WO2022219822A1 - 水素ステーション及び水素生成方法 - Google Patents

水素ステーション及び水素生成方法 Download PDF

Info

Publication number
WO2022219822A1
WO2022219822A1 PCT/JP2021/015769 JP2021015769W WO2022219822A1 WO 2022219822 A1 WO2022219822 A1 WO 2022219822A1 JP 2021015769 W JP2021015769 W JP 2021015769W WO 2022219822 A1 WO2022219822 A1 WO 2022219822A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
catalyst
platinum
dehydrogenation
gas
Prior art date
Application number
PCT/JP2021/015769
Other languages
English (en)
French (fr)
Inventor
佳巳 岡田
健一 今川
智之 三栗谷
裕教 河合
悠介 中島
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to AU2021441047A priority Critical patent/AU2021441047A1/en
Priority to CN202180063777.0A priority patent/CN116322992A/zh
Priority to US18/026,720 priority patent/US20230356165A1/en
Priority to JP2023514315A priority patent/JP7573732B2/ja
Priority to PCT/JP2021/015769 priority patent/WO2022219822A1/ja
Priority to KR1020237009832A priority patent/KR20230053682A/ko
Priority to EP21937016.0A priority patent/EP4324560A1/en
Priority to CA3192945A priority patent/CA3192945A1/en
Priority to TW111110317A priority patent/TWI814286B/zh
Publication of WO2022219822A1 publication Critical patent/WO2022219822A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/0425In-situ adsorption process during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • C01B2203/1017Packed bed of catalytic structures, e.g. particles, packing elements characterised by the form of the structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a hydrogen station and a hydrogen generation method for supplying hydrogen to fuel cell vehicles such as fuel cell vehicles (FCV) and fuel cell forklifts.
  • fuel cell vehicles such as fuel cell vehicles (FCV) and fuel cell forklifts.
  • Hydrogen stations that fill mobile vehicles equipped with fuel cells such as fuel cell vehicles with hydrogen are being developed based on the basic hydrogen strategy of the Japanese government.
  • about 15,000 hydrogen stations, equivalent to the current gas stations, will be needed.
  • Hydrogen stations currently in practical use employ the compressed hydrogen method or the liquid hydrogen method for storing and transporting hydrogen.
  • organic chemical hydride method is a saturated cyclic compound such as methylcyclohexane (MCH) that incorporates hydrogen into the molecule by hydrogenating hydrogen with an aromatic such as toluene (TOL). (hydrogenated aromatics), it can be "stored” and “transported” in a liquid state at normal temperature and pressure, and the necessary amount of hydrogen can be extracted at the place of use by dehydrogenation reaction of saturated cyclic compounds. This is the method to use.
  • MCH methylcyclohexane
  • TOL toluene
  • the OCH method includes, for example, a hydrogenation reaction (hydrogen storage reaction) in which hydrogen and TOL are reacted, and a dehydrogenation reaction (hydrogen generation reaction) in which hydrogen is generated from MCH and TOL is recovered, and hydrogen is extracted.
  • the TOL produced later can be recovered as a container (carrier) for hydrogen and reused repeatedly.
  • the dehydrogenation reaction that generates hydrogen from the saturated cyclic compound after transport is an endothermic reaction, so heat input from the outside is required. Therefore, in the dehydrogenation reaction, in order to input the necessary amount of heat and maintain a predetermined reaction temperature condition (for example, a reaction temperature of 300 to 400 ° C.), a heated hot water is placed outside the reaction tube filled with the dehydrogenation catalyst.
  • a method of circulating a liquid heat medium such as oil is used.
  • a method of heating the hot oil there is a method of heating the piping through which the hot oil flows in a heating furnace by direct flame of a fuel combustion flame (see Patent Document 1).
  • the present inventors have found that the reaction product gas containing hydrogen obtained by the dehydrogenation reaction is purified by a PSA apparatus using the PSA method (pressure swing method), and the column (adsorption tower) of the PSA apparatus is regenerated. (that is, to remove impurities adsorbed by the adsorbent packed in the column) is catalytically combusted with the purge gas (containing high-concentration hydrogen) to generate a flame from the combustion heat. It was found that the heat medium can be heated without As a result, it is possible to reduce the amount of CO 2 emitted from the hydrogen station while avoiding the use of open flames, etc., which can become an ignition source in the hydrogen station. Furthermore, the present inventors have found that it is preferable to use a highly active platinum catalyst as a combustion catalyst for catalytic combustion of the purge gas so that the purge gas can spontaneously ignite even in cold regions.
  • the object of the present invention is to avoid the use of an open flame and reduce CO 2 emissions in heating the heat medium when using a heated heat medium for heat input to the dehydrogenation reaction of hydrogenated aromatics.
  • One aspect of the present invention is a hydrogen station (1), a dehydrogenation reactor (23) for generating hydrogen by a dehydrogenation reaction of hydrogenated aromatics in the presence of a dehydrogenation catalyst, and a fuel A heat supply device (26) that supplies heat to the dehydrogenation reactor via a heated heat medium, and a reaction product gas containing hydrogen generated by the dehydrogenation reactor is transferred using an adsorbent based on a pressure swing method. and a PSA device (33) for refining by refining, wherein the PSA device is supplied with a purge gas containing hydrogen used for regeneration of the adsorbent, and the heat supply device is a storage tank containing the heat medium.
  • a catalytic combustion tube (27) and a catalytic combustion tube (28) disposed within said reservoir for catalytically combusting said fuel in the presence of a combustion catalyst, said catalytic combustion tube having an exhaust gas discharged from said PSA system.
  • the purge gas is supplied together with air as the fuel.
  • the purge gas used for regeneration of the adsorbent in the PSA device is catalytically combusted to heat the heat medium.
  • the dehydrogenation catalyst comprises a platinum-supported alumina catalyst, the platinum-supported alumina catalyst having an alumina support and platinum supported on the alumina support, the alumina support having a surface area of 200 m 2 /g or more, a pore volume of 0.50 m 2 /g or more, an average pore diameter in the range of 60 ⁇ to 150 ⁇ , and a ratio of pores with an average pore diameter of ⁇ 30 ⁇ to the total pore volume of 60%
  • the ⁇ -alumina carrier contains the above ⁇ -alumina carrier, and the platinum particles are supported on the ⁇ -alumina carrier in the range of 0.1% by weight to 1.5% by weight as platinum element (Pt), and the transmission electron It is preferable that 70% or more of the platinum particles have a size of 8 ⁇ to 15 ⁇ by direct observation using a microscope.
  • a platinum-supported alumina catalyst containing platinum particles with an appropriately set particle size platinum with an appropriately controlled particle distribution
  • the catalyst life the dehydrogenation reaction of the hydrogenated aromatics (that is, production of hydrogen) can be stably carried out.
  • the combustion catalyst preferably contains a catalyst having the same configuration as the dehydrogenation catalyst.
  • the heating medium can be heated well.
  • a relatively highly active catalyst for example, a platinum-supported alumina catalyst
  • platinum particles with an appropriately set particle size platinum with an appropriately controlled particle distribution
  • the combustion catalyst includes a first catalyst filled in a fuel inlet portion (28A) into which the fuel is introduced in the catalytic combustion tube and having the same configuration as the dehydrogenation catalyst;
  • a second catalyst having a structure different from that of the first catalyst and filled downstream of the fuel inlet in the catalytic combustion tube may also be included.
  • the fuel can be satisfactorily spontaneously ignited by the first catalyst at the fuel inlet portion of the catalytic combustion tube.
  • the second catalyst having a different structure from the first catalyst is filled downstream of the fuel inlet of the catalytic combustion tube, the second catalyst is cheaper than the first catalyst (general-purpose catalyst). ) can reduce catalyst cost.
  • the heat medium is preferably hot oil.
  • the air may be divided and supplied to a plurality of different parts to the catalytic combustion pipe.
  • a dispenser that supplies the hydrogen purified by the PSA device to a mobile body equipped with a fuel cell, and a precooler (17) that cools the hydrogen supplied from the dispenser with a refrigerant.
  • a gas-liquid separator (31) for separating the gas-liquid of the reaction product gas, wherein the gas-liquid separator cools the reaction product gas with the refrigerant supplied from the precooler.
  • the reaction product gas can be cooled to a temperature lower than the ambient temperature using the refrigerant of the precooler, the aromatic compound (e.g., toluene) contained in the reaction product gas in the gas-liquid separator ) and unreacted raw materials (eg, cyclohexane) can be successfully condensed.
  • aromatic compound e.g., toluene
  • unreacted raw materials e.g, cyclohexane
  • the degree of freedom in using the ground space in the hydrogen station is increased, and the hydrogen station can be made compact.
  • underground tanks for storing gasoline and the like at existing gas stations can be used (diverted) to store cyclohexane and toluene.
  • At least one of the gas phase gas in the first tank and the gas phase gas in the second tank is supplied to the catalytic combustion tube as the fuel together with the purge gas discharged from the PSA device. should be supplied.
  • hydrogen that may be contained in at least one of the gas phase in the first tank and the gas phase in the second tank can be safely eliminated.
  • At least one of the gas phase gas in the first tank and the gas phase gas in the second tank is introduced into the fuel inlet portion (28A) of the catalytic combustion tube through which the fuel is introduced.
  • hydrogen contained in at least one of the gas phase in the first tank and the gas phase in the second tank can be used as fuel for ignition in the catalytic combustion tube.
  • the catalytic combustion tube may be a coil filled with the combustion catalyst.
  • the heating medium can be uniformly heated by catalytic combustion.
  • the hydrogenated aromatics are selected from the group consisting of hydrides of monocyclic aromatics, hydrides of bicyclic aromatics, and hydrides of compounds having three or more aromatic rings. It is preferable that it is one kind or a mixture of two or more kinds.
  • the dehydrogenation reaction can be favorably performed using a suitable hydrogenated aromatic.
  • the hydrogenated aromatics may be one or a mixture of two or more selected from the group consisting of methylcyclohexane, cyclohexane, trimethylcyclohexane, decalin, and dibenzotriol.
  • the dehydrogenation reaction can be favorably performed using a suitable hydrogenated aromatic.
  • One aspect of the present invention is a hydrogen generation method in a hydrogen station, wherein hydrogen is generated by a dehydrogenation reaction of hydrogenated aromatics in the presence of a dehydrogenation catalyst, and is heated using a fuel through a heat medium. Heat is supplied to the dehydrogenation reaction, and the reaction product gas containing hydrogen generated by the dehydrogenation reaction is purified using an adsorbent based on the pressure swing method, and the regeneration of the adsorbent contains hydrogen.
  • a purge gas is used, and in the heating of the heat medium, the purge gas used for regeneration of the adsorbent is preferably supplied together with air as the fuel.
  • the purge gas used for regeneration of the adsorbent based on the pressure swing method is catalytically combusted. Since the heat medium is heated, it is possible to avoid the use of an open flame and suppress CO 2 emissions in heating the heat medium.
  • the first candidate is the liquid hydrogen method
  • the second candidate is the liquid ammonia method
  • the third candidate is the OCH method.
  • the organic chemical hydride method was called the MCH method.
  • the Euro-Québec project was carried out for about 10 years until around 1992, but none of the methods were put into practical use, and the project was terminated. not converted.
  • hydrogen is hydrogenated with an aromatic compound such as toluene (TOL) to convert it to a saturated cyclic compound such as methylcyclohexane (MCH), which incorporates hydrogen into the molecule.
  • TOL toluene
  • MCH methylcyclohexane
  • It is a method of "storing” and “carrying” in a state, and extracting and using the required amount of hydrogen by dehydrogenation reaction at the place of use. is generated to recover TOL (hydrogen generation reaction).
  • the TOL produced after hydrogen is extracted is recovered as a container (carrier) for hydrogen and reused repeatedly.
  • the OCH method can theoretically reduce the potential risk of large-scale storage and transportation of hydrogen to the level of conventional gasoline storage and transportation (that is, it is a highly safe method). and the first reason why the applicant paid attention to this method.
  • Storage of TOL and MCH in large tanks and transportation of TOL and MCH in chemical tankers and chemical trucks have long been put to practical use as chemicals. It is expected that the demand for automobile fuels such as gasoline and light oil will decrease due to the trend toward electrification of automobiles in the future, and the OCH method has the great advantage of being able to divert existing infrastructure such as storage tanks. is.
  • a repeated verification demonstration plant was constructed in 2013, and a total of approximately 10,000 hours of verification operation was carried out from April 2013 to November 2014. It was confirmed that the high performance as designed could be stably maintained. Completed establishment.
  • NEDO New Energy and Industrial Technology Development Organization
  • Patent Document 3 Japanese Patent No. 4652695 (hereinafter referred to as Patent Document 3) and Japanese Patent No. 4142733 (hereinafter referred to as Patent Document 4) disclose a dehydrogenation catalyst that can be used for the dehydrogenation reaction of the OCH method. .
  • Patent Document 3 Japanese Patent No. 4652695
  • Patent Document 4142733 Japanese Patent No. 4142733
  • Patent Document 3 describes a surface area of 150 m 2 /g or more, a pore volume of 0.55 cm 3 /g or more, an average pore diameter of 90 ⁇ or more and 300 ⁇ , and a ratio of pores with a pore diameter of 90 ⁇ or more and 300 ⁇ or less to the total pore volume.
  • Patent Document 4 discloses a uniform type platinum-supported alumina catalyst that improves the catalyst life by suppressing the decomposition reaction and suppressing the decomposition reaction as well as the dispersed form of the supported platinum becomes uniform by containing sulfur in the alumina support. is doing. Note that the disclosure contents of all the documents cited in this specification, including Patent Documents 3 and 4, constitute a part of this specification, and detailed descriptions thereof will be omitted.
  • the feature of the dehydrogenation catalysts disclosed in Patent Documents 3 and 4 is that the particle size of the platinum particles supported on the alumina carrier is significantly smaller than that of conventional platinum catalysts. .
  • the average particle size of the platinum particles of a general platinum-supported alumina catalyst is 20 ⁇ or more.
  • the OCH method could not be put into practical use because a dehydrogenation catalyst was not developed.
  • the platinum particle size of the dehydrogenation catalysts disclosed in Patent Documents 3 and 4 is 10 ⁇ or less, and most platinum particle sizes are 20 ⁇ or less.
  • the minimum value of the platinum particle size of the existing platinum-supported alumina catalyst is about 20 ⁇ as described above, and the average particle size is 20 ⁇ or more.
  • uniform catalysts are effective when the diffusion of raw materials into the interior of the catalyst is sufficiently performed
  • eggshell catalysts are effective when the diffusion into the interior of the catalyst is sufficiently limited.
  • These two types of catalysts can be used properly depending on the state of diffusion in the reaction field, because they are effective when the reaction is not performed in the reaction field.
  • the diffusion state of the raw material into the catalyst may differ depending on the position in the dehydrogenation reactor, and the diffusion into the catalyst is restricted because the concentration of the raw material is low near the exit where the reaction has progressed. can be In such a case, both homogeneous type and eggshell type catalysts can be used in the reactor.
  • the degree of diffusion of the raw material into the catalyst is generally expressed by the catalyst effectiveness coefficient
  • the alumina carrier on which platinum is supported is preferably one whose pore size is controlled as uniformly as possible so that the pore size distribution is sharp. Specifically, pores having a surface area of 200 m 2 /g or more, a pore volume of 0.5 m 2 /g or more, an average pore diameter of 60 ⁇ to 150 ⁇ , and an average pore diameter of ⁇ 30 ⁇ with respect to the total pore volume A ⁇ -alumina carrier having a proportion of 60% or more is preferred.
  • the surface area is less than 200 m 2 /g, the activity after catalysis is insufficient, and if the pore volume is less than 0.5 m 2 /g, it is difficult to uniformly support the active metal component, and the average pore diameter is If the average pore diameter is less than 60 ⁇ , the surface area is large, but the pore volume is small. Conversely, if the average pore diameter is larger than 150 ⁇ , the surface area is small and the pore volume is large. , an average pore diameter of 60 ⁇ to 150 ⁇ is suitable. Moreover, if the proportion of pores with an average pore diameter of ⁇ 30 ⁇ is less than 60%, the effect of the present invention on catalyst performance is reduced.
  • the alumina carrier has uniform pore sizes throughout the powder and compact.
  • the step of allowing platinum to be dispersedly supported on the alumina carrier and the step of supporting platinum dispersedly throughout the entire alumina support in conformity with the distribution of sulfur can be performed appropriately.
  • the hydrogen station according to the present invention includes a dehydrogenation reactor that generates hydrogen by a dehydrogenation reaction of hydrogenated aromatics (e.g., methylcyclohexane) as a hydrogen carrier, and a fuel cell vehicle (FCV) for measuring the purity of the generated hydrogen.
  • a PSA device based on the PSA (Pressure Swing Adsorption) method can be provided for refining to a purity that can be filled in a similar manner.
  • a system for recovering TOL and unreacted MCH produced by the dehydrogenation reaction may be installed at the hydrogen station.
  • a shell-and-tube fixed-bed reactor having the same structure as a heat exchanger is suitable as the dehydrogenation reactor in the present invention. That is, in the dehydrogenation reactor, catalyst reaction tubes filled with a dehydrogenation catalyst are arranged in parallel in the reactor, and MCH gas heated to the reaction temperature is supplied to these catalyst reaction tubes, By supplying a liquid heat medium to the outside, the heat necessary for the endothermic reaction of the dehydrogenation reaction is supplied and the reaction temperature is maintained.
  • a liquid with a large heat capacity is preferable as the heat medium for supplying heat to the catalytic reaction tube.
  • a gas is used as a heat medium
  • the heat transfer area is large due to its small heat capacity, and it is necessary to increase the outer surface area of the catalytic reaction tube.
  • Existing molten salt or hot oil can be used as the liquid heat medium.
  • many of the molten salts contain oxygen atoms in their molecules, so if the MCH gas in the reaction tube comes into contact with the molten salt due to an unexpected earthquake, etc., it will ignite even in the reaction temperature range of 300 to 400°C. there is a possibility. Therefore, it is safer and more preferable to use hot oil as a heat medium because it does not cause a fire in principle.
  • hot oil a commercially available general heat medium oil can be used. Since hot oil is a hydrocarbon with a large molecular weight, it can be thermally decomposed at about 400° C. to cause loss. Therefore, as the hot oil for supplying heat to the catalytic reaction tube, it is preferable to use hot oil that can minimize thermal decomposition loss.
  • the hot oil is heated in a hot oil reservoir equipped with a catalytic combustion tube (catalytic combustion coil) filled with a combustion catalyst, by transferring heat generated by catalytic combustion from the catalytic combustion tube to the hot oil.
  • a catalytic combustion tube catalytic combustion coil
  • Inexpensive steel can be used for the metal material that constitutes the catalytic combustion tube because it is not corrosive to hot oil.
  • an existing combustion catalyst known as a catalyst used for catalytic combustion can be used as the combustion catalyst filled in the catalytic combustion tube.
  • the combustion catalyst must be able to reliably ignite the fuel spontaneously, and hydrogen stations in cold regions require spontaneous ignition below freezing, so it is desirable to use a highly active platinum catalyst.
  • the dehydrogenation catalyst that can be used in the dehydrogenation reactor in the present invention has extremely high activity, and can lower the dehydrogenation temperature required by the existing dehydrogenation catalyst by 100° C. or more. Therefore, in the present invention, in addition to the existing combustion catalyst, by using a catalyst that can be used as a dehydrogenation catalyst as a higher-performance combustion catalyst, the fuel can be reliably ignited spontaneously. In addition, if a catalyst used as a dehydrogenation catalyst is used for all of the combustion catalysts, it is thought that the fuel can spontaneously ignite in any cold region on earth.
  • catalysts that can be used as dehydrogenation catalysts and combustion catalysts include, in addition to the platinum-supported alumina catalysts disclosed in Patent Documents 3 and 4, a transmission electron microscope, as described in detail later. It includes a new platinum-supported alumina catalyst in which the particle size of the platinum particles supported on the support is more appropriately set (the particle distribution of platinum is appropriately controlled) through direct observation using the catalyst.
  • the existing combustion catalyst (second catalyst described later) that can be used as a combustion catalyst includes a combustion catalyst in which at least one of noble metals such as platinum, palladium, and iridium is supported on a carrier, nickel, Metal-supported catalysts in which at least one of metals such as cobalt, molybdenum, chromium, vanadium, and molybdenum is supported on a carrier are included.
  • Noble metals are expensive but highly ignitable, while non-noble metals are less ignitable but inexpensive.
  • the PSA apparatus has a plurality of columns (adsorption tanks) filled with adsorbents, and the reaction product gas can be supplied to these columns to adsorb and remove impurities.
  • a PSA apparatus supplies a reaction product gas to one of two columns, for example, adsorbs impurities with an adsorbent, and extracts hydrogen gas. Since the adsorption capacity of the adsorbent deteriorates with the lapse of time, the supply destination of the reaction product gas is switched to the other column at an appropriate timing. Regeneration of the adsorbent is carried out by desorbing the adsorbed impurities by lowering the pressure of the column and purging the impurities by supplying product hydrogen gas containing no impurities.
  • the PSA method is called a pressure swing method because the pressure is changed to desorb impurities. Since the purge gas used for the regeneration operation of the PSA device uses product hydrogen, it contains a high concentration of hydrogen even after the impurities have been removed.
  • purge gas discharged from the PSA device can be used as the fuel to be supplied to the catalytic combustion coil.
  • the purge gas of the PSA apparatus is supplied from the column in regeneration mode (the adsorbent is being regenerated) among the plurality of columns.
  • the regeneration process is carried out without interruption by sequentially switching the columns to be regenerated in the PSA apparatus so that the purge gas as fuel is continuously supplied (discharged) without interruption.
  • the purge gas can be stably supplied from the hydrogen holder to the catalytic combustion coil, and the entire amount of purge gas discharged from the PSA device can be It can be used without waste.
  • a gas-liquid separator can be provided between the dehydrogenation reactor and the PSA device as a system for recovering TOL and unreacted MCH produced by the dehydrogenation reaction.
  • the reaction product gas taken out from the dehydrogenation reactor is cooled to 100° C. or less to recover liquid phase components (including TOL and MCH condensed into liquid).
  • it is preferable to cool the reaction product gas to 10° C. or less in order to improve the recovery rate of TOL, MCH, and the like.
  • the reaction product gas containing TOL and MCH When cooling the reaction product gas containing TOL and MCH, it can usually be naturally cooled to about 50°C without any particular energy consumption, and when cooling them to about ambient temperature, cooling water is used. be able to. However, since it is difficult to cool the reaction product gas to 10° C. or less especially in the summer when the temperature is high, a new cold heat is required for that purpose.
  • the hydrogen tank of the FCV can be filled with 5 kg of hydrogen within 3 minutes, but in order to prevent the temperature of the FCV hydrogen tank from rising above 80°C due to the frictional heat generated at this time, the hydrogen is pre-filled with a pre-cooler. It is cooled to about 40°C. Therefore, in the present invention, the cold heat of the precooler can be used to cool the reaction product gas containing TOL and MCH.
  • MCH and TOL are classified as Class 4 Class 1 petroleum hazardous materials, which is the same classification as gasoline and kerosene.
  • MCH and TOL are compounds having 7 carbon atoms, and have lower vapor pressures and less volatilization than gasoline containing hydrocarbon components having 4 or more carbon atoms.
  • the MCH and TOL stored in the hydrogen station contain hydrogen gas as much as the solubility, but the amount is so small that the gas phase components in the underground tank cannot normally reach a concentration above the explosive limit.
  • tank gas in order to remove these dissolved hydrogens, in the present invention, gas (tank gas ) can be treated by catalytic combustion.
  • tank gas contains not only hydrogen but also MCH and TOL whose vapor pressure is not preferable to be released into the atmosphere, there is an advantage that these can also be treated by catalytic combustion. If the increase in cost is acceptable, it is conceivable to bubble an inert gas such as nitrogen through the liquid in these tanks to exhaust gas phase components.
  • Air can be used as the oxygen necessary for catalytic combustion of tank gas.
  • the catalytic combustion of the tank gas can be carried out using a similar catalytic combustion coil separate from the purge gas discharged from the PSA system.
  • the tank gas can be catalytically combusted by spontaneous ignition by being introduced together with air into the inlet of a catalytic combustion coil filled with a platinum-supported alumina catalyst.
  • Hydrogenated aromatics that can be used in the dehydrogenation reaction according to the present invention are not limited to MCH, hydrides of monocyclic aromatics such as cyclohexane, dimethylcyclohexane, trimethylcyclohexane, tetralin, decalin, methyldecalin, biphenyl, diphenyl It is one or a mixture of two or more selected from the group consisting of hydrides of bicyclic aromatics such as methyl, and hydrides of compounds having three or more aromatic rings, such as dibenzotriol and tetradecahydroanthracene. Good.
  • Configuration diagram of a conventional hydrogen station Configuration diagram of a hydrogen station according to the first embodiment A diagram showing the detailed configuration of the dehydrogenation unit according to the first embodiment.
  • Configuration diagram of a hydrogen station according to the second embodiment Explanatory diagram showing (A) a transmission electron micrograph of the 2000s and (B) a recent transmission electron micrograph of a catalyst Explanatory drawing for measurement of platinum particle size based on transmission electron micrograph
  • the on-site type is a general term for types that produce hydrogen within hydrogen stations.
  • the off-site type is a general term for types in which high-purity hydrogen is directly transported to hydrogen stations as compressed hydrogen or liquid hydrogen, and the stored hydrogen is pressurized and used.
  • the hydrogen station according to the present invention which will be described in detail later, generates hydrogen through an on-site dehydrogenation reaction, so it is expected to be classified as an on-site hydrogen station because it is similar to an on-site reforming type hydrogen station. be.
  • the hydrogen station according to the present invention is in the stage of research and development and there is no actual hydrogen station, so it is uncertain which category it will be finally classified.
  • a conventional on-site hydrogen station 101 includes a hydrogen production device 103 required for producing hydrogen.
  • a hydrogen production device 103 a water electrolysis device or a reforming type hydrogen production device is used.
  • a reforming type hydrogen production apparatus After steam reforming a fossil fuel such as city gas, it is converted into hydrogen and carbon dioxide by a shift reaction. Since water electrolyzers use electric power to electrolyze water, there are cost issues, and reforming type hydrogen production devices generate carbon dioxide, so they cannot actually be operated as commercial stations. It is not mainstream as a hydrogen station. At present, about 50 off-site hydrogen stations using the compressed hydrogen method and the liquid hydrogen method are in operation as commercial stations.
  • the hydrogen produced by the hydrogen production device 103 is sent to the hydrogen storage tank 105 and temporarily stored there. After that, the hydrogen stored in the hydrogen storage tank 105 is sent to the compressor 109, where it is pressurized to about 800 atmospheres, and then sent to the pressure accumulator 111, where it is stored as product hydrogen.
  • the product hydrogen stored in the pressure accumulator 111 is supplied via a dispenser 115 to a fuel cell vehicle (FCV) 113 that uses the hydrogen station 101.
  • FCV fuel cell vehicle
  • the hydrogen supplied from the dispenser 115 is cooled to about -40°C by the refrigerant supplied from the precooler 117 before being sent to the FCV 113.
  • the hydrogen station 1 includes a dehydrogenation unit 3 that generates hydrogen through a dehydrogenation reaction of hydrogenated aromatics.
  • a dehydrogenation unit 3 that generates hydrogen through a dehydrogenation reaction of hydrogenated aromatics.
  • MCH methylcyclohexane
  • TOL toluene
  • a reaction product gas (reaction product) containing such as is generated. This reaction product gas contains unreacted MCH and the like.
  • MCH is stored in the MCH tank 4 and supplied to the dehydrogenation unit 3 via the raw material supply line L1.
  • TOL is sent from the dehydrogenation unit 3 through the toluene discharge line L3 to the toluene tank 6, where it is stored.
  • the supply of MCH to the MCH tank 4 and the recovery of TOL from the toluene tank 6 are carried out by chemical trucks (not shown).
  • the MCH tank 4 and the toluene tank 6 can be placed at appropriate locations within the hydrogen station 1, but are preferably located underground within the hydrogen station 1. As a result, the degree of freedom in using the ground space in the hydrogen station 1 is increased, and the hydrogen station 1 can be made compact. In this case, underground tanks for storing gasoline and the like at existing gas stations can be used to store MCH and TOL (that is, they can be diverted as MCH tank 4 and toluene tank 6).
  • the hydrogen produced by the dehydrogenation unit 3 is sent to the compressor 9 via the hydrogen transport line L5.
  • the hydrogen sent to the compressor 9 is refined in the dehydrogenation unit 3 to the extent that it can be used as product hydrogen.
  • hydrogen pressurized to about 800 atmospheres by the compressor 9 is sent to the pressure accumulator 11 via the hydrogen transport line L6.
  • the hydrogen sent to the accumulator 11 is stored there as product hydrogen.
  • Product hydrogen stored in the pressure accumulator 11 is sent to a dispenser 15 via a hydrogen transport line L7, where it is supplied to a fuel cell vehicle (FCV) 13 via a filling hose L11.
  • FCV fuel cell vehicle
  • the hydrogen supplied from the dispenser 15 is sent to the FCV 13 after being cooled to about -40°C by the refrigerant supplied from the precooler 17 .
  • the hydrogen station 1 can be used not only by the FCV 13 but also by any mobile body equipped with a fuel cell.
  • the refrigerant used for cooling the hydrogen is circulated through the first refrigerant circulation line L13 provided between the dispenser 15 and the precooler 17, so that the hydrogen is cooled in the hydrogen cooling heat exchanger provided in the dispenser 15. exchange heat with Alternatively, the hydrogen in the dispenser 15 may be sent to the FCV 13 after passing through a hydrogen cooling heat exchanger provided in the precooler 17 (that is, heat exchanged with the refrigerant).
  • MCH as a raw material stored in the MCH tank 4 is supplied to the dehydrogenation reactor 23 by a liquid pump (MCH transport pump) 21 provided in the raw material supply line L1.
  • the raw material supply line L1 is provided with a heat exchanger 25 that exchanges heat between the MCH sent toward the dehydrogenation unit 3 and the reaction product gas taken out from the dehydrogenation reactor 23 . More specifically, the MCH flowing through the raw material supply line L1 is heated to about the reaction temperature of the dehydrogenation reaction by heat exchange in the heat exchanger 25 with the reaction product gas flowing through the reaction product gas line L21, and is dehydrated in a gaseous state. It is introduced into the upper part of the elementary reactor 23 .
  • the hydrogen station 1 includes a heat supply device 26 that supplies heat to the dehydrogenation reactor 23 via a heat medium heated using fuel.
  • the heat supply device 26 has a storage tank 27 containing a heat medium, and a catalytic combustion coil 28 (catalytic combustion tube) arranged in the storage tank 27 and filled with a combustion catalyst.
  • the fuel is catalytically combusted in the presence of the combustion catalyst, and the heat generated thereby is transferred from the catalytic combustion coil 28 to the heat medium in the storage tank 27, thereby heating the heat medium.
  • the heated heat medium circulates through a heat medium circulation line L23 installed between the dehydrogenation reactor 23 and the heat supply device 26 .
  • the heat supply device 26 uses the purge gas discharged from the PSA device 33 (hereinafter referred to as the discharged purge gas) as fuel.
  • the reaction product gas taken out from the dehydrogenation reactor 23 flows through the reaction product gas line L21 and is introduced into the gas-liquid separator 31 after heat exchange with MCH in the heat exchanger 25 .
  • the gas-liquid separator 31 has a known configuration, and cools the reaction product gas to separate it into a gas phase component and a liquid phase component.
  • the reaction product gas introduced into the gas-liquid separator 31 is naturally cooled to a temperature of 100° C. or less.
  • TOL and MCH contained in the reaction product gas form liquid phase components by condensing into liquid.
  • the liquid phase component is withdrawn from the lower portion of the gas-liquid separator 31, introduced into the toluene tank 6 via the toluene discharge line L3, and stored therein.
  • the hydrogen that constitutes the gas phase component in the gas-liquid separator 31 is crude hydrogen containing TOL and MCH for the vapor pressure corresponding to the temperature. This crude hydrogen is withdrawn from the upper portion of the gas-liquid separator 31 and sent to the PSA device 33 via the crude hydrogen transport line L25.
  • the PSA device 33 is a device that purifies the crude hydrogen (gas phase component of the reaction product gas) supplied from the gas-liquid separator 31 .
  • the PSA device 33 absorbs and removes impurities contained in the crude hydrogen by supplying crude hydrogen to a column (adsorption tank) filled with an adsorbent based on the PSA (Pressure Swing Adsorption) method.
  • the PSA apparatus 33 has a plurality of columns arranged in parallel, and the purification process is continuously performed by alternately switching between the regeneration step column and the purification step column among the plurality of columns.
  • the impurities are removed by adsorbing them on the adsorbent under high pressure.
  • the adsorbed impurities are desorbed by lowering the pressure in the column, and the desorbed impurities are purged by supplying high-purity hydrogen as a purge gas.
  • the product hydrogen is used as the purge gas used for the regeneration operation of the column in the regeneration step.
  • the purge gas discharged from the PSA device 33 after removing the impurities (hereinafter referred to as "exhaust purge gas”) contains the impurities released from the adsorbent, but the hydrogen concentration is significantly higher than the impurity concentration.
  • the exhaust purge gas has, for example, a hydrogen concentration of 80% or higher.
  • the hydrogen concentration of the discharged purge gas can be adjusted by designing the PSA device 33 column. That is, if the column (that is, the amount of adsorbent) is increased and the purification process time is increased, the amount of impurities to be adsorbed and removed increases, so the hydrogen concentration in the purge gas decreases. On the other hand, if the column is designed to be small and the switching time (the time of the purification process) is shortened, the amount of impurities to be adsorbed and removed is small, so the hydrogen concentration in the purge gas increases.
  • the calorific value of hydrogen is as high as 120 MJ/kg per weight, but hydrogen is a substance with a low calorific value of 12 MJ/Nm 3 when converted per volume because of its small molecular weight and light weight.
  • hydrocarbons such as gasoline and kerosene contain combustion heat of carbon
  • the amount of heat per weight is about 40 MJ/kg, which is about 1/3 that of hydrogen.
  • TOL the ratio of hydrogen atoms to carbon atoms does not differ greatly, so its combustion heat (39.5 MJ/kg) is almost the same as that of gasoline or kerosene.
  • the impurities in the exhaust purge gas are mainly TOL
  • the concentration of hydrogen in the exhaust purge gas is 80% and the remaining 20% is TOL
  • the amount of heat that 1 Nm3 of exhaust purge gas has is approximately 10 MJ for the hydrogen content.
  • the TOL component is approximately 80 MJ.
  • the exhaust purge gas has a total calorific value of 90 MJ/Nm 3 .
  • the TOL concentration in the exhaust purge gas is 10%
  • the TOL component is about 40 MJ
  • the calorie of the exhaust purge gas is 50 MJ/Nm 3 together with the hydrogen component.
  • the hydrogen contained in the exhaust purge gas is valuable because it is product hydrogen.
  • 800 L of hydrogen gas has a calorific value of 8.6 MJ and 200 L of TOL gas has a calorific value of 34.6 MJ, so 1000 L of exhaust purge gas with 80% hydrogen concentration has a calorific value of 43.2 MJ.
  • the amount of heat required to generate 800 L of hydrogen by the dehydrogenation reaction is 2.6 MJ. It can be a heat source for generating hydrogen.
  • the exhaust purge gas from the PSA device 33 is sent to the purge gas tank 39 by the purge gas pump 37 installed in the exhaust purge gas line L31 and stored there.
  • the storage pressure of the purge gas tank 39 if the pressure is relatively low, a pressure loss during supply to the catalytic combustion coil 28 causes a problem that the discharged purge gas cannot be appropriately supplied to the catalytic combustion coil 28 .
  • the storage pressure of the purge gas tank 39 is relatively high, there is an advantage that the size of the purge gas tank 39 can be reduced, but the required power of the purge gas pump 37 becomes large and the energy loss increases, resulting in a decrease in the energy efficiency of the hydrogen station 1. leads to Therefore, the storage pressure of the purge gas tank 39 is determined in consideration of such pressure loss and required power as well as economy and energy efficiency. is more preferable.
  • the discharged purge gas is introduced as fuel from the purge gas tank 39 into the catalytic combustion coil 28 of the heat supply device 26 via the purge gas supply line L33.
  • a highly active platinum-supported alumina catalyst hereinafter referred to as the first catalyst
  • the first catalyst is filled in the fuel inlet portion 28A of the catalytic combustion coil 28, and its filling amount is small compared to the second catalyst.
  • the fuel inlet portion 28A (that is, the first catalyst-filled region in the catalytic combustion coil 28) is set within an appropriate range from the upstream end of the catalytic combustion coil 28, depending on the surrounding environment of the hydrogen station 1 (particularly, the atmospheric temperature). (length).
  • the exhaust purge gas can be satisfactorily spontaneously ignited by the first catalyst.
  • the downstream side of the fuel inlet portion 28A of the catalytic combustion coil 28 (that is, other than the fuel inlet portion 28A) is filled with the second catalyst having a structure different from that of the first catalyst. Catalyst costs can be reduced by using a catalyst (general-purpose catalyst) that is cheaper than the catalyst of No. 1.
  • the hydrogen station 1 may use only the first catalyst as the combustion catalyst.
  • Ignition of the fuel in the catalytic combustion coil 28 can also be achieved by providing an ignition source of about 700° C. by heating a nichrome wire in the fuel inlet portion 28A. It is not preferable from the viewpoint of safety measures to provide a high temperature part of
  • the first catalyst has excellent ignitability and is characterized by being able to ignite the exhaust purge gas even at room temperature. In cold regions, the moisture produced by combustion adheres to and freezes on the combustion catalyst, so there is the problem of poor combustibility below freezing.
  • the platinum-supported alumina catalyst used in the dehydrogenation reaction in the present invention is estimated to have an activity that is at least 400 times higher than that of ordinary platinum catalysts, and has extremely high ignitability.
  • the catalytic combustion coil 28 can quickly spontaneously ignite the exhaust purge gas without providing an ignition source such as an open flame or a heating wire.
  • the dispersibility of the reaction is enhanced, and the water on the combustion catalyst freezes below freezing. Even in this case, the surface of the platinum is not completely covered with ice, and the discharged purge gas can be spontaneously ignited quickly.
  • Air containing oxygen necessary for catalytic combustion is supplied to the catalytic combustion coil 28 by an air pump 41 installed in an air supply line L37.
  • the air supply line L37 is connected to the connection portion 43 of the purge gas supply line L33.
  • the exhaust purge gas flowing through the line L33 is introduced into the fuel inlet portion 28A of the catalytic combustion coil 28 after being mixed with air at the connection portion 43.
  • the mixture of the exhaust purge gas and the required amount of air is spontaneously ignited by contact with the first catalyst filled in the fuel inlet 28A for spontaneous ignition.
  • the amount of air supplied to the line L33 should be larger than the theoretical amount required for combustion of the exhaust purge gas. However, if the amount of air supplied is too large, the catalytic combustion reaction will be hindered, and if the amount of air supplied is small, gas diffusion in the combustion catalyst layer will be stagnant, making it difficult to maintain a good combustion reaction. can occur.
  • the entire amount of the air required for catalytic combustion in the catalytic combustion coil 28 does not necessarily have to be mixed with the exhaust purge gas introduced into the fuel inlet portion 28A (that is, introduced into the connecting portion 43 of the line L33).
  • the exhaust purge gas introduced into the fuel inlet portion 28A that is, introduced into the connecting portion 43 of the line L33.
  • at least a portion of the air introduced into the connecting portion 43 as described above is supplied to the intermediate portion of the catalytic combustion coil 28 (i.e., fuel inlet It can also be introduced downstream of the part 28A).
  • Such introduction of air into the intermediate portion of the catalytic combustion coil 28 can be performed for at least one or more intermediate portions.
  • the catalytic combustion reaction rapidly progresses near the fuel inlet 28A, forming a hot spot, which impedes uniform heating of the heat medium in the storage tank 27. It avoids the problem that the surface area of the active metal decreases and the performance of the combustion catalyst deteriorates due to the sintering phenomenon of metal particles (aggregation of the active metal of the combustion catalyst) caused by the formation of hot spots. can.
  • the catalytic combustion coil 28 is supplied with a gas forming the gaseous components in the MCH tank 4 (hereinafter referred to as MCH tank gas) and a gas forming the gaseous components in the toluene tank 6 (hereinafter referred to as toluene tank gas). .) can also be supplied as fuel with the exhaust purge gas. More specifically, as indicated by the dashed line in FIG. 3, the MCH tank gas discharged from the MCH tank 4 is discharged from the purge gas supply line L33 by the gas discharge pump 44 installed in the tank gas discharge line L38. It is sent to the section 43.
  • the MCH tank gas is mixed with the exhaust purge gas at the connection portion 43 located at the downstream end of the tank gas exhaust line L38.
  • the toluene tank gas discharged from the toluene tank 6 is sent to the connection portion 43 of the line L33 via the branch line L38A connected to the intermediate portion of the tank gas discharge line L38.
  • the toluene tank gas is mixed with the exhaust purge gas at the connecting portion 43 located at the downstream end of the tank gas exhaust line L38.
  • the toluene tank gas may be introduced to the line L33 through a line (piping) different from that for the MCH tank gas. Further, the introduction position of the MCH tank gas and the toluene tank gas into the line L33 is not limited to the connecting portion 43 and can be changed as appropriate.
  • the fuel (including exhaust purge gas) catalytically combusted in the catalytic combustion coil 28 is discharged as exhaust gas from its downstream end.
  • the exhaust gas is discharged into the atmosphere through an exhaust line L39 provided with an exhaust control valve 45 while maintaining a temperature of 100° C. or higher at which moisture does not condense. Since the exhaust gas is the gas after complete combustion, the main components are water vapor and nitrogen, and it is converted to a gas containing CO2 and unreacted oxygen at a low concentration, so it is a harmless gas that can be released into the atmosphere. is.
  • the product hydrogen obtained by refining crude hydrogen in the PSA device 33 has, for example, a purity of 99.7% or more and a carbon content of 2 ppm or less.
  • Product hydrogen is sent from the PSA device 33 to the compressor 9 via the hydrogen transport line L5.
  • impurities other than hydrogen contained in the reaction product gas of the dehydrogenation reaction by the dehydrogenation reactor 23 are mainly composed of TOL, and further include unreacted MCH and methane gas produced by decomposition side reactions. etc.
  • TOL and MCH can be repeatedly used as hydrogen carriers in the OCH method, so it is preferable to recover them as much as possible within the range where economic efficiency can be ensured.
  • the reaction product gas flowing through the reaction product gas line L21 passes through the heat exchanger 25 and gives heat to the raw material gas in the raw material supply line L1 to be cooled. It is cooled in the separator 31 to a temperature of 100° C. or less (for example, about 50° C.). However, the temperature in the gas-liquid separator 31 may exceed 60° C. in seasons such as summer when the temperature is high. Since the crude hydrogen, which is the gas phase component of the gas-liquid separator 31, contains TOL and MCH corresponding to the vapor pressure corresponding to the temperature, it is not possible to further cool the gas-liquid separator 31 to lower the temperature of the crude hydrogen. , to reduce the concentration of TOL and MCH in the crude hydrogen sent to the PSA unit 33 .
  • the cold heat of the refrigerant in the precooler 17 is used to cool the crude hydrogen. More specifically, the inside of the gas-liquid separator 31 is cooled by circulating the refrigerant through the second refrigerant circulation line L41 provided between the precooler 17 and the gas-liquid separator 31 . In this way, by supplying both the cold heat supplied to the dispenser 15 (see FIG. 2) and the cold heat supplied to the gas-liquid separator 31 by the precooler 17, it is possible to cool the crude hydrogen with a simple configuration. It is possible.
  • the supply amount can be reduced, and the piping size of the second refrigerant circulation line L41 can be reduced. can be easily insulated.
  • the crude hydrogen in the gas-liquid separator 31 can be cooled to about -10°C to 0°C by cooling with a refrigerant.
  • the concentrations of TOL and MCH corresponding to the vapor pressure contained in the crude hydrogen can be reduced to various levels, the processing load of the PSA device 33 can be reduced, and the loss of TOL and MCH used as hydrogen carriers can be reduced. can be reduced.
  • the second refrigerant circulation line L41 can be provided separately from the first refrigerant circulation line L13.
  • the first refrigerant circulation line L13 and the second refrigerant circulation line L41 may be provided so as to be continuous. In that case, the refrigerant after cooling the hydrogen in the dispenser 15 can be used to cool the inside of the gas-liquid separator 31 .
  • FIG. 5 shows (A) a transmission electron microscope photograph in the 2000s and (B) a recent transmission electron microscope photograph of the catalyst.
  • FIG. 5A is a photograph of the egg-shell type catalyst disclosed in Patent Document 3.
  • FIG. The photograph of FIG. 5A was taken in 2006 at a magnification of 1,800,000 times using an HD-200 type electron microscope manufactured by Hitachi, Ltd., which was the latest transmission electron microscope at the time.
  • FIG. 5(B) is a photograph of the homogeneous platinum-supported alumina catalyst disclosed in Patent Document 4.
  • FIG. The photograph of FIG. 5B was taken in 2018 at a magnification of 2,000,000 times using a JEM-ARM200 electron microscope manufactured by JEOL.
  • the average particle size of the platinum particles in the platinum-supported alumina catalyst according to the present invention is obtained by measuring the particle size of a predetermined number (usually about 50) of platinum in a transmission electron microscope photograph as shown in FIG. 5(B). can be calculated as their average value.
  • the magnification is such that a predetermined number of platinum particle diameters fit in the photograph (for example, the platinum-supported alumina catalyst of the present invention is observed at 2,000,000 times, and 40 to 50 platinum particles are observed in the field of view. You can.) should be set.
  • the size of each platinum particle can be measured by aligning the measurement line with the contour of the particle on the computer screen provided in the electron microscope system. At this time, when the shape of the platinum particles has a long axis diameter and a short axis system, the long axis diameter can be measured by matching the contour of the long axis diameter, and the short axis diameter can be similarly measured.
  • the major axis diameter can be used as a representative value.
  • the particle size can also be measured by printing an image, measuring the particle size with a ruler, and comparing it with the scale on the image.
  • the particle diameters of platinum disclosed in Patent Documents 3 and 4 above are estimated values obtained by the CO pulse method. It is conceivable that there is an error between the particle size estimated by the CO pulse method and the particle size measured by direct observation using a transmission electron microscope. This is because, in the CO pulse method, particles are likely to be estimated as small particles compared to the particle diameter obtained by direct observation.
  • the CO pulse method one molecule of CO adsorbs to one atom of platinum on the surface of the platinum particle, so the total amount of CO adsorption is measured, the shape of the platinum particle is assumed to be a cube, and the length of one side is Estimated as particle size. At this time, the calculation is made on the assumption that CO is not adsorbed on the carrier.
  • CO is preferentially adsorbed on platinum, and the CO injection is stopped immediately when the distillate CO becomes equal to the injected CO amount. Since CO is adsorbed, it is estimated that this amount of CO is adsorbed on the platinum surface.
  • the CO pulse method is a method for calculating the metal surface area, dispersion ratio, and particle size from the amount of adsorption and the supported metal content. A specific calculation method will be described below.
  • the adsorbed gas amount V per 1 g of the catalyst at 0° C. was obtained from the following equation (1).
  • V (Vt/W) ⁇ 273/(273+t) ⁇ (ml/g ⁇ cat) ...
  • the number of moles R of the supported metal per 1 g of the sample is obtained from the formula (2).
  • R (C/100) ⁇ (1/M) (mol/g ⁇ cat) ...
  • the number of moles K of the amount of adsorbed gas per 1 g of sample is obtained from the equation (3).
  • the particle size of platinum supported on an alumina support in a conventional platinum-supported alumina catalyst was measured based on the CO pulse method, which has a relatively large error, or a transmission electron microscope photograph at that time (see FIG. 5(A)). It was (calculated). Therefore, in conventional platinum-supported alumina catalysts, it is difficult to control the particle size of platinum with high accuracy, and therefore, the preferable range of the particle size of platinum has also been set to a relatively wide range.
  • the platinum-supported alumina catalyst according to the present invention based on the value of the particle size of platinum measured with relatively high accuracy based on recent transmission electron micrographs (see FIG. 5B), compared to conventional platinum-supported alumina catalysts A range of platinum particle diameters (distribution of platinum particle diameters) in which the catalyst life can be significantly improved is set.
  • 70% or more of the platinum particles supported on the ⁇ -alumina carrier preferably have a size of 8 ⁇ to 15 ⁇ in direct observation with a transmission electron microscope. More preferably, 80% or more of the platinum particles supported on the ⁇ -alumina carrier have a size of 8 ⁇ to 15 ⁇ . More preferably, 90% or more of the platinum particles supported on the ⁇ -alumina carrier have a size of 8 ⁇ to 15 ⁇ .
  • the eggshell-type metal-supported catalyst refers to a state in which the metal species supported in the cross section of the molded catalyst are dispersed and supported only in the outer shell portion of the cross section. That is, a metal-supporting portion is formed in which the metal species is supported on the outer shell portion of the porous carrier.
  • a homogeneous metal-supported catalyst is a state in which the metal species are dispersed over the entire cross section of the catalyst, and a metal-supported portion in which the metal species is supported is formed throughout the interior of the porous support compact.
  • the platinum-supported alumina catalyst according to the present invention has an alumina carrier and platinum supported on the alumina carrier.
  • the alumina carrier is preferably a porous ⁇ -alumina carrier. More specifically, as disclosed in Japanese Patent Publication No. 6-72005, for example, an alumina carrier is produced by filtering and washing an aluminum hydroxide slurry produced by neutralization of an aluminum salt, and dehydrating the obtained alumina hydrogel. A porous ⁇ -alumina carrier obtained by drying and then calcining at 400° C. or higher and 800° C. or lower for about 1 to 6 hours is preferable. More preferably, the alumina carrier alternately changes the pH value of the alumina hydrogel between the alumina hydrogel dissolution pH range and the boehmite gel precipitation pH range, and at least changes the pH value from one pH range to the other pH range.
  • porous ⁇ -alumina carrier obtained through a pH swing step in which an alumina hydrogel-forming substance is added to grow alumina hydrogel crystals.
  • the porous ⁇ -alumina carrier obtained through this pH swing process has an excellent uniformity of pore distribution, and the physical properties of the alumina carrier pellets after molding are small, and the physical properties of each individual pellet are stable. It is superior in that
  • the inventors of the present application have further studied the relationship between the drying and firing conditions of alumina hydrogel (boehmite) and the particle size of supported platinum.
  • the drying temperature should be 200° C. or less
  • the subsequent calcination temperature should be 250° C. or more and 400° C. or less
  • the calcination time should be 1 hour or more and 12 hours or less. It has been found to be particularly favorable.
  • the sulfur or sulfur compound to be dispersed and contained in the alumina carrier in advance has a sulfur element and is used during the preparation of the catalyst carrier or during the preparation of the catalyst carrier.
  • sulfur or sulfur compounds include sulfur crystal powder, sulfuric acid, sulfur-containing compounds such as sulfates such as ammonium sulfate, and are soluble in water or organic solvents from the viewpoint of easily dispersing sulfur on the carrier. Certain sulfur compounds are preferred and such sulfur compounds may include sulfuric acid, ammonium sulfate, and the like.
  • the amount of sulfur contained in the carrier is preferably 0.15% by weight (wt%) or more and 5.0% by weight or less, more preferably 0.15% by weight or more and 3.0% by weight or less as elemental sulfur (S). preferable. If the sulfur content is less than 0.15% by weight, the effect of uniformly supporting the metal to the center of the catalyst is low. It is easy to cause a problem that the metal is not dispersedly supported in such local areas. From these, the most preferable sulfur content range for the effect of uniformly dispersing and supporting the metal is 0.15% by weight or more and 5.0% by weight or less.
  • the inventors of the present application conducted further studies on the relationship between the sulfur concentration and the particle size of supported platinum. Regarding the range of the sulfur content, it has been found that it is particularly preferable to contain 0.5 to 1.2% by weight of sulfur or a sulfur compound as elemental sulfur (S) for stable loading.
  • S elemental sulfur
  • the method for preparing the sulfur-containing catalyst carrier containing the sulfur or sulfur compound is sufficient as long as the sulfur or sulfur compound can be contained in a state in which it is dispersed over the entire cross section of the carrier.
  • a metal sulfate and/or sulfuric acid is used to prepare a metal hydroxide gel, which is a precursor of a metal oxide containing sulfur, is formed into a predetermined shape, and then dried and fired.
  • Method C A metal hydroxide gel, which is a precursor of a metal oxide in the preparation of a catalyst support, is formed into a predetermined shape, then dried to obtain a dry metal hydroxide gel, and a sulfur compound is added to the dry metal oxide.
  • a method in which a solution is impregnated and then calcined D: Forming a metal hydroxide gel, which is a precursor of a metal oxide when preparing a catalyst support, into a predetermined shape, and then drying to obtain a dry metal hydroxide. and a method in which the dry metal hydroxide is impregnated with a sulfur compound solution and then calcined.
  • the dried metal hydroxide gel is calcined to obtain a calcined metal oxide, and the calcined metal oxide is impregnated with a sulfur compound solution such as an aqueous sulfuric acid solution or an aqueous ammonium sulfate solution.
  • a sulfur compound solution such as an aqueous sulfuric acid solution or an aqueous ammonium sulfate solution.
  • the inventors of the present application have made further studies on a method for preparing a sulfur-containing catalyst support. In addition, it was found that it is particularly preferable to disperse and support sulfur on the surface of the ⁇ -alumina carrier by the method E above.
  • the calcination temperature is usually 100° C. or more and 1000° C. or less, preferably 350° C. or more and 800° C. or less, and the calcination time is 0.5 hours or more. 48 hours or less, preferably 1 hour or more and 24 hours or less. If the calcination temperature is lower than 350°C, the hydroxide may not be sufficiently converted to the oxide.
  • the inventors of the present application further studied the drying and firing conditions when preparing a sulfur-containing ⁇ -alumina carrier.
  • the drying temperature is 100° C. or more and 200° C. or less, and the drying time is 3 hours or more and 12 hours or less. ° C. or higher and 400 °C or lower, and the firing time is particularly preferably 1 hour or longer and 12 hours or shorter.
  • the amount of platinum supported on the sulfur-containing catalyst carrier is 0.05% by weight or more and 5.0% by weight or less, preferably 0.1% by weight or more and 3.0% by weight or less as platinum element. be. If the amount of platinum supported is less than 0.05% by weight, there is a problem that the activity is low. On the contrary, if it is more than 5.0% by weight, the particle size of platinum increases, the selectivity decreases and sintering occurs. The problem arises that it is easy to degrade.
  • the inventors of the present application have made further studies on a suitable amount of platinum to be supported.
  • the supported amount of the platinum element is preferably 0.1% by weight or more and 1.5% by weight or less, and from the viewpoint of improving the life of the prepared platinum-supported alumina catalyst, 0.5% by weight or more and 1.5% by weight % or less is more preferable.
  • the ⁇ -alumina carrier when platinum metal is supported on the ⁇ -alumina carrier, the ⁇ -alumina carrier may be impregnated with a platinum compound solution, dried, and then calcined at a predetermined temperature.
  • platinum compounds include platinum chlorides, bromides, ammonium salts, carbonyl compounds, amine and ammine complexes, various complex compounds such as acetylacetonato complexes, and the like.
  • platinum compounds include chloroplatinic acid, platinum acetylacetonato, ammonium platinate, bromoplatinic acid, platinum dichloride, platinum tetrachloride hydrate, carbonyl platinum dichloride dichloride, dinitrodiamine platinate, and the like. of platinum compounds.
  • the inventors of the present application have further studied the platinum compound to be impregnated.
  • chloroplatinic acid was added as an aqueous platinum reagent solution to the ⁇ -alumina support after calcination. It has been found particularly preferred to impregnate the platinum using an aqueous solution.
  • the alumina carrier with the platinum compound attached is dried under the conditions of 50 ° C. or higher and 200 ° C. or lower for 0.5 hours or higher and 48 hours or lower, and then dried at 350 ° C. or higher and 600 ° C. 0.5 hours or more and 48 hours or less, more preferably 350° C. or more and 450° C. or less, and 0.5 hours or more and 5 hours or less.
  • the inventors of the present application have further studied the drying and firing conditions after impregnating the alumina support with platinum (for example, the platinum element content is in the range of 0.5% to 1.5% by weight).
  • the drying temperature was 100 ° C. or higher and 200 ° C. or lower, and the drying time was 3 hours or more and 12 hours or less.
  • the firing temperature was 250° C. or more and 450° C. or less, and the firing time was 1 hour or more and 8 hours or less.
  • the alumina support with the platinum compound attached is heated to 350 ° C. or higher and 600 ° C. or lower and for 0.5 hours or higher and 48 hours or lower, preferably 350 ° C. or higher and 550 ° C. or lower, in a hydrogen gas atmosphere. And hydrogen reduction treatment is performed under reducing conditions for 3 hours or more and 24 hours or less. If the temperature during this hydrogen reduction is less than 350°C, platinum is not sufficiently reduced, and if it exceeds 600°C, platinum particles are sintered during reduction, resulting in a decrease in metal dispersion. .
  • the inventors of the present application conducted further studies on suitable temperature conditions for hydrogen reduction after platinum impregnation and firing.
  • the temperature of hydrogen reduction is 300 ° C. or higher and 450 ° C. or lower and that the temperature is lower than the temperature at which the platinum is impregnated and calcined. Found it.
  • the amount of alkali added to the egg-shell type platinum-supported alumina catalyst and the uniform type platinum-supported alumina catalyst prepared by adding sulfur to the ⁇ -alumina support is 0.1% by weight or more and 5% by weight or less, preferably 0.1% by weight or more. 3% by weight or more and 3.0% by weight or less, more preferably 0.5% by weight or more and 1.5% by weight or less. If the supported amount of the alkali metal is less than 0.1% by weight, there is a problem that the catalyst life is short and the effect is low. A problem arises.
  • the inventors of the present application have further studied the suitable amount of alkali to be added in order to support most of the platinum particles with a size in the range of 8 ⁇ to 15 ⁇ on the ⁇ -alumina carrier. It has been found that the size of platinum particles after preparation is not significantly affected if the content is 0.5% by weight or more and 1.5% by weight or less.
  • Alkaline metal compounds used for supporting an alkaline metal on an eggshell type platinum supported alumina catalyst and a uniform type platinum supported alumina catalyst prepared by adding sulfur to a ⁇ -alumina support include alkaline metal chlorides, bromides, Examples include iodides, nitrates, sulfates, acetates, propionates, etc., preferably water-soluble and/or soluble in organic solvents such as acetone.
  • Examples include sodium chloride, sodium bromide, Sodium iodide, sodium nitrate, sodium sulfate, sodium acetate, sodium propionate, potassium chloride, potassium bromide, potassium iodide, potassium nitrate, potassium sulfate, potassium acetate, potassium propionate, calcium chloride, calcium bromide, calcium iodide , calcium nitrate, calcium sulfate, calcium acetate, calcium propionate, and the like.
  • an alkaline metal is supported on an eggshell-type platinum-supported alumina catalyst and a homogeneous platinum-supported alumina catalyst prepared by adding sulfur to a ⁇ -alumina support, after impregnating with a solution of an alkaline metal compound, Room temperature to 200°C and 0.5 hours to 48 hours, preferably 50°C to 150°C and 0.5 hours to 24 hours, more preferably 80°C to 120°C and 0.5 hours to 5 hours After drying under the following drying conditions, it is fired under the conditions of 350° C. to 600° C. and 0.5 hours to 48 hours, preferably 350° C. to 450° C. and 0.5 hours to 5 hours.
  • the inventors of the present application have further studied the drying conditions after impregnation with a solution of a suitable alkali compound in order to support most of the platinum particles with a size in the range of 8 ⁇ to 15 ⁇ on the ⁇ -alumina carrier. As a result, it was found that the size of the supported platinum particles was not affected regardless of the drying time at room temperature or higher and 200°C or lower.
  • An eggshell-type platinum-supported alumina catalyst and a homogeneous platinum-supported alumina catalyst prepared by adding sulfur to a ⁇ -alumina support are impregnated with an alkali metal, and the alkali metal-supported dried product obtained by drying is then calcined.
  • the final hydrogen reduction is carried out directly without
  • the reduction conditions for this hydrogen reduction are preferably 350° C. to 600° C. and 0.5 hours to 48 hours, preferably 350° C. to 550° C. and 3 hours to 24 hours in a hydrogen gas atmosphere. . If calcination is performed prior to the hydrogen reduction of the alkali metal-supported dried product, there arises a problem that the catalyst performance in terms of activity, selectivity and life is lowered. If the temperature during hydrogen reduction is less than 350°C, the platinum is not sufficiently reduced.
  • the inventors of the present application further investigated the hydrogen reduction conditions after impregnating with a solution of a suitable alkaline compound and drying in order to support most of the platinum particles on the ⁇ -alumina carrier with a size in the range of 8 ⁇ to 15 ⁇ .
  • the size of the supported platinum particles is not affected if the temperature and the reduction time of the hydrogen reduction, which is the final step of the platinum supporting process before the addition of the alkali metal, are equal to or less than the reduction time.
  • the platinum particle size of the eggshell-type catalyst described in Patent Document 3 is the particle size estimated from the degree of dispersion estimated from the amount of CO adsorption measured by the CO pulse method and the shape of the platinum particles assumed to be cubic. , as shown in Table 2 (Experimental Example 1) and Table 3 (Experimental Example 2) of Patent Document 3, the particle size was estimated to be in the range of 5.5 ⁇ to 14 ⁇ .
  • the particle size of the homogeneous platinum-supported alumina catalyst described in Patent Document 4 was estimated to be 6.5 to 11 ⁇ , as shown in Table 1 (Example 4) of Patent Document 4.
  • the platinum particle size can be measured using the particle size measurement function on the screen of the electron microscope. However, substantially the same measurement results can be obtained by comparing the scale shown in the electron micrograph with the length of the portion showing the largest particle size. Table 1 shows the measurement results of the particle size. The average particle size of the 42 particles shown in Table 1 was 16.8 ⁇ (1.68 nm).
  • 19 (about 45%) of the 42 platinum particles measured had a diameter of 8 ⁇ to 15 ⁇ (0.8 to 1.5 nm). It can be seen that there is a range of sizes and 23 platinum particles are larger than 15 ⁇ (1.5 nm) and larger than 16 ⁇ (1.6 nm).
  • the degree of dispersion estimated from the amount of CO adsorption measured by the CO pulse method and the shape of the platinum particles are calculated.
  • the particle size estimated assuming a cubic particle size was estimated to be 5.5 to 14 ⁇ , but these particle sizes were also found to be considerably smaller values according to direct observation using an electron microscope. is considered to be
  • a porous ⁇ -alumina carrier was produced based on the prior art described in Example 1 of JP-B-6-72005, as in the example of Patent Document 3.
  • a suspension of aluminum hydroxide slurry (pH 10) was obtained by instantaneously adding an aqueous solution of sodium aluminate to dilute hot sulfuric acid with vigorous stirring.
  • this as seed aluminum hydroxide the operation of alternately adding hot dilute sulfuric acid and aqueous sodium aluminate solution at regular intervals while continuing to stir was repeated to obtain a filtered and washed cake. This was extruded, dried, and then calcined at 500° C. for 3 hours.
  • the ⁇ -alumina support thus prepared has physical properties such as a surface area of 240 m 2 /g, a pore volume of 0.713 cm 3 /g, an average pore diameter of 119 ⁇ , and a 90% occupancy of pore diameters of 90 to 300 ⁇ . have.
  • a surface area of 240 m 2 /g a pore volume of 0.713 cm 3 /g, an average pore diameter of 119 ⁇ , and a 90% occupancy of pore diameters of 90 to 300 ⁇ . have.
  • 79 g of a 0.4 wt % chloroplatinic acid aqueous solution adjusted to a pH value of 2.0 was added, allowed to stand for 3 hours for impregnation, and then water was decanted. was removed and then dried at 120° C. for 3 hours and then calcined in a muffle furnace under air flow at 400° C. for 3 hours.
  • 3900 cc of an aluminum nitrate aqueous solution with a concentration of 2.67 mol/L was prepared, and 3900 cc of a 14% ammonia aqueous solution was prepared.
  • the obtained slurry aqueous solution of aluminum hydroxide was filtered to collect a cake, and then the cake was redispersed in 20 L of pure water and filtered again. The washing operation was performed three times to obtain a washed gel.
  • the washed cake After adjusting the water content by air-drying the washed cake, it is molded into a rod shape with a diameter of 1.6 mm using an extruder, dried (120°C, 3 hours), pulverized to a length of about 1 cm, and baked in a muffle furnace ( 500° C. for 3 hours) to obtain an alumina carrier A containing no sulfur.
  • the obtained alumina carrier A had a BET surface area of 275 m 2 /g and a pore volume of 0.65 cm 3 /g as determined by mercury porosimetry. Further, the obtained alumina carrier A had an average pore diameter of 8.9 nm, and had a sharp pore distribution in which most of the pores were concentrated near the average pore diameter. The volume occupied by the pores was 80% or more of the total pore volume.
  • Alumina carrier A was impregnated with an ammonium sulfate aqueous solution having a concentration of 0.38 mol/L so that the sulfur content after firing was 0.5% by weight, and the solvent was removed with an evaporator. Thereafter, alumina carrier A was dried (120° C., 3 hours) and calcined (500° C., 3 hours) to obtain an alumina carrier containing 0.5% by weight of sulfur.
  • MCH methylcyclohexane
  • HPLC high-performance liquid chromatography
  • a gas-liquid separator is provided at the outlet of the reaction tube to separate a liquid product such as toluene produced by this dehydrogenation reaction from a gas such as hydrogen gas. analyzed in
  • the MCH conversion rate (%), toluene selectivity (%), toluene yield (%), and produced methane concentration (ppm) were obtained 2 hours and 300 hours after the start of the reaction.
  • Table 2 shows the results.
  • Example 1 Method for preparing egg-shell type catalyst according to the present invention and measurement result of particle size
  • 3900 cc of an aluminum nitrate aqueous solution with a concentration of 2.67 mol/L was prepared, and 3900 cc of a 14% ammonia aqueous solution was prepared.
  • the obtained slurry aqueous solution of aluminum hydroxide was filtered to collect a cake, and then the cake was redispersed in 20 L of pure water and filtered again. The washing operation was performed three times to obtain a washed gel.
  • the washed cake After adjusting the water content by air-drying the washed cake, it is formed into a rod shape with a diameter of 1.6 mm by an extruder, dried (120°C, 3 hours), pulverized into pieces of about 1 cm in length, and baked in a muffle furnace (350°C). °C for 3 hours) to obtain an alumina carrier A containing no sulfur.
  • the obtained alumina carrier A had a BET surface area of 290 m 2 /g and a pore volume of 0.61 cm 3 /g as determined by mercury porosimetry.
  • the obtained alumina carrier A had an average pore diameter of 9.5 nm (95 ⁇ ), and had a sharp pore distribution in which most of the pores were concentrated near the average pore diameter.
  • the volume occupied by pores having a pore diameter of 70 to 110 ⁇ ) was 80% or more of the total pore volume.
  • the smallest platinum particles are 8 ⁇ (0.8 nm) and the largest platinum particles are 21 ⁇ (2.1 nm).
  • 40 of the 45 platinum particles measured (about 89%) have a size in the range of 8 ⁇ to 15 ⁇ (0.8 to 1.5 nm), and only 5 platinum particles are It can be seen that the size is greater than 15 ⁇ (1.5 nm) and greater than 16 ⁇ (1.6 nm).
  • 3900 cc of an aluminum nitrate aqueous solution with a concentration of 2.67 mol/L was prepared, and 3900 cc of a 14% ammonia aqueous solution was prepared.
  • the obtained slurry aqueous solution of aluminum hydroxide was filtered to collect a cake, and then the cake was redispersed in 20 L of pure water and filtered again. The washing operation was performed three times to obtain a washed gel.
  • alumina carrier A containing no sulfur.
  • the obtained alumina carrier A had a BET surface area of 290 m 2 /g and a pore volume of 0.61 cm 3 /g as determined by mercury porosimetry.
  • the obtained alumina carrier A had an average pore diameter of 9.5 nm (95 ⁇ ), and had a sharp pore distribution in which most of the pores were concentrated near the average pore diameter.
  • the volume occupied by pores having a pore diameter of 70 to 110 ⁇ ) was 80% or more of the total pore volume.
  • the ⁇ -alumina carrier thus prepared was impregnated with an aqueous solution of ammonium sulfate having a concentration of 0.38 mol/L so that the sulfur content after calcination was 0.5% by weight. °C, 3 hours) and calcination (350°C, 3 hours) to obtain an alumina carrier containing sulfur.
  • the smallest platinum particles are 8 ⁇ (0.8 nm) and the largest platinum particles are 22 ⁇ (2.2 nm).
  • 41 of the 47 platinum particles measured had a size in the range of 8 ⁇ to 15 ⁇ (0.8 to 1.5 nm), and only 6 platinum particles had a size of 15 ⁇ . (1.5 nm) and larger than 16 ⁇ (1.6 nm).
  • An egg-shell type platinum-supported ⁇ -alumina catalyst (Catalyst No. 3) prepared under the preparation conditions of the present invention shown in Example 1, and a homogeneous platinum-supported ⁇ -alumina catalyst prepared under the preparation conditions of the present invention shown in Example 2. (Catalyst No. 4) was subjected to a dehydrogenation reaction test of methylcyclohexane under the same method and reaction conditions as those shown in Comparative Example 4. Table 5 shows the results of the dehydrogenation reaction test, the average particle size of the platinum particles measured based on direct observation of the electron microscope image, and the platinum particles having a size in the range of 8 ⁇ to 15 ⁇ among the measured platinum particles shows the result of calculating the ratio of the number of
  • the catalysts of the present invention in which the catalyst life was improved by the preparation methods shown in Examples 1 and 2, it was measured by direct observation of the observed image with an electron microscope.
  • the platinum particle size 80% or more of all measured platinum particles have a particle size in the range of 8 ⁇ to 15 ⁇ .
  • the catalyst according to the present invention has a significantly higher proportion of the number of platinum particles with particle diameters in the range of 8 ⁇ to 15 ⁇ . It can be seen that the proportion of platinum particles with a large size of 16 ⁇ or more is significantly reduced.
  • catalysts (catalyst No. 3 and catalyst No. 4) prepared by the preparation methods shown in Examples 1 and 2 according to the present invention were remarkably improved in catalyst life is that the ⁇ -alumina support is This is thought to be due to the optimization of the firing conditions during preparation, the firing conditions after impregnation with platinum (and sulfur if necessary), the drying conditions, and the final hydrogen reduction conditions.
  • the catalyst according to the present invention cannot be completed with the electron microscope technology that could be used for conventional catalysts (that is, at the time of patent application for dehydrogenation catalysts described in Patent Documents 3 and 4). With the subsequent evolution of electron microscope technology, the catalyst preparation conditions and the size of the platinum particles in the prepared catalyst have progressed to the point where they can be accurately measured by direct observation.
  • the hydrogen station that uses the OCH method of the present invention is highly safe and can be suitably used as a hydrogen station for filling hydrogen into mobile vehicles equipped with fuel cells, such as FCVs, fuel cell forklifts, and fuel cell ships.
  • the OCH method is a highly safe method of storing and transporting hydrogen using MCH, which is liquid at normal temperature and pressure.
  • MCH which is inexpensive in terms of scale, can be used for hydrogen stations.
  • Hydrogen carriers can be delivered to regions including rural areas and remote islands using the existing transportation infrastructure for gasoline and kerosene, such as railways, trucks, and ships. It is suitable for the nationwide deployment of hydrogen stations, and the hydrogen generation method can be applied to future national stockpiles. is a very high invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

【課題】水素化芳香族類の脱水素反応への入熱に用いる熱媒体の加熱において、直火の利用を回避するとともにCO排出量を抑制する。 【解決手段】水素ステーション1は、脱水素触媒の存在下における水素化芳香族類の脱水素反応により水素を生成する脱水素反応器23と、燃料を用いて加熱した熱媒体を介して脱水素反応器に熱供給する熱供給装置26と、脱水素反応器の反応生成ガスを、圧力スイング法に基づき吸着剤を利用して精製するPSA装置33と、を備え、PSA装置には、吸着剤の再生に使用される水素を含むパージガスが供給され、熱供給装置は、熱媒体を収容する貯槽27と、貯槽内に配置され、燃焼触媒の存在下で燃料の触媒燃焼を行う触媒燃焼管28と、有し、触媒燃焼管には、PSA装置から排出されたパージガスが燃料として空気と共に供給される。

Description

水素ステーション及び水素生成方法
 本発明は、燃料電池自動車(FCV:Fuel Cell Vehicle)や燃料電池フォークリフト等の燃料電池搭載の移動体に水素を供給する水素ステーション及び水素生成方法に関する。
 燃料電池自動車等の燃料電池を搭載した移動体に水素を充填する水素ステーションは、日本政府による水素基本戦略に基づいて整備が進められている。現在、約110カ所のFCV用水素ステーションが営業しており、2030年までに四大都市圏を中心に900カ所の普及が目指されている。最終的には、現在のガソリンスタンドと同等の15,000カ所程度の水素ステーションが必要とされている。2030年以降は、四大都市圏ばかりでなく離島を含めた全国に水素ステーションを普及させる必要がある。現在、実用化されている水素ステーションでは、水素の貯蔵・輸送に圧縮水素法や液体水素法が採用されている。
 一方、水素を貯蔵・輸送する方法のひとつに有機ケミカルハイドライド法がある(非特許文献1、2参照)。有機ケミカルハイドライド法(OCH法:Organic Chemical Hydride Method)は、水素をトルエン(TOL)などの芳香族と水素化反応させることにより、分子内に水素を取り込んだメチルシクロヘキサン(MCH)などの飽和環状化合物(水素化芳香族類)に転換することで、常温・常圧の液体状態で「貯める」、「運ぶ」を行うと共に、利用場所で必要量の水素を飽和環状化合物の脱水素反応により取り出して利用する方法である。すなわち、OCH法は、例えば水素とTOLを反応させる水素化反応(水素貯蔵反応)と、MCHから水素を発生させてTOLを回収する脱水素反応(水素発生反応)とを含み、水素を取り出した後に生成するTOLは水素の入れ物(キャリア)として回収して繰り返し利用できる。
 OCH法において、輸送後の飽和環状化合物から水素を発生させる脱水素反応は、吸熱反応であるため、外部からの入熱が必要である。そこで、脱水素反応では、必要な熱量を投入して所定の反応温度条件(例えば、300~400℃の反応温度)を維持するために、脱水素触媒を充填した反応管の外側に加熱したホットオイルなどの液体の熱媒体を循環させる方法が利用されている。ここで、ホットオイルを加熱する方法としては、加熱炉において、ホットオイルが流れる配管を、燃料を燃焼させた火炎による直火で加熱する方法が考えられる(特許文献1参照)。しかしながら、可燃性の水素を扱う水素ステーションの敷地内での直火の使用は可能な限り回避することが安全上好ましい。
 また、ホットオイルの加熱に用いられる燃料に天然ガスや灯油などの化石燃料を使用すると、燃料由来の炭素分がCOとして排出されることから、水素を利用する意義が低下してしまうという問題がある。さらに、燃料の燃焼には着火源が必要であるため、加熱炉のバーナーの利用を回避したのみでは、その着火源による危険性の回避はできないという問題もある。
岡田佳巳、エネルギー・資源、Vol.33,No.3,168(2018) 岡田佳巳、東京都高圧ガス協会会報、2019年8月号、9月号 特開2015-182919号公報
 上記の背景から、本発明者らは、水素ステーション内で実施される水素化芳香族類の脱水素反応への入熱に加熱した熱媒体を用いる場合に、直火の利用を回避するとともに、CO排出量を抑制する方法について鋭意検討した。
 その結果、本発明者らは、脱水素反応によって得られる水素を含む反応生成ガスを、PSA法(圧力スイング法)を用いるPSA装置によって精製すると共に、PSA装置のカラム(吸着塔)の再生操作を行う(すなわち、カラム内に充填された吸着剤に吸着した不純物を除去する)ために使用されたパージガス(高濃度の水素を含む)を触媒燃焼させることにより、その燃焼熱によって炎を発生させることなく熱媒体を加熱できることを見出した。これにより、水素ステーション内で着火源となり得る直火等の使用を回避しながら、水素ステーションのCO排出量を抑制できる。さらに、本発明者らは、そのパージガスの触媒燃焼を行うための燃焼触媒には、寒冷地でもパージガスを自然着火できるように高活性な白金触媒を併用することが好ましいことを見出した。
 従って、本発明の目的は、水素化芳香族類の脱水素反応への入熱に加熱した熱媒体を用いる場合に、その熱媒体の加熱において、直火の利用を回避するとともにCO排出量を抑制することのできる水素ステーション及び水素生成方法を提供することにある。
 本発明の一態様は、水素ステーション(1)であって、脱水素触媒の存在下における水素化芳香族類の脱水素反応により水素を生成する脱水素反応器(23)と、燃料を用いて加熱した熱媒体を介して前記脱水素反応器に熱供給する熱供給装置(26)と、前記脱水素反応器によって生成された水素を含む反応生成ガスを、圧力スイング法に基づき吸着剤を利用して精製するPSA装置(33)と、を備え、前記PSA装置には、前記吸着剤の再生に使用される水素を含むパージガスが供給され、前記熱供給装置は、前記熱媒体を収容する貯槽(27)と、前記貯槽内に配置され、燃焼触媒の存在下で前記燃料の触媒燃焼を行う触媒燃焼管(28)と、有し、前記触媒燃焼管には、前記PSA装置から排出された前記パージガスが前記燃料として空気と共に供給される構成とする。
 この態様によれば、水素化芳香族類の脱水素反応への入熱に加熱した熱媒体を用いる場合に、PSA装置における吸着剤の再生に使用されたパージガスを、触媒燃焼させることによって熱媒体を加熱するため、その熱媒体の加熱において、直火の利用を回避するとともにCO排出量を抑制することができる。
 上記の態様において、前記脱水素触媒は、白金担持アルミナ触媒を含み、前記白金担持アルミナ触媒は、アルミナ担体と、前記アルミナ担体に担持された白金と、を有し、前記アルミナ担体は、表面積が200m2/g以上、細孔容積が0.50m2/g以上、平均細孔径が60Å~150Åの範囲、かつ全細孔容積に対して平均細孔径±30Åの細孔が占める割合が60%以上のγ―アルミナ担体を含み、前記γ―アルミナ担体には、前記白金の粒子が白金元素(Pt)として0.1重量%~1.5重量%の範囲で担持されており、透過型電子顕微鏡を用いた直接観察により、前記白金の粒子の70%以上が8Å~15Åの大きさを有するとよい。
 この態様によれば、粒子径が適切に設定された白金粒子(粒子分布が適切に制御された白金)を含む白金担持アルミナ触媒を、水素化芳香族類の脱水素反応に用いるため、触媒寿命の向上効果により水素化芳香族類の脱水素反応(すなわち、水素の生成)を安定的に実施することができる。
 上記の態様において、前記燃焼触媒は、前記脱水素触媒と同一の構成を有する触媒を含むとよい。
 この態様によれば、脱水素触媒と同一の構成を有する比較的高活性な触媒(例えば、白金担持アルミナ触媒)を燃焼触媒に用いることにより、熱媒体の加熱を良好に行うことができる。特に、粒子径が適切に設定された白金粒子(粒子分布が適切に制御された白金)を含む白金担持アルミナ触媒を、触媒燃焼に用いることにより、触媒寿命の向上効果により熱媒体の加熱を安定的に実施することができる。
 上記の態様において、前記燃焼触媒は、前記触媒燃焼管において前記燃料が導入される燃料入口部(28A)に充填され、かつ前記脱水素触媒と同一の構成を有する第1の触媒と、前記第1の触媒とは異なる構成を有し、前記触媒燃焼管における前記燃料入口部の下流側に充填される第2の触媒とを含むとよい。
 この態様によれば、触媒燃焼管の燃料入口部において、燃料を第1の触媒によって良好に自然着火させることができる。また、触媒燃焼管の燃料入口部の下流側には第1の触媒とは構成の異なる第2の触媒が充填されるため、第2の触媒として第1の触媒よりも安価な触媒(汎用触媒)を用いることにより触媒コストを低減できる。
 上記の態様において、前記熱媒体がホットオイルであるとよい。
 この態様によれば、適切な熱媒体によって脱水素反応器への熱供給を容易に行うことができる。
 上記の態様において、前記触媒燃焼管には、前記空気が複数の異なる部位に分割して供給されるとよい。
 この態様によれば、触媒燃焼管内の広い領域にわたって触媒燃焼反応を均一化し、ホットスポットの発生を抑制することができる。
 上記の態様において、前記PSA装置によって精製された前記水素を、燃料電池を搭載した移動体に供給するディスペンサー(15)と、前記ディスペンサーから供給される前記水素を冷媒によって冷却するプレクーラー(17)と、前記反応生成ガスを気液分離する気液分離器(31)と、を更に備え、前記気液分離器では、前記プレクーラーから供給された前記冷媒によって前記反応生成ガスが冷却されるとよい。
 この態様によれば、プレクーラーの冷媒を利用して反応生成ガスが大気温よりも更に低い温度まで冷却可能となるため、気液分離器において反応生成ガスに含まれる芳香族化合物(例えば、トルエン)や未反応原料(例えば、シクロヘキサン)を良好に凝縮させることができる。
 上記の態様において、前記脱水素反応では、前記水素化芳香族類としてのシクロヘキサンの脱水素により水素およびトルエンが生成され、前記シクロヘキサンを収容する第1タンク(4)と、前記トルエンを収容する第2タンク(6)と、を更に備え、前記第1タンクおよび前記第2タンクは、それぞれ地下に配置されるとよい。
 この態様によれば、水素ステーションにおける地上スペースの利用の自由度が高まり、また、水素ステーションのコンパクト化が可能となる。この場合、既存のガソリンスタンドにおいてガソリン等を貯蔵するための地下タンクをシクロヘキサンやトルエンの収容に利用(流用)することも可能である。
 上記の態様において、前記第1タンク内の気相のガスおよび前記第2タンク内の気相のガスの少なくとも一方が、前記PSA装置から排出された前記パージガスと共に、前記燃料として前記触媒燃焼管に供給されるとよい。
 この態様によれば、第1タンク内の気相および第2タンク内の気相の少なくとも一方に含まれ得る水素を安全に排除することができる。
 上記の態様において、前記第1タンク内の気相のガスおよび前記第2タンク内の気相のガスの少なくとも一方が、前記触媒燃焼管において前記燃料が導入される燃料入口部(28A)に空気と共に導入されるとよい。
 この態様によれば、第1タンク内の気相および第2タンク内の気相の少なくとも一方に含まれる水素を、触媒燃焼管における着火用の燃料として利用できる。
 上記の態様において、前記触媒燃焼管は、前記燃焼触媒が充填されたコイルであるとよい。
 この態様によれば、触媒燃焼による熱媒体の加熱を均一に行うことができる。
 上記の態様において、前記水素化芳香族類が、単環芳香族類の水素化物、2環芳香族類の水素化物、及び3環以上の芳香環を有する化合物の水素化物からなる群から選ばれた1種又は2種以上の混合物であるとよい。
 この態様によれば、適切な水素化芳香族類を用いて脱水素反応を良好に行うことができる。
 上記の態様において、前記水素化芳香族類が、メチルシクロヘキサン、シクロヘキサン、トリメチルシクロヘキサン、デカリン、及びジベンゾトリオールからなる群から選ばれた1種又は2種以上の混合物であるとよい。
 この態様によれば、適切な水素化芳香族類を用いて脱水素反応を良好に行うことができる。
 本発明の一態様は、水素ステーションにおける水素生成方法であって、脱水素触媒の存在下における水素化芳香族類の脱水素反応により水素を生成し、燃料を用いて加熱した熱媒体を介して前記脱水素反応に熱供給し、前記脱水素反応によって生成された水素を含む反応生成ガスを、圧力スイング法に基づき吸着剤を利用して精製し、前記吸着剤の再生には、水素を含むパージガスが使用され、前記熱媒体の加熱では、前記吸着剤の再生に使用された前記パージガスが前記燃料として空気と共に供給されるとよい。
 この態様によれば、水素化芳香族類の脱水素反応への入熱に加熱した熱媒体を用いる場合に、圧力スイング法に基づく吸着剤の再生に使用されたパージガスを、触媒燃焼させることによって熱媒体を加熱するため、その熱媒体の加熱において、直火の利用を回避するとともにCO排出量を抑制することができる。
 水素は1970年代からクリーンな二次エネルギーとして注目され、日本国では、1974年~1992年のサンシャイン計画、1978~1992年のムーンライト計画、1993年~2001年のニューサンシャイン計画において水素製造技術や燃料電池の研究開発が進められた。水素の大規模貯蔵輸送技術は、1992年~2002年のWE-NET計画において液化水素法の開発が開始されている。一方、有機ケミカルハイドライド法(OCH法:Organic Chemical Hydride Method)の開発の歴史は古く、1980年代にカナダのケベック州政府と欧州12か国による国際研究開発プロジェクトとして実施されたユーロケベック計画にさかのぼる。この計画は、ケベック州に豊富に存在する余剰の水力電力を利用して水の電気分解を行って水素を製造し、大西洋を輸送して欧州で利用する計画であった。水素の輸送方法としては、第1候補として液体水素法、第2候補として液体アンモニア法、第3候補としてOCH法が検討されている。当時、有機ケミカルハイドライド法はMCH法と呼ばれていた。ユーロケベック計画は1992年ごろまで約10年間のプロジェクトが遂行されたが、いずれの方法も実用化には至らずに計画は終了しており、以来、水素を大規模に貯蔵輸送する技術は実用化されていない。
 日本国では、1992年~2002年に実施されたWE-NETプロジェクトにおいて、液化水素法の開発が進められる一方、OCH法の研究は日本の大学を中心に進められていた。出願人は、2002年から脱水素触媒の開発に着手後、初めての学術発表を2004年に横浜で開催された世界水素会議で発表を行っているが、この時期から企業での研究開発例が発表されるようになり、現時点で大規模向けの水素貯蔵輸送技術の研究開発で実証レベルまで進められている技術は、液化水素法と出願人が提案するOCH法のみである。
 OCH法は、水素をトルエン(TOL)などの芳香族と水素化反応させて、分子内に水素を取り込んだメチルシクロヘキサン(MCH)などの飽和環状化合物に転換することで、常温・常圧の液体状態で「貯める」「運ぶ」を行い、利用場所で必要量の水素を脱水素反応で取り出して利用する方法であり、水素とTOLを反応させる水素化反応(水素貯蔵反応)と、MCHから水素を発生させてTOLを回収する脱水素反応(水素発生反応)とからなる。水素を取り出した後に生成するTOLは水素の入れ物(キャリア)として回収し、繰り返し利用する。
 水素は爆発性の気体のため、そのまま大規模に貯蔵輸送する場合は潜在的なリスクの高い物質である。OCH法では、ガソリンや軽油の成分であって常温・常圧の液体状態のMCHの分子内に水素を取り込んで貯蔵輸送を行うため、原理的に安全性が高い方法である。具体的には、OCH法に基づくシステムのタンクや反応器が火災に巻き込まれた場合でも、従来の製油所火災と同様であり、周辺の市街地に甚大な被害を与える可能性は極めて低いと考えられる。「事故は必ず起こる」の考え方は安全対策に非常に重要であり、原理的な安全が求められる所以である。
 OCH法では、1LのMCHの液体に、約530Lの水素ガスを貯蔵することができる。水素ガスの体積を物理的に1/500以下に減容するには500気圧以上に圧縮するか、-253℃以下に冷却して1/800の体積の液体水素にする必要があるが、OCH法では、化学反応を利用することで常温・常圧下で1/500の体積減容が可能である。また、TOLとMCHは-95℃以上101℃以下の広い温度範囲で液体状態のため、地球上のあらゆる環境下で水のような液体としてハンドリングすることが可能である。大規模なサプライチェーンの構築には、数十万トン単位のTOLの調達が必要であるが、TOLはハイオクガソリンに10重量%以上含まれている燃料基材であるほか、工業溶剤としても多く利用されており、さらに年間2,000万トン以上が世界で生産されている汎用化学品のため大量調達も容易である。
 上記より、水素を大規模に貯蔵輸送する際の潜在的なリスクを従来のガソリンの貯蔵輸送レベルの危険性にまで原理的に低減できる(すなわち、安全性が高い方法である)ことがOCH法の第一の特徴であり、出願人がこの方法に着目した第一の理由である。また、大型タンクによるTOL、MCHの貯蔵や、ケミカルタンカー、ケミカルローリーによるTOL、MCHの輸送は古くから化学品として実用化されている。今後の自動車の電動化の潮流によって、ガソリンや軽油などの自動車燃料の需要は減少することが予想されており、OCH法では、それらの貯蔵タンク等の既存インフラの転用が可能なことも大きなメリットである。
 さらに、将来に水素が発電燃料として大規模に利用されるようになった場合、現在の石油備蓄のように水素燃料の備蓄が必要になる時代が予想される。TOLやMCHは長期間大規模に貯蔵しても化学的に変化することはなく、長期貯蔵に際して特段のエネルギー消費やロスを伴わないことから、現行の石油備蓄基地のタンクにMCHを貯蔵することで、水素エネルギーの備蓄基地に転換することも可能である。
 出願人は、安全性が最も高く既存のインフラを転用できることからコスト的にも有利なOCH法に着目して、2002年から実用化の鍵である新規な脱水素触媒の開発に着手し、世界で初めてOCH法に工業的に適用可能な新規脱水素触媒の開発に成功した。その後、システム全体の技術確立を目的として、脱水素プロセスに開発された触媒を利用するとともに、水素貯蔵反応となるTOLの水素化プロセスと組み合わせて、同じ場所で水素貯蔵と水素発生を連続的に繰り返す実証デモプラントを2013年に建設して、同年4月から2014年11月までに延べ約10,000時間の実証運転を行い、設計通りの高い性能を安定して維持できることが確認されて技術確立を完了している。
 その後、開発の最終段階として、実際に約200トンの水素をOCH法に基づくシステムによって東南アジアのブルネイ国から日本の川崎市臨海部に輸送する世界に先駆けた国際間水素サプライチェーン実証が、NEDO(新エネルギー・産業技術総合開発機構)のプロジェクトとして2020年度に実施され、年間100トン以上の水素を本システムで輸送する実証が完了している。
 特許第4652695号公報(以下、特許文献3という。)および特許第4142733号公報(以下、特許文献4という。)は、上記のOCH法の脱水素反応に利用できる脱水素触媒を開示している。本法による脱水素方法について世界でいくつかの具体的方法が提案されているが、発電燃料を供給するための設備を大規模に実用化するためには、高収率であるばかりでなく十分な触媒寿命が求められる。したがって、本発明に係るOCH法を用いる水素ステーション及び水素生成方法においても、そのような長寿命で経済性に優れた脱水素触媒を利用することが好ましい。
 特許文献3は、表面積150m/g以上、細孔容積0.55cm/g以上、平均細孔径90Å以上300Å、及び全細孔容積に対して細孔径90Å以上300Å以下の細孔が占める割合が60%以上である多孔性γ-アルミナ担体に、白金が担持されていることを特徴とする白金担持アルミナ触媒を開示している。また、特許文献4はアルミナ担体に硫黄を含有させることによって、担持される白金の分散形態が均一型になるとともに分解反応を抑制することで触媒寿命の向上を図る均一型白金担持アルミナ触媒を開示している。なお、特許文献3、4含め、本明細書において援用する全ての文献の開示内容については、本明細書の一部を構成するものとし、詳細な説明を省略する。
 ここで、特許文献3および特許文献4が開示している脱水素触媒の特徴は、アルミナ担体上に担持された白金粒子の粒子径が従来の白金触媒に比べて著しく小さなサイズであることである。一般的な白金担持アルミナ触媒の白金粒子径の平均粒子径は20Å以上である。従来、OCH法は、脱水素触媒が開発されずに実用化できなかった方法であるが、出願人は、白金粒子のサイズを10Å程度の小さな粒子に高分散させることで、白金担持アルミナ触媒の触媒活性が著しく向上することを見出すことにより本法の技術を確立し、2020年末までに世界で初めて本法による国際間水素サプライチェーン実証を完了している。
 特許文献3および特許文献4が開示している脱水素触媒の白金粒子径は10Å以下であり、ほとんどの白金粒子径は20Å以下である。既存の白金担持アルミナ触媒の白金粒子径の最小値は前述のように20Å程度であり、平均粒子径は20Å以上である。OCH法に基づく本発明に係る水素ステーションでは、特許文献3および特許文献4が開示している脱水素触媒を含む白金粒子の平均粒子径が20Å以下の脱水素触媒を利用することが好ましい。
 本発明における脱水素触媒として利用可能な触媒に関し、均一型触媒は原料の触媒内部までの拡散が十分に行われる場合に有効であり、エッグシェル型触媒は触媒内部までの拡散が制限されて十分に行われない場合に有効なことから、これらの2種類の触媒は反応場における拡散の状態によって使い分けることが可能である。また、同じ反応でも脱水素反応器内の位置によって、原料の触媒内部への拡散状態が異なる場合があり、反応が進行した出口近くでは原料濃度が低くなることから、触媒内部への拡散が制限され得る。このような場合には、反応器において均一型とエッグシェル型の触媒を併用することができる。
 また、一般に触媒内部への原料の拡散度合いは触媒有効係数で表されるが、触媒ペレットの大きさや形状を変えることで触媒有効係数を制御することが可能である。これらより、均一型とエッグシェル型の両タイプの触媒について、触媒ペレットの大きさや形状を変えることで、さまざまな触媒有効係数を有する白金アルミナ触媒の製造が可能となる。
 本発明における脱水素触媒として利用可能な白金担持アルミナ触媒において、白金を担持させるアルミナ担体は、その細孔分布がシャープになるように細孔のサイズをできるだけ均一に制御したものが好ましい。具体的には、表面積が200m2/g以上、細孔容積が0.5m2/g以上、平均細孔径が60Å~150Å、及び全細孔容積に対して平均細孔径±30Åの細孔が占める割合が60%以上であるγーアルミナ担体が好ましい。表面積が200m2/g未満であると触媒化後の活性が十分ではなく、細孔容積が0.5m2/g未満であると活性金属成分の均一な担持が困難であり、平均細孔径が60Åより小さいと表面積は大きくなるが、細孔容積が小さくなり、反対に平均細孔径が150Åより大きいと表面積が小さくなり、細孔容積が大きくなるため、これらの相関を総合的に考慮した結果、平均細孔径が60Å~150Åが適当である。また、平均細孔径±30Åの細孔が占める割合が60%未満であると、触媒性能において本発明の効果が少なくなる。このように細孔のサイズが揃えられた結果、アルミナ担体はその粉末及び成形体の全体に亘って、細孔のサイズが均一になる。その結果、アルミナ担体に白金を分散担持して存在させる工程、及び白金を硫黄の分布に一致して全体に亘って分散担持する工程を適切に行うことができる。
 本発明による水素ステーションは、水素キャリアである水素化芳香族類(例えば、メチルシクロヘキサン)の脱水素反応で水素発生を行う脱水素反応器と、発生させた水素の純度を燃料電池自動車(FCV)等に充填できる純度まで精製するためのPSA(Pressure Swing Adsorption)法に基づくPSA装置を備えることができる。また、水素ステーションでは、脱水素反応により生成されたTOL及び未反応のMCHを回収するシステムが設置され得る。
 本発明における脱水素反応器としては、熱交換器と同様の構造を有する多管式固定床反応器が好適である。すなわち、脱水素反応器では、脱水素触媒を充填した触媒反応管を反応器内に並列に配列し、それらの触媒反応管に反応温度まで加熱したMCHのガスを供給するとともに、触媒反応管の外側に液体の熱媒体を供給することにより、脱水素反応の吸熱反応に必要な熱が供給され、反応温度が維持される。
 本発明において、触媒反応管に熱を供給する熱媒体としては、熱容量が大きい液体が好ましい。気体を熱媒体に用いる場合は、熱容量が小さいことから伝熱面積が大きくなり、触媒反応管の外表面積を増大させることが必要となるため、反応器が必要以上に大きくなる欠点がある。液体の熱媒体としては、既存の溶融塩やホットオイルを利用することができる。ただし、溶融塩は分子内に酸素原子を含むものが多く、想定外の地震などで万が一に反応管におけるMCHのガスが溶融塩と接触した場合、300~400℃の反応温度領域においても発火する可能性がある。したがって、熱媒体としては、万が一にも発火することがないホットオイルを利用する方が、原理的に火災にいたることがないため、安全性が高く好適である。
 本発明において、ホットオイルとしては、商業化されている市販の一般的な熱媒体用オイルを用いることができる。ホットオイルは、分子量が大きい炭化水素であるため、400℃程度で熱分解してロスが生じ得る。そのため、触媒反応管に熱を供給するためのホットオイルとしては、熱分解ロスが最小限に抑制できるホットオイルを用いることが好ましい。
 本発明において、ホットオイルの加熱は、燃焼触媒が充填された触媒燃焼管(触媒燃焼コイル)を備えたホットオイルの貯槽において、触媒燃焼による熱を触媒燃焼管からホットオイルに熱伝達することによって実施することができる。触媒燃焼管を構成する金属材料は、ホットオイルに腐食性がないことから安価な鋼材を利用することができる。
 本発明において、触媒燃焼管に充填される燃焼触媒としては、触媒燃焼に用いられる触媒として公知である既存の燃焼触媒を用いることができる。ただし、燃焼触媒としては、燃料を確実に自然着火できることが必要であり、また、寒冷地での水素ステーションでは、氷点下での自然着火が求められることから、高活性な白金触媒を用いることが望ましい。一方、本発明において、脱水素反応器で利用され得る脱水素触媒は、極めて活性が高く、既存の脱水素触媒が必要な脱水素の温度を100℃以上低下させることが可能である。そこで、本発明では、既存の燃焼触媒に加えて、脱水素触媒として利用され得る触媒をより高性能な燃焼触媒として利用することで、燃料を確実に自然着火できる。また、燃焼触媒の全てに脱水素触媒として利用される触媒を用いれば、地球上のいかなる寒冷地においても燃料を自然着火できると考えられる。
 本発明において、脱水素触媒や燃焼触媒として利用され得る触媒には、上述の特許文献3及び特許文献4に開示された白金担持アルミナ触媒に加え、後に詳述するように、透過型電子顕微鏡を用いた直接観察により、担体に担持される白金粒子の粒子径がより適切に設定された(白金の粒子分布が適切に制御された)新規の白金担持アルミナ触媒が含まれる。
 本発明において、燃焼触媒として利用できる既存の燃焼触媒(後述する第2の触媒)には、白金、パラジウム、及びイリジウム等の貴金属のうちの少なくとも1つを担体に担持した燃焼触媒や、ニッケル、コバルト、モリブデン、クロム、バナジウム、及びモリブデン等の金属のうちの少なくとも1つを担体に担持した金属担持触媒が含まれる。貴金属は高価であるが着火性が高く、一方、非貴金属は着火性が低いが安価であるというメリットがある。
 本発明において、PSA装置は、吸着剤が充填された複数のカラム(吸着槽)を有しており、それらのカラムに反応生成ガスを供給して不純物を吸着させて除去することができる。PSA装置は、反応生成ガスを例えば2つのカラムのうちの一方のカラムに供給して吸着剤により不純物を吸着し、水素ガスを取り出す。吸着剤の吸着能力は、時間の経過にともない低下するため、適切なタイミングで反応生成ガスの供給先を他方のカラムに切り換える。吸着剤の再生は、カラムの圧力を下げることで吸着した不純物を脱離させ、不純物を含まない製品水素ガスを供給して不純物をパージすることで行わる。PSA法は圧力を変化させて不純物を脱離させることから圧力スイング法と呼ばれる。PSA装置の再生操作に利用されるパージガスは製品水素を利用するため、不純物を除去後も高濃度の水素を含んでいる。
 本発明において、触媒燃焼コイルに供給する燃料には、PSA装置から排出される(すなわち、不純物をパージした後の)パージガスを利用することができる。PSA装置のパージガスは複数のカラムのうち再生モード(吸着剤を再生中)のカラムから供給される。ここで、燃料としてのパージガスが途切れることなく連続的に供給(排出)されるように、PSA装置において再生対象となるカラムを順次切り替えることによって再生工程が途切れることなく実施されることが好ましい。ただし、必要に応じて加圧されたパージガスを貯蔵するための水素ホルダーを設けるとよい。例えば、PSA装置から排出される全てのパージガスを水素ホルダーに供給して一旦貯蔵することで、パージガスを水素ホルダーから触媒燃焼コイルに安定的に供給できるほか、PSA装置から排出されるパージガスの全量を無駄なく利用することができる。
 本発明において、脱水素反応により生成されたTOL及び未反応のMCHを回収するシステムとして、脱水素反応器とPSA装置の間に気液分離器を設けることができる。気液分離器では、脱水素反応器から取り出された反応生成ガスを、100℃以下に冷却することにより、液相成分(液体に凝縮したTOL及びMCH等を含む)を回収することができる。さらに、本発明による気液分離器では、TOL及びMCH等の回収率を向上させるために、反応生成ガスを10℃以下に冷却するとよい。
 このように、PSA装置に導入前の反応生成ガスからTOL及びMCH等を可能な範囲で回収することは、未回収分として換算されるトルエンロスを低減させるだけでなく、PSA装置の処理負荷の低減に寄与する。また、PSA装置で吸着除去される不純物量の増大は、触媒燃焼時に発生するCO排出量の増大に繋がり得るため、これを低減する効果もある。
 TOL及びMCHを含む反応生成ガスを冷却する際に、通常は50℃程度までは特段のエネルギー消費をともなうことなく自然冷却でき、さらにそれらを大気温程度まで冷却する場合には冷却水を使用することができる。しかし、反応生成ガスを10℃以下に冷却することは、特に気温が高い夏期などでは難しいため、そのための新たな冷熱が必要である。水素ステーションでは、FCVの水素タンクに3分以内に5kgの水素を充填できるが、この際に生じる摩擦熱でFCV水素タンクの温度が80℃以上に上昇しないように、プレクーラーによって予め水素が-40℃程度に冷却される。そこで、本発明では、プレクーラーの冷熱を利用して、TOL及びMCHを含む反応生成ガスを冷却することができる。
 脱水素反応が行われる水素ステーションでは、脱水素反応の原料としてのMCHと、脱水素反応で生成したTOLとを貯蔵するタンクが必要である。既存のガソリンスタンドでは、ガソリン、灯油、重油などの地下タンクを設備している。MCH及びTOLは、危険物第4類第1石油類に分類されており、ガソリンや灯油と同じ危険物分類である。また、MCH及びTOLは、炭素数が7の化合物であり、炭素数4以上の炭化水素成分を含むガソリンに比べて蒸気圧が低く揮発量が少ない。
 一方、水素ステーションで貯蔵されるMCHおよびTOLは、水素ガスを溶解度分含んでいるが、その量は微量であり地下タンクの気相成分において爆発限界以上の濃度になることは通常ではありえない。しかしながら、好ましくは溶存水素を地下タンクから除去するシステムを設備することが好ましい。
 それらの溶存水素を除去するために、本発明では、MCHが貯蔵されたタンク(MCHタンク)の気相成分やTOLが貯蔵されたタンク(TOLタンク)の気相成分を排気したガス(タンクガス)を触媒燃焼処理することができる。この場合、タンクガスには、水素のみならず、大気に放出することが好ましくない蒸気圧分のMCHとTOLが含まれているため、それらも触媒燃焼処理できるという利点がある。なお、コストの上昇を許容可能であれば、窒素などの不活性ガスを、それらのタンク内の液体にバブリングして気相成分の排気を行うことも考えられる。
 タンクガスの触媒燃焼に必要な酸素としては空気を用いればよい。また、タンクガスの触媒燃焼は、PSA装置から排出されるパージガスとは別に同様の触媒燃焼コイルを用いて実施することができる。ただし、タンクガスをパージガスに混合して触媒燃焼させることで、簡易な構成によりタンク内の水素を処理できるという利点がある。タンクガスは、白金担持アルミナ触媒が充填された触媒燃焼コイルの入口部に空気と共に導入されることにより、自然着火によって触媒燃焼し得る。
 本発明による脱水素反応において利用可能な水素化芳香族類は、MCHに限らず、シクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン等の単環芳香族類の水素化物、テトラリン、デカリン、メチルデカリン、ビフェニル、ジフェニルメチル等の2環芳香族類の水素化物、及びジベンゾトリオール、テトラデカヒドロアントラセン等の3環以上の芳香環を有する化合物の水素化物からなる群から選ばれる1種又は2種以上の混合物であるとよい。
 以上の構成によれば、水素ステーション及び水素生成方法において、水素化芳香族類の脱水素反応への入熱に加熱した熱媒体を用いる場合に、その熱媒体の加熱において、直火の利用を回避するとともにCO排出量を抑制することができる。
従来の水素ステーションの構成図 第1実施形態に係る水素ステーションの構成図 第1実施形態に係る脱水素ユニットの詳細構成を示す図 第2実施形態に係る水素ステーションの構成図 触媒を撮影した(A)2000年代の透過型電子顕微鏡写真、及び(B)近年の透過型電子顕微鏡写真を示す説明図 透過型電子顕微鏡写真に基づく白金粒子径の測定に関する説明図
 以下、図面を参照して、実施形態に係る水素ステーション及び水素生成方法について説明する。
 既存の水素ステーションは、オンサイト型とオフサイト型に大別される。オンサイト型は、水素ステーション内で水素製造を行うタイプの総称である。オフサイト型は、純度の高い水素を圧縮水素や液体水素として水素ステーションに直接輸送し、そこで貯蔵された水素を昇圧して利用するタイプの総称である。後に詳述する本発明による水素ステーションは、オンサイトでの脱水素反応によって水素を発生させるため、オンサイト改質型水素ステーションと類似していることからオンサイト型に分類されることが予想される。しかし、現時点では、本発明による水素ステーションについては、研究開発の段階にあって実際の水素ステーションが存在しないため、最終的にどちらに分類されるかは不確定な状況である。
(従来技術)
 図1に示すように、従来のオンサイト型の水素ステーション101は、水素製造に必要な水素製造装置103を備える。水素製造装置103としては、水電解装置や、改質型の水素製造装置が用いられる。改質型の水素製造装置では、都市ガスなどの化石燃料をスチームリフォーミングした後にシフト反応により水素と二酸化炭素に転換する。水電解装置は、水の電解に電力を用いるためにコスト的な課題があり、また、改質型の水素製造装置は、二酸化炭素を発生することから、それらは、実際に商用ステーションとして稼働している水素ステーションとしては主流ではない。現在、商用ステーションとして、圧縮水素法や液体水素法によるオフサイト型の水素ステーションが、各50か所程度の数で稼働している状況である。
 水素製造装置103によって製造された水素は、水素貯蔵タンク105に送られ、そこで一旦貯蔵される。その後、水素貯蔵タンク105に貯蔵された水素は、圧縮機109に送られ、そこで800気圧程度まで昇圧された後に蓄圧器111に送られ、そこで製品水素として貯蔵される。
 蓄圧器111に貯蔵された製品水素は、水素ステーション101を利用する燃料電池自動車(FCV)113に対し、ディスペンサー115を介して供給される。
 FCV113の車載タンクへの水素充填は、例えば3分間に5kgの水素を充填することが要件となっており、この速度で水素充填する際の摩擦熱でFCV113の車載タンク内の温度が上昇する。そこで、車載タンク内の温度を80℃以下とするために、ディスペンサー115から供給される水素は、プレクーラー117から供給される冷媒によってマイナス40℃程度まで冷却された状態でFCV113に送られる。
(第1実施形態)
 次に、図2及び図3を参照し、本発明の第1実施形態に係る水素ステーション1及びその水素生成方法について説明する。
 図2に示すように、第1実施形態に係る水素ステーション1は、水素化芳香族類の脱水素反応によって水素を生成する脱水素ユニット3を備える。後に詳述するように、脱水素ユニット3では、原料の水素化芳香族類としてメチルシクロヘキサン(MCH)が用いられ、脱水素触媒の存在下におけるMCHの脱水素反応により、水素及びトルエン(TOL)等を含む反応生成ガス(反応生成物)が生成される。この反応生成ガスには、未反応のMCH等が含まれる。
 MCHは、MCHタンク4に貯蔵され、原料供給ラインL1を介して脱水素ユニット3に供給される。TOLは、脱水素ユニット3からトルエン排出ラインL3を介してトルエンタンク6に送られ、そこで貯蔵される。MCHタンク4へのMCHの供給と、トルエンタンク6からのTOLの回収は、図示しないケミカルローリーによって実施される。
 MCHタンク4およびトルエンタンク6は、それぞれ水素ステーション1内の適所に配置され得るが、水素ステーション1内の地下に配置されるとよい。これにより、水素ステーション1における地上スペースの利用の自由度が高まり、また、水素ステーション1のコンパクト化が可能となる。この場合、既存のガソリンスタンドにおいてガソリン等を貯蔵するための地下タンクを、MCHやTOLを収容するために利用(すなわち、MCHタンク4やトルエンタンク6として流用)することもできる。
 脱水素ユニット3によって生成された水素は、水素輸送ラインL5を介して圧縮機9に送られる。圧縮機9に送られる水素は、脱水素ユニット3において製品水素として利用できる程度まで精製されている。
 図1に示した従来の水素ステーション101と同様に、圧縮機9において800気圧程度まで昇圧された水素は、水素輸送ラインL6を介して蓄圧器11に送られる。蓄圧器11に送られた水素は、そこで製品水素として貯蔵される。蓄圧器11に貯蔵された製品水素は、水素輸送ラインL7を介してディスペンサー15に送られ、そこで充填ホースL11を介して燃料電池自動車(FCV)13に対して供給される。ディスペンサー15から供給される水素は、プレクーラー17から供給される冷媒によってマイナス40℃程度まで冷却された状態でFCV13に送られる。なお、水素ステーション1は、FCV13に限らず、燃料電池を搭載した任意の移動体によって利用され得る。
 水素の冷却に用いられる冷媒は、ディスペンサー15とプレクーラー17との間に設けられた第1冷媒循環ラインL13を循環することにより、ディスペンサー15内に設けられた水素冷却用の熱交換器において水素と熱交換する。或いは、ディスペンサー15の水素が、プレクーラー17に設けられた水素冷却用の熱交換器を通過した(すなわち、冷媒と熱交換された)後にFCV13に送られる構成としてもよい。
 次に、図3を参照して脱水素ユニット3の詳細構成について説明する。
 脱水素ユニット3では、MCHタンク4に貯蔵された原料としてのMCHが、原料供給ラインL1に設けられた液体ポンプ(MCH輸送用ポンプ)21によって脱水素反応器23に供給される。原料供給ラインL1には、脱水素ユニット3に向けて送られるMCHと、脱水素反応器23から取り出された反応生成ガスとの熱交換を行う熱交換器25が設けられている。より詳細には、原料供給ラインL1を流れるMCHは、反応生成ガスラインL21を流れる反応生成ガスとの熱交換器25における熱交換により脱水素反応の反応温度程度まで加熱され、気体の状態で脱水素反応器23の上部に導入される。
 水素ステーション1は、燃料を用いて加熱した熱媒体を介して脱水素反応器23に熱供給する熱供給装置26を備える。熱供給装置26は、熱媒体を収容する貯槽27と、貯槽27内に配置され、燃焼触媒が充填された触媒燃焼コイル28(触媒燃焼管)とを有する。触媒燃焼コイル28では、燃焼触媒の存在下で燃料の触媒燃焼が行われ、それにより発生する熱が触媒燃焼コイル28から貯槽27内の熱媒体に伝達されることにより、熱媒体が加熱される。加熱された熱媒体は、脱水素反応器23及び熱供給装置26の間に設置された熱媒体循環ラインL23を循環する。これにより、熱供給装置26から脱水素反応器23への熱供給が行われる。後に詳述するように、熱供給装置26では、燃料としてPSA装置33から排出されるパージガス(以下、排出パージガスという。)が利用される。
 脱水素反応器23から取り出された反応生成ガスは、反応生成ガスラインL21を流れ、熱交換器25においてMCHとの熱交換がなされた後に気液分離器31に導入される。
 気液分離器31は、公知の構成を有し、反応生成ガスを冷却することにより、気相成分と液相成分とに分離する。本実施形態では、気液分離器31に導入された反応生成ガスは、100℃以下の温度まで自然冷却される。気液分離器31において、反応生成ガスに含まれるTOLおよびMCHは、液体に凝縮することにより液相成分を構成する。その液相成分は、気液分離器31の下部から抜き出され、トルエン排出ラインL3を介してトルエンタンク6に導入され、そこで貯蔵される。
 一方、気液分離器31において気相成分を構成する水素は、温度に応じた蒸気圧分のTOLおよびMCHを含む粗水素である。この粗水素は、気液分離器31の上部から抜き出され、粗水素輸送ラインL25を介してPSA装置33に送られる。
 PSA装置33は、気液分離器31から供給される粗水素(反応生成ガスの気相成分)を精製する装置である。PSA装置33は、PSA(Pressure Swing Adsorption)法に基づき、吸着剤が充填されたカラム(吸着槽)に粗水素を供給することにより、粗水素に含まれる不純物を吸着させて除去する。PSA装置33は、並列に配置された複数のカラムを有しており、それら複数のカラムのうちの再生工程のカラムと精製工程のカラムとを交互に切り替えることで連続的に精製を行う。
 反応生成ガスが供給される精製工程のカラムでは、圧力が高い状態で吸着剤に不純物を吸着させることにより、不純物を除去する。一方、再生工程のカラムでは、カラム内の圧力を下げることで吸着した不純物を脱離させると共に、パージガスとして高純度の水素を供給することにより、それら離脱した不純物をパージする。再生工程のカラムの再生操作に利用されるパージガスには製品水素が利用される。不純物の除去後にPSA装置33から排出されるパージガス(以下、排出パージガスという。)には、吸着剤から離脱した不純物が含まれるが、不純物濃度に比べて水素濃度が著しく高い。排出パージガスは、例えば80%以上の水素濃度である。
 ただし、排出パージガスの水素濃度は、PSA装置33カラムの設計によって調整可能である。すなわち、カラム(すなわち、吸着剤量)を大きくして精製工程の時間を長くすると、吸着除去される不純物量が増えるためパージガスの水素濃度は低くなる。一方、カラムを小さくして切り替え時間(精製工程の時間)を短く設計すると、吸着除去される不純物量が少ないためパージガス中の水素濃度は高くなる。
 ここで、水素の熱量は、重量当たりでは120MJ/kgと非常に高いが、水素は分子量が小さく軽いため体積当たりに換算すると12MJ/Nmと低い熱量の物質である。一方、ガソリンや灯油等の炭化水素は、炭素の燃焼熱を含むため、重量当たりの熱量は40MJ/kg程度であって水素の約1/3程度である。TOLについても水素原子と炭素原子の比が大きく異ならないことから、その燃焼熱(39.5MJ/kg)はガソリンや灯油等とほぼ同程度である。
 排出パージガス中の不純物は、主としてTOLであることから、排出パージガス中の水素濃度が80%で、残りの20%がTOLと仮定すると、1Nmの排出パージガスが有する熱量は、水素分が約10MJであり、TOL分が約80MJとなる。これより、排出パージガスは、合計90MJ/Nmの熱量を有する。また、排出パージガス中のTOL濃度が10%と仮定すると、TOL分が約40MJとなるため、排出パージガスの熱量は、水素分と合わせて50MJ/Nmとなる。
 排出パージガスに含まれる水素は製品水素なので貴重である。例えば、800Lの水素ガスは8.6MJの熱量を有し、200LのTOLのガスは34.6MJの熱量を有するので、水素濃度80%の1000Lの排出パージガスは43.2MJの熱量を有する。一方、脱水素反応によって800Lの水素を発生させるのに必要な熱量は2.6MJであることから、排出パージガスは、それに使用する水素を脱水素反応によって発生させる場合、約17倍量の体積の水素を発生させる熱源となり得る。
 一方、水素濃度が90%でTOLガス濃度が10%の排出パージガスが発生する場合には、TOLガス分の熱量17.3MJと水素ガス分の熱量9.6MJとの合計は26.9MJとなることから排出パージガスの熱量は低下することとなる。
 また、必要な熱量を与える排出パージガスにおいて、TOL濃度が高くなると、排出される二酸化炭素量が増加してLCACОの値が大きくなるため、水素ステーションの意義が薄れてしまう。これより、水素ステーション1では、排出パージガスの熱量と、水素濃度による経済性と、LCACОによる環境負荷との観点から最適なシステムを設計することが肝要となる。
 PSA装置33からの排出パージガスは、排出パージガス用のラインL31に設置されたパージガスポンプ37によりパージガスタンク39に送られ、そこで貯蔵される。パージガスタンク39の貯蔵圧力については、比較的圧力が比較的低いと触媒燃焼コイル28への供給時の圧損により、排出パージガスを触媒燃焼コイル28に適切に供給できなくなるという問題が生じる。一方、パージガスタンク39の貯蔵圧力が比較的高いとパージガスタンク39のサイズを小さくできるというメリットがあるが、パージガスポンプ37の所用動力が大きくなり、エネルギーロスの増大によって水素ステーション1のエネルギー効率の低下につながる。したがって、パージガスタンク39の貯蔵圧力は、そのような圧損や所用動力と共に、経済性やエネルギーの効率を考慮して決定され、好ましくは、1気圧~20気圧の範囲とし、さらに3気圧~9気圧の範囲とすることがより好ましい。
 排出パージガスは、パージガスタンク39からパージガス供給用のラインL33を介して熱供給装置26の触媒燃焼コイル28に燃料として導入される。触媒燃焼コイル28には、既存の燃焼触媒(以下、第2の触媒という。)とともに、着火用として脱水素触媒としても利用する高活性な白金担持アルミナ触媒(以下、第1の触媒という。)を充填することが好ましい。第1の触媒は、触媒燃焼コイル28の燃料入口部28Aに充填され、その充填量は、第2の触媒と比較して少量である。燃料入口部28A(すなわち、触媒燃焼コイル28における第1の触媒の充填領域)は、水素ステーション1の周囲環境(特に、大気温度)等に応じて、触媒燃焼コイル28の上流端から適切な範囲(長さ)に設定することができる。これにより、触媒燃焼コイル28の燃料入口部28Aにおいて、排出パージガスを第1の触媒によって良好に自然着火させることができる。また、触媒燃焼コイル28の燃料入口部28Aの下流側(すなわち、燃料入口部28A以外)には第1の触媒とは構成の異なる第2の触媒が充填されるため、第2の触媒として第1の触媒よりも安価な触媒(汎用触媒)を用いることにより触媒コストを低減できる。ただし、水素ステーション1では、燃焼触媒として、第1の触媒のみを用いることを妨げない。
 触媒燃焼コイル28における燃料の着火は、ニクロム線の加熱による700℃程度の着火源を燃料入口部28Aに設けることでも可能であるが、水素ステーション1での利用に際しては、直火やニクロム線の高温部分を設けることは安全対策上好ましくない。
 一方、第1の触媒は着火性に優れ、室温でも排出パージガスを着火できるという特徴を有している。寒冷地では、燃焼で生じる水分が燃焼触媒上に付着して凍結するため、氷点下での燃焼性が良好でない問題がある。本発明において脱水素反応に利用する白金担持アルミナ触媒は、通常の白金触媒に比べて400倍以上の高い活性を有すると推定され、着火性が極めて高い。白金担持アルミナ触媒を燃焼触媒として利用することにより、触媒燃焼コイル28では、直火や電熱線などの着火源を設けなくても排出パージガスを速やかに自然着火させることが可能である。特に、第1の触媒において、担体に担持される白金粒子において8Å~15Åの粒子径を有する粒子の割合を高くすることにより、反応の分散性が高められ、氷点下において燃焼触媒上の水分が凍結した場合でも、白金の表面が完全に氷で覆われることがなく速やかに排出パージガスを自然着火できる。
 また、排出パージガスを触媒燃焼させる際には酸素の供給が必要である。触媒燃焼コイル28には、空気供給ラインL37に設置されたエア用ポンプ41によって、触媒燃焼に必要な酸素を含む空気が供給される。空気供給ラインL37は、パージガス供給用のラインL33の接続部43に接続される。これにより、ラインL33を流れる排出パージガスは、接続部43において空気と混合された後に、触媒燃焼コイル28の燃料入口部28Aに導入される。このように、排出パージガスと必要量の空気とが混合された混合気は、燃料入口部28Aに自然着火用に充填された第1の触媒と接触することにより自然着火する。
 ラインL33に供給される空気の量は、排出パージガスの燃焼に必要な理論量よりも多ければよい。ただし、供給される空気量が多すぎると、触媒燃焼反応の妨げとなり、供給される空気量が少ないと、燃焼触媒の層におけるガス拡散が停滞して良好な燃焼反応を維持しにくいという問題が生じ得る。
 また、触媒燃焼コイル28における触媒燃焼に必要な空気は、必ずしもその全量を燃料入口部28Aに導入される排出パージガスに混合する(すなわち、ラインL33の接続部43に導入する)必要はない。例えば、上述のように接続部43に導入される空気の少なくとも一部を、分割空気供給ラインL37A(図3中の破線を参照)を介して、触媒燃焼コイル28の中間部(すなわち、燃料入口部28Aよりも下流側)に導入することもできる。このような触媒燃焼コイル28の中間部への空気の導入は、少なくとも1以上の中間部に対して行うことができる。
 このような触媒燃焼コイル28に対する空気の分割供給により、燃料入口部28A付近で触媒燃焼反応が急激に進行してホットスポットが形成されることより、貯槽27における熱媒体の均一な加熱が阻害されるという問題や、ホットスポットの形成に起因する金属粒子のシンタリング現象(燃焼触媒の活性金属の凝集)の発生によって、活性金属の表面積が減少して燃焼触媒の性能を低下させるといった問題を回避できる。
 また、触媒燃焼コイル28には、MCHタンク4内の気相成分を構成するガス(以下、MCHタンクガスという。)およびトルエンタンク6内の気相成分を構成するガス(以下、トルエンタンクガスという。)の少なくとも一方を、排出パージガスと共に燃料として供給することもできる。より詳細には、図3中に破線で示すように、MCHタンク4から排出されたMCHタンクガスは、タンクガス排出ラインL38に設置されたガス排出用ポンプ44によってパージガス供給用のラインL33の接続部43に送られる。これにより、MCHタンクガスは、タンクガス排出ラインL38の下流端に位置する接続部43において排出パージガスと混合される。同様に、トルエンタンク6から排出されたトルエンタンクガスは、タンクガス排出ラインL38の中間部に接続される分岐ラインL38Aを介してラインL33の接続部43に送られる。これにより、トルエンタンクガスは、タンクガス排出ラインL38の下流端に位置する接続部43において排出パージガスと混合される。なお、トルエンタンクガスは、MCHタンクガスとは異なるライン(配管)によってラインL33に導入されてもよい。また、MCHタンクガスやトルエンタンクガスのラインL33への導入位置は、接続部43に限らず適宜変更することができる。
 触媒燃焼コイル28において触媒燃焼した燃料(排出パージガスを含む)は、その下流端から排ガスとして排出される。排ガスは、水分が凝縮しない100℃以上の温度を維持したまま、排気調節バルブ45が設けられた排気ラインL39を通って大気中に放出される。排ガスは、完全燃焼後のガスであるため、水蒸気と窒素が主成分であって、COと未反応の酸素を低濃度で含むガスに転換されていることから、大気に放出できる無害なガスである。
 PSA装置33における粗水素の精製によって得られる製品水素は、例えば、純度99.7%以上で含有炭素分が2ppm以下である。製品水素は、PSA装置33から水素輸送ラインL5を介して圧縮機9に送られる。
(第2実施形態)
 次に、図4を参照し、本発明の第2実施形態に係る水素ステーション1及びその水素生成方法について説明する。図4では、上述の第1実施形態と同様の構成要素について、同一の符号が付されている。また、第2実施形態に係る水素ステーション1に関し、以下で特に言及しない事項については第1実施形態の場合と同様とする。第2実施形態に係る水素ステーション1及びその水素生成方法は、特に、反応生成ガスに含まれるTOLの回収率を向上させるのに好適である。
 第1実施形態と同様に、脱水素反応器23による脱水素反応の反応生成ガスに含まれる水素以外の不純物は、TOLが主成分であり、さらに未反応のMCH及び分解副反応で生成したメタンガス等を含む。これらの不純物の中で、TOL及びMCHは、OCH法における水素キャリアとして繰り返し利用できることから、経済性を担保できる範囲で可能な限り回収できることが好ましい。
 第1実施形態と同様に、反応生成ガスラインL21を流れる反応生成ガスは、熱交換器25を通って原料供給ラインL1の原料ガスに熱を与えて冷却された後、自然放冷によって気液分離器31において100℃以下の温度(例えば、50℃程度)まで冷却される。ただし、夏場などの気温が高い季節においては、気液分離器31における温度が60℃を超える場合も生じる。気液分離器31の気相成分である粗水素には、温度に見合った蒸気圧分のTOLおよびMCHが含まれるため、気液分離器31をさらに冷却して粗水素の温度を下げることは、PSA装置33に送られる粗水素中のTOL及びMCHの濃度を下げるために有効である。
 そこで、第2実施形態に係る水素ステーション1では、図4に示すように、プレクーラー17の冷媒の冷熱を粗水素の冷却に利用する。より詳細には、プレクーラー17と気液分離器31との間に設けられた第2冷媒循環ラインL41に冷媒を循環させることにより、気液分離器31内を冷却する。このように、ディスペンサー15(図2参照)に供給する冷熱と気液分離器31に供給する冷熱の両方をプレクーラー17によって供給することにより、簡易な構成によって粗水素の冷却を冷却することが可能である。気液分離器31に供給される冷媒は、比較的低温(例えば、-40℃)であるため、その供給量を少なくすることができ、また、第2冷媒循環ラインL41の配管サイズを小さくして断熱しやすくできる。気液分離器31内の粗水素は、冷媒による冷却によってマイナス10℃~0℃程度に冷却され得る。これにより、粗水素に含まれる蒸気圧分のTOL及びMCHの濃度を各段に低減することができ、PSA装置33の処理負荷を低減できるとともに、水素キャリアとして利用されるTOL及びMCHのロスを低減することができる。
 なお、第2冷媒循環ラインL41は、第1冷媒循環ラインL13とは個別に設けることができる。或いは、第1冷媒循環ラインL13と第2冷媒循環ラインL41が連続するように設けられてもよい。その場合、ディスペンサー15の水素を冷却した後の冷媒を気液分離器31内の冷却に用いることができる。
(脱水素触媒)
 次に、上述の本発明の第1および第2実施形態に係る水素ステーション1及び水素生成方法において利用可能な新規な脱水素触媒(白金担持アルミナ触媒)について説明する。上述のように、この脱水素触媒は、燃焼触媒として用いることも可能である。
 図5には、それぞれ触媒を撮影した(A)2000年代の透過型電子顕微鏡の写真、及び(B)近年の透過型電子顕微鏡の写真を示す。図5(A)は、特許文献3に開示されたエッグシェル型触媒を撮影した写真である。図5(A)の写真は、2006年に当時の最新式の透過型電子顕微鏡である日立製作所製のHD―200型電子顕微鏡を用いて180万倍の拡大率で撮影された。図5(B)は、特許文献4に開示された均一型白金担持アルミナ触媒を撮影した写真である。図5(B)の写真は、2018年に日本電子製のJEM―ARM200型電子顕微鏡を用いて200万倍の拡大率で撮影された。
 2000年代の一般的な透過型電子顕微鏡の解像度では、数ナノメートルの白金粒子径を直接観察して測定することはできなかったため、当時はCOパルス法(COパルス吸着法)で粒子径を推定することが一般的であった。現在では、電子顕微鏡性能の進歩によって、1Å程度の解像度によって数Åの粒子やベンゼン環などの分子に至るまで直接観察できるようになっている。
 図5(A)に示す2000年代の透過型電子顕微鏡写真では、複数の白金粒子がそれぞれ独立して担持されている状態であることは判明するが、白い点(すなわち、白金粒子)の輪郭が明確でないため、粒子が実際よりも大きく見える傾向がある。
 図5(B)に示す近年の透過型電子顕微鏡では、白い点(白金粒子)の輪郭が、より明確に観察できることがわかる。したがって、近年の透過型電子顕微鏡による直接観察により、アルミナ担体に担持された白金の粒子径をより高精度に測定することができる。本発明に係る白金担持アルミナ触媒における白金粒子の平均粒子径は、図5(B)に示すような透過型電子顕微鏡の写真において、所定数(通常は50個程度)の白金の粒子径を測定し、それらの平均値として算出することができる。透過型電子顕微鏡では、所定数の白金の粒子径が写真に収まるように倍率(例えば、本発明の白金担持アルミナ触媒は200万倍で観察することで視野に40~50個の白金粒子を観察できる。)を設定するとよい。各白金粒子の大きさの測定は電子顕微鏡のシステムに備えられているコンピューター画面上で粒子の輪郭に測定線を合わせることで粒子径を測定できる。この際、白金粒子の形状に長軸径と短軸系が存在する場合は、長軸径の輪郭に合わせることで長軸径を計測でき、短軸径も同様に測定することができる。本発明の白金担持アルミナ触媒上の白金粒子は長軸径と短軸径にほとんど差がないことから、長軸径をもって代表値とすることが可能である。また、画像を印刷して粒子径を定規で測定して画像上のスケールと比較することでも粒子径の大きさを測定することが可能である。
 これに対し、上述の特許文献3及び特許文献4において開示された白金の粒子径は、COパルス法による推算値である。COパルス法による推算粒子径と、透過型電子顕微鏡を用いた直接観察によって測定した粒子径とでは誤差があることが考えられる。これは、COパルス法では、直接観察による粒子径に比べて小さな粒子として推算されやすいことによる。COパルス法では、白金粒子表面の白金1原子に対してCOが1分子吸着することから、総CO吸着量を測定し、白金粒子の形状を立方体に仮定して、その1辺の長さを粒子径として推算する。このとき、担体にはCOが吸着しない仮定のもとに推算する。白金担持アルミナ触媒の場合、白金にCOが優先的に吸着し、留出COが注入CO量に等しくなった時に直ちにCOの注入が止められるが、アルミナ担体では、表面積が大きく担体にも一定のCOが吸着するため、この分のCOが白金表面に吸着したものとして推算されることになる。
 ここで、COパルス法について説明する。COをパルス的に試料に注入すると、注入初期にはCOが担持金属表面に吸着され、溶出するCOは少ない。やがて、ほとんどの担持金属表面にCOが吸着して定常状態になると、注入したCOのほとんどが排出されるようになる。このとき、定常時に排出されるCO量から吸着時における排出CO量を差し引き、その差分の和をCO吸着量として求める。COパルス法は、この吸着量と担持金属含有量から金属表面積、分散率、粒子径を算出する方法である。以下に具体的な算出方法を説明する。
 触媒の試料量W(g)が、測定温度において吸着したCOガス量Vtより、0℃における触媒1g当たりの吸着ガス量Vを次の式(1)から求めた。
   V=(Vt/W)×{273/(273+t)} (ml/g・cat) ... (1)
 ここで、試料の金属含有率をC(%)、担持金属の原子量をMとすると、試料1g当たりの担持金属のモル数Rは、式(2)から求められる。
   R=(C/100)×(1/M) (mol/g・cat) ... (2)
 試料1g当たりの吸着ガス量のモル数Kは、式(3)から求められる。
   K=V/(22.4×10-3×10) (mol/g・cat) ...(3)
 これらより、分散度B(担持金属中の有効担持金属の割合)は、式(4)から求められる。
   B=(K/R)×100 (%) ... (4)
 担持金属触媒の格子定数をa(Å)とした時、格子定数面積aに対して吸着ガス分子1個が吸着するとすれば、金属の比表面積Sは、式(5)から求められる。
   S=試料1gに吸着したガス分子数×a
    =K×6.02×1023×(a×10-10 ... (5)
 また、担持金属粒子を一辺の長さをD(m)とする立方体と仮定すると、粒子の6面のうち有効な面は5面であることから、
   粒子1個の有効面積S=5D (m2) ... (6)
   粒子1個の体積v=D (m3) ... (7)
試料1g当たりの担持金属の粒子数をnとすると
   担持金属の比表面積S=ns=n5D (m2) ... (8)
   担持金属の体積Vc=nv=Nd (m3) ... (9)
式(6)~式(9)より、一辺の長さD(m)は、式(10)のように表される。
   S/Vc=5/D   ∴D=5Vc/S (m) ... (10)
 ここで、担持金属の含有率C(%)、比重をd(g/cm3)とすると、試料1g当たりの担持金属の体積Vcは、式(11)のように表される。
   Vc=試料1g当たりの担持金属重量(g/g)/担持金属の比重(g/cm3)
     =C/100/d (g/cm3) ... (11)
 よって、粒子径は、式(12)から計算される。
   粒子径=5Vc/S
     ={5(C/100/d)×10-6}/S (m)
     ={5(C/100/d)×10-6×1010}/S (Å) ... (12)
 このように、従来の白金担持アルミナ触媒においてアルミナ担体に担持された白金の粒子径は、比較的誤差の大きいCOパルス法や当時の透過型電子顕微鏡写真(図5(A)参照)に基づき測定(算出)されていた。したがって、従来の白金担持アルミナ触媒では、白金の粒子径を高い精度で制御することは難しいため、白金の粒子径の好適な範囲も比較的広い範囲に設定されていた。
 これに対し、本発明では、近年の透過型電子顕微鏡写真(図5(B)参照)に基づき比較的高い精度で測定された白金の粒子径の値に基づき、従来の白金担持アルミナ触媒に比べて触媒寿命を顕著に改善できる白金の粒子径の範囲(白金粒子径の分布)が設定される。本発明に係る白金担持アルミナ触媒では、透過型電子顕微鏡による直接観察において、γ―アルミナ担体に担持される白金の粒子の70%以上が8Å~15Åの大きさを有するとよい。より好ましくは、γ―アルミナ担体に担持される白金の粒子の80%以上が8Å~15Åの大きさを有するとよい。さらに好ましくは、γ―アルミナ担体に担持される白金の粒子の90%以上が8Å~15Åの大きさを有するとよい。
 次に、本発明でいうエッグシェル型の金属担持触媒と均一型の金属担持触媒とを説明する。エッグシェル型の金属担持触媒とは、成形された触媒の断面において担持される金属種が断面の外殻部分にのみ分散担持されている状態を指す。すなわち、多孔性の担体の外郭部分に金属種が担持された金属担持部分が形成されている。均一型の金属担持触媒は、触媒の断面の全体亘って金属種が分散し、多孔性の担体の成形体の内部全般にわたって金属種が担持された金属担持部分が形成されている状態をいう。
 本発明に係る白金担持アルミナ触媒は、アルミナ担体と、アルミナ担体に担持された白金と、を有する。
 次に本発明に係る白金担持アルミナ触媒に用いられるアルミナ担体について説明する。
 アルミナ担体としては、多孔性γ-アルミナ担体であるとよい。より詳細には、アルミナ担体は、例えば特公平6-72005号公報に開示されているように、アルミニウム塩の中和により生成した水酸化アルミニウムのスラリーを濾過洗浄し、得られたアルミナヒドロゲルを脱水乾燥した後、400℃以上800℃以下で1時間~6時間程度焼成することにより得られる多孔性γ-アルミナ担体であるのがよい。より好ましくは、アルミナ担体は、アルミナヒドロゲルのpH値をアルミナヒドロゲル溶解pH領域とベーマイトゲル沈殿pH領域との間で交互に変動させると共に少なくともいずれか一方のpH領域から他方のpH領域へのpH変動に際してアルミナヒドロゲル形成物質を添加してアルミナヒドロゲルの結晶を成長させるpHスイング工程を経て得られた多孔性γ-アルミナ担体であるのがよい。このpHスイング工程を経て得られた多孔性γ-アルミナ担体は、細孔分布の均一性に優れ成形後のアルミナ担体ペレットにおいても物理性状のばらつきが少なく、個々のペレット毎の物理性状が安定しているという点で優れている。
 本願発明者らは、アルミナヒドロゲル(ベーマイト)の乾燥および焼成の条件と、担持された白金の粒子径との関係について、さらに検討を重ねた結果、白金粒子の多くを8Å~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、乾燥温度は200℃以下、その後の焼成温度は250℃以上400℃以下、その焼成時間は1時間以上12時間以下であることが特に好ましいことを見出した。
 本発明に係る均一型白金担持アルミナ触媒を調製する場合に、アルミナ担体に予め分散させて含有せしめる硫黄又は硫黄化合物としては、硫黄元素を有し、かつ、触媒担体の調製時にあるいは触媒担体の調製後に、この触媒担体中に均一に分散した状態で含有させることができるものであれば特に制限はない。例えば、硫黄又は硫黄化合物として、硫黄の結晶粉末や、硫酸、硫酸アンモニウム等の硫酸塩等の硫黄含有化合物を挙げることができ、担体上に硫黄が分散しやすい観点から水又は有機溶媒に溶解性がある硫黄化合物が好ましく、そのような硫黄化合物として硫酸、硫酸アンモニウム等を挙げることができる。
 担体に含有せしめる硫黄の量は、硫黄元素(S)として0.15重量%(wt%)以上5.0重量%以下が好ましく、更に好ましくは0.15重量%以上3.0重量%以下が好ましい。0.15重量%未満の硫黄含有量では、金属が触媒の中心部に亘ってまで均一に担持される度合いにおいて効果が低く、硫黄含有量が5重量%を超えると局部的に硫黄が凝集し易く、そのような局部には金属が分散して担持されないという問題点が生じ易くなる。これらより、金属を均一に分散担持する効果において最も好適な硫黄含有量の範囲は0.15重量%以上5.0重量%以下である。
 本願発明者らは、硫黄濃度と、担持された白金の粒子径との関係について、さらに検討を重ねた結果、白金粒子の多くを8Å~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、硫黄含有量の範囲については、硫黄または硫黄化合物が硫黄元素(S)として0.5~1.2重量%含まれることが特に好ましいことを見出した。
 本発明において、上記硫黄又は硫黄化合物を含有する硫黄含有触媒担体を調製する方法については、それが担体断面全体に亘って分散した状態で硫黄又は硫黄化合物を含有させることができればよく、例えば、A:触媒担体の調製時に得られた金属酸化物の前駆体となる金属水酸化物ゲルに硫黄粉末を混練し、所定の形状に成形した後、乾燥し焼成して調製する方法、B:触媒担体の調製時に金属硫酸塩及び/又は硫酸を用いて硫黄分を含有する金属酸化物の前駆体となる金属水酸化物ゲルを調製し、所定の形状に成形した後、乾燥し焼成して調製する方法、C:触媒担体の調製時に金属酸化物の前駆体となる金属水酸化物ゲルを所定の形状に成形し、次いで乾燥して乾燥金属水酸化物ゲルとし、この乾燥金属酸化物に硫黄化合物溶液を含浸させた後に焼成して調製する方法、D:触媒担体の調製時に金属酸化物の前駆体となる金属水酸化物ゲルを所定の形状に成形し、次いで乾燥して乾燥金属水酸化物とし、この乾燥金属水酸化物に硫黄化合物溶液を含浸させた後に焼成して調製する方法、E:金属酸化物の前駆体となる金属水酸化物ゲルを所定の形状に成形し、次いで乾燥して乾燥金属水酸化物ゲルとし、次いでこの乾燥金属水酸化物ゲルを焼成して得られた焼成金属酸化物とし、この焼成金属酸化物に例えば硫酸水溶液、硫酸アンモニウム水溶液等の硫黄化合物溶液を含浸させた後に再び焼成して調製する方法、等を例示することができる。
 本願発明者らは、硫黄含有触媒担体を調製する方法について、さらに検討を重ねた結果、白金粒子の多くを8Å~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、上記のEの方法でγ―アルミナ担体の表面に硫黄を分散担持させることが特に好ましいことを見出した。
 また、この硫黄含有触媒担体を調製する際の焼成条件については、通常その焼成温度が100℃以上1000℃以下、好ましくは350℃以上800℃以下であって、その焼成時間が0.5時間以上48時間以下、好ましくは1時間以上24時間以下である。焼成温度が350℃より低いと水酸化物から酸化物への転化が十分に行われない場合があり、反対に、800℃より高くなると焼成後の表面積が著しく低下する場合がある。
 本願発明者らは、さらに硫黄含有γ―アルミナ担体を調製する際の乾燥および焼成条件について検討を重ねた結果、白金粒子の多くを8Å~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、乾燥条件については、乾燥温度は100℃以上200℃以下、乾燥時間は3時間以上12時間以下であることが特に好ましく、また、焼成条件については、焼成温度は250℃以上400℃以下、焼成時間は1時間以上12時間以下であることが特に好ましいことを見出した。
 本発明において、上記の硫黄含有触媒担体に担持させる白金の担持量は、白金元素として0.05重量%以上5.0重量%以下、好ましくは0.1重量%以上3.0重量%以下である。この白金の担持量が0.05重量%より少ないと活性が低いという問題があり、反対に、5.0重量%より多くなると白金の粒子径が大きくなり、選択性が低下すると共にシンタリングし易くて劣化し易いという問題が生じる。
 本願発明者らは、好適な白金の担持量についてさらに検討を重ねた結果、白金粒子の多くを8Å~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、白金の担持量は、白金元素の含有量として0.1重量%以上1.5重量%以下が好ましく、調製された白金担持アルミナ触媒の寿命向上の観点から、0.5重量%以上1.5重量%以下がさらに好ましいことを見出した。
 本発明において、γ―アルミナ担体に白金金属を担持させる場合、上記のγ―アルミナ担体に対し、白金化合物の溶液を含浸させ、乾燥した後、所定の温度で焼成すればよい。白金化合物は、白金の塩化物、臭化物、アンモニウム塩、カルボニル化合物、アミン及びアンミン錯体やアセチルアセトナト錯体等の各種の錯体化合物等を挙げることができる。白金化合物は、例えば、塩化白金酸、アセチルアセトナト白金、白金酸アンモニウム塩、臭化白金酸、二塩化白金、四塩化白金水和物、二塩化カルボニル白金二塩化物、ジニトロジアミン白金酸塩等の白金化合物が挙げられる。
 本願発明者らは、含侵させる白金化合物についてさらに検討を重ねた結果、調製された白金担持アルミナ触媒の寿命向上の観点から、焼成後のγ―アルミナ担体に対し、白金試薬水溶液として塩化白金酸水溶液を使用して白金を含侵させることが特に好ましいことを見出した。
 アルミナ担体に上記の白金化合物の溶液を含浸させた後は、白金化合物が付着したアルミナ担体を50℃以上200℃以下、0.5時間以上48時間以下の条件で乾燥した後、350℃以上600℃以下、0.5時間以上48時間以下、より好ましくは350℃以上450℃以下で0.5時間以上5時間以下の条件で焼成する。
 本願発明者らは、アルミナ担体に対する好適な白金含侵後(例えば、白金元素としての含有量が0.5重量%~1.5重量%の範囲)の乾燥及び焼成の条件についてさらに検討を重ねた結果、白金粒子の多くを8Å~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、乾燥条件については、乾燥温度は100℃以上200℃以下、乾燥時間は3時間以上12時間以下、焼成条件については、焼成温度は250℃以上450℃以下、焼成時間は1時間以上8時間以下が特に好ましいことを見出した。
 次いで、白金担持工程の最終工程として、白金化合物が付着したアルミナ担体を、水素ガスの雰囲気下において、350℃以上600℃以下及び0.5時間以上48時間以下、好ましくは350℃以上550℃以下及び3時間以上24時間以下の還元条件で水素還元処理を行う。この水素還元時の温度が350℃未満であると十分に白金が還元されないという問題が生じ、また、600℃を超えると還元時に白金粒子がシンタリングして金属分散度が低下するという問題が生じる。
 本願発明者らは、好適な白金含侵焼成後の水素還元の温度条件についてさらに検討を重ねた結果、白金粒子の多くを8Å~15Åの範囲の大きさでγ-アルミナ担体に対して安定的に担持するために、水素還元の温度は300℃以上450℃以下で、かつ、白金含侵後に焼成する温度以下が特に好ましく、水素還元の時間については1時間以上15時間以下が特に好ましいことを見出した。
 上記のエッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒へのアルカリ添加量は、0.1重量%以上5重量%以下、好ましくは0.3重量%以上3.0重量%以下、さらに好ましくは0.5重量%以上1.5重量%以下である。このアルカリ金属の担持量が0.1重量%より少ないと触媒寿命が短く効果が低いという問題があり、反対に、5.0重量%より多くなると、活性が低下すると共に触媒寿命が短くなるという問題が生じる。
 本願発明者らは、白金粒子の多くを8Å~15Åの範囲の大きさでγ-アルミナ担体に対して担持するにあたり、好適なアルカリ添加量についてさらに検討を重ねた結果、アルカリ添加量については、0.5重量%以上1.5重量%以下であれば調製後の白金粒子のサイズに大きな影響はないことを見出した。
 エッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒にアルカリ性金属を担持させる際に用いるアルカリ性金属の化合物としては、アルカリ性金属の塩化物、臭化物、ヨウ化物、硝酸塩、硫酸塩、酢酸塩、プロピオン酸塩等を例示でき、好ましくは水溶性のもの及び/又はアセトン等の有機溶媒に可溶のものがよく、例えば、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、硝酸ナトリウム、硫酸ナトリウム、酢酸ナトリウム、プロピオン酸ナトリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、硝酸カリウム、硫酸カリウム、酢酸カリウム、プロピオン酸カリウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、硝酸カルシウム、硫酸カルシウム、酢酸カルシウム、プロピオン酸カルシウム等を挙げることができる。
 また、エッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒にアルカリ性金属を担持させる際には、アルカリ性金属の化合物の溶液を含浸させた後、室温以上200℃以下及び0.5時間以上48時間以下、好ましくは50℃以上150℃以下及び0.5時間以上24時間以下、より好ましくは80℃以上120℃以下及び0.5時間以上5時間以下の乾燥条件で乾燥した後、350℃以上600℃以下及び0.5時間以上48時間以下、好ましくは350℃以上450℃以下及び0.5時間以上5時間以下の条件で焼成する。
 本願発明者らは、白金粒子の多くを8Å~15Åの範囲の大きさでγ-アルミナ担体に対して担持するにあたり、好適なアルカリ化合物の溶液を含侵した後の乾燥条件についてさらに検討を重ねた結果、室温以上200℃以下であれば、乾燥時間に拘わらず、担持された白金粒子のサイズに影響を及ぼさないことを見出した。
 エッグシェル型白金担持アルミナ触媒、およびγーアルミナ担体に硫黄を含有させて調製した均一型白金担持アルミナ触媒にアルカリ金属を含浸させ、乾燥して得られたアルカリ金属担持乾燥物については、その後に焼成することなく直接に最終的な水素還元を行う。この水素還元の還元条件は、水素ガスの雰囲気下に、350℃以上600℃以下及び0.5時間以上48時間以下、好ましくは350℃以上550℃以下及び3時間以上24時間以下であるとよい。このアルカリ金属担持乾燥物の水素還元に先駆けて焼成を行うと、活性、選択性、及び寿命に関する触媒性能が低くなるという問題が生じる。また、水素還元時の温度が350℃未満であると十分に白金が還元されないという問題が生じ、600℃を超えると還元時に白金粒子がシンタリングして金属分散度が低下するという問題が生じる。
 本願発明者らは、白金粒子の多くを8Å~15Åの範囲の大きさでγ-アルミナ担体に対して担持するにあたり、好適なアルカリ化合物の溶液を含侵、乾燥した後の水素還元条件についてさらに検討を重ねた結果、アルカリ金属添加前の白金担持工程の最終工程である水素還元の温度、還元時間以下であれば、担持された白金粒子のサイズに影響を及ぼさないことを見出した。
 以下、実施例及び比較例に基づいて、本発明の脱水素触媒に関する好適な実施の形態を具体的に説明する。
[比較例1](特許文献3に記載のエッグシェル型触媒と特許文献4に記載の均一型白金担持アルミナ触媒の透過型電子顕微鏡を用いた直接観察による粒子径測定結果とCOパルス法による測定結果の比較)
 特許文献3に記載のエッグシェル型触媒の白金粒子径は、COパルス法で測定したCO吸着量から推算した分散度と白金粒子の形状を立方体に仮定して粒子径を推算した粒子径であり、特許文献3の表2(実験例1)および表3(実験例2)に示されるように、5.5Å~14Åの範囲の粒子径として推算されていた。
 一方、特許文献4の記載の均一型白金担持アルミナ触媒の粒子径は、特許文献4の表1(実施例4)に示されるように、6.5~11Åの粒子径として推算されていた。
 図6に示すように、透過型電子顕微鏡を用いた直接観察により、特許文献4に記載の均一型白金担持アルミナ触媒における42個の白金粒子(図6中の1-42の番号を参照)の粒子径について測定した。図6に示した触媒の画像は、図5(B)に示した透過型電子顕微鏡写真に相当する。また、この触媒は、特許文献4(表1)に記載の触媒No.6(粒子径が6.5Å)に相当する。
 白金粒子径の測定は、電子顕微鏡の画面上で粒子径測定機能を利用して行うことができる。ただし、電子顕微鏡写真に示された縮尺と粒子径の最も大きな径を示す部分の長さを比較することによっても概ね同様の測定結果を得ることができる。粒子径の測定結果を表1に示す。表1に示した42個の平均粒子径は16.8Å(1.68nm)であった。
Figure JPOXMLDOC01-appb-T000001
 また、表1に示した白金粒子径の測定結果によれば、測定した42個の白金粒子のうち19個(約45%)の白金粒子が8Å~15Å(0.8~1.5nm)の範囲の大きさであり、23個の白金粒子は、15Å(1.5nm)より大きく、16Å(1.6nm)以上の大きさであることがわかる。
 このように、特許文献4に記載の均一型白金担持アルミナ触媒(特許文献4の表1の触媒No.6)を電子顕微鏡で直接観察した画像から測定したところ、白金の平均粒子径は1.68nm(16.8Å)であった。このことから、特許文献4に記載のCOパルス法による白金の粒子径の推算値(6.5Å)は、電子顕微鏡写真の直接観察によって測定した値に比べて著しく小さな値であることが判る。
 上述のように、特許文献3に記載のエッグシェル型触媒および特許文献4に記載の均一型白金担持アルミナ触媒について、COパルス法で測定したCO吸着量から推算した分散度と白金粒子の形状を立方体に仮定して粒子径を推算した粒子径では、5.5~14Åの粒子径として推算されていたが、それらの粒子径についても、電子顕微鏡を用いた直接観察によれば、かなり小さな値になると考えられる。
 このようなCOパルス法による粒子径の推算値の大きな誤差は、COパルス法では、導入したCOが白金粒子の表面に露出している白金原子に吸着するという仮定のもとに推算されるが、実際にはアルミナ担体にも吸着しているCOが多く存在しているためにCO吸着量が大きく観測されること、及び白金粒子の形状を立方体に仮定して、その1辺を粒子径として推算することに起因すると考えられる。
[比較例2](特許文献3の実施例に記載の調製方法)
 特許文献3の実施例に記載のエッグシェル型白金担持γ―アルミナ触媒の調製方法を説明する。
 特許文献3の実施例と同様に、特公平6-72005号公報の実施例1に記載された従来技術に基づき、多孔性γーアルミナ担体を製造した。この方法のあらましを述べると、熱希硫酸中に激しく撹拌しながら瞬時にアルミン酸ソーダ水溶液を加えることにより水酸化アルミニウムスラリーの懸濁液(pH10)を得た。これを種子水酸化アルミニウムとして、撹拌を続けながら熱希硫酸とアルミン酸ソーダ水溶液を交互に一定時間おいて加える操作を繰り返し、ろ過洗浄ケーキを得た。これを押し出し成形して乾燥した後、500℃で3時間焼成した。
 こうして調製されたγーアルミナ担体は、表面積が240m2/g、細孔容積が0.713cm3/g、平均細孔径が119Å、及び細孔径90~300Åの占有率が90%の物理的性状を有する。この多孔性γ-アルミナ担体20gに、pH値が2.0になるように調製した0.4wt%-塩化白金酸水溶液79gを添加し、3時間放置して含浸させた後、デカンテーションにより水を除去し、次いで120℃で3時間乾燥させてからマッフル炉により空気流通下に400℃で3時間焼成した。得られた焼成物をデシケーター中で常温まで冷却した後、水素流通下に400℃で15時間還元し、脱水素触媒(特許文献3の実施例における表2に記載の触媒No.2に相当)を調製した。この触媒のCOパルス法による白金粒子径の推算値は5.5Åであった。
[比較例3](特許文献4の実施例に記載の調製方法)
 特許文献4の実施例に記載の均一型白金担持γ―アルミナ触媒の調製方法を説明する。
 濃度2.67mol/Lの硝酸アルミニウム水溶液を3900cc調製すると共に、14%アンモニア水溶液を3900cc用意した。30リットルのホーロー容器に純水20リットルを入れ、撹拌しながら70℃に加温した。撹拌を続けながら、硝酸アルミニウム水溶液1300ccを投入して5分間撹拌(pH=2.0)したのちに、アンモニア水溶液1300ccを投入して5分間撹拌(pH=7.4)するpHスイング操作を4回行った。得られた水酸化アルミニウムのスラリー水溶液を濾過してケーキを回収し、次いでこのケーキを純水20Lに再分散させて再び濾過する洗浄操作を3回行って洗浄ゲルを得た。
 洗浄ケーキを風乾により水分を調整した後に、押出成形機で直径1.6mmの棒状に成形し、乾燥(120℃、3時間)後、長さ約1cm程度に粉砕し、マッフル炉にて焼成(500℃、3時間)して硫黄分を含まないアルミナ担体Aを得た。得られたアルミナ担体Aでは、BET表面積が275m2/g、水銀圧入法による細孔容積が0.65cm3/gであった。また、得られたアルミナ担体Aでは、平均細孔径が8.9nmであり、ほとんどの細孔が平均細孔径付近に集中したシャープな細孔分布を有しており、7~10nmの細孔径を有する細孔が占める容積は全細孔容積の80%以上であった。
 アルミナ担体Aに濃度0.38mol/Lの硫酸アンモニウム水溶液を焼成後の硫黄含有量が0.5重量%となるように含浸して、エバポレーターにて溶媒を除去した。その後、アルミナ担体Aを乾燥(120℃、3時間)、焼成(500℃、3時間)して硫黄分を0.5重量%含むアルミナ担体を得た。
 こうして調製されたアルミナ担体に、pH=2.0に調製した塩化白金酸水溶液を用いて焼成後の白金担持量が0.6重量%となるように含浸させた後、エバポレーターにて水分を除去し、乾燥(120℃、3時間)し、焼成(400℃、3時間)した後に、流通式水素還元装置に充填して水素気流下に450℃、15時間の条件で水素還元し、0.6wt%白金担持アルミナ触媒を得た。この白金担持アルミナ触媒のCOパルス法による白金粒子径の推算値は6.5Åであった。
[比較例4](特許文献3に記載のエッグシェル型触媒と特許文献4に記載の均一型触媒に関する反応試験方法)
 特許文献3に記載のエッグシェル型触媒および特許文献4に記載の均一型触媒に関する脱水素反応試験方法と反応試験結果の比較を示す。ここで、特許文献3に記載の脱水素反応試験と、特許文献4に記載の脱水素反応試験とでは、反応温度および原料MCHと共に供給される水素の濃度の条件が異なっている。これは、特許文献3に記載の脱水素触媒と特許文献4に記載の脱水素触媒とでは、劣化速度が異なることによる。特許文献3に記載の脱水素触媒の開発当時の劣化速度の反応試験条件は、比較的に劣化しにくい条件であった。具体的には、特許文献3に記載の反応試験条件は、反応温度300℃、水素共供給濃度20%の条件であるのに対して、特許文献4に記載の反応条件は、反応温度320℃、水素共供給濃度5%の条件である。特許文献4に記載の脱水素触媒は劣化速度が小さく劣化しにくい触媒のため、劣化が進みやすい加速条件で反応試験を行ったことが理由である。
 本比較例では、メチルシクロヘキサン(MCH)の脱水素反応試験について、特許文献3に記載の脱水素触媒を触媒NО.1、特許文献4に記載の脱水素触媒を触媒NО.2として用いた脱水素反応試験の結果を示す。
 内径12.6mmφ×300mmサイズで、反応管断面の中心に外形1/8インチの熱電対用保護管を備えたステンレス製の反応管の長さ方向の中心に、触媒層の中心が位置するように上記各触媒10ccを充填し、触媒の上側に予熱層として1mmφの球状α-アルミナビーズ10ccを充填した。水素流通(LHSV=5.0; 50cc/hr)下に触媒層の中心温度が320℃になるまで昇温した。次いでメチルシクロヘキサン(MCH)を高速液体クロマトグラフィ(HPLC)用送液ポンプ(HPLCポンプ)によってLHSV=2.0(20cc/hr)に相当する量を反応器に供給し、直に水素の流量をMCHと水素のガス量の合計量に対して水素のガス量が5mol%になるように調節した。反応中は触媒層の中心温度が320℃になるように電気炉の出力を調整して反応試験を行った。
 反応管の出口には気液分離器を設け、この脱水素反応により生成したトルエン等の液状生成物と水素ガス等の気体とを分離し、回収された液状生成物と気体とを各々ガスクロマトグラフィで分析した。
 反応開始2時間後と300時間後におけるMCH転化率(%)、トルエン選択率(%)、トルエン収率(%)、及び生成メタン濃度(ppm)を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[実施例1](本発明によるエッグシェル型触媒の調製方法と粒子径の測定結果)
 濃度2.67mol/Lの硝酸アルミニウム水溶液を3900cc調製すると共に、14%アンモニア水溶液を3900cc用意した。30リットルのホーロー容器に純水20リットルを入れ、撹拌しながら70℃に加温した。撹拌を続けながら、硝酸アルミニウム水溶液1300ccを投入して5分間撹拌(pH=2.0)したのちにアンモニア水溶液1300ccを投入して5分間撹拌(pH=7.4)するpHスイング操作を4回行った。得られた水酸化アルミニウムのスラリー水溶液を濾過してケーキを回収し、次いでこのケーキを純水20Lに再分散させて再び濾過する洗浄操作を3回行って洗浄ゲルを得た。
 洗浄ケーキを風乾により水分を調整した後に押出成形機で直径1.6mmの棒状に成形し、乾燥(120℃、3時間)後、長さ約1cm程度に粉砕し、マッフル炉にて焼成(350℃、3時間)して硫黄分を含まないアルミナ担体Aを得た。得られたアルミナ担体Aでは、BET表面積が290m2/g、水銀圧入法による細孔容積が0.61cm/gであった。また、得られたアルミナ担体Aでは、平均細孔径が9.5nm(95Å)であり、ほとんどの細孔が平均細孔径付近に集中したシャープな細孔分布を有しており、7~11nm(70~110Å)の細孔径を有する細孔が占める容積は全細孔容積の80%以上であった。
 こうして調製したアルミナ担体に、pH=2.0に調製した塩化白金酸水溶液を用いて焼成後の白金担持量が0.6重量%となるように含浸させた後、エバポレーターにて水分を除去し、乾燥(120℃、3時間)し、焼成(350℃、3時間)した。その後、そのアルミナ担体を、流通式水素還元装置に充填して水素気流下に400℃、15時間の条件で水素還元し、0.6wt%白金担持アルミナ触媒(以下、触媒NО.3という。)を得た。こうして得た触媒NО.3について、電子顕微鏡を用いた直接観察により測定した白金粒子の平均粒子径は11.27Åであった。白金粒子径の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3において、最も小さな白金粒子は8Å(0.8nm)であり、最も大きな白金粒子は21Å(2.1nm)である。また、測定した45個の白金粒子のうち40個(約89%)の白金粒子が8Å~15Å(0.8~1.5nm)の範囲の大きさであり、5個の白金粒子のみが、15Å(1.5nm)より大きく、16Å(1.6nm)以上の大きさであることがわかる。
[実施例2](本発明による均一型触媒の調製方法と粒子径の測定結果)
 濃度2.67mol/Lの硝酸アルミニウム水溶液を3900cc調製すると共に、14%アンモニア水溶液を3900cc用意した。30リットルのホーロー容器に純水20リットルを入れ、撹拌しながら70℃に加温した。撹拌を続けながら、硝酸アルミニウム水溶液1300ccを投入して5分間撹拌(pH=2.0)したのちにアンモニア水溶液1300ccを投入して5分間撹拌(pH=7.4)するpHスイング操作を4回行った。得られた水酸化アルミニウムのスラリー水溶液を濾過してケーキを回収し、次いでこのケーキを純水20Lに再分散させて再び濾過する洗浄操作を3回行って洗浄ゲルを得た。
 洗浄ケーキを風乾により水分を調整した後に押出成形機で直径1.6mmの棒状に成形し、乾燥(120℃、3時間)後、長さ約1cm程度に粉砕し、マッフル炉にて焼成(350℃、3時間)して硫黄分を含まないアルミナ担体Aを得た。得られたアルミナ担体Aでは、BET表面積が290m2/g、水銀圧入法による細孔容積が0.61cm/gであった。また、得られたアルミナ担体Aでは、平均細孔径が9.5nm(95Å)であり、ほとんどの細孔が平均細孔径付近に集中したシャープな細孔分布を有しており、7~11nm(70~110Å)の細孔径を有する細孔が占める容積は全細孔容積の80%以上であった。
 こうして調製したγ―アルミナ担体に、濃度0.38mol/Lの硫酸アンモニウム水溶液を焼成後の硫黄含有量が0.5重量%となるように含浸して、エバポレーターにて溶媒を除去した後に乾燥(120℃、3時間)、焼成(350℃、3時間)して硫黄分を含むアルミナ担体を得た。
 得られたアルミナ担体に、pH=2.0に調製した塩化白金酸水溶液を用いて焼成後の白金担持量が0.6重量%となるように含浸させた後、エバポレーターにて水分を除去し、乾燥(120℃、3時間)し、焼成(350℃、3時間)した。その後、そのアルミナ担体を、流通式水素還元装置に充填して水素気流下に400℃、15時間の条件で水素還元し、0.6wt%白金担持アルミナ触媒(以下、触媒NО.4という。)を得た。こうして得た触媒NО.4について、電子顕微鏡を用いた直接観察により測定した白金粒子の平均粒子径は11.27Åであった。白金粒子径の測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4において、最も小さな白金粒子は8Å(0.8nm)であり、最も大きな白金粒子は22Å(2.2nm)である。また、測定した47個の白金粒子のうち41個(約87%)の白金粒子が8Å~15Å(0.8~1.5nm)の範囲のサイズであり、6個の白金粒子のみが、15Å(1.5nm)より大きく、16Å(1.6nm)以上の大きさであることがわかる。
[実施例3](本発明によるエッグシェル型触媒と均一型触媒の反応試験結果)
 実施例1に示した本発明の調製条件で調製したエッグシェル型白金担持γーアルミナ触媒(触媒NО.3)、実施例2に示した本発明の調製条件で調製した均一型白金担持γーアルミナ触媒(触媒NО.4)について、比較例4に示した方法と同様の方法と反応条件でメチルシクロヘキサンの脱水素反応試験を実施した。表5には、その脱水素反応試験の結果、ならびに電子顕微鏡の画像の直接観察に基づき測定した白金粒子の平均粒子径、及び測定した白金粒子のうち8Å~15Åの範囲のサイズを有する白金粒子の数の割合を計算した結果を示す。
Figure JPOXMLDOC01-appb-T000005
 表5の反応試験結果からわかるように、本発明によって触媒調製の条件を最適化した結果、特に、触媒寿命において優れた性能を有する白金担持アルミナ触媒が得られた。従来の調製条件で調製したエッグシェル型白金担持γーアルミナ触媒(触媒NО.1)に比べて、本発明の調製条件で調製したエッグシェル型白金担持γーアルミナ触媒(触媒NО.3)は、トルエン収率の低下が少なく長寿命である。また、従来の調製条件で調製した均一型白金担持γーアルミナ触媒(触媒NО.2)に比べて、本発明の調製条件で調製した均一型白金担持γーアルミナ触媒(触媒NО.4)は、トルエン収率の低下が少なく長寿命である。
 表5の反応試験は、加速試験条件で行っているため、300時間程度でのトルエン収率の劣化幅は小さく見える。しかし、加速試験条件での劣化幅は実際の商業的に実施する際の反応条件における劣化幅より著しく大きく、概略的に表現すると、表5における触媒NО.1の寿命が約1年、触媒NО.2の寿命が約2年であるのに比べて、触媒NO.3の寿命は約3年を期待でき、また、触媒NО.4の寿命は約4年を期待することができる。
 また、実施例1および実施例2に示した調製方法によって触媒寿命が改善された本発明による触媒(触媒NО.3、触媒NО.4)では、電子顕微鏡による観察画像の直接観察によって測定される白金粒子径において、測定した全ての白金粒子のうちの8割以上の数の白金粒子が、8Å~15Åの範囲の粒子径を有する。8Å~15Åの範囲の粒子径の割合が約45%である触媒NО.2と比較すると、本発明による触媒では、8Å~15Åの範囲の粒子径を有する白金粒子の数の割合が各段に高く、16Å以上の大きなサイズの白金粒子の割合が著しく減少していることがわかる。
 このように本発明による実施例1および実施例2に示した調製方法で調製された触媒(触媒NО.3、触媒NО.4)の触媒寿命が顕著に改善された理由は、γーアルミナ担体の調製時における焼成条件、白金(及び必要に応じて硫黄)を含侵し、乾燥した後の焼成条件、ならびに最終的に水素還元する際の条件を最適化したことによるものと考えられる。
 従来の触媒(すなわち、特許文献3および特許文献4に記載の脱水素触媒)の寿命が阻害されていた理由は、従来の調製方法では、γーアルミナ担体を調製する際の焼成条件が400℃を超えており、白金(及び必要に応じて硫黄)を含侵し、乾燥した後の焼成条件も同様に高温であり、さらに、最終的な水素還元温度が担体や白金(及び必要に応じて硫黄)の含侵、乾燥後の焼成条件と同等に高温であったことによるものと考えられる。特に、触媒の調整において、最終的な水素還元温度を400℃以下として、水素還元前に熱履歴を受ける焼成温度条件を最終的な水素還元条件よりも低い温度で実施することがより好ましいことが判明した。
 なお、本発明による触媒は、従来の触媒(すなわち、特許文献3および特許文献4に記載の脱水素触媒に関する特許出願当時)に用いることのできた電子顕微鏡技術では完成することは不可能であり、その後の電子顕微鏡技術の進化によって、触媒調製条件と調製される触媒の白金粒子のサイズが直接観察によって正確に測定できるまでに進歩したことによって完成できたものである。
 本発明のOCH法を用いる水素ステーションは、安全性が高く、FCVや燃料電池フォークリフト、燃料電池船などの燃料電池を搭載した移動体に水素を充填する水素ステーションとして好適に利用することができる。OCH法は、常温・常圧で液体のMCHによって水素を貯蔵輸送する安全性が高い方法であり、水素火力発電用の水素について大規模にサプライチェーンが構築される可能性が高いことから、大規模に安価なMCHを水素ステーションに利用できる可能性がある。水素キャリアは、地方や離島を含めた地域にも既存のガソリンや灯油の輸送インフラである鉄道輸送、ローリー輸送、船舶輸送を用いて配送できることから、OCH法を用いる水素ステーションは、2030年以降の水素ステーションの全国配備に好適であるとともに、その水素生成方法は、将来の国家備蓄にも適用可能な方法のため、水素の普及拡大に向けて広く適用できる可能性があり、産業上の利用性が非常に高い発明である。
1  :水素ステーション
3  :脱水素ユニット
4  :MCHタンク
6  :トルエンタンク
9  :圧縮機
11 :蓄圧器
15 :ディスペンサー
17 :プレクーラー
23 :脱水素反応器
25 :熱交換器
26 :熱供給装置
27 :貯槽
28 :触媒燃焼コイル
28A:燃料入口部
31 :気液分離器
33 :PSA装置
37 :パージガスポンプ
39 :パージガスタンク
41 :エア供給用ポンプ
43 :接続部
45 :排気調節バルブ
L1 :原料供給ライン
L3 :トルエン排出ライン
L5-L7:水素輸送ライン
L11:充填ホース
L13:第1冷媒循環ライン
L21:反応生成ガスライン
L23:熱媒体循環ライン
L25:粗水素輸送ライン
L31:排出パージガス用ライン
L33:パージガス供給用ライン
L37:空気供給ライン
L37A:分割空気供給ライン
L38:タンクガス排出ライン
L38A:分岐ライン
L39:排気ライン
L41:第2冷媒循環ライン

Claims (14)

  1.  水素ステーションであって、
     脱水素触媒の存在下における水素化芳香族類の脱水素反応により水素を生成する脱水素反応器と、
     燃料を用いて加熱した熱媒体を介して前記脱水素反応器に熱供給する熱供給装置と、
     前記脱水素反応器によって生成された水素を含む反応生成ガスを、圧力スイング法に基づき吸着剤を利用して精製するPSA装置と、を備え、
     前記PSA装置には、前記吸着剤の再生に使用される水素を含むパージガスが供給され、
     前記熱供給装置は、前記熱媒体を収容する貯槽と、前記貯槽内に配置され、燃焼触媒の存在下で前記燃料の触媒燃焼を行う触媒燃焼管と、有し、
     前記触媒燃焼管には、前記PSA装置から排出された前記パージガスが前記燃料として空気と共に供給される、水素ステーション。
  2.  前記脱水素触媒は、白金担持アルミナ触媒を含み、
     前記白金担持アルミナ触媒は、
     アルミナ担体と、
     前記アルミナ担体に担持された白金と、を有し、
     前記アルミナ担体は、表面積が200m2/g以上、細孔容積が0.50m2/g以上、平均細孔径が60Å~150Åの範囲、かつ全細孔容積に対して平均細孔径±30Åの細孔が占める割合が60%以上のγ―アルミナ担体を含み、
     前記γ―アルミナ担体には、前記白金の粒子が白金元素(Pt)として0.1重量%~1.5重量%の範囲で担持されており、
     透過型電子顕微鏡を用いた直接観察により、前記白金の粒子の70%以上が8Å~15Åの大きさを有する、請求項1に記載の水素ステーション。
  3.  前記燃焼触媒は、前記脱水素触媒と同一の構成を有する触媒を含む、請求項1または請求項2に記載の水素ステーション。
  4.  前記燃焼触媒は、前記触媒燃焼管において前記燃料が導入される燃料入口部に充填され、かつ前記脱水素触媒と同一の構成を有する第1の触媒と、前記第1の触媒とは異なる構成を有し、前記触媒燃焼管における前記燃料入口部の下流側に充填される第2の触媒とを含む、請求項3に記載の水素ステーション。
  5.  前記熱媒体がホットオイルである、請求項1から請求項4のいずれか1項に記載の水素ステーション。
  6.  前記触媒燃焼管には、前記空気が複数の異なる部位に分割して供給される、請求項1から請求項5のいずれか1項に記載の水素ステーション。
  7.  前記PSA装置によって精製された前記水素を、燃料電池を搭載した移動体に供給するディスペンサーと、
     前記ディスペンサーから供給される前記水素を冷媒によって冷却するプレクーラーと、
     前記反応生成ガスを気液分離する気液分離器と、を更に備え、
     前記気液分離器では、前記プレクーラーから供給された前記冷媒によって前記反応生成ガスが冷却される、請求項1から請求項6のいずれか1項に記載の水素ステーション。
  8.  前記脱水素反応では、前記水素化芳香族類としてのシクロヘキサンの脱水素により水素およびトルエンが生成され、
     前記シクロヘキサンを収容する第1タンクと、
     前記トルエンを収容する第2タンクと、を更に備え、
     前記第1タンクおよび前記第2タンクは、それぞれ地下に配置される、請求項1から請求項7のいずれか1項に記載の水素ステーション。
  9.  前記第1タンク内の気相のガスおよび前記第2タンク内の気相のガスの少なくとも一方が、前記PSA装置から排出された前記パージガスと共に、前記燃料として前記触媒燃焼管に供給される、請求項8に記載の水素ステーション。
  10.  前記第1タンク内の気相のガスおよび前記第2タンク内の気相のガスの少なくとも一方が、前記触媒燃焼管において前記燃料が導入される燃料入口部に空気と共に導入される、請求項9に記載の水素ステーション。
  11.  前記触媒燃焼管は、前記燃焼触媒が充填されたコイルである、請求項1から請求項10のいずれか1項に記載の水素ステーション。
  12.  前記水素化芳香族類が、単環芳香族類の水素化物、2環芳香族類の水素化物、及び3環以上の芳香環を有する化合物の水素化物からなる群から選ばれた1種又は2種以上の混合物である、請求項1から請求項7のいずれか1項に記載の水素ステーション。
  13.  前記水素化芳香族類が、メチルシクロヘキサン、シクロヘキサン、トリメチルシクロヘキサン、デカリン、及びジベンゾトリオールからなる群から選ばれた1種又は2種以上の混合物である、請求項1から請求項7のいずれか1項に記載の水素ステーション。
  14.  水素ステーションにおける水素生成方法であって、
     脱水素触媒の存在下における水素化芳香族類の脱水素反応により水素を生成し、
     燃料を用いて加熱した熱媒体を介して前記脱水素反応に熱供給し、
     前記脱水素反応によって生成された水素を含む反応生成ガスを、圧力スイング法に基づき吸着剤を利用して精製し、
     前記吸着剤の再生には、水素を含むパージガスが使用され、
     前記熱媒体の加熱では、前記吸着剤の再生に使用された前記パージガスが前記燃料として空気と共に供給される、水素ステーションにおける水素生成方法。
PCT/JP2021/015769 2021-04-16 2021-04-16 水素ステーション及び水素生成方法 WO2022219822A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2021441047A AU2021441047A1 (en) 2021-04-16 2021-04-16 Hydrogen station and hydrogen generation method
CN202180063777.0A CN116322992A (zh) 2021-04-16 2021-04-16 氢气站和制氢方法
US18/026,720 US20230356165A1 (en) 2021-04-16 2021-04-16 Hydrogen station and hydrogen producing method
JP2023514315A JP7573732B2 (ja) 2021-04-16 水素ステーション及び水素生成方法
PCT/JP2021/015769 WO2022219822A1 (ja) 2021-04-16 2021-04-16 水素ステーション及び水素生成方法
KR1020237009832A KR20230053682A (ko) 2021-04-16 2021-04-16 수소 스테이션 및 수소 생성 방법
EP21937016.0A EP4324560A1 (en) 2021-04-16 2021-04-16 Hydrogen station and hydrogen generation method
CA3192945A CA3192945A1 (en) 2021-04-16 2021-04-16 Hydrogen station and hydrogen producing method
TW111110317A TWI814286B (zh) 2021-04-16 2022-03-21 加氫站及氫生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015769 WO2022219822A1 (ja) 2021-04-16 2021-04-16 水素ステーション及び水素生成方法

Publications (1)

Publication Number Publication Date
WO2022219822A1 true WO2022219822A1 (ja) 2022-10-20

Family

ID=83640329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015769 WO2022219822A1 (ja) 2021-04-16 2021-04-16 水素ステーション及び水素生成方法

Country Status (8)

Country Link
US (1) US20230356165A1 (ja)
EP (1) EP4324560A1 (ja)
KR (1) KR20230053682A (ja)
CN (1) CN116322992A (ja)
AU (1) AU2021441047A1 (ja)
CA (1) CA3192945A1 (ja)
TW (1) TWI814286B (ja)
WO (1) WO2022219822A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11814288B2 (en) 2021-11-18 2023-11-14 8 Rivers Capital, Llc Oxy-fuel heated hydrogen production process
US11859517B2 (en) 2019-06-13 2024-01-02 8 Rivers Capital, Llc Power production with cogeneration of further products
US11891950B2 (en) 2016-11-09 2024-02-06 8 Rivers Capital, Llc Systems and methods for power production with integrated production of hydrogen
US12054388B2 (en) 2017-11-09 2024-08-06 8 Rivers Capital, Llc Systems and methods for production and separation of hydrogen and carbon dioxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021157750A (ja) * 2020-03-30 2021-10-07 Eneos株式会社 運用管理システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052110A (ja) * 2004-08-12 2006-02-23 Chiyoda Corp 水素の精製方法
JP4142733B2 (ja) 2005-06-20 2008-09-03 千代田化工建設株式会社 均一型高分散金属触媒及びその製造方法
JP2009056371A (ja) * 2007-08-30 2009-03-19 Sharp Corp 触媒体、これを用いた空気清浄フィルター及び空気調和機
JP2009221033A (ja) * 2008-03-14 2009-10-01 Petroleum Energy Center 水素生成用原料組成物および水素の製造方法
JP4652695B2 (ja) 2004-01-30 2011-03-16 千代田化工建設株式会社 水素化芳香族類の脱水素触媒及びその製造方法
JP2015182919A (ja) 2014-03-24 2015-10-22 千代田化工建設株式会社 水素製造システム及び水素製造方法
JP2015227255A (ja) * 2014-05-30 2015-12-17 Jx日鉱日石エネルギー株式会社 水素供給システム
WO2016158437A1 (ja) * 2015-03-27 2016-10-06 Jxエネルギー株式会社 炭化水素用の脱水素触媒、水素の製造システム及び水素の製造方法
JP2017065937A (ja) * 2015-09-28 2017-04-06 富士電機株式会社 水素製造装置及び水素製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145756A (ja) * 2003-11-14 2005-06-09 Sekisui Chem Co Ltd 脱水素方法
US7964176B2 (en) * 2005-03-29 2011-06-21 Chevron U.S.A. Inc. Process and apparatus for thermally integrated hydrogen generation system
US8048177B2 (en) * 2006-05-11 2011-11-01 Sumitomo Seiko Chemicals Co., Ltd. Method for treatment of drain in hydrogen production and hydrogen production system
CN110282600A (zh) * 2019-06-20 2019-09-27 云南电网有限责任公司电力科学研究院 一种基于氢气催化燃烧加热的脱氢装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652695B2 (ja) 2004-01-30 2011-03-16 千代田化工建設株式会社 水素化芳香族類の脱水素触媒及びその製造方法
JP2006052110A (ja) * 2004-08-12 2006-02-23 Chiyoda Corp 水素の精製方法
JP4142733B2 (ja) 2005-06-20 2008-09-03 千代田化工建設株式会社 均一型高分散金属触媒及びその製造方法
JP2009056371A (ja) * 2007-08-30 2009-03-19 Sharp Corp 触媒体、これを用いた空気清浄フィルター及び空気調和機
JP2009221033A (ja) * 2008-03-14 2009-10-01 Petroleum Energy Center 水素生成用原料組成物および水素の製造方法
JP2015182919A (ja) 2014-03-24 2015-10-22 千代田化工建設株式会社 水素製造システム及び水素製造方法
JP2015227255A (ja) * 2014-05-30 2015-12-17 Jx日鉱日石エネルギー株式会社 水素供給システム
WO2016158437A1 (ja) * 2015-03-27 2016-10-06 Jxエネルギー株式会社 炭化水素用の脱水素触媒、水素の製造システム及び水素の製造方法
JP2017065937A (ja) * 2015-09-28 2017-04-06 富士電機株式会社 水素製造装置及び水素製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OKADA YOSHIMI, BULLETIN OF THE HIGH PRESSURE GAS SAFETY INSTITUTE OF TOKYO, August 2019 (2019-08-01)
OKADA YOSHIMI, ENERGY/NATURAL RESOURCES, vol. 33, no. 3, 2018, pages 168

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891950B2 (en) 2016-11-09 2024-02-06 8 Rivers Capital, Llc Systems and methods for power production with integrated production of hydrogen
US12054388B2 (en) 2017-11-09 2024-08-06 8 Rivers Capital, Llc Systems and methods for production and separation of hydrogen and carbon dioxide
US11859517B2 (en) 2019-06-13 2024-01-02 8 Rivers Capital, Llc Power production with cogeneration of further products
US12098658B2 (en) 2019-06-13 2024-09-24 8 Rivers Capital, Llc Cogeneration of chemical products
US11814288B2 (en) 2021-11-18 2023-11-14 8 Rivers Capital, Llc Oxy-fuel heated hydrogen production process

Also Published As

Publication number Publication date
EP4324560A1 (en) 2024-02-21
CN116322992A (zh) 2023-06-23
US20230356165A1 (en) 2023-11-09
KR20230053682A (ko) 2023-04-21
JPWO2022219822A1 (ja) 2022-10-20
AU2021441047A1 (en) 2023-05-04
TW202243989A (zh) 2022-11-16
CA3192945A1 (en) 2022-10-20
TWI814286B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2022219822A1 (ja) 水素ステーション及び水素生成方法
CN111892018B (zh) 提供高纯氢气的方法
KR102315763B1 (ko) 암모니아 분해 및 수소 생산 시스템
JP4907210B2 (ja) 水素の貯蔵輸送システム
KR20050057151A (ko) 황 화합물 제거용 흡착제, 수소의 제조 방법 및 연료 전지시스템
JP4676690B2 (ja) 金属イオン交換ゼオライト及びその製造方法、並びに該金属イオン交換ゼオライトを含む硫黄化合物除去用吸着剤
JP4749589B2 (ja) 有機硫黄化合物含有燃料油用脱硫剤及び燃料電池用水素の製造方法
WO2022219821A1 (ja) 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法
JP2007254177A (ja) 一酸化炭素のメタネーション方法
KR20220158289A (ko) 에그쉘형 백금 담지 알루미나 촉매, 그 제조 방법, 및 그 사용 방법
JP2004057858A (ja) 水素ガス製造用触媒及び水素ガスの製造方法
WO2021214954A1 (ja) 均一型白金担持アルミナ触媒、その製造方法、及びその使用方法
JP4531917B2 (ja) ニッケル系脱硫剤の製造方法
JP2007224212A (ja) 炭化水素用脱硫剤
KR20240006365A (ko) 이산화탄소 프리 암모니아 분해 설비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514315

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3192945

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202347018163

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237009832

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021441047

Country of ref document: AU

Date of ref document: 20210416

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021937016

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937016

Country of ref document: EP

Effective date: 20231116

WWE Wipo information: entry into national phase

Ref document number: 523440200

Country of ref document: SA

WWE Wipo information: entry into national phase

Ref document number: 523440200

Country of ref document: SA