WO2024005343A1 - 트리아졸로피라진 유도체의 메실산염 - Google Patents

트리아졸로피라진 유도체의 메실산염 Download PDF

Info

Publication number
WO2024005343A1
WO2024005343A1 PCT/KR2023/006007 KR2023006007W WO2024005343A1 WO 2024005343 A1 WO2024005343 A1 WO 2024005343A1 KR 2023006007 W KR2023006007 W KR 2023006007W WO 2024005343 A1 WO2024005343 A1 WO 2024005343A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesylate
months
exp
mes2
shows
Prior art date
Application number
PCT/KR2023/006007
Other languages
English (en)
French (fr)
Inventor
최준영
박경의
김나영
Original Assignee
에이비온 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이비온 주식회사 filed Critical 에이비온 주식회사
Publication of WO2024005343A1 publication Critical patent/WO2024005343A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • Triazolopyrazine derivatives are substances used to treat hyperproliferative diseases by inhibiting the activity of c-Met kinase.
  • the free base form, not the salt form, of these triazolopyrazine derivatives is often presented.
  • the present invention provides a mesylate salt that maintains the pharmacokinetics and pharmacological activity of the free base form and improves useful properties, and a method for producing the same. We would like to provide.
  • the present invention relates to a novel mesylate compound of a triazolopyrazine derivative represented by the following formula (1), a method for producing the same, and a pharmaceutical composition containing the same.
  • the present inventors conducted intensive research to develop a composition for efficiently preventing or treating various hyperproliferative disorders caused by abnormal tyrosine kinase activity by discovering the above compounds with inhibitory activity against tyrosine kinases. I tried. As a result, the present inventors discovered that the hitherto unknown new salt compound of the compound of Formula 1 improves the storage stability and photostability of the compound while maintaining its function of inhibiting the activity of c-Met kinase. This invention has been completed.
  • the novel mesylate compound of the compound of Formula 1 of the present invention binds to hepatocyte growth factor (HGF) and activates phosphorylation, thereby triggering cell proliferation, migration, and formation of new blood vessels. Significantly inhibits the activity of c-Met kinase.
  • HGF hepatocyte growth factor
  • the salt compound of the present invention can be usefully used to treat or prevent various abnormal proliferative diseases mediated by abnormal proliferation activation of cells and excessive angiogenesis.
  • novel mesylate compounds of the compound of formula (1) exhibit different physical properties than the pure compounds, such as melting point, hygroscopicity, solubility, flow properties or thermodynamic stability.
  • the salt compound of the compound of Formula 1 provided in the present invention is used in the drug manufacturing process or in the manufacturing process of separate drug formulations such as tablets, capsules, ointments, and suspensions, or in the production of drug forms with optimal pharmacokinetic properties. It can be used to select the most suitable form for pharmacological use.
  • the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of the novel mesylate compound of Formula 1 above.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of hyper proliferative disorder containing the novel salt compound of the compound of formula 1 described above as an active ingredient.
  • hyperproliferative disorder' refers to a pathological condition caused by excessive cell growth, division, and movement that is not controlled by general restriction measures in a normally growing animal body.
  • Hyperproliferative diseases prevented or treated with the composition of the present invention include, for example, cancer, diabetic retinopathy, retinopathy of prematurity, corneal transplant rejection, neovascular glaucoma, erythroderma, proliferative retinopathy, psoriasis, rheumatoid arthritis, osteoarthritis, and autoimmune diseases.
  • cancer which is one of the dysproliferative diseases that can be prevented and treated with the composition of the present invention, is lung cancer, stomach cancer, pancreatic cancer, colon cancer, ovarian cancer, kidney cancer, prostate cancer, or brain tumor.
  • the pharmaceutical composition of the present invention includes a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are those commonly used in preparation, and include lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, Includes, but is limited to, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil. It doesn't work.
  • the pharmaceutical composition of the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, etc.
  • the pure substance of the triazolopyrazine derivative represented by Formula 1 above has many physical properties such as solubility and thermal stability that are not suitable for manufacturing general pharmaceutical compositions.
  • the present inventors conducted various salt screenings to develop salt compounds suitable for preparing pharmacological formulations that improve the solubility and stability of the triazolopyrazine derivatives, and through this, the pharmacological activity of the compounds was continuously maintained. We were able to develop a new maleate compound that maintains high solubility and excellent stability.
  • salt screening was performed on the triazolopyrazine derivative represented by Formula 1 in order to improve the fact that the pure material of the triazolopyrazine derivative has low storage stability and low photostability, and thus has poor drug manufacturing processability, and accordingly, the compound
  • the above problems could be solved by developing a new mesylate compound.
  • the present invention was able to improve the storage stability and light stability of the triazolopyrazine derivative (ABN-401) represented by Chemical Formula 1 by developing a novel mesylate (Methanesulfonic acid) compound of the triazolopyrazine derivative. .
  • the present invention provides a method for producing the mesylate compound and a pharmaceutical composition containing the salt compound as an active ingredient.
  • the present invention relates to a novel mesylate compound of a triazolopyrazine derivative represented by the above formula (1) and a method for producing the same.
  • the novel mesylate compound provided by the present invention improves storage stability and light stability, which were problems with pure substances. This improved the drug manufacturing usefulness and processability of the compound.
  • the mesylate compound efficiently inhibits the activity of c-Met tyrosine kinase, thereby preventing various dysproliferative diseases associated with excessive cell proliferation and growth due to abnormal kinase activity, such as cancer, psoriasis, rheumatoid arthritis, diabetic retinopathy, etc. It can be useful as a treatment.
  • a pharmaceutical composition for inhibiting c-Met tyrosine kinase activity containing the novel salt compound as an active ingredient and a pharmaceutical composition for preventing or treating hyper proliferative disorder are provided.
  • Figure 1 is a temperature profile shown in a salt screening experiment for mesylate compounds.
  • Figure 4 shows high-throughput X-ray crystallographic (HT-XRPD) patterns of the starting material (Form A), Mes1, Mes2, and Mes3.
  • FIG. 5 shows high-throughput
  • FIG. 6 shows TGA (A) analysis and TGMS (B) analysis (heating rate 10°C/min) of Mes1 (Exp. ID SSm4). It showed a mass loss of 4.3% due to acetone and water at 25-40°C. Thermal decomposition of the salt was shown at about 230°C, and the heat flow signal by TGA analysis showed an extensive endothermic reaction due to mass loss at about 160°C.
  • FIG. 8 shows TGA (A) analysis and TGMS (B) analysis (heating rate 10°C/min) of Mes2 (Exp. ID SSm5). It showed a mass loss of 4.5% due to acetone and water at 25-150°C. The heat flow signal from TGA analysis showed an extensive endothermic reaction due to mass loss at approximately 210°C, which appears to be related to melting of the anhydrous form due to decomposition.
  • Figure 9 shows the DSC curve (heating rate 10°C/min) of Mes2 (Exp. ID SSm5).
  • the DSC showed a broad endothermic reaction at 25-120°C, and another endothermic reaction at 218.2°C, possibly related to the melting of the anhydrous form.
  • Figure 10 shows liquid chromatography mass spectrometry of Mes2 (Exp. ID SSm5). The purity of the active ingredient is 100%.
  • Figure 11 shows the overlap of H-NMR spectra (500 MHz, DMSO- d6 ) of ABN401 freebase type (green) and Mes2 (Exp. ID SSm5) (red).
  • the peak corresponding to CI was fluorescently displayed at a signal of 2.3ppm.
  • Residual acetone was fluorescently displayed at a peak of 2.1ppm.
  • FIG. 12 shows high-throughput
  • Figure 13 shows TGA (A) analysis and TGMS (B) analysis (heating rate 10°C/min) of Mes3 (Exp. ID SSm6). It shows a mass loss of 5.6% due to water before thermal decomposition occurs at about 220°C. The heat flow signal from TGA analysis showed a wide range of endothermic reactions due to mass loss at about 200°C.
  • Figure 14 shows high-throughput X-ray crystallographic (HT-XRPD) patterns of the starting material (Form A), Camp1, and Camp2.
  • FIG. 15 shows high-throughput
  • Figure 16 shows TGA (A) analysis and TGMS (B) analysis (heating rate 10°C/min) of Camp1 (Exp. ID SSm14). A mass loss of 3.3% due to water occurred at 25-120°C. Thermal decomposition of the salt was observed above 240°C, and the heat flow signal of TGA showed an endothermic reaction at about 160°C, which appears to be caused by melting of the anhydride of the salt.
  • Figure 17 shows the DSC curve (heating rate 10°C/min) of Camp1 (Exp. ID SSm14).
  • the DSC showed a wide range of endothermic reactions at 25-120°C, which may be related to water loss. There is an extensive endotherm at 164°C, which may be related to the melting of the potential anhydride salt.
  • Figure 18 shows liquid chromatography mass spectrometry of Camp1 (Exp. ID SSm14). The purity of the active ingredient is 100%.
  • Figure 19 shows the overlap of H-NMR spectra (500 MHz, DMSO- d6 ) of ABN401 freebase type (green) and Camp1 (Exp. ID SSm14) (red). Peaks corresponding to CI fluoresced at 9.3, 3.0, 2.7, 2.6, and 2.3 ppm, and between 2.0 and 0.8 ppm.
  • FIG. 20 shows high-throughput
  • Figure 21 shows TGA (A) analysis and TGMS (B) analysis (heating rate 10°C/min) of Camp2 (Exp. ID SSm60). A mass loss of 1.6% due to water occurred at 25-80°C. Thermal decomposition of the salt was observed above 240°C, and the heat flow signal of TGA showed a clear endothermic reaction at about 200°C, which appears to be due to melting of the anhydride of the salt.
  • Figure 22 shows the DSC curve (heating rate 10°C/min) of Camp2 (Exp. ID SSm60).
  • the DSC showed a wide range of endothermic reactions at 25-70°C, which may be related to water loss. There is an extensive endotherm at 208.9°C, which may be related to the melting of the potential anhydride salt.
  • Figure 23 shows the TGA (A) analysis and TGMS (B) analysis of Camp2 (Exp. ID SSm60) after additional drying at 80°C for 1 hour under vacuum (heating rate 10°C/min). A mass loss of 1.6% due to water occurred at 25-70°C.
  • Figure 24 shows liquid chromatography mass spectrometry of Camp2 (Exp. ID SSm60). The purity of the active ingredient is 100%.
  • Figure 25 shows the overlap of H-NMR spectra (500 MHz, DMSO- d6 ) of ABN401 freebase type (green) and Camp2 (Exp. ID SSm60) (red). Peaks corresponding to CI fluoresced at 9.3, 3.0, 2.7, 2.6, and 2.3 ppm, and between 2.0 and 0.8 ppm.
  • Figure 26 shows the high-efficiency X-ray crystal (HT-XRPD) pattern (top) and high-resolution X-ray crystal (HR-XRPD) pattern (bottom) of Mes2 (Exp. ID SSm71).
  • HT-XRPD high-efficiency X-ray crystal
  • HR-XRPD high-resolution X-ray crystal
  • Figure 27 shows TGA (A) analysis and TGMS (B) analysis (heating rate 10°C/min) of Mes2 (Exp. ID SSm71). A mass loss of 3.9% due to water occurred at 25-110°C. Thermal decomposition of the salt was observed at about 240°C, and the heat flow signal of TGA showed an endothermic reaction at 210°C, which appears to be due to melting of the anhydride of the salt.
  • Figure 28 shows the DSC curve (heating rate 10°C/min) of Mes2 (Exp. ID SSm71).
  • the DSC showed a wide range of endotherms at 25-110°C, which may be related to water loss.
  • Figure 29 shows liquid chromatography mass spectrometry of Mes2 (Exp. ID SSm71). The purity of the active ingredient is 99.6%.
  • Figure 30 shows the superimposition of H-NMR spectra (500 MHz, DMSO- d6 ) of ABN401 freebase type (blue) with Mes2 (Exp. ID SSm5) (green) and Mes2 (Exp. ID SSm71) (red). The peak corresponding to CI was fluorescently displayed at 2.3 ppm.
  • Figure 31 shows the change in mass (A) and isothermal change (B) through DVS measurement of Mes2 (Exp. ID SSm71).
  • Figure 32 shows the high-efficiency X-ray crystal (HT-XRPD) pattern (top) and high-resolution X-ray crystal (HR-XRPD) pattern (bottom) of Camp2 (Exp. ID SSm73).
  • HT-XRPD high-efficiency X-ray crystal
  • HR-XRPD high-resolution X-ray crystal
  • Figure 33 shows TGA (A) analysis and TGMS (B) analysis (heating rate 10°C/min) of Camp2 (Exp. ID SSm73).
  • Figure 34 shows the DSC curve (heating rate 10°C/min) of Camp2 (Exp. ID SSm73).
  • the DSC showed a broad endothermic reaction at 25-80°C, which may be associated with water loss.
  • Figure 35 shows liquid chromatography mass spectrometry of Camp2 (Exp. ID SSm73). The purity of the active ingredient is 99.7%.
  • Figure 36 shows the superimposition of H-NMR spectra (500 MHz, DMSO- d6 ) of ABN401 freebase type (blue) with Camp2 (Exp. ID SSm60) (green) and Camp2 (Exp. ID SSm73) (red). Peaks corresponding to CI fluoresced at 9.3, 3.0, 2.7, 2.6, and 2.3 ppm, and between 2.0 and 0.8 ppm.
  • Figure 37 shows the change in mass (A) and isothermal change (B) through DVS measurement of Camp2 (Exp. ID SSm73).
  • Figure 38 shows the high-throughput X-ray crystal (HT-XRPD) pattern of camsylate (Exp. ID SSm73) before (Camp2, bottom) and after (Camp4, top) DVS analysis.
  • HT-XRPD high-throughput X-ray crystal
  • Figure 39 shows (A) Form A (Exp. ID GEN78) exposed to 25°C/60%RH for 1 month and (B) Form A (Exp. ID GEN74) exposed to 40°C/75%RH for 1 month. Shows the results of TGMS analysis (heating rate 10°C/min). Before thermal decomposition at about 230°C, mass losses of 3.7% and 4.0% were caused by water, respectively.
  • Figure 40 shows (A) Form A (Exp. ID GEN79) exposed to 25°C/60%RH for 3 months and (B) Form A (Exp. ID GEN75) exposed to 40°C/75%RH for 3 months. Shows the results of TGMS analysis (heating rate 10°C/min). Before pyrolysis, mass losses due to water were 4.1% and 4.4%, respectively.
  • Figure 41 shows (A) Form A (Exp. ID GEN80) exposed to 25°C/60%RH for 15 months and (B) Form A (Exp. ID GEN77) exposed to 40°C/75%RH for 15 months. Shows the results of TGMS analysis (heating rate 10°C/min). Before thermal decomposition at about 230°C, mass losses of 3.3% and 3.7% were caused by water, respectively.
  • Figure 42 shows (A) Form A (Exp. ID GEN81) exposed to 25°C/60%RH for 24 months and (B) Form A (Exp. ID GEN76) exposed to 40°C/75%RH for 24 months. Shows the results of TGMS analysis (heating rate 10°C/min). Before pyrolysis, mass losses due to water were 5.3% and 5.2%, respectively.
  • Figure 43 shows liquid chromatography mass spectrometry of Form A (Exp. ID GEN81) exposed to 25°C/60%RH for 24 months. The purity of the active ingredient is 87.2%.
  • Figure 44 shows liquid chromatography mass spectrometry of Form A (Exp. ID GEN76) exposed to 40°C/75%RH for 24 months. The purity of the active ingredient is 90.7%.
  • Figure 45 shows the superimposed high-efficiency After exposing GEN70) to 40°C/75%RH for 1 month, Mes2(Exp. ID GEN67) was exposed to 25°C/60%RH for 3 months, Mes2+peak (Exp. ID GEN71) at 40°C After exposure to °C/75%RH for 3 months, Mes2+peak (Exp. ID GEN68) was exposed to 25°C/60%RH for 15 months, and Mes4+peak (Exp. ID GEN73) was exposed to 40°C/60%RH for 15 months. After exposure to 75%RH for 15 months, Mes6 (Exp. ID GEN69) was exposed to 25°C/60%RH for 24 months, followed by Mes6 (Exp.
  • Figure 46 shows Mes2 (Exp. ID GEN66) after being exposed to 25°C/60%RH for 1 month (A) and Mes2 (Exp. ID GEN70) after being exposed to 40°C/75%RH for 1 month (A).
  • B) shows the results of TGMS analysis (heating rate 10°C/min). Before thermal decomposition at about 230°C, mass losses of 8.0% and 10.8% were caused by water, respectively. The heat flow signal showed loss by water and a broad endothermic reaction corresponding to the melting point of approximately 215°C.
  • Figure 47 shows Mes2 (Exp. ID GEN67) after exposure to 25°C/60%RH for 3 months (A) and Mes2 (Exp. ID GEN71) after exposure to 40°C/75%RH for 3 months (A).
  • B) shows the results of TGMS analysis (heating rate 10°C/min). Before thermal decomposition at about 230°C, mass losses of 7.7% and 11.2% were caused by water, respectively. The heat flow signal showed loss by water and a wide endothermic reaction corresponding to the melting point of approximately 210°C.
  • Figure 48 shows Mes2 (Exp. ID GEN68) after exposure to 25°C/60%RH for 15 months (A) and Mes2 (Exp. ID GEN73) after exposure to 40°C/75%RH for 15 months (A).
  • B) shows the results of TGMS analysis (heating rate 10°C/min). Before thermal decomposition at about 230°C, mass losses of 6.5% and 9.6% were caused by water, respectively. The heat flow signal showed loss by water and a wide endothermic reaction corresponding to the melting point of approximately 210°C.
  • Figure 49 shows Mes2 (Exp. ID GEN69) after exposure to 25°C/60%RH for 24 months (A) and Mes2 (Exp. ID GEN73) after exposure to 40°C/75%RH for 72 months (A).
  • B) shows the results of TGMS analysis (heating rate 10°C/min). Mass losses of 8.6% and 12.0% were observed due to water, respectively. The heat flow signal showed an endothermic reaction during water loss.
  • Figure 50 shows liquid chromatography mass spectrometry of Mes2 (Exp. ID GEN66) exposed to 25°C/60%RH for 1 month. The purity of the active ingredient is 99.7%.
  • Figure 51 shows liquid chromatography mass spectrometry of Mes2 (Exp. ID GEN70) exposed to 40°C/75%RH for 1 month. The purity of the active ingredient is 97.2%.
  • Figure 52 shows liquid chromatography mass spectrometry of Mes2 (Exp. ID GEN67) exposed to 25°C/60%RH for 3 months. The purity of the active ingredient is 99.6%.
  • Figure 53 shows liquid chromatography mass spectrometry of Mes2 (Exp. ID GEN71) exposed to 40°C/75%RH for 3 months. The purity of the active ingredient is 99.5%.
  • Figure 54 shows liquid chromatography mass spectrometry of Mes2 (Exp. ID GEN68) exposed to 25°C/60%RH for 15 months. The purity of the active ingredient is 100%.
  • Figure 55 shows liquid chromatography mass spectrometry of Mes2 (Exp. ID GEN73) exposed to 40°C/75%RH for 15 months. The purity of the active ingredient is 100%.
  • Figure 56 shows liquid chromatography mass spectrometry of Mes2 (Exp. ID GEN69) exposed to 25°C/60%RH for 24 months. The purity of the active ingredient is 99.6%.
  • Figure 57 shows liquid chromatography mass spectrometry of Mes2 (Exp. ID GEN72) exposed to 40°C/75%RH for 24 months. The purity of the active ingredient is 100%.
  • Figure 58 shows the superimposed high-efficiency X-ray crystal pattern of Camp2 (Exp. ID SSm73), which shows, from bottom to top, Camp2 (Exp. ID After GEN54) was exposed to 40°C/75%RH for 1 month, Camp2 (Exp. ID GEN51) was exposed to 25°C/60%RH for 3 months, and Camp4 (Exp. ID GEN55) was exposed to 25°C/60%RH for 3 months. After exposure to 60%RH for 3 months, Camp2 (Exp. ID GEN52) was exposed to 25°C/60%RH for 15 months, and Camp4 (Exp. ID GEN56) was exposed to 40°C/75%RH for 15 months. After exposure for 24 months, Camp2 (Exp. ID GEN53) was exposed to 25°C/60%RH for 24 months, and Camp3+E (Exp. ID GEN57) was exposed to 40°C/75%RH for 24 months. represents.
  • Figure 59 shows Camp2 (Exp. ID GEN50) after being exposed to 25°C/60%RH for 1 month (A) and Camp2 (Exp. ID GEN54) after being exposed to 40°C/75%RH for 1 month (A).
  • B) shows the results of TGA analysis (heating rate 10°C/min). Before thermal decomposition at about 240°C, mass losses of 1.6% and 1.8% were observed due to water, respectively.
  • Figure 60 shows Camp2 (Exp. ID GEN51) after being exposed to 25°C/60%RH for 3 months (A) and Camp2 (Exp. ID GEN55) after being exposed to 40°C/75%RH for 3 months (A).
  • B) shows the results of TGA analysis (heating rate 10°C/min). Before thermal decomposition at about 240°C, mass losses of 1.6% and 1.8% were observed due to water, respectively.
  • the heat flow signal showed an endothermic reaction at approximately 200°C in GEN50 and approximately 150°C in GEN55, and a wide endothermic reaction in the area corresponding to the subsequent water jet.
  • Figure 61 shows Camp2 (Exp. ID GEN52) after being exposed to 25°C/60%RH for 15 months (A) and Camp2 (Exp. ID GEN56) after being exposed to 40°C/75%RH for 15 months (A).
  • B) shows the results of TGA analysis (heating rate 10°C/min). Before thermal decomposition at about 240°C, mass losses of 1.6% and 6.9% were caused by water, respectively. The heat flow signal showed an endothermic reaction at approximately 200°C in GEN52 and approximately 150°C in GEN56, and a wide endothermic reaction in the area corresponding to the subsequent water jet.
  • Figure 62 shows Camp2 (Exp. ID GEN53) after being exposed to 25°C/60%RH for 24 months (A) and Camp2 (Exp. ID GEN57) after being exposed to 40°C/75%RH for 24 months (A).
  • B) shows the results of TGA analysis (heating rate 10°C/min). Mass losses were 1.9% and 6.7%, respectively, due to water.
  • the heat flow signal showed a wide endothermic reaction in the area corresponding to the endothermic reaction at about 150°C in GEN57 and the subsequent water ejection.
  • Figure 63 shows liquid chromatography mass spectrometry of Camp2 (Exp. ID GEN50) exposed to 25°C/60%RH for 1 month. The purity of the active ingredient is 99.8%.
  • Figure 64 shows liquid chromatography mass spectrometry of Camp2 (Exp. ID GEN54) exposed to 40°C/75%RH for 1 month. The purity of the active ingredient is 99.8%.
  • Figure 65 shows liquid chromatography mass spectrometry of Camp2 (Exp. ID GEN51) exposed to 25°C/60%RH for 3 months. The purity of the active ingredient is 99.7%.
  • Figure 66 shows liquid chromatography mass spectrometry of Camp2 (Exp. ID GEN55) exposed to 40°C/75%RH for 3 months. The purity of the active ingredient is 99.3%.
  • Figure 67 shows liquid chromatography mass spectrometry of Camp2 (Exp. ID GEN52) exposed to 25°C/60%RH for 15 months. The purity of the active ingredient is 97.3%.
  • Figure 68 shows liquid chromatography mass spectrometry of Camp2 (Exp. ID GEN56) exposed to 40°C/75%RH for 15 months. The purity of the active ingredient is 93.7%.
  • Figure 69 shows liquid chromatography mass spectrometry of Camp2 (Exp. ID GEN53) exposed to 25°C/60%RH for 15 months. The purity of the active ingredient is 100%.
  • Figure 70 shows liquid chromatography mass spectrometry of Camp2 (Exp. ID GEN57) exposed to 40°C/75%RH for 15 months. The purity of the active ingredient is 88.6%.
  • Mesylate a novel salt of the above compound, efficiently inhibits the activity of c-Met tyrosine kinase, thereby preventing various dysproliferative diseases associated with excessive cell proliferation and growth due to abnormal kinase activity, such as cancer, psoriasis, rheumatoid arthritis, and diabetes. It can be useful as a treatment for retinopathy, etc.
  • a pharmaceutical composition for inhibiting c-Met tyrosine kinase activity containing the novel salt compound as an active ingredient and a pharmaceutical composition for preventing or treating hyper proliferative disorder are provided.
  • the mesylate is the S-enantiomer of the triazolopyrazine derivative represented by Formula 1 above.
  • the triazolopyrazine derivative represented by Formula 1 is optically pure. In further aspects the optical purity is at least 95%, at least 97%, at least 99% or essentially 100%.
  • the mesylate is formed in one of the following forms: Mes1, Mes2, or Mes3. It is highly likely that the mesylate exists in the form of Mes2.
  • the mesylate is physically stable at 20 to 50° C. and 35-80% relative humidity for at least 2 days. In one aspect, the mesylate is physically stable for 24 months at ambient environmental conditions.
  • the mesylate salt has an active ingredient purity of at least 95%, and the purity is preferably about 100%.
  • the mesylate has a high-efficiency
  • the HT-XRPD of the mesylate has characteristic peaks substantially corresponding to:
  • the present invention provides a method for producing the mesylate salt.
  • the manufacturing method is; a) adding the compound of formula 1 to a reactor containing a solvent, b) stirring the compound with the solvent in the reactor, c) adding methanesulfonic acid to the solution prepared in step b), and d ) It consists of cooling the solution prepared in step c) above to precipitate mesylate.
  • the solvent may be selected from acetonitrile, acetone, 1-2-dimethoxyethane, n-heptane, isopropyl alcohol, water, or tetrahydrofuran (THF).
  • the methanesulfonic acid added to the solution prepared in step b) is added in an equivalent amount of 1:1.5 to 1:2.5 relative to the compound of Formula 1.
  • the equivalence ratio is 1:1.9 to 1:2.3 and the solvent is acetonitrile.
  • step b) is performed at about 45 to 55° C. for at least 1 hour.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising the mesylate and a pharmaceutical carrier.
  • Pharmaceutically acceptable carriers included in the pharmaceutical composition include lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, and polyvinylpyrroli.
  • the pharmaceutical composition provided by the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, etc. in addition to the above components.
  • the present invention provides a method of reducing the activity of c-Met kinase by administering to a patient in need a pharmaceutical composition comprising an effective amount of the mesylate.
  • the patient is a patient suffering from a disease associated with hyperproliferative activation of cells, and as examples, the disease may be lung cancer, intestinal cancer, pancreatic cancer, rectal cancer, ovarian cancer, kidney cancer, prostate cancer, or brain tumor.
  • the method is a method for treating or preventing hyperproliferation activation of cells.
  • AAC Accelerated Aging Conditions 40°RH
  • Am Amorphous API Active Pharmaceutical Ingredient C.I. Counterion DSC Differential Scanning Calorimetry DVS Dynamic Vapor Sorption 1H-NMR Proton Nuclear Magnetic Resonance LCMS High-Performance Liquid Chromatography HR-XRPD High Resolution X-Ray Powder Diffraction HT-XRPD High Throughput X-Ray Powder Diffraction LCMS Liquid Chromatography Mass spectroscopy M.L. Mother liquor (liquid phases) M.S. Mass Spectroscopy R.H.
  • Compound of formula 1 (ABN-401) was supplied by Avion, other compounds were supplied by Fisher Scientific, Sigma Aldrich or VWR. The compounds used were researcher grade, and the solvent used for LCMS analysis was LCMS grade.
  • Solubility was determined by adding small aliquots of solvent (50 ⁇ L up to 1 mL, 100 ⁇ L above 1 mL) to the starting material until completely dissolved or until a maximum volume of 4 mL was reached.
  • Thermal stability testing of ABN-401 was conducted to determine the chemical stability of the dissolved starting material when exposed to elevated temperatures.
  • a solution of ABN-401 with a concentration of about 0.3 mg/mL was prepared in a solvent consisting of acetone, 1,2-dimethoxyethane, and acetonitrile. After exposure to the solution at room temperature for 1 hour, two sample aliquots were sequentially exposed to 50°C and 80°C for 1 hour, respectively. The solutions were analyzed by LCMS.
  • the sample was left at room temperature for 24 hours and measured again to check the chemical deterioration of the compound over time.
  • the salt screening experiment began by preparing the ABN-401 solutions of acetone, 1,2-dimethoxyethane, and acetonitrile at concentrations of approximately 25, 13, and 8 mg/ml, respectively.
  • the mesylate, Mes2 was scaled up to 0.5 gram scale (Exp. ID SSm71). 500 mg of free base foam was dissolved in 23 ml of acetone at room temperature to a concentration of 26 mg/ml.
  • Methanesulfonic acid (1M water) was added at a molar ratio of API:CI of 1:2.1. Precipitation of the salt was observed upon addition of the counterion.
  • the suspension was heated to 50°C and continuously stirred at 50°C for 8 hours.
  • the salt suspension was cooled to 25°C.
  • the solid particles were separated, dried under reduced pressure at 50°C, 10 mbar, and analyzed by HT-/HR-XRPD, TGA/TGMS, DSC, LCMS, 1H-NMR, and DVS.
  • Camsylate Camp2 was scaled up to 0.3 gram scale (Exp. ID SSm73).
  • 300 mg of free base foam was dissolved in 15 ml of ACN to a concentration of 20 mg/ml.
  • 136 mg of camphor-10-sulfonic acid was added so that the molar ratio of API:CI was 1:1.1.
  • the counterion was dissolved under continuous stirring at 50°C for 1 hour, and the solution was cooled to 25°C and aged for 72 hours. Precipitation of the salt occurred during the cooling profile, and the solid precipitate was separated and dried under reduced pressure at 50° C. 10 mbar and then analyzed by HT-/HR-XRPD, TGA/TGMS, DSC, LCMS, 1H-NMR and DVS.
  • Mes2 mesylate
  • camsylate Camp2
  • maleate Mes2
  • HT-XRPD patterns were collected by a Crystal T2 high-efficiency XRPD instrument.
  • the plate was mounted on a Bruker General Area Detector Diffraction System (GADDS), which was equipped with a VANTEC-500 gas area detector to compensate for changes in intensity and shape. Correction for peak position accuracy was performed according to the NIST SRM1976 standard (Corundum).
  • GADDS General Area Detector Diffraction System
  • the carrier material used during HT-XRPD measurements was transparent to X-rays and had only a very slight effect on the background.
  • Powder data were collected by a D8 diffractometer using Cu K1 (1.54056 ⁇ ) using a germanium monochromator at room temperature.
  • the data was collected using a LynxEye detector for solids at a speed of 22 sec/step, with a 2 ⁇ step of 0.016° in a 2 ⁇ range between 4° and 45°.
  • the sample was measured using a glass capillary with an outer diameter of 0.3 mm and a length of 8 mm.
  • Mass loss due to loss of water and solvent from the crystal was measured through TGA.
  • the weight of the sample was monitored and heated with a TGA/DSC3+STARe system, and a weight-temperature curve and heat flow signal were obtained as a result.
  • the TGA/DSC3+ results were corrected for temperature using indium and aluminum samples.
  • the sample (circa 2 mg) was placed in a 100 ⁇ L aluminum crucible and sealed. A fill hole was formed in the seal, and the crucible was heated from 25 to 300° C. at a heating rate of 10° during the TGA process. Dry nitrogen gas was used in the purging process.
  • the gas from the TGA sample was analyzed by an Omnistar GSD 301 T2 (Pfeiffer Vacuum GmbH, Germany) mass spectrometer.
  • the analyzer is capable of mass analysis at temperatures ranging from 0-200 amu.
  • DSC thermograms were recorded using a thermal flux DSC3+ STARe system.
  • the sample was sealed in a standard 40 ⁇ L aluminum pan to form a pinhole, and heated from 25 to 300°C at a heating rate of 10° during the DSC process. Dry nitrogen gas with a flow rate of 50 mL/min was used in the purging process.
  • H-NMR spectra were recorded using a 500 MHz Bunker instrument at room temperature. The sample was dissolved in DMSO and analyzed. The data was processed by ACD Labs software Spectrum processor.
  • the difference in hygroscopicity of various types of solid materials serves as a measure of the relative stability of each material in situations where relative humidity increases.
  • the isothermal hygroscopicity of trace samples was obtained by DVS-1 system. The device is suitable for measuring very small samples with an accuracy of 0.1 ⁇ g.
  • the relative humidity was changed (40-95-40%RH) during the moisture absorption-desorption-absorption process at a constant temperature of 25°C, and typically held for 60 minutes at each stage (10% relative humidity step). At the end of the DVS experiment, the samples were measured by XRPD.
  • Hygroscopicity was classified according to the European drug hygroscopicity.
  • the classification for percent moisture absorption at 25°C/80%RH (24 hours) is as follows.
  • Figure 4 shows the XRPD patterns of all mesylates for the free base form (Form A).
  • Mes1 is a mesylate obtained from experiments conducted by adding methanesulfonic acid to a 1:1 molar ratio of API:CI in three crystallization solvents.
  • Table 6 shows the experimental conditions for obtaining Mes1.
  • the solid selected for the subsequent characterization process is a crystalline salt formed when 1 molar equivalent of methanesulfonic acid is added to acetone (Exp. ID SSm4).
  • Mes1 showed physical stability when exposed to AAC (40°RH) for 2 days.
  • the heat flow signal of TGA showed an extensive endothermic reaction due to mass loss around 160°C, which is related to the melting of the anhydrous form.
  • the thermal analysis results suggest that Mes1 is a complex of hydrated/dissolved crystalline salts.
  • Mes2 is a mesylate obtained in an experiment conducted by adding methanesulfonic acid to three crystallization solvents at a molar ratio of API:CI of 1:2 and adding ACN at a molar ratio of 1:3.
  • Table 7 shows the experimental conditions for obtaining Mes12.
  • the solid selected for the subsequent characterization process is a crystalline salt formed when 2 molar equivalents of methanesulfonic acid are added to acetone (Exp. ID SSm5).
  • Mes2 showed physical stability when exposed to AAC (40°RH) for 2 days.
  • the heat flow signal of the TGA showed a wide range of endothermic reactions due to water loss and an endothermic reaction at around 210°C, which is related to the melting of the anhydride.
  • the thermal analysis results suggest that Mes2 is a dihydrate of dimesylate.
  • the DSC analysis results of Mes2 showed a wide range of endothermic reactions from 25 to 120°C, which was probably related to water loss.
  • a double endothermic reaction was recorded at around 218.2°C, probably due to melting of the potential anhydrous salt, followed by an exothermic reaction at 223°C, probably due to thermal decomposition.
  • Mes3 is a mesylate obtained in an experiment performed by adding methanesulfonic acid to a molar ratio of API:CI of 1:3 in acetone and 1,2 dimethoxyethane solvent.
  • the solid selected for the subsequent characterization process is a crystalline salt formed when 3 molar equivalents of methanesulfonic acid is added to acetone (Exp. ID SSm6).
  • Table 8 shows the experimental conditions for obtaining Mes3. Although crystalline, Mes3 became soluble when exposed to AAC (40°RH) for 2 days.
  • the heat flow signal of the TGA showed an extensive endothermic reaction due to water loss at around 200°C, followed by thermal decomposition.
  • the thermal analysis results suggest that Mes3 is a hydrated crystalline salt.
  • Figure 14 compares the HT-XRPD patterns of camsylate with respect to the starting material (Form A).
  • Camp1 is a salt form obtained in an experiment conducted by adding camphor-10-sulfonic acid to a 1:1 molar ratio of API:CI in acetone and 1,2-dimethoxyethane solvent.
  • Table 9 shows the experimental conditions for obtaining Camp1.
  • the solid selected for the subsequent characterization process is a crystalline salt formed when 1 molar equivalent of camphor-10-sulfonic acid is added to acetone (Exp. ID SSm14). Camp1 was physically stable when exposed to AAC (40°RH) for 2 days.
  • the heat flow signal showed a clear endothermic reaction around 160°C, which is probably related to the melting of the anhydride of the salt.
  • Camp1 showed a wide range of endothermic reactions from 25 to 120°C, which was probably related to water loss. An endothermic reaction occurred around 164.0°C, possibly due to melting of the potential anhydrous salt.
  • Camp2 is a salt form obtained in an experiment performed by adding camphor-10-sulfonic acid to an API:CI molar ratio of 1:1 in ACN solvent (Exp. ID SSm60). Table 10 shows the experimental conditions for obtaining Camp2. Camp2 was physically stable when exposed to AAC (40°RH) for 2 days.
  • the heat flow signal showed an endothermic reaction around 200°C, which was probably related to the melting of the anhydride of the salt, followed by decomposition.
  • Camp2 showed a wide range of endothermic reactions from 25 to 70°C, which is probably related to water loss. An endothermic reaction was observed around 208.9°C, which is probably caused by melting of the anhydrous salt.
  • Camp2 (Exp. ID SSm60) was dried under reduced pressure at 80°C for the purpose of isolating the melting of the potential anhydride at 208.9°C shown in the above DSC results. Afterwards, the solid particles were analyzed by HT-XRPD and TGMS. Camp2 remained in the solid particles and contained 1.9% of water.
  • the HT-XRPD analysis results confirm the crystallization of Mes2 (Exp. ID SSm71) in the scale-up experiment.
  • the high-resolution XRPD (HR-XRPD) pattern of Mes2 is not indexed.
  • Figure 31 shows the DVS measurement results performed on Mes2.
  • the first absorption of the half cycle indicates that the water absorption reaches 29.6% at 95% relative humidity (a mass change of 24.8% occurs for a change from 40 to 95% relative humidity).
  • a dehumidification cycle of 0% at 95 relative humidity water spewed out.
  • the water absorption did not maintain equilibrium at each stage of relative humidity change (equilibrium was left for 1 hour at each stage), which was the cause of hysteresis that appeared between 95 and 70% relative humidity in the moisture absorption-desorption cycle. Water absorption was reversible.
  • the HT-XRPD analysis results confirm the crystallization of Camp2 (Exp. ID SSm73) in the scale-up experiment.
  • the high-resolution XRPD (HR-XRPD) pattern of Camp2 is not indexed.
  • Camp2 DSC analysis of Camp2 showed a broad endothermic reaction associated with water loss at 25 to 80°C. A second clear endothermic reaction was observed at 208.6°C, which is probably related to the melting process of the anhydrous salt. The chemical purity of Camp2 measured by LCMS was 99.7%, confirming the presence of API in the solid phase of Camp2.
  • Figure 37 shows the DVS measurement results performed on Camp2.
  • the first absorption of the half cycle indicates that the water absorption reaches 15.6% at 95% relative humidity (a mass change of 14.1% occurs for a change from 40 to 95% relative humidity).
  • the graph showing the change in mass shows that water absorption did not reach equilibrium at 90 to 95% relative humidity.
  • the change in mass in the last half of the absorption cycle (0 to 40% relative humidity) was 6.6%.
  • Water absorption was irreversible, suggesting a change in morphology.
  • a new form of Camp4 was identified by HT-XRPD on solid phase ( Figure 38).
  • the DVS analysis results showed a mass change of about 1.4% at a relative humidity of 80%, suggesting that the material is slightly hygroscopic according to the European drug hygroscopicity classification.
  • Form A was exposed to 25°C/60%RH and 40°C/75%RH for a 15-month TGA analysis, and the results are presented in Figures 41A, B. Samples exposed to 25°C/60%RH and 40°C/75%RH for 15 months showed mass losses of 3.3% and 3.7%, respectively.
  • the heat flow analysis results showed extensive endothermic reaction due to water loss at 140°C, corresponding to the melting of Form A. Thermal decomposition was observed at 230°C in both samples.
  • the HT-XRPD analysis results confirm that conversion to the solid form occurred after exposure of Mes2 to 25°C/60%RH and 40°C/75%RH. The change occurred more rapidly at 40°C/75%RH than at 25°C/60%RH. After exposing the Mes2 sample to 25°C/60%RH for 3 months, there was no significant difference in the powder pattern, but after 15 months, additional diffraction peaks were detected at 15.1 and 16.5°2 ⁇ . Perhaps the diffraction peak is caused by a change in a different crystal form, but the nature of the shape is unknown.
  • Figure 46 A, B shows TGA analysis results of Mes2 samples after exposure to 25°C/60%RH and 40°C/75%RH for 1 month.
  • a water loss of 8.0% occurred in samples exposed to 25°C/60%RH for 1 month, and a water loss of 10.8% occurred in samples exposed to 40°C/75%RH for 1 month.
  • Thermal decomposition occurred at 230°C in two samples. Two samples showed significant water uptake (3.9%) compared to the initially activated water content of Mes2.
  • FIG. 58 shows the scale-up of Camp2 and superimposition of powder patterns after exposure to 25°C/60%RH and 40°C/75%RH for 1, 3, 15, and 24 months.
  • Figure 59 A, B shows the TGA analysis results of Camp2 after exposure to 25°C/60%RH and 40°C/75%RH for 1 month.
  • the sample exposed to 25°C/60%RH for 1 month showed a mass loss of 1.6%
  • the sample exposed to 40°C/75%RH for 1 month showed a mass loss of 1.8%.
  • thermal decomposition occurred above 240°C.
  • Camp2 samples incubated at 25°C/60%RH for 3 months showed water contents similar to those recorded after 1 month, indicating that there was no significant water uptake under these conditions.
  • a conversion of the solid form from Camp2 to Camp4 was observed.
  • the TGA analysis showed a water content of 7.1% (equivalent to 3.3 water molecules per camsylate molecule).
  • the thermal changes recorded in the heat flow signal showed an extensive endothermic reaction caused by water dissolution, followed by an endothermic reaction at 150°C caused by melting of the anhydride (200°C in Camp2).
  • Camp2 samples incubated at 25°C/60%RH for 24 months showed a mass loss of 1.9%, which is similar to the mass loss measured in the equation above ( Figure 62A). This result means that no significant water absorption occurs under these conditions.
  • TGA analysis after exposure to 40°C/75%RH for 24 months showed a water content of 6.7% (equivalent to 3.2 water molecules per camsylate molecule).
  • the thermal changes recorded in the heat flow signal showed an extensive endothermic reaction caused by water dissolution, followed by an endothermic reaction at 150°C caused by melting of the anhydride (200°C in Camp2).
  • the present invention is applicable industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

메탄설폰산과 화학식 1의 트리아졸로피라진 유도체의 염(메실산염), 상기 염을 포함하는 약학조성물, 상기 염의 제조방법 및 상기염의 치료적 용도에 관한 것이다.

Description

트리아졸로피라진 유도체의 메실산염
트리아졸로피라진 유도체는 종래에 알려진 것처럼 c-Met 키나제의 활성을 억제하여 과증식성 질환을 치료하는 데에 사용되는 물질이다. 그러나 종래의 문헌에서는 이러한 트리아졸로피라진 유도체의 염형태가 아닌 프리 베이스(free base) 형태가 많이 제시되어 있다.
트리아졸로피라진 유도체의 프리 베이스 형태의 약물학적 유용성을 향상시키기 위하여 염형태가 필요해졌고, 이에 따라 본 발명에서는 프리 베이스 형태의 약물동역학 및 약물학적 활성은 유지하고 유용한 물성을 향상시킨 메실산염 및 이의 제조방법을 제공하고자 한다.
본 발명은 하기의 화학식 1로 표현되는 트리아졸로피라진 유도체의 신규한 메실산염 화합물 및 이의 제조방법과 이를 포함하는 약학조성물에 관한 것이다.
[화학식 1]
Figure PCTKR2023006007-appb-img-000001
본 발명자들은 티로신 키나아제에 대한 억제활성을 가지는 상기의 화합물을 발굴함으로써 비정상적인 티로신 키나아제의 활성에 의해 유발되는 다양한 이상증식성 질환 (hyper proliferative disorder)을 효율적으로 예방 또는 치료하기 위한 조성물을 개발하기 위하여 예의 연구 노력하였다. 그 결과 본 발명자들은 지금까지 알려지지 않은 상기 화학식 1의 화합물의 신규 염화합물은 상기 화합물의 c-Met 키나아제의 활성을 억제한다는 기능을 유지하면서 상기 화합물의 보관 안정성 및 광안정성을 향상시킨다는 것을 발견하고, 본 발명을 완성하게 되었다.
본 발명에 따르면, 본 발명의 상기 화학식 1의 화합물의 신규한 메실산염 화합물은 간세포 성장인자 (hepatocyte growth factor, HGF)와 결합하여 인산화를 활성화시킴으로써 세포의 증식, 이동, 신생혈관의 형성을 촉발하는 c-Met 키나아제의 활성을 유의하게 억제한다.
따라서, 본 발명의 염화합물은 세포의 이상증식활성화 과도한 혈관신생을 매개로 하는 다양한 이상증식성 질환을 치료 또는 예방하는 데에 유용하게 이용될 수 있다.
또한, 상기 화학식 1의 화합물의 신규한 메실산염 화합물은 순수 화합물과는 상이한 물리적 특성, 예컨대 융점, 흡습성, 용해도, 유동 특성 또는 열역학 안정성을 나타낸다.
이에 따라 본 발명에서 제공하는 상기 화학식 1의 화합물의 염화합물은 약물 제조 과정 또는 정제, 캡슐제, 연고, 현탁액 등의 별개의 약물 제형의 제조과정 또는 최적의 약동학적 특성을 갖는 약물 형태의 제조에서 약리학적인 용도를 위한 가장 적합한 형태를 선택하기 위해 사용될 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 상기 화학식 1의 신규한 메실산염 화합물의 치료적 유효량을 포함하는 약학 조성물을 제공한다. 예를 들어, 본 발명은 상술한 화학식 1의 화합물의 신규 염화합물을 유효성분으로 포함하는 이상증식성 질환 (hyper proliferative disorder)의 예방 또는 치료용 약제학적 조성물을 제공한다.
본 명세서에서 용어 '이상증식성 질환 (hyper proliferative disorder)'은 정상적으로 성장 중인 동물체 내에서 일반적인 제한수단에 의해 조절되지 않는 과도한 세포의 성장, 분열 및 이동에 기인하여 유발되는 병적 상태를 의미한다. 본 발명의 조성물로 예방 또는 치료되는 이상증식성 질환에는 예를 들어 암, 당뇨병성 망막증, 미숙아 망막증, 각막 이식 거부, 신생혈관성 녹내장, 홍색증, 증식성 망막증, 건선, 류마티스 관절염, 골관절염, 자가면역 질환, 크론씨병, 재발협착증, 아테롬성 동맥경화, 장관 접착, 궤양, 간경병증, 사구체신염, 당뇨병성 신장병증, 악성 신경화증, 혈전성 미소혈관증, 기관 이식 거부 및 신사구체병증이 있으나, 이에 제한되지 않고 세포의 비정상적인 증식 및 신생혈관의 과도한 생성으로 인해 발생하는 모든 이상증식성 질환이 포함된다.
보다 바람직하게는, 본 발명의 조성물로 예방 및 치료할 수 있는 이상증식성 질환의 하나인 암은 폐암, 위암, 췌장암, 대장암, 난소암, 신장암, 전립선암 또는 뇌종양이다.
본 발명의 조성물이 약제학적 조성물로 제조되는 경우, 본 발명의 약제학적 조성물은 약제학적으로 허용되는 담체를 포함한다. 본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.
상기의 화학식 1로 표현되는 트리아졸로피라진 유도체의 순물질은 용해도, 열적안정성 등 물리적인 특성이 일반적인 약학적 조성물을 제조하기에는 적합하지 않은 측면이 많다.
이에 따라 본 발명자들은 상기 트리아졸로피라진 유도체의 용해도, 안정성을 향상시키는 등의 약물학적인 제형을 제조하기에 적합한 염화합물을 개발하기 위하여 다양한 염스크리닝을 실시하였고, 이를 통해 상기 화합물의 약리활성은 지속적으로 유지하면서도 용해도가 높고 안정성이 우수한 신규한 말레산염 화합물을 개발할 수 있었다.
본 발명은 상기 화학식 1로 표현되는 트리아졸로피라진 유도체의 순물질의 보관 안정성 및 광안정성이 낮아서 약물 제조학적으로 가공성이 좋지 않다는 점을 개선하기 위하여 상기 화합물에 대하여 염스크리닝을 실시하였고, 이에 따라 상기 화합물의 신규 메실산염 화합물을 개발함으로써 상기의 문제점들을 해결할 수 있었다.
본 발명은 상기 트리아졸로피라진 유도체의 신규한 메실산염(Mesylate, Methanesulfonic acid) 화합물을 개발함으로써, 상기 화학식 1로 표현되는 트리아졸로피라진 유도체(ABN-401)의 보관 안정성 및 광안정성을 개선할 수 있었다.
또한, 본 발명에서는 상기 메실산염 화합물의 제조방법 및 상기 염화합물을 유효성분으로 하는 약학적 조성물을 제공한다.
본 발명은 상기 화학식 1로 표현되는 트리아졸로피라진 유도체의 신규한 메실산염 화합물 및 이의 제조방법에 관한 것으로서, 본 발명에서 제공하는 신규한 메실산염 화합물은 순수물질의 문제점이었던 보관 안정성 및 광안정성을 향상시켜, 상기 화합물의 약물 제조학적 유용성과 가공성을 향상시켰다.
상기 메실산염 화합물은 c-Met 티로신 키나아제의 활성을 효율적으로 억제함으로써 비정상적인 키나제의 활성으로 인한 과도한 세포 증식 및 성장과 관련된 다양한 이상증식성 질환, 예를 들어 암, 건선, 류마티스 관절염, 당뇨병성 망막증 등의 치료제로 유용하게 이용될 수 있다. 또한, 상기 신규 염화합물을 유효성분으로 포함하는 c-Met 티로신 키나아제 활성 억제용 약제학적 조성물 및 이상증식성 질환 (hyper proliferative disorder)의 예방 또는 치료용 약제학적 조성물을 제공한다.
도 1은 메실산염 화합물의 염스크리닝 실험에서 나타난 온도 프로필이다.
도 2는 S19061_03 방법을 이용한 개시물질로서 ABN401의 액체크로마토그래피질량분석 결과(retention time=5.2min)를 나타낸다.
도 3은 S19061_01 방법을 이용한 개시물질로서 ABN401의 액체크로마토그래피질량분석 결과(retention time=2.2min)를 나타낸다.
도 4는 개시물질(형태 A), Mes1, Mes2, Mes3의 고효율 엑스레이 결정(HT-XRPD) 패턴을 나타낸다.
도 5는 Mes1(Exp. ID SSm4)의 2일 동안 AAC(40℃/75%RH)에 노출하기 전(아래)과 후(위)의 고효율 엑스레이 결정(HT-XRPD) 패턴을 나타낸다.
도 6은 Mes1(Exp. ID SSm4)의 TGA(A) 분석과 TGMS(B) 분석(가열속도 10℃/min)을 나타낸다. 25-40℃에서 아세톤과 물에 의한 4.3%의 질량손실을 나타내었다. 약 230℃에서 상기 염의 열분해를 나타냈고, TGA분석에 의한 열흐름 신호는 약 160℃에서 질량손실에 의한 광범위한 흡열반응을 보였다.
도 7은 Mes2(Exp. ID SSm5)의 2일 동안 AAC(40℃/75%RH)에 노출하기 전(아래)과 후(위)의 고효율 엑스레이 결정(HT-XRPD) 패턴을 나타낸다.
도 8은 Mes2(Exp. ID SSm5)의 TGA(A) 분석과 TGMS(B) 분석(가열속도 10℃/min)을 나타낸다. 25-150℃에서 아세톤과 물에 의한 4.5%의 질량손실을 나타내었다. TGA분석에 의한 열흐름 신호는 약 210℃에서 질량손실에 의한 광범위한 흡열반응을 보였는데, 이는 분해에 의한 무수형태의 용융과 연관된 것으로 보인다.
도 9는 Mes2(Exp. ID SSm5)의 DSC커브(가열속도 10℃/min)를 나타낸다. 상기 DSC는 25-120℃에서 광범위한 흡열반응을 보였고, 또 다른 흡열반응은 218.2℃에서 나타냈는데, 무수형태의 용융과 관련될 가능성이 있다.
도 10은 Mes2(Exp. ID SSm5)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 100%이다.
도 11은 ABN401 프리베이스형(녹색)과 Mes2(Exp. ID SSm5)(적색)의 H-NMR 스펙트럼(500 MHz, DMSO-d6)의 중첩을 나타낸다. CI에 해당되는 피크는 2.3ppm의 시그널에 형광표시되었다. 잔류 아세톤은 2.1ppm의 피크에 형광표시되었다.
도 12는 Mes3(Exp. ID SSm6)의 2일 동안 AAC(40℃/75%RH)에 노출하기 전(아래)과 후(위)의 고효율 엑스레이 결정(HT-XRPD) 패턴을 나타낸다.
도 13은 Mes3(Exp. ID SSm6)의 TGA(A) 분석과 TGMS(B) 분석(가열속도 10℃/min)을 나타낸다. 약 220℃에서 열분해가 이루어지기 전에 물에 의한 5.6%의 질량손실을 나타내고 있다. TGA분석에 의한 열흐름 신호는 약 200℃에서 질량손실에 의한 광범위한 흡열반응을 보였다.
도 14는 개시물질(형태 A), Camp1, Camp2의 고효율 엑스레이 결정(HT-XRPD) 패턴을 나타낸다.
도 15는 Camp1(Exp. ID SSm14)의 2일 동안 AAC(40℃/75%RH)에 노출하기 전(아래)과 후(위)의 고효율 엑스레이 결정(HT-XRPD) 패턴을 나타낸다.
도 16은 Camp1(Exp. ID SSm14)의 TGA(A) 분석과 TGMS(B) 분석(가열속도 10℃/min)을 나타낸다. 25-120℃에서 물에 의한 3.3%의 질량손실이 발생하였다. 240℃ 이상에서 상기 염의 열분해가 관찰되었고, TGA의 열흐름 신호는 약 160℃에서 흡열반응을 보였는데, 이는 상기 염의 무수물의 용융에 의한 것으로 보인다.
도 17은 Camp1(Exp. ID SSm14)의 DSC커브(가열속도 10℃/min)를 나타낸다. 상기 DSC는 25-120℃에서 광범위한 흡열반응을 보였는데, 이는 물 손실과 연관될 가능성있다. 164℃에서 광범위한 흡열반응이 있는데, 이는 잠재적인 무수물 염의 용융과 관련될 수 있다.
도 18은 Camp1(Exp. ID SSm14)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 100%이다.
도 19는 ABN401 프리베이스형(녹색)과 Camp1(Exp. ID SSm14)(적색)의 H-NMR 스펙트럼(500 MHz, DMSO-d6)의 중첩을 나타낸다. CI에 해당되는 피크는 9.3, 3.0, 2.7, 2.6 및 2.3ppm 그리고 2.0과 0.8ppm 사이에 형광표시되었다.
도 20은 Camp2(Exp. ID SSm60)의 2일 동안 AAC(40℃/75%RH)에 노출하기 전(아래)과 후(위)의 고효율 엑스레이 결정(HT-XRPD) 패턴을 나타낸다.
도 21은 Camp2(Exp. ID SSm60)의 TGA(A) 분석과 TGMS(B) 분석(가열속도 10℃/min)을 나타낸다. 25-80℃에서 물에 의한 1.6%의 질량손실이 발생하였다. 240℃ 이상에서 상기 염의 열분해가 관찰되었고, TGA의 열흐름 신호는 약 200℃에서 명확한 흡열반응을 보였는데, 이는 상기 염의 무수물의 용융에 의한 것으로 보인다.
도 22는 Camp2(Exp. ID SSm60)의 DSC커브(가열속도 10℃/min)를 나타낸다. 상기 DSC는 25-70℃에서 광범위한 흡열반응을 보였는데, 이는 물 손실과 연관될 가능성있다. 208.9℃에서 광범위한 흡열반응이 있는데, 이는 잠재적인 무수물 염의 용융과 관련될 수 있다.
도 23은 진공상태, 80℃에서 1시간 동안 추가로 건조한 후에 Camp2(Exp. ID SSm60)의 TGA(A) 분석과 TGMS(B) 분석(가열속도 10℃/min)을 나타낸다. 25-70℃에서 물에 의한 1.6%의 질량손실이 발생하였다.
도 24는 Camp2(Exp. ID SSm60)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 100%이다.
도 25는 ABN401 프리베이스형(녹색)과 Camp2(Exp. ID SSm60)(적색)의 H-NMR 스펙트럼(500 MHz, DMSO-d6)의 중첩을 나타낸다. CI에 해당되는 피크는 9.3, 3.0, 2.7, 2.6 및 2.3ppm 그리고 2.0과 0.8ppm 사이에 형광표시되었다.
도 26은 Mes2(Exp. ID SSm71)의 고효율 엑스레이 결정(HT-XRPD) 패턴(상)과 고분해 엑스레이 결정(HR-XRPD)패턴(하)를 나타낸다.
도 27은 Mes2(Exp. ID SSm71)의 TGA(A) 분석과 TGMS(B) 분석(가열속도 10℃/min)을 나타낸다. 25-110℃에서 물에 의한 3.9%의 질량손실이 발생하였다. 약 240℃에서 상기 염의 열분해가 관찰되었고, TGA의 열흐름 신호는 210℃에서 흡열반응을 보였는데, 이는 상기 염의 무수물의 용융에 의한 것으로 보인다.
도 28은 Mes2(Exp. ID SSm71)의 DSC커브(가열속도 10℃/min)를 나타낸다. 상기 DSC는 25-110℃에서 광범위한 흡열반응을 보였는데, 이는 물 손실과 연관될 가능성있다. 205-217℃에서 이중 흡열반응이 있는데, 이는 무수물 염의 용융과 관련될 수 있다.
도 29는 Mes2(Exp. ID SSm71)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 99.6%이다.
도 30은 ABN401 프리베이스형(청색)과 Mes2(Exp. ID SSm5)(녹색) 및 Mes2(Exp. ID SSm71)(적색)의 H-NMR 스펙트럼(500 MHz, DMSO-d6)의 중첩을 나타낸다. CI에 해당되는 피크는 2.3ppm에 형광표시되었다.
도 31은 Mes2(Exp. ID SSm71)의 DVS 측정을 통한 질량의 변화(A)와 등온변화(B)를 나타낸다.
도 32는 Camp2(Exp. ID SSm73)의 고효율 엑스레이 결정(HT-XRPD) 패턴(상)과 고분해 엑스레이 결정(HR-XRPD)패턴(하)를 나타낸다.
도 33은 Camp2(Exp. ID SSm73)의 TGA(A) 분석과 TGMS(B) 분석(가열속도 10℃/min)을 나타낸다. 25-80℃에서 물에 의한 1.6%의 질량손실이 발생하였다. 약 240℃에서 상기 염의 열분해가 관찰되었고, TGA의 열흐름 신호는 200℃에서 흡열반응을 보였는데, 이는 상기 염의 무수물의 용융에 의한 것으로 보인다.
도 34는 Camp2(Exp. ID SSm73)의 DSC커브(가열속도 10℃/min)를 나타낸다. 상기 DSC는 25-80℃에서 하나의 광범위한 흡열반응을 보였는데, 이는 물 손실과 연관될 가능성있다. 208.6℃에서 또 다른 흡열반응이 있는데, 이는 무수물 염의 용융과 관련될 수 있다.
도 35는 Camp2(Exp. ID SSm73)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 99.7%이다.
도 36은 ABN401 프리베이스형(청색)과 Camp2(Exp. ID SSm60)(녹색) 및 Camp2(Exp. ID SSm73)(적색)의 H-NMR 스펙트럼(500 MHz, DMSO-d6)의 중첩을 나타낸다. CI에 해당되는 피크는 9.3, 3.0, 2.7, 2.6 및 2.3ppm 그리고 2.0과 0.8ppm 사이에 형광표시되었다.
도 37은 Camp2(Exp. ID SSm73)의 DVS 측정을 통한 질량의 변화(A)와 등온변화(B)를 나타낸다.
도 38은 DVS 분석 전(Camp2, 하)과 후(Camp4, 상)의 캠실산염(Exp. ID SSm73)의 고효율 엑스레이 결정(HT-XRPD) 패턴을 나타낸다.
도 39는 (A)1달 동안 25℃/60%RH에 노출된 형태 A(Exp. ID GEN78)와 (B)1달 동안 40℃/75%RH에 노출된 형태 A(Exp. ID GEN74)에 대한 TGMS 분석(가열속도 10℃/min)결과를 나타낸다. 약 230℃의 열분해 전에 물에 의해서 각각 3.7%와 4.0%의 질량손실을 나타냈다.
도 40은 (A)3개월 동안 25℃/60%RH에 노출된 형태 A(Exp. ID GEN79)와 (B)3개월 동안 40℃/75%RH에 노출된 형태 A(Exp. ID GEN75)에 대한 TGMS 분석(가열속도 10℃/min)결과를 나타낸다. 열분해 전에 물에 의해서 각각 4.1%와 4.4%의 질량손실을 나타냈다.
도 41은 (A)15개월 동안 25℃/60%RH에 노출된 형태 A(Exp. ID GEN80)와 (B)15개월 동안 40℃/75%RH에 노출된 형태 A(Exp. ID GEN77)에 대한 TGMS 분석(가열속도 10℃/min)결과를 나타낸다. 약 230℃에서 열분해 전에 물에 의해서 각각 3.3%와 3.7%의 질량손실을 나타냈다.
도 42는 (A)24개월 동안 25℃/60%RH에 노출된 형태 A(Exp. ID GEN81)와 (B)24개월 동안 40℃/75%RH에 노출된 형태 A(Exp. ID GEN76)에 대한 TGMS 분석(가열속도 10℃/min)결과를 나타낸다. 열분해 전에 물에 의해서 각각 5.3%와 5.2%의 질량손실을 나타냈다.
도 43은 24개월 동안 25℃/60%RH에 노출된 형태 A(Exp. ID GEN81)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 87.2%이다.
도 44는 24개월 동안 40℃/75%RH에 노출된형태 A(Exp. ID GEN76)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 90.7%이다.
도 45는 Mes2(Exp. ID SSm71)의 중첩된 고효율 엑스레이결정패턴을 나타내는데, 아래부터 위로 Mes2(Exp. ID GEN66)를 25℃/60%RH에 1개월 동안 노출한 이후, Mes2(Exp. ID GEN70)를 40℃/75%RH에 1개월 동안 노출한 이후, Mes2(Exp. ID GEN67)를 25℃/60%RH에 3개월 동안 노출한 이후, Mes2+peak (Exp. ID GEN71)를 40℃/75%RH에 3개월 동안 노출한 이후, Mes2+peak (Exp. ID GEN68)를 25℃/60%RH에 15개월 동안 노출한 이후, Mes4+peak (Exp. ID GEN73)를 40℃/75%RH에 15개월 동안 노출한 이후, Mes6 (Exp. ID GEN69)를 25℃/60%RH에 24개월 동안 노출한 이후, Mes6 (Exp. ID GEN72)를 40℃/75%RH에 24개월 동안 노출한 이후를 나타낸다. 수직부분의 오랜지의 형광라인은 샘플을 40℃/75%RH에 3개월 및 15개월 노출된 후에 나타나는 15.1과 16.5 2θ(deg)의 추가 굴절 피크를 나타낸다.
도 46은 Mes2(Exp. ID GEN66)을 1개월 동안 25℃/60%RH에 노출된 이후(A)와 Mes2(Exp. ID GEN70)을 1개월 동안 40℃/75%RH에 노출된 이후(B)의 TGMS 분석(가열속도 10℃/min)결과를 나타낸다. 약 230℃에서 열분해 전에 물에 의해서 각각 8.0%와 10.8%의 질량손실을 나타냈다. 열흐름 신호는 물에 의한 손실과 약 215℃의 용융점 부근에 해당되는 넓은 흡열반응을 나타냈다.
도 47은 Mes2(Exp. ID GEN67)을 3개월 동안 25℃/60%RH에 노출된 이후(A)와 Mes2(Exp. ID GEN71)을 3개월 동안 40℃/75%RH에 노출된 이후(B)의 TGMS 분석(가열속도 10℃/min)결과를 나타낸다. 약 230℃에서 열분해 전에 물에 의해서 각각 7.7%와 11.2%의 질량손실을 나타냈다. 열흐름 신호는 물에 의한 손실과 약 210℃의 용융점 부근에 해당되는 넓은 흡열반응을 나타냈다.
도 48은 Mes2(Exp. ID GEN68)을 15개월 동안 25℃/60%RH에 노출된 이후(A)와 Mes2(Exp. ID GEN73)을 15개월 동안 40℃/75%RH에 노출된 이후(B)의 TGMS 분석(가열속도 10℃/min)결과를 나타낸다. 약 230℃에서 열분해 전에 물에 의해서 각각 6.5%와 9.6%의 질량손실을 나타냈다. 열흐름 신호는 물에 의한 손실과 약 210℃의 용융점 부근에 해당되는 넓은 흡열반응을 나타냈다.
도 49는 Mes2(Exp. ID GEN69)을 24개월 동안 25℃/60%RH에 노출된 이후(A)와 Mes2(Exp. ID GEN73)을 72개월 동안 40℃/75%RH에 노출된 이후(B)의 TGMS 분석(가열속도 10℃/min)결과를 나타낸다. 물에 의해서 각각 8.6%와 12.0%의 질량손실을 나타냈다. 열흐름 신호는 물에 의한 손실 동안 흡열반응을 나타냈다.
도 50은 1개월 동안 25℃/60%RH에 노출된 Mes2(Exp. ID GEN66)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 99.7%이다.
도 51은 1개월 동안 40℃/75%RH에 노출된 Mes2(Exp. ID GEN70)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 97.2%이다.
도 52는 3개월 동안 25℃/60%RH에 노출된 Mes2(Exp. ID GEN67)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 99.6%이다.
도 53은 3개월 동안 40℃/75%RH에 노출된 Mes2(Exp. ID GEN71)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 99.5%이다.
도 54는 15개월 동안 25℃/60%RH에 노출된 Mes2(Exp. ID GEN68)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 100%이다.
도 55는 15개월 동안 40℃/75%RH에 노출된 Mes2(Exp. ID GEN73)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 100%이다.
도 56은 24개월 동안 25℃/60%RH에 노출된 Mes2(Exp. ID GEN69)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 99.6%이다.
도 57은 24개월 동안 40℃/75%RH에 노출된 Mes2(Exp. ID GEN72)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 100%이다.
도 58은 Camp2(Exp. ID SSm73)의 중첩된 고효율 엑스레이결정패턴을 나타내는데, 아래부터 위로 Camp2(Exp. ID GEN50)를 25℃/60%RH에 1개월 동안 노출한 이후, Camp2(Exp. ID GEN54)를 40℃/75%RH에 1개월 동안 노출한 이후, Camp2(Exp. ID GEN51)를 25℃/60%RH에 3개월 동안 노출한 이후, Camp4(Exp. ID GEN55)를 25℃/60%RH에 3개월 동안 노출한 이후, Camp2(Exp. ID GEN52)를 25℃/60%RH에 15개월 동안 노출한 이후, Camp4(Exp. ID GEN56)를 40℃/75%RH에 15개월 동안 노출한 이후, Camp2(Exp. ID GEN53)를 25℃/60%RH에 24개월 동안 노출한 이후, Camp3+E(Exp. ID GEN57)를 40℃/75%RH에 24개월 동안 노출한 이후를 나타낸다.
도 59는 Camp2(Exp. ID GEN50)을 1개월 동안 25℃/60%RH에 노출된 이후(A)와 Camp2(Exp. ID GEN54)을 1개월 동안 40℃/75%RH에 노출된 이후(B)의 TGA 분석(가열속도 10℃/min)결과를 나타낸다. 약 240℃에서 열분해 전에 물에 의해서 각각 1.6%와 1.8%의 질량손실을 나타냈다.
도 60은 Camp2(Exp. ID GEN51)을 3개월 동안 25℃/60%RH에 노출된 이후(A)와 Camp2(Exp. ID GEN55)을 3개월 동안 40℃/75%RH에 노출된 이후(B)의 TGA 분석(가열속도 10℃/min)결과를 나타낸다. 약 240℃에서 열분해 전에 물에 의해서 각각 1.6%와 1.8%의 질량손실을 나타냈다. 열흐름 신호는 GEN50에서는 약 200℃, GEN55에서는 약 150℃에서의 흡열반응과 이어지는 물의 분출에 해당하는 부분에서 넓은 흡열반응을 보였다.
도 61은 Camp2(Exp. ID GEN52)을 15개월 동안 25℃/60%RH에 노출된 이후(A)와 Camp2(Exp. ID GEN56)을 15개월 동안 40℃/75%RH에 노출된 이후(B)의 TGA 분석(가열속도 10℃/min)결과를 나타낸다. 약 240℃에서 열분해 전에 물에 의해서 각각 1.6%와 6.9%의 질량손실을 나타냈다. 열흐름 신호는 GEN52에서는 약 200℃, GEN56에서는 약 150℃에서의 흡열반응과 이어지는 물의 분출에 해당하는 부분에서 넓은 흡열반응을 보였다.
도 62는 Camp2(Exp. ID GEN53)을 24개월 동안 25℃/60%RH에 노출된 이후(A)와 Camp2(Exp. ID GEN57)을 24개월 동안 40℃/75%RH에 노출된 이후(B)의 TGA 분석(가열속도 10℃/min)결과를 나타낸다. 물에 의해서 각각 1.9%와 6.7%의 질량손실을 나타냈다. 열흐름 신호는 GEN57에서 약 150℃에서 흡열반응과 이어지는 물의 분출에 해당하는 부분에서 넓은 흡열반응을 보였다.
도 63은 1개월 동안 25℃/60%RH에 노출된 Camp2(Exp. ID GEN50)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 99.8%이다.
도 64는 1개월 동안 40℃/75%RH에 노출된 Camp2(Exp. ID GEN54)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 99.8%이다.
도 65는 3개월 동안 25℃/60%RH에 노출된 Camp2(Exp. ID GEN51)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 99.7%이다.
도 66은 3개월 동안 40℃/75%RH에 노출된 Camp2(Exp. ID GEN55)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 99.3%이다.
도 67은 15개월 동안 25℃/60%RH에 노출된 Camp2(Exp. ID GEN52)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 97.3%이다.
도 68은 15개월 동안 40℃/75%RH에 노출된 Camp2(Exp. ID GEN56)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 93.7%이다.
도 69는 15개월 동안 25℃/60%RH에 노출된 Camp2(Exp. ID GEN53)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 100%이다.
도 70은 15개월 동안 40℃/75%RH에 노출된 Camp2(Exp. ID GEN57)의 액체크로마토그래피질량분석을 나타낸다. 유효성분의 순도는 88.6%이다.
상기 화합물의 신규염인 메실산염은 c-Met 티로신 키나아제의 활성을 효율적으로 억제함으로써 비정상적인 키나제의 활성으로 인한 과도한 세포 증식 및 성장과 관련된 다양한 이상증식성 질환, 예를 들어 암, 건선, 류마티스 관절염, 당뇨병성 망막증 등의 치료제로 유용하게 이용될 수 있다. 또한, 상기 신규 염화합물을 유효성분으로 포함하는 c-Met 티로신 키나아제 활성 억제용 약제학적 조성물 및 이상증식성 질환 (hyper proliferative disorder)의 예방 또는 치료용 약제학적 조성물을 제공한다.
일 측면에서, 상기 메실산염은 상기 화학식 1로 표현되는 트리아졸로피라진 유도체의 S-광학이성질체이다(enantiomer). 바람직하게는 상기 화학식 1로 표현되는 트리아졸로피라진 유도체는 광학적으로 순수하다. 또 측면에서 상기 광학적 순도는 최소 95%, 최소 97%, 최소 99% 또는 본질적으로 100%이다.
일 측면에서, 상기 메실산염은 형태 Mes1, Mes2 또는 Mes3의 형태 중 하나로 형성된다. 아마도 상기 메실산염은 Mes2의 형태로 존재할 가능성이 높다. 일측면에서 상기 메실산염은 최소한 2일 동안은 20에서 50℃와 상대습도 35-80%에서 물리적으로 안정적이다. 일측면에서, 상기 메실산염은 주변 환경조건에서 24개월 동안 물리적으로 안정적이다. 또한, 상기 메실산염은 유효성분의 순도가 최소 95%이고, 상기 순도가 약 100%인 것이 바람직하다.
일측면에서 상기 메실산염은 고효율 엑스레이 회절격자(HT-XRPD) 패턴으로 15.5 에서 16.0 2θ, 17.5 에서 18.0 2θ 및 21.5 에서 22.0 2θ(deg)의 특징 피트로 구성되는 패턴을 가진다. 아마도, 상기 메실산염의 HT-XRPD는 실질적으로 아래에 해당되는 특징피크를 가진다.
Figure PCTKR2023006007-appb-img-000002
또는
Figure PCTKR2023006007-appb-img-000003
일측면에서, 본 발명은 상기 메실산염의 제조방법에 대해서 제공한다. 상기 제조방법은; a) 용매를 포함한 반응기에 상기 화학식 1의 화합물을 첨가하는 단계, b) 상기 반응기의 용매와 상기 화합물을 교반하는 단계, c) 상기 b)단계에서 준비된 용액에 메탄설폰산을 첨가하는 단계 및 d) 메실산염을 석출하기 위해 상기 c)단계에서 준비된 용액을 냉각하는 단계를 포함하여 구성된다.
일측면에서 상기 용매는 아세토니트릴, 아세톤, 1-2-디메톡시에탄, n-헵탄, 이소프로필알콜, 물 또는 테트라히드로푸란(THF) 중에서 선택될 수 있다. 일측면에서, b)단계에서 준비된 용액에 첨가되는 상기 메탄설폰산은 상기 화학식1의 화합물에 대하여 1:1.5 내지 1:2.5의 당량으로 첨가된다. 바람직하게는 상기 당량비는 1:1.9 내지 1:2.3이고 상기 용매는 아세토니트릴이다. 일측면에서 상기 b)단계는 약 45 내지 55℃에서 최소 1시간 동안 수행된다.
일측면에서, 본 발명은 상기 메실산염과 약학적 담체를 포함하는 약학조성물을 제공한다. 상기 약학 조성물에 포함되는 약제학적으로 허용되는 담체는 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하여 구성되는 그룹에서 선택된 하나 이상의 성분이다. 또한, 본 발명에서 제공하는 상기 약학 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.
일측면에서 본 발명은 상기 메실산염의 유효량을 첨가하여 이루어지는 약학 조성물을 필요로 하는 환자에게 투여함으로서 c-Met 키나제의 활성을 저하시키는 방법을 제공한다. 일측면에서 상기 환자는 세포의 과증식 활성화와 연관되는 질병으로부터 고통받는 환자이고, 일예로서 상기 질병은 폐암, 내장암, 췌장암, 직장암, 난소암, 신장암, 전립선암 또는 뇌종양이 될 수 있다. 일측면에서 상기 방법은 세포의 과증식 활성화를 치료 또는 예방하기 위한 방법이다.
<일반>
AAC Accelerated Ageing Conditions (40°RH)
Am Amorphous
API Active Pharmaceutical Ingredient
CI Counterion
DSC Differential Scanning Calorimetry
DVS Dynamic Vapor Sorption
1H-NMR Proton Nuclear Magnetic Resonance
LCMS High-Performance Liquid Chromatography
HR-XRPD High Resolution X-Ray Powder Diffraction
HT-XRPD High Throughput X-Ray Powder Diffraction
LCMS Liquid Chromatography Mass spectroscopy
ML Mother liquor (liquid phases)
MS Mass Spectroscopy
RH Relative Humidity
RT Room Temperature
SAS Experiment ID for the solubility assessment experiments
SSm Experiment ID for the salt screening experiments
SM Starting Material
TGA Thermogravimetric Analysis
TGMS Thermogravimetric Analysis coupled with Mass Spectroscopy
<용매>
ACN Acetonitrile
IPA 2-Propanol
MTBE tert-Butyl methyl ether
테트라히드로푸란(THF) Tetrahydrofuran
<카운터이온>
HCl Hydrochloride acid
Mes Methanesulfonic acid
Bes Benzenesulfonic acid
Mae Maleic acid
Esy Ethanesulfonic acid
Camp D(+)-10-Camphorsulfonic acid
Mao Malonic acid
Fum Fumaric acid
Cit Citric acid
Mal (-)-L-Malic acid
Suc Succinic acid
Gal Gallic acid
본 발명은 아래의 실시예에 의해서 자세히 설명하지만, 본 발명의 기술적 범위는 상기 실시예에 한정되지는 않는다.
실시예
화학식 1(ABN-401)의 화합물은 에이비온에 의해서 공급되었고, 다른 화합물들은 Fisher Scientific, Sigma Aldrich 또는 VWR에서 공급되었다. 사용된 화합물들은 연구자 등급이고, LCMS 분석에 사용된 용매는 LCMS 등급을 사용하였다.
용해도 결정
용해도는 완전히 용해될까지 또는 최대 부피가 4ml에 도달할 때까지 소량의 용매 분취량(50 μL up to 1 mL, 100 μL above 1 mL)을 개시물질에 첨가하면서 결정되었다.
그 후에 용매를 증발시키고 수득된 고체는 HT-XRPD를 통해 분석되었고, 그 실험결과와 자세한 내용을 테이블 1에 나타내었다.
(테이블 1)
Exp. ID
Solvent
Mass (mg) Final
volume (μL)

Dissolved
Solubility (mg/mL)
XRPD
SAS1 Acetone 7.72 350 Yes 22.1 - 25.6 A (I)
SAS2 Acetonitrile 13.42 1700 Yes 7.9 ≤S≤ 8.4 B (IV)
SAS3 Chloroform 15.57 50 Yes > 311.4 C
SAS4 1,4-Dioxane 9.97 50 Yes > 199.4 A (I)
SAS5 Ethyl acetate 14.22 3200 Yes 4.4 - 4.6 A (I)
SAS6 1,2-Dimethoxyethane 16.52 1300 Yes 12.7 - 13.8 A (I)
SAS7 Isopropanol 10.68 4000 No < 2.7 A (I)
SAS8 Methanol 11.37 4000 No < 2.9 D (II)
SAS9 Tetrahydrofuran 9.03 50 Yes > 180.6 A (I)
SAS10 Water 12.49 4000 No < 3.1 E
열안정도
ABN-401의 열안정도 실험은 상승된 온도에 노출되었을 때 용해되어 있는 개시물질의 화학적 안정도를 확인하기 위해 수행되었다.
아세톤, 1,2-디메톡시에탄 및 아세토니트릴로 이루어진 용매에 농도가 약 0.3mg/mL의 ABN-401 용액이 준비되었다. 상기 용액으 상온에 1시간 동안 노출한 후에 순차적으로 두 개의 샘플 분취량을 1시간 동안 각각 50℃와 80℃에 노출하였다. 상기 용액들은 LCMS에 의해 분석되었다.
추가적으로 24시간 동안 상온에 놓인 상기 샘플을 시간이 흐르는 동안 상기 화합물의 화학적 변질을 점검하기 위하여 다시 측정되었다.
상기 50℃ 및 80℃ 샘플에서 심각한 화학적 변질은 확인되지 않았고, 상기 결과를 테이블 2에 정리하였다.
(테이블 2) 열안정도 실험에서의 LCMS 분석 결과
Solvent Conditions Rt (min) Area
%
Area counts Peak height (mAu)
Acetone 1h / RT 5.2 98.8 5905.0 1181.0
Acetone 24h / RT 5.2 98.5 5843.1 1161.5
Acetone 1h / 50° 5.2 99.0 5883.8 1168.2
Acetone 1h / 80° 5.2 99.0 5843.1 1169.4
1,2-dimethoxyethane 1h / RT 5.2 99.0 6751.7 1341.1
1,2-dimethoxyethane 24h / RT 5.2 98.8 6745.1 1339.0
1,2-dimethoxyethane 1h / 50° 5.2 98.6 6653.6 1326.3
1,2-dimethoxyethane 1h / 80° 5.2 97.7 6697.6 1335.6
ACN 1h / RT 5.2 99.0 6420.0 1260.0
ACN 24h / RT 5.2 98.1 6414.1 1255.0
ACN 1h / 50° 5.2 99.0 6413.9 1258.7
ACN 1h / 80° 5.2 98.7 6445.2 1263.4
염스크리닝 실험
염스크리닝 실험은 상기 아세톤, 1,2-디메톡시에탄 및 아세토니트릴의 ABN-401 용액의 농도가 각각 약 25, 13 및 8 mg/ml되도록 준비하면서 시작되었다.
카운터이온이 상기 API용액에 첨가되었고, 그 함량비율은 각각 API:카운터이온이 1:1.1, 1:2.1 및 1:3.1이었다. 상기 실험은 5 내지 50℃ 사이에서 세 번의 가열-냉각 사이클을 포함하는 온도 프로필을 도출하였고, 3일동안 25℃에 숙성되었다(도 1).
숙성시간이 끝난 후에 상기 고체입자는 액체상에서 분리되었고, 50℃에서 감압건조 후에 HT-XRPD를 통해 분석되었다.
상기 용액과 모액체상은 상온에서 증발시켰고 남겨진 고체입자는 HT-XRPD를 통해 분석되었다. 이어서 모든 고체입차들은 40℃/75% RH의 가속숙성조건에 48시간동안 노출되었고 그들의 물리적 안정도를 시험하기 위해서 HT-XRPD에 의해서 재측정되었다.
염의 스케일업
상기 메실산염, Mes2은 0.5 그람스케일로 스케일업되었다(Exp. ID SSm71). 500mg의 프리베이스폼은 상온에서 23ml의 아세톤에 농도가 26mg/ml가 되도록 용해되었다.
메탄설폰산(1M 물)이 API:CI의 몰비율이 1:2.1이 되도록 첨가되었다. 카운터이온의 첨가에서 상기 염의 침전이 관찰되었다. 상기 현탁액이 50℃가 되도록 가열하였고 지속적으로 50℃에서 8시간동안 교반하였다. 상기 염 현탁액은 25℃로 냉각되었다. 고체입자를 분리하고 50℃ 10mbar에서 감압건조한 후에 HT-/HR-XRPD, TGA/TGMS, DSC, LCMS, 1H-NMR 및 DVS에 의해 분석되었다.
캠실산염 Camp2는 0.3 그람스케일이 되도록 스케일업되었다(Exp. ID SSm73). 300mg의 프리베이스폼은 15ml의 ACN에 농도가 20mg/ml가 되도록 용해되었다. 캄포-10-설폰산 136mg이 API:CI의 몰비율이 1:1.1이 되도록 첨가되었다. 카운터이온 은 50℃에서 1시간 동안 지속적으로 교반하면서 용해되었고, 상기 용액은 25℃로 냉각되었고 72시간 동안 숙성되었다. 냉각 프로필 동안에 상기 염의 침전이 발생하였고, 상기 고체침전물을 분리한 후에 50℃ 10mbar에서 감압건조한 후에 HT-/HR-XRPD, TGA/TGMS, DSC, LCMS, 1H-NMR 및 DVS에 의해 분석되었다.
물리적 및 화학적 안정도
상기 메실산염(Mes2)와 캠실산염(Camp2) 및 말레산염(Mae2)에 대한 물리적 안정도 실험은 2년동안 특정한 온도 및 상대습도(25°RH and 40° RH) 에서 수행되었다.
기준물질로서 ABN-401의 프리베이스폼에 대해서도 역시 상기의 안정도 실험을 실시하였다.
상기의 고체입자에 특별한 변화가 있는지와 물과 용매의 함유량을 확인하기 위해서 또한 다른 조건에서 보관된 저장상태에 화합물의 변질이 있는 지를 확인하기 위해서 1, 3, 15, 24 개월의 시점에 상기 입자들을 포함하는 바이알에 대해서 XRPD, TGMS 및 HPLC 테스트를 실시하였다.
테이블 3. 상기 캠실산염(Camp2), 말레산염(Mae2), 메실산염(Mes2) 및 ABN-401의 프리베이스폼(FB)에 대한 안정도를 실험하기 위한 조건
Exp ID Condition Salt form Time Mass (mg)
GEN50
25° RH



Camp2
1 month 28.8
GEN51 3 months 23.7
GEN52 15 months 23.5
GEN53 24 months 19.2
GEN54
40° RH
1 month 26.8
GEN55 3 months 21.6
GEN56 15 months 18.4
GEN57 24 months 19.1
GEN58
25° RH

Mae2
1 month 20.7
GEN59 3 months 19.1
GEN60 15 months 23.8
GEN61 24 months 22.3
GEN62
40° RH
1 month 17.4
GEN63 3 months 17.0
GEN64 24 months 17.4
GEN65 15 months 22.5
GEN66
25° RH



Mes2
1 month 23.2
GEN67 3 months 23.2
GEN68 15 months 29.9
GEN69 24 months 23.5
GEN70
40° RH
1 month 27.3
GEN71 3 months 20.3
GEN72 24 months 26.9
GEN73 15 months 23.1
GEN78
25° RH



FB
1 month 21.0
GEN79 3 months 22.3
GEN80 15 months 19.5
GEN81 24 months 20.6
GEN74
40° RH
1 month 18.9
GEN75 3 months 21.4
GEN76 24 months 20.1
GEN77 15 months 22.1
고효율 엑스레이 분말 회절분석
HT-XRPD 패턴은 크리스탈 T2 고효율 XRPD 장치에 의해서 수집되었다.
플레이트는 Bruker General Area Detector Diffraction System (GADDS)에 마운트되었고, 상기 시스템에는 강도와 형상의 변화를 보정하기 위해서 VANTEC-500 가스면적 디텍터가 장착되어있다. 피크위치에 대한 정확도에 대한 보정은 NIST SRM1976 standard (Corundum)에 의해서 수행되었다.
데이터 수집은 상온에서 1.5°and 41.5°사이의 2θ 범위의 Cu Kα 단색을 사용하여 수집되었고, 상기 방법은 XRPD 패턴에 대한 가장 독특한 방식이다. 상기 각 웰의 회절패턴은 두 개의 2θ 범위(1.5°≤ 2θ ≤ 21.5°1차 프레임, 19.5°≤ 2θ ≤ 41.5°2차 프레임)에서 각 프레임당 90초 동안의 노출을 통해 수집되었다.
상기 XRPD 패턴에는 아무런 배경삭제 또는 곡선의 스무딩 작업이 실시되지 않았다.
HT-XRPD 측정을 하는 동안에 사용된 담체물질은 엑스레이에 투명하였고 배경에 아주 미세한 영향을 끼쳤다.
고해상도 엑스레이 분말 회절분석
분말 데이터는 D8 회절분석기에 의해서 수집되었는데, 여기에는 상온에서 게르마늄 단색을 사용하는 Cu K1(1.54056 Å)을 사용하였다.
상기 데이터는 고체에 대한 LynxEye 디텍터를 22 sec/step 속도로 4°and 45°사이의 2θ 범위에서 0.016°의 2θ스텝을 통해서 수집되었다. 상기 샘플은 외경 0.3mm, 길이 8mm의 글래스 캐필러리를 이용해서 측정되었다.
TGMS 분석
크리스탈에서 물과 용매의 손실에 의한 질량손실은 TGA를 통해서 측정되었다. 상기 샘플의 중량을 모니터링하고, TGA/DSC3+STARe 시스템으로 가열하였으며, 상기 결과로서 중량-온도 곡선과 열흐름 신호를 얻었다. 상기 TGA/DSC3+ 결과는 인듐과 알루미늄 샘플을 이용해서 온도에 대한 보정을 하였다. 상기 샘플(circa 2mg)은 100μL의 알루미늄 도가니에 담아서 밀봉되었다. 상기 밀봉에는 필홀을 형성하였고, 상기 도가니는 TGA 과정에서 가열속도 10°로 25에서 300℃까지 가열되었다. 퍼징과정에서는 건조질소가스가 사용되었다.
상기 TGA 샘플에서 나오는 가스는 Omnistar GSD 301 T2 (Pfeiffer Vacuum GmbH, Germany) 질량분석기에 의해서 분석되었다. 상기 분석기는 0-200 amu 범위의 온도에서 질량분석이 가능하다.
DSC 분석
DSC 온도기록도는 열속 DSC3+ STARe 시스템을 통해서 기록되었다. 상기 DSC3+는 미량의 인듐(m.p. = 156.6°δHf = 28.45 J/g)과 아연(m.p. = 419.6°δHf = 107.5 J/g)을 이용해서 온도와 엔탈피 보정을 하였다.
상기 샘플은 표준의 40μL 알루미늄팬에 밀봉되어 핀홀을 형성하고, DSC 과정에서 가열속도 10°로 25에서 300℃까지 가열되었다. 흐름속도 50mL/min의 건조질소가스가 퍼징과정에서 사용되었다.
H-NMR 분석
H-NMR 스펙트럼은 상온에서 500 MHz Bunker 장비를 통해서 기록되었다. 상기 샘플은 DMSO에 용해되고 분석되었다. 상기 데이터는 ACD Labs 소프트웨어 스펙트러스 프로세서에 의해서 가공되었다.
LCMA 분석
개시물질의 특성화와 프리베이스폼에서 신규한 결정형의 정화
방법명 : S19061_0.3M
샘플 : 농도 0.3 mg/ml, 희석액 : 아세토니트릴
(테이블 4)
Instrument Agilent 1200 series with diode array UV detector
Mobile phase A 10 mM Ammonium acetate in Water
Mobile phase B Acetonitrile
Column Waters Sunfire C18 (100 x 4.6mm; 3.5μ
Detection: UV at 280 nm, bandwidth 4 nm, UV spectrum 200 to 400 nm
Flow: 1.0 mL/min.
Run time 10 minutes
Injection volume 5 μL
Column temp. 35 °
Autosampler temp. Ambient
Gradient: Time [min.] Eluent A [%] Eluent B [%]
0 90 10
2.5 50 50
8 10 90
10 90 10
신규 결정형염의 에세이와 정화
방법명 : S19061_01.M
샘플 : 농도 0.3 mg/ml, 희석액 : 아세토니트릴/물(50/50)
(테이블 5)
Instrument Agilent 1260 series with diode array UV detector
Mobile phase A 20 mM Ammonium carbonate, pH =9.4
Mobile phase B ACN:IPA:water:TFE (68:22:9:1)
Column Waters XBridge BEH C18 (100 x 4.6mm; 3.5μ
Detection: UV at 282 nm, bandwidth 4 nm, UV spectrum 200 to 400 nm
Flow: 1.4 mL/min.
Run time 10 minutes
Injection volume 5 μL
Column temp. 60 °
Autosampler temp. Ambient
Gradient: Time [min.] Eluent A [%] Eluent B [%]
10 60 40
DVS 분석
고체물질의 다양한 형태의 흡습도의 차이는 상대습도가 증가되는 상황에서 각 물질의 상대적인 안정도를 나타내는 척도가 된다. 미량의 샘플의 등온 흡습도가 DVS-1 시스템에 의해 수득되었다. 상기 장치는 0.1μg 의 정확도로 아주 소량의 샘플을 측정하기에 적합하다. 일정한 온도 25℃에서 흡습-탈습-흡습과정 동안 상대습도를 변화시켰고(40-95-40%RH), 전형적으로 매 단계마다(10% 상대습도 단계) 60분 동안 홀드하였다. DVS 실험의 마직막에는 샘플을 XRPD로 측정하였다.
흡습성은 유럽 약품 흡습도에 따라 분류하였다.
25℃/80%RH(24시간)에서 수분 흡수 퍼센트에 대한 분류는 다음과 같다.
질량변화 <0.2% - 비흡습성
질량변화 >0.2% 및 <2% - 미량흡습성
질량변화 >2% 및 <15% - 온화한 흡습성
질량변화 >15% - 매우 흡습성
메실산염
도 4는 프리베이스폼(Form A)에 대한 모든 메실산염의 XRPD 패턴을 나타낸다.
Mes1은 세 가지의 결정화 용매에서 API:CI의 몰비율이 1:1 이 되도록 메탄설폰산을 첨가하여 수행된 실험에서 수득된 메실산염이다.
테이블 6은 Mes1을 수득하기 위한 실험 조건을 나타낸다. 이후의 특성화과정을 위해 선택된 고체는 아세톤과 1 몰당량으로 메탄설폰산을 첨가하였을 때 형성된 결정형염이다(Exp. ID SSm4). Mes1은 AAC(40°RH)에 2일동안 노출되었을 때에 물리적인 안정성을 보였다.
(테이블 6) Mes1을 수득하기 위한 실험조건. *는 용매를 증발시킨 후에 형성된 고체

Exp. ID
API:CI
Ratio 1:x

Solvent

Form

Form after AAC
SSm4 1 Acetone Mes1 Mes1
SSm27 1 1,2-Dimethoxyethane Mes1 Mes1
SSm50* 1 ACN Mes1 Mes1
Mes 1에 대한 TGA/TGMS 분석결과는 MS신호에 근거하여 140℃에서 아세톤과 물에 의해서 4.3%의 질량손실을 보였다. 230℃ 이상에서 열분해가 관찰되었다.
TGA의 열흐름 신호는 약 160℃ 부근에서 질량손실에 의한 광범위한 흡열반응을 보였는데, 이는 무수형태의 용융과 관련되어 있다. 상기 열분석결과는 Mes1이 수화된/용해된 결정형염의 복합물인 것을 암시한다.
Mes2는 세 가지의 결정화 용매에서 API:CI의 몰비율이 1:2가 되도록 메탄설폰산을 첨가하고 또 ACN에서 상기 비율이 1:3이 되도록 첨가하여 수행된 실험에서 수득된 메실산염이다. 테이블 7은 Mes12를 수득하기 위한 실험 조건을 나타낸다. 이후의 특성화과정을 위해 선택된 고체는 아세톤과 2 몰당량으로 메탄설폰산을 첨가하였을 때 형성된 결정형염이다(Exp. ID SSm5). Mes2는 AAC(40°RH)에 2일 동안 노출되었을 때에 물리적인 안정성을 보였다.
(테이블 7) Mes2를 수득하기 위한 실험조건

Exp. ID
API:CI
Ratio 1:x

Solvent

Form

Form after AAC
SSm5 2 Acetone Mes2 Mes2
SSm28 2 1,2-Dimethoxyethane Mes2 Mes2
SSm51 2 ACN Mes2 Mes2
SSm52 3 ACN Mes2 Mes2
Mes2에 대한 TGA/TGMS 분석결과는 MS 신호에 근거하여 물에 의해서 25에서 150℃ 동안에 4.6%의 점진적인 질량손실을 나타내었다(4.6%는 염분자당 물분자 2.0개에 해당한다). 220℃ 이상에서 열분해가 관찰되었다.
상기 TGA의 열흐름 신호는 물손실에 의한 광범위한 흡열반응을 보였고 약 210℃ 부근에서 흡열반응을 보였는데, 이는 무수물의 용융과 관련되어 있다. 상기 열분석 결과는 Mes2는 디메실산염의 이수화물인 것을 암시한다.
상기 Mes2의 DSC 분석결과는 25에서 120℃까지 광범위한 흡열반응을 보였는데, 이는 아마도 물의 손실과 관련되어 있을 것이다. 약 218.2℃ 부근에서 아마도 잠재적인 무수염의 용융에 의한 것으로 보이는 이중 흡열반응이 기록되었고, 이후에 223℃ 에서 열분해에 의한 것으로 추정되는 발열반응을 보였다.
상기 Mes2의 화학적 순도는 LCMS에 의해서 측정되었고 100%였고, 이는 Mes2의 고체상에 API가 존재한다는 것을 확인해준다.
Mes2에 대한 1H-NMR 분석결과는 도 11에 제시되었다. Mes2의 스펙트럼에서 보인 API 공명의 이동(shift)은 산성의 카운터이온에서 프리베이스로 양성자의 이동이 발생했다는 것을 암시한다. 상기 API:CI 비율은 1:2로 나타났고, 2.2ppm에서 잔류 아세톤이 관찰되었다.
Mes3는 아세톤과 1,2디메톡시에탄 용매에서 API:CI의 몰비율이 1:3이 되도록 메탄설폰산을 첨가하여 수행된 실험에서 수득된 메실산염이다. 이후의 특성화과정을 위해 선택된 고체는 아세톤과 3 몰당량으로 메탄설폰산을 첨가하였을 때 형성된 결정형염이다(Exp. ID SSm6). 테이블 8은 Mes3를 수득하기 위한 실험조건을 나타낸다. 결정성이 유지되지만, Mes3은 AAC(40°RH)에 2일 동안 노출되었을 때에 용해성이 나타났다.
(테이블 8) Mes3을 수득하기 위한 실험조건

Exp. ID
API:CI
Ratio 1:x

Solvent

Form

Form after AAC
SSm6 3 Acetone Mes3 Mes3 (deliquescent)
SSm29 3 1,2-Dimethoxyethane Mes3 Mes3 (deliquescent)
Mes3에 대한 TGA/TGMS 분석결과는 MS 신호에 근거하여 물에 의해서 25 에서 140℃ 까지에서 5.6%의 질량손실을 나타내었다(5.6%는 염분자당 물분자 2.8개에 해당한다). 220℃ 이상에서 열분해가 관찰되었다.
상기 TGA의 열흐름 신호는 약 200℃ 부근에서 물손실에 의한 광범위한 흡열반응을 보였고, 이후에 열분해를 나타냈다. 상기 열분석 결과는 Mes3는 수화된 결정형염이하는 것을 암시한다.
캠실산염
도 14는 개시물질(Form A)에 대한 캠실산염의 HT-XRPD 패턴을 비교한 것이다.
Camp1은 아세톤과 1,2디메톡시에탄 용매에서 API:CI의 몰비율이 1:1이 되도록 캠포-10-설폰산을 첨가하여 수행된 실험에서 수득된 염의 형태이다. 테이블 9는 Camp1을 수득하기 위한 실험조건을 나타낸다. 이후의 특성화과정을 위해 선택된 고체는 아세톤과 1 몰당량으로 캠포-10-설폰산을 첨가하였을 때 형성된 결정형염이다(Exp. ID SSm14). Camp1은 AAC(40°RH)에 2일 동안 노출되었을 때에 물리적으로 안정하였다.
(테이블 9) Camp1을 수득하기 위한 실험조건

Exp. ID
API:CI
Ratio 1:x

Solvent

Form

Form after AAC
SSm14 1 Acetone Camp1 Camp1
SSm37 1 1,2-Dimethoxyethane Camp1 Camp1
Camp1에 대한 TGA/TGMS 분석결과는 MS 신호에 근거하여 물에 의해서 25 에서 150℃ 사이에 3.3%의 질량손실을 나타내었다(3.3%는 염분자당 물분자 1.5개에 해당한다). 240℃ 이상에서 열분해가 관찰되었다.
열흐름 신호에서는 160℃ 부근에서 명확한 흡열반응을 보였는데, 이는아마도 상기 염의 무수물의 용융과 관련되어 있다.
상기 Camp1의 DSC 분석결과는 25에서 120℃까지 광범위한 흡열반응을 보였는데, 이는 아마도 물의 손실과 관련되어 있을 것이다. 약 164.0℃ 부근에서 아마도 잠재적인 무수염의 용융에 의한 것으로 보이는 흡열반응이 나타났다.
상기 Camp1의 화학적 순도는 LCMS에 의해서 측정되었고 100%였고, 이는 Camp1의 고체상에 API가 존재한다는 것을 확인해준다.
Camp1에 대한 1H-NMR 분석결과는 도 19에 제시되었다. Camp1의 스펙트럼에서 보인 API 공명의 이동(shift)은 산성의 카운터이온에서 프리베이스로 양성자의 이동이 발생했다는 것을 암시한다. 상기 API:CI 비율은 1:1로 나타났고, 2.1ppm에서 잔류 아세톤이 관찰되었다.
Camp2는 ACN 용매에서 API:CI의 몰비율이 1:1이 되도록 캠포-10-설폰산을 첨가하여 수행된 실험에서 수득된 염의 형태이다(Exp. ID SSm60). 테이블 10은 Camp2를 수득하기 위한 실험조건을 나타낸다. Camp2는 AAC(40°RH)에 2일 동안 노출되었을 때에 물리적으로 안정하였다.
(테이블 10) Camp2를 수득하기 위한 실험조건

Exp. ID
API:CI
Ratio 1:x

Solvent

Form

Form after AAC
SSm60 1 ACN Camp2 Camp2
Camp2에 대한 TGA/TGMS 분석결과는 MS 신호에 근거하여 물에 의해서 25 에서 100℃ 사이에 1.6%의 질량손실을 나타내었다(1.6%는 염분자당 물분자 0.7개에 해당한다). 240℃ 이상에서 열분해가 관찰되었다.
열흐름 신호에서는 200℃ 부근에서 흡열반응을 보였는데, 이는아마도 상기 염의 무수물의 용융과 관련되어 있었고, 이후에 분해가 나타났다.
상기 Camp2의 DSC 분석결과는 25 에서 70℃까지 광범위한 흡열반응을 보였는데, 이는 아마도 물의 손실과 관련되어 있을 것이다. 약 208.9℃ 부근에서 흡열반응을 보였는데, 이는 아마도 무수염의 용융에 의한 것으로 보인다.
상기 DSC 결과에서 나타난 208.9℃의 잠재적인 무수물의 용융을 격리할 목적으로 Camp2의 샘플(Exp. ID SSm60)을 80℃에서 감암건조하였다. 이후에 고체입자를 HT-XRPD와 TGMS로 분석하였다. 상기 고체입자에는 Camp2가 잔류하였고, 1.9%의 물이 포함되었다.
상기 Camp2의 화학적 순도는 LCMS에 의해서 측정되었고 100%였고, 이는 Camp2의 고체상에 API가 존재한다는 것을 확인해준다.
Camp2에 대한 1H-NMR 분석결과는 도 25에 제시되었다. Camp2의 스펙트럼에서 보인 API 공명의 이동(shift)은 산성의 카운터이온에서 프리베이스로 양성자의 이동이 발생했다는 것을 암시한다. 상기 API:CI 비율은 1:1로 나타났다.
Mes2의 특성화 분석결과
HT-XRPD 분석결과는 스케일업 실험에서 Mes2(Exp. ID SSm71)의 결정화를 확인시켜준다. Mes2의 고해상도 XRPD(HR-XRPD) 패턴은 색인화되지 않았다.
건조된 Mes2의 TGA/TGMS 분석결과는 25에서 110℃ 사이에서 점진적인 4.0%의 질량손실을 보였는데, 이는 아마도 MS 신호에 근거하여 물손실에 의한 것으로 추정된다(4.0%는 염분자당 1.8개의 물분자에 해당된다). Mes2의 열분해는 240℃ 이상에서 관찰되었다.
Mes2의 DSC 분석결과는 25에서 110℃에서 물손실과 관련되는 하나의 광범위한 흡열반응을 보였다. 상기 205에서 217℃에서 관찰된 이중 흡열반응은 아마도 상기 염의 용융과정과 연관되어 있다. LCMS에 의해 측정된 Mes2의 화학적 순도는 99.6%였는데, 이는 Mes2의 고체상에 API가 존재한다는 것을 확인시켜준다.
Mes2의 H-NMR 분석결과는 도 30에 제시되었다. Mes2 스펙트럼에서 관찰된 API 공명의 이동은 산성 카운터이온에서 프리베이스로 양성자의 이동이 나타난 것을 암시한다. API:CI 비율은 1:2였다.
도 31은 Mes2에 수행된 DVS 측정결과를 나타낸다. 절반 사이클의 첫 번째 흡습은 물의 습수가 상대습도 95%에서 29.6%에 도달한 것을 나타낸다(상대습도 40에서 95%의 변화에서 24.8%의 질량변화가 나타남). 상대습도 95에서 0%의 탈습 사이클에서 물은 분출되었다. 상기 물의 흡수는 상대습도의 각 단계변화에서 평형을 유지하지 못하였는데(각 단계에서 1시간 동안 평형방치), 이는 흡습-탈습 사이클에서 상대습도 95에서 70%사이에서 나타난 히스테리시스의 원인이었다. 물의 흡수는 가역적이었다.
상대습도 80%에서 질량손실은 약 12.2%였다. 결과적으로 메실산염 Mes2는 유럽 약물 흡습도 분류에서 온화한 흡습성으로 간주되었다. 상기 DVS 분석 이후에는 고체형태의 변화는 없었다.
Camp2의 특성화 분석결과
HT-XRPD 분석결과는 스케일업 실험에서 Camp2(Exp. ID SSm73)의 결정화를 확인시켜준다. Camp2의 고해상도 XRPD(HR-XRPD) 패턴은 색인화되지 않았다.
건조된 Camp2의 TGA/TGMS 분석결과는 25에서 80℃ 사이에서 1.6%의 질량손실을 보였는데, 이는 아마도 MS 신호에 근거하여 물손실에 의한 것으로 추정된다(1.6%는 염분자당 0.7개의 물분자에 해당된다). Camp2의 열분해는 240℃ 이상에서 관찰되었다.
Camp2의 DSC 분석결과는 25에서 80℃에서 물손실과 관련되는 하나의 광범위한 흡열반응을 보였다. 두 번째 명확한 흡열반응은 208.6℃에서 관찰되었는데, 이는 아마도 무수염의 용융과정과 연관되어 있다. LCMS에 의해 측정된 Camp2의 화학적 순도는 99.7%였는데, 이는 Camp2의 고체상에 API가 존재한다는 것을 확인시켜준다.
Camp2의 H-NMR 분석결과는 도 36에 제시되었다. Camp2 스펙트럼에서 관찰된 API 공명의 이동은 산성 카운터이온에서 프리베이스로 양성자의 이동이 나타난 것을 암시한다. API:CI 비율은 1:1이었다.
도 37은 Camp2에 수행된 DVS 측정결과를 나타낸다. 절반 사이클의 첫 번째 흡습은 물의 습수가 상대습도 95%에서 15.6%에 도달한 것을 나타낸다(상대습도 40에서 95%의 변화에서 14.1%의 질량변화가 나타남). 질량변화를 나타낸 그래프는 물의 흡수가 상대습도 90에서 95%에서 평형에 도달하지 못한 것을 나타낸다. 상대습도 95에서 0%의 탈습 사이클에서 물은 분출되었다. 마지막 절반의 흡수 사이클(상대습도 0에서 40% 구간)에서 질량의 변화는 6.6%였다. 물의 흡수는 비가역적이었는데, 이는 형태의 변화를 암시한다. 새로운 형태의 Camp4가 고체상에서 HT-XRPD에 의해서 확인되었다.(도 38)
DVS 분석결과는 상대습도 80%에서 질량변화가 약 1.4%였는데, 이는 상기 물질은 유럽 약물 흡습도 분류에서 미량 흡습성이라는 것을 암시한다.
프리베이스 형태의 안정성
3개월간의 TGA 분석을 위해서 형태 A를 25℃/60%RH와 40℃/75%RH에 노출하였고, 그결과는 도 40A, B에 제시되었다. 3개월 동안 25℃/60%RH와 40℃/75%RH에 노출된 샘플에 각각 4.1%와 4.4%의 질량손실이 나타났다. 열흐름 분석결과는 형태 A의 용융에 해당되는 140℃에서 물손실에 의한 광범위한 흡열반응을 보였다. 양 샘플에서 열분해는 230℃에서 관찰되었다.
15개월간의 TGA 분석을 위해서 형태 A를 25℃/60%RH와 40℃/75%RH에 노출하였고, 그결과는 도 41A, B에 제시되었다. 15개월 동안 25℃/60%RH와 40℃/75%RH에 노출된 샘플에 각각 3.3%와 3.7%의 질량손실이 나타났다. 열흐름 분석결과는 형태 A의 용융에 해당되는 140℃에서 물손실에 의한 광범위한 흡열반응을 보였다. 양 샘플에서 열분해는 230℃에서 관찰되었다.
24개월간의 TGA 분석을 위해서 형태 A를 25℃/60%RH와 40℃/75%RH에 노출하였고, 그결과는 도 42A, B에 제시되었다. 24개월 동안 25℃/60%RH와 40℃/75%RH에 노출된 샘플에 각각 5.3%와 5.2%의 질량손실이 나타났다. 열흐름 분석결과는 형태 A의 용융에 해당되는 140℃에서 물손실에 의한 광범위한 흡열반응을 보였다. 200℃ 이하에서는 어떠한 열분해도 나타나지 않았다.
상기 형태 A를 25℃/60%RH(Exp. ID GEN81)와 40℃/75%RH(Exp. ID GEN76)에 24개월 노출한 후에 LCMS에 의해 측정된 화학적 순도는 각각 87.2%와 90.7%였다(도 43, 44). 이는 양쪽 조건에서 화합물의 변질이 일어난 것을 확인시켜준다.
메실산염의 안정도
HT-XRPD 분석결과는 Mes2를 25℃/60%RH와 40℃/75%RH에 노출한 후에 고체 형태의 전환이 발생하였다는 것을 확인시켜 준다. 상기 변화는 25℃/60%RH보다 40℃/75%RH에서 더 빠르게 발생하였다. Mes2 샘플을 25℃/60%RH에 3개월 동안 노출한 후에는 분말 패턴에서 특별한 차이는 없었으나, 15개월 후에는 15.1과 16.5°2θ에서 추가적인 회절피크가 검출되었다. 아마도 상기 회절피크는 다른 결정형의 변화에 의해 발생하는 것으로 보이나 그 형태상의 본질은 알려지지 않았다.
40℃/75%RH에 노출된 샘플에서는 3개월 후에 추가적인 피크를 보였다. 15개월 후에는 XRPD의 모든 피크가 이동하였는데 이를 Mes4로 명시하였는데, 상기 추가적인 피크는 15.1과 16.5°2θ에 여전히 존재하였다. 24개월 후에는 상기 두 가지 조건에 노출된 고체는 새로운 형태로 전환되었고 이를 Mes6로 명명하였다. 도 45는 Mes2의 스케일업과 25℃/60%RH와 40℃/75%RH에 1, 3, 15, 24개월간 노출한 후의 분말 패턴의 중첩을 나타낸다.
도 46 A, B는 Mes2 샘플을 25℃/60%RH와 40℃/75%RH에 1개월동안 노출한 후의 TGA 분석결과를 나타낸다. 25℃/60%RH에 1개월간 노출한 샘플에서는 8.0%의 물손실이 발생하였고, 40℃/75%RH에 1개월간 노출한 샘플에서는 10.8%의 물손실이 발행하였다. 두 개의 샘플에서 열분해는 230℃에서 나타났다. 두 개의 샘플에서 Mes2의 최초에 활정된 수분함량과 비교하여 중요한 물 흡수가 나타났다(3.9%).
상기 물흡수는 3개월 후에도 나타났다. 도 47 A, B는 25℃/60%RH와 40℃/75%RH에 3개월 동안 노출한 후의 물손실이 각각 7.7%와 11.2%로 나타난 것을 보여준다.
저장조건에서 15개월 동안 노출한 후의 상기 샘플의 열적 변화는 질량손실이 아주 적었으나 위의 샘플과 거의 동일한 결과를 보였다. 도 48A, B는 25℃/60%RH와 40℃/75%RH에 15개월간 노출한 후의 물손실이 각각 6.5%와 9.6%로 나타난 것을 제시하였다.
24개월 후에 Mes2는 25℃/60%RH와 40℃/75%RH에 인큐베이션한 후 각각 약 8.6%와 12.0%의 질량손실을 나타냈다. 열흐름 신호에서는 유사한 열적 변화가 기록됐다. 200℃에서 흡열반응이 시작되었는데, 이는 메실산염의 열분해에 의한 것으로 파악된다.
상기 Mes2를 25℃/60%RH(Exp. ID GEN66)와 40℃/75%RH(Exp. ID GEN70)에 1개월 노출한 후에 LCMS에 의해 측정된 화학적 순도는 각각 100%와 99.7%였다(도 50, 51). 이는 최초의 Mes2 염에서와 거의 유사한 순도로 Mes2의 고체상에 API가 존재한다는 것을 확인시켜준다.
상기 Mes2를 25℃/60%RH와 40℃/75%RH에 3개월 노출한 후에 측정된 화학적 순도는 각각 99.6%와 99.5% 였다(도 52, 53).
25℃/60%RH와 40℃/75%RH에서 15개월 후의 샘플의 화학적 순도는 100%였다(도 54, 55). 25℃/60%RH와 40℃/75%RH에서 24개월 후의 샘플의 화학적 순도는 각각 99.6%와 100%였다(도 56, 57).
캠실산염의 안정도
HT-XRPD 분석결과는 Camp2를 25℃/60%RH에 24개월 동안 노출한 후에 고체 형태의 전환이 발생하지 않았다는 것을 확인시켜 준다.
그러나 40℃/75%RH에서는 3개월 후에 고체상의 전환이 관찰되었다. 상기 새로운 분말 패턴은 Camp4 분말 패턴으로 명명되었다. 24개월 후에는 더 많은 전환이 발생하였고 이는 캠실산염과 프리베이스형태의 형태 E가 혼합되었다는 가능성을 나타낸다. 도 58은 Camp2의 스케일업과 25℃/60%RH와 40℃/75%RH에 1, 3, 15, 24개월간 노출한 후의 분말 패턴의 중첩을 나타낸다.
Mes2 샘플을 25℃/60%RH에 3개월 동안 노출한 후에는 분말 패턴에서 특별한 차이는 없었으나, 15개월 후에는 15.1과 16.5°2θ에서 추가적인 회절피크가 검출되었다. 아마도 상기 회절피크는 다른 결정형의 변화에 의해 발생하는 것으로 보이나 그 형태상의 본질은 알려지지 않았다.
40℃/75%RH에 노출된 샘플에서는 3개월 후에 추가적인 피크를 보였다. 15개월 후에는 XRPD의 모든 피크가 이동하였는데 이를 Mes4로 명시하였는데, 상기 추가적인 피크는 15.1과 16.5°2θ에 여전히 존재하였다. 24개월 후에는 상기 두 가지 조건에 노출된 고체는 새로운 형태로 전환되었고 이를 Mes6로 명명하였다. 도 45는 Mes2의 스케일업과 25℃/60%RH와 40℃/75%RH에 1, 3, 15, 24개월간 노출한 후의 분말 패턴의 중첩을 나타낸다.
도 59 A, B는 25℃/60%RH와 40℃/75%RH에 1개월간 노출한 후의 Camp2의 TGA 분석결과를 나타낸다. 25℃/60%RH에 1개월간 노출된 샘플에서는 1.6%의 질량손실이 나타났고, 40℃/75%RH에 1개월간 노출된 샘플에서는 1.8%의 질량손실을 나타내었다. 두 개의 샘플에서 열분해는 240℃ 이상에서 발생했다.
25℃/60%RH에 3개월간 인큐베이팅한 Camp2 샘플은 1개월 후에 기록된 것과 유사한 물함량을 나타냈는데, 이는 상기 조건에서 중요한 물흡수는 없었다는 것을 의미한다. 그러나 40℃/75%RH에서는 Camp2에서 Camp4로의 고체형태의 전환이 관찰되었다. 이 결과로 TGA 분석결과는 7.1%의 물함량을 보였다(캠실산염 분자당 물분자 3.3개에 해당됨). 열흐름 신호에서 기록된 열적 변화는 물용출에 의한 광범위한 흡열반응을 보였고, 이후에 무수물의 용융에 의해 발생하는 150℃에서의 흡열반응이 나타났다(Camp2에서는 200℃임).
25℃/60%RH에 24개월간 인큐베이팅한 Camp2 샘플은 1.9%의 질량손실을 나타냈는데, 이는 상기의 식에 측정된 질량손실과 유사하다(도 62A). 이 결과는 상기 조건에서는 중요한 물흡수가 일어나지 않는다는 것을 의미한다. 40℃/75%RH에 24개월 동안 노출한 후의 TGA 분석결과는 6.7%의 물함량을 보였다(캠실산염 분자당 물분자 3.2개에 해당됨). 열흐름 신호에서 기록된 열적 변화는 물용출에 의한 광범위한 흡열반응을 보였고, 이후에 무수물의 용융에 의해 발생하는 150℃에서의 흡열반응이 나타났다(Camp2에서는 200℃임).
상기 Camp2를 25℃/60%RH(Exp. ID GEN50)와 40℃/75%RH(Exp. ID GEN54)에 1개월 노출한 후에 LCMS에 의해 측정된 화학적 순도는 두 샘플에서 99.8%였다(도 63, 64). 이는 Camp2의 고체상에 API가 존재한다는 것을 의미한다. 3개월 후의 화학적 순도는 1개월 샘플과 비교되었다(도 65, 66)
25℃/60%RH에서 15개월 노출한 후의 Camp2의 화학적 순도는 99.5%였는데(도 67), 이는 Camp2가 상기 조건에서 최소 15개월 동안은 안정적이라는 것을 의미한다. 40℃/75%RH에서 15개월 후의 Camp4 샘플의 화학적 순도는 93.7%였다(도 68). 이는 40℃/75%RH에서 Camp2가 Camp4로 전환된다는 것을 의미한다.
Camp2를 25℃/60%RH에 24개월 동안 노출한 후의 화학적 순도는 100%였는데(도 69), 이는 Camp2는 상기 조건에서 최소 24개월까지는 안정적이라는 것을 확인시켜 준다. 캠실산염을 40℃/75%RH에 24개월 동안 노출한 후의 화학적 순도는 88.6%였는데, 이는 Camp2가 다른 형태로 전환될 때 40℃/75%RH에서 화학적 변질이 발생한다는 것을 의미한다.
본 발명은 상기 특별한 실시예 등을 인용하여 설명하고 있으나, 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다양한 변형이 있을 수 있다는 것을 자명한 것이다. 따라서 본 발명은 상기 서술된 실시예에 한정되지 않고 하기의 청구항 및 균등한 물질 등에 의한 것까지 포함된다는 것은 주지의 사실이다.
본 발명은 산업상이용가능하다.

Claims (21)

  1. 메탄설폰산과 하기의 화학식 1로 표현되는 트리아졸로피라진 유도체로 이루어지는 메실산염;
    (화학식 1)
    Figure PCTKR2023006007-appb-img-000004
  2. 제 1항에 있어서, 상기 메실산염은 상기 화학식 1의 트리아졸로피라진 유도체의 S-광학이성질체인 것을 특징으로 하는 메실산염
  3. 제 2항에 있어서, 상기 메실산염은 상기 화학식 1의 트리아졸로피라진 유도체가 광학적으로 순수한 것을 특징으로 하는 메실산염
  4. 제 1항 내지 제3항 중 어느 한 항에 있어서, 상기 메실산염은 Mes1, Mes2 및 Mes3 중 어느 하나인 것을 특징을 하는 메실산염
  5. 제 4항에 있어서, 상기 메실산염은 Mes2인 것을 특징으로 하는 메실산염
  6. 제 1항에 있어서, 상기 메실산염은 20 내지 50℃ 및 상대습도 35 내지 80%에서 최소 2일 동안 물리적으로 안정적인 것을 특징으로 하는 메실산염
  7. 제 6항에 있어서, 상기 메실산염은 API 순도가 최소 95%인 것을 특징으로 하는 메실산염
  8. 제7항에 있어서, 상기 메실산염은 API의 순도가 100%인 것을 특징으로 하는 메실산염
  9. 제1항에 있어서, 상기 메실산염은 고효율 XRPD(HT-XRPD) 패턴이 15.5 내지 16.0°2θ, 17.5 내지 18.0°2θ 및 21.5 내지 22.0°2θ에서 특징적인 피크를 나타내는 것을 특징으로 하는 메실산염
  10. 제1항에 있어서, 상기 메실산염의 HT-XRPD 패턴은 실질적으로 하기의 특징적인 피크를 가지는 것을 특징으로 하는 메실산염
    Figure PCTKR2023006007-appb-img-000005
    또는
    Figure PCTKR2023006007-appb-img-000006
  11. 제1항의 메실산염의 제조방법에 관한 것으로서, 상기 제조방법은;
    a) 용매를 포함하는 리액터에 아래의 화학식 1의 화합물을 첨가하는 단계;
    (화학식 1)
    Figure PCTKR2023006007-appb-img-000007
    b) 리액터에서 상기 화합물과 용매를 교반하는 단계;
    c) b)단계의 용액에 메탄설폰산을 첨가하는 단계;
    d) 메실산염을 침전물을 수득하기 위하여 상기 c) 단계의 용액을 냉각하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 메실산염의 제조방법
  12. 제 11항에 있어서, 상기 용매는 아세토니트릴, 아세톤, 1,2-디메톡시에탄, n-헵탄, 이소프로필알콜, 물 또는 테트라히드로푸란(THF) 중에서 선택된 어느 하나를 포함하여 이루어지는 것을 특징으로 하는 제조방법
  13. 제 12항에 있어서, 상기 b)단계에서 첨가되는 메탄설폰산은 상기 화학식 1의 화합물에 대하여 1:1.5 내지 1:2.5의 당량으로 첨가되는 것을 특징으로 하는 제조방법
  14. 제 13항에 있어서, 상기 당량은 1:1.9 내지 1:2.3이고, 상기 용매는 아세토니트릴인 것을 특징으로 하는 제조방법
  15. 제 11항 내지 제14항 중 어느 한 항에 있어서, 상기 b)단계는 45 내지 55℃에서 최소 1시간 동안 수행되는 것을 특징으로 하는 제조방법
  16. 제1항의 메실산염과 약학적으로 허용되는 담체를 포함하여 이루어지는 약학적 조성물
  17. 제16항에 있어서, 상기 약학적으로 허용되는 담체는 락토오즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 녹말, 아카시아고무, 칼슘포스페이트, 알지네이트, 젤라틴, 칼슘실리케이트, 미결정 셀룰로오스, 폴리비닐피롤리돈, 셀룰로오스, 물, 시럽, 메틸셀룰로오스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘스테아레이트 및 미네랄오일로 이루어지는 군에서 선택되는 하나 이상인 것을 특징으로 하는 약학적 조성물
  18. 제17항에 있어서, 상기 약학조성물은 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제 및 보존제로 이루어지는 군에서 선택되는 하나 이상을 더 포함하는 것을 특징으로 하는 약학적 조성물
  19. c-Met 키나제의 활성을 억제하는 방법으로서, 상기 방법은 청구항 제1항의 메실산염의 유효량을 대상체에 주입하는 것으로 이루어지는 것을 특징으로 하는 방법
  20. 제19항에 있어서, 상기 대상체는 이상증식성 질환을 나타내는 것을 특징으로 하는 방법
  21. 제20항에 있어서, 상기 이상증식성 질환은 폐암, 대장암, 췌장암, 질장암, 난소암, 신장암, 전립선암 및 뇌종양 중에서 선택되는 어느 하나인 것을 특징으로 하는 방법
PCT/KR2023/006007 2022-06-27 2023-05-03 트리아졸로피라진 유도체의 메실산염 WO2024005343A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/849,785 2022-06-27
US17/849,785 US20230416255A1 (en) 2022-06-27 2022-06-27 Mesylate salts of triazolopyrazine derivatives

Publications (1)

Publication Number Publication Date
WO2024005343A1 true WO2024005343A1 (ko) 2024-01-04

Family

ID=89324363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006007 WO2024005343A1 (ko) 2022-06-27 2023-05-03 트리아졸로피라진 유도체의 메실산염

Country Status (2)

Country Link
US (2) US20230416255A1 (ko)
WO (1) WO2024005343A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090026282A (ko) * 2006-06-12 2009-03-12 노파르티스 아게 N-히드록시-3-[4-[[[2-(2-메틸-1h-인돌-3-일)에틸]아미노]메틸]페닐]-2e-2-프로펜아미드의 염을 제조하는 방법
KR20140022229A (ko) * 2012-08-13 2014-02-24 한국화학연구원 신규한 트리아졸로 피라진 유도체 및 그의 용도
WO2015046653A1 (ko) * 2013-09-30 2015-04-02 한국화학연구원 신규한 트리아졸로 피라진 유도체 및 그의 용도
KR20180092096A (ko) * 2017-02-08 2018-08-17 에이비온 주식회사 트리아졸로 피라진 유도체의 신규한 다형체 및 이의 제조 방법
KR20180114227A (ko) * 2016-03-07 2018-10-17 상하이 알리스트 파마슈티컬 앤 메디컬 테크놀로지 코퍼레이션스 피리디닐아미노피리미딘 유도체의 메실레이트 염의 결정질 형태, 그의 제조 방법, 및 그의 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090026282A (ko) * 2006-06-12 2009-03-12 노파르티스 아게 N-히드록시-3-[4-[[[2-(2-메틸-1h-인돌-3-일)에틸]아미노]메틸]페닐]-2e-2-프로펜아미드의 염을 제조하는 방법
KR20140022229A (ko) * 2012-08-13 2014-02-24 한국화학연구원 신규한 트리아졸로 피라진 유도체 및 그의 용도
WO2015046653A1 (ko) * 2013-09-30 2015-04-02 한국화학연구원 신규한 트리아졸로 피라진 유도체 및 그의 용도
KR20180114227A (ko) * 2016-03-07 2018-10-17 상하이 알리스트 파마슈티컬 앤 메디컬 테크놀로지 코퍼레이션스 피리디닐아미노피리미딘 유도체의 메실레이트 염의 결정질 형태, 그의 제조 방법, 및 그의 용도
KR20180092096A (ko) * 2017-02-08 2018-08-17 에이비온 주식회사 트리아졸로 피라진 유도체의 신규한 다형체 및 이의 제조 방법

Also Published As

Publication number Publication date
US20240124473A1 (en) 2024-04-18
US20230416255A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2017026718A1 (ko) Ret 키나아제 저해제인 신규 3-(이속사졸-3-일)-피라졸로[3,4-디]피리미딘-4-아민 화합물
EP3555076A1 (en) Novel phenyl propionic acid derivatives and uses thereof
WO2021075691A1 (ko) 피리미딘 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
WO2017142325A1 (ko) 단백질 키나아제 저해제인 신규 2,3,5-치환된 싸이오펜 화합물
WO2024005343A1 (ko) 트리아졸로피라진 유도체의 메실산염
WO2022045838A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2022045825A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2024005339A1 (ko) 트리아졸로피라진 유도체의 캠실산염
WO2020067684A1 (ko) (-)-시벤졸린 숙신산염의 신규한 제조 공정
WO2018056621A1 (ko) 신규한 이미다졸일 피리미딘 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
WO2012060590A2 (en) Hydrate of 1-{(2s)-2-amino-4-[2,4-bis(trifluoromethyl)-5,8-di- hydropyrido[3,4-d]pyrimidin-7(6h)-yl]-4-oxobutyl}-5,5-difluoro-piperidin-2-one tartrate
WO2020204426A1 (ko) 퓨로피리미딘 화합물의 산 부가염의 결정형
WO2021225233A1 (ko) 혈관 누출 차단제 화합물의 신규 결정형
WO2022220610A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2021172871A1 (ko) 단백질 인산화 효소 저해 활성을 갖는 신규한 이미다졸 유도체 및 이의 용도
WO2010032986A2 (ko) 신규 5-(4-아미노페닐)-이소퀴놀린 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 치료용 조성물
WO2021040422A1 (ko) 단백질 키나아제 저해 활성을 갖는 신규한 피리미도[4,5-d]피리미딘-2-온 유도체
WO2023113540A1 (ko) (2r, 3s)-2-(3-(4,5-디클로로-1h-벤조[d]이미다졸-1-일)프로필)피페리딘-3-올의 신규한 산부가염 및 결정형
WO2021194291A1 (ko) (-)-시벤졸린 숙신산염의 결정다형
WO2024005586A1 (ko) 아이속사졸 유도체 또는 이의 염의 신규한 결정형
WO2019198940A1 (ko) 우수한 카이네이즈 저해 활성을 보이는 다양한 치환기를 갖는 피리미딘 유도체
WO2022245125A1 (ko) 트리사이클릭 유도체 화합물의 결정형 및 이의 제조방법 및 이를 포함하는 약학적 조성물
WO2023113474A1 (ko) 1-설포닐 피롤 유도체의 신규 염, 이의 제조 방법 및 이를 포함하는 약학 조성물
WO2016108319A1 (ko) 신규 레바미피드 전구체의 염 및 이의 용도
WO2022092813A1 (ko) 인덴 유도체 프로드럭의 산부가염 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831707

Country of ref document: EP

Kind code of ref document: A1