산염의 HPLC 스펙트럼을, 도 21은 황산염의 HPLC 스펙트럼을, 도 22는 메탄설폰산염의 HPLC 스펙트럼을, 도 23은 파라톨루엔설폰산염의 HPLC 스펙트럼을, 도 24는 말레산염의 HPLC 스펙트럼을 보여준다.
도 25는 물리화학적 안정성 시험에서 화합물 1의 free form의 XRPD 결과를, 도 26은 화합물 1의 염산염의 XRPD 결과를, 도 27은 황산염의 XRPD 결과를, 도 28은 메탄설폰산염의 XRPD 결과를, 도 29는 파라톨루엔설폰산염의 XRPD 결과를, 도 30은 말레산염의 XRPD 결과를 보여준다.
도 31은 화학식 1의 화합물 및 이의 5종의 염의 약물동태시험 결과를 보여준다.
도 32는 5종의 용매 하에서 생성된 화합물 1의 황산염의 XRPD 결과를 보여준다.
도 33은 에탄올 용매하 생성된 화합물 1의 황산염의 DSC/TGA 결과를, 도 34는 메틸에틸케톤 용매 하, 도 35는 에틸 아세테이트 용매 하, 도 36은 메탄올/물=9/1 용매 하, 도 37은 메탄올/물=9/1 용매 하, 50 ℃에서 5일 동안 건조 후, 도 38은 아세톤/물=9/1 용매 하에서 얻은 황산염의 DSC/TGA 결과를 보여준다.
도 39는 실시예 5-1의 슬러리법(25°C, 1 주)을 통하여 생성된 화합물 1의 황산염의 XRPD 결과를 보여주고, 도 40은 슬러리법(50°C, 1 주)을 통하여, 도 41은 슬러리법(25°C, 4주)을 통하여, 도 42는 슬러리법(50°C, 4 주)을 통하여 생성된 화합물 1의 황산염의 XRPD 결과를 보여준다.
도 43은 실시예 5-2의 저속 증발법을 통하여 생성된 화합물 1의 황산염의 XRPD 결과를 보여준다.
도 44는 실시예 5-3의 가열-냉각법에 따른 화합물 1의 황산염의 XRPD 결과를 보여준다.
도 45는 실시예 5-4의 반용매법에 따른 화합물 1의 황산염의 XRPD 결과를 보여준다.
도 46은 실시예 5-6의 결정화법 1로 생성된 화합물 1의 황산염의 DSC 결과를 보여준다.
도 47은 실시예 5-6의 결정화법 2로 생성된 화합물 1의 황산염의 DSC 결과를 보여준다.
도 48은 실시예 5-6의 결정화법 1 및 2로 생성된 화합물 1의 황산염의 XRPD 결과를 보여준다.
도 49는 실시예 5-7의 화합물 1의 황산염의 DVS 결과를, 도 50은 실시예 5-7의 화합물 1의 황산염의 DVS 시험 후 XRPD결과를 보여준다.
도 51은 실시예 5-8의 물 활성 시험에 따른 화합물 1의 황산염의 XRPD 결과를 보여준다.
도 52는 실시예 5-9의 압축 거동 시험에 따른 화합물 1의 황산염의 XRPD 결과를 보여준다.
도 53은 실시예 5-10의 연삭법에 따른 화합물 1의 황산염의 XRPD 결과를 보여준다.
도 54는 화합물 1의 황산염 결정형 I의 XRPD 결과를 보여준다.
도 55는 화합물 1의 황산염 결정형 I의 HPLC 스펙트럼을 보여준다.
도 56은 화합물 1의 황산염 결정형 I의 TGA/DSC 그래프를, 도 57은 결정형 I의 TGA 전후의 XRPD 결과를 보여준다.
도 58은 화합물 1의 황산염 결정형 II의 XRPD 결과를 보여준다.
도 59는 화합물 1의 황산염 결정형 II의 HPLC 스펙트럼을 보여준다.
도 60은 화합물 1의 황산염 결정형 II의 TGA/DSC을, 도 61은 화합물 1의 황산염 결정형 II의 TGA 전 후의 XRPD 결과를 보여준다.
도 62는 화합물 1의 황산염 결정형 III의 XRPD 결과를 보여준다.
도 63은 화합물 1의 황산염 결정형 III의 HPLC 스펙트럼을 보여준다.
도 64는 화합물 1의 황산염 결정형 III의 TGA/DSC을, 도 65는 화합물 1의 황산염 결정형 III의 1H-NMR을, 도 66은 황산염 결정형 III의 TGA 전 후의 XRPD 결과를 보여준다.
도 67은 화합물 1의 황산염 결정형 IV의 XRPD 결과를 보여준다.
도 68은 화합물 1의 황산염 결정형 IV의 HPLC 결과를 보여준다. 도 69는 화합물 1의 황산염 결정형 IV의 TGA/DSC을 보여준다.
도 70은 화합물 1의 황산염 결정형 V의 XRPD 결과를 보여준다.
도 71은 화합물 1의 황산염 결정형 V의 HPLC 스펙트럼을, 도 72는 화합물 1의 황산염 결정형 V의 TGA/DSC을, 도 73은 화합물 1의 황산염 결정형 V의 TGA 전 후의 XRPD 결과를 보여준다.
도 74는 화합물 1의 황산염 결정형 VI의 XRPD 결과를 보여준다.
도 75는 화합물 1의 황산염 결정형 VI의 HPLC 스펙트럼을, 도 76은 화합물 1의 황산염 결정형 VI의 TGA/DSC을, 도 77은 화합물 1의 황산염 결정형 VI의 TGA 이후 XRPD 결과를 보여준다.
도 78은 화합물 1의 황산염 결정형 VII의 XRPD 결과를 보여준다.
도 79는 화합물 1의 황산염 결정형 VII의 HPLC 스펙트럼을 보여준다.
도 80은 화합물 1의 황산염 결정형 VIII의 XRPD 결과를, 도 81은 화합물 1의 황산염 결정형 VIII의 XRPD 결과를 보여준다.
도 82는 200mg 스케일업 된 화합물 1의 황산염 결정형 II의 XRPD 결과를, 도 83은 TGA/DSC 결과를 보여준다.
도 84는 10g 스케일업 된 화합물 1의 황산염 결정형 III의 XRPD 결과를, 도 85는 TGA/DSC 결과를 보여준다.
도 86은 500mg 스케일업 된 화합물 1의 황산염 결정형 IV의 XRPD를, 도 87은 HPLC를, 도 88은 DSC/TGA를 보여준다.
도 89는 300mg 스케일업 된 화합물 1의 황산염 결정형 VI의 XRPD를, 도 90은 TGA/DSC를 보여준다.
도 91은 화합물 1의 황산염 결정형 III의 안정성 시험 중 XRPD 변화를 보여준다.
도 92는 화합물 1의 황산염 결정형 III의 안정성 시험 중 HPLC 변화를 보여준다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
[실시예]
약어
하기의 약어가 본 출원에 사용된다.
Figure PCTKR2022005210-appb-img-000005
사용된 기기, 표준, 방법론
1. 분말 X-선 회절 (X-ray Powder diffraction, XRPD)
Bruker D8 Advance powder diffractometer를 사용하여 측정하였다. X-선 회절 패턴은 Cu K-alpha X-선 (l = 1.54179Å) 방사선(40kV/40mA)을 이용하여 시료를 3o ~ 40o에서 회전하면서 기록하였다.
시료의 회전속도 = 15 rpm
scanning rate = 18.5o/min
2. 시차 열분석 (Differential scanning calorimetry, DSC)
TA DSC Q2000과 Discovery DSC-2500을 사용하여 대략 1mg의 시료를 pinhole이 있는 hermetic aluminum pan에 넣고 25oC에서 300oC까지 10oC/min의 속도로 가열하여 측정하였다.
3. 열중량 측정(Thermal gravimetric analysis, TGA)
TGA Q50이나 TA Q5000를 사용하였으며 대략 4mg의 시료를 open platinum pan에 넣고 30oC에서 300oC까지 10oC/min의 속도로 가열하여 측정하였다.
4. 입자 크기 분석 (Particle size Distribution Analyzer, PSD)
0.5 bar의 압력 하에서 RODOS를 이용한 dispersing system으로 Sympatec HELOS particles size analyzer로 측정하였다.
5. 편광 검경 (Polarized Light Microscopy, PLM)
20배율 physical lens를 갖춘 5 megapixel CCD Nikon LV100POL microscope를 사용하였다.
6. 등온수분 흡습/탈습 분석 (Water sorption and desorption study, DVS cycle)
SMS DVS Advantage 1 을 사용하여 샘플 10mg을 메쉬 스테인레스 스틸 바스켓 안에 넣었다. 전체 실험 사이클은 일정한 온도(25℃및 40 - 90% 범위에서 10% RH 간격으로(각 습도 수준에 대해 60 - 360분) 2회 스캔(흡습 및 탈습)으로 구성된다.
실시예 1: 5-[(1,1-디옥시도-4-티오몰포리닐 )메틸 ]-2-페닐-N-(테트라하이드로-2H-피란-4-일)-1H-인돌-7-아민의 제조
[반응식 1]
Figure PCTKR2022005210-appb-img-000006
WO2009-025478에 공지된 화학식 1의 화합물의 제조방법은 상기 반응식 1과 같다. 반응식 1에 따라 제조된 P9는 불순물과 이물질이 다량 포함된 상태이다. 화학식 1의 화합물은 용해도가 매우 낮아 정제가 매우 중요한 과정이 되었다. 초기에 연구용으로 얻은 P9의 이물질과 색을 제거하기 위해 DMSO에 녹여 여과, 반용매로 EtOH을 가하여 화학식 1의 화합물을 얻었다. 또한, 화학식 1의 화합물에 염 형태와 같은 어떠한 변형을 가하지 않은 순수한 형태를 “free form”으로 기재하여, 염 또는 결정형 형태와 구분하였다.
이렇게 제조된 화학식 1의 화합물은 하기 표 1과 같이, 물 뿐만 여러가지 용매에서 현저하게 낮은 용해도를 갖는다. 다양한 용매에서 현저하게 낮은 용해도는 완전 용해된 상태에서 완제품을 만들어야 하는 제약개발에 불리한 영향을 미치게 된다.
따라서, 본 발명은 화학식 1의 화합물의 용해도 증진을 위한 염형태의 화학식 1의 화합물에 대한 연구를 바탕으로 물리화학적으로 안정한 형태의 화학식 1의 화합물의 염 및 이의 결정형에 대한 발명을 다룬다.
Solvent Solubility (mg/mL) Solvent Solubility (mg/mL)
25°C 50°C 25°C 50°C
Methanol (MeOH) 0.59 1.15 Tetrahydrofuran (THF) 17.40 16.26
Ethanol (EtOH) 1.41 1.08 2-Methyltetrahydrofuran (2-MeTHF) 2.78 3.41
Isopropanol (IPA) 0.32 0.54 N-Methyl pyrrolidone (NMP) 160.03 192.42
1-Butanol 0.65 1.00 Dimethyl sulfoxide (DMSO) 43.35 238.15
Acetonitrile (ACN) 3.09 4.04 Chloroform (CHCl3) 4.70 4.62
Acetone 5.29 17.50 Toluene 0.02 0.02
Methyl ethyl ketone (MEK) 6.08 8.12 Heptane <LOQ <LOQ
Methyl-isobutylketone (MIBK) 2.10 2.82 Water 0.001 0.046
Ethyl acetate (EtOAc) 1.36 1.86 MeOH/water=1:1(v/v) 0.03 0.08
Isopropyl acetate
(iPrOAc)
0.71 0.91 Acetone-water (1:2) 0.08 0.16
Methyl tert-butyl ether (MTBE) 0.06 0.07 Acetic acid-water (1:1) 52.77 75.61
N,N-Dimethylformamide (DMF) 206.03 332.99 -
실시예 2: 화학식 1의 화합물의 용매 및 염 스크리닝
실시예 2-1: 카운터 이온 및 용매 선정
화학식 1의 화합물의 pKa (4.50; UV-metric방법)를 기반으로 염 스크리닝 연구를 위한 카운터 이온으로 12개 산을 선정하였고, 아세톤, THF, DMSO, 이소프로판올/water(95/5, v/v)를 염 스크리닝 용매로 선정하였으며, 하기 표 2와 같이 카운터 이온 및 용매의 조합 별로 배치 번호를 부여하였다.
카운터 이온 및 용매별 배치 번호
Counter-ions Acetone THF DMSO IPA/H2O
(95/5, v/v)
Control 0A 0B 0C* 0D
Hydrochloric acid 1A 1B* 1C* 1D*
Sulfuric acid 2A 2B 2C* 2D
Phosphoric acid 3A 3B* 3C* 3D
Methane sulfonic acid 4A 4B 4C* 4D
Acetic acid 5A 5B 5C* 5D
Para-Toluenesulfonic acid monohydrate 6A 6B 6C* 6D*
Maleic acid 7A 7B 7C* 7D
L(+)-Tartaric acid 8A 8B 8C* 8D
Fumaric acid 9A 9B 9C* 9D
Citric acid 10A 10B 10C* 10D
L-Malic acid 11A 11B 11C* 11D
Succinic acid 12A 12B 12C* 12D
*고체 생성을 위해 반용매 첨가
실시예 2-2: 염 스크리닝
다음과 같은 절차로 염 스크리닝을 수행하였으며, 총 52회(4X13)의 스크리닝 실험이 동시에 진행되었다.
파라톨루엔설폰산, 말레산, L- 타르타르산, 푸마르산, 시트르산, L-말산 및 숙신산 등 고체 카운터 이온의 경우, 50mg의 화학식 1의 화합물과 1.1 당량의 카운터 이온의 1 mL 용제를 2 mL바이알에 첨가하였다. 상기 고체 카운터 이온 외에 액체 카운터 이온의 경우, 50mg의 화학식 1의 화합물을 2 mL 바이알에 넣고, 749 μL 용매를 바이알에 첨가하였다. 그 다음 1.1 당량의 카운터 이온 용액 (251 μL, 농도: 0.5 mol/L)을 바이알에 첨가하였다. 이와 동시에 1 mL를 첨가하여 50 mg의 화학식 1의 화합물을 염 생성 유무 판단을 위한 컨트롤로 사용하였다.
모든 실험 바이알은 교반봉과 함께 고온 및 저온 프로그램 냉각 서큘레이터에 올려져 50°C까지 가열되어 900 rpm에서 16시간 동안 교반한 후 4°C에서 75분간 냉각되었다. 이후 현탁액의 고형분은 원심분리 방식으로 수집한 후 진공오븐에서 이틀간 40℃로 건조시킨 뒤 PLM과 XRPD 방법을 이용하여 염 생성 성공 여부를 평가하였다. 완전 용해 시스템의 경우, 반용매를 별도로 추가하여 고형분을 인위적으로 생성한 후 원심분리하여 진공 오븐에서 이틀 동안 건조시킨 후 PLM과 XRPD로 염 생성 성공 여부를 평가하였다. 도 1 내지 13 및 표 3은 표 2의 4종의 용매 하 카운터 이온별 XRPD 결과를 보여준다.
4 종의 용매에서 얻어진 염의 PLM 및 XRPD 실험 결과
No. Counter-ions Acetone THF DMSO IPA/H2O (95/5, v/v)
Con. None S-S*, Pattern A S-S, Pattern A H-C, Pattern A S-S, Pattern A
1 Hydrochloric acid H-S, Pattern 1-I C with wax-C with wax, Amorphouseva H-C, LCeva H-H, Amorphouseva
2 Sulfuric acid S-S, LC S-S, Amorphous H-C, Amorphouseva S-S, Pattern 2-I
3 Phosphoric acid S-S, Pattern A C with wax-C, Pattern Aeva H-C, Pattern Aeva S-S, Pattern A
4 Methane sulfonic acid S-S, Pattern (4-I)+A S-S, LC H-C, LC eva S-S, Pattern 4-I
5 Acetic acid S-S, Pattern A S-S, Pattern A H-C, Pattern Aeva S-S, Pattern A
6 Para-Toluene sulfonic acid H-S, Pattern 6-I C-S, Amorphous H-C, LC eva H-C with wax, LCeva
7 Maleic acid S-S, Pattern 7-I C-S, Pattern 7-II H-C, LC eva S-S, Pattern 7-I
8 L(+)-Tartaric acid S-S, Pattern A S-S, Pattern A H-C, Pattern Aeva S-S, Pattern A
9 Fumaric acid S-S, Pattern A S-S, Pattern A H-C, Pattern Aeva S-S, Pattern A
10 Citric acid S-S, Pattern A S-S, Pattern A H-C, Pattern Aeva S-S, Pattern A
11 L-Malic acid S-S, Pattern A S-S, Pattern A H-C, Pattern Aeva S-S, Pattern A
12 Succinic acid S-S, Pattern A S-S, Pattern A H-C, Pattern Aeva S-S, Pattern A
·*관찰: 초기 → 최종
· 로마 숫자: 동일 염의 다른 결정형 패턴
· 패턴 A: 화학식 1의 화합물의 패턴
· S: 서스펜션
· C: 완전 용해
· H: 현탁액
· LC: 낮은 결정성
· eva: 반용매 첨가 후에 얻어진 고체 샘플.
염 스크리닝 결과
solvent
counter-ion 
Acetone THF DMSO IPA / H2O (95/5, v/v)
None A A A A
Hydrochloric acid 1-I * LC *
Sulfuric acid LC * * 2-I
Phosphoric acid A A A A
Methane sulfonic acid (4-I)+A LC LC 4-I
Acetic acid A A A A
Para-Toluenesulfonic acid 6-I * LC LC
Maleic acid 7-I 7-II LC 7-I
L(+)-Tartaric acid A A A A
Fumaric acid A A A A
Citric acid A A A A
L-Malic acid A A A A
Succinic acid A A A A
·로마 숫자: 동일 염의 다른 결정형 패턴
·패턴 A: 화학식 1의 화합물의 패턴
· *: 비정형 패턴
· LC: 낮은 결정화
상기 표 3 및 표 4에 나타낸 바와 같이, 염 스크리닝 결과, 염산염 (패턴 1-I), 황산염 (패턴 2-I), 메탄설폰산염 (패턴 4-I), 파라톨루엔설폰산염 (패턴 6-I), 말레산염 (패턴 7-I, 7-II) 등 총 6 개의 새로운 결정형을 가진 잠재적 5가지 화학식 1의 화합물의 염 화합물을 발견하였다. 도 14 내지 18 및 표 5는 상기 5가지 화학식 1의 화합물의 염 화합물에 대해 추가적으로 DSC와 TGA 실험을 실시한 결과를 보여준다.
5개의 화학식 1의 화합물의 염 후보군의 특성 확인
Compound 1
Hydrochloride Sulfate Mesylate Tosylate Maleate
Batch No. - 1A 2D 4D 6A 7A
XRPD A 1-I 2-I 4-I 6-I 7-I
Crystallinity(XRD) High High High High High High
Melting Point(DSC, ºC) 274 167, 272 multiple peaks+
193, 271
217 215 200
Enthalpy (DSC, J/g) 120.73 6.85, 45.42 16.07, 30.74 44.49 40.14 91.34
Weight loss (TGA, %) 0.038%
<105ºC
0.494%
<167ºC
0.485%
<105ºC
0.081%
<105ºC
0.306%
<105ºC
0.164%
<105ºC
실시예 3: 화학식 1의 화합물의 염 화합물의 특성 평가
상기 실시예 2의 화학식 1의 화합물 염산염, 황산염, 메탄설폰산염, 파라톨루엔설폰산염 및 말레산염의 특성을 하기와 같이 가상 위장관액 용해도, 물리화학적 안정성, 약물동태시험을 수행하여 확인하였다.
실시예 3-1: 가상 위장관액 용해도 시험
본 발명의 화학식 1의 화합물의 염 화합물에 대한 용해 거동을 평가하기 위해 가상 위장관의 환경에서 pH-의존적 용해도를 평가하였다. 가상 위장관내 환경 평가를 위해 사용된 가상위장관액 미디어(bio-relevant dissolution media)로써 모의 위액(Simulated Gastric Fluid; SGF), 금식상태의 모의 장액(small intestinal contents in the fasted; FaSSIF), 섭식 상태의 모의 장액(small intestinal contents in the fed; FeSSIF)이 사용되었으며, 시험에 대한 상세 설명은 다음과 같다.
5 종의 화학식 1의 화합물의 염 약 5 mg을 2 mL 용량의 바이알 3 개에 나누어 담은 후 가상위장관액 미디어(SGF, FasSSIF 또는 FeSSIF) 1 mL를 각각의 바이알에 첨가하였다. 모든 바이알을 가열교반기 위에 올려놓고 37°C에서 700rpm의 속도로 섞으면서 유지하였다. 화합물이 가상위장관액 미디어에 완전히 용해되었다면, 현탁액에 이를 때까지 각각의 화학식 1의 화합물 염을 추가로 첨가하였다. 용해된 화학식 1의 화합물 염의 농도가 10 mg/mL를 초과하면 더 이상 추가하지 않았다. 37°C에서 24시간 동안 섞은 후 각 바이알에서 300μL의 현탁액을 분리하여 분석하였다.
분석샘플을 14000 rpm에서 5분간 원심분리한 후에 상층액을 ACN:H2O(7/3, v/v)로 10배 희석한 후에 UPLC로 분석하였다. 가상위장관액의 최종 pH를 포함한 용해도 시험 결과는 표 6에 요약되었다.
가상위장관액 내에서의 24시간 후 최종 용해도 및 pH 결과

화학식 1의 화합물의 염
용해도 (mg/mL) / pH
SGF
(pH=1.80)
FaSSIF
(pH=6.53)
FeSSIF
(pH=4.98)
용해도 pH 용해도 pH 용해도 pH
화학식 1의 화합물 free form 0.75 1.89 0.01 6.47 0.07 5.02
화학식 1의 화합물의 염산염 2.19 2.06 0.02 3.64 0.14 4.95
화학식 1의 화합물의 황산염 8.60 1.83 0.10 2.86 0.13 4.91
화학식 1의 화합물의 메탄설폰산염 2.12 1.73 0.01 5.20 0.06 5.00
화학식 1의 화합물의 파라톨루엔설폰산염 0.81 1.97 0.06 5.67 0.03 4.86
화학식 1의 화합물의 말레산염 1.10 2.02 0.01 4.70 0.19 4.97
상기 표 6에 나타낸 바와 같이, SGF, FasSSIF, FeSSIF에서 대부분의 염들이 화학식 1의 화합물 대비 높은 용해도를 보였고, 그 중 황산염이 free form 대비 모의 위액 (SGF; pH 1.8)에서 약 11배, 금식상태의 모의 장액 (FaSSIF; pH6.53)에서 약 10배, 섭식 상태의 모의 장액 (FeSSIF; pH 4.98)에서 2배의 용해도를 보였다. 특히 경구용 제형이 첫번째로 체내에서 분해되는 장기인 위와 관련된 모의 위액(SGF) 상태에서 화학식 1의 화합물의 염 화합물 중 황산염이 가장 높은 용해도를 나타냈다.
실시예 3-2: 물리화학적 안정성 시험
본 발명의 화학식 1의 화합물의 염 화합물에 대한 안정성을 평가하기 위해 고온(60°C), 가속조건(40°C/75% 습도), 광 조사 조건(120만 lux-hr)에서 물리화학적 시험이 진행되었으며, 시험에 대한 상세 설명은 다음과 같다.
약 1mg의 화학식 1의 화합물의 염들을 2 mL 바이알에 넣어 1주일 동안 60°C 와 40°C/75% 습도 조건으로 유지시켰다. 광안정성 시험의 경우 바이알의 뚜껑을 닫지않은 채로 광안정성 챔버에 보관하여 120만 lux-hr의 총 조도에 노출시켰으며, 알루미늄 포일을 이용한 차광 된 바이알은 실험 비교군(Dark control)으로 이용하였다. 안정성 평가는 시각적 관찰에 의한 상태 평가 및 HPLC를 이용한 순도 평가와 XRPD를 이용한 결정형 평가를 진행하였으며, 그 결과를 표 7에 나타냈다. 도 19 내지 24는 화학식 1의 화합물 및 5종의 화학식 1의 화합물의 염의 HPLC 스펙트럼을 보여주며, 도 25 내지 30은 화학식 1의 화합물의 free form 및 5종의 화학식 1의 화합물의 염의 XRPD 그래프를 보여준다. 도 19 내지 30의 “Light”는 광 조사 조건 결과를 나타낸 것이다.
5종의 화학식 1의 화합물의 염에 대한 안정성 연구 결과
Starting materials Conditions Appearance XRPD patterns Final purity (%) Purity change (%) Assay (%)
Compound 1
free form
(99.76%)
60°C, 1 w White powder Pattern A 99.94 +0.18 105.89
40°C/75%RH, 1w White powder Pattern A 99.95 +0.19 110.59
1.2 million lux-hrs White powder Pattern A 99.89 +0.13 107.41
Dark control White powder Pattern A 99.94 +0.18 109.40
Hydrochloride
(Purity: 99.95%)
60°C, 1 w White powder Pattern 1-I 100.0 +0.05 110.29
40°C/75%RH, 1w White powder Pattern 1-I 99.40 -0.55 109.18
1.2 million lux-hrs Light yellow-brown powder Pattern 1-I 99.95 0 108.65
Dark control White powder Pattern 1-I 100.0 +0.05 108.99
Sulfate
(Purity: 99.73%)
60°C, 1 w White powder Pattern 2-I 99.83 +0.1 110.59
40°C/75%RH, 1w White powder Pattern 2-I 99.30 -0.43 109.86
1.2 million lux-hrs Light yellow-brown powder Pattern 2-I 99.87 +0.14 104.98
Dark control White powder Pattern 2-I 99.75 +0.02 105.93
Mesylate
(Purity: 100%)
60°C, 1 w White powder Pattern 4-I 100.0 0 107.36
40°C/75%RH, 1w White powder Pattern 4-I 96.71 -3.29 101.35
1.2 million lux-hrs Yellow-brown powder Pattern 4-I 99.18 -0.82 102.69
Dark control White powder Pattern 4-I 100.0 0 103.03
Tosylate
(Purity: 99.01%)
60°C, 1 w White powder Pattern 6-I 98.96 -0.05 108.33
40°C/75%RH, 1w White powder Pattern 6-I 99.00 -0.01 107.73
1.2 million lux-hrs Yellow-brown powder Pattern 6-I 98.77 -0.24 105.78
Dark control White powder Pattern 6-I 98.98 -0.03 108.98
Maleate
(Purity: 97.03%)
60°C, 1 w Yellow powder Pattern 7-I 96.59 -0.44 110.00
40°C/75%RH, 1w Yellow powder Pattern 7-I 96.26 -0.77 108.85
1.2 million lux-hrs Yellow-brown powder Pattern 7-I 96.86 -0.17 109.56
Dark control Yellow powder Pattern 7-I 97.04 +0.01 109.66
상기 표 7에 나타낸 바와 같이, 화학식 1의 화합물의 말레산염은 열, 습도 및 광조사 조건 등 모든 조건에서 민감한 것으로 나타났고, 화학식 1의 화합물의 메탄설폰산염은 습도와 빛 조건에서 민감했으며, 특히 1주일 동안 40℃RH에서 약 3% 이상의 순도 저하가 나타났다. 화학식 1의 화합물의 염산염과 화학식 1의 화합물의 황산염은 습도 조건에서 민감한 것으로 나타났고, 화학식 1의 화합물의 파라톨루엔설폰산염은 빛에 민감한 것으로 나타났다. 5가지 염 모두 광안정성 검사 후 색 변화가 있었다.
실시예 3-3: 약물동태시험
화학식 1의 화합물의 free form 및 본 발명의 화학식 1의 화합물의 5종의 염 화합물에 대하여 생쥐를 이용한 경구투여 약물동태시험을 진행하였으며, 그 결과를 표 8 및 도 31에 나타냈다.
화학식 1의 화합물의 free form 및 5 종의 염들에 대한 약물동태시험 결과
Test article / Dose Compound 1 / 10 mg/kg
Form Free Mesylate Sulfate Hydrochloride Tosylate Maleate
Cmax (ng/mL) 1015.2 2595.2 3154.8 2381.1 3151.3 3115.9
Tmax (hr) 0.5 0.5 0.5 2 0.5 0.5
AUClast(ng·hr/mL) 3603.9 10119.7 11499.35 12261.43 18850.98 15780.45
t1/2 (hr) 1.2 2.3 4.0 3.0 2.8 2.8
Cmax ratio 1.0 2.6 3.1 2.3 3.1 3.1
AUClast ratio 1.0 2.8 3.2 3.4 5.2 4.4
상기 표 8에 나타낸 바와 같이, free form의 median Tmax는 0.5 시간으로 빠르게 흡수된 후 1.2시간의 반감기를 갖는 것으로 나타났다. 화학식 1의 화합물의 메탄설폰산염, 황산염, 파라톨루엔설폰산염, 말레산염의 Tmax는 0.5시간으로 화합물 1 free form 과 비교했을 때 동등한 Tmax를 갖는 반면 2.3-3.0 시간의 보다 긴 반감기를 갖는 것으로 나타났다. 염산염의 Tmax는 2 시간으로 비교적 느리게 흡수되는 것으로 나타났다.
또한, 화학식 1의 화합물의 free form 과 본 발명의 5종의 화학식 1의 화합물의 염 화합물에 대한 체내 노출도를 비교한 결과, 모든 염이 free form 보다 체내노출도가 높은 것으로 나타났으며, 각 염 간의 노출도 차이는 크지 않은 것으로 나타났다.
실시예 3의 요약
상기 실시예 3-1 내지 3-3에서 실시한 시험의 결과를 하기 표 9에 요약하여 나타냈다.
화학식 1의 화합물의 free form 및 5 종의 염에 대한 최종 비교 시험 결과
  가상 위장관 액 용해도 (mg/mL) 화학적 안정성
(순도 변화 %/ 1주)
약물동태 시험
SGS FaSSIF FeSSIF 60°C 40°C /75%RH 광안정성 AUC (ng·hr/mL) t1/2 (hr)
화학식 1의 화합물의 free form 0.75 0.01 0.07 0.18 0.19 0.13 3603.90 1
염산염 2.19 0.02 0.14 0.18 - 0.05 0 12261.43 3
황산염 8.6 0.1 0.13 0.1 -0.43 0.14 11499.35 4
메탄설폰산염 2.12 0.01 0.06 0 -3.29 -0.82 10119.70 2
파라톨루엔설폰산염 0.81 0.06 0.03 -0.05 -0.01 -0.24 18850.98 3
말레산염 1.1 0.01 0.19 -0.44 -0.77 -0.17 15780.45 3
상기 표 9에 나타낸 바와 같이, 가상위장관액 용해 시험, 안정성 시험 및 약물동태 시험 결과를 바탕으로, 실시예 2의 염 스크리닝으로 얻은 염들 중에서 황산염이 free form 및 다른 염과 비교한 결과, 뛰어난 약리적 특성을 유지하면서 현저하게 낮은 용해도를 증진시켜 체내 흡수율을 높일 수 있는 가장 우수한 염으로 밝혀졌다.
보다 구체적으로 가상 위장관액 용해도 시험 결과, 화학식 1의 화합물의 황산염이 화학식 1의 화합물의 free form 대비 모의 위액(SGF; pH 1.8)에서 약 11배, 금식상태의 모의 장액(FaSSIF; pH6.53)에서 약 10배, 섭식 상태의 모의 장액(FeSSIF; pH 4.98)에서 2배의 용해도를 보였다. 또한 안정성 시험에서는 습도 조건을 제외한 고온 및 광안정성 조건에서 화학식 1의 화합물의 황산염이 화학식 1의 화합물의 free form과 대등한 결과를 나타냈다. 쥐를 이용한 약물동태 비교 시험에서 화학식 1의 화합물의 황산염이 화학식 1의 화합물의 free form 과 동일 용량으로 투약되었을 때 약 3.2배 (화학식 1의 화합물의 free form: 3603.9 ng·hr/mL vs 화학식 1의 화합물의 황산염: 11499.35 ng·hr/mL)의 뛰어난 체내 흡수율을 보이는 것으로 나타났다.
위와 같은 결과를 바탕으로 최종적으로 화학식 1의 화합물의 황산염을 최종 염 화합물로 선정하였다. 또한, 실시예 2의 염 스크리닝으로 제조된 화학식 1의 화합물의 황산염의 결정형은 결정형 2-I 또는 결정형 I로 명명하였다. 또한 화학식 1의 화합물의 황산염에 대한 추가 공정 및 다결정형 연구에서 새롭게 발견되는 결정형(또는 패턴, pattern)은 2-II, 2-III, 2-IV, 2-V, 2-VI, 2-VII 및 2-VIII 순으로 명명하였고, 이는 각각 결정형 II, III, IV, V, VI, VII 및 VIII을 의미한다.
실시예 4: 황산염에 대한 공정 연구
실시예 3에서 선정한 화학식 1의 화합물을 대량생산에 이용할 수 있는 편리한 공정 확보 및 용매화 생성을 방지하기 위하여 공정 연구를 진행하였다. 화학식 1의 화합물의 용해도 결과를 기준으로 에탄올, MEK, 에틸 아세테이트, 메탄올/물 (9:1) 및 아세톤/물 (9:1)을 화학식 1의 화합물의 황산염 공정 스크리닝 용매로 선정하였다. 각 용매를 사용한 공정 절차 및 결과는 하기와 같다.
실시예 4-1: EtOH 용매
500 mg의 화학식 1의 화합물을 에탄올 7.5 mL에 넣고 51 º에서 500 rpm으로 교반하여 녹였으며, 50°C에서 1시간 동안 유지시켰다. 이러한 용액에 에탄올 황산 용액 (2.502 mL, 0.5 mol/L) 1.1 당량을 4시간 동안 한 방울씩 첨가하였으며, 50°C에서 22시간 동안 유지하였다. 그 후, 5°C로 9시간 동안 식힌 후 5°C에서 24시간 동안 유지하였고, 현탁액을 여과하여 고형분을 채취한 후 에탄올로 세척한 다음 40 ℃에서 16시간 동안 진공 건조시켜, 612.0 mg의 건조된 흰색 고체를 수득하였다.
실시예 4-2: MEK 용매
상기 실시예 4-1에서 에탄올 대신 MEK를 사용하고, 에탄올 황산 용액 대신 MEK 황산 용액을 사용하는 것 외에 동일한 방법으로 진행하였다. 그 결과, 518.7 mg 건조 가루 (노란색 고체)를 수득하였다.
실시예 4-3: EtOAc 용매
상기 실시예 4-1에서 에탄올 대신 에틸 아세테이트를 사용하고, 에탄올 황산 용액 대신 에틸아세테이트 황산 용액을 사용하는 것 외에 동일한 방법으로 진행하였다. 그 결과 557.3 mg 건조 흰색 가루(흰색 고체)를 수득하였다.
실시예 4-4: MeOH/H2O=9/1 용매
상기 실시예 4-1에서 에탄올 대신 메탄올/물 (9/1)를 사용하고, 에탄올 황산 용액 대신 메탄올/물 (9/1) 황산 용액을 사용하는 것 외에 동일한 방법으로 진행하였다. 그 결과 587.3 mg 건조 흰색 가루(흰색 고체)를 수득하였다.
실시예 4-5: Acetone/H2O=9/1 용매
상기 실시예 4-1에서 에탄올 대신 아세톤/물 (9/1)를 사용하고, 에탄올 황산 용액 대신 아세톤/물 (9/1) 황산 용액을 사용하는 것 외에 동일한 방법으로 진행하였다. 그 결과 563.3 mg 건조 흰색 가루(흰색 고체)를 수득하였다.
실시예 4-1 내지 4-5의 용매 별 화학식 1의 화합물의 황산염의 XRPD, DSC, TGA 분석
용매
분석
EtOH MEK EtOAc MeOH/H2O 9/1 Acetone/H2O 9/1
XRPD 결정형 II Low
crystallization
Low
crystallization
결정형 III Low
crystallization
DSC multiple peaks+ 165°C / 44.06J/g ; 231°C/ 20.61J/g multiple peaks+ 75°C / 127.21J/g ; 173°C/ 17.27J/g multiple peaks+ 78°C / 75.14J/g ; 144°C/ 18.60J/g 231°C/ 38.95J/g multiple peaks+ 69°C / 12.25J/g ; 206°C/ 11.80J/g
TGA 1.461%<105°C 5.759%<105°C 5.077%<105°C 2.404%<105°C 6.523%<105°C
표 10은 실시예 4-1 내지 4-5의 다양한 용매를 사용하여 제조된 화학식 1의 화합물의 황산염의 XRPD, DSC 및 TGA를 정리한 것이다. 도 32는 상기 5종의 용매 하에서 생성된 화학식 1의 화합물의 황산염의 XRPD 결과를 보여주며, 도 33 내지 38은 각 용매 별 화학식 1의 화합물의 황산염의 DSC/TGA 결과를 보여준다.
상기 실시예 4-1 내지 4-5의 스크리닝 결과, 에탄올 및 메탄올/물 (9:1)을 용매로 사용했을 때 결정형 형태를 갖는 두 종이 생성되는 것을 발견하였으며, 각각 결정형 II 및 결정형 III로 명명하였다.
실시예 5: 황산염에 대한 다결정형 연구
화학식 1의 화합물의 황산염의 물리적으로 안정한 결정형을 찾기 위해 다결정형 연구를 진행하였다. 먼저, 다결정형 연구를 위해 용매 스크리닝을 진행하였다. 보다 구체적으로 결정형 III를 갖는 약 3mg의 화학식 1의 화합물의 황산염을 2mL 바이알에 넣고, 다양한 용매를 첨가해 해당 용매에 대한 용해도 시험을 수행했다.
다양한 용매에서의 화학식 1의 화합물의 황산염에 대한 용해도 결과
Solvents Solubility (mg/mL) Solvents Solubility (mg/mL)
25°C 50°C 25°C 50°C
MeOH S<2 2<S<3 THF S<2 S<2
EtOH S<2 S<2 2-MeTHF S<2 S<2
IPA S<2 S<2 NMP 156<S<208 202<S<304
1-Butanol S<2 S<2 DMSO 158<S<210 301<S<602
ACN S<2 S<2 CHCl3 S<2 S<2
Acetone S<2 S<2 Toluene S<2 S<2
MEK S<2 S<2 Heptane S<2 S<2
MIBK S<2 S<2 Water S<2 S<2
EtOAc S<2 S<2 MeOH/H2O=1:1(v/v) 2<S<3 9<S<19
iPrOAc S<2 S<2 Acetone-H2O (1:2) 9<S<19 37<S<75
MTBE S<2 S<2 Acetic acid-H2O (1:1) 196<S<295 300<S<599
DMF 202<S<302 304<S<608 - - -
표 11에 나타낸 바와 같이, 화학식 1의 화합물의 황산염은 DMF, NMP, DMSO 및 아세트산/물=1:1 (v:v)에서 150 mg/mL 이상의 뛰어난 용해도를 보였고, MeOH/H2O=1:1 (v:v) 및 아세톤/물=1:1 (v/v)에서 5~40mg/mL 의 양호한 용해도를 보였다. 반면 메탄올, 에탄올, 이소프로판올, 1-부탄올, 아세토니트릴, 아세톤, MEK, MIBK, 에틸 아세테이트, 이소프로필아세테이트, MTBE, 테트라히드로퓨란, 클로로포름, 톨루엔, 헵탄 및 물에서 5mg/mL 이하의 낮은 용해도를 보였다. 이에, 적절한 용해도를 나타내는 용매를 선정하여, 황산염에 대한 다결정형 연구를 수행하였다. 구체적인 다결정형 연구는 하기와 같다.
실시예 5-1: 슬러리법
하기와 같이 용매별로 화학식 1의 화합물의 황산염의 현탁액을 제조하였다. 구체적으로, 결정형 III를 갖는 10mg의 화학식 1의 화합물의 황산염을 2 mL 바이알에 넣고 다양한 용매 1.0 mL를 첨가하여 목표 농도인 10 mg/mL 현탁액을 제조하였다 (용매: 에탄올, 아세톤, MEK, 에틸 아세테이트, MTBE 및 IPA/Water =95:5 (v/v)). 결정형 III를 갖는 300mg의 화학식 1의 화합물의 황산염을 2 mL 바이알에 넣고 용매 0.4 mL를 첨가하여 목표 농도인 750 mg/mL의 현탁액을 제조하였다 (용매: DMSO, DMF 및 NMP). 결정형 III를 갖는 50mg의 화학식 1의 화합물의 황산염을 2 mL 바이알에 넣고 용매 1 mL를 첨가하여 목표 농도인 50 mg/ml의 현탁액을 제조하였다(용매: 아세톤/물=1:2 (v/v)). 결정형 III를 갖는 25mg의 화학식 1의 화합물의 황산염을 2 mL 바이알에 넣고 용매 1 mL를 첨가하여 목표 농도인 25 mg/ml의 현탁액을 제조하였다(용매: 메탄올/물=1:1 (v/v)). 각 현탁액은 25°C 또는 50°C에서 1주 또는 4주 동안 섞는 작업을 진행하였고 30°C의 진공 상태에서 원심분리 및 진공 건조로 고체 샘플을 생성한 후 XRPD 시험을 진행하였다. XRPD 시험결과 새로운 결정형을 확인하였으며, 이를 각각 결정형 V, VI 및 VII라고 명명하였다.
표 12 및 도 39 내지 42는 슬러리법을 통하여 생성된 화학식 1의 화합물의 황산염의 XRPD 결과를 보여준다.
슬러리법을 통하여 생성된 화학식 1의 화합물의 황산염의 XRPD 결과
Solvents Temp. XRPD Results Temp. XRPD Results
1 week 4 weeks 1 week 4 weeks
EtOH 25°C Pattern 2-III Pattern 2-II 50°C Pattern 2-II Pattern 2-II
Acetone Pattern 2-III Pattern 2-III Pattern 2-III Pattern 2-III
MEK Pattern 2-III Pattern 2-III Pattern 2-III Pattern 2-III
EtOAc Pattern 2-III Pattern 2-III Pattern 2-III Pattern 2-III
MTBE Pattern 2-III Pattern 2-III Pattern 2-III Pattern 2-III
DMSO Amorphous Amorphous Amorphous Amorphous
DMF Pattern 2-VI Amorphous Pattern 2-VI Amorphous
NMP Amorphous Amorphous Amorphous Amorphous
MeOH/water (1:1) Pattern 2-V Pattern 2-V Amorphous Amorphous
Acetone/water (1:2) Pattern 2-V Pattern 2-V Pattern 2-V Pattern 2-VII
IPA/water (95:5) Pattern 2-I Pattern 2-I Pattern 2-I Pattern 2-I
실시예 5-2: 저속 증발법
결정형 III를 갖는 10mg의 화학식 1의 화합물의 황산염을 2mL 바이알에 넣고 아세톤/물 = 1/2 (v/v)을 완전히 용해될 때까지 첨가하여 잘 섞은 후, 파라필름을 뚜껑으로 이용하였다. 파라필름에 작은 구멍을 낸 후 상온에서 천천히 증발하도록 두었다. 고체 생성 확인 후 추가적으로 30°C에서 진공건조한 후에 XRPD 시험을 진행하였다. XRPD 시험 결과 저속 증발법을 통한 결정형은 무정형 화학식 1의 화합물의 황산염임을 밝혀냈다. 도 43은 저속 증발법을 통하여 생성된 화학식 1의 화합물의 황산염의 XRPD 결과를 보여준다.
실시예 5-3: 가열-냉각법(Heat-cooling)
결정형 III를 갖는 10 mg의 화학식 1의 화합물의 황산염을 2mL 바이알에 넣고 메탄올/물 = 1:1(v/v)을 첨가하고, 결정형 III를 갖는 25 mg의 화학식 1의 화합물의 황산염을 2mL 바이알에 넣고 아세톤/물 = 1:2 (v/v)을 첨가하였다. 각 바이알을 50°C에서 완전히 용해시킨 후 50°C에서 0°C로 0.5°C/min의 속도로 냉각시킨 다음 20 시간 동안 0°C를 유지시켰다. 현탁액을 14000 rpm으로 5분 동안 원심분리하여 얻어진 고체를 30 °C에서 진공건조한 후 XRPD 시험을 진행하였다. XRPD 시험결과 아세톤/물 = 1:2 (v/v)을 용매로 이용했을 때 무정형 화학식 1의 화합물의 황산염을 생성했지만, 메탄올/물 = 1:1 (v/v)에서 새로운 결정형을 생성하였으며, 이를 결정형 IV라고 명명하였다. 도 44는 가열-냉각법에 따른 화학식 1의 화합물의 황산염의 XRPD 결과를 보여준다.
실시예 5-4: 반용매법
결정형 III를 갖는 약 100mg의 화학식 1의 화합물의 황산염을 여러 개의 4mL 바이알에 각각 넣고 DMF, NMP 및 DMSO를 첨가한 후 충분히 녹을 때까지 첨가한다. 각각의 바이알을 원심분리한 후 상층액을 두 개의 새로운 바이알에 옮겨 담은 다음 고체가 석출되도록 반용매를 첨가하였다 (사용된 용매:반용매는 각각 NMP:EtOH=1v:3v, NMP:EtOAc=1v:4v, DMSO:EtOH=1v:5v, DMSO:MTBE=1v:7v, DMF:EtOH=1v:2v 및 DMF:Acetone=1v:3v). 석출된 고체는 원심분리 후 XRPD 시험을 진행하였다. XRPD 시험 결과 DMF-에탄올 반용매 조건에서 결정형 II가 생성되는 것을 확인할 수 있었다. 표 13 및 도 45는 반용매법에 따른 화학식 1의 화합물의 황산염의 XRPD 결과를 보여준다.
반용매법을 이용한 화학식 1의 화합물의 황산염 결정형
Solvent Name Anti-solvents Observation XRPD results
NMP EtOH Suspension Amorphous
EtOAc Suspension Amorphous
DMSO EtOH Suspension Amorphous
MTBE Clear N/A
DMF EtOH Suspension Pattern 2-II
Acetone Suspension Amorphous
실시예 5-5: 증기확산법
10 mg의 화학식 1의 화합물의 황산염을 4mL 바이알에 넣고 아세톤/물 = 1:2 (v/v)을 충분히 녹을 때까지 첨가하였다. 4mL 바이알에 든 용액을 40mL 바이알에 옮겨 담은 후 반용매인 MEK 및 메탄올을 5mL 첨가한 후 뚜껑을 막아 4 주 동안 보관하였다. XRPD 시험 결과, 새로운 결정형이 생성되지 않았다.
실시예 5-6: 용융-냉각법(melting-cooling)에 의한 결정화법
결정화법 1: 결정형 III를 갖는 3 mg의 화학식 1의 화합물의 황산염을 밀폐 알루미늄팬에 넣고 상온부터 230 °C까지 10°C/분의 속도로 가열하고, 230°C부터 30°C까지 10°C/분의 속도로 냉각한 후 다시 30°C에서 275°C까지 10°C/분의 속도로 가열하였다. 도 46은 결정화법 1로 생성된 화학식 1의 화합물의 황산염의 DSC 결과를 보여준다.
결정화법 2: 결정형 III를 갖는 3 mg의 화학식 1의 화합물의 황산염을 밀폐 알루미늄팬에 넣고 상온부터 240 °C까지 10°C/분의 속도로 가열하고, 240°C부터 30°C까지 10°C/분의 속도로 냉각한 후 다시 30°C에서 275°C까지 10°C/분의 속도로 가열하였다. XRPD 결과에 따르면 새로운 결정형이 생성되지 않았다. 도 47은 결정화법 2로 생성된 화학식 1의 화합물의 황산염의 DSC 결과를 보여준다. 도 48은 상기 결정화법 1 및 2로 생성된 화학식 1의 화합물의 황산염의 XRPD 결과를 보여준다.
실시예 5-7: 수분흡수 및 탈착법 (동적증기흡착(Dynamic Vapor Sorption(DVS) cycle))
결정형 III를 갖는 8 mg의 화학식 1의 화합물의 황산염을 DVS 장치 (SMS DVS INTRINSIC system)에 넣고 상온/대기 상태에서 질량 변화를 기록한 후 XRPD 시험을 진행하였다. XRPD 결과 새로운 결정형이 생성되지 않았다. 도 49는 화학식 1의 화합물의 황산염의 DVS 결과를, 도 50은 화학식 1의 화합물의 황산염의 DVS 시험 후 XRPD결과를 보여준다.
실시예 5-8: 물 활성 시험
결정형 III를 갖는 50 mg의 화학식 1의 화합물의 황산염을 2mL 여러 개의 바이알에 넣고 1mL의 water activity 용액 (0, 0.103, 0.206, 0.301, 0.400, 0.501, 0.603, 0.703, 0.803 및 0.901)을 첨가하여 50 mg/mL의 목표농도의 현탁액을 생성하였다. 각 바이알들은 뚜껑을 막고 봉인하여 25 °C/ 800 rpm 하에서 3일 동안 교반하였다. 샘플은 원심분리 후 30°C에서 진공 건조한 후 XRPD 시험을 진행하였다. XRPD 결과에 따르면 새로운 결정형이 생성되었으나, 이는 앞서 언급된 결정형 III 및 V 와 동일한 결정형이었다. 표 14 및 도 51은 물 활성 시험에 따른 화학식 1의 화합물의 황산염의 XRPD 결과를 보여준다.
화학식 1의 화합물의 황산염의 Water activity 시험
No. Water activity water/acetone
(%, v/v)
Observation XRPD results
1 0 0 suspension Pattern 2-III
2 0.103 0.6% suspension Pattern 2-III
3 0.206 1.5% suspension Pattern 2-III
4 0.301 2.8% suspension Pattern 2-III
5 0.400 5.0% suspension Pattern 2-III
6 0.501 8.6% suspension Pattern 2-V
7 0.603 14.5% suspension Pattern 2-V
8 0.703 24.0% suspension Pattern 2-V
9 0.803 40.0% suspension Pattern 2-V
10 0.901 65.0% suspension Pattern 2-V
실시예 5-9: 압축 거동 시험
결정형 III를 갖는 100mg의 화학식 1의 화합물의 황산염을 2mL 바이알에 넣은 다음 다이캐비티에 옮겨 상부펀치를 다이캐비티에 장착한 후 2, 3, 4 MPa의 압력으로 3분 동안 가압하여 압축된 펠릿을 생성하였다. XRPD 시험 결과 새로운 결정형이 생성되지 않았다. 도 52는 압축 거동 시험에 따른 화학식 1의 화합물의 황산염의 XRPD 결과를 보여준다.
실시예 5-10: 연삭법
결정형 III를 갖는 10mg의 화학식 1의 화합물의 황산염을 막자사발을 이용하여 5분 동안 연삭하였다 (건조 연삭법). 결정형 III를 갖는 10mg의 화학식 1의 화합물의 황산염과 에탄올 20 uL를 막자사발을 이용하여 5 분 동안 연삭하였다 (에탄올을 이용한 습식 건조법). 결정형 III를 갖는 10mg의 화학식 1의 화합물의 황산염과 물 20 uL를 함께 막자사발을 이용하여 5분 동안 연삭하였다 (물을 이용한 습식 건조법). XRPD 시험 결과 새로운 패턴이 생성되지 않았다. 도 53은 연삭법에 따른 화학식 1의 화합물의 황산염의 XRPD 결과를 보여준다.
실시예 5의 요약
실시예 5의 다결정형 연구를 통하여 실시예 3 및 4에서 발견된 결정형 I 내지 III 외에도 총 4개의 새로운 결정형이 발견되었다. 새로운 결정형 IV는 MeOH/water=1:1에서 50℃℃에서 0.5℃의 속도로 열 냉각하는 가열-냉각법을 통해서 생성되었고, 세 개의 새로운 결정형 V, VI 및 VII은 MeOH/water(1:1), DMF 그리고 아세톤/water(1:2) 용매에서 1~4주 동안 슬러리 방법을 통해서 생성되었다. 결정형 V는 물 활성(water activity) 방법 중 물 활성 >0.501인 시스템에서도 발견된 결정형이었다. 저속 증발법(slow evaporation), 반용매법, 증기확산법, 용융-냉각법(melting-cooling)에 의한 결정화법, 수분흡수 및 탈착법, 압축법에서의 거동, 연삭법 등에서 새로운 XRPD 패턴이 발견되지는 않았다.
또한 용융-냉각법, 수분흡수 및 탈착법, 압축법에서의 거동 및 연삭법의 시험 조건에서 화학식 1의 화합물의 황산염의 결정형 III이 유지되는 결과를 보여 각 시험 조건에서 안정함을 확인하였다.
실시예 3의 염 스크리닝, 실시예 4의 공정 연구 및 실시예 5의 다결정 연구에 따라 총 7가지의 화학식 1의 화합물의 황산염 결정형을 확인하였으며, 실시예 3의 요약에서 언급한 것처럼, 차례대로 결정형(또는 패턴, pattern)은 2-I, 2-II, 2-III, 2-IV, 2-V, 2-VI 및 2-VII 순으로 명명하였고, 이는 각각 결정형 I, II, III, IV, V, VI 및 VII를 의미한다. 이에 대한 분석은 하기 실시예 6에서 수행하였다.
실시예 6: 화학식 1의 화합물의 황산염의 결정형 확인
실시예 6-1: 결정형 I 확인
결정형 I는 실시예 2-2에서 수행한 화학식 1의 화합물의 염 스크리닝 및 실시예 5-1에서 수행한 25°C와 50°C에서 IPA/water=95/5의 슬러리 방법에서 생성되었다.
화학식 1의 화합물의 황산염 결정형 I의 특징적인 XRPD 피크의 목록
Angle d value Intensity Intensity %
2-Theta ° Angstrom Count %
6.625 13.331 2527 100.0
9.497 9.305 178 4.8
12.293 7.194 164 3.6
12.758 6.933 163 3.3
13.205 6.699 251 6.8
13.435 6.585 284 8.1
14.816 5.974 179 4.0
15.734 5.628 175 3.5
16.026 5.526 237 5.8
17.342 5.109 1198 43.7
17.757 4.991 811 27.8
18.698 4.742 542 16.5
18.933 4.683 2517 96.3
19.837 4.472 310 7.1
20.242 4.384 1794 67.3
20.827 4.262 485 14.7
21.564 4.118 395 11.5
22.416 3.963 167 2.7
24.663 3.607 817 28.7
25.891 3.438 228 5.1
26.565 3.353 232 5.2
27.181 3.278 190 3.4
28.044 3.179 229 4.9
29.004 3.076 405 12.0
33.130 2.702 198 3.9
36.068 2.488 221 4.7
도 54 및 표 15은 황산염 결정형 I의 XRPD 결과를 보여준다. 결정형 I의 형태는 6.63±0.2, 17.34±0.2, 17.76±0.2, 18.70±0.2, 18.93±0.2, 20.24±0.2, 20.83±0.2, 21.56±0.2, 24.66±0.2 및 29.00±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 분말 X-선 회절패턴으로 특정되는 것을 특징으로 한다. XRPD 분석 결과에 따르면, 결정형 I은 결정형 III과 달랐고, 도 55의 HPLC 시험 결과 99.73%의 순도를 보였으며 0.27%의 분해가 일어났음을 나타내었다 (RT=6.799min).
도 56은 결정형 I의 TGA/DSC 그래프를, 도 57은 결정형 I의 TGA 전후의 XRPD 결과를 보여준다.
황산염을 식별하기 위해 TGA 가열은 170°C와 210°C에서 수행되었다. 도 56의 DSC는 약 200°C에서 TGA 손실이 발생했고 이는 결정형 I이 이소프로판올(IPA) 용매화를 증명하였다.  도 57과 같이 결정형 I은 TGA 170°C에서 5분간 가열한 후에도 이소프로판올이 남아있었고(3.66H1H NMR), 170°C에서 60분간 가열하였을 때 잔여 이소프로판올 : 화학식 1의 화합물의 몰 비율이 2 : 9이었으며 이때 XRPD가 다른 형태로 바뀌었는데, 이는 결정형 I이 IPA 용매화물이고, 격자 에너지가 커서 IPA 용매 제거가 어렵다는 것을 의미한다. 170°C에서 가열 시간을 240분 동안 유지시켰을 때 IPA를 완전히 제거할 수 있었으며 210°C에서 5분간 가열했을 때 검정색으로 변하면서 분해되었다.
실시예 6-2: 결정형 II 확인
결정형 II는 실시예 5-1의 에탄올의 슬러리 방법, 실시예 5-4의 DMF-EtOH의 반용매 방법 및 실시예 4-1의 에탄올 용매를 사용한 공정 연구에서 생성되었다.
황산염 결정형 II의 특징적인 XRPD 피크의 목록
2-Theta d(A) Counts Intensity%
6.569 13.445 608 100.0
13.908 6.363 133 16.2
16.054 5.516 113 12.3
17.362 5.104 415 62.1
18.405 4.817 194 22.6
19.156 4.630 243 30.7
19.358 4.582 347 48.8
20.109 4.412 347 49.0
20.769 4.273 157 16.9
24.311 3.658 169 20.7
도 58 및 표 16은 황산염 결정형 II의 XRPD 결과를 보여준다. 결정형 II의 형태는 6.57±0.2, 13.91±0.2, 16.05±0.2, 17.36±0.2, 18.41±0.2, 19.16±0.2, 19.36±0.2, 20.11±0.2, 20.77±0.2 및 24.31±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 분말 X-선 회절패턴으로 특정되는 것을 특징으로 한다.
XRPD 분석 결과에 따르면 결정형 II는 결정형 III과 다르고, 도 59의 HPLC 시험결과에 따르면 96.81%의 순도를 보였으며 3.19% 분해가 일어났음을 나타내었다 (RT=3.046min). 도 60의 DSC는 100~220°C에서 6.5%의 TGA 손실을 보였다. 도 61와 같이, 220°C에서 30분간 가열한 후 결정형 2-II는 무정형 상태로 바뀌었는데 이는 용매화물을 나타내는 현상이었다.
실시예 6-3: 결정형 III 확인
결정형 III은 실시예 4-4의 메탄올/물=9/1 용매를 사용한 공정 연구, 실시예 5-8의 물 활성 시험에서 생성되었다.
황산염 결정형 III의 특징적인 XRPD 피크의 목록
2-Theta d(A) Counts Intensity%
6.844 12.905 289 7.7
7.657 11.536 1491 49.7
12.255 7.217 168 2.5
13.913 6.360 234 4.6
15.275 5.796 185 2.7
15.786 5.609 328 7.1
16.318 5.428 568 14.8
17.532 5.055 1971 62.8
18.048 4.911 711 18.5
18.277 4.850 3044 100.0
18.946 4.680 521 11.6
19.492 4.550 877 24.1
19.912 4.455 2784 90.9
21.435 4.142 500 11.2
22.236 3.995 535 12.1
22.603 3.931 334 5.1
23.522 3.779 515 11.2
24.288 3.662 1011 28.5
25.102 3.545 581 13.6
27.374 3.255 477 10.5
28.054 3.178 370 6.6
29.070 3.069 730 19.4
29.990 2.977 317 5.4
31.904 2.803 529 12.8
39.624 2.273 302 4.0
도 62 및 표 17은 황산염 결정형 III의 XRPD 결과를 보여준다. 결정형 III의 형태는 7.66±0.2, 16.32±0.2, 17.53±0.2, 18.05±0.2, 18.28±0.2, 18.95±0.2, 19.49±0.2, 19.91±0.2, 21.44±0.2, 22.24±0.2, 23.52±0.2, 24.29±0.2, 25.10±0.2, 27.37±0.2, 29.07±0.2 및 31.90±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 분말 X-선 회절패턴으로 특정되는 것을 특징으로 한다.
도 63의 HPLC 결과에 따르면 98.41%의 순도를 보였고 1.59% 분해를 나타냈다 (RT=3.061분). 도 64의 DSC는 약 230°C에서 1.88%의 TGA 손실 피크를 보였다. 도 65 및 66와 같이 결정형 III은 가열 전 105°C에서 30분간 가열한 후 물이나 메탄올 피크도 보이지 않았으며, 이는 패턴 III가 수분이나 용매화물이 아닌 순수한 황산염 결정형임을 나타낸다.
실시예 6-4: 결정형 IV 확인
결정형 IV는 실시예 5-3의 가열-냉각법(메탄올/물 = 1:1 (v/v))에서 생성되었다.
황산염 결정형 IV의 특징적인 XRPD 피크의 목록
2-Theta d(A) Counts Intensity%
6.296 14.028 154 40.3
6.870 12.857 107 20.1
8.576 10.302 155 39.9
9.020 9.796 193 55.4
10.262 8.613 109 16.8
12.457 7.100 140 27.1
14.711 6.017 141 18.9
15.504 5.711 167 29.1
17.416 5.088 182 28.7
18.269 4.852 163 18.0
19.558 4.535 302 75.7
20.200 4.393 167 17.0
21.554 4.120 361 100.0
22.284 3.986 309 78.6
28.309 3.150 130 17.3
도 67 및 표 18은 황산염 결정형 IV의 XRPD 결과를 보여준다. 결정형 IV의 형태는 6.30±0.2, 6.87±0.2, 8.58±0.2, 9.02±0.2, 10.26±0.2, 12.46±0.2, 14.71±0.2, 15.50±0.2, 17.42±0.2, 18.27±0.2, 19.56±0.2, 20.20±0.2, 21.55±0.2, 22.28±0.2 및 28.31±0.2 로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 분말 X-선 회절패턴으로 특정되는 것을 특징으로 한다.
도 67의 XRPD 결과에 따르면 결정형 IV의 XRPD는 결정형 III과 달랐고, 도 68의 HPLC 결과에 따르면 99.27%의 순도로 0.73% 분해가 보였다 (RT=3.151분). 도 69의 DSC는 약 90°C와 200°C에서 각각 4.38%와 1.80%의 TGA 손실을 보였다. 30분 동안 105°C에서 가열한 DSC 결과는 물이 증발한 것을 나타냈고 이는 결정형 IV가 수산화물임을 나타냈지만, 물을 제거하지 않은 DSC/TGA 오버레이와 겹쳐서 XRPD를 비교했을 때 동일한 패턴을 나타냈다. 이는 황산염 결정형 IV가 건조된 후에 수산화물로 가역적으로 다시 되돌아 갈 수 있음을 나타냈다. 5일간 50℃에서 진공 건조 후에 물을 제거하지 않은 DSC/TGA 오버레이와 겹쳐서 XRPD를 비교했을 때 결과가 일치했다.
실시예 6-5: 결정형 V 확인
결정형 V는 실시예 5-1의 슬러리 방법 및 실시예 5-8의 물 활성 0.501에서 생성되었다.
황산염 결정형 V의 특징적인 XRPD 피크의 목록
2-Theta d(A) Counts Intensity%
6.876 12.845 2180 100.0
7.995 11.050 156 4.4
11.453 7.720 164 4.2
13.495 6.556 357 12.7
16.173 5.476 422 14.8
17.066 5.191 406 12.9
17.102 5.181 386 11.9
18.303 4.843 529 17.8
18.535 4.783 699 25.7
19.086 4.646 2260 99.4
19.707 4.501 758 28.4
20.151 4.403 1030 41.3
20.523 4.324 491 16.0
22.429 3.961 260 6.1
22.801 3.897 307 8.3
23.125 3.843 337 9.7
24.183 3.677 222 4.2
24.882 3.576 237 4.1
25.868 3.442 649 22.7
27.734 3.214 294 5.7
28.548 3.124 479 14.8
29.204 3.055 329 8.2
32.206 2.777 325 8.7
도 70 및 표 19는 황산염 결정형 V의 XRPD 결과를 보여준다. 결정형 V의 형태는 6.88±0.2, 13.50±0.2, 16.17±0.2, 17.07±0.2, 17.10±0.2, 18.30±0.2, 18.54±0.2, 19.09±0.2, 19.71±0.2, 20.15±0.2, 20.52±0.2, 25.87±0.2 및 28.55±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 분말 X-선 회절패턴으로 특정되는 것을 특징으로 한다.
XRPD 결과에 따르면 결정형 V의 XRPD는 결정형 III과 달랐고, 도 71의 HPLC 결과에 따르면 98.14%의 순도로 1.86% 분해를 보였다 (RT=3.149분). 도 72의 DSC는 80-100°C에서 TGA 피크 손실 1개 피크를 보였다. 도 73과 같이 105°C까지 가열된 후 결정형 V의 XRPD는 패턴 2-III로 되돌아갔고, 이는 결정형 V가 새로운 패턴이 아니라 수화물임을 나타냈다.
실시예 6-6: 결정형 VI 확인
결정형 VI는 DMF에서 25°C, 50°C의 1주 슬러리 방법으로 생성되었다.
황산염 결정형 VI의 특징적인 XRPD 피크의 목록
2-Theta d(A) Counts Intensity%
6.514 13.558 1578 26.7
8.502 10.391 418 5.1
9.162 9.645 203 1.1
12.043 7.343 231 0.9
12.534 7.057 422 4.3
15.728 5.630 1241 17.1
16.474 5.377 643 4.9
17.030 5.202 5711 97.9
17.407 5.090 916 8.8
18.013 4.921 623 2.7
18.299 4.844 823 6.1
19.006 4.666 1548 19.0
19.851 4.469 5959 100.0
20.453 4.339 2000 26.6
20.817 4.264 950 7.1
21.530 4.124 1013 8.2
22.654 3.922 745 3.4
24.200 3.675 1816 24.1
24.650 3.609 725 4.3
25.398 3.504 864 7.6
26.107 3.410 795 6.9
28.473 3.132 713 6.1
28.703 3.108 551 3.2
29.151 3.061 586 4.1
29.427 3.033 510 2.8
31.987 2.796 488 3.1
34.070 2.629 358 1.1
35.520 2.525 408 2.3
37.002 2.428 320 0.8
39.492 2.280 306 0.8
도 74 및 표 20은 황산염 결정형 VI의 XRPD 결과를 보여준다. 결정형 VI의 형태는 6.51±0.2, 15.73±0.2, 17.03±0.2, 19.01±0.2, 19.85±0.2, 20.45±0.2 및 24.20±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 분말 X-선 회절패턴으로 특정되는 것을 특징으로 한다.
도 74의 XRPD 결과에 따르면 결정형 VI의 XRPD는 결정형 III과 달랐으며, 이는 패턴 VI가 새로운 패턴일 수 있다는 것을 의미한다. 도 75의 HPLC 결과에 따르면 99.22%의 순도로 0.78% 분해를 보였다 (RT=3.149분). 도 76의 DSC는 210℃까지 TGA 손실 12.87%의 피크가 나타났으며. TGA에 의해 210°C로 가열된 후의 결정형 VI의 XRPD가 무정형으로 변하였다(도 77). 이는 DMF 용매화물일 가능성이 있다.
실시예 6-7: 결정형 VII 확인
결정형 VII는 슬러리 방법 중 아세톤:물=1:1에서 50°C 4주에서 생성되었다.
황산염 결정형 VII의 특징적인 XRPD 피크의 목록
2-Theta d(A) Counts Intensity%
8.153 10.835 460 12.6
16.304 5.432 3224 100.0
16.611 5.333 1241 36.0
24.541 3.624 385 9.0
24.993 3.560 150 1.6
32.895 2.721 317 7.9
33.566 2.668 164 2.9
도 78 및 표 21은 황산염 결정형 VII의 XRPD 결과를 보여준다. 결정형 VII의 형태는 8.15±0.2, 16.30±0.2, 16.61±0.2 및 24.54±0.2로부터 선택되는 2[θ]값에서 3개 이상의 회절 피크를 가지는 분말 X-선 회절패턴으로 특정되는 것을 특징으로 한다.
도 78의 XRPD 결과에 따르면 결정형 VII의 XRPD는 결정형 III과 달랐고, 도 79의 HPLC 결과에 따르면 순도 21.15%에 불과한 과분해를 보였으며, 분해 비율은 XPRD 차이를 일으키는 주요 요인이므로 결정형 VII는 분해 산물이었다.
실시예 6-8: 결정형 VIII 확인
결정형 IV에서 물을 제거하기 위해 가열하여 10분 동안 유지한 후 새로운 결정형이 발견되었으며, 이를 결정형 VIII로 명명하였다.
황산염 결정형 VIII의 특징적인 XRPD 피크의 목록
2-Theta d(A) Counts Intensity%
6.350 13.909 2002 100.0
6.775 13.036 993 40.7
8.012 11.027 422 7.6
8.356 10.573 801 30.0
9.396 9.405 579 16.4
10.427 8.477 477 8.3
12.274 7.205 532 6.8
12.498 7.077 578 9.0
13.983 6.328 736 15.5
15.975 5.544 844 16.0
17.846 4.966 764 6.7
19.033 4.659 834 9.0
19.660 4.512 845 8.9
20.427 4.344 911 12.4
21.149 4.197 1189 28.7
21.401 4.149 1315 36.2
21.614 4.108 1425 42.7
도 80 및 표 22은 황산염 결정형 VIII의 XRPD 결과를 보여준다. 결정형 VIII의 형태는 6.35±0.2, 6.78±0.2, 8.36±0.2, 9.40±0.2, 13.98±0.2, 15.98±0.2, 20.43±0.2, 21.15±0.2, 21.40±0.2, 및 21.61±0.2 로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 분말 X-선 회절패턴으로 특정되는 것을 특징으로 한다.
결정형 VIII은 결정형 IV와 차이가 나타났으며, 25°C로 냉각된 후 질소 충전 보호시 유지되는 것으로 나타났다. 그러나 공기 중에 노출시 1시간 만에 결정형 VIII가 사라지는 것으로 볼 때 준안정한 결정형 VIII은 새로운 패턴이라는 것으로써 물을 흡수하고 IV로 변하기 쉬운 새로운 결정형임을 나타냈다(도 81).
실시예 7: 결정형의 스케일업
화학식 1의 화합물의 결정형 II, III, IV 및 VI의 4종의 결정형에 대해 스케일업을 진행하였다. 그 결과, 스케일업 된 결정형은 기존의 결정형과 동일하게 제조할 수 있었다.
실시예 7-1: 화학식 1의 화합물의 황산염의 결정형 II 200mg 스케일업
약 200 mg의 화학식 1의 화합물의 황산염을 2mL 바이알에 넣고, 4 mL 에탄올 첨가하여 50°C에서 2주 동안 650 rpm으로 교반 후, 30°C에서 16시간 동안 진공 건조한 후 XRPD와 TGA/DSC에 시험을 진행하였다. XRPD 패턴과 DSC/TGA결과 스케일업 된 결정형 II는 기존의 결정형 II와 동일하였다. 도 82는 제조된 화학식 1의 화합물의 황산염 결정형 II의 XRPD 결과를, 도 83은 TGA/DSC 결과를 보여준다.
실시예 7-2: 화학식 1의 화합물의 황산염 결정형 III 10 g 스케일업
약 10g의 화학식 1의 화합물의free form을   MeOH/H2O = 9/1의 149.333 mL에 용해한 후50°C에서 250 rpm으로 15분간 교반한 다음 1.1 당량의 황산 MeOH/H2O = 9/1 용액 (50.114 mL, 0.5mol/L)을 8시간에 걸쳐 한 방울씩 첨가하였다. 그 후 50°C에서 24시간동안 유지시킨 후 5°C 로 9시간 동안 냉각시키고, 24시간 동안 5°C를 유지하였다. 현탁액을 여과하여 MeO/H2O=9/1 용액으로 씻어 준 후 50°C에서 3일 간 진공 건조하였다. 11.11 g의 흰색 가루를 90.75%의 수율로 얻었다. XRPD 패턴과 DSC/TGA 결과 기존의 결정형 III와 동일하였다. 84는 제조된 화학식 1의 화합물의 결정형 III의 XRPD 결과를, 도 85는 TGA/DSC 결과를 보여준다.
실시예 7-3: 화학식 1의 화합물의 황산염 결정형 IV 500 mg 스케일업
약 500 mg의 화학식 1의 화합물의 황산염을 100 mL 바이알에 넣고 50 mL의 MeOH/H2O=1:1 용액을 첨가한후 650 rpm에서 천천히 가온하여 50 °C에서 완전히 용해시켰다. 온도를 50 °C에서 0 °C으로 0.5 °C /min의 속도로 냉각한 후 0°C에서 하루 동안 온도를 유지시켰다. 침전물을 여과한 후 30에서 16시간 동안 진공 건조를 하였다. XRPD 패턴, HPLC 스펙트럼과 DSC/TGA 결과 기존의 결정형 IV와 동일하였다(도 86 내지 88).
실시예 7-4: 화학식 1의 화합물의 황산염 결정형 VI 300 mg 스케일업
약 300 mg의 화학식 1의 화합물의 황산염을 2 mL 바이알에 넣고 0.3 mL의 DMF를 첨가한 후 25 °C에서 650 rpm으로 2 일 동안 교반한 후 원심분리를 통해 고체를 수집하였다. XRPD 패턴과 DSC/TGA 결과 기존의 결정형 VI와 동일하였다.
도 89는 제조된 화학식 1의 화합물의 황산염 결정형 VI의 XRPD 결과를, 도 90은 TGA/DSC 결과를 보여준다.
실시예 8: 화학식 1의 화합물의 황산염 결정형 III의 안정성 시험
1 개월 동안 광조건, 차광조건, 60°C 및 40°C/75% RH에서 결정형 III의 화학적 및 물리적 안정성을 연구하였다. 약 1mg의 화학식 1의 화합물의 황산염 결정형 III을 2 mL 유리병에 넣고 여러 구멍의 알루미늄 포일로 덮은 후 60°C와 40°C/75% RH 등 안정성 챔버에 보관하였다. 광 안정성 시험의 경우 뚜껑 없이 광안정 챔버에 보관되어 120만 럭스 시간의 총 조도에 노출되었으며, 알루미늄 포일로 완전히 덮인 샘플 바이알은 차광 컨트롤(Dark control)로 간주되었다. 2주, 1개월, 2개월, 3개월 동안 시각적 관찰에 의한 외관을 기록한 후 순도 평가와 잔류 고형물에 대한 XPRD 데이터 수집이 이어졌다. 그 결과를 표 23 및 24에 나타내었고, 도 91은 화학식 1의 화합물의 황산염 결정형 III의 안정성 시험 중 XRPD 변화를, 도 92는 HPLC 변화를 보여준다.
화학식 1의 화합물의 황산염 결정형 III의 안정성 시험
Starting materials Conditions Appearance XRPD patterns Final purity Purity change Assay
Pattern III
(Anhydrate,
non-solvate)
Initial White powder Pattern III 99.38% - -
Light Taupe powder Pattern III 99.38% -0.00% 101.77%
Dark White powder Pattern III 99.33% -0.05% 103.17%
60°C 2w White powder Pattern III 99.24% -0.14% 101.08%
1M White powder Pattern III 99.25% -0.13% 106.79%
2M pending pending pending pending pending
3M pending pending pending pending pending
40°C
/75%RH
2w White powder Pattern III 98.77% -0.61% 99.42%
1M White powder Pattern III 98.71% -0.67% 102.84%
2M pending pending pending pending pending
3M pending pending pending pending pending
화학식 1의 화합물의 황산염 결정형 III의 안정성 시험 순도 변화
Peak # RT (min) RRT Area of Sulfate (%)
Initial 1.2 million lux-hrs Dark control 60°C 40°C/75%RH
2w 1M 2w 1M
1 1.512 0.50 - - - - - 0.069 -
2 1.888 0.63 - - - - 0.168 - 0.183
3 2.022 0.67 0.204 0.226 0.209 0.231 - 0.226 -
4 2.036 0.68 - - - - 0.056 - 0.061
5 2.481 0.82 - - - 0.052 - - -
6 2.704 0.91 - - - - - - 0.102
7 3.021 1.00 99.319 99.382 99.326 99.237 99.247 98.769 98.711
8 3.362 1.11 0.069 - 0.069 0.114 - 0.206 -
9 3.355 1.12 - - - - 0.325 - 0.518
10 3.75 1.24 0.215 0.221 0.219 0.211 - 0.321 -
11 3.938 1.32 - - - - 0.088 - 0.149
12 4.299 1.42 0.08 0.073 0.078 0.054 - 0.084 -
그 결과, 결정형 III는 광조건, 차광조건에서 안정적이고, 60℃에서 1개월간 안정했으며, 순도는 40℃에서 1개월동안 0.67%밖에 감소하지 않았다.

Claims (14)

  1. 하기 화학식 1의 화합물의 황산염.
    [화학식 1]
    Figure PCTKR2022005210-appb-img-000007
  2. 제1항에 따른 화학식 1의 화합물의 황산염의 결정형 I로서,
    상기 결정형이 6.63±0.2, 17.34±0.2, 17.76±0.2, 18.70±0.2, 18.93±0.2, 20.24±0.2, 20.83±0.2, 21.56±0.2, 24.66±0.2 및 29.00±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 X선 분말 회절패턴으로 특정되는 것을 특징으로 하는 결정형.
  3. 제1항에 따른 화학식 1의 화합물의 황산염의 결정형 II로서,
    상기 결정형이 6.57±0.2, 13.91±0.2, 16.05±0.2, 17.36±0.2, 18.41±0.2, 19.16±0.2, 19.36±0.2, 20.11±0.2, 20.77±0.2 및 24.31±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 X선 분말 회절패턴으로 특정되는 것을 특징으로 하는 결정형.
  4. 제1항에 따른 화학식 1의 화합물의 황산염의 결정형 III로서,
    상기 결정형이 7.66±0.2, 16.32±0.2, 17.53±0.2, 18.05±0.2, 18.28±0.2, 18.95±0.2, 19.49±0.2, 19.91±0.2, 21.44±0.2, 22.24±0.2, 23.52±0.2, 24.29±0.2, 25.10±0.2, 27.37±0.2, 29.07±0.2 및 31.90±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 하는 결정형.
  5. 제1항에 따른 화학식 1의 화합물의 황산염의 결정형 IV로서,
    상기 결정형이 6.30±0.2, 6.87±0.2, 8.58±0.2, 9.02±0.2, 10.26±0.2, 12.46±0.2, 14.71±0.2, 15.50±0.2, 17.42±0.2, 18.27±0.2, 19.56±0.2, 20.20±0.2, 21.55±0.2, 22.28±0.2 및 28.31±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 하는 결정형.
  6. 제1항에 따른 화학식 1의 화합물의 황산염의 결정형 V로서,
    상기 결정형이 6.88±0.2, 13.50±0.2, 16.17±0.2, 17.07±0.2, 17.10±0.2, 18.30±0.2, 18.54±0.2, 19.09±0.2, 19.71±0.2, 20.15±0.2, 20.52±0.2, 25.87±0.2 및 28.55±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 하는 결정형.
  7. 제1항에 따른 화학식 1의 화합물의 황산염의 결정형 VI로서,
    상기 결정형이 6.51±0.2, 15.73±0.2, 17.03±0.2, 19.01±0.2, 19.85±0.2, 20.45±0.2 및 24.20±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 하는 결정형.
  8. 제1항에 따른 화학식 1의 화합물의 황산염의 결정형 VII로서,
    상기 결정형이 8.15±0.2, 16.30±0.2, 16.61±0.2 및 24.54±0.2로부터 선택되는 2[θ]값에서 3개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 하는 결정형.
  9. 제1항에 따른 화학식 1의 화합물의 황산염의 결정형 VIII로서,
    상기 결정형이 6.35±0.2, 6.78±0.2, 8.36±0.2, 9.40±0.2, 13.98±0.2, 15.98±0.2, 20.43±0.2, 21.15±0.2, 21.40±0.2, 및 21.61±0.2로부터 선택되는 2[θ]값에서 4개 이상의 회절 피크를 가지는 X선 분말 회절 패턴으로 특정되는 것을 특징으로 하는 결정형.
  10. 하기 화학식 1의 화합물 및 에탄올, 메틸에틸케톤(MEK), 에틸아세테이트, 메탄올, 또는 아세톤으로부터 선택되는 용매를 포함하는 용액을 가온 하에 교반하는 단계; 및
    상기 용액에 상기 용매와 동일한 용매 및 황산을 포함하는 용액을 적가 후 냉각하는 단계를 포함하는 제1항에 따른 화학식 1의 화합물의 황산염의 제조방법.
    [화학식 1]
    Figure PCTKR2022005210-appb-img-000008
  11. 하기 화학식 1의 화합물 및 메탄올을 포함하는 용액을 가온 하에 교반하는 단계; 및
    상기 용액에 상기 메탄올 및 황산을 포함하는 용액을 적가 후 냉각하는 단계를 포함하는 제4항에 따른 화학식 1의 화합물의 황산염 결정형 III의 제조방법.
    [화학식 1]
    Figure PCTKR2022005210-appb-img-000009
  12. 제1항에 따른 화학식 1의 화합물의 황산염 또는 제2항 내지 제9항 중 어느 한 항에 따른 화학식 1의 화합물의 황산염의 결정형, 및 약제학적으로 허용가능한 담체를 포함하는 약제학적 조성물.
  13. 제1항에 따른 화학식 1의 화합물의 황산염 또는 제2항 내지 제9항 중 어느 한 항에 따른 화학식 1의 화합물의 황산염의 결정형, 및 약제학적으로 허용가능한 담체를 포함하는 하기 그룹에서 선택되는 세포 괴사 및 관련 질환에 대한 예방 또는 치료용 약제학적 조성물: 급성 또는 만성 간 질환, 치매, 파킨슨병, 헌팅톤병, 허혈성 질환, 당뇨병, 췌장염, 박테리아성 또는 바이러스성 패혈증, 괴사성 프로콜리티스(necrotizing procolitis), 낭포성 섬유증, 류마티스성 관절염, 퇴행성 관절염, 신증, 박테리아 감염, 바이러스 감염, 다발성 경화증, 백혈병, 림프종, 신생아 호흡곤란증후군, 질식, 결핵, 자궁내막증, 혈관무력증, 건선, 동상, 스테로이드처리 합병증, 회저병, 압통, 혈색소뇨증, 화상, 고열증, 크론씨병, 셀리악병, 구획증후군, 나상맥 손상, 사구체신염, 근이양증, 마이코플라즈마 질환, 탄저병, 앤더슨병, 선천성 마이토콘드리아병, 페닐케톤뇨증, 태반경색, 매독 및 무균성 괴사; 및 알코올 중독 및 코카인, 항생제, 항암제, 비스테로이드성 항염증 약물(NSAID), 사이클로스포린 (cyclosporine), 화학독소, 독가스, 농약, 중금속에의 노출 또는 이들의 투여 또는 자가투여와 관련된 괴사, 방사능 또는 UV에의 노출에 의한 손상 및 이와 관련된 세포괴사, 급성/만성 신장질환, 외상성뇌손상, 루게릭병, 괴사성 대장염 (necrotizing colitis), 바이러스 감염, 건선 및 알러지성 피부염을 포함하는 피부질환, 장기보존/장기이식, 급성폐장애신드롬/급성 폐질환, 폐렴, 결핵, 천식, 폐동맥 고혈압, 만성폐쇄성 폐질환 (chronic obstruction pulmonary disease), 특발성 폐섬유화증 (idiopathic pulmonary fibrosis) 및 낭포성 폐섬유화증 (cystic fibrosis)을 포함하는 염증성 폐질환 (chronic Inflammatory pulmonary disease), 탈수초화 (demyelination)와 근위축측삭경화증 (ALS; amyotrophic lateral sclerosis)를 포함하는 탈수초질환, 폐동맥고혈압을 포함하는 고혈압, 뇌졸중, 프라이온 질병 (prion disease), 뇌전증, 운동실조 (ataxia), 편두통, 인지력 감퇴, 발작, 떨림, 정신질환, 인슐린저항성, 고지혈증, 죽상동맥경화증 (atherosclerosis), 크론병과 궤양성결장염을 포함하는 염증성 장질환 (IBD; inflammatory bowel disease), 암 및 암의 전이, 색소 망막염, 시신경병, 백내장 및 녹내장을 포함하는 시각장애 관련 질병, 빈혈, 담즙울혈 (cholestasis), 부갑상선 기능저하증, 범혈구 감소증, 췌장 장애, 젖산 산증 (lactic acidosis), 젖산혈증 (lactacidaemia), 청력손실, 저신장, 장폐색증, 심장 전도 결함 (cardiac conduction defect), 심장근육병증 (cardiomyopathy), 자궁내막증, 불임, 조기 갱년기, 림바그리드/베커 근위측증 (GGMD/BMD; limbar gride/Becker muscular dystrophy)와 뒤센 근위축증 (DMD; Duchenne muscular dystrophy)을 포함하는 근위측증 질환, 노화 및 노화관련 질환, 및 점막염.
  14. 제1항에 따른 화학식 1의 화합물의 황산염 또는 제2항 내지 제9항 중 어느 한 항에 따른 화학식 1의 화합물의 황산염의 결정형을 포함하는 줄기세포로부터 심근세포로의 분화 유도용 조성물.
PCT/KR2022/005210 2021-04-12 2022-04-11 5-[(1,1-디옥시도-4-티오몰포리닐)메틸]-2-페닐-n-(테트라하이드로-2h-피란-4-일)-1h-인돌-7-아민 황산염 및 이의 신규 결정형 WO2022220518A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22788374.1A EP4324829A1 (en) 2021-04-12 2022-04-11 Sulfate of 5-[(1,1-dioxido-4-thiomorpholinyl)methyl]-2-phenyl-n-(tetrahydro-2h-pyran-4-yl)-1h-indole-7-amine, and novel crystal form thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210047170 2021-04-12
KR10-2021-0047170 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022220518A1 true WO2022220518A1 (ko) 2022-10-20

Family

ID=83640463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005210 WO2022220518A1 (ko) 2021-04-12 2022-04-11 5-[(1,1-디옥시도-4-티오몰포리닐)메틸]-2-페닐-n-(테트라하이드로-2h-피란-4-일)-1h-인돌-7-아민 황산염 및 이의 신규 결정형

Country Status (3)

Country Link
EP (1) EP4324829A1 (ko)
KR (1) KR20220141252A (ko)
WO (1) WO2022220518A1 (ko)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025478A1 (en) 2007-08-17 2009-02-26 Lg Life Sciences Ltd. Indole and indazole compounds as an inhibitor of cellular necrosis
KR101098583B1 (ko) 2008-01-04 2011-12-26 주식회사 엘지생명과학 세포, 조직 및 장기 보존 효과를 갖는 인돌 및 인다졸 유도체
KR101325272B1 (ko) 2009-10-26 2013-11-05 주식회사 엘지생명과학 인돌 화합물을 포함하는 약제학적 조성물
WO2016072692A2 (ko) 2014-11-03 2016-05-12 가톨릭대학교 산학협력단 네크록스를 유효성분으로 함유하는 점막염 예방 또는 치료용 조성물
KR101636563B1 (ko) 2014-01-24 2016-07-06 주식회사 엘지생명과학 급성 폐 손상 및 급성 호흡곤란 증후군의 예방 또는 치료용 조성물
KR20160115827A (ko) * 2015-03-26 2016-10-06 주식회사 엘지생명과학 인돌 화합물을 포함하는 제제 및 이의 제조 방법
KR101852304B1 (ko) 2016-08-18 2018-04-25 서울대학교병원 NecroX를 이용한 줄기세포 유래 심근세포의 분화 효율 및 성숙도 증진 방법
KR20180131572A (ko) * 2016-03-22 2018-12-10 장쑤 한서 파마슈티칼 그룹 캄파니 리미티드 Egfr 억제제 유리 염기 또는 산 염 다결정질형, 이의 제조방법 및 응용
KR101941004B1 (ko) 2013-03-25 2019-01-23 주식회사 엘지화학 조절 t 세포로의 분화 유도 및 증식 촉진을 통한 면역 반응 억제용 약학 조성물
KR102006247B1 (ko) 2014-04-18 2019-08-01 주식회사 엘지화학 지방간 질환의 예방 또는 치료용 조성물

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025478A1 (en) 2007-08-17 2009-02-26 Lg Life Sciences Ltd. Indole and indazole compounds as an inhibitor of cellular necrosis
KR101098583B1 (ko) 2008-01-04 2011-12-26 주식회사 엘지생명과학 세포, 조직 및 장기 보존 효과를 갖는 인돌 및 인다졸 유도체
KR101325272B1 (ko) 2009-10-26 2013-11-05 주식회사 엘지생명과학 인돌 화합물을 포함하는 약제학적 조성물
KR101941004B1 (ko) 2013-03-25 2019-01-23 주식회사 엘지화학 조절 t 세포로의 분화 유도 및 증식 촉진을 통한 면역 반응 억제용 약학 조성물
KR101636563B1 (ko) 2014-01-24 2016-07-06 주식회사 엘지생명과학 급성 폐 손상 및 급성 호흡곤란 증후군의 예방 또는 치료용 조성물
KR102006247B1 (ko) 2014-04-18 2019-08-01 주식회사 엘지화학 지방간 질환의 예방 또는 치료용 조성물
WO2016072692A2 (ko) 2014-11-03 2016-05-12 가톨릭대학교 산학협력단 네크록스를 유효성분으로 함유하는 점막염 예방 또는 치료용 조성물
KR20160115827A (ko) * 2015-03-26 2016-10-06 주식회사 엘지생명과학 인돌 화합물을 포함하는 제제 및 이의 제조 방법
KR20180131572A (ko) * 2016-03-22 2018-12-10 장쑤 한서 파마슈티칼 그룹 캄파니 리미티드 Egfr 억제제 유리 염기 또는 산 염 다결정질형, 이의 제조방법 및 응용
KR101852304B1 (ko) 2016-08-18 2018-04-25 서울대학교병원 NecroX를 이용한 줄기세포 유래 심근세포의 분화 효율 및 성숙도 증진 방법

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Interrelation between ROS and Ca2+ in aging and age-related diseases", REDOX BIOLOGY, vol. 6, 2020, pages 101678
"Mitochondrial diseases: the contribution of organelle stress responses to pathology", NAT REV MOL CELL BIOL., vol. 19, no. 2, February 2018 (2018-02-01), pages 77 - 92
"Mitochondrial disorders: challenges in diagnosis & treatment", INDIAN J MED RES., vol. 141, no. 1, January 2015 (2015-01-01), pages 13 - 26
"Seminars in medicine of the Beth Israel Hospital, Boston. Mitochondrial DNA and disease", N ENGL J MED, vol. 333, no. 10, 7 September 1995 (1995-09-07), pages 638 - 44
ANTIOXID REDOX SIGNAL, vol. 21, no. 3, 20 July 2014 (2014-07-20), pages 396 - 413
BIOCHIM BIOPHYS ACTA MOL BASIS DIS., vol. 1866, no. 5, 1 May 2020 (2020-05-01), pages 165674
CELL CALCIUM, vol. 34, no. 4-5, October 2003 (2003-10-01), pages 385 - 97
CELL DEATH DISCOV, vol. 6, 5 September 2020 (2020-09-05), pages 80
COORNAERT ISABELLE, HOFMANS SAM, DEVISSCHER LARS, AUGUSTYNS KOEN, VAN DER VEKEN PIETER, DE MEYER GUIDO R.Y., MARTINET WIM: "Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis", EXPERT OPINION ON DRUG DISCOVERY, vol. 13, no. 6, 1 January 2018 (2018-01-01), London, GB , pages 477 - 488, XP009540349, ISSN: 1746-0441, DOI: 10.1080/17460441.2018.1457644 *
EUR HEART J, vol. 35, no. 46, 7 December 2014 (2014-12-07), pages 3258 - 3266
EUR RESPIR REV, vol. 29, no. 157, 15 October 2020 (2020-10-15), pages 200165

Also Published As

Publication number Publication date
EP4324829A1 (en) 2024-02-21
KR20220141252A (ko) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2021075691A1 (ko) 피리미딘 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
IL294046A (en) Methods for the preparation of n6-((2-azidoethoxy)carbonyl)lysine
WO2022220519A1 (ko) 5-[(1,1-디옥시도-4-티오몰포리닐)메틸]-2-페닐-n-(테트라하이드로-2h-피란-4-일)-1h-인돌-7-아민의 신규 결정형
WO2022220518A1 (ko) 5-[(1,1-디옥시도-4-티오몰포리닐)메틸]-2-페닐-n-(테트라하이드로-2h-피란-4-일)-1h-인돌-7-아민 황산염 및 이의 신규 결정형
WO2021194298A1 (ko) 약물 이합체를 포함하는 나노입자 및 이의 용도
WO2019168357A1 (en) Water soluble salts of lipidated peptides and methods for preparing and using the same
WO2021086069A1 (ko) Ezh2 저해제 및 e3 리가제 바인더를 포함하는 화합물 및 이를 유효성분으로 함유하는 ezh2 관련 질환의 예방 또는 치료용 약학적 조성물
WO2010110622A2 (en) Novel crystal forms of adefovir dipivoxil and processes for preparing the same
WO2020067684A1 (ko) (-)-시벤졸린 숙신산염의 신규한 제조 공정
WO2018097403A1 (ko) 항암제와 디오스제닌의 컨쥬게이트, 이의 제조방법 및 이를 포함하는 항암용 조성물
WO2018056621A1 (ko) 신규한 이미다졸일 피리미딘 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
EP2635580A2 (en) Hydrate of 1-{(2s)-2-amino-4-[2,4-bis(trifluoromethyl)-5,8-di- hydropyrido[3,4-d]pyrimidin-7(6h)-yl]-4-oxobutyl}-5,5-difluoro-piperidin-2-one tartrate
WO2020204426A1 (ko) 퓨로피리미딘 화합물의 산 부가염의 결정형
WO2021225233A1 (ko) 혈관 누출 차단제 화합물의 신규 결정형
WO2013015661A2 (en) Novel prodrugs of 5-(2,4-dihydroxy-5-isopropylphenyl)-n-ethyl-4-(5-methyl1-1,2,4-oxadiazol-3-yl)isoxazole-3-carboxamide
WO2021149900A1 (ko) 이치환 아다만틸 유도체, 이의 약학적으로 허용가능한 염 및 이를 유효성분으로 포함하는 암 성장 억제용 약학적 조성물
WO2023113540A1 (ko) (2r, 3s)-2-(3-(4,5-디클로로-1h-벤조[d]이미다졸-1-일)프로필)피페리딘-3-올의 신규한 산부가염 및 결정형
WO2024005339A1 (ko) 트리아졸로피라진 유도체의 캠실산염
WO2021194291A1 (ko) (-)-시벤졸린 숙신산염의 결정다형
WO2016159666A2 (ko) 결정형 및 이의 제조방법
WO2020017878A1 (en) Novel catechol derivatives or salt thereof, processes for preparing the same, and pharmaceutical compositions comprising the same
WO2024005586A1 (ko) 아이속사졸 유도체 또는 이의 염의 신규한 결정형
WO2023113474A1 (ko) 1-설포닐 피롤 유도체의 신규 염, 이의 제조 방법 및 이를 포함하는 약학 조성물
WO2024005343A1 (ko) 트리아졸로피라진 유도체의 메실산염
WO2022092813A1 (ko) 인덴 유도체 프로드럭의 산부가염 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788374

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18554679

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022788374

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022788374

Country of ref document: EP

Effective date: 20231113