WO2022219821A1 - 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法 - Google Patents

白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法 Download PDF

Info

Publication number
WO2022219821A1
WO2022219821A1 PCT/JP2021/015767 JP2021015767W WO2022219821A1 WO 2022219821 A1 WO2022219821 A1 WO 2022219821A1 JP 2021015767 W JP2021015767 W JP 2021015767W WO 2022219821 A1 WO2022219821 A1 WO 2022219821A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
alumina
supported
catalyst
range
Prior art date
Application number
PCT/JP2021/015767
Other languages
English (en)
French (fr)
Inventor
佳巳 岡田
健一 今川
真一 中田
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to EP21937015.2A priority Critical patent/EP4324559A1/en
Priority to AU2021440561A priority patent/AU2021440561B2/en
Priority to US18/024,924 priority patent/US20230338927A1/en
Priority to CA3192015A priority patent/CA3192015A1/en
Priority to CN202180058364.3A priority patent/CN116171197A/zh
Priority to JP2023514314A priority patent/JP7472399B2/ja
Priority to KR1020237008535A priority patent/KR20230045617A/ko
Priority to PCT/JP2021/015767 priority patent/WO2022219821A1/ja
Priority to TW111110316A priority patent/TWI831153B/zh
Publication of WO2022219821A1 publication Critical patent/WO2022219821A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • C07C5/324Catalytic processes with metals
    • C07C5/325Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/367Formation of an aromatic six-membered ring from an existing six-membered ring, e.g. dehydrogenation of ethylcyclohexane to ethylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • C07C2602/26All rings being cycloaliphatic the ring system containing ten carbon atoms
    • C07C2602/28Hydrogenated naphthalenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a metal catalyst used in a process that uses a catalyst such as chemical production, hydrogen production, fine chemical production, and environmental purification such as exhaust gas treatment, and a platinum-supported alumina catalyst in which platinum is supported on an alumina carrier, and The present invention relates to a method for producing the same and a method for dehydrogenating hydrogenated aromatics using the catalyst.
  • a platinum-supported alumina catalyst in which platinum or the like is supported on an alumina carrier dehydrogenates hydrogenated aromatics such as methylcyclohexane, cyclohexane, decalin, and dibenzyltoluene to the corresponding aromatics and hydrogen.
  • dehydrogenation reaction, hydrogenation reaction, reforming reaction, etc. of various compounds such as fuel, petrochemicals, fine chemicals such as pharmaceuticals, environmental purification such as automobile exhaust gas, etc. used for purposes.
  • platinum-supported alumina catalysts are generally produced by preparing a porous alumina carrier made of a metal oxide of alumina, and adding an aqueous solution of chloroplatinic acid, an aqueous solution of platinum ammonium chloride, platinum acetylacetonate, etc. to the obtained porous alumina carrier. After impregnating with a solution of a catalytic metal compound such as a solution of an organoplatinum compound, and then drying to obtain a dried product supporting a catalytic metal compound, for example, under conditions of 350 ° C. or higher and 800 ° C. or lower and 0.5 hours or more and 24 hours or less. It is produced by calcining and, if necessary, hydrogen reduction of the obtained catalyst metal compound-supported calcined material under conditions of, for example, 250° C. or more and 800° C. or less and 0.5 hours or more and 24 hours or less.
  • the platinum atom has an atomic weight of 195 and a large mass
  • the platinum compound used as the platinum source has a strong adsorption force on the catalyst support, so the platinum compound is inside the alumina support. Since it is adsorbed and fixed only on the outer shell of the alumina carrier before diffusing into the carrier, when observing the dispersion state of the platinum metal in the cross section of the catalyst, the platinum metal is supported only on the outer periphery of the catalyst, and the carrier It is known to be a so-called egg shell type platinum-supported catalyst in which no platinum metal is supported inside.
  • Patent Document 1 discloses an eggshell-type platinum-supported alumina catalyst in which the pore sizes of the platinum-supported alumina catalyst are uniform to the extent that the diffusion resistance does not increase, and platinum is well dispersed.
  • a catalyst in which the platinum metal is well dispersed over the entire cross section of the catalyst has been developed so that the surface area of the support can be fully utilized in reactions that are not affected by diffusion resistance. Homogeneous platinum supported alumina catalysts are disclosed.
  • Platinum-supported alumina catalysts have long been used in catalytic processes in a wide range of fields.In recent years, however, they have been used in the organic chemical hydride method, which is one of the hydrogen energy carrier methods that has attracted attention as a hydrogen energy storage and transportation technology. ing.
  • the development of platinum-supported alumina catalysts with higher performance than conventional platinum-supported alumina catalysts is progressing, and Patent Documents 1 and 2 disclose the use of platinum-supported alumina catalysts, which are necessary in the organic chemical hydride method. It discloses its use in dehydrogenation reactions.
  • the organic chemical hydride method is a method of "storing" and “carrying” hydrogen as an organic chemical hydride compound (hydrogenated organic compound) in which hydrogen is incorporated into the molecular structure of a chemical product through a chemical reaction.
  • the organic chemical hydride method has been proposed since the 1980s, but the life of the dehydrogenation catalyst that generates hydrogen from the organic chemical hydride compound that has taken in hydrogen is extremely short, making industrial implementation difficult.
  • the key to technological development was the development of a new dehydrogenation catalyst with sufficient performance such as a long catalyst life for industrial use.
  • Non-Patent Documents 3 and 4 disclose the details of the development of such an organic chemical hydride method.
  • Japanese Patent No. 4652695 Japanese Patent No. 4142733 Yoshimi Okada, Energy and Resources, Vol.33, No. 3,168 (2016) Yoshimi Okada, Bulletin of Tokyo High Pressure Gas Association, August 2019, September 2019 Agency for Natural Resources and Energy, Hydrogen Basic Strategy (December 2017)
  • an object of the present invention is to provide a platinum-supported alumina catalyst with improved catalyst life, a method for producing the same, and a method for dehydrogenating hydrogenated aromatics using the catalyst.
  • One aspect of the present invention is a platinum-supported alumina catalyst comprising an alumina support and platinum supported on the alumina support, wherein the alumina support has a surface area of 200 m 2 /g or more and a pore volume of A ⁇ -alumina carrier having an average pore diameter of 0.50 m 2 /g or more, an average pore diameter in the range of 60 ⁇ to 150 ⁇ , and a ratio of pores with an average pore diameter of ⁇ 30 ⁇ to the total pore volume of 60% or more,
  • the ⁇ -alumina carrier supports the platinum particles in the range of 0.1% by weight to 1.5% by weight as platinum element (Pt), and direct observation using a transmission electron microscope reveals that the platinum 70% or more of the particles have a size of 8 to 15 ⁇ .
  • the catalyst life of the platinum-supported alumina catalyst can be improved.
  • the pore size is uniform throughout the powder and compact, and platinum is dispersedly supported and present.
  • the process and the process of supporting platinum dispersedly throughout can be stably carried out.
  • the ⁇ -alumina support preferably contains sulfur or a sulfur compound in the range of 0.5% by weight to 1.2% by weight as elemental sulfur (S).
  • the ⁇ -alumina support may support an alkali metal in a range of 0.5% to 1.5% by weight, and the alkali metal may be sodium and potassium. .
  • Another aspect of the present invention is a method for producing a platinum-supported alumina catalyst according to the above aspect, wherein boehmite obtained as aluminum hydroxide by adding an alkaline aqueous solution to an acidic aqueous solution containing aluminum in the preparation of the ⁇ -alumina support After drying, it is fired at a temperature in the range of 250° C. to 400° C. for a time in the range of 1 to 12 hours.
  • the content of platinum element is 0.5% by weight by using an aqueous solution of chloroplatinic acid as an aqueous solution of platinum reagent with respect to the ⁇ -alumina support after the calcination. It may be impregnated with said platinum to a range of ⁇ 1.5% by weight, dried and then calcined at a temperature in the range of 250°C to 400°C.
  • the platinum-supported alumina catalyst can be easily mass-produced with existing catalyst production facilities.
  • the ⁇ -alumina support impregnated with platinum, dried, and then calcined is hydrogen-reduced, and the temperature of the hydrogen reduction is adjusted to the temperature of the boehmite dried and then calcined. It is preferable that the temperature is higher than the temperature and higher than the temperature at which the platinum-impregnated ⁇ -alumina support is dried and then calcined, and is in the range of 300°C to 450°C.
  • the hydrogen reduction time is preferably in the range of 1 to 15 hours.
  • the ⁇ -alumina support preferably contains sulfur or a sulfur compound in the range of 0.5% by weight to 1.2% by weight as elemental sulfur (S).
  • the ⁇ -alumina support after the calcination is impregnated with an aqueous solution of ammonium sulfate, and then heated at a temperature in the range of 250 ° C. to 400 ° C. for 1 to 12 hours. Bake within the specified time range.
  • the sulfur-free ⁇ -alumina support or the sulfur-containing ⁇ -alumina support is impregnated with platinum, dried, and then calcined to obtain a platinum-supported ⁇ -alumina support.
  • the temperature for hydrogen reduction is higher than the temperature for drying and then calcining the boehmite, higher than the temperature for calcining the platinum-impregnated ⁇ -alumina support after drying, and is 300°C to 450°C. It should be within the range.
  • the alkali metals are preferably sodium and potassium.
  • the hydrogen reduction time is preferably in the range of 1 to 15 hours.
  • Another aspect of the present invention is a method for dehydrogenating hydrogenated aromatics, which is configured to dehydrogenate hydrogenated aromatics using the platinum-supported alumina catalyst in the above aspect.
  • dehydrogenation of hydrogenated aromatics can be stably carried out by the platinum-supported alumina catalyst with improved catalyst life.
  • the hydrogenated aromatics have a hydride of monocyclic aromatics, a hydride of bicyclic aromatics, and three or more aromatic rings. It is preferably one or a mixture of two or more selected from the group consisting of hydrides of compounds.
  • the hydrogenated aromatics are one or more selected from the group consisting of methylcyclohexane, cyclohexane, trimethylcyclohexane, decalin, and dibenzotriol. It should be a mixture.
  • the uniform catalyst is effective when the diffusion of the raw material to the inside of the catalyst is sufficiently performed
  • the egg-shell catalyst is effective when the diffusion to the inside of the catalyst is sufficiently performed.
  • the degree of diffusion of the raw material into the catalyst is generally expressed by the catalyst effectiveness coefficient
  • the alumina carrier on which platinum is supported preferably has pore sizes controlled to be as uniform as possible so that the pore distribution is sharp. Specifically, pores having a surface area of 200 m 2 /g or more, a pore volume of 0.5 m 2 /g or more, an average pore diameter of 60 ⁇ to 150 ⁇ , and an average pore diameter of ⁇ 30 ⁇ with respect to the total pore volume A ⁇ -alumina carrier having a proportion of 60% or more is preferred.
  • the surface area is less than 200 m 2 /g, the activity after catalysis is insufficient, and if the pore volume is less than 0.5 m 2 /g, it is difficult to uniformly support the active metal component, and the average pore diameter is If the average pore diameter is less than 60 ⁇ , the surface area is large, but the pore volume is small. Conversely, if the average pore diameter is larger than 150 ⁇ , the surface area is small and the pore volume is large. , an average pore diameter of 60 ⁇ to 150 ⁇ is suitable. Moreover, if the proportion of pores with an average pore diameter of ⁇ 30 ⁇ is less than 60%, the effect of the present invention on catalyst performance is reduced.
  • the alumina carrier has uniform pore sizes throughout the powder and compact.
  • the step of allowing platinum to be dispersedly supported on the alumina carrier and the step of supporting platinum dispersedly throughout the entire alumina support in conformity with the distribution of sulfur can be performed appropriately.
  • Patent Document 1 pores with a surface area of 150 m 2 /g or more, a pore volume of 0.55 cm 3 /g or more, an average pore diameter of 90 ⁇ or more and 300 ⁇ or less, and a pore diameter of 90 ⁇ or more and 300 ⁇ or less with respect to the total pore volume are occupied.
  • a platinum-supported alumina catalyst is disclosed in which platinum is supported on a porous ⁇ -alumina support having a proportion of 60% or more. As described above, this catalyst is a general egg-shell type platinum-supported alumina catalyst, and Patent Document 1 also discloses a catalyst to which an alkali metal is added as a means for improving the life of the catalyst.
  • Patent Document 1 discloses that in an eggshell type platinum-supported catalyst, platinum is supported with a high degree of dispersion to suppress decomposition on platinum, and an alkali is added to reduce acid sites on alumina. A remarkable effect was found in improving the life of the catalyst by masking.
  • Patent Document 2 discloses a uniform type platinum-supported alumina catalyst that improves the catalyst life by suppressing the decomposition reaction and suppressing the decomposition reaction as well as the dispersed form of the supported platinum becomes uniform by containing sulfur in the alumina support. is doing.
  • Patent Document 2 when using an alumina support containing sulfur or a sulfur compound, even if the acid site is not masked with an alkali metal, it is thought that the decomposition reaction suppression effect is equivalent to or greater than that. was taken.
  • the sulfur element formed a composite oxide together with alumina and changed the structure of the acid sites remaining in the case of alumina alone into a different structure.
  • the form of a sulfur element forming a composite oxide with alumina is a sulfate radical form.
  • Sulfate radicals themselves are acidic, and it is thought that their presence increases the number of acid sites, that is, the amount of acid. At a reaction temperature at which these acid sites are relatively low, there is an effect of preventing the decomposition reaction from proceeding, but it has been found that it is effective to add an alkali metal to mask the remaining acid sites. .
  • the platinum-supported alumina catalyst according to the present invention is typically used as a dehydrogenation catalyst.
  • the platinum-supported alumina catalyst is used by being packed in a catalytic reaction tube of a heat exchange type reactor.
  • the number of catalytic reaction tubes may be several thousand in a large reactor, as in a general heat exchanger.
  • the platinum-on-alumina catalyst utilized in such reactors is withdrawn for replacement with fresh catalyst when it reaches its catalyst life, which is when its performance degrades to a given yield. Platinum is recovered from the extracted waste catalyst and recycled for the manufacture of the next replacement catalyst.
  • Several days are required for the unloading work, and more work days are required for filling the new catalyst, so about two weeks are required for the catalyst replacement.
  • the egg-shell type platinum-supported alumina catalyst of the present invention and the homogeneous type platinum-supported alumina catalyst prepared by adding sulfur to the ⁇ -alumina support can be used, for example, in the organic chemical hydride method, which is one of the methods for storing and transporting hydrogen energy. Used as a dehydrogenation catalyst for hydrogenated aromatics used as carriers.
  • Hydrogenated aromatics include hydrides of monocyclic aromatics such as methylcyclohexane, cyclohexane, dimethylcyclohexane and trimethylcyclohexane; hydrides of bicyclic aromatics such as tetralin, decalin, methyldecalin, biphenyl and diphenylmethyl; and hydrides of compounds having three or more aromatic rings, such as dibenzotriol and tetradecahydroanthracene, or a mixture of two or more.
  • catalyst deterioration in which the performance of the catalyst gradually decreases with the passage of reaction time, is observed. be done.
  • the cause of catalyst deterioration is carbon deposition called coking.
  • coking carbon deposition occurs on the surface of the platinum metal, which is an active metal, mainly due to the decomposition reaction of the raw material compound such as methylcyclohexane, and as a result, the effective active points of the active metal are covered (that is, they are lost due to a decrease in the active points). activation) causes the catalyst to stop functioning.
  • the deterioration phenomenon of the catalytic reaction is observed as a decrease in the conversion rate in the reaction test, and in the case of the dehydrogenation reaction of hydrogenated aromatics, it has been found to be observed as a phenomenon in which the conversion rate decreases linearly. From this, it is possible to evaluate the relative superiority or inferiority of the catalyst life from the slope of the decrease in the conversion rate over time in the reaction test. Furthermore, it is possible to evaluate the life of the catalyst because it decreases linearly even in an accelerated reaction test for the purpose of evaluating the life of the catalyst in a short time, not under actual reaction conditions.
  • the first candidate is the liquid hydrogen method
  • the second candidate is the liquid ammonia method
  • the third candidate is the organic chemical hydride method.
  • the organic chemical hydride method was called the MCH method.
  • the Euro-Québec project was carried out for about 10 years until around 1992, but none of the methods were put into practical use, and the project was terminated. not converted.
  • the organic chemical hydride method is a hydrogenation reaction between hydrogen and aromatics such as toluene (TOL) to produce a saturated cyclic compound such as methylcyclohexane (MCH) that incorporates hydrogen into the molecule. It is a method of "storing" and “carrying” in a liquid state at normal temperature and pressure by converting it, and extracting the necessary amount of hydrogen by dehydrogenation reaction at the place of use, and hydrogenation that reacts hydrogen and toluene. It consists of a reaction (hydrogen storage reaction) and a dehydrogenation reaction (hydrogen generation reaction) for recovering toluene by generating hydrogen from MCH. The TOL produced after hydrogen is extracted is recovered as a container (carrier) for hydrogen and reused repeatedly.
  • TOL toluene
  • MCH methylcyclohexane
  • the first priority of this law is that it is a highly safe method that can theoretically reduce the potential risks associated with the large-scale storage and transportation of hydrogen to the level of conventional gasoline storage and transportation. This is the feature and the primary reason why the applicant focused on this method.
  • Storage of TOL and MCH in large tanks and transportation by chemical tankers and chemical trucks have long been in practical use as chemicals.
  • Demand for gasoline and light oil is expected to decrease due to the trend toward electrification of automobiles in the future, and the ability to divert existing infrastructure such as these storage tanks is also a great advantage.
  • the above-mentioned organic chemical hydride method is a hydrogen energy carrier that “stores” and “transports” hydrogen energy on a large scale, and its practical application is included in the basic hydrogen strategy. /Nm 3 , and 20 Yen/Nm 3 as a target for 2050. For this reason, there is a demand for cost reduction through continuous improvement technology development, and improvement of catalyst performance is an important factor for cost reduction. It is an invention with high usability.
  • the eggshell-type platinum-supported alumina catalyst and the homogeneous platinum-supported alumina catalyst prepared by adding sulfur to the ⁇ -alumina carrier can be effectively used not only for catalytic applications but also as adsorbents and the like.
  • the catalyst of the present invention is also useful as a packing material for guard columns intended for pretreatment to adsorb impurities and the like in catalytic reaction processes.
  • the eggshell-type platinum-supported alumina catalyst of the present invention and the homogeneous platinum-supported alumina catalyst prepared by adding sulfur to the ⁇ -alumina support are hydrogenated aromatics such as methylcyclohexane that are used as hydrogen energy carriers.
  • hydrogenated aromatics such as methylcyclohexane that are used as hydrogen energy carriers.
  • it has the potential to be widely applied to existing catalytic reaction processes that use platinum-supported alumina catalysts. Very high usability.
  • the platinum-supported alumina catalyst according to the present invention has higher catalytic performance than conventional platinum-supported alumina catalysts, and in particular has excellent performance in terms of catalyst life.
  • mass production can be easily carried out using existing catalyst production facilities.
  • the platinum-supported alumina catalyst according to the present invention can be used as an alternative to existing platinum-supported alumina catalysts, and can also be suitably used as a dehydrogenation catalyst such as methylcyclohexane in the organic chemical hydride method, which is one of the hydrogen storage and transportation technologies. can do.
  • FIG. 1 shows (A) a transmission electron microscope photograph taken in the 2000s and (B) a recent transmission electron microscope photograph of the catalyst.
  • FIG. 1(A) is a photograph of an eggshell catalyst disclosed in Patent Document 1 (Japanese Patent No. 4652695). The photograph of FIG. 1A was taken in 2006 at a magnification of 1,800,000 times using an HD-200 type electron microscope manufactured by Hitachi, Ltd., which was the latest transmission electron microscope at the time.
  • FIG. 1(B) is a photograph of a homogeneous platinum-supported alumina catalyst disclosed in Patent Document 2 (Japanese Patent No. 4142733). The photograph of FIG. 1B was taken in 2018 at a magnification of 2,000,000 times using a JEM-ARM200 electron microscope manufactured by JEOL.
  • the average particle size of the platinum particles in the platinum-supported alumina catalyst according to the present invention is obtained by measuring the particle size of a predetermined number (usually about 50) of platinum in a transmission electron microscope photograph as shown in FIG. can be calculated as their average value.
  • the magnification is such that a predetermined number of platinum particle diameters fit in the photograph (for example, the platinum-supported alumina catalyst of the present invention is observed at 2,000,000 times, and 40 to 50 platinum particles are observed in the field of view. You can.) should be set.
  • the size of each platinum particle can be measured by aligning the measuring line with the contour of the particle on the computer screen provided in the electron microscope system. At this time, if the shape of the platinum particles has a long axis diameter and a short axis system, the long axis diameter can be measured by matching the contour of the long axis diameter, and the short axis diameter can also be measured in the same way.
  • the particle size can also be measured by printing an image, measuring the particle size with a ruler, and comparing it with the scale on the image.
  • the particle diameters of platinum disclosed in Patent Documents 1 and 2 above are estimated values obtained by the CO pulse method. It is conceivable that there is an error between the particle size estimated by the CO pulse method and the particle size measured by direct observation using a transmission electron microscope. This is because, in the CO pulse method, particles are likely to be estimated as small particles compared to the particle diameter obtained by direct observation.
  • the CO pulse method one molecule of CO adsorbs to one atom of platinum on the surface of the platinum particle, so the total amount of CO adsorption is measured, the shape of the platinum particle is assumed to be a cube, and the length of one side is Estimated as particle size. At this time, the calculation is made on the assumption that CO is not adsorbed on the carrier.
  • CO is preferentially adsorbed on platinum, and the CO injection is stopped immediately when the distillate CO becomes equal to the injected CO amount. Since CO is adsorbed, it is estimated that this amount of CO is adsorbed on the platinum surface.
  • the CO pulse method is a method for calculating the metal surface area, dispersion ratio, and particle diameter from the amount of adsorption and the supported metal content. A specific calculation method will be described below.
  • the adsorbed gas amount V per 1 g of the catalyst at 0° C. was obtained from the following equation (1).
  • V (Vt/W) ⁇ 273/(273+t) ⁇ (ml/g ⁇ cat) ...
  • the number of moles R of the supported metal per 1 g of the sample is obtained from the formula (2).
  • R (C/100) ⁇ (1/M) (mol/g ⁇ cat) ...
  • the number of moles K of the amount of adsorbed gas per 1 g of sample is obtained from the equation (3).
  • the particle size of platinum supported on an alumina support in a conventional platinum-supported alumina catalyst was measured based on the CO pulse method, which has a relatively large error, or a transmission electron microscope photograph at that time (see FIG. 1 (A)). It was (calculated). Therefore, in conventional platinum-supported alumina catalysts, it is difficult to control the particle size of platinum with high accuracy, and therefore, the preferable range of the particle size of platinum has also been set to a relatively wide range.
  • platinum-supported alumina catalyst based on the value of the particle size of platinum measured with relatively high accuracy based on recent transmission electron micrographs (see FIG. 1(B)), compared to conventional platinum-supported alumina catalysts A range of platinum particle diameters (distribution of platinum particle diameters) in which the catalyst life can be significantly improved is set.
  • 70% or more of the platinum particles supported on the ⁇ -alumina support preferably have a size of 8 to 15 ⁇ in direct observation with a transmission electron microscope. More preferably, 80% or more of the platinum particles supported on the ⁇ -alumina carrier have a size of 8 to 15 ⁇ . More preferably, 90% or more of the platinum particles supported on the ⁇ -alumina carrier have a size of 8 to 15 ⁇ .
  • the eggshell-type metal-supported catalyst refers to a state in which the metal species supported in the cross section of the molded catalyst are dispersed and supported only in the outer shell portion of the cross section. That is, a metal carrying portion 2 carrying a metal seed is formed on the outer shell portion of a porous carrier 1 .
  • a homogeneous metal-supported catalyst is a state in which the metal species are dispersed over the entire cross section of the catalyst, and the metal-supported portion 2 in which the metal species is supported is formed throughout the interior of the molded porous carrier 1 .
  • the platinum-supported alumina catalyst according to the present invention has an alumina carrier and platinum supported on the alumina carrier.
  • the alumina carrier is preferably a porous ⁇ -alumina carrier. More specifically, as disclosed in Japanese Patent Publication No. 6-72005, for example, an alumina carrier is produced by filtering and washing an aluminum hydroxide slurry produced by neutralization of an aluminum salt, and dehydrating the obtained alumina hydrogel. A porous ⁇ -alumina carrier obtained by drying and then calcining at 400° C. or higher and 800° C. or lower for about 1 to 6 hours is preferable. More preferably, the alumina carrier alternately changes the pH value of the alumina hydrogel between the alumina hydrogel dissolution pH range and the boehmite gel precipitation pH range, and at least changes the pH value from one pH range to the other pH range.
  • porous ⁇ -alumina carrier obtained through a pH swing step in which an alumina hydrogel-forming substance is added to grow alumina hydrogel crystals.
  • the porous ⁇ -alumina carrier obtained through this pH swing process has an excellent uniformity of pore distribution, and the physical properties of the alumina carrier pellets after molding are small, and the physical properties of each individual pellet are stable. It is superior in that
  • the inventors of the present application have further studied the relationship between the drying and firing conditions of alumina hydrogel (boehmite) and the particle size of supported platinum.
  • the drying temperature should be 200° C. or less
  • the subsequent calcination temperature should be 250° C. or more and 400° C. or less
  • the calcination time should be 1 hour or more and 12 hours or less. It has been found to be particularly favorable.
  • the sulfur or sulfur compound to be dispersed and contained in the alumina carrier in advance has a sulfur element and is used during the preparation of the catalyst carrier or during the preparation of the catalyst carrier.
  • sulfur or sulfur compounds include sulfur crystal powder, sulfuric acid, sulfur-containing compounds such as sulfates such as ammonium sulfate, and are soluble in water or organic solvents from the viewpoint of easily dispersing sulfur on the carrier. Certain sulfur compounds are preferred and such sulfur compounds may include sulfuric acid, ammonium sulfate, and the like.
  • the amount of sulfur contained in the carrier is preferably 0.15% by weight (wt%) or more and 5.0% by weight or less, more preferably 0.15% by weight or more and 3.0% by weight or less as elemental sulfur (S). preferable. If the sulfur content is less than 0.15% by weight, the effect of uniformly supporting the metal to the center of the catalyst is low. It is easy to cause a problem that the metal is not dispersedly supported in such local areas. From these, the most preferable sulfur content range for the effect of uniformly dispersing and supporting the metal is 0.15% by weight or more and 5.0% by weight or less.
  • the inventors of the present application have conducted further studies on the relationship between the sulfur concentration and the particle size of supported platinum. Regarding the range of the sulfur content, it has been found that it is particularly preferable to contain 0.5 to 1.2% by weight of sulfur or a sulfur compound as elemental sulfur (S) for stable loading.
  • S elemental sulfur
  • the method for preparing the sulfur-containing catalyst carrier containing the sulfur or sulfur compound is sufficient as long as the sulfur or sulfur compound can be contained in a state in which it is dispersed over the entire cross section of the carrier.
  • a metal sulfate and/or sulfuric acid is used to prepare a metal hydroxide gel, which is a precursor of a metal oxide containing sulfur, is formed into a predetermined shape, and then dried and fired.
  • Method C A metal hydroxide gel, which is a precursor of a metal oxide in the preparation of a catalyst support, is formed into a predetermined shape, then dried to obtain a dry metal hydroxide gel, and a sulfur compound is added to the dry metal oxide.
  • a method in which a solution is impregnated and then calcined D: Forming a metal hydroxide gel, which is a precursor of a metal oxide when preparing a catalyst support, into a predetermined shape, and then drying to obtain a dry metal hydroxide. and a method in which the dry metal hydroxide is impregnated with a sulfur compound solution and then calcined.
  • the dried metal hydroxide gel is calcined to obtain a calcined metal oxide, and the calcined metal oxide is impregnated with a sulfur compound solution such as an aqueous sulfuric acid solution or an aqueous ammonium sulfate solution.
  • a sulfur compound solution such as an aqueous sulfuric acid solution or an aqueous ammonium sulfate solution.
  • the inventors of the present application have made further studies on a method for preparing a sulfur-containing catalyst support. In addition, it was found that it is particularly preferable to disperse and support sulfur on the surface of the ⁇ -alumina carrier by the method E above.
  • the calcination temperature is usually 100° C. or more and 1000° C. or less, preferably 350° C. or more and 800° C. or less, and the calcination time is 0.5 hours or more. 48 hours or less, preferably 1 hour or more and 24 hours or less. If the calcination temperature is lower than 350°C, the hydroxide may not be sufficiently converted to the oxide.
  • the inventors of the present application further studied the drying and firing conditions when preparing a sulfur-containing ⁇ -alumina carrier.
  • the drying temperature is 100° C. or more and 200° C. or less, and the drying time is 3 hours or more and 12 hours or less. ° C. or higher and 400 °C or lower, and the firing time is particularly preferably 1 hour or longer and 12 hours or shorter.
  • the amount of platinum supported on the sulfur-containing catalyst carrier is 0.05% by weight or more and 5.0% by weight or less, preferably 0.1% by weight or more and 3.0% by weight or less as platinum element. be. If the amount of platinum supported is less than 0.05% by weight, there is a problem that the activity is low. On the contrary, if it is more than 5.0% by weight, the particle size of platinum increases, the selectivity decreases and sintering occurs. The problem arises that it is easy to degrade.
  • the inventors of the present application conducted further studies on a suitable amount of platinum to be supported.
  • the supported amount of the platinum element is preferably 0.1% by weight or more and 1.5% by weight or less, and from the viewpoint of improving the life of the prepared platinum-supported alumina catalyst, 0.5% by weight or more and 1.5% by weight % or less is more preferable.
  • the ⁇ -alumina carrier when platinum metal is supported on the ⁇ -alumina carrier, the ⁇ -alumina carrier may be impregnated with a platinum compound solution, dried, and then calcined at a predetermined temperature.
  • platinum compounds include platinum chlorides, bromides, ammonium salts, carbonyl compounds, amine and ammine complexes, various complex compounds such as acetylacetonato complexes, and the like.
  • platinum compounds include chloroplatinic acid, platinum acetylacetonato, ammonium platinate, bromoplatinic acid, platinum dichloride, platinum tetrachloride hydrate, carbonyl platinum dichloride dichloride, dinitrodiamine platinate, and the like. of platinum compounds.
  • the inventors of the present application have further studied the platinum compound to be impregnated.
  • chloroplatinic acid was added as an aqueous platinum reagent solution to the ⁇ -alumina support after calcination. It has been found particularly preferred to impregnate the platinum using an aqueous solution.
  • the alumina carrier with the platinum compound attached is dried under the conditions of 50 ° C. or higher and 200 ° C. or lower for 0.5 hours or higher and 48 hours or lower, and then dried at 350 ° C. or higher and 600 ° C. 0.5 hours or more and 48 hours or less, more preferably 350° C. or more and 450° C. or less, and 0.5 hours or more and 5 hours or less.
  • the inventors of the present application have further studied the drying and firing conditions after impregnating the alumina support with platinum (for example, the platinum element content is in the range of 0.5% to 1.5% by weight).
  • the drying temperature was 100 ° C. or higher and 200 ° C. or lower, and the drying time was 3 hours or more and 12 hours or less.
  • the firing temperature was 250° C. or more and 450° C. or less, and the firing time was 1 hour or more and 8 hours or less.
  • the alumina support with the platinum compound attached is heated to 350 ° C. or higher and 600 ° C. or lower and for 0.5 hours or higher and 48 hours or lower, preferably 350 ° C. or higher and 550 ° C. or lower, in a hydrogen gas atmosphere. And hydrogen reduction treatment is performed under reducing conditions for 3 hours or more and 24 hours or less. If the temperature during this hydrogen reduction is less than 350°C, platinum is not sufficiently reduced, and if it exceeds 600°C, platinum particles are sintered during reduction, resulting in a decrease in metal dispersion. .
  • the inventors of the present application conducted further studies on suitable temperature conditions for hydrogen reduction after platinum impregnation firing, and found that most of the platinum particles have a size in the range of 8 to 15 ⁇ and are stable with respect to the ⁇ -alumina support.
  • the temperature of hydrogen reduction is 300 ° C. or higher and 450 ° C. or lower and that the temperature is lower than the temperature at which the platinum is impregnated and calcined. Found it.
  • the amount of alkali added to the egg-shell type platinum-supported alumina catalyst and the uniform type platinum-supported alumina catalyst prepared by adding sulfur to the ⁇ -alumina support is 0.1% by weight or more and 5% by weight or less, preferably 0.1% by weight or more. 3% by weight or more and 3.0% by weight or less, more preferably 0.5% by weight or more and 1.5% by weight or less. If the supported amount of the alkali metal is less than 0.1% by weight, there is a problem that the catalyst life is short and the effect is low. A problem arises.
  • the inventors of the present application have further studied the suitable amount of alkali to be added in order to support most of the platinum particles with a size in the range of 8 to 15 ⁇ on the ⁇ -alumina carrier. It has been found that the size of platinum particles after preparation is not significantly affected if the content is 0.5% by weight or more and 1.5% by weight or less.
  • Alkaline metal compounds used for supporting an alkaline metal on an eggshell type platinum supported alumina catalyst and a uniform type platinum supported alumina catalyst prepared by adding sulfur to a ⁇ -alumina support include alkaline metal chlorides, bromides, Examples include iodides, nitrates, sulfates, acetates, propionates, etc., preferably water-soluble and/or soluble in organic solvents such as acetone.
  • Examples include sodium chloride, sodium bromide, Sodium iodide, sodium nitrate, sodium sulfate, sodium acetate, sodium propionate, potassium chloride, potassium bromide, potassium iodide, potassium nitrate, potassium sulfate, potassium acetate, potassium propionate, calcium chloride, calcium bromide, calcium iodide , calcium nitrate, calcium sulfate, calcium acetate, calcium propionate, and the like.
  • an alkaline metal is supported on an eggshell-type platinum-supported alumina catalyst and a homogeneous platinum-supported alumina catalyst prepared by adding sulfur to a ⁇ -alumina support, after impregnating with a solution of an alkaline metal compound, Room temperature to 200°C and 0.5 hours to 48 hours, preferably 50°C to 150°C and 0.5 hours to 24 hours, more preferably 80°C to 120°C and 0.5 hours to 5 hours After drying under the following drying conditions, it is fired under the conditions of 350° C. to 600° C. and 0.5 hours to 48 hours, preferably 350° C. to 450° C. and 0.5 hours to 5 hours.
  • the inventors of the present application have further studied the drying conditions after impregnation with a solution of a suitable alkali compound in order to support most of the platinum particles with a size in the range of 8 to 15 ⁇ on the ⁇ -alumina carrier. As a result, it was found that the size of the supported platinum particles was not affected regardless of the drying time at room temperature or higher and 200°C or lower.
  • An eggshell-type platinum-supported alumina catalyst and a homogeneous platinum-supported alumina catalyst prepared by adding sulfur to a ⁇ -alumina support are impregnated with an alkali metal, and the alkali metal-supported dried product obtained by drying is then calcined.
  • the final hydrogen reduction is carried out directly without
  • the reduction conditions for this hydrogen reduction are preferably 350° C. to 600° C. and 0.5 hours to 48 hours, preferably 350° C. to 550° C. and 3 hours to 24 hours in a hydrogen gas atmosphere. . If calcination is performed prior to the hydrogen reduction of the alkali metal-supported dried product, there arises a problem that the catalyst performance in terms of activity, selectivity and life is lowered. If the temperature during hydrogen reduction is less than 350°C, the platinum is not sufficiently reduced.
  • the inventors of the present application further investigated the hydrogen reduction conditions after impregnating with a solution of a suitable alkaline compound and drying in order to support most of the platinum particles on the ⁇ -alumina carrier with a size in the range of 8 to 15 ⁇ .
  • a suitable alkaline compound and drying in order to support most of the platinum particles on the ⁇ -alumina carrier with a size in the range of 8 to 15 ⁇ .
  • the size of the supported platinum particles is not affected if the temperature and the reduction time of the hydrogen reduction, which is the final step of the platinum supporting process before the addition of the alkali metal, are equal to or less than the reduction time.
  • the platinum particle size of the eggshell-type catalyst described in Patent Document 1 is the particle size estimated from the degree of dispersion estimated from the amount of CO adsorption measured by the CO pulse method and the shape of the platinum particles assumed to be cubic. , as shown in Table 2 (Experimental Example 1) and Table 3 (Experimental Example 2) of Patent Document 1, the particle size was estimated to be in the range of 5.5 ⁇ to 14 ⁇ .
  • the particle size of the homogeneous platinum-supported alumina catalyst described in Patent Document 2 was estimated to be 6.5 to 11 ⁇ , as shown in Table 1 (Example 4) of Patent Document 2.
  • the platinum particle size can be measured using the particle size measurement function on the screen of the electron microscope. However, substantially the same measurement results can be obtained by comparing the scale shown in the electron micrograph with the length of the portion showing the largest particle size. Table 1 shows the measurement results of the particle size. The average particle size of the 42 particles shown in Table 1 was 16.8 ⁇ (1.68 nm).
  • 19 (about 45%) of the 42 platinum particles measured had a diameter of 8 to 15 ⁇ (0.8 to 1.5 nm). It can be seen that there is a range of sizes and 23 platinum particles are larger than 15 ⁇ (1.5 nm) and larger than 16 ⁇ (1.6 nm).
  • the degree of dispersion estimated from the amount of CO adsorption measured by the CO pulse method and the shape of the platinum particles are The particle size estimated assuming a cubic particle size was estimated to be 5.5 to 14 ⁇ , but these particle sizes were also found to be considerably smaller values according to direct observation using an electron microscope. is considered to be
  • a porous ⁇ -alumina carrier was produced based on the prior art described in Example 1 of Japanese Patent Publication No. 6-72005, as in the example of Patent Document 1.
  • a suspension of aluminum hydroxide slurry (pH 10) was obtained by instantaneously adding an aqueous solution of sodium aluminate to dilute hot sulfuric acid with vigorous stirring.
  • this as seed aluminum hydroxide the operation of alternately adding hot dilute sulfuric acid and aqueous sodium aluminate solution at regular intervals while continuing to stir was repeated to obtain a filtered and washed cake. This was extruded, dried, and then calcined at 500° C. for 3 hours.
  • the ⁇ -alumina support thus prepared has physical properties such as a surface area of 240 m 2 /g, a pore volume of 0.713 cm 3 /g, an average pore diameter of 119 ⁇ , and a 90% occupancy of pore diameters of 90 to 300 ⁇ . have.
  • a surface area of 240 m 2 /g a pore volume of 0.713 cm 3 /g, an average pore diameter of 119 ⁇ , and a 90% occupancy of pore diameters of 90 to 300 ⁇ . have.
  • 79 g of a 0.4 wt % chloroplatinic acid aqueous solution adjusted to a pH value of 2.0 was added, allowed to stand for 3 hours for impregnation, and then water was decanted. was removed and then dried at 120° C. for 3 hours and then calcined in a muffle furnace under air flow at 400° C. for 3 hours.
  • 3900 cc of an aluminum nitrate aqueous solution with a concentration of 2.67 mol/L was prepared, and 3900 cc of a 14% ammonia aqueous solution was prepared.
  • the obtained slurry aqueous solution of aluminum hydroxide was filtered to collect a cake, and then the cake was redispersed in 20 L of pure water and filtered again. The washing operation was performed three times to obtain a washed gel.
  • the washed cake After adjusting the water content by air-drying the washed cake, it is molded into a rod shape with a diameter of 1.6 mm using an extruder, dried (120°C, 3 hours), pulverized to a length of about 1 cm, and baked in a muffle furnace ( 500° C. for 3 hours) to obtain an alumina carrier A containing no sulfur.
  • the obtained alumina carrier A had a BET surface area of 275 m 2 /g and a pore volume of 0.65 cm 3 /g as determined by mercury porosimetry. Further, the obtained alumina carrier A had an average pore diameter of 8.9 nm, and had a sharp pore distribution in which most of the pores were concentrated near the average pore diameter. The volume occupied by the pores was 80% or more of the total pore volume.
  • Alumina carrier A was impregnated with an ammonium sulfate aqueous solution having a concentration of 0.38 mol/L so that the sulfur content after firing was 0.5% by weight, and the solvent was removed with an evaporator. Thereafter, alumina carrier A was dried (120° C., 3 hours) and calcined (500° C., 3 hours) to obtain an alumina carrier containing 0.5% by weight of sulfur.
  • MCH methylcyclohexane
  • HPLC high-performance liquid chromatography
  • a gas-liquid separator is provided at the outlet of the reaction tube to separate a liquid product such as toluene produced by this dehydrogenation reaction from a gas such as hydrogen gas. analyzed in
  • the MCH conversion rate (%), toluene selectivity (%), toluene yield (%), and produced methane concentration (ppm) were obtained 2 hours and 300 hours after the start of the reaction.
  • Table 2 shows the results.
  • Example 1 Method for preparing egg-shell type catalyst according to the present invention and measurement result of particle size
  • 3900 cc of an aluminum nitrate aqueous solution with a concentration of 2.67 mol/L was prepared, and 3900 cc of a 14% ammonia aqueous solution was prepared.
  • the obtained slurry aqueous solution of aluminum hydroxide was filtered to collect a cake, and then the cake was redispersed in 20 L of pure water and filtered again. The washing operation was repeated three times to obtain a washed gel.
  • the washed cake After adjusting the water content by air-drying the washed cake, it is formed into a rod shape with a diameter of 1.6 mm by an extruder, dried (120°C, 3 hours), pulverized into pieces of about 1 cm in length, and baked in a muffle furnace (350°C). °C for 3 hours) to obtain an alumina carrier A containing no sulfur.
  • the obtained alumina carrier A had a BET surface area of 290 m 2 /g and a pore volume of 0.61 cm 3 /g as determined by mercury porosimetry.
  • the obtained alumina carrier A had an average pore diameter of 9.5 nm (95 ⁇ ), and had a sharp pore distribution in which most of the pores were concentrated near the average pore diameter.
  • the volume occupied by pores having a pore diameter of 70 to 110 ⁇ ) was 80% or more of the total pore volume.
  • the smallest platinum particles are 8 ⁇ (0.8 nm) and the largest platinum particles are 21 ⁇ (2.1 nm).
  • 40 of the 45 platinum particles measured (about 89%) have a size in the range of 8 to 15 ⁇ (0.8 to 1.5 nm), and only 5 platinum particles are It can be seen that the size is greater than 15 ⁇ (1.5 nm) and greater than 16 ⁇ (1.6 nm).
  • 3900 cc of an aluminum nitrate aqueous solution with a concentration of 2.67 mol/L was prepared, and 3900 cc of a 14% ammonia aqueous solution was prepared.
  • the obtained slurry aqueous solution of aluminum hydroxide was filtered to collect a cake, and then the cake was redispersed in 20 L of pure water and filtered again. The washing operation was performed three times to obtain a washed gel.
  • alumina carrier A containing no sulfur.
  • the obtained alumina carrier A had a BET surface area of 290 m 2 /g and a pore volume of 0.61 cm 3 /g as determined by mercury porosimetry.
  • the obtained alumina carrier A had an average pore diameter of 9.5 nm (95 ⁇ ), and had a sharp pore distribution in which most of the pores were concentrated near the average pore diameter.
  • the volume occupied by pores having a pore diameter of 70 to 110 ⁇ ) was 80% or more of the total pore volume.
  • the ⁇ -alumina carrier thus prepared was impregnated with an aqueous solution of ammonium sulfate having a concentration of 0.38 mol/L so that the sulfur content after calcination was 0.5% by weight. °C, 3 hours) and calcination (350°C, 3 hours) to obtain an alumina carrier containing sulfur.
  • the smallest platinum particles are 8 ⁇ (0.8 nm) and the largest platinum particles are 22 ⁇ (2.2 nm).
  • 41 of the 47 platinum particles measured had a size in the range of 8-15 ⁇ (0.8-1.5 nm), and only 6 platinum particles had a size of 15 ⁇ . (1.5 nm) and larger than 16 ⁇ (1.6 nm).
  • An egg-shell type platinum-supported ⁇ -alumina catalyst (Catalyst No. 3) prepared under the preparation conditions of the present invention shown in Example 1, and a homogeneous platinum-supported ⁇ -alumina catalyst prepared under the preparation conditions of the present invention shown in Example 2. (Catalyst No. 4) was subjected to a dehydrogenation reaction test of methylcyclohexane under the same method and reaction conditions as those shown in Comparative Example 4.
  • Table 5 shows the results of the dehydrogenation reaction test, the average particle size of the platinum particles measured based on direct observation of the electron microscope image, and the platinum particles having a size in the range of 8 to 15 ⁇ among the measured platinum particles. shows the result of calculating the ratio of the number of
  • the catalysts of the present invention in which the catalyst life was improved by the preparation methods shown in Examples 1 and 2, it was measured by direct observation of the observed image with an electron microscope.
  • the platinum particle diameter 80% or more of all the platinum particles measured have a particle diameter in the range of 8 to 15 ⁇ .
  • the catalyst according to the invention has a significantly higher proportion of the number of platinum particles with a diameter in the range of 8-15 ⁇ . It can be seen that the proportion of platinum particles with a large size of 16 ⁇ or more is significantly reduced.
  • catalysts (catalyst No. 3 and catalyst No. 4) prepared by the preparation methods shown in Examples 1 and 2 according to the present invention were remarkably improved in catalyst life is that the ⁇ -alumina support is This is thought to be due to the optimization of the firing conditions during preparation, the firing conditions after impregnation with platinum (and sulfur if necessary), the drying conditions, and the final hydrogen reduction conditions.
  • the reason why the life of the conventional catalyst (that is, the dehydrogenation catalysts described in Patent Documents 1 and 2) was hindered is that in the conventional preparation method, the calcination conditions for preparing the ⁇ -alumina carrier were set at 400°C. impregnated with platinum (and sulfur, if necessary), the firing conditions after drying are also high, and the final hydrogen reduction temperature is higher than that of the carrier and platinum (and sulfur, if necessary) This is considered to be due to the high temperature equivalent to the firing conditions after the impregnation and drying.
  • the catalyst according to the present invention cannot be completed with the electron microscope technology that could be used for conventional catalysts (that is, at the time of patent application for dehydrogenation catalysts described in Patent Documents 1 and 2). With the subsequent evolution of electron microscope technology, the catalyst preparation conditions and the size of the platinum particles in the prepared catalyst have progressed to the point where they can be accurately measured by direct observation.
  • the egg-shell type platinum-supported alumina catalyst and the homogeneous platinum-supported alumina catalyst of the present invention can be suitably used for the dehydrogenation reaction of hydrogenated aromatics such as methylcyclohexane, which is used as a hydrogen energy carrier, and can be used by the organic chemical hydride method.
  • this invention is highly industrially applicable, as it may be widely applied to existing catalytic reaction processes that use platinum-supported alumina catalysts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】触媒寿命を向上させた白金担持アルミナ触媒を提供する。 【解決手段】白金担持アルミナ触媒は、アルミナ担体と、アルミナ担体に担持された白金と、を有し、アルミナ担体は、表面積が200m2/g以上、細孔容積が0.50m2/g以上、平均細孔径が60Å~150Åの範囲、かつ全細孔容積に対して平均細孔径±30Åの細孔が占める割合が60%以上のγ―アルミナ担体を含み、γ―アルミナ担体には、白金の粒子が白金元素(Pt)として0.1重量%~1.5重量%の範囲で担持されており、透過型電子顕微鏡を用いた直接観察により、前記白金の粒子の70%以上が8~15Åの大きさを有する。

Description

白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法
 本発明は、化学品製造、水素製造、ファインケミカル製造、排気ガス処理等の環境浄化等の触媒を利用するプロセスに用いられる金属触媒に係り、アルミナ担体に白金が担持されている白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法に関する。
 アルミナ担体に白金等を担持させた白金担持アルミナ触媒は、例えば、メチルシクロヘキサン、シクロヘキサン、デカリン、ジベンジルトルエン等の水素化芳香族類から対応する芳香族類と水素に脱水素する脱水素反応を始めとする様々な化合物の脱水素反応や水素化反応、改質反応等による燃料や石油化学品、医薬などのファインケミカル製造、自動車の排気ガスを始めとする環境浄化等、極めて広範な分野で工業的に用いられている。
 そして、これらの白金担持アルミナ触媒は、一般に、アルミナの金属酸化物からなる多孔性アルミナ担体を調製し、得られた多孔性アルミナ担体に塩化白金酸水溶液、塩化白金アンモニウム水溶液、アセチルアセトナト白金等の有機白金化合物の溶液等の触媒金属化合物の溶液を含浸させ、次いで乾燥させて触媒金属化合物担持乾燥物とした後、例えば350℃以上800℃以下及び0.5時間以上24時間以下の条件で焼成し、更に必要に応じて、得られた触媒金属化合物担持焼成物を例えば250℃以上800℃以下及び0.5時間以上24時間以下の条件で水素還元することにより製造されている。
 このような方法で製造される白金担持アルミナ触媒は、白金原子が原子量195と質量が大きく、白金源として利用される白金化合物の触媒担体に対する吸着力が強いことから、白金化合物がアルミナ担体の内部に拡散する前にアルミナ担体の外殻部のみに吸着されて固定されるため、触媒断面で白金金属の分散状態を観察した場合に、触媒の外周部のみに白金金属が担持されており、担体内部には白金金属が担持されていない、いわゆるエッグシェル(egg shell)型の白金担持触媒となることが知られている。
 触媒反応において原料の分子が大きい等の理由により触媒粒子内での拡散抵抗が大きい場合は、活性金属である白金が触媒の内部にまで担持されていても、原料の分子が触媒内部に拡散する速度が遅いため反応が十分に進行しないことから、反応が触媒粒子の外殻周辺で優先的に起こることが知られている。このような反応では、活性金属が触媒の外郭部のみに存在するエッグシェル型の方が有利である。しかしながら、触媒粒子の外殻のみに一定量の活性金属を担持した場合、活性金属粒子の密度が高くなるために、活性金属粒子の分散度を十分に実現できないという問題や、シンタリングやコーキングによる触媒劣化が起きやすいという問題等が発生する虞がある。このような観点から、触媒外郭部にのみ白金金属が担持される場合の白金金属の分散度を向上させた触媒が開発されている。特許文献1は、拡散抵抗が大きくならない程度に白金担持アルミナ触媒の細孔の大きさが揃っており、かつ白金の分散が良好なエッグシェル型白金担持アルミナ触媒を開示している。また、拡散抵抗が影響しない反応においては担体の有する表面積を十分に活用できるように、触媒の断面全体にわたって白金金属が良好に分散している触媒も開発されており、特許文献2はそのような均一型白金担持アルミナ触媒を開示している。
 白金担持アルミナ触媒は、古くから広範な分野における触媒プロセスで利用されているが、近年は水素エネルギーの貯蔵輸送技術として注目されている水素エネルギーキャリアの一つの方法である有機ケミカルハイドライド法に利用されている。従来の白金担持アルミナ触媒に比べて性能の高い白金担持アルミナ触媒の開発が進められるようになっており、特許文献1及び特許文献2は白金担持アルミナ触媒の用途として、有機ケミカルハイドライド法で必要な脱水素反応での利用を開示している。有機ケミカルハイドライド法は、化学反応によって、水素を化学品の分子構造の中に取り込んだ有機ケミカルハイドライド化合物(水素化有機化合物)として「貯める」「運ぶ」を行う方法である。有機ケミカルハイドライド法は、1980年代から提唱されていた方法であるが、水素を取り込んだ有機ケミカルハイドライドの化合物から水素を発生させる脱水素触媒の寿命が極めて短く、工業的な実施が困難であったために実用化されていない方法であり、技術開発の鍵は工業的に利用できる触媒寿命など十分な性能を有する新規な脱水素触媒の開発であった。現在では、上記のような高い性能を有する白金担持アルミナ触媒の適用によって、有機ケミカルハイドライド法による水素エネルギーキャリアシステムの開発は、大規模な国際間水素輸送実証が実施されるに至っており、技術的には商業化が可能な段階まで開発が進んでいる。非特許文献3及び4は、このような有機ケミカルハイドライド法の開発の経緯を開示している。
 日本国は水素エネルギーの実用化と普及を国策として進める方針を震災後の第4次エネルギー基本計画から盛り込んでおり、水素・燃料電池技術ロードマップの策定に続いて2017年に水素基本戦略を閣議決定している。上記の有機ケミカルハイドライド法は水素エネルギーを大規模に「貯める」「運ぶ」を行う水素エネルギーキャリアを提供することができ、水素基本戦略にその実用化が盛り込まれており、2030年までに水素供給価格目標として30¥/Nm、2050年目標として20¥/Nmを掲げている。これより、継続的な改良技術開発によるコストダウンが求められており、触媒性能、特に触媒寿命の向上はコストダウンに大きな影響を与える。触媒性能の中で、転化率、選択率とその積である収率については、これまでの開発で比較的に高いレベルまで開発が進んでおり、その性能をいかに長期間維持できるかの触媒寿命の改善がコストダウンに寄与する段階にある。
特許第4652695号公報 特許第4142733号公報 岡田佳巳、エネルギー・資源、Vol.33,No.3,168(2018) 岡田佳巳、東京都高圧ガス協会会報、2019年8月号、9月号 資源エネルギー庁、水素基本戦略(2017年12月)
 上記の背景から、本発明者らは、特許文献1、2にそれぞれ開示されているエッグシェル型白金担持アルミナ触媒および均一型白金担持アルミナ触媒についての触媒寿命の向上を目的として、アルミナ担体または硫黄を含んだアルミナ担体に白金を担持する際の調製方法を鋭意検討した。
 その結果、エッグシェル型白金担持アルミナ触媒および均一型白金担持アルミナ触媒に関し、アルミナ担体に担持された白金粒子の粒子径を適切に設定する(白金の粒子分布を適切に制御する)ことにより、従来の白金担持アルミナ触媒に比べて触媒寿命を顕著に改善できることを見出した。
 従って、本発明の目的は、触媒寿命を向上させた白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法を提供することにある。
 本発明の一態様は、白金担持アルミナ触媒であって、アルミナ担体と、前記アルミナ担体に担持された白金と、を有し、前記アルミナ担体は、表面積が200m2/g以上、細孔容積が0.50m2/g以上、平均細孔径が60Å~150Åの範囲、かつ全細孔容積に対して平均細孔径±30Åの細孔が占める割合が60%以上のγ―アルミナ担体を含み、前記γ―アルミナ担体には、前記白金の粒子が白金元素(Pt)として0.1重量%~1.5重量%の範囲で担持されており、透過型電子顕微鏡を用いた直接観察により、前記白金の粒子の70%以上が8~15Åの大きさを有する構成とする。
 この態様によれば、白金粒子の粒子径を適切に設定する(白金の粒子分布を適切に制御する)ことにより、白金担持アルミナ触媒の触媒寿命を向上させることができる。また、この態様によれば、γ―アルミナ担体の細孔分布をシャープに制御するため、その粉末及び成形体の全体に亘って細孔のサイズが均一であり、白金を分散担持して存在させる工程、及び白金を(例えば、硫黄の分布に一致させて)全体に亘って分散担持する工程を安定的に実施できるという利点もある。
 上記の態様の白金担持アルミナ触媒において、前記γーアルミナ担体には、硫黄または硫黄化合物が硫黄元素(S)として0.5重量%~1.2重量%の範囲で含まれるとよい。
 上記の態様の白金担持アルミナ触媒において、前記γ―アルミナ担体には、アルカリ金属が0.5重量%~1.5重量%の範囲で担持され、前記アルカリ金属が、ナトリウムおよびカリウムであるとよい。
 本発明の他の態様は、上記態様における白金担持アルミナ触媒の製造方法であって、前記γ―アルミナ担体の調製において、アルミニウムを含む酸性水溶液にアルカリ性水溶液を加えて、水酸化アルミニウムとして得られるベーマイトを乾燥した後に、250℃~400℃の範囲の温度かつ1~12時間の範囲の時間で焼成する構成とする。
 上記の態様の白金担持アルミナ触媒の製造方法において、前記焼成後の前記γ―アルミナ担体に対し、白金試薬水溶液として塩化白金酸水溶液を使用して、白金元素としての含有量が0.5重量%~1.5重量%の範囲となるように前記白金を含侵させ、乾燥し、その後に250℃~400℃の範囲の温度で焼成するとよい。
 この態様によれば、γ―アルミナ担体を適切な条件で調製することにより、白金粒子の粒子径を適切に設定する(白金の粒子分布を適切に制御する)ことができ、その結果、製造された白金担持アルミナ触媒の触媒寿命を向上させることができる。また、この態様によれば、白金担持アルミナ触媒を既存の触媒製造設備で容易に大量製造することができる。
 上記の態様の白金担持アルミナ触媒の製造方法において、前記白金を含浸させ、乾燥し、その後に焼成した前記γーアルミナ担体を水素還元し、前記水素還元の温度が、前記ベーマイトを乾燥した後に焼成する前記温度よりも高く、前記白金を含侵させた前記γ―アルミナ担体を乾燥後に焼成する前記温度よりも高く、かつ300℃~450℃の範囲であるとよい。
 上記の態様の白金担持アルミナ触媒の製造方法において、前記水素還元の時間が、1~15時間の範囲であるとよい。
 上記の態様の白金担持アルミナ触媒の製造方法において、前記γーアルミナ担体には、硫黄または硫黄化合物が硫黄元素(S)として0.5重量%~1.2重量%の範囲で含まれるとよい。
 上記の態様の白金担持アルミナ触媒の製造方法において、前記焼成後の前記γ―アルミナ担体に対し、硫酸アンモニウム水溶液を含侵させ、その後に、250℃~400℃の範囲の温度かつ1~12時間の範囲の時間で焼成するとよい。
 上記の態様の白金担持アルミナ触媒の製造方法において、硫黄を含まない前記γーアルミナ担体または硫黄を含む前記γーアルミナ担体に白金を含侵させ、乾燥し、その後に焼成して白金担持γーアルミナ担体を生成し、前記白金担持γーアルミナ担体に対し、アルカリ金属が0.5重量%~1.5重量%の範囲で含まれるように含侵させ、乾燥した後に焼成を行わずに水素還元し、前記水素還元の温度が、前記ベーマイトを乾燥した後に焼成する前記温度よりも高く、前記白金を含侵させた前記γ―アルミナ担体を乾燥後に焼成する前記温度よりも高く、かつ300℃~450℃の範囲であるとよい。
 上記の態様の白金担持アルミナ触媒の製造方法において、前記アルカリ金属が、ナトリウムおよびカリウムであるとよい。
 上記の態様の白金担持アルミナ触媒の製造方法において、前記水素還元の時間が1~15時間の範囲であるとよい。
 本発明の他の態様は、水素化芳香族類の脱水素方法であって、上記態様における白金担持アルミナ触媒を用いて水素化芳香族類を脱水素する構成とする。
 この態様によれば、触媒寿命を向上させた白金担持アルミナ触媒により、水素化芳香族類の脱水素を安定的に実施することができる。
 上記の態様の水素化芳香族類の脱水素方法において、前記水素化芳香族類が、単環芳香族類の水素化物、2環芳香族類の水素化物、及び3環以上の芳香環を有する化合物の水素化物からなる群から選ばれた1種又は2種以上の混合物であるとよい。
 上記の態様の水素化芳香族類の脱水素方法において、前記水素化芳香族類が、メチルシクロヘキサン、シクロヘキサン、トリメチルシクロヘキサン、デカリン、及びジベンゾトリオールからなる群から選ばれた1種又は2種以上の混合物であるとよい。
 本発明に係る白金担持アルミナ触媒に関し、均一型触媒は原料の触媒内部までの拡散が十分に行われる場合に有効であり、エッグシェル型触媒は触媒内部までの拡散が制限されて十分に行われない場合に有効なことから、これらの2種類の触媒は反応場における拡散の状態によって使い分けることが可能である。また、同じ反応でも反応器内の位置によって、原料の触媒内部への拡散状態が異なる場合があり、反応が進行した出口近くでは原料濃度が低くなることから、触媒内部への拡散が制限され得る。このような場合には、反応器において均一型とエッグシェル型の触媒を併用することができる。
 また、一般に触媒内部への原料の拡散度合いは触媒有効係数で表されるが、触媒ペレットの大きさや形状を変えることで触媒有効係数を制御することが可能である。これらより、均一型とエッグシェル型の両タイプの触媒について、触媒ペレットの大きさや形状を変えることで、さまざまな触媒有効係数を有する白金アルミナ触媒の製造が可能となる。
 本発明に係る白金担持アルミナ触媒において、白金を担持させるアルミナ担体は、その細孔分布がシャープになるように細孔のサイズをできるだけ均一に制御したものが好ましい。具体的には、表面積が200m2/g以上、細孔容積が0.5m2/g以上、平均細孔径が60Å~150Å、及び全細孔容積に対して平均細孔径±30Åの細孔が占める割合が60%以上であるγーアルミナ担体が好ましい。表面積が200m2/g未満であると触媒化後の活性が十分ではなく、細孔容積が0.5m2/g未満であると活性金属成分の均一な担持が困難であり、平均細孔径が60Åより小さいと表面積は大きくなるが、細孔容積が小さくなり、反対に平均細孔径が150Åより大きいと表面積が小さくなり、細孔容積が大きくなるため、これらの相関を総合的に考慮した結果、平均細孔径が60Å~150Åが適当である。また、平均細孔径±30Åの細孔が占める割合が60%未満であると、触媒性能において本発明の効果が少なくなる。このように細孔のサイズが揃えられた結果、アルミナ担体はその粉末及び成形体の全体に亘って、細孔のサイズが均一になる。その結果、アルミナ担体に白金を分散担持して存在させる工程、及び白金を硫黄の分布に一致して全体に亘って分散担持する工程を適切に行うことができる。
 特許文献1は、表面積150m/g以上、細孔容積0.55cm/g以上、平均細孔径90Å以上300Å以下、及び全細孔容積に対して細孔径90Å以上300Å以下の細孔が占める割合が60%以上である多孔性γ-アルミナ担体に、白金が担持されていることを特徴とする白金担持アルミナ触媒を開示している。この触媒は前述のように一般的なエッグシェル型の白金担持アルミナ触媒であり、特許文献1では、触媒寿命を向上させる手段としてアルカリ金属を添加した触媒についても開示している。アルミナを担体とした触媒を利用する場合は、白金粒子上で起こる分解反応を抑制しただけでは十分ではなく、アルミナ上の酸点で起こる分解反応の抑制も必要となる。従って、これらの酸点をカリウムやリチウム等のアルカリ金属を用いてマスキングすることでアルミナ表面での分解反応を抑制することが行われることが多い。この観点から、特許文献1は、エッグシェル型白金担持触媒において、白金が高い分散度で担持されることで白金上での分解を抑制するとともに、アルカリを添加することでアルミナ上の酸点のマスキングを行って、触媒寿命向上において顕著な効果を見出したものである。
 一方、特許文献2はアルミナ担体に硫黄を含有させることによって、担持される白金の分散形態が均一型になるとともに分解反応を抑制することで触媒寿命の向上を図る均一型白金担持アルミナ触媒を開示している。特許文献2の発明時点では、硫黄又は硫黄化合物を含有させたアルミナ担体を利用する場合、その上にアルカリ金属による酸点のマスキングを実施しない場合でもそれと同等以上の分解反応抑制効果があると考えられた。詳細なメカニズムは不明であるが、硫黄元素がアルミナと共に複合酸化物を形成し、アルミナ単独の場合に残留する酸点を異なる構造に変化させているものと考えられた。その際、硫黄元素がアルミナと複合酸化物を形成した場合の形態は、一般的に硫酸根形態であることが考えられる。硫酸根はそれ自体が酸性質であり、その存在によって酸点の数、即ち酸量は増加していることが考えられる。これらの酸点が比較的に低い反応温度では分解反応を進行させない効果があるが、さらにアルカリ金属を添加して残留している酸点をマスキングすることが有効であることが見出されている。
 触媒製造においてアルカリ添加工程が増えることはコストアップの要因となるが、本発明による触媒の長寿命化によるコストダウン効果は、触媒製造費用のコストアップに比べて極めて高い。反応器での触媒の利用方法によって脱水素触媒の交換寿命を従来の1~2年から3~4年に長期化することが可能となった。
 本発明に係る白金担持アルミナ触媒は、代表的に脱水素触媒として利用される。また、白金担持アルミナ触媒は、熱交換型の反応器の触媒反応管に充填して利用される。触媒反応管の本数は一般的な熱交換器と同様に、大型の反応器では数千本になる場合もある。このような反応器で利用される白金担持アルミナ触媒は、その性能が一定の収率に低下した時である触媒寿命に達したときに、新しい触媒に交換するために抜き出される。抜き出された廃触媒からは白金が回収されて、次の交換用触媒の製造にリサイクル利用される。抜き出し作業には数日が必要であり、新触媒の充填にはそれ以上の作業日数が必要であるため、触媒交換に2週間程度が必要になる。その間、製造が止まるため、交換頻度の低減はコストダウンに大きく寄与する。すなわち、特許文献1及び特許文献2が開示している触媒の寿命は1~2年であるが、本発明に係る白金担持アルミナ触媒の寿命は4年程度まで向上し、触媒交換頻度を半数以下に低減することが可能となる。この触媒の長寿命化によるコストダウン効果により、触媒製造費用のコストアップを考慮しても総合的に経済性を改善することができた。
 本発明のエッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒は、例えば水素エネルギーの貯蔵輸送方法の一つである有機ケミカルハイドライド法において水素エネルギーキャリアとして利用される水素化芳香族類の脱水素触媒として使用される。水素化芳香族類は、メチルシクロヘキサン、シクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン等の単環芳香族類の水素化物、テトラリン、デカリン、メチルデカリン、ビフェニル、ジフェニルメチル等の2環芳香族類の水素化物、及びジベンゾトリオール、テトラデカヒドロアントラセン等の3環以上の芳香環を有する化合物の水素化物からなる群から選ばれる1種又は2種以上の混合物であるとよい。
 本発明に係る白金担持アルミナ触媒を有機ケミカルハイドライド法におけるメチルシクロヘキサン等の水素化芳香族類の脱水素反応に供する場合、触媒の性能が反応時間の経過とともに徐々に性能が低下する触媒劣化が観察される。触媒劣化の要因はコーキングと呼ばれる炭素析出である。コーキングでは、主としてメチルシクロヘキサン等の原料化合物の分解反応によって活性金属の白金金属の表面に炭素析出が起こり、その結果、活性金属の有効な活性点が覆われて(すなわち、活性点の減少による失活により)触媒が機能しなくなる。
 触媒反応の劣化現象は、反応試験における転化率の低下として観察され、水素化芳香族類の脱水素反応の場合、直線的に転化率が低下する現象として観察されることが判明している。これより、反応試験における転化率の経時変化において、その低下の傾きによって、触媒寿命の相対的な優劣を評価することができる。更に、実際の反応条件ではなく、短時間での触媒寿命評価を目的とした加速反応試験においても直線的に低下することから、触媒寿命の評価が可能である。
 水素は1970年代からクリーンな二次エネルギーとして注目され、日本国では、1974年~1992年のサンシャイン計画、1978~1992年のムーンライト計画、1993年~2001年のニューサンシャイン計画において水素製造技術や燃料電池の研究開発が進められた。水素の大規模貯蔵輸送技術は、1992年~2002年のWE-NET計画において液化水素法の開発が開始されている。一方、有機ケミカルハイドライド法の開発の歴史は古く、1980年代にカナダのケベック州政府と欧州12か国による国際研究開発プロジェクトとして実施されたユーロケベック計画にさかのぼる。この計画は、ケベック州に豊富に存在する余剰の水力電力を利用して水の電気分解を行って水素を製造し、大西洋を輸送して欧州で利用する計画であった。水素の輸送方法としては、第1候補として液体水素法、第2候補として液体アンモニア法、第3候補として有機ケミカルハイドライド法が検討されている。当時、有機ケミカルハイドライド法はMCH法と呼ばれていた。ユーロケベック計画は1992年ごろまで約10年間のプロジェクトが遂行されたが、いずれの方法も実用化には至らずに計画は終了しており、以来、水素を大規模に貯蔵輸送する技術は実用化されていない。
 日本国では、1992年~2002年に実施されたWE-NETプロジェクトにおいて、液化水素法の開発が進められる一方、有機ケミカルハイドライド法の研究は日本の大学を中心に進められていた。出願人は、2002年から脱水素触媒の開発に着手後、初めての学術発表を2004年に横浜で開催された世界水素会議で発表を行っているが、この時期から企業での研究開発例が発表されるようになり、現時点で大規模向けの水素貯蔵輸送技術の研究開発で実証レベルまで進められている技術は、液化水素法と出願人が提案する有機ケミカルハイドライド法のみである。
 有機ケミカルハイドライド法(OCH法:Organic Chemical Hydride Method)は、水素をトルエン(TOL)などの芳香族と水素化反応させて、分子内に水素を取り込んだメチルシクロヘキサン(MCH)などの飽和環状化合物に転換することで、常温・常圧の液体状態で「貯める」「運ぶ」を行い、利用場所で必要量の水素を脱水素反応で取り出して利用する方法であり、水素とトルエンを反応させる水素化反応(水素貯蔵反応)とMCHから水素を発生させてトルエンを回収する脱水素反応(水素発生反応)からなる。水素を取り出した後に生成するTOLは水素の入れ物(キャリア)として回収、繰り返し利用する。
 水素は爆発性の気体のため、水素のまま大規模に貯蔵輸送する場合は潜在的なリスクの高い物質である。本法ではガソリンや軽油の成分で常温・常圧の液体状態のMCHの分子内に水素を取り込んで貯蔵輸送を行うため原理的に安全性が高い方法である。具体的には、本システムのタンクや反応器が火災に巻き込まれた場合でも、従来の製油所火災と同様であり、周辺の市街地に甚大な被害を与える可能性は極めて低いと考えられる。「事故は必ず起こる」の考え方は安全対策に非常に重要であり、原理的な安全が求められる所以である。
 この方法では、1LのMCHの液体に、約530Lの水素ガスを貯蔵することができる。水素ガスの体積を物理的に1/500以下に減容するには500気圧以上に圧縮するか、-253℃以下に冷却して1/800の体積の液体水素にする必要があるが、本法では、化学反応を利用することで常温・常圧下で1/500の体積減容が可能である。また、TOLとMCHは-95℃以上101℃以下の広い温度範囲で液体状態のため、地球上のあらゆる環境下で水のような液体としてハンドリングすることが可能である。大規模なサプライチェーンの構築には、数十万トン単位のTOLの調達が必要であるが、TOLはハイオクガソリンに10重量%以上含まれている燃料基材であるほか、工業溶剤としても多く利用されており、年間2,000万トン以上が世界で生産されている汎用化学品のため大量調達も容易である。
 上記より、水素を大規模に貯蔵輸送する際の潜在的なリスクを従来のガソリンの貯蔵輸送レベルの危険性にまで原理的に低減できる安全性が高い方法であることが本法の第一の特徴であり、出願人がこの方法に着目した第一の理由である。また、TOL、MCHの大型タンクによる貯蔵や、ケミカルタンカー、ケミカルローリーによる輸送は古くから化学品として実用化されている。今後の自動車の電動化の潮流によって、ガソリンや軽油の自動車燃料の需要は減少が予想されており、これらの貯蔵タンク等の既存インフラの転用が可能なことも大きなメリットである。
 さらに、将来に水素が発電燃料として大規模に利用されるようになった場合、現在の石油備蓄のように水素燃料の備蓄が必要になる時代が予想される。TOLやMCHは長期間大規模に貯蔵しても化学的に変化することはなく、長期貯蔵に際して特段のエネルギー消費やロスを伴わないことから、現行の石油備蓄基地のタンクにMCHを貯蔵することで、水素エネルギーの備蓄基地に転換することも可能である。
 出願人は、安全性が最も高く既存のインフラを転用できることからコスト的にも有利な有機ケミカルハイドライド法に着目して、2002年から実用化の鍵である新規な脱水素触媒の開発に着手し、世界で初めて有機ケミカルハイドライド法に工業的に適用可能な新規脱水素触媒の開発に成功した。その後、システム全体の技術確立を目的として、脱水素プロセスに開発された触媒を利用するとともに、水素貯蔵反応となるトルエンの水素化プロセスと組み合わせて、同じ場所で水素貯蔵と水素発生を連続的に繰り返す実証デモプラントを2013年に建設して同年4月から2014年11月までに延べ約10,000時間の実証運転を行い、設計通りの高い性能を安定に維持できることが確認されて技術確立を完了している。
 その後、開発の最終段階として、実際に約200トンの水素を本システムによって東南アジアのブルネイ国から日本の川崎市臨海部に輸送する世界に先駆けた国際間水素サプライチェーン実証が、NEDO(新エネルギー・産業技術総合開発機構)のプロジェクトとして2020年度に実施され、年間100トン以上の水素を本システムで輸送する実証が完了している。
 日本国は水素エネルギーの実用化と普及を国策として進める方針を震災後の第4次エネルギー基本計画から盛り込んでおり、水素・燃料電池技術ロードマップの策定に続いて2017年に水素基本戦略を閣議決定している。上記の有機ケミカルハイドライド法は水素エネルギーを大規模に「貯める」「運ぶ」を行う水素エネルギーキャリアとして、水素基本戦略にその実用化が盛り込まれており、2030年までに水素供給価格目標として30¥/Nm、2050年目標として20¥/Nmが掲げられている。これより、継続的な改良技術開発によるコストダウンが求められており、触媒の性能向上はコストダウンの重要な要素であることから、本発明は有機ケミカルハイドライド法の実用化に際して有効であり産業上の利用性が高い発明である。
 また、エッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒は、触媒用途に限らず、吸着剤等としても有効に利用することができる。有機ケミカルハイドライド法への適用を始めとして、本発明の触媒は、触媒反応プロセスにより不純物等を吸着する前処理等を目的としたガードカラムの充填物としても有用である。
 このように、本発明のエッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒は、水素エネルギーキャリアとして利用されるメチルシクロヘキサン等の水素化芳香族類の脱水素反応に好適に利用でき、有機ケミカルハイドライド法水素貯蔵輸送システムの実用化に資するほか、白金担持アルミナ触媒が利用されている既存の触媒反応プロセスに広く適用できる可能性があり、産業上の利用性が非常に高い。
 以上の構成によれば、本発明に係る白金担持アルミナ触媒は、従来の白金担持アルミナ触媒に比べて高い触媒性能を有し、特に、触媒寿命において優れた性能を有する。また、本発明に係る白金担持アルミナ触媒の製造方法によれば、既存の触媒製造設備で容易に大量製造することができる。さらに、本発明に係る白金担持アルミナ触媒は、既存の白金担持アルミナ触媒の代替として利用できるほか、水素貯蔵輸送技術の一つである有機ケミカルハイドライド法におけるメチルシクロヘキサン等の脱水素触媒として好適に利用することができる。
触媒を撮影した(A)2000年代の透過型電子顕微鏡写真、及び(B)近年の透過型電子顕微鏡写真を示す説明図 (A)エッグシェル型の金属担持触媒、及び(B)均一型の金属担持触媒の説明図 透過型電子顕微鏡写真に基づく白金粒子径の測定に関する説明図
 図1には、それぞれ触媒を撮影した(A)2000年代の透過型電子顕微鏡の写真、及び(B)近年の透過型電子顕微鏡の写真を示す。図1(A)は、特許文献1(特許第4652695号公報)に開示されたエッグシェル型触媒を撮影した写真である。図1(A)の写真は、2006年に当時の最新式の透過型電子顕微鏡である日立製作所製のHD―200型電子顕微鏡を用いて180万倍の拡大率で撮影された。図1(B)は、特許文献2(特許第4142733号公報)に開示された均一型白金担持アルミナ触媒を撮影した写真である。図1(B)の写真は、2018年に日本電子製のJEM―ARM200型電子顕微鏡を用いて200万倍の拡大率で撮影された。
 なお、特許第4652695号公報および特許第4142733号公報を含め、本明細書において援用する全ての文献の開示内容については、本明細書の一部を構成するものとし、詳細な説明を省略する。
 2000年代の一般的な透過型電子顕微鏡の解像度では、数ナノメートルの白金粒子径を直接観察して測定することはできなかったため、当時はCOパルス法(COパルス吸着法)で粒子径を推定することが一般的であった。現在では、電子顕微鏡性能の進歩によって、1Å程度の解像度によって数Åの粒子やベンゼン環などの分子に至るまで直接観察できるようになっている。
 図1(A)に示す2000年代の透過型電子顕微鏡写真では、複数の白金粒子がそれぞれ独立して担持されている状態であることは判明するが、白い点(すなわち、白金粒子)の輪郭が明確でないため、粒子が実際よりも大きく見える傾向がある。
 図1(B)に示す近年の透過型電子顕微鏡では、白い点(白金粒子)の輪郭が、より明確に観察できることがわかる。したがって、近年の透過型電子顕微鏡による直接観察により、アルミナ担体に担持された白金の粒子径をより高精度に測定することができる。本発明に係る白金担持アルミナ触媒における白金粒子の平均粒子径は、図1(B)に示すような透過型電子顕微鏡の写真において、所定数(通常は50個程度)の白金の粒子径を測定し、それらの平均値として算出することができる。透過型電子顕微鏡では、所定数の白金の粒子径が写真に収まるように倍率(例えば、本発明の白金担持アルミナ触媒は200万倍で観察することで視野に40~50個の白金粒子を観察できる。)を設定するとよい。各白金粒子の大きさの測定は電子顕微鏡のシステムに備えられているコンピューター画面上で粒子の輪郭に測定線を合わせることで粒子径を測定できる。この際、白金粒子の形状に長軸径と短軸系が存在する場合は、長軸径の輪郭に合わせることで長軸径を計測でき、短軸径も同様に測定することができる。本発明の白金担持アルミナ触媒上の白金粒子は長軸径と短軸径にほとんど差がないことから、長軸径をもって代表値とすることが可能である。また、画像を印刷して粒子径を定規で測定して画像上のスケールと比較することでも粒子径の大きさを測定することが可能である。
 これに対し、上述の特許文献1及び特許文献2において開示された白金の粒子径は、COパルス法による推算値である。COパルス法による推算粒子径と、透過型電子顕微鏡を用いた直接観察によって測定した粒子径とでは誤差があることが考えられる。これは、COパルス法では、直接観察による粒子径に比べて小さな粒子として推算されやすいことによる。COパルス法では、白金粒子表面の白金1原子に対してCOが1分子吸着することから、総CO吸着量を測定し、白金粒子の形状を立方体に仮定して、その1辺の長さを粒子径として推算する。このとき、担体にはCOが吸着しない仮定のもとに推算する。白金担持アルミナ触媒の場合、白金にCOが優先的に吸着し、留出COが注入CO量に等しくなった時に直ちにCOの注入が止められるが、アルミナ担体では、表面積が大きく担体にも一定のCOが吸着するため、この分のCOが白金表面に吸着したものとして推算されることになる。
 ここで、COパルス法について説明する。COをパルス的に試料に注入すると、注入初期にはCOが担持金属表面に吸着され、溶出するCOは少ない。やがて、ほとんどの担持金属表面にCOが吸着して定常状態になると、注入したCOのほとんどが排出されるようになる。このとき、定常時に排出されるCO量から吸着時における排出CO量を差し引き、その差分の和をCO吸着量として求める。COパルス法は、この吸着量と担持金属含有量から金属表面積、分散率、粒子径を算出する方法である。以下に具体的な算出方法を説明する。
 触媒の試料量W(g)が、測定温度において吸着したCOガス量Vtより、0℃における触媒1g当たりの吸着ガス量Vを次の式(1)から求めた。
   V=(Vt/W)×{273/(273+t)} (ml/g・cat) ... (1)
 ここで、試料の金属含有率をC(%)、担持金属の原子量をMとすると、試料1g当たりの担持金属のモル数Rは、式(2)から求められる。
   R=(C/100)×(1/M) (mol/g・cat) ... (2)
 試料1g当たりの吸着ガス量のモル数Kは、式(3)から求められる。
   K=V/(22.4×10-3×10) (mol/g・cat) ...(3)
 これらより、分散度B(担持金属中の有効担持金属の割合)は、式(4)から求められる。
   B=(K/R)×100 (%) ... (4)
 担持金属触媒の格子定数をa(Å)とした時、格子定数面積aに対して吸着ガス分子1個が吸着するとすれば、金属の比表面積Sは、式(5)から求められる。
   S=試料1gに吸着したガス分子数×a
    =K×6.02×1023×(a×10-10 ... (5)
 また、担持金属粒子を一辺の長さをD(m)とする立方体と仮定すると、粒子の6面のうち有効な面は5面であることから、
   粒子1個の有効面積S=5D (m2) ... (6)
   粒子1個の体積v=D (m3) ... (7)
試料1g当たりの担持金属の粒子数をnとすると
   担持金属の比表面積S=ns=n5D (m2) ... (8)
   担持金属の体積Vc=nv=Nd (m3) ... (9)
式(6)~式(9)より、一辺の長さD(m)は、式(10)のように表される。
   S/Vc=5/D   ∴D=5Vc/S (m) ... (10)
 ここで、担持金属の含有率C(%)、比重をd(g/cm3)とすると、試料1g当たりの担持金属の体積Vcは、式(11)のように表される。
   Vc=試料1g当たりの担持金属重量(g/g)/担持金属の比重(g/cm3)
     =C/100/d (g/cm3) ... (11)
 よって、粒子径は、式(12)から計算される。
   粒子径=5Vc/S
     ={5(C/100/d)×10-6}/S (m)
     ={5(C/100/d)×10-6×1010}/S (Å) ... (12)
 このように、従来の白金担持アルミナ触媒においてアルミナ担体に担持された白金の粒子径は、比較的誤差の大きいCOパルス法や当時の透過型電子顕微鏡写真(図1(A)参照)に基づき測定(算出)されていた。したがって、従来の白金担持アルミナ触媒では、白金の粒子径を高い精度で制御することは難しいため、白金の粒子径の好適な範囲も比較的広い範囲に設定されていた。
 これに対し、本発明では、近年の透過型電子顕微鏡写真(図1(B)参照)に基づき比較的高い精度で測定された白金の粒子径の値に基づき、従来の白金担持アルミナ触媒に比べて触媒寿命を顕著に改善できる白金の粒子径の範囲(白金粒子径の分布)が設定される。本発明に係る白金担持アルミナ触媒では、透過型電子顕微鏡による直接観察において、γ―アルミナ担体に担持される白金の粒子の70%以上が8~15Åの大きさを有するとよい。より好ましくは、γ―アルミナ担体に担持される白金の粒子の80%以上が8~15Åの大きさを有するとよい。さらに好ましくは、γ―アルミナ担体に担持される白金の粒子の90%以上が8~15Åの大きさを有するとよい。
 次に、図2を用いて、本発明でいうエッグシェル型の金属担持触媒と均一型の金属担持触媒とを説明する。エッグシェル型の金属担持触媒とは、成形された触媒の断面において担持される金属種が断面の外殻部分にのみ分散担持されている状態を指す。すなわち、多孔性の担体1の外郭部分に金属種が担持された金属担持部分2が形成されている。均一型の金属担持触媒は、触媒の断面の全体亘って金属種が分散し、多孔性の担体1の成形体の内部全般にわたって金属種が担持された金属担持部分2が形成されている状態をいう。
 本発明に係る白金担持アルミナ触媒は、アルミナ担体と、アルミナ担体に担持された白金と、を有する。
 次に本発明に係る白金担持アルミナ触媒に用いられるアルミナ担体について説明する。
 アルミナ担体としては、多孔性γ-アルミナ担体であるとよい。より詳細には、アルミナ担体は、例えば特公平6-72005号公報に開示されているように、アルミニウム塩の中和により生成した水酸化アルミニウムのスラリーを濾過洗浄し、得られたアルミナヒドロゲルを脱水乾燥した後、400℃以上800℃以下で1時間~6時間程度焼成することにより得られる多孔性γ-アルミナ担体であるのがよい。より好ましくは、アルミナ担体は、アルミナヒドロゲルのpH値をアルミナヒドロゲル溶解pH領域とベーマイトゲル沈殿pH領域との間で交互に変動させると共に少なくともいずれか一方のpH領域から他方のpH領域へのpH変動に際してアルミナヒドロゲル形成物質を添加してアルミナヒドロゲルの結晶を成長させるpHスイング工程を経て得られた多孔性γ-アルミナ担体であるのがよい。このpHスイング工程を経て得られた多孔性γ-アルミナ担体は、細孔分布の均一性に優れ成形後のアルミナ担体ペレットにおいても物理性状のばらつきが少なく、個々のペレット毎の物理性状が安定しているという点で優れている。
 本願発明者らは、アルミナヒドロゲル(ベーマイト)の乾燥および焼成の条件と、担持された白金の粒子径との関係について、さらに検討を重ねた結果、白金粒子の多くを8~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、乾燥温度は200℃以下、その後の焼成温度は250℃以上400℃以下、その焼成時間は1時間以上12時間以下であることが特に好ましいことを見出した。
 本発明に係る均一型白金担持アルミナ触媒を調製する場合に、アルミナ担体に予め分散させて含有せしめる硫黄又は硫黄化合物としては、硫黄元素を有し、かつ、触媒担体の調製時にあるいは触媒担体の調製後に、この触媒担体中に均一に分散した状態で含有させることができるものであれば特に制限はない。例えば、硫黄又は硫黄化合物として、硫黄の結晶粉末や、硫酸、硫酸アンモニウム等の硫酸塩等の硫黄含有化合物を挙げることができ、担体上に硫黄が分散しやすい観点から水又は有機溶媒に溶解性がある硫黄化合物が好ましく、そのような硫黄化合物として硫酸、硫酸アンモニウム等を挙げることができる。
 担体に含有せしめる硫黄の量は、硫黄元素(S)として0.15重量%(wt%)以上5.0重量%以下が好ましく、更に好ましくは0.15重量%以上3.0重量%以下が好ましい。0.15重量%未満の硫黄含有量では、金属が触媒の中心部に亘ってまで均一に担持される度合いにおいて効果が低く、硫黄含有量が5重量%を超えると局部的に硫黄が凝集し易く、そのような局部には金属が分散して担持されないという問題点が生じ易くなる。これらより、金属を均一に分散担持する効果において最も好適な硫黄含有量の範囲は0.15重量%以上5.0重量%以下である。
 本願発明者らは、硫黄濃度と、担持された白金の粒子径との関係について、さらに検討を重ねた結果、白金粒子の多くを8~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、硫黄含有量の範囲については、硫黄または硫黄化合物が硫黄元素(S)として0.5~1.2重量%含まれることが特に好ましいことを見出した。
 本発明において、上記硫黄又は硫黄化合物を含有する硫黄含有触媒担体を調製する方法については、それが担体断面全体に亘って分散した状態で硫黄又は硫黄化合物を含有させることができればよく、例えば、A:触媒担体の調製時に得られた金属酸化物の前駆体となる金属水酸化物ゲルに硫黄粉末を混練し、所定の形状に成形した後、乾燥し焼成して調製する方法、B:触媒担体の調製時に金属硫酸塩及び/又は硫酸を用いて硫黄分を含有する金属酸化物の前駆体となる金属水酸化物ゲルを調製し、所定の形状に成形した後、乾燥し焼成して調製する方法、C:触媒担体の調製時に金属酸化物の前駆体となる金属水酸化物ゲルを所定の形状に成形し、次いで乾燥して乾燥金属水酸化物ゲルとし、この乾燥金属酸化物に硫黄化合物溶液を含浸させた後に焼成して調製する方法、D:触媒担体の調製時に金属酸化物の前駆体となる金属水酸化物ゲルを所定の形状に成形し、次いで乾燥して乾燥金属水酸化物とし、この乾燥金属水酸化物に硫黄化合物溶液を含浸させた後に焼成して調製する方法、E:金属酸化物の前駆体となる金属水酸化物ゲルを所定の形状に成形し、次いで乾燥して乾燥金属水酸化物ゲルとし、次いでこの乾燥金属水酸化物ゲルを焼成して得られた焼成金属酸化物とし、この焼成金属酸化物に例えば硫酸水溶液、硫酸アンモニウム水溶液等の硫黄化合物溶液を含浸させた後に再び焼成して調製する方法、等を例示することができる。
 本願発明者らは、硫黄含有触媒担体を調製する方法について、さらに検討を重ねた結果、白金粒子の多くを8~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、上記のEの方法でγ―アルミナ担体の表面に硫黄を分散担持させることが特に好ましいことを見出した。
 また、この硫黄含有触媒担体を調製する際の焼成条件については、通常その焼成温度が100℃以上1000℃以下、好ましくは350℃以上800℃以下であって、その焼成時間が0.5時間以上48時間以下、好ましくは1時間以上24時間以下である。焼成温度が350℃より低いと水酸化物から酸化物への転化が十分に行われない場合があり、反対に、800℃より高くなると焼成後の表面積が著しく低下する場合がある。
 本願発明者らは、さらに硫黄含有γ―アルミナ担体を調製する際の乾燥および焼成条件について検討を重ねた結果、白金粒子の多くを8~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、乾燥条件については、乾燥温度は100℃以上200℃以下、乾燥時間は3時間以上12時間以下であることが特に好ましく、また、焼成条件については、焼成温度は250℃以上400℃以下、焼成時間は1時間以上12時間以下であることが特に好ましいことを見出した。
 本発明において、上記の硫黄含有触媒担体に担持させる白金の担持量は、白金元素として0.05重量%以上5.0重量%以下、好ましくは0.1重量%以上3.0重量%以下である。この白金の担持量が0.05重量%より少ないと活性が低いという問題があり、反対に、5.0重量%より多くなると白金の粒子径が大きくなり、選択性が低下すると共にシンタリングし易くて劣化し易いという問題が生じる。
 本願発明者らは、好適な白金の担持量についてさらに検討を重ねた結果、白金粒子の多くを8~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、白金の担持量は、白金元素の含有量として0.1重量%以上1.5重量%以下が好ましく、調製された白金担持アルミナ触媒の寿命向上の観点から、0.5重量%以上1.5重量%以下がさらに好ましいことを見出した。
 本発明において、γ―アルミナ担体に白金金属を担持させる場合、上記のγ―アルミナ担体に対し、白金化合物の溶液を含浸させ、乾燥した後、所定の温度で焼成すればよい。白金化合物は、白金の塩化物、臭化物、アンモニウム塩、カルボニル化合物、アミン及びアンミン錯体やアセチルアセトナト錯体等の各種の錯体化合物等を挙げることができる。白金化合物は、例えば、塩化白金酸、アセチルアセトナト白金、白金酸アンモニウム塩、臭化白金酸、二塩化白金、四塩化白金水和物、二塩化カルボニル白金二塩化物、ジニトロジアミン白金酸塩等の白金化合物が挙げられる。
 本願発明者らは、含侵させる白金化合物についてさらに検討を重ねた結果、調製された白金担持アルミナ触媒の寿命向上の観点から、焼成後のγ―アルミナ担体に対し、白金試薬水溶液として塩化白金酸水溶液を使用して白金を含侵させることが特に好ましいことを見出した。
 アルミナ担体に上記の白金化合物の溶液を含浸させた後は、白金化合物が付着したアルミナ担体を50℃以上200℃以下、0.5時間以上48時間以下の条件で乾燥した後、350℃以上600℃以下、0.5時間以上48時間以下、より好ましくは350℃以上450℃以下で0.5時間以上5時間以下の条件で焼成する。
 本願発明者らは、アルミナ担体に対する好適な白金含侵後(例えば、白金元素としての含有量が0.5重量%~1.5重量%の範囲)の乾燥及び焼成の条件についてさらに検討を重ねた結果、白金粒子の多くを8~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、乾燥条件については、乾燥温度は100℃以上200℃以下、乾燥時間は3時間以上12時間以下、焼成条件については、焼成温度は250℃以上450℃以下、焼成時間は1時間以上8時間以下が特に好ましいことを見出した。
 次いで、白金担持工程の最終工程として、白金化合物が付着したアルミナ担体を、水素ガスの雰囲気下において、350℃以上600℃以下及び0.5時間以上48時間以下、好ましくは350℃以上550℃以下及び3時間以上24時間以下の還元条件で水素還元処理を行う。この水素還元時の温度が350℃未満であると十分に白金が還元されないという問題が生じ、また、600℃を超えると還元時に白金粒子がシンタリングして金属分散度が低下するという問題が生じる。
 本願発明者らは、好適な白金含侵焼成後の水素還元の温度条件についてさらに検討を重ねた結果、白金粒子の多くを8~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、水素還元の温度は300℃以上450℃以下で、かつ、白金含侵後に焼成する温度以下が特に好ましく、水素還元の時間については1時間以上15時間以下が特に好ましいことを見出した。
 上記のエッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒へのアルカリ添加量は、0.1重量%以上5重量%以下、好ましくは0.3重量%以上3.0重量%以下、さらに好ましくは0.5重量%以上1.5重量%以下である。このアルカリ金属の担持量が0.1重量%より少ないと触媒寿命が短く効果が低いという問題があり、反対に、5.0重量%より多くなると、活性が低下すると共に触媒寿命が短くなるという問題が生じる。
 本願発明者らは、白金粒子の多くを8~15Åの範囲の大きさでγ-アルミナ担体に対して担持するにあたり、好適なアルカリ添加量についてさらに検討を重ねた結果、アルカリ添加量については、0.5重量%以上1.5重量%以下であれば調製後の白金粒子のサイズに大きな影響はないことを見出した。
 エッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒にアルカリ性金属を担持させる際に用いるアルカリ性金属の化合物としては、アルカリ性金属の塩化物、臭化物、ヨウ化物、硝酸塩、硫酸塩、酢酸塩、プロピオン酸塩等を例示でき、好ましくは水溶性のもの及び/又はアセトン等の有機溶媒に可溶のものがよく、例えば、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、硝酸ナトリウム、硫酸ナトリウム、酢酸ナトリウム、プロピオン酸ナトリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、硝酸カリウム、硫酸カリウム、酢酸カリウム、プロピオン酸カリウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、硝酸カルシウム、硫酸カルシウム、酢酸カルシウム、プロピオン酸カルシウム等を挙げることができる。
 また、エッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒にアルカリ性金属を担持させる際には、アルカリ性金属の化合物の溶液を含浸させた後、室温以上200℃以下及び0.5時間以上48時間以下、好ましくは50℃以上150℃以下及び0.5時間以上24時間以下、より好ましくは80℃以上120℃以下及び0.5時間以上5時間以下の乾燥条件で乾燥した後、350℃以上600℃以下及び0.5時間以上48時間以下、好ましくは350℃以上450℃以下及び0.5時間以上5時間以下の条件で焼成する。
 本願発明者らは、白金粒子の多くを8~15Åの範囲の大きさでγ-アルミナ担体に対して担持するにあたり、好適なアルカリ化合物の溶液を含侵した後の乾燥条件についてさらに検討を重ねた結果、室温以上200℃以下であれば、乾燥時間に拘わらず、担持された白金粒子のサイズに影響を及ぼさないことを見出した。
 エッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒にアルカリ金属を含浸させ、乾燥して得られたアルカリ金属担持乾燥物については、その後に焼成することなく直接に最終的な水素還元を行う。この水素還元の還元条件は、水素ガスの雰囲気下に、350℃以上600℃以下及び0.5時間以上48時間以下、好ましくは350℃以上550℃以下及び3時間以上24時間以下であるとよい。このアルカリ金属担持乾燥物の水素還元に先駆けて焼成を行うと、活性、選択性、及び寿命に関する触媒性能が低くなるという問題が生じる。また、水素還元時の温度が350℃未満であると十分に白金が還元されないという問題が生じ、600℃を超えると還元時に白金粒子がシンタリングして金属分散度が低下するという問題が生じる。
 本願発明者らは、白金粒子の多くを8~15Åの範囲の大きさでγ-アルミナ担体に対して担持するにあたり、好適なアルカリ化合物の溶液を含侵、乾燥した後の水素還元条件についてさらに検討を重ねた結果、アルカリ金属添加前の白金担持工程の最終工程である水素還元の温度、還元時間以下であれば、担持された白金粒子のサイズに影響を及ぼさないことを見出した。
 以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。
[比較例1](特許文献1に記載のエッグシェル型触媒と特許文献2に記載の均一型白金担持アルミナ触媒の透過型電子顕微鏡を用いた直接観察による粒子径測定結果とCOパルス法による測定結果の比較)
 特許文献1に記載のエッグシェル型触媒の白金粒子径は、COパルス法で測定したCO吸着量から推算した分散度と白金粒子の形状を立方体に仮定して粒子径を推算した粒子径であり、特許文献1の表2(実験例1)および表3(実験例2)に示されるように、5.5Å~14Åの範囲の粒子径として推算されていた。
 一方、特許文献2の記載の均一型白金担持アルミナ触媒の粒子径は、特許文献2の表1(実施例4)に示されるように、6.5~11Åの粒子径として推算されていた。
 図3に示すように、透過型電子顕微鏡を用いた直接観察により、特許文献2に記載の均一型白金担持アルミナ触媒における42個の白金粒子(図3中の1-42の番号を参照)の粒子径について測定した。図3に示した触媒の画像は、図1(B)に示した透過型電子顕微鏡写真に相当する。また、この触媒は、特許文献2(表1)に記載の触媒No.6(粒子径が6.5Å)に相当する。
 白金粒子径の測定は、電子顕微鏡の画面上で粒子径測定機能を利用して行うことができる。ただし、電子顕微鏡写真に示された縮尺と粒子径の最も大きな径を示す部分の長さを比較することによっても概ね同様の測定結果を得ることができる。粒子径の測定結果を表1に示す。表1に示した42個の平均粒子径は16.8Å(1.68nm)であった。
Figure JPOXMLDOC01-appb-T000001
 また、表1に示した白金粒子径の測定結果によれば、測定した42個の白金粒子のうち19個(約45%)の白金粒子が8~15Å(0.8~1.5nm)の範囲の大きさであり、23個の白金粒子は、15Å(1.5nm)より大きく、16Å(1.6nm)以上の大きさであることがわかる。
 このように、特許文献2に記載の均一型白金担持アルミナ触媒(特許文献2の表1の触媒No.6)を電子顕微鏡で直接観察した画像から測定したところ、白金の平均粒子径は1.68nm(16.8Å)であった。このことから、特許文献2に記載のCOパルス法による白金の粒子径の推算値(6.5Å)は、電子顕微鏡写真の直接観察によって測定した値に比べて著しく小さな値であることが判る。
 上述のように、特許文献1に記載のエッグシェル型触媒および特許文献2に記載の均一型白金担持アルミナ触媒について、COパルス法で測定したCO吸着量から推算した分散度と白金粒子の形状を立方体に仮定して粒子径を推算した粒子径では、5.5~14Åの粒子径として推算されていたが、それらの粒子径についても、電子顕微鏡を用いた直接観察によれば、かなり小さな値になると考えられる。
 このようなCOパルス法による粒子径の推算値の大きな誤差は、COパルス法では、導入したCOが白金粒子の表面に露出している白金原子に吸着するという仮定のもとに推算されるが、実際にはアルミナ担体にも吸着しているCOが多く存在しているためにCO吸着量が大きく観測されること、及び白金粒子の形状を立方体に仮定して、その1辺を粒子径として推算することに起因すると考えられる。
[比較例2](特許文献1の実施例に記載の調製方法)
 特許文献1の実施例に記載のエッグシェル型白金担持γ―アルミナ触媒の調製方法を説明する。
 特許文献1の実施例と同様に、特公平6-72005号公報の実施例1に記載された従来技術に基づき、多孔性γーアルミナ担体を製造した。この方法のあらましを述べると、熱希硫酸中に激しく撹拌しながら瞬時にアルミン酸ソーダ水溶液を加えることにより水酸化アルミニウムスラリーの懸濁液(pH10)を得た。これを種子水酸化アルミニウムとして、撹拌を続けながら熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間おいて加える操作を繰り返し、ろ過洗浄ケーキを得た。これを押し出し成形して乾燥した後、500℃で3時間焼成した。
 こうして調製されたγーアルミナ担体は、表面積が240m2/g、細孔容積が0.713cm3/g、平均細孔径が119Å、及び細孔径90~300Åの占有率が90%の物理的性状を有する。この多孔性γ-アルミナ担体20gに、pH値が2.0になるように調製した0.4wt%-塩化白金酸水溶液79gを添加し、3時間放置して含浸させた後、デカンテーションにより水を除去し、次いで120℃で3時間乾燥させてからマッフル炉により空気流通下に400℃で3時間焼成した。得られた焼成物をデシケーター中で常温まで冷却した後、水素流通下に400℃で15時間還元し、脱水素触媒(特許文献1の実施例における表2に記載の触媒No.2に相当)を調製した。この触媒のCOパルス法による白金粒子径の推算値は5.5Åであった。
[比較例3](特許文献2の実施例に記載の調製方法)
 特許文献2の実施例に記載の均一型白金担持γ―アルミナ触媒の調製方法を説明する。
 濃度2.67mol/Lの硝酸アルミニウム水溶液を3900cc調製すると共に、14%アンモニア水溶液を3900cc用意した。30リットルのホーロー容器に純水20リットルを入れ、撹拌しながら70℃に加温した。撹拌を続けながら、硝酸アルミニウム水溶液1300ccを投入して5分間撹拌(pH=2.0)したのちに、アンモニア水溶液1300ccを投入して5分間撹拌(pH=7.4)するpHスイング操作を4回行った。得られた水酸化アルミニウムのスラリー水溶液を濾過してケーキを回収し、次いでこのケーキを純水20Lに再分散させて再び濾過する洗浄操作を3回行って洗浄ゲルを得た。
 洗浄ケーキを風乾により水分を調整した後に、押出成形機で直径1.6mmの棒状に成形し、乾燥(120℃、3時間)後、長さ約1cm程度に粉砕し、マッフル炉にて焼成(500℃、3時間)して硫黄分を含まないアルミナ担体Aを得た。得られたアルミナ担体Aでは、BET表面積が275m2/g、水銀圧入法による細孔容積が0.65cm3/gであった。また、得られたアルミナ担体Aでは、平均細孔径が8.9nmであり、ほとんどの細孔が平均細孔径付近に集中したシャープな細孔分布を有しており、7~10nmの細孔径を有する細孔が占める容積は全細孔容積の80%以上であった。
 アルミナ担体Aに濃度0.38mol/Lの硫酸アンモニウム水溶液を焼成後の硫黄含有量が0.5重量%となるように含浸して、エバポレーターにて溶媒を除去した。その後、アルミナ担体Aを乾燥(120℃、3時間)、焼成(500℃、3時間)して硫黄分を0.5重量%含むアルミナ担体を得た。
 こうして調製されたアルミナ担体に、pH=2.0に調製した塩化白金酸水溶液を用いて焼成後の白金担持量が0.6重量%となるように含浸させた後、エバポレーターにて水分を除去し、乾燥(120℃、3時間)し、焼成(400℃、3時間)した後に、流通式水素還元装置に充填して水素気流下に450℃、15時間の条件で水素還元し、0.6wt%白金担持アルミナ触媒を得た。この白金担持アルミナ触媒のCOパルス法による白金粒子径の推算値は6.5Åであった。
[比較例4](特許文献1に記載のエッグシェル型触媒と特許文献2に記載の均一型触媒に関する反応試験方法)
 特許文献1に記載のエッグシェル型触媒および特許文献2に記載の均一型触媒に関する脱水素反応試験方法と反応試験結果の比較を示す。ここで、特許文献1に記載の脱水素反応試験と、特許文献2に記載の脱水素反応試験とでは、反応温度および原料MCHと共に供給される水素の濃度の条件が異なっている。これは、特許文献1に記載の脱水素触媒と特許文献2に記載の脱水素触媒とでは、劣化速度が異なることによる。特許文献1に記載の脱水素触媒の開発当時の劣化速度の反応試験条件は、比較的に劣化しにくい条件であった。具体的には、特許文献1に記載の反応試験条件は、反応温度300℃、水素共供給濃度20%の条件であるのに対して、特許文献2に記載の反応条件は、反応温度320℃、水素共供給濃度5%の条件である。特許文献2に記載の脱水素触媒は劣化速度が小さく劣化しにくい触媒のため、劣化が進みやすい加速条件で反応試験を行ったことが理由である。
 本比較例では、メチルシクロヘキサン(MCH)の脱水素反応試験について、特許文献1に記載の脱水素触媒を触媒NО.1、特許文献2に記載の脱水素触媒を触媒NО.2として用いた脱水素反応試験の結果を示す。
 内径12.6mmφ×300mmサイズで、反応管断面の中心に外形1/8インチの熱電対用保護管を備えたステンレス製の反応管の長さ方向の中心に、触媒層の中心が位置するように上記各触媒10ccを充填し、触媒の上側に予熱層として1mmφの球状α-アルミナビーズ10ccを充填した。水素流通(LHSV=5.0; 50cc/hr)下に触媒層の中心温度が320℃になるまで昇温した。次いでメチルシクロヘキサン(MCH)を高速液体クロマトグラフィ(HPLC)用送液ポンプ(HPLCポンプ)によってLHSV=2.0(20cc/hr)に相当する量を反応器に供給し、直に水素の流量をMCHと水素のガス量の合計量に対して水素のガス量が5mol%になるように調節した。反応中は触媒層の中心温度が320℃になるように電気炉の出力を調整して反応試験を行った。
 反応管の出口には気液分離器を設け、この脱水素反応により生成したトルエン等の液状生成物と水素ガス等の気体とを分離し、回収された液状生成物と気体とを各々ガスクロマトグラフィで分析した。
 反応開始2時間後と300時間後におけるMCH転化率(%)、トルエン選択率(%)、トルエン収率(%)、及び生成メタン濃度(ppm)を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[実施例1](本発明によるエッグシェル型触媒の調製方法と粒子径の測定結果)
 濃度2.67mol/Lの硝酸アルミニウム水溶液を3900cc調製すると共に、14%アンモニア水溶液を3900cc用意した。30リットルのホーロー容器に純水20リットルを入れ、撹拌しながら70℃に加温した。撹拌を続けながら、硝酸アルミニウム水溶液1300ccを投入して5分間撹拌(pH=2.0)したのちにアンモニア水溶液1300ccを投入して5分間撹拌(pH=7.4)するpHスイング操作を4回行った。得られた水酸化アルミニウムのスラリー水溶液を濾過してケーキを回収し、次いでこのケーキを純水20Lに再分散させて再び濾過する洗浄操作を3回行って洗浄ゲルを得た。
 洗浄ケーキを風乾により水分を調整した後に押出成形機で直径1.6mmの棒状に成形し、乾燥(120℃、3時間)後、長さ約1cm程度に粉砕し、マッフル炉にて焼成(350℃、3時間)して硫黄分を含まないアルミナ担体Aを得た。得られたアルミナ担体Aでは、BET表面積が290m2/g、水銀圧入法による細孔容積が0.61cm/gであった。また、得られたアルミナ担体Aでは、平均細孔径が9.5nm(95Å)であり、ほとんどの細孔が平均細孔径付近に集中したシャープな細孔分布を有しており、7~11nm(70~110Å)の細孔径を有する細孔が占める容積は全細孔容積の80%以上であった。
 こうして調製したアルミナ担体に、pH=2.0に調製した塩化白金酸水溶液を用いて焼成後の白金担持量が0.6重量%となるように含浸させた後、エバポレーターにて水分を除去し、乾燥(120℃、3時間)し、焼成(350℃、3時間)した。その後、そのアルミナ担体を、流通式水素還元装置に充填して水素気流下に400℃、15時間の条件で水素還元し、0.6wt%白金担持アルミナ触媒(以下、触媒NО.3という。)を得た。こうして得た触媒NО.3について、電子顕微鏡を用いた直接観察により測定した白金粒子の平均粒子径は11.27Åであった。白金粒子径の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3において、最も小さな白金粒子は8Å(0.8nm)であり、最も大きな白金粒子は21Å(2.1nm)である。また、測定した45個の白金粒子のうち40個(約89%)の白金粒子が8~15Å(0.8~1.5nm)の範囲の大きさであり、5個の白金粒子のみが、15Å(1.5nm)より大きく、16Å(1.6nm)以上の大きさであることがわかる。
[実施例2](本発明による均一型触媒の調製方法と粒子径の測定結果)
 濃度2.67mol/Lの硝酸アルミニウム水溶液を3900cc調製すると共に、14%アンモニア水溶液を3900cc用意した。30リットルのホーロー容器に純水20リットルを入れ、撹拌しながら70℃に加温した。撹拌を続けながら、硝酸アルミニウム水溶液1300ccを投入して5分間撹拌(pH=2.0)したのちにアンモニア水溶液1300ccを投入して5分間撹拌(pH=7.4)するpHスイング操作を4回行った。得られた水酸化アルミニウムのスラリー水溶液を濾過してケーキを回収し、次いでこのケーキを純水20Lに再分散させて再び濾過する洗浄操作を3回行って洗浄ゲルを得た。
 洗浄ケーキを風乾により水分を調整した後に押出成形機で直径1.6mmの棒状に成形し、乾燥(120℃、3時間)後、長さ約1cm程度に粉砕し、マッフル炉にて焼成(350℃、3時間)して硫黄分を含まないアルミナ担体Aを得た。得られたアルミナ担体Aでは、BET表面積が290m2/g、水銀圧入法による細孔容積が0.61cm/gであった。また、得られたアルミナ担体Aでは、平均細孔径が9.5nm(95Å)であり、ほとんどの細孔が平均細孔径付近に集中したシャープな細孔分布を有しており、7~11nm(70~110Å)の細孔径を有する細孔が占める容積は全細孔容積の80%以上であった。
 こうして調製したγ―アルミナ担体に、濃度0.38mol/Lの硫酸アンモニウム水溶液を焼成後の硫黄含有量が0.5重量%となるように含浸して、エバポレーターにて溶媒を除去した後に乾燥(120℃、3時間)、焼成(350℃、3時間)して硫黄分を含むアルミナ担体を得た。
 得られたアルミナ担体に、pH=2.0に調製した塩化白金酸水溶液を用いて焼成後の白金担持量が0.6重量%となるように含浸させた後、エバポレーターにて水分を除去し、乾燥(120℃、3時間)し、焼成(350℃、3時間)した。その後、そのアルミナ担体を、流通式水素還元装置に充填して水素気流下に400℃、15時間の条件で水素還元し、0.6wt%白金担持アルミナ触媒(以下、触媒NО.4という。)を得た。こうして得た触媒NО.4について、電子顕微鏡を用いた直接観察により測定した白金粒子の平均粒子径は11.27Åであった。白金粒子径の測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4において、最も小さな白金粒子は8Å(0.8nm)であり、最も大きな白金粒子は22Å(2.2nm)である。また、測定した47個の白金粒子のうち41個(約87%)の白金粒子が8~15Å(0.8~1.5nm)の範囲のサイズであり、6個の白金粒子のみが、15Å(1.5nm)より大きく、16Å(1.6nm)以上の大きさであることがわかる。
[実施例3](本発明によるエッグシェル型触媒と均一型触媒の反応試験結果)
 実施例1に示した本発明の調製条件で調製したエッグシェル型白金担持γーアルミナ触媒(触媒NО.3)、実施例2に示した本発明の調製条件で調製した均一型白金担持γーアルミナ触媒(触媒NО.4)について、比較例4に示した方法と同様の方法と反応条件でメチルシクロヘキサンの脱水素反応試験を実施した。表5には、その脱水素反応試験の結果、ならびに電子顕微鏡の画像の直接観察に基づき測定した白金粒子の平均粒子径、及び測定した白金粒子のうち8~15Åの範囲のサイズを有する白金粒子の数の割合を計算した結果を示す。
Figure JPOXMLDOC01-appb-T000005
 表5の反応試験結果からわかるように、本発明によって触媒調製の条件を最適化した結果、特に、触媒寿命において優れた性能を有する白金担持アルミナ触媒が得られた。従来の調製条件で調製したエッグシェル型白金担持γーアルミナ触媒(触媒NО.1)に比べて、本発明の調製条件で調製したエッグシェル型白金担持γーアルミナ触媒(触媒NО.3)は、トルエン収率の低下が少なく長寿命である。また、従来の調製条件で調製した均一型白金担持γーアルミナ触媒(触媒NО.2)に比べて、本発明の調製条件で調製した均一型白金担持γーアルミナ触媒(触媒NО.4)は、トルエン収率の低下が少なく長寿命である。
 表5の反応試験は、加速試験条件で行っているため、300時間程度でのトルエン収率の劣化幅は小さく見える。しかし、加速試験条件での劣化幅は実際の商業的に実施する際の反応条件における劣化幅より著しく大きく、概略的に表現すると、表5における触媒NО.1の寿命が約1年、触媒NО.2の寿命が約2年であるのに比べて、触媒NO.3の寿命は約3年を期待でき、また、触媒NО.4の寿命は約4年を期待することができる。
 また、実施例1および実施例2に示した調製方法によって触媒寿命が改善された本発明による触媒(触媒NО.3、触媒NО.4)では、電子顕微鏡による観察画像の直接観察によって測定される白金粒子径において、測定した全ての白金粒子のうちの8割以上の数の白金粒子が、8~15Åの範囲の粒子径を有する。8~15Åの範囲の粒子径の割合が約45%である触媒NО.2と比較すると、本発明による触媒では、8~15Åの範囲の粒子径を有する白金粒子の数の割合が各段に高く、16Å以上の大きなサイズの白金粒子の割合が著しく減少していることがわかる。
 このように本発明による実施例1および実施例2に示した調製方法で調製された触媒(触媒NО.3、触媒NО.4)の触媒寿命が顕著に改善された理由は、γーアルミナ担体の調製時における焼成条件、白金(及び必要に応じて硫黄)を含侵し、乾燥した後の焼成条件、ならびに最終的に水素還元する際の条件を最適化したことによるものと考えられる。
 従来の触媒(すなわち、特許文献1および特許文献2に記載の脱水素触媒)の寿命が阻害されていた理由は、従来の調製方法では、γーアルミナ担体を調製する際の焼成条件が400℃を超えており、白金(及び必要に応じて硫黄)を含侵し、乾燥した後の焼成条件も同様に高温であり、さらに、最終的な水素還元温度が担体や白金(及び必要に応じて硫黄)の含侵、乾燥後の焼成条件と同等に高温であったことによるものと考えられる。特に、触媒の調整において、最終的な水素還元温度を400℃以下として、水素還元前に熱履歴を受ける焼成温度条件を最終的な水素還元条件よりも低い温度で実施することがより好ましいことが判明した。
 なお、本発明による触媒は、従来の触媒(すなわち、特許文献1および特許文献2に記載の脱水素触媒に関する特許出願当時)に用いることのできた電子顕微鏡技術では完成することは不可能であり、その後の電子顕微鏡技術の進化によって、触媒調製条件と調製される触媒の白金粒子のサイズが直接観察によって正確に測定できるまでに進歩したことによって完成できたものである。
 本発明のエッグシェル型白金担持アルミナ触媒、および均一型白金担持アルミナ触媒は、水素エネルギーキャリアとして利用されるメチルシクロヘキサン等の水素化芳香族類の脱水素反応に好適に利用でき、有機ケミカルハイドライド法水素貯蔵輸送システムの実用化に資するほか、白金担持アルミナ触媒が利用されている既存の触媒反応プロセスに広く適用できる可能性があり、産業上の利用性が非常に高い発明である。
  1 担体
  2 金属担持部分

Claims (15)

  1.  白金担持アルミナ触媒であって、
     アルミナ担体と、
     前記アルミナ担体に担持された白金と、を有し、
     前記アルミナ担体は、表面積が200m2/g以上、細孔容積が0.50m2/g以上、平均細孔径が60Å~150Åの範囲、かつ全細孔容積に対して平均細孔径±30Åの細孔が占める割合が60%以上のγ―アルミナ担体を含み、
     前記γ―アルミナ担体には、前記白金の粒子が白金元素(Pt)として0.1重量%~1.5重量%の範囲で担持されており、
     透過型電子顕微鏡を用いた直接観察により、前記白金の粒子の70%以上が8~15Åの大きさを有する、白金担持アルミナ触媒。
  2.  前記γーアルミナ担体には、硫黄または硫黄化合物が硫黄元素(S)として0.5重量%~1.2重量%の範囲で含まれる、請求項1に記載の白金担持アルミナ触媒。
  3.  前記γ―アルミナ担体には、アルカリ金属が0.5重量%~1.5重量%の範囲で担持され、
     前記アルカリ金属が、ナトリウムおよびカリウムである、請求項1または請求項2に記載の白金担持アルミナ触媒。
  4.  請求項1に記載の白金担持アルミナ触媒の製造方法であって、
     前記γ―アルミナ担体の調製において、
     アルミニウムを含む酸性水溶液にアルカリ性水溶液を加えて、水酸化アルミニウムとして得られるベーマイトを乾燥した後に、250℃~400℃の範囲の温度かつ1~12時間の範囲の時間で焼成する、白金担持アルミナ触媒の製造方法。
  5.  前記焼成後の前記γ―アルミナ担体に対し、白金試薬水溶液として塩化白金酸水溶液を使用して、白金元素としての含有量が0.5重量%~1.5重量%の範囲となるように前記白金を含侵させ、乾燥し、その後に250℃~400℃の範囲の温度で焼成する、請求項4に記載の白金担持アルミナ触媒の製造方法。
  6.  前記白金を含浸させ、乾燥し、その後に焼成した前記γーアルミナ担体を水素還元し、
     前記水素還元の温度が、前記ベーマイトを乾燥した後に焼成する前記温度よりも高く、前記白金を含侵させた前記γ―アルミナ担体を乾燥後に焼成する前記温度よりも高く、かつ300℃~450℃の範囲である、請求項5に記載の白金担持アルミナ触媒の製造方法。
  7.  前記水素還元の時間が、1~15時間の範囲である、請求項6に記載の白金担持アルミナ触媒の製造方法。
  8.  前記γーアルミナ担体には、硫黄または硫黄化合物が硫黄元素(S)として0.5重量%~1.2重量%の範囲で含まれる、請求項4から請求項7のいずれか1項に記載の白金担持アルミナ触媒の製造方法。
  9.  前記焼成後の前記γ―アルミナ担体に対し、硫酸アンモニウム水溶液を含侵させ、その後に、250℃~400℃の範囲の温度かつ1~12時間の範囲の時間で焼成する、請求項4から請求項8のいずれか1項に記載の白金担持アルミナ触媒の製造方法。
  10.  硫黄を含まない前記γーアルミナ担体または硫黄を含む前記γーアルミナ担体に白金を含侵させ、乾燥し、その後に焼成して白金担持γーアルミナ担体を生成し、
     前記白金担持γーアルミナ担体に対し、アルカリ金属が0.5重量%~1.5重量%の範囲で含まれるように含侵させ、乾燥した後に焼成を行わずに水素還元し、
     前記水素還元の温度が、前記ベーマイトを乾燥した後に焼成する前記温度よりも高く、前記白金を含侵させた前記γ―アルミナ担体を乾燥後に焼成する前記温度よりも高く、かつ300℃~450℃の範囲である、請求項5に記載の白金担持アルミナ触媒の製造方法。
  11.  前記アルカリ金属が、ナトリウムおよびカリウムである請求項10に記載の白金担持アルミナ触媒の製造方法。
  12.  前記水素還元の時間が1~15時間の範囲である、請求項10または請求項11に記載の白金担持アルミナ触媒の製造方法。
  13.  請求項1から請求項3のいずれか1項に記載の白金担持アルミナ触媒を用いて水素化芳香族類を脱水素する、水素化芳香族類の脱水素方法。
  14.  前記水素化芳香族類が、単環芳香族類の水素化物、2環芳香族類の水素化物、及び3環以上の芳香環を有する化合物の水素化物からなる群から選ばれた1種又は2種以上の混合物である、請求項13に記載の水素化芳香族類の脱水素方法。
  15.  前記水素化芳香族類が、メチルシクロヘキサン、シクロヘキサン、トリメチルシクロヘキサン、デカリン、及びジベンゾトリオールからなる群から選ばれた1種又は2種以上の混合物である、請求項13に記載の水素化芳香族類の脱水素方法。
PCT/JP2021/015767 2021-04-16 2021-04-16 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法 WO2022219821A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP21937015.2A EP4324559A1 (en) 2021-04-16 2021-04-16 Platinum-supporting alumina catalyst, method for producing same, and method for dehydrogenating hydrogenated aromatic compounds using platinum-supporting alumina catalyst
AU2021440561A AU2021440561B2 (en) 2021-04-16 2021-04-16 Platinum-loaded alumina catalyst, method of producing same, and method of dehydrogenating hydrogenated aromatic using the catalyst
US18/024,924 US20230338927A1 (en) 2021-04-16 2021-04-16 Platinum-loaded alumina catalyst, method of producing same, and method of dehydrogenating hydrogenated aromatic using the catalyst
CA3192015A CA3192015A1 (en) 2021-04-16 2021-04-16 Platinum-loaded alumina catalyst, method of producing same, and method of dehydrogenating hydrogenated aromatic using the catalyst
CN202180058364.3A CN116171197A (zh) 2021-04-16 2021-04-16 载铂氧化铝催化剂、其制造方法及使用该催化剂的氢化芳族化合物的脱氢方法
JP2023514314A JP7472399B2 (ja) 2021-04-16 2021-04-16 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法
KR1020237008535A KR20230045617A (ko) 2021-04-16 2021-04-16 백금 담지 알루미나 촉매 및 그 제조 방법과 그 촉매를 이용한 수소화 방향족류의 탈수소 방법
PCT/JP2021/015767 WO2022219821A1 (ja) 2021-04-16 2021-04-16 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法
TW111110316A TWI831153B (zh) 2021-04-16 2022-03-21 鉑載持氧化鋁觸媒及其製造方法、以及使用該觸媒之氫化芳香族類之去氫方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015767 WO2022219821A1 (ja) 2021-04-16 2021-04-16 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法

Publications (1)

Publication Number Publication Date
WO2022219821A1 true WO2022219821A1 (ja) 2022-10-20

Family

ID=83640330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015767 WO2022219821A1 (ja) 2021-04-16 2021-04-16 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法

Country Status (9)

Country Link
US (1) US20230338927A1 (ja)
EP (1) EP4324559A1 (ja)
JP (1) JP7472399B2 (ja)
KR (1) KR20230045617A (ja)
CN (1) CN116171197A (ja)
AU (1) AU2021440561B2 (ja)
CA (1) CA3192015A1 (ja)
TW (1) TWI831153B (ja)
WO (1) WO2022219821A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005211845A (ja) * 2004-01-30 2005-08-11 Chiyoda Corp 水素化芳香族類の脱水素触媒及びその製造方法
WO2006137358A1 (ja) * 2005-06-20 2006-12-28 Chiyoda Corporation 均一型高分散金属触媒及びその製造方法
JP2011143408A (ja) * 2002-10-30 2011-07-28 IFP Energies Nouvelles 炭化水素装入原料の水素化分解触媒および水素化分解法
JP2018144016A (ja) * 2017-03-09 2018-09-20 千代田化工建設株式会社 脱水素触媒及びその製造方法並びにそれを用いた脱水素処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5897811B2 (ja) * 2011-03-30 2016-03-30 千代田化工建設株式会社 ハイブリッド型水素製造・発電システム
CN112007638B (zh) * 2020-09-01 2023-04-07 辽宁石油化工大学 一种Pt晶粒尺寸可控制备的丙烷脱氢催化剂制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143408A (ja) * 2002-10-30 2011-07-28 IFP Energies Nouvelles 炭化水素装入原料の水素化分解触媒および水素化分解法
JP2005211845A (ja) * 2004-01-30 2005-08-11 Chiyoda Corp 水素化芳香族類の脱水素触媒及びその製造方法
JP4652695B2 (ja) 2004-01-30 2011-03-16 千代田化工建設株式会社 水素化芳香族類の脱水素触媒及びその製造方法
WO2006137358A1 (ja) * 2005-06-20 2006-12-28 Chiyoda Corporation 均一型高分散金属触媒及びその製造方法
JP4142733B2 (ja) 2005-06-20 2008-09-03 千代田化工建設株式会社 均一型高分散金属触媒及びその製造方法
JP2018144016A (ja) * 2017-03-09 2018-09-20 千代田化工建設株式会社 脱水素触媒及びその製造方法並びにそれを用いた脱水素処理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Agency for Natural Resources and Energy", HYDROGEN BASIC STRATEGY, December 2017 (2017-12-01)
OKADA YOSHIMI, BULLETIN OF THE HIGH PRESSURE GAS SAFETY INSTITUTE OF TOKYO, August 2019 (2019-08-01)
OKADA YOSHIMI, ENERGY/NATURAL RESOURCES, vol. 33, no. 3, 2018, pages 168

Also Published As

Publication number Publication date
KR20230045617A (ko) 2023-04-04
JPWO2022219821A1 (ja) 2022-10-20
TW202247900A (zh) 2022-12-16
AU2021440561A1 (en) 2023-04-27
CA3192015A1 (en) 2022-10-20
EP4324559A1 (en) 2024-02-21
JP7472399B2 (ja) 2024-04-22
AU2021440561B2 (en) 2024-03-07
CN116171197A (zh) 2023-05-26
TWI831153B (zh) 2024-02-01
US20230338927A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP4907210B2 (ja) 水素の貯蔵輸送システム
JP4142733B2 (ja) 均一型高分散金属触媒及びその製造方法
JP2016159209A (ja) アンモニア分解触媒及び該触媒の製造方法並びに該触媒を用いたアンモニアの分解方法
WO2022219822A1 (ja) 水素ステーション及び水素生成方法
JP4652695B2 (ja) 水素化芳香族類の脱水素触媒及びその製造方法
JP4896766B2 (ja) 炭化水素用脱硫剤
JP4864688B2 (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
JP4890194B2 (ja) 一酸化炭素除去用触媒の製造方法
WO2022219821A1 (ja) 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法
KR20220103803A (ko) 탄화수소 전환 반응에 적합한 촉매, 그의 제조 방법 및 그의 용도
WO2021214954A1 (ja) 均一型白金担持アルミナ触媒、その製造方法、及びその使用方法
JP7466634B2 (ja) エッグシェル型白金担持アルミナ触媒、その製造方法、及びその使用方法
Chen et al. Effect of Particle Size of Regeneration Pt-Al2o3 Catalysts on Methylcyclohexane Dehydrogenation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023514314

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3192015

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237008535

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: AU2021440561

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2021440561

Country of ref document: AU

Date of ref document: 20210416

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021937015

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937015

Country of ref document: EP

Effective date: 20231116

WWE Wipo information: entry into national phase

Ref document number: 523442936

Country of ref document: SA