WO2022218242A1 - 一种电机扭矩控制方法、系统、车辆及存储介质 - Google Patents

一种电机扭矩控制方法、系统、车辆及存储介质 Download PDF

Info

Publication number
WO2022218242A1
WO2022218242A1 PCT/CN2022/086044 CN2022086044W WO2022218242A1 WO 2022218242 A1 WO2022218242 A1 WO 2022218242A1 CN 2022086044 W CN2022086044 W CN 2022086044W WO 2022218242 A1 WO2022218242 A1 WO 2022218242A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
zero
crossing
preset
control
Prior art date
Application number
PCT/CN2022/086044
Other languages
English (en)
French (fr)
Inventor
王国强
梁赫奇
刘元治
尹建坤
刘加明
祝浩
李川
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022218242A1 publication Critical patent/WO2022218242A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of vehicle engineering, for example, to a motor torque control method, system, vehicle and storage medium.
  • Vehicles with direct motor drive have no buffer elements like shock absorbers or torque converters between the motor and the wheels.
  • the direction of the motor torque changes (torque crosses zero), due to the small gap in the transmission chain, the motor rotor and the wheels There will be a process of attaching, separating and then attaching again. In this process, there is a contradiction between reducing the impact of the whole vehicle and shortening the torque zero-crossing time.
  • the related technical solutions are divided into two categories.
  • One solution is to reduce the impact of torque zero-crossing by reducing the positive torque rising slope or the negative torque falling slope.
  • this control method of motor torque zero-crossing is to control the slope, it is essentially to reduce the gap and eliminate the instantaneous speed difference by indirectly reducing the motor torque during the zero-crossing process of the motor torque.
  • Increase there is a contradiction between shock and dynamic response time.
  • the second solution is that when the motor torque is in the zero-crossing condition, the torque is zero-crossed by a smaller set torque for a set time, which is essentially to reduce the gap by reducing the motor torque during the zero-crossing process of the motor torque.
  • the present application proposes a motor torque control method, system, vehicle and storage medium, which can suppress the impact when the motor torque crosses zero and ensure better dynamic response.
  • the present application provides a motor torque control method, including: determining that the motor needs to perform torque zero-crossing control according to the required torque and actual torque of the motor; controlling the actual torque to a zero-crossing first preset torque and maintaining the torque.
  • the zero-crossing first preset time period, the zero-crossing first preset torque and the demand torque have the same positive and negative signs; the actual torque is controlled to the zero-crossing second preset torque and maintained for the zero-crossing second preset time period , the positive and negative signs of the zero-crossing first preset torque and the zero-crossing second preset torque are opposite; the actual torque is gradually adjusted from the zero-crossing second preset torque to the zero-crossing second preset torque according to a preset curve.
  • the demanded torque is considered to be adjusted to the demanded torque in response to the deviation of the actual torque from the demanded torque within a preset range.
  • the present application further provides a motor torque control system, including: a judgment device configured to determine that the motor needs to perform torque zero-crossing control according to a demand torque and an actual torque of the motor; and a first control device configured to Control the actual torque to a zero-crossing first preset torque and maintain the zero-crossing first preset time period, and the zero-crossing first preset torque and the demand torque have the same positive and negative signs; the second control device controls the the actual torque reaches the zero-crossing second preset torque and maintains the zero-crossing second preset time period, the zero-crossing first preset torque and the zero-crossing second preset torque have opposite signs; the third control device , the third control means is configured to gradually adjust the actual torque from the zero-crossing second preset torque to the demanded torque in a preset curve, in response to the deviation of the actual torque and the demanded torque Within a preset range, it is considered that the third control device adjusts the actual torque to the demand torque.
  • a judgment device configured to determine that the motor needs
  • the present application further provides a vehicle, comprising: at least one processor; a storage device configured to store at least one program; when at least one of the programs is executed by at least one of the processors, at least one of the processing When the controller executes the program, the motor torque control method as described above is realized.
  • the present application further provides a storage medium on which a computer program is stored, and when the computer program is executed, the above-described motor torque control method is implemented.
  • FIG. 1 is one of the schematic flow charts of the motor torque control method provided by the specific embodiment of the present application.
  • FIG. 2 is the second schematic flow chart of the motor torque control method provided by the specific embodiment of the present application.
  • FIG. 3 is one of the schematic diagrams of the actual torque and the motor demand torque when the motor torque control method provided by the specific embodiment of the present application is executed;
  • 5 is the third schematic diagram of the actual torque and the motor demand torque when the motor torque control method provided by the specific embodiment of the present application is executed;
  • FIG. 6 is the fourth schematic diagram of the actual torque and the motor demand torque when the motor torque control method provided by the specific embodiment of the present application is executed;
  • FIG. 7 is a schematic diagram of the curve of the actual torque and the motor demand torque when the clearance parameter is obtained according to the specific embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a motor torque control system provided by a specific embodiment of the present application.
  • T1 zero-crossing to determine the first preset positive torque
  • T5 Negative zero-crossing controls the first preset torque
  • T6, negative zero-crossing controls the second preset torque
  • T7, positive zero-crossing controls the first preset torque
  • T8 positive zero-crossing controls the second preset torque
  • T9 demand torque
  • T10 actual torque
  • T11 first preset torque of gap self-learning
  • T12 second preset torque of gap self-learning
  • Judgment device 2.
  • First control device 21.
  • Second control device 31. Second positive control mechanism; 32. Second negative control mechanism; 4. Third control device; 41. The third positive control mechanism; 42. The third negative control mechanism; 5. The gap self-learning device; 6. The fourth control device; 7. The frequent zero-crossing control device; 8. The controller.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • Figure 1 discloses a motor torque control method, which includes: step S1, determining that the motor needs to perform torque zero-crossing control according to the required torque T9 and actual torque T10 of the motor; step S2, controlling the actual torque T10 to zero-crossing the first preset torque and maintaining the zero-crossing first preset time period, the zero-crossing first preset torque and the demand torque T9 have the same positive and negative signs; Step S3, control the actual torque T10 to zero-crossing the second preset The torque is maintained for a second preset time period of zero-crossing, and the signs of the zero-crossing first preset torque and the zero-crossing second preset torque are opposite; step S4, using the preset curve to change the actual torque T10 from the zero-crossing second preset torque The torque is gradually adjusted to the demanded torque T9, and when the deviation between the actual torque T10 and the demanded torque T9 is within a preset range, it is considered that the actual torque T10 is adjusted to the demanded torque T9.
  • step S1 after it is determined that the torque zero-crossing control needs to be performed on the demanded torque curve of the motor, the torque zero-crossing control can be performed.
  • step S2 since the positive and negative signs of the zero-crossing first preset torque and the demand torque T9 of the motor are the same, the torque direction of the motor can be changed toward its demand direction. It is convenient for the motor to perform most of the zero-crossing process in a short time, and quickly increase the speed difference between the motor rotor and the wheel, and eliminate a part of the gap between the motor rotor and the wheel. At this time, if the actual torque T10 is maintained at the zero-crossing A preset torque will cause the motor to collide with the wheel, causing shock problems.
  • step S3 is entered, and the actual torque T10 is controlled to be the zero-crossing second preset torque. Since the zero-crossing second preset torque and the zero-crossing first preset torque are in opposite directions, the motor The speed difference between the rotor and the wheel is rapidly reduced, thereby preventing the collision between the rotor and the wheel of the motor, and solving the problem of the impact between the motor and the wheel under the action of torque.
  • the torque direction of the zero-crossing first preset torque is opposite, and the movement direction of the motor is still consistent with the movement direction in step S2, so that the residual gap between the motor rotor and the wheel can be further eliminated.
  • step S3 the gap between the motor rotor and the wheel is eliminated, and the speed difference between the motor rotor and the wheel is close to zero. Since the actual torque T10 is still the zero-crossing second preset torque in step S3 and has not reached the demanded torque T9, in step S4, the actual torque T10 is gradually adjusted to the demanded torque T9 with the preset curve. When the actual torque T10 and the demanded torque When the difference between the absolute values of T9 is smaller than the preset range, it can be considered that the zero-crossing control of the torque of the motor is completed, and then the actual torque T10 can follow the demanded torque T9.
  • step S2 the speed difference between the motor rotor and the wheel can be increased to eliminate part of the gap between the motor rotor and the wheel, and in step S3, the difference between the motor rotor and the wheel can be reduced. Speed difference, further eliminate the gap between the motor rotor and the wheel, and finally make the speed difference between the motor rotor and the wheel close to 0, and complete most of the zero-crossing process.
  • step S4 the actual torque T10 of the motor can be preset to a safe and reliable Set the curve to be adjusted to the required torque T9 of the motor to complete the torque zero-crossing process.
  • the motor torque control method of this embodiment can complete the zero-crossing of the torque of the motor in a short time without affecting the dynamic response of the motor torque, and realize the zero-crossing when the gap between the motor rotor and the wheel is eliminated.
  • the speed difference is thus ensured that the speed of the motor is small enough when the motor is in contact with the wheel, and the torque zero-crossing process time of the motor is significantly reduced.
  • the preset curve in step S4 may be either an arc or a straight line with a preset slope, and the line type may be determined according to actual requirements.
  • the gap between the motor and the wheel has a gap parameter
  • each gap parameter corresponds to a set of torque zero-crossing control characteristic parameters
  • the torque zero-crossing control characteristic parameters include zero-crossing first preset torque, zero-crossing first torque A preset duration, a second preset torque of zero-crossing, and a second preset duration of zero-crossing
  • the first preset torque of zero-crossing includes positive zero-crossing control first preset torque T7 and negative zero-crossing control first preset
  • the torque T5 the zero-crossing second preset torque includes a positive zero-crossing control second preset torque T8 and a negative zero-crossing control second preset torque T6.
  • the gap between the motor rotor and the wheel will wear out during long-term use, and it will also change with other external environmental factors such as temperature. Therefore, for different gaps between the motor rotor and the wheel , the torque zero-crossing control characteristic parameters of the motor torque zero-crossing process also need to be corrected.
  • the zero-crossing control first preset torque, the zero-crossing control the first preset torque The setting duration, the second preset torque for zero-crossing control, and the second preset duration for zero-crossing control usually increase accordingly, so as to better realize the zero-crossing control of the motor torque and ensure the normal completion of the zero-crossing process of the motor torque. Therefore, after a set of torque zero-crossing control characteristic parameters are respectively set for the clearance parameters in this embodiment, the torque zero-crossing control of the motor can be optimized.
  • the vehicle is controlled to be in a neutral state
  • the actual torque T10 is controlled to be the first preset torque T11 of the gap self-learning
  • the gap self-learning is maintained for a first preset period of time
  • the actual torque T10 is controlled from the gap to be learned from the gap.
  • the self-learning first preset torque T11 is switched to the gap self-learning second preset torque T12 and is maintained.
  • the positive and negative signs of the gap self-learning first preset torque T11 and the gap self-learning second preset torque T12 are opposite.
  • the torque zero-crossing control characteristic parameter can be set according to the calculation of the gap parameter, so as to optimize the torque of the motor.
  • Zero-crossing control It should be noted that, in practical applications, the cooperation between different motors and different wheels will make the rotor inertia of the motor, the self-learning preset negative torque of the motor's clearance, and the preset positive torque of the motor's clearance self-learning three. Therefore, the characteristic parameters of torque zero-crossing control calculated according to different motors and wheels are different, which can be obtained by themselves according to the relevant parameters of practical applications, and there is no need to give examples here.
  • FIG. 7 is a schematic diagram of the change of the actual torque T10 when the first preset torque T11 of the gap self-learning is positive torque. This need not be repeated.
  • the vehicle in order to ensure the accuracy of the clearance parameters and the safety of obtaining the clearance parameters, when testing the clearance parameters, the vehicle needs to be parked at a position close to the horizontal position, the vehicle gear is neutral, the accelerator pedal and brake All brake pedals are released, and all parking brakes are released.
  • the clearance parameters can be obtained according to the driver's instructions or by themselves.
  • prompt information including but not limited to text, sound, and images needs to be given to the driver.
  • the torque zero-crossing control includes positive zero-crossing control and negative zero-crossing control.
  • the zero-crossing first preset in step S2 The torque is the positive zero-crossing control first preset torque T7, the positive zero-crossing control first preset torque T7 is positive torque, and the zero-crossing second preset torque in step S3 is the positive zero-crossing control second preset torque
  • the torque T8, the second preset torque T8 of the positive zero-crossing control is negative torque;
  • the zero-crossing first preset torque in step S2 is the negative zero-crossing control first preset torque T5
  • Negative zero-crossing control first preset torque T5 is negative torque
  • zero-crossing second preset torque in step S3 is negative zero-crossing control second preset torque T6
  • positive torque negative zero-crossing control
  • the torque zero-crossing control also has positive zero-crossing control and negative zero-crossing control, and the two need to call the zero-crossing first preset torque. It is different from the second preset torque of zero-crossing.
  • the specific distinction can facilitate the improvement of parameter calling accuracy, so that the torque zero-crossing control can be performed according to the specific torque zero-crossing control situation, so as to improve the control reliability of the torque zero-crossing control. sex.
  • FIG. 3 is a schematic diagram of variation curves of actual torque T10 and demanded torque T9 when performing positive zero-crossing control
  • FIG. 4 is a schematic diagram of variation curves of actual torque T10 and required torque T9 when performing negative zero-crossing control.
  • step S1 includes: when the actual torque T10 is positive torque and the required torque T9 is less than the zero-crossing first preset negative torque T4, it is determined that the motor needs to perform a negative zero-crossing control.
  • the actual torque T10 is negative torque and the required torque T9 is greater than the zero-cross determination first preset positive torque T1, it is determined that the motor needs to perform positive zero-cross control.
  • step S1 further includes: judging that the torque zero-crossing control is not to be executed, and when the actual torque T10 is a positive torque, the demand torque T9 is greater than the zero-crossing judgment of the second preset positive torque At T2, the actual torque T10 is controlled to follow the demanded torque T9.
  • the demanded torque T9 is less than the zero-crossing judgment second preset positive torque T2 and greater than the zero-crossing judgment first preset negative torque T4
  • the actual torque T10 is controlled to keep the zero-crossing judgment.
  • the preset positive torque T2 is determined, and the second preset positive torque T2 of the zero-cross determination is smaller than the zero-cross determination of the first preset positive torque T1.
  • the actual torque T10 performs the torque zero-crossing control according to the fluctuation of the demanded torque T9, and the This results in frequent execution of torque zero-crossing control and negatively affects the normal operation of the motor.
  • a second preset positive torque T2 for zero-crossing judgment is additionally provided, so as to limit the fluctuation range of the demanded torque T9, so as to additionally limit the change of the original demanded torque T9 of the motor, even if The original demand torque T9 of the motor fluctuates in a small range, and it is not determined in step S1 that the motor needs to perform torque zero-crossing control, so that the judgment accuracy of the torque zero-crossing control of the motor can be improved.
  • the actual torque T10 is a positive torque
  • the required torque T9 floats between the zero-crossing judgment second preset positive torque T2 and the zero-crossing judgment first preset negative torque T4
  • the actual torque can be controlled in this case.
  • the torque T10 remains at the zero-crossing judgment second preset positive torque T2, which can not only avoid frequent torque zero-crossings, but also quickly execute negative zero-crossing control when the demanded torque T9 is lower than the zero-crossing judgment first preset negative torque T4, Thus, the execution reliability of the torque zero-crossing control is significantly improved.
  • step S1 further includes: judging that the torque zero-crossing control is not to be executed, and when the actual torque T10 is negative torque, the demand torque T9 is less than the zero-crossing judgment and the second preset negative torque At T3, the actual torque T10 is controlled to follow the demanded torque T9.
  • the demanded torque T9 is greater than the zero-crossing judgment second preset negative torque T3 and less than the zero-crossing judgment first preset positive torque T1
  • the actual torque T10 is controlled to maintain zero-crossing judgment.
  • the preset negative torque T3, the second preset negative torque T3 of the zero-cross determination is greater than the zero-cross determination of the first preset negative torque T4.
  • the present embodiment provides the motor torque control step when the actual torque T10 is negative torque, which can be distinguished from the motor torque control step when the actual torque T10 is positive torque, so as to facilitate the selection of different steps according to the actual situation. parameters to improve control reliability.
  • the actual torque T10 is negative torque
  • the demanded torque T9 floats between the zero-crossing judgment first preset positive torque T1 and the zero-crossing judgment second preset negative torque T3
  • the actual torque can be controlled in this case.
  • the torque T10 remains at the zero-crossing judgment second preset negative torque T3, which can not only avoid frequent torque zero-crossing, but also can quickly execute the positive zero-crossing control when the demand torque T9 is greater than the zero-crossing judgment first preset positive torque T1, thereby Significantly improves the execution reliability of torque zero-crossing control.
  • the motor torque control method of this embodiment includes:
  • Step S1.1 judging whether the demanded torque T9 is greater than the zero-crossing judgment of the first preset positive torque T1, in the case that the demanded torque T9 is greater than the zero-crossing judgment of the first preset positive torque T1, step S2 is performed, and when the demanded torque T9 is less than If it is equal to zero-crossing to determine the first preset positive torque T1, step S1.2 is executed.
  • Step S1.2 judging whether the demanded torque T9 is less than the zero-crossing judgment second preset negative torque T3, in the case that the demanded torque T9 is less than the zero-crossing judgment second preset negative torque T3, execute step S1.3, in the demand torque When T9 is greater than or equal to the zero-crossing judgment second preset negative torque T3, step S1.4 is executed.
  • Step S1.3 control the actual torque T10 to follow the demanded torque T9.
  • Step S1.4 controlling the actual torque T10 to remain at zero-crossing to determine the second preset negative torque T3.
  • Step S2 controlling the actual torque T10 to a positive zero-crossing control first preset torque T7 and maintaining the zero-crossing control for a first preset time period.
  • Step S3 controlling the actual torque T10 from the first preset torque T7 of the forward zero-crossing control to the second preset torque T8 of the forward zero-crossing control, and maintaining the zero-crossing control for a second preset time period.
  • Step S4 step by step adjusting the actual torque T10 from the positive zero-crossing second preset torque T8 to the demand torque T9 with the preset curve, when the absolute value of the difference between the motor actual torque T10 and the demand torque T9 is within the preset range , that is, it is considered that the actual torque T10 is adjusted to the demand torque T9.
  • the motor can be determined whether the motor needs to perform torque zero-crossing control according to the required torque and actual torque of the motor, and it can be determined to perform positive torque zero-crossing or negative torque zero-crossing according to its actual torque direction.
  • the torque zero-crossing control is executed, since the zero-crossing first preset torque has the same positive and negative signs as the demand torque T9 of the motor, the torque direction of the motor can be changed toward its demand direction.
  • the zero-crossing first preset time period that is, it is convenient for the motor to perform most of the zero-crossing process in a short time, and quickly increase the speed difference between the motor rotor and the wheel, and eliminate a part of the gap between the motor rotor and the wheel.
  • the actual torque T10 is controlled to be the zero-crossing second preset torque. Since the directions of the zero-crossing second preset torque and the zero-crossing first preset torque are opposite, the motor rotor and the wheel are The speed difference between the two is rapidly reduced, thereby preventing the collision between the motor rotor and the wheel, solving the problem of the motor and the wheel under the action of torque, and the movement direction of the motor is still the same as that in step S2. , so that the residual gap between the motor rotor and the wheel can be further eliminated. After the above torque control is completed, the gap between the motor rotor and the wheel is eliminated, and the speed difference between the motor rotor and the wheel is close to zero.
  • step S4 Since the actual torque T10 is still the zero-crossing second preset torque in step S3 and has not reached the demanded torque T9, in step S4, the actual torque T10 is gradually adjusted to the demanded torque T9 with the preset curve.
  • the actual torque T10 and the demanded torque When the absolute value of the difference of T9 is smaller than the preset range, it can be considered that the zero-crossing control of the torque of the motor is completed, and then the actual torque T10 can follow the demanded torque T9.
  • the actual torque of the motor can be controlled according to the required torque and actual torque, so that it is convenient to call different parameters according to the actual situation and improve the control reliability.
  • the actual torque T10 is a positive torque
  • the required torque T9 floats between the zero-crossing judgment second preset positive torque T2 and the zero-crossing judgment first preset negative torque T4
  • the actual torque can be controlled in this case.
  • the torque T10 remains at the zero-crossing judgment second preset positive torque T2, which can not only avoid frequent torque zero-crossings, but also quickly execute negative zero-crossing control when the demanded torque T9 is lower than the zero-crossing judgment first preset negative torque T4, Thus, the execution reliability of the torque zero-crossing control is significantly improved. It can also be determined that the position of the motor relative to the wheel is positive according to the above situation, so as to determine the exact positional relationship between the motor and the vehicle when the torque zero-crossing control is executed next time.
  • the present application also provides a motor torque control system, based on the foregoing motor torque control method, comprising a judgment device 1 , a first control device 2 , a second control device 3 and a third control device 4 .
  • the judging device 1 is configured to judge that the motor needs to perform the torque zero-crossing control based on the required torque T9 and the actual torque T10 of the motor.
  • the first control device 2 is configured to control the actual torque T10 to a zero-crossing first preset torque and maintain the zero-crossing first preset time period, and the zero-crossing first preset torque and the demand torque T9 have the same sign.
  • the second control device 3 is configured to control the actual torque T10 to a zero-crossing second preset torque and maintain the zero-crossing second preset time period.
  • the zero-crossing first preset torque and the zero-crossing second preset torque have opposite signs.
  • the third control device 4 is configured to gradually adjust the actual torque T10 from the zero-crossing second preset torque to the demanded torque T9 with a preset curve. When the deviation between the actual torque T10 and the demanded torque T9 is within a preset range, it is considered that The third control device 4 adjusts the actual torque T10 to the required torque T9.
  • the above-mentioned motor torque control method can be better realized, so that the motor torque zero-crossing can be completed in a short time, and at the same time, the power of the motor torque will not be affected.
  • the response affects and enables zero speed difference between the motor rotor and the wheel when the clearance between the two is eliminated, thus ensuring that the speed of the motor and the wheel is small enough, and at the same time, the torque zero-crossing process time of the motor is significantly reduced.
  • the first control device 2 includes a first positive zero-crossing control mechanism 21 and a first negative zero-crossing control mechanism 22, and the zero-crossing first preset torque includes a positive zero-crossing control first preset torque.
  • the first positive zero-crossing control mechanism 21 is set to fetch the positive zero-crossing control first preset torque T7 when the motor is in the positive torque zero-crossing process
  • the first negative zero-crossing control mechanism 22 is configured to fetch the negative zero-crossing control first preset torque T5 when the motor is in the negative-direction torque zero-crossing process.
  • the second control device 3 includes a second positive zero-crossing control mechanism 31 and a second negative zero-crossing control mechanism 32, and the zero-crossing second preset torque includes a positive zero-crossing control second preset torque T8 and a negative zero-crossing control mechanism 32 Controlling the second preset torque T6, the second positive zero-crossing control mechanism 31 is set to call the second preset torque T8 for positive zero-crossing control when the motor is in the process of zero-crossing the positive torque, and the second negative zero-crossing control The mechanism 32 is configured to invoke the negative zero-crossing control second preset torque T6 when the motor is in the negative zero-crossing process.
  • the third control device 4 includes a third positive zero-crossing control mechanism 41 and a third negative zero-crossing control mechanism 42, the preset curve includes a positive preset curve and a negative preset curve, and the third positive zero-crossing control mechanism 41 is set to fetch a positive preset curve when the motor is in a positive torque zero-crossing process, and the third negative zero-crossing control mechanism 42 is set to fetch a negative preset curve when the motor is in a negative torque zero-crossing process.
  • the reliability and accuracy of the torque zero-crossing control of the motor can be improved.
  • the motor torque zero-crossing control system further includes a gap self-learning device 5, and the gap self-learning device 5 can control the actual torque T10 of the motor to be the first preset torque T11 of the gap self-learning when the vehicle is in a neutral state, and Keep the gap self-learning for the first preset duration, then adjust and keep the actual torque T10 of the motor as the gap self-learning second preset torque T12, and record the vehicle's longitudinal acceleration before the sudden change of the gap self-learning second preset torque T12 duration
  • the second preset torque T12 of the gap self-learning is denoted as M
  • the gap parameter is denoted as X
  • the rotor inertia of the motor is denoted as J
  • the gap self-learning device 5 can calculate the gap between the motor rotor and the wheel when the vehicle is in different life and use environments, and the gap self-learning device 5 also stores the torque corresponding to each gap parameter setting.
  • Zero-crossing control characteristic parameters, torque zero-crossing control characteristic parameters include positive zero-crossing control first preset torque T7, positive zero-crossing control first preset duration, said positive zero-crossing control second preset torque T8 and positive zero-crossing control.
  • the second preset duration of the zero-crossing control, the first preset torque T5 of the negative zero-crossing control, the first preset duration of the negative zero-crossing control, the second preset torque T6 of the negative zero-crossing control, and the negative zero-crossing control The second preset time period, so that different torque zero-crossing control characteristic parameters can be called according to the actual gap parameters, so as to ensure that the first control device 2, the second control device 3 and the third control device 4 can accurately realize the torque zero-crossing control of the motor .
  • the motor torque zero-crossing control system further includes a fourth control device 6, and the fourth control device 6 can control the actual torque of the motor when the motor does not need to perform torque zero-crossing control and the absolute value of the demand torque T9 is large T10 follows the demand torque T9 of the motor.
  • the motor torque zero-crossing control system further includes a frequent zero-crossing prevention control device 7, and the frequent zero-crossing prevention control device 7 can obtain the motor demand torque T9, and the motor also has a zero-crossing judgment second preset positive torque T2 , zero-crossing judgment first preset positive torque T1, zero-crossing judgment second preset negative torque T3, zero-crossing judgment first preset negative torque T4, zero-crossing judgment second preset positive torque T2 is smaller than zero-crossing judgment first The preset positive torque T1, the second preset negative torque T3 for zero-crossing judgment is greater than the first preset negative torque T4 for zero-crossing judgment, and the control device 7 for preventing frequent zero-crossing can cooperate with the judgment device 1. When the zero judgment is between the first preset negative torque T4 and the zero-cross judgment first preset positive torque T1, the judgment device 1 determines that the motor does not need to perform torque zero-crossing control.
  • control device 7 for preventing frequent zero-crossing can keep the actual torque T10 of the motor within a safe range when the required torque T9 of the motor fluctuates repeatedly around 0, so as to prevent the motor from accidentally and frequently performing the torque zero-crossing process. , and it can also ensure that each time the torque zero-crossing process is executed, the motor rotor and the wheel are from bonding to separation and then bonding, and the current bonding position of the motor can be accurately identified.
  • the motor torque zero-crossing control system further includes a controller 8, and the controller 8 is configured to retrieve parameters and control the judgment device 1, the first control device 2, the second control device 3, and the third control device 4.
  • the fourth control device 6 , the gap self-learning device 5 and the frequent zero-crossing prevention control device 7 are configured to retrieve parameters and control the judgment device 1, the first control device 2, the second control device 3, and the third control device 4.
  • the present application also discloses a vehicle, which includes at least one processor and a storage device, wherein the storage device is configured to store at least one program.
  • the foregoing motor torque control method is implemented when at least one program is executed by at least one processor, such that at least one processor executes the program.
  • the vehicle when the user drives or rides the vehicle, the vehicle can perform the motor torque zero-crossing control by itself, thereby reducing the torque zero-crossing time and reducing the motor rotor and the motor torque when the motor torque is zero-crossing.
  • the impact between the wheels improves the user's experience and comfort.
  • the memory can be configured to store software programs, computer-executable programs, and modules.
  • the memory may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system and an application program required for at least one function; the stored data area may store data created according to the use of the terminal, and the like.
  • the memory may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the memory includes memory located remotely from the processor, and these remote memories can be connected to the device/terminal/server through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the present application also discloses a storage medium on which a computer program is stored, and when the computer program is executed, the foregoing motor torque control method is implemented.
  • a computer-readable storage medium provided by an embodiment of the present application can perform operations related to a motor torque control method provided by any embodiment of the present application. That is, when the program is executed by the processor, at least:
  • Step S1.1 judging whether the demanded torque T9 is greater than the zero-crossing judgment of the first preset positive torque T1, in the case that the demanded torque T9 is greater than the zero-crossing judgment of the first preset positive torque T1, step S2 is performed, and when the demanded torque T9 is less than or equal to zero-crossing to determine the first preset positive torque T1, execute step S1.2;
  • Step S1.2 judging whether the demanded torque T9 is less than the zero-crossing judgment second preset negative torque T3, in the case that the demanded torque T9 is less than the zero-crossing judgment second preset negative torque T3, execute step S1.3, in the demand torque When T9 is greater than or equal to zero-crossing to determine the second preset negative torque T3, step S1.4 is executed;
  • Step S1.3 controlling the actual torque T10 to follow the demand torque T9;
  • Step S1.4 controlling the actual torque T10 to remain at zero-crossing to determine the second preset negative torque T3;
  • Step S2 controlling the actual torque T10 to a positive zero-crossing control first preset torque T7 and maintaining the zero-crossing control for a first preset duration;
  • Step S3 controlling the actual torque T10 from the first preset torque T7 of the forward zero-crossing control to the second preset torque T8 of the forward zero-crossing control, and maintaining the zero-crossing control for a second preset time period.
  • Step S4 step by step adjusting the actual torque T10 from the positive zero-crossing second preset torque to the demanded torque T9 with the preset curve, when the absolute value of the difference between the motor actual torque T10 and the demanded torque T9 is within the preset range, That is, it is considered that the actual torque T10 is adjusted to the required torque T9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电机扭矩控制方法,包括:根据电机的需求扭矩(T9)和实际扭矩(T10)判定电机需要执行扭矩过零控制;控制实际扭矩(T10)至过零第一预设扭矩并保持过零第一预设时长,过零第一预设扭矩与需求扭矩(T9)的正负符号相同;控制实际扭矩(T10)至过零第二预设扭矩并保持过零第二预设时长,过零第一预设扭矩和过零第二预设扭矩的正负符号相反;以预设曲线将实际扭矩(T10)由过零第二预设扭矩逐步调整至需求扭矩(T9),响应于实际扭矩(T10)与需求扭矩(T9)的偏差在预设范围内,即认为将实际扭矩(T10)调整为需求扭矩(T9)。还提供了一种电机扭矩控制系统、车辆及存储介质。该电机扭矩控制方法能够抑制电机扭矩过零时的冲击,并保证较好的动力性响应。

Description

一种电机扭矩控制方法、系统、车辆及存储介质
本申请要求在2021年4月16日提交中国专利局、申请号为202110413545.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆工程技术领域,例如涉及一种电机扭矩控制方法、系统、车辆及存储介质。
背景技术
采用电机直接驱动的车辆在电机和车轮之间没有类似减振器或变矩器的缓冲元件,在电机扭矩方向变化时(扭矩过零),由于在传动链上存在微小间隙,电机转子和车轮之间会经历贴合、分离到再贴合的过程。这个过程存在减小整车冲击和缩短扭矩过零时间的矛盾。
对于扭矩过零问题,相关的技术方案分为两大类,一种方案是通过降低正扭矩上升斜率或负扭矩下降斜率的方式减小扭矩过零的冲击。这种电机扭矩过零的控制方式虽然是控制斜率,但本质上是通过间接降低电机扭矩过零过程中的电机扭矩实现降低间隙消除瞬间的转速差的目的,而降低扭矩会导致过零时间显著增加,存在冲击和动力性响应时间的矛盾。第二种方案是当电机扭矩处于过零工况时,通过一个较小的设定扭矩持续一设定时间实现扭矩过零,本质上是通过降低电机扭矩过零过程中的电机扭矩实现降低间隙消除瞬间的转速差的目的,同样存在冲击和动力性响应时间的矛盾。上述两种通过限制电机扭矩大小和变化率的方式实现扭矩过零,存在冲击和动力性响应时间的矛盾,且最终总会存在一定的冲击,只是在驾驶员能接受的范围内,这种处理方式随着车辆磨损间隙的加大冲击也会加大,这也是大里程汽车普遍存在的问题。
因此,亟需一种电机扭矩控制方法、系统、车辆及存储介质,能够抑制电机扭矩过零时的冲击,并保证较好的动力性响应。
发明内容
本申请提出一种电机扭矩控制方法、系统、车辆及存储介质,能够抑制电机扭矩过零时的冲击,并保证较好的动力性响应。
第一方面,本申请提供一种电机扭矩控制方法,包括:根据电机的需求扭矩和实际扭矩判定所述电机需要执行扭矩过零控制;控制所述实际扭矩至过零第一预设扭矩并保持过零第一预设时长,所述过零第一预设扭矩与所述需求扭矩的正负符号相同;控制所述实际扭矩至过零第二预设扭矩并保持过零第二预设时长,所述过零第一预设扭矩和所述过零第二预设扭矩的正负符号相反;以预设曲线将所述实际扭矩由所述过零第二预设扭矩逐步调整至所述需求扭矩,响应于所述实际扭矩与所述需求扭矩的偏差在预设范围内,即认为将所述实际扭矩调整为所述需求扭矩。
第二方面,本申请还提供一种电机扭矩控制系统,包括:判断装置,被配置为根据电机的需求扭矩和实际扭矩判定所述电机需要执行扭矩过零控制;第一控制装置,被配置为控制所述实际扭矩至过零第一预设扭矩并保持过零第一预设时长,所述过零第一预设扭矩与所述需求扭矩的正负符号相同;第二控制装置,控制所述实际扭矩至过零第二预设扭矩并保持过零第二预设时长,所述过零第一预设扭矩和所述过零第二预设扭矩的正负符号相反;第三控制装置,所述第三控制装置被配置为以预设曲线将所述实际扭矩由所述过零第二预设扭矩逐步调整至所述需求扭矩,响应于所述实际扭矩和所述需求扭矩的偏差在预设范围内,即认为所述第三控制装置将所述实际扭矩调整为所述需求扭矩。
第三方面,本申请还提供一种车辆,包括:至少一个处理器;存储装置,设置为存储至少一个程序;当至少一个所述程序被至少一个所述处理器执行,使得至少一个所述处理器执行所述程序时实现如前文所述的电机扭矩控制方法。
第四方面,本申请还提供一种存储介质,其上存储有计算机程序,该计算机程序被执行时实现如前文所述的电机扭矩控制方法。
附图说明
图1是本申请具体实施方式提供的电机扭矩控制方法流程示意图之一;
图2是本申请具体实施方式提供的电机扭矩控制方法流程示意图之二;
图3是本申请具体实施方式提供的电机扭矩控制方法执行时的实际扭矩和电机需求扭矩的曲线示意图之一;
图4是本申请具体实施方式提供的电机扭矩控制方法执行时的实际扭矩和电机需求扭矩的曲线示意图之二;
图5是本申请具体实施方式提供的电机扭矩控制方法执行时的实际扭矩和电机需求扭矩的曲线示意图之三;
图6是本申请具体实施方式提供的电机扭矩控制方法执行时的实际扭矩和电机需求扭矩的曲线示意图之四;
图7是本申请具体实施方式提供的获取间隙参数时的实际扭矩和电机需求扭矩的曲线示意图;
图8是本申请具体实施方式提供的电机扭矩控制系统的结构示意图。
附图标记
T1、过零判断第一预设正扭矩;T2、过零判断第二预设正扭矩;T3、过零判断第二预设负扭矩;T4、过零判断第一预设负扭矩;T5、负向过零控制第一预设扭矩;T6、负向过零控制第二预设扭矩;T7、正向过零控制第一预设扭矩;T8、正向过零控制第二预设扭矩;T9、需求扭矩;T10、实际扭矩;T11、间隙自学习第一预设扭矩;T12、间隙自学习第二预设扭矩;1、判断装置;2、第一控制装置;21、第一正向过零控制机构;22、第一负向过零控制机构;3、第二控制装置;31、第二正向控制机构;32、第二负向控制机构;4、第三控制装置;41、第三正向控制机构;42、第三负向控制机构;5、间隙自学习装置;6、第四控制装置;7、防止频繁过零控制装置;8、控制器。
具体实施方式
下面结合附图并通过具体实施方式来说明本申请的技术方案。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
下面参考图1-图8描述本申请实施例的电机扭矩控制方法。
如图1-图8所示,图1公开了一种电机扭矩控制方法,包括:步骤S1、根据电机的需求扭矩T9和实际扭矩T10判定电机需要执行扭矩过零控制;步骤 S2、控制实际扭矩T10至过零第一预设扭矩并保持过零第一预设时长,过零第一预设扭矩与需求扭矩T9的正负符号相同;步骤S3、控制实际扭矩T10至过零第二预设扭矩并保持过零第二预设时长,过零第一预设扭矩和过零第二预设扭矩的正负符号相反;步骤S4、以预设曲线将实际扭矩T10由过零第二预设扭矩逐步调整至需求扭矩T9,当实际扭矩T10与需求扭矩T9的偏差在预设范围内时,即认为将实际扭矩T10调整为需求扭矩T9。
可以理解的是,在步骤S1中,在电机的需求扭矩曲线被判定为需要执行扭矩过零控制后,即可执行扭矩过零控制。在步骤S2中,由于过零第一预设扭矩与电机的需求扭矩T9的正负符号相同,使电机的扭矩方向能够朝向其需求方向变化,在保持过零第一预设时长后,即能够便于电机在短时间内执行大部分过零进程,并快速增加电机转子与车轮之间的转速差,消除电机转子和车轮之间的一部分间隙,此时如继续使实际扭矩T10保持在过零第一预设扭矩,将使得电机碰撞到车轮,造成冲击问题。在过零第一预设时长结束后,进入步骤S3,控制实际扭矩T10为过零第二预设扭矩,由于过零第二预设扭矩和过零第一预设扭矩的方向相反,使得电机转子与车轮之间的转速差快速减少,从而防止电机转子与车轮之间出现碰撞问题,解决了电机在扭矩作用下与车轮之间出现冲击的问题,此外,虽然过零第二预设扭矩与过零第一预设扭矩的扭矩方向相反,此时电机的运动方向仍然是与步骤S2中的运动方向一致,从而能够进一步消除电机转子和车轮之间的剩余间隙。在步骤S3结束时,电机转子与车轮之间的间隙消除,且电机转子和车轮的转速差接近为0。由于步骤S3中实际扭矩T10仍然为过零第二预设扭矩,没有达到需求扭矩T9,在步骤S4中,以预设曲线将实际扭矩T10逐步调整为需求扭矩T9,当实际扭矩T10和需求扭矩T9的绝对值的差值小于预设范围时即可认为电机的扭矩过零控制完毕,之后实际扭矩T10能够跟随需求扭矩T9进行。
根据本实施例的电机扭矩控制方法,在步骤S2中能够增加电机转子和车轮之间的转速差,消除电机转子与车轮之间的部分间隙,在步骤S3中能够降低电 机转子与车轮之间的转速差,进一步消除电机转子与车轮之间的间隙,并最终使电机转子与车轮的转速差接近0,完成大部分过零进程,在步骤S4中能够将电机的实际扭矩T10以安全可靠的预设曲线调整至电机的需求扭矩T9,完成扭矩过零进程。因此,本实施例的电机扭矩控制方法,能够在短时间内完成电机的扭矩过零,同时不会对电机扭矩的动力响应造成影响,并使电机转子和车轮的间隙消除时实现两者的零转速差,从而确保电机与车轮贴合时转速足够小,同时显著降低电机的扭矩过零进程时间。
可选地,在本实施例中,步骤S4中的预设曲线既可以是弧线也可以是有预设斜率的直线,其线型可以根据实际需求确定。
在一些实施例中,电机与车轮之间的间隙具有间隙参数,每个间隙参数对应设置一组扭矩过零控制特征参数,扭矩过零控制特征参数包括过零第一预设扭矩、过零第一预设时长、过零第二预设扭矩和过零第二预设时长,过零第一预设扭矩包括正向过零控制第一预设扭矩T7和负向过零控制第一预设扭矩T5,过零第二预设扭矩包括正向过零控制第二预设扭矩T8和负向过零控制第二预设扭矩T6。
可以理解的是,电机转子和车轮之间的间隙在长期使用过程中会出现磨损现象,且也会随着温度等其他外界环境因素产生变化,由此,针对电机转子和车轮之间的不同间隙,电机扭矩过零进程的扭矩过零控制特征参数也需要进行修正,示例性的,当电机转子和车轮之间的间隙较大时,过零控制第一预设扭矩、过零控制第一预设时长、过零控制第二预设扭矩和过零控制第二预设时长通常也会随之增大,以便较好地实现电机扭矩过零控制,确保电机的扭矩过零进程的正常完成。因此,本实施例的间隙参数分别对应设置一组扭矩过零控制特征参数后,能够优化电机的扭矩过零控制。
在一些实施例中,如图7所示,控制车辆处于空挡状态,控制实际扭矩T10为间隙自学习第一预设扭矩T11并保持间隙自学习第一预设时长,然后控制实际扭矩T10从间隙自学习第一预设扭矩T11切换为间隙自学习第二预设扭矩 T12并保持,间隙自学习第一预设扭矩T11和间隙自学习第二预设扭矩T12的正负符号相反,记录车轮的纵向加速度出现突变前的间隙自学习第二预设扭矩T12的持续时间为T,将间隙自学习第二预设扭矩T12记为M,间隙参数记为X,电机的转子惯量记作J,则,X=0.5*M*T*T/J,根据X的值对应设置扭矩过零控制特征参数。
可以理解的是,当电机转子与车轮之间的间隙较大时,间隙参数的数值也将变大,因此,可以根据间隙参数的计算对扭矩过零控制特征参数进行设置,从而优化电机的扭矩过零控制。需要说明的是,由于在实际的应用中,不同的电机和不同的车轮之间的配合将使电机的转子惯量、电机的间隙自学习预设负扭矩和电机的间隙自学习预设正扭矩三者均有所差异,因此,根据不同电机和车轮所计算得到的扭矩过零控制特征参数各有不同,其可以根据实际应用的相关参数自行获得,在此无需举例赘述。
图7为间隙自学习第一预设扭矩T11为正扭矩时的实际扭矩T10的变化示意图,间隙自学习第一预设扭矩T11为负扭矩时的实际扭矩T10的变化示意图可以参照其获得,在此无需赘述。
示例性地,在本实施例中,为确保间隙参数的准确性和获取间隙参数时的安全性,在测试间隙参数时,需要车辆在接近水平位置停车,车辆档位为空挡,油门踏板和制动踏板均处于松开状态,所有驻车制动松开状态。间隙参数的获取既可以根据驾驶员的指示进行,也可以自行进行,在自行进行间隙参数测试时,为确保安全,需要给与驾驶员包括且不限于文字、声音、图像等提示信息。
在一些实施例中,如图3和图4所示,扭矩过零控制包括正向过零控制和负向过零控制,执行正向过零控制时,步骤S2中的过零第一预设扭矩为正向过零控制第一预设扭矩T7,正向过零控制第一预设扭矩T7为正扭矩,步骤S3中的过零第二预设扭矩为正向过零控制第二预设扭矩T8,正向过零控制第二预设扭矩T8为负扭矩;执行负向过零控制时,步骤S2中的过零第一预设扭矩为负向过零控制第一预设扭矩T5,负向过零控制第一预设扭矩T5为负扭矩,步骤 S3中的过零第二预设扭矩为负向过零控制第二预设扭矩T6,负向过零控制第二预设扭矩T6为正扭矩。
可以理解的是,电机的实际扭矩T10存在正负两种状态,由此扭矩过零控制也具有正向过零控制和负向过零控制,两者所需要调用的过零第一预设扭矩和过零第二预设扭矩均有所不同,将其具体化区分能够便于提高参数调用精度,从而能够针对具体的扭矩过零控制情况执行扭矩过零控制,以提高扭矩过零控制的控制可靠性。
示例性的,图3为执行正向过零控制时实际扭矩T10和需求扭矩T9的变化曲线示意图,图4为执行负向过零控制时实际扭矩T10和需求扭矩T9的变化曲线示意图。
在一些实施例中,如图1和图2所示,步骤S1包括:实际扭矩T10为正扭矩且需求扭矩T9小于过零判断第一预设负扭矩T4时,判定电机需要执行负向过零控制。实际扭矩T10为负扭矩且需求扭矩T9大于过零判断第一预设正扭矩T1时,判定电机需要执行正向过零控制。
在一些实施例中,如图2和图6所示,步骤S1还包括:判定不执行扭矩过零控制,且实际扭矩T10为正扭矩时,需求扭矩T9大于过零判断第二预设正扭矩T2时,控制实际扭矩T10跟随需求扭矩T9,需求扭矩T9小于过零判断第二预设正扭矩T2并大于过零判断第一预设负扭矩T4时,控制实际扭矩T10保持过零判断第二预设正扭矩T2,过零判断第二预设正扭矩T2小于过零判断第一预设正扭矩T1。
可以理解的是,根据电机在实际运行过程中的实际扭矩T10和需求扭矩T9,存在需求扭矩T9在0附近波动的可能性,如实际扭矩T10根据需求扭矩T9的波动执行扭矩过零控制,将导致频繁执行扭矩过零控制,并对电机的正常运行造成负面影响。在本实施例中,还额外设置有过零判断第二预设正扭矩T2,从而对需求扭矩T9的波动范围进行了限定,以便于对电机的原始需求扭矩T9的变化额外限定变化范围,即使电机的原始需求扭矩T9出现小范围波动,在步骤 S1中也不会判定电机需要执行扭矩过零控制,从而能够提高电机的扭矩过零控制的判断精度。在实际扭矩T10为正扭矩的情况下,当需求扭矩T9在过零判断第二预设正扭矩T2和过零判断第一预设负扭矩T4之间浮动时,即可在此情况下控制实际扭矩T10保持为过零判断第二预设正扭矩T2,既能规避频繁扭矩过零,也可以在需求扭矩T9低于过零判断第一预设负扭矩T4时快速执行负向过零控制,从而显著提高了扭矩过零控制的执行可靠性。
此外,在本实施例中,还能够根据上述情况判定电机相对于车轮的位置为正,以便于确定下次执行扭矩过零控制时电机与车辆之间的准确位置关系。
在一些实施例中,如图2和图5所示,步骤S1还包括:判定不执行扭矩过零控制,且实际扭矩T10为负扭矩时,需求扭矩T9小于过零判断第二预设负扭矩T3时,控制实际扭矩T10跟随需求扭矩T9,需求扭矩T9大于过零判断第二预设负扭矩T3并小于过零判断第一预设正扭矩T1时,控制实际扭矩T10保持过零判断第二预设负扭矩T3,过零判断第二预设负扭矩T3大于过零判断第一预设负扭矩T4。
可以理解的是,本实施例提供了在实际扭矩T10为负扭矩时的电机扭矩控制步骤,能够与实际扭矩T10为正扭矩时的电机扭矩控制步骤区分开来,从而便于针对实际情况调取不同参数,提高控制可靠性。在实际扭矩T10为负扭矩的情况下,当需求扭矩T9在过零判断第一预设正扭矩T1和过零判断第二预设负扭矩T3之间浮动时,即可在此情况下控制实际扭矩T10保持为过零判断第二预设负扭矩T3,既能规避频繁扭矩过零,也可以在需求扭矩T9大于过零判断第一预设正扭矩T1时快速执行正向过零控制,从而显著提高了扭矩过零控制的执行可靠性。
此外,在本实施例中,还能够根据上述情况判定电机相对于车轮的位置为负,以便于确定下次执行扭矩过零控制时电机与车辆之间的准确位置关系。
实施例1:
电机的扭矩过零进程存在两种情况,第一是如图4所示的从正扭矩过渡至负扭矩,称作负向扭矩过零,第二是如图3所示的从负扭矩过渡至正扭矩,称作正向扭矩过零。下面以正向扭矩过零为例描述本实施例中电机的扭矩过零控制方法,负向扭矩过零控制可以根据正向扭矩过零控制的步骤得知,在此无需赘述。
如图1-图3所示,本实施例的电机扭矩控制方法包括:
步骤S1.1、判断需求扭矩T9是否大于过零判断第一预设正扭矩T1,在需求扭矩T9大于过零判断第一预设正扭矩T1的情况下,执行步骤S2,在需求扭矩T9小于或等于过零判断第一预设正扭矩T1的情况下,执行步骤S1.2。
步骤S1.2、判断需求扭矩T9是否小于过零判断第二预设负扭矩T3,在需求扭矩T9小于过零判断第二预设负扭矩T3的情况下,执行步骤S1.3,在需求扭矩T9大于或等于过零判断第二预设负扭矩T3的情况下,执行步骤S1.4。
步骤S1.3、控制实际扭矩T10跟随需求扭矩T9。
步骤S1.4、控制实际扭矩T10保持为过零判断第二预设负扭矩T3。
步骤S2、控制实际扭矩T10至正向过零控制第一预设扭矩T7并保持过零控制第一预设时长。
步骤S3、将实际扭矩T10由正向过零控制第一预设扭矩T7控制至正向过零控制第二预设扭矩T8并保持过零控制第二预设时长。
步骤S4、以预设曲线将实际扭矩T10由正向过零第二预设扭矩T8逐步调整至需求扭矩T9,当电机实际扭矩T10和需求扭矩T9的差值的绝对值在预设范围内时,即认为实际扭矩T10调整为需求扭矩T9。
本实施例的电机扭矩控制方法至少包括如下特点:
能够根据电机的需求扭矩和实际扭矩判定电机是否需要执行扭矩过零控制,并能够根据其实际扭矩方向判定执行正向扭矩过零或负向扭矩过零。在执行扭矩过零控制时,由于过零第一预设扭矩与电机的需求扭矩T9的正负符号相同, 使电机的扭矩方向能够朝向其需求方向变化,在保持过零第一预设时长后,即能够便于电机在短时间内执行大部分过零进程,并快速增加电机转子与车轮之间的转速差,消除电机转子和车轮之间的一部分间隙。在过零第一预设时长结束后,控制实际扭矩T10为过零第二预设扭矩,由于过零第二预设扭矩和过零第一预设扭矩的方向相反,使得电机转子与车轮之间的转速差快速减少,从而防止电机转子与车轮之间出现碰撞问题,解决了电机在扭矩作用下与车轮之间出现冲击的问题,且电机的运动方向仍然是与步骤S2中的运动方向一致,从而能够进一步消除电机转子和车轮之间的剩余间隙。在上述扭矩控制完成后,电机转子与车轮之间的间隙消除,且电机转子和车轮的转速差接近为0。由于步骤S3中实际扭矩T10仍然为过零第二预设扭矩,没有达到需求扭矩T9,在步骤S4中,以预设曲线将实际扭矩T10逐步调整为需求扭矩T9,当实际扭矩T10和需求扭矩T9的差值的绝对值小于预设范围时即可认为电机的扭矩过零控制完毕,之后实际扭矩T10能够跟随需求扭矩T9进行。
如判定电机不执行扭矩过零控制,则可以根据需求扭矩和实际扭矩对电机的实际扭矩进行控制,从而便于针对实际情况调取不同参数,提高控制可靠性。在实际扭矩T10为正扭矩的情况下,当需求扭矩T9在过零判断第二预设正扭矩T2和过零判断第一预设负扭矩T4之间浮动时,即可在此情况下控制实际扭矩T10保持为过零判断第二预设正扭矩T2,既能规避频繁扭矩过零,也可以在需求扭矩T9低于过零判断第一预设负扭矩T4时快速执行负向过零控制,从而显著提高了扭矩过零控制的执行可靠性。还能够根据上述情况判定电机相对于车轮的位置为正,以便于确定下次执行扭矩过零控制时电机与车辆之间的准确位置关系。
实施例2:
本申请还提供了一种电机扭矩控制系统,基于前文的电机扭矩控制方法,包括判断装置1、第一控制装置2、第二控制装置3和第三控制装置4。判断装 置1被配置为根据电机的需求扭矩T9和实际扭矩T10判定电机需要执行扭矩过零控制。第一控制装置2被配置为控制实际扭矩T10至过零第一预设扭矩并保持过零第一预设时长,过零第一预设扭矩与需求扭矩T9的正负符号相同。第二控制装置3被配置为控制实际扭矩T10至过零第二预设扭矩并保持过零第二预设时长,过零第一预设扭矩和过零第二预设扭矩的正负符号相反。第三控制装置4被配置为以预设曲线将实际扭矩T10由过零第二预设扭矩逐步调整至需求扭矩T9,当实际扭矩T10和需求扭矩T9的偏差在预设范围内时,即认为第三控制装置4将实际扭矩T10调整为需求扭矩T9。
可以理解的是,根据该电机扭矩过零控制系统,即可较好地实现前文所述的电机扭矩控制方法,从而能够在短时间内完成电机的扭矩过零,同时不会对电机扭矩的动力响应造成影响,并使电机转子和车轮的间隙消除时实现两者的零转速差,从而确保电机与车轮贴合时转速足够小,同时显著降低电机的扭矩过零进程时间。
在一些具体的实施例中,第一控制装置2包括第一正向过零控制机构21和第一负向过零控制机构22,过零第一预设扭矩包括正向过零控制第一预设扭矩T7和负向过零控制第一预设扭矩T5,第一正向过零控制机构21设置为在电机处于正向扭矩过零进程时调取正向过零控制第一预设扭矩T7,第一负向过零控制机构22设置为在电机处于负向扭矩过零进程时调取负向过零控制第一预设扭矩T5。
第二控制装置3包括第二正向过零控制机构31和第二负向过零控制机构32,过零第二预设扭矩包括正向过零控制第二预设扭矩T8和负向过零控制第二预设扭矩T6,第二正向过零控制机构31设置为在电机处于正向扭矩过零进程时调取正向过零控制第二预设扭矩T8,第二负向过零控制机构32设置为在电机处于负向过零进程时调取负向过零控制第二预设扭矩T6。
第三控制装置4包括第三正向过零控制机构41和第三负向过零控制机构42,预设曲线包括正向预设曲线和负向预设曲线,第三正向过零控制机构41设置为 在电机处于正向扭矩过零进程时调取正向预设曲线,第三负向过零控制机构42设置为在电机处于负向扭矩过零进程时调取负向预设曲线。
通过细化第一控制装置2、第二控制装置3和第三控制装置4,能够提高电机的扭矩过零控制的可靠性和准确性。
在一些实施例中,电机扭矩过零控制系统还包括间隙自学习装置5,间隙自学习装置5能够在车辆处于空挡状态时,控制电机的实际扭矩T10为间隙自学习第一预设扭矩T11并保持间隙自学习第一预设时长,然后调整并保持电机的实际扭矩T10为间隙自学习第二预设扭矩T12,并记录车辆的纵向加速度产生突变前间隙自学习第二预设扭矩T12持续时间T,同时间隙自学习第二预设扭矩T12记作M,间隙参数记作X,电机的转子惯量记作J,进而计算出间隙参数X=0.5*M*T*T/J。
可以理解的是,间隙自学习装置5能够计算出车辆在不同寿命和使用环境下时,电机转子和车轮之间的间隙,同时间隙自学习装置5内还存储有对应每个间隙参数设置的扭矩过零控制特征参数,扭矩过零控制特征参数包括正向过零控制第一预设扭矩T7、正向过零控制第一预设时长、所述正向过零控制第二预设扭矩T8和正向过零控制第二预设时长,负向过零控制第一预设扭矩T5、负向过零控制第一预设时长、负向过零控制第二预设扭矩T6和负向过零控制第二预设时长,从而能够根据实际间隙参数调取不同的扭矩过零控制特征参数,以确保第一控制装置2、第二控制装置3和第三控制装置4准确实现电机的扭矩过零控制。
在一些实施例中,电机扭矩过零控制系统还包括第四控制装置6,第四控制装置6能够在电机不需要执行扭矩过零控制且需求扭矩T9绝对值较大时,控制电机的实际扭矩T10跟随电机的需求扭矩T9。
在一些实施例中,电机扭矩过零控制系统还包括防止频繁过零控制装置7,防止频繁过零控制装置7能够获取电机需求扭矩T9,同时电机还具有过零判断第二预设正扭矩T2、过零判断第一预设正扭矩T1、过零判断第二预设负扭矩 T3、过零判断第一预设负扭矩T4,过零判断第二预设正扭矩T2小于过零判断第一预设正扭矩T1,过零判断第二预设负扭矩T3大于过零判断第一预设负扭矩T4,防止频繁过零控制装置7能够与判断装置1配合,当电机的需求扭矩T9位于过零判断第一预设负扭矩T4和过零判断第一预设正扭矩T1之间时,判断装置1判定电机无需进行扭矩过零控制。
可以理解的是,防止频繁过零控制装置7能够在电机的需求扭矩T9在0附近反复波动时,控制电机的实际扭矩T10保持在安全范围内,防止电机意外频繁执行扭矩过零进程造成的危害,且还能保证每次扭矩过零进程执行时,电机转子与车轮之间均是由贴合到分离再到贴合,并能准确识别电机的当前贴合位置。
在一些具体的实施例中,电机扭矩过零控制系统还包括控制器8,控制器8设置为调取参数和控制判断装置1、第一控制装置2、第二控制装置3、第三控制装置4、第四控制装置6、间隙自学习装置5和防止频繁过零控制装置7。
实施例3:
本申请还公开了一种车辆,车辆包括至少一个处理器和存储装置,存储装置设置为存储至少一个程序。当至少一个程序被至少一个处理器执行,使得至少一个处理器执行程序时实现前文的电机扭矩控制方法。
可以理解的是,根据本实施例的车辆,用户在驾驶或乘坐该车辆时,车辆能够自行执行电机扭矩过零控制,从而降低了扭矩过零时间,减小了电机扭矩过零时电机转子与车轮之间的冲击,提高了用户的体验感和舒适度。
存储器作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块。存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他 非易失性固态存储器件。在一些实例中,存储器包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至设备/终端/服务器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实施例4:
本申请还公开了一种存储介质,其上存储有计算机程序,该计算机程序被执行时实现前文的电机扭矩控制方法。当然,本申请实施例所提供的一种计算机可读存储介质,其可以执行本申请任意实施例提供的一种电机扭矩控制方法的相关操作。也即,该程序被处理器执行时至少可以实现:
步骤S1.1、判断需求扭矩T9是否大于过零判断第一预设正扭矩T1,在需求扭矩T9大于过零判断第一预设正扭矩T1的情况下,执行步骤S2,在需求扭矩T9小于或等于过零判断第一预设正扭矩T1的情况下,执行步骤S1.2;
步骤S1.2、判断需求扭矩T9是否小于过零判断第二预设负扭矩T3,在需求扭矩T9小于过零判断第二预设负扭矩T3的情况下,执行步骤S1.3,在需求扭矩T9大于或等于过零判断第二预设负扭矩T3的情况下,执行步骤S1.4;
步骤S1.3、控制实际扭矩T10跟随需求扭矩T9;
步骤S1.4、控制实际扭矩T10保持为过零判断第二预设负扭矩T3;
步骤S2、控制实际扭矩T10至正向过零控制第一预设扭矩T7并保持过零控制第一预设时长;
步骤S3、将实际扭矩T10由正向过零控制第一预设扭矩T7控制至正向过零控制第二预设扭矩T8并保持过零控制第二预设时长。
步骤S4、以预设曲线将实际扭矩T10由正向过零第二预设扭矩逐步调整至需求扭矩T9,当电机实际扭矩T10和需求扭矩T9的差值的绝对值在预设范围内时,即认为实际扭矩T10调整为需求扭矩T9。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、等的描述 意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

Claims (10)

  1. 一种电机扭矩控制方法,包括:
    根据电机的需求扭矩(T9)和实际扭矩(T10)判定所述电机需要执行扭矩过零控制;
    控制所述实际扭矩(T10)至过零第一预设扭矩并保持过零第一预设时长,所述过零第一预设扭矩与所述需求扭矩(T9)的正负符号相同;
    控制所述实际扭矩(T10)至过零第二预设扭矩并保持过零第二预设时长,所述过零第一预设扭矩和所述过零第二预设扭矩的正负符号相反;
    以预设曲线将所述实际扭矩(T10)由所述过零第二预设扭矩逐步调整至所述需求扭矩(T9),响应于所述实际扭矩(T10)与所述需求扭矩(T9)的偏差在预设范围内,即认为将所述实际扭矩(T10)调整为所述需求扭矩(T9)。
  2. 根据权利要求1所述的电机扭矩控制方法,其中,所述电机与车轮之间的间隙具有间隙参数,一个所述间隙参数对应设置一组扭矩过零控制特征参数,所述扭矩过零控制特征参数包括过零第一预设扭矩、过零第一预设时长、过零第二预设扭矩和过零第二预设时长,所述过零第一预设扭矩包括正向过零控制第一预设扭矩(T7)和负向过零控制第一预设扭矩(T5),所述过零第二预设扭矩包括正向过零控制第二预设扭矩(T8)和负向过零控制第二预设扭矩(T6)。
  3. 根据权利要求2所述的电机扭矩控制方法,其中,所述间隙参数和与其对应的扭矩过零控制特征参数通过以下方式得到:
    控制车辆处于空挡状态,控制所述实际扭矩(T10)为间隙自学习第一预设扭矩(T11)并保持间隙自学习第一预设时长,然后控制所述实际扭矩(T10)从所述间隙自学习第一预设扭矩(T11)切换为间隙自学习第二预设扭矩(T12)并保持,所述间隙自学习第一预设扭矩(T11)和所述间隙自学习第二预设扭矩(T12)的正负符号相反,记录所述车轮的纵向加速度出现突变前的所述间隙自学习第二预设扭矩(T12)的持续时间为T,将所述间隙自学习第二预设扭矩(T12)记为M,所述间隙参数记为X,所述电机的转子惯量记作J,则,X=0.5*M*T*T/J,根据X的值对应设置所述扭矩过零控制特征参数。
  4. 根据权利要求1所述的电机扭矩控制方法,其中,所述扭矩过零控制包括正向过零控制和负向过零控制,在执行所述正向过零控制的情况下,所述过零第一预设扭矩为正向过零控制第一预设扭矩(T7),所述正向过零控制第一预设扭矩(T7)为正扭矩,所述过零第二预设扭矩为正向过零控制第二预设扭矩(T8),所述正向过零控制第二预设扭矩(T8)为负扭矩;在执行所述负向过零控制的情况下,所述过零第一预设扭矩为负向过零控制第一预设扭矩(T5),所述负向过零控制第一预设扭矩(T5)为负扭矩,所述过零第二预设扭矩为负向过零控制第二预设扭矩(T6),所述负向过零控制第二预设扭矩(T6)为正扭矩。
  5. 根据权利要求4所述的电机扭矩控制方法,其中,所述根据电机的需求扭矩(T9)和实际扭矩(T10)判定所述电机需要执行扭矩过零控制,包括:
    响应于所述实际扭矩(T10)为正扭矩且所述需求扭矩(T9)小于过零判断第一预设负扭矩(T4),判定所述电机需要执行所述负向过零控制;
    响应于所述实际扭矩(T10)为负扭矩且所述需求扭矩(T9)大于过零判断第一预设正扭矩(T1),判定所述电机需要执行所述正向过零控制。
  6. 根据权利要求5所述的电机扭矩控制方法,其中,所述根据电机的需求扭矩(T9)和实际扭矩(T10)判定所述电机需要执行扭矩过零控制,还包括:
    响应于判定不执行所述扭矩过零控制,且所述实际扭矩(T10)为正扭矩,
    在所述需求扭矩(T9)大于过零判断第二预设正扭矩(T2)的情况下,控制所述实际扭矩(T10)跟随所述需求扭矩(T9),在所述需求扭矩(T9)小于所述过零判断第二预设正扭矩(T2)并大于所述过零判断第一预设负扭矩(T4)的情况下,控制所述实际扭矩(T10)保持所述过零判断第二预设正扭矩(T2),所述过零判断第二预设正扭矩(T2)小于所述过零判断第一预设正扭矩(T1)。
  7. 根据权利要求5所述的电机扭矩控制方法,其中,所述根据电机的需求扭矩(T9)和实际扭矩(T10)判定所述电机需要执行扭矩过零控制,还包括:
    响应于判定不执行所述扭矩过零控制,且所述实际扭矩(T10)为负扭矩,
    在所述需求扭矩(T9)小于过零判断第二预设负扭矩(T3)的情况下,控 制所述实际扭矩(T10)跟随所述需求扭矩(T9),在所述需求扭矩(T9)大于所述过零判断第二预设负扭矩(T3)并小于过零判断第一预设正扭矩(T1)的情况下,控制所述实际扭矩(T10)保持所述过零判断第二预设负扭矩(T3),所述过零判断第二预设负扭矩(T3)大于所述过零判断第一预设负扭矩(T4)。
  8. 一种电机扭矩控制系统,包括:
    判断装置,被配置为根据电机的需求扭矩(T9)和实际扭矩(T10)判定所述电机需要执行扭矩过零控制;
    第一控制装置,被配置为控制所述实际扭矩(T10)至过零第一预设扭矩并保持过零第一预设时长,所述过零第一预设扭矩与所述需求扭矩(T9)的正负符号相同;
    第二控制装置,被配置为控制所述实际扭矩(T10)至过零第二预设扭矩并保持过零第二预设时长,所述过零第一预设扭矩和所述过零第二预设扭矩的正负符号相反;
    第三控制装置,被配置为以预设曲线将所述实际扭矩(T10)由所述过零第二预设扭矩逐步调整至所述需求扭矩(T9),响应于所述实际扭矩(T10)和所述需求扭矩(T9)的偏差在预设范围内,即认为所述第三控制装置将所述实际扭矩(T10)调整为所述需求扭矩(T9)。
  9. 一种车辆,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当至少一个所述程序被至少一个所述处理器执行,使得至少一个所述处理器执行至少一个所述程序时实现如权利要求1-7中任一项所述的电机扭矩控制方法。
  10. 一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序被执行时实现如权利要求1-7中任一项所述的电机扭矩控制方法。
PCT/CN2022/086044 2021-04-16 2022-04-11 一种电机扭矩控制方法、系统、车辆及存储介质 WO2022218242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110413545.5A CN113071330B (zh) 2021-04-16 2021-04-16 一种电机扭矩控制方法、系统、车辆及存储介质
CN202110413545.5 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022218242A1 true WO2022218242A1 (zh) 2022-10-20

Family

ID=76617825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086044 WO2022218242A1 (zh) 2021-04-16 2022-04-11 一种电机扭矩控制方法、系统、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN113071330B (zh)
WO (1) WO2022218242A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133799A (ja) * 1997-07-23 1999-02-09 Komatsu Ltd 電動プレスの制御方法及び制御装置
CN109159673A (zh) * 2018-08-28 2019-01-08 江铃汽车股份有限公司 一种新能源车电机扭矩过零冲击的优化方法
CN110254250A (zh) * 2019-06-26 2019-09-20 四川阿尔特新能源汽车有限公司 电机扭矩过零控制方法、装置、控制器、车辆及存储介质
CN112046301A (zh) * 2020-09-14 2020-12-08 广州小鹏自动驾驶科技有限公司 一种车辆电机的扭矩控制方法、装置和车辆

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6581705B2 (en) * 2001-06-29 2003-06-24 Ford Global Technologies, Llc Method for starting an engine in a parallel hybrid electric vehicle
JP2007257515A (ja) * 2006-03-24 2007-10-04 Toshiba Mach Co Ltd サーボモータの制御方法
JP5391697B2 (ja) * 2009-01-16 2014-01-15 株式会社デンソー 回転機の制御装置及び制御システム
DE102010031566A1 (de) * 2010-07-20 2012-01-26 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ansteuern einer mehrphasigen elektronisch kommutierten elektrischen Maschine sowie ein Motorsystem
JP5572779B2 (ja) * 2012-03-21 2014-08-13 本田技研工業株式会社 車両用駆動装置及び車両用駆動装置の制御方法
KR101611045B1 (ko) * 2014-06-11 2016-04-11 현대자동차주식회사 구동모터의 토크 제어 장치 및 제어방법
JP6265180B2 (ja) * 2015-08-05 2018-01-24 トヨタ自動車株式会社 車両の駆動力制御装置
GB2544763B (en) * 2015-11-25 2019-03-27 Jaguar Land Rover Ltd Controller for a motor vehicle and method
CN107472076B (zh) * 2016-06-24 2019-11-22 宝沃汽车(中国)有限公司 车辆的扭矩控制方法、装置及车辆
US20180238252A1 (en) * 2017-02-21 2018-08-23 GM Global Technology Operations LLC Method for Backlash Reduction
JP7135361B2 (ja) * 2018-03-23 2022-09-13 日産自動車株式会社 電動車両のトルク制御方法及びトルク制御装置
US11413972B2 (en) * 2019-01-17 2022-08-16 Atieva, Inc. Control system to eliminate power train backlash
CN109968997B (zh) * 2019-03-19 2021-06-11 中国第一汽车股份有限公司 一种电动汽车驱动扭矩过0过程中的扭矩控制方法
CN110303899B (zh) * 2019-06-20 2021-05-14 中国第一汽车股份有限公司 一种电动四驱汽车驱动扭矩控制方法
DE102019120439A1 (de) * 2019-07-29 2021-02-04 Valeo Siemens Eautomotive Germany Gmbh Steuereinrichtung, Wechselrichter, Anordnung mit einem Wechselrichter und einer elektrischen Maschine, Verfahren zum Betreiben eines Wechselrichters sowie Computerprogramm
CN111731111B (zh) * 2020-06-29 2022-08-05 德尔福科技(苏州)有限公司 一种用于新能源车辆的电机扭矩过零防抖控制方法
CN112339576B (zh) * 2020-11-09 2022-05-13 中国第一汽车股份有限公司 一种车辆扭矩控制方法、装置、车辆及存储介质
CN112477621B (zh) * 2020-11-10 2022-05-17 华人运通(江苏)技术有限公司 一种电动车扭矩控制方法、设备及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133799A (ja) * 1997-07-23 1999-02-09 Komatsu Ltd 電動プレスの制御方法及び制御装置
CN109159673A (zh) * 2018-08-28 2019-01-08 江铃汽车股份有限公司 一种新能源车电机扭矩过零冲击的优化方法
CN110254250A (zh) * 2019-06-26 2019-09-20 四川阿尔特新能源汽车有限公司 电机扭矩过零控制方法、装置、控制器、车辆及存储介质
CN112046301A (zh) * 2020-09-14 2020-12-08 广州小鹏自动驾驶科技有限公司 一种车辆电机的扭矩控制方法、装置和车辆

Also Published As

Publication number Publication date
CN113071330A (zh) 2021-07-06
CN113071330B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US10486546B2 (en) Torque control method and torque control device
JP5700955B2 (ja) 電動車両のガタ詰め制御装置
EP3885222B1 (en) Control method and control apparatus for gear detection of a speed reducer
JP6063560B2 (ja) 車両用エンジン制御装置
JP2010215213A (ja) ハイブリッド車両用駆動系でのギアバックラッシュ振動を低減させるための方法
WO2022206074A1 (zh) 电机扭矩过零的参数处理方法、系统及车辆
JP2020083059A (ja) 車両の制御装置
CN113602348A (zh) 转向助力曲线调校方法、装置、车辆及存储介质
CN112706624A (zh) 电机扭矩过零控制方法、系统及电动汽车
CN110091726A (zh) 车辆的驱动力控制装置
WO2022218242A1 (zh) 一种电机扭矩控制方法、系统、车辆及存储介质
JP7176360B2 (ja) 電動車両
JP5749861B1 (ja) フォークリフト及びフォークリフトの制御方法
KR102388154B1 (ko) 자동차 및 그를 위한 속도 제한 제어 방법
JP4895877B2 (ja) 電動車輌
JP7416631B2 (ja) 車両
JP6323080B2 (ja) 車両用制御装置
US20190263407A1 (en) Control Strategy for a Hybrid Vehicle for Reduced Emission Values
JP2013162584A (ja) 電動車両のモータトルク制御方法
US20220153271A1 (en) Vehicle control device
JP5912673B2 (ja) 電子制御スロットル装置
JP5953634B2 (ja) 車両用エンジン制御装置
KR100520569B1 (ko) 연료 전지 전기자동차의 크리프 토크 제어방법
CN110884361A (zh) 一种新能源汽车驱动电机的限速方法及其电机驱动器
JP5953782B2 (ja) 電動車両のモータトルク制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787468

Country of ref document: EP

Kind code of ref document: A1