WO2022217816A1 - 一种草铵膦的合成方法 - Google Patents

一种草铵膦的合成方法 Download PDF

Info

Publication number
WO2022217816A1
WO2022217816A1 PCT/CN2021/116017 CN2021116017W WO2022217816A1 WO 2022217816 A1 WO2022217816 A1 WO 2022217816A1 CN 2021116017 W CN2021116017 W CN 2021116017W WO 2022217816 A1 WO2022217816 A1 WO 2022217816A1
Authority
WO
WIPO (PCT)
Prior art keywords
glufosinate
ammonium
reaction
catalyst
solution
Prior art date
Application number
PCT/CN2021/116017
Other languages
English (en)
French (fr)
Inventor
范立攀
史秀肖
贾成国
Original Assignee
河北威远生物化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北威远生物化工有限公司 filed Critical 河北威远生物化工有限公司
Publication of WO2022217816A1 publication Critical patent/WO2022217816A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the application relates to the field of pesticides, in particular to a method for synthesizing glufosinate-ammonium.
  • Glufosinafe is a broad-spectrum contact-killing herbicide. It has the characteristics of broad herbicidal spectrum, low toxicity, high activity and good environmental compatibility. Its structural formula is as follows:
  • glufosinate-ammonium Because the medicinal effect of glufosinate-ammonium is only conducted in the leaves, does not transfer to other places, and will not act on the roots of the unearthed plants, so its phytotoxicity is small; plant, its growth will not be affected. As an excellent herbicide, glufosinate-ammonium has the characteristics of high efficiency, low toxicity and non-selectivity. It is the second largest genetically modified crop tolerant herbicide in the world after glyphosate. The rapid development of genetically modified crops has greatly increased.
  • the method for synthesizing glufosinate-ammonium is mainly through hydrolysis of amino nitrile compounds or hydantoin compounds by strong acids such as hydrochloric acid or strong bases such as sodium hydroxide, and then desalting and crystallization to obtain glufosinate-ammonium.
  • This type of synthesis method will be accompanied by the production of inorganic salts, such as sodium sulfate, sodium chloride, ammonium chloride, ammonium sulfate, etc., due to the high solubility of glufosinate-ammonium and inorganic salts in water, conventional
  • the method is difficult to separate, generally adding a water-miscible organic solvent such as methanol, ethanol, etc., and using the different solubility of glufosinate-ammonium and inorganic salt in the organic solvent to separate, but the desalination method is not only complicated, but also consumes a large amount of of organic solvents, while producing a large amount of low-value inorganic waste salts.
  • the prior art adopts the method of ion exchange resin to separate the inorganic salts in the glufosinate-ammonium solution, although the final glufosinate-ammonium can reach very high purity, but the resin used in this method is expensive and complicated to operate. , The yield is only below 80%, and the loss of glufosinate is serious. This makes it difficult to promote the industrial production of glufosinate-ammonium.
  • the application provides a method for synthesizing glufosinate-ammonium. No inorganic waste salts are produced, and the yield of glufosinate-ammonium is high.
  • a synthetic method of glufosinate-ammonium comprising the steps:
  • Reaction step make the solution I react under the pressure of 1.0MPa-2.5Mpa, and obtain the crude glufosinate-ammonium after the reaction;
  • Processing step post-processing the crude glufosinate-ammonium to obtain glufosinate-ammonium;
  • the catalyst is a guanidine compound
  • R is H, C1-C10 straight chain or branched hydrocarbon group.
  • the R can be H, CH3, Et, isopropyl or n-butyl.
  • the guanidine compound is 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) and/or 2-tert-butyl- 1,1,3,3-Tetramethylguanidine (TMBG).
  • MTBD 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene
  • TMBG 2-tert-butyl- 1,1,3,3-Tetramethylguanidine
  • the low-boiling point guanidine compound in the post-processing process, the low-boiling point guanidine compound can be discharged together with the volatile base, and then recycled to save costs.
  • the volatile alkali is ammonia water, liquid ammonia or ammonia gas.
  • the reaction yield can be improved.
  • the molar ratio of the hydantoin derivative, the volatile base, and the water is 1:1-3:30-60;
  • the molar ratio of the hydantoin derivative to the catalyst is 100:0.5-10.
  • the molar ratio of the hydantoin derivative to the guanidine compound (catalyst) is 100:0.5-5.
  • the hydrolysis of hydantoin derivatives in a weak acid environment can be further promoted, and the glufosinate-ammonium efficiency can be improved. yield and shorten the reaction time.
  • the reaction temperature for making the solution I react under the pressure of 1.0MPa-2.5Mpa is 130°C-180°C.
  • the reaction time of making the solution I react under the pressure of 1.0MPa-2.5Mpa is 2h-4h.
  • the post-processing includes the steps of: concentration under reduced pressure, recrystallization, filtration and drying;
  • the solvent used in the recrystallization is methanol or ethanol, and the volatile alkali recovered in the step of concentrating under reduced pressure can be recycled, which is environmentally friendly and saves costs.
  • the present application also provides glufosinate-ammonium synthesized by the above-mentioned synthetic method of glufosinate-ammonium.
  • the technical problem to be solved by the present invention is the existing method for synthesizing glufosinate-ammonium.
  • a strong acid or a strong base needs to be used to hydrolyze the hydantoin derivatives, and a large amount of acid and alkali need to be used for neutralization in the post-treatment, resulting in a large amount of waste salt.
  • the existing method cannot effectively separate glufosinate-ammonium and inorganic salts, and the method for separating the organic solvent has the defects of large amount of three wastes and unenvironmental protection.
  • the loss of glufosinate is serious and the cost is high.
  • the improvement of the method for synthesizing glufosinate-ammonium is only limited to the optimization of the separation of glufosinate-ammonium and inorganic salts, and the effect is low.
  • the hydantoin derivatives represented by formula I can all meet the technical solution of the present application, and the hydantoin derivatives can be prepared by any existing preparation method.
  • the hydantoin derivatives can be prepared by any existing preparation method.
  • 5-[2(hydroxy(methyl)phosphono)ethyl]hydantoin obtained by the following preparation method is adopted in the following examples and comparative examples, and its reaction equation and preparation method are as follows:
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • reaction solution IX was obtained, the reaction solution IX was concentrated under reduced pressure, the ammonia water and the catalyst were recovered to obtain a concentrated solution IX, 350 g of methanol was added to the concentrated solution IX and refluxed for 2 hours, and then it was naturally lowered to room temperature. After crystallization, it was filtered and dried to obtain 195.4 g of glufosinate-ammonium was detected by HPLC, and its content was 96.9%, and the yield was 95.6%.
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • the present embodiment provides a synthetic method of glufosinate-ammonium, comprising the following steps:
  • This comparative example provides a kind of synthetic method of glufosinate-ammonium, comprising the steps:
  • This comparative example provides a kind of synthetic method of glufosinate-ammonium, comprising the steps:
  • This comparative example provides a kind of synthetic method of glufosinate-ammonium, comprising the steps:
  • This comparative example provides a kind of synthetic method of glufosinate-ammonium, comprising the steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本申请涉及农药领域,尤其涉及一种草铵膦的合成方法。草铵膦的合成方法包括如下步骤:将海因类衍生物、挥发性碱和催化剂的混合水溶液于1.0MPa-2.5MPa下反应,反应结束后,经后处理得草铵膦;其中,所述催化剂为胍类化合物。本申请提供的草铵膦的合成方法跳出了现有技术中针对草铵膦与无机盐进行分离的思路,创造性地采用挥发性碱与催化剂(胍类化合物)相互配合,在特定的1.0MPa-2.5MPa下水解海因类衍生物,使得海因类化合物水解彻底,提高草铵膦的产率,同时缩短反应时间,且反应结束后无需酸碱中和,不产生无机盐,从根本上杜绝制备草铵膦的过程中无机盐的产生;不产生三废、草铵膦收率高,且易于工业化推广。

Description

一种草铵膦的合成方法
本申请要求于2021年04月13日提交的中国专利申请No.CN202110396480.8的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请涉及农药领域,尤其涉及一种草铵膦的合成方法。
背景技术
草铵膦(Glufosinafe)是一种广谱触杀型灭生性除草剂,具有杀草谱广、低毒、活性高和环境相容性好等特点,结构式如下:
Figure dest_path_image001
由于草铵膦的药效只在叶子内传导,不转移到别处,不会对已出土的植物的根部起作用,因此其药害较小;而且在经草胺膦处理过的土壤上播种各类植物,其生长也不会受影响。草铵膦作为一种优良的除草剂,具有高效、低毒和非选择性等特点,是目前用量仅次于草甘膦的世界第二大转基因作物耐受除草剂,其市场需求量随着转基因作物的快速发展而大大增加。
目前合成草铵膦的方法主要是通过氨基腈类化合物或海因类化合物,经盐酸等强酸或氢氧化钠等强碱进行水解,然后除盐、结晶,得到草铵膦。此类合成方法在制备过程中会伴随有无机盐的产生,如硫酸钠、氯化钠、氯化铵、硫酸铵等,由于草铵膦和无机盐在水中的溶解度都很大,采用常规的方法难以分离,一般是加入与水混溶的有机溶剂如甲醇、乙醇等,利用草铵膦和无机盐在有机溶剂中的溶解性不同进行分离,但是该除盐方法不仅复杂,而且需要消耗大量的有机溶剂,同时产生大量的低价值的无机废盐。
为解决上述技术问题,现有技术采用离子交换树脂的方法来分离草铵膦溶液中的无机盐,虽然最终的草铵膦可以达到非常高的纯度,但是该方法采用的树脂价格高、操作复杂、收率只有80%以下,草铵膦损失严重。这使得草铵膦的工业化生产难以推广。
技术问题
针对现有技术采用离子交换树脂的方法来分离草铵膦溶液中的无机盐,分离成本高、草铵膦收率低的技术问题,本申请提供了一种草铵膦的合成方法,该方法不会产生无机废盐,且草铵膦的收率高。
技术解决方案
为达到上述申请目的,本申请实施例采用了如下技术方案。
一种草铵膦的合成方法,包括如下步骤:
混合步骤:将式I所示的海因类衍生物、挥发性碱、催化剂和水混合,得到溶液Ⅰ;
反应步骤:使所述溶液Ⅰ在1.0MPa-2.5Mpa的压力下反应,反应结束后得到草铵膦粗品;
处理步骤:对所述草铵膦粗品进行后处理,得到草铵膦;
其中,所述催化剂为胍类化合物;
所述式I的结构式如下:
Figure dest_path_image002
,R为H、C1-C10直链或支链的烃基。
具体地,所述R可以为H、CH3、Et、异丙基或正丁基。
作为一种实施例,所述胍类化合物为7-甲基-1,5,7-三氮杂二环[4.4.0]癸-5-烯(MTBD)和/或2-叔丁基-1,1,3,3-四甲基胍(TMBG)。
本申请通过添加低沸点的胍类化合物作为催化剂,在后处理过程中,低沸点的胍类化合物可随挥发性碱一起排出,然后循环利用,节约成本。
作为一种实施例,所述挥发性碱为氨水、液氨或氨气。通过进一步限定挥发性碱,可提高反应收率。
作为一种实施例,所述海因类衍生物、所述挥发性碱、所述水三者的摩尔比为1:1-3:30-60;
所述海因类衍生物与催化剂的摩尔比为100:0.5-10。
作为一种实施例,所述海因类衍生物与所述胍类化合物(催化剂)的摩尔比为100:0.5-5。
通过限定海因类衍生物、挥发性碱、水三者的摩尔比以及海因类衍生物与催化剂的摩尔比,可进一步促进海因类衍生物在弱酸环境下的水解,提高草铵膦的产率,缩短反应时间。
作为一种实施例,所述反应步骤中,使所述溶液Ⅰ在1.0MPa-2.5Mpa的压力下反应的反应温度为130℃-180℃。
作为一种实施例,所述反应步骤中,使所述溶液Ⅰ在1.0MPa-2.5Mpa的压力下反应的反应时间为2h-4h。
作为一种实施例,所述后处理包括如下步骤:减压浓缩、重结晶、过滤和干燥;
其中,所述重结晶采用的溶剂为甲醇或乙醇,且减压浓缩步骤回收的挥发性碱还可循环利用,环保且节约成本。
本申请还提供了上述的草铵膦的合成方法合成的草铵膦。
有益效果
相对于现有技术,本申请提供的草铵膦的合成方法具有以下优势:
本发明要解决的技术问题是现有的草铵膦的合成方法,在制备过程中需要采用强酸或者强碱水解海因类衍生物,后处理需要使用大量的酸碱进行中和,形成大量的废盐。现有的方法无法有效分离草铵膦和无机盐,采用有机溶剂分离的方法存在三废量大、不环保的缺陷。采用离子交换树脂的方法,草铵膦的损失严重、成本高。目前针对合成草铵膦的方法的改进也仅仅局限在对草铵膦与无机盐的分离进行优化,成效较低。
而本申请提供的草铵膦的合成方法跳出了现有技术中针对草铵膦与无机盐进行分离的思路,创造性地采用挥发性碱与催化剂(胍类化合物)相互配合,在特定的1.0MPa-2.5Mpa的压力下水解海因类衍生物,使得海因类化合物彻底水解,提高草铵膦的产率,同时缩短反应时间,且反应结束后无需酸碱中和,不会产生无机盐,从根本上避免了制备草铵膦的过程中无机盐的产生;该方法不会产生三废、草铵膦收率高,且易于工业化推广。
本申请的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
式I所示的海因类衍生物均能满足本申请的技术方案,且所述海因类衍生物可采用现有的任一种制备方法制得。为方便比较,以下各实施例和对比例中均采用如下制备方法制得的5-[2(羟基(甲基)膦酰基)乙基]海因,其反应方程式及制备方法如下:
Figure dest_path_image003
在2L高压釜内,加入3-(甲基乙氧基膦酰基)丙醛172.6g(分子量为164,纯度为95%,1mol),碳酸氢铵118.5g(1.5mol),水526.4g,20%氰化氨水溶液242g(1.1mol),加热至90℃,反应4h。反应结束后得到反应液,将反应液减压浓缩得5-[2-(羟基(甲基)膦酰基)乙基]海因粗品210 g,含量为83%。
将上述5-[2-(羟基(甲基)膦酰基)乙基]海因粗品中加入乙醇进行重结晶,加热回流2h后,经冷却、过滤、干燥,得化合物5-[2-(羟基(甲基)膦酰基)乙基]海因165.6g,经HPLC检测其含量为98%。
将上述制备得到的化合物(5-[2-(羟基(甲基)膦酰基)乙基]海因)取样分别通过 1H-NMR、 13C-NMR和MS进行结构确认。
1H-NMR(400MHz,CD 3OD)δ:4.12 (m,1H),1.86-2.04(m,2H),1.50-1.60(m,2H),1.19(d,3H)。
13C-NMR(100MHz,CD 3OD)δ:14.48(d, j=92.9),25.23,26.15(d, j=92),58.80(d, j=15.3),158.67,176.53。
ESI(m/z):[M+H] + 207.1。
实施例1
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),20wt%的氨水85g(1mol),水900g(50mol),催化剂MTBD 7.6g(0.05mol),将高压釜加热至160℃并控制压力为2.0MPa反应2h。反应结束后得到反应液Ⅰ,将反应液Ⅰ减压浓缩、回收氨水和催化剂后得到浓缩液Ⅰ,在浓缩液Ⅰ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦195.3g,经HPLC检测,其含量为97.1%,收率为95.8%。
实施例2
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),25wt%的氨水136g(2mol),水900g(50mol),催化剂MTBD 3.1g(0.02mol),将高压釜加热至160℃并控制压力为2.5MPa反应2h。反应结束后得到反应液Ⅱ,将反应液Ⅱ减压浓缩、回收氨水和催化剂后得到浓缩液Ⅱ,在浓缩液Ⅱ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦197.1g,经HPLC检测,含量97.0%,收率96.6%。
实施例3
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),20wt%的氨水170g(2mol),水900g(50mol),催化剂MTBD 1.5g(0.01mol),将高压釜加热至160℃并控制压力为1.0MPa反应3h。反应结束后得到反应液Ⅲ,将反应液Ⅲ减压浓缩、回收氨水和催化剂后得到浓缩液Ⅲ,在浓缩液Ⅲ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦192.7g,经HPLC检测,含量96.9%,收率94.3%。
实施例4
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),21wt%的氨水243g(3mol),水720g(40mol),催化剂TMBG 0.9g(0.005mol),将高压釜加热至180℃并控制压力为1.0MPa反应4h。反应结束后得到反应液Ⅳ,将反应液Ⅳ减压浓缩、回收氨水和催化剂后得到浓缩液Ⅳ,在浓缩液Ⅳ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦197.4g,经HPLC检测,含量97.4%,收率97.1%。
实施例5
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),19wt%的氨水268g(3mol),水720g(40mol),催化剂TMBG 3.4g(0.02mol),将高压釜加热至180℃并控制压力为1.0MPa反应2h。反应结束后得到反应液Ⅴ,将反应液Ⅴ减压浓缩、回收氨水和催化剂后得到浓缩液Ⅴ,在浓缩液Ⅴ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦196.8g,经HPLC检测,含量96.8%,收率96.2%。
实施例6
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),20wt%的氨水85g(1mol),水540g(30mol),催化剂MTBD 7.6g(0.05mol)和TMBG 8.5g(0.05mol),将高压釜加热至130℃并控制压力为2.5MPa反应4h。反应结束后得到反应液Ⅵ,将反应液Ⅵ减压浓缩、回收氨水和催化剂后得到浓缩液Ⅵ,在浓缩液Ⅵ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦196.5g,经HPLC检测,其含量为97.1%,收率为96.4%。
实施例7
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),20wt%的氨水85g(1mol),水360g(20mol),催化剂MTBD 7.6g(0.05mol),将高压釜加热至160℃并控制压力为2.0MPa反应2h。反应结束后得到反应液Ⅶ,将反应液Ⅶ减压浓缩、回收氨水和催化剂后得到浓缩液Ⅶ,在浓缩液Ⅶ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦193.3g,经HPLC检测,其含量为95.8%,收率为93.4%。
实施例8
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),20wt%的氨水85g(1mol),水900g(50mol),催化剂MTBD 0.5g(0.003mol),将高压釜加热至160℃并控制压力为2.0MPa反应2h。反应结束后得到反应液XV,将反应液XV减压浓缩、回收氨水和催化剂后得到浓缩液XV,在浓缩液XV中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦189.4g,经HPLC检测,其含量为95.4%,收率为91.3%。
实施例9
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),20wt%的氨水11.5g,水3.4g,实施例1中减压浓缩回收的氨水921g(采用1mol/L的硫酸标准溶液进行滴定,0.1%的甲基红指示剂指示终点,检测回收氨水中氨的含量为1.6%,其中含回收的催化剂MTBD 7.6g(0.05mol)),将高压釜加热至160℃并控制压力为2.0MPa反应2h。反应结束后得到反应液Ⅸ,将反应液Ⅸ减压浓缩、回收氨水和催化剂后得到浓缩液Ⅸ,在浓缩液Ⅸ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦195.4g,经HPLC检测,其含量为96.9%,收率为95.6%。
实施例10
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),20wt%的氨水85g(1mol),水900g(50mol),催化剂1,1,3,3-四甲基胍5.79g(0.05mol),将高压釜加热至160℃并控制压力为2.0MPa反应2h。反应结束后得到反应液Ⅹ,将反应液Ⅹ减压浓缩、回收氨水后得到浓缩液Ⅹ,催化剂1,1,3,3-四甲基胍的沸点为160-162℃,无法随氨水一起回收,在浓缩液Ⅹ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦185.4g,经HPLC检测,其含量为94.2%,收率为88.2%。
实施例11
本实施例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因粗品248.2g(纯度为83%,1mol),20wt%的氨水85g(1mol),水900g(50mol),催化剂MTBD 7.6g(0.05mol),将高压釜加热至160℃并控制压力为2.0MPa反应2h。反应结束后得到反应液Ⅺ,将反应液Ⅺ减压浓缩、回收氨水和催化剂后得到浓缩液Ⅺ,在浓缩液Ⅺ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦197.2g,经HPLC检测,其含量为94.9%,收率为94.5%。
对比例1
本对比例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),20wt%的氨水85g(1mol),水900g(50mol),将高压釜加热至160℃并控制压力为2.0MPa反应2h。反应结束后得到反应液Ⅻ,将反应液Ⅻ减压浓缩、回收氨水后得到浓缩液Ⅻ,在浓缩液Ⅻ中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦144.9g,经HPLC检测,含量92.1%,收率67.4%。
对比例2
本对比例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),20wt%的氨水85g(1mol),水900g(50mol),将高压釜加热至160℃并控制压力为2.0MPa反应5h。反应结束后得到反应液XIII,将反应液XIII减压浓缩、回收氨水后得到浓缩液XIII,在浓缩液XIII中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦145.1g,经HPLC检测,含量91.5%,收率67.1%。
对比例3
本对比例提供一种草铵膦的合成方法,包括如下步骤:
在10L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),20wt%的氨水680g(8mol),水3056g,将高压釜加热至160℃并控制压力为2.0MPa反应20h。反应结束后得到反应液XIV,将反应液XIV减压浓缩、回收氨水后得到浓缩液XIV,在浓缩液XIV中加入350g甲醇回流2h,然后自然降至室温,析晶后过滤、干燥得到草铵膦185.9g,经HPLC检测,含量94.5%,收率88.7%。
对比例4
本对比例提供一种草铵膦的合成方法,包括如下步骤:
在2L高压釜内,加入5-[2(羟基(甲基)膦酰基)乙基]海因210g(1mol),水900g(50mol),催化剂MTBD 153g(1mol),将高压釜加热至160℃并控制压力为2.0MPa反应2h,自然降至室温后,HPLC检测没反应;延长反应时间至8h,自然降至室温后,HPLC检测依然没反应。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种草铵膦的合成方法,其特征在于,包括如下步骤:
    混合步骤:将式I所示的海因类衍生物、挥发性碱、催化剂和水混合,得到溶液Ⅰ;
    反应步骤:使所述溶液Ⅰ在1.0MPa-2.5Mpa的压力下反应,反应结束后得到草铵膦粗品;
    处理步骤:对所述草铵膦粗品进行后处理,得到草铵膦;
    其中,所述催化剂为胍类化合物;
    所述式I的结构式如下:
    Figure dest_path_image001
    ,R为H、C1-C10直链或支链的烃基。
  2. 根据权利要求1所述的草铵膦的合成方法,其特征在于,所述R为H、CH3、Et、异丙基或正丁基。
  3. 根据权利要求1或2所述的草铵膦的合成方法,其特征在于,所述胍类化合物为7-甲基-1,5,7-三氮杂二环[4.4.0]癸-5-烯和/或2-叔丁基-1,1,3,3-四甲基胍。
  4. 根据权利要求1或2所述的草铵膦的合成方法,其特征在于,所述挥发性碱为氨水、液氨或氨气。
  5. 根据权利要求1所述的草铵膦的合成方法,其特征在于,所述海因类衍生物、所述挥发性碱、所述水三者的摩尔比为1:1-3:30-60;
    所述海因类衍生物与所述胍类化合物的摩尔比为100:0.5-10。
  6. 根据权利要求5所述的草铵膦的合成方法,其特征在于,所述海因类衍生物与所述胍类化合物的摩尔比为100:0.5-5。
  7. 根据权利要求1或2所述的草铵膦的合成方法,其特征在于,所述反应步骤中,使所述溶液Ⅰ在1.0MPa-2.5Mpa的压力下反应的反应温度为130℃-180℃。
  8. 根据权利要求1或2所述的草铵膦的合成方法,其特征在于,所述反应步骤中,使所述溶液Ⅰ在1.0MPa-2.5Mpa的压力下反应的反应时间为2h-4h。
  9. 根据权利要求1所述的草铵膦的合成方法,其特征在于,所述后处理包括如下步骤:
    减压浓缩、重结晶、过滤和干燥;
    其中,所述重结晶采用的溶剂为甲醇或乙醇。
  10. 权利要求1-9任一项所述的草铵膦的合成方法合成的草铵膦。
PCT/CN2021/116017 2021-04-13 2021-09-01 一种草铵膦的合成方法 WO2022217816A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110396480.8 2021-04-13
CN202110396480.8A CN113045604B (zh) 2021-04-13 2021-04-13 一种草铵膦的合成方法

Publications (1)

Publication Number Publication Date
WO2022217816A1 true WO2022217816A1 (zh) 2022-10-20

Family

ID=76519326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116017 WO2022217816A1 (zh) 2021-04-13 2021-09-01 一种草铵膦的合成方法

Country Status (2)

Country Link
CN (1) CN113045604B (zh)
WO (1) WO2022217816A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045604B (zh) * 2021-04-13 2023-03-17 河北威远生物化工有限公司 一种草铵膦的合成方法
CN115747269B (zh) * 2021-09-02 2024-08-27 河北威远生物化工有限公司 一种l-草铵膦的合成方法
IL313405A (en) 2021-12-10 2024-08-01 Basf Se Synthesis of glufosinate using a hydantoinase-based process
CA3240064A1 (en) 2021-12-10 2023-06-15 Gunther Zimmermann Enzymatic decarbamoylation of glufosinate derivatives

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028254A1 (ja) * 2002-09-30 2004-04-08 Nihon Green & Garden Corporation 除草用混合液剤
CN102584893A (zh) * 2012-02-07 2012-07-18 浙江工业大学 一种草铵膦的制备方法
CN103288874A (zh) * 2013-05-15 2013-09-11 山东省农药研究所 一种草铵膦及其衍生物的制备方法
CN113045604A (zh) * 2021-04-13 2021-06-29 河北威远生物化工有限公司 一种草铵膦的合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179599A3 (en) * 2000-07-13 2003-07-09 Ajinomoto Co., Inc. Method for producing lysine derivative
CN111662325B (zh) * 2019-03-05 2023-03-24 利尔化学股份有限公司 一种制备l-草铵膦的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028254A1 (ja) * 2002-09-30 2004-04-08 Nihon Green & Garden Corporation 除草用混合液剤
CN102584893A (zh) * 2012-02-07 2012-07-18 浙江工业大学 一种草铵膦的制备方法
CN103288874A (zh) * 2013-05-15 2013-09-11 山东省农药研究所 一种草铵膦及其衍生物的制备方法
CN113045604A (zh) * 2021-04-13 2021-06-29 河北威远生物化工有限公司 一种草铵膦的合成方法

Also Published As

Publication number Publication date
CN113045604B (zh) 2023-03-17
CN113045604A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2022217816A1 (zh) 一种草铵膦的合成方法
CN111662325B (zh) 一种制备l-草铵膦的方法
CN108912167B (zh) 一种从水解反应液中分离纯化草铵膦的方法
WO2022217817A1 (zh) 一种草铵膦的制备方法
US3032585A (en) Process for the production of p-bis-(2-chloroethyl)-aminophenylalanine
CN108569975B (zh) 一种溴芬酸钠倍半水合物的制备方法
CN109503513B (zh) 一种非布司他中间体的“一锅法”合成方法
CN111848535B (zh) 一种合成1h-四氮唑乙酸的工艺
CN103588812A (zh) 一种制备草铵膦的新方法
CN109438307A (zh) 一种l-硒代蛋氨酸的制备方法
CN114478425A (zh) 一种芳氧苯氧丙酸酯除草剂的合成方法
CN115043876A (zh) 一种草铵膦的纯化方法
CN111574458B (zh) 一种麦角硫因的合成方法
CN114736154A (zh) N-(3-氯-4-(2-吡啶甲氧基)苯基)-2-氰基乙酰胺的制备方法
CN112645945B (zh) 乌美溴铵中间体的制备方法
CN101195629B (zh) d-生物素的纯化方法
Klosterman et al. An Improved Synthesis of the Selenium Analogs of Methionine and Homocystine1
CN105198838A (zh) 一种瑞格列奈的制备方法
CN113698310B (zh) 一种恩杂鲁胺双酯中间体的制备方法
CN109776540A (zh) 一种盐酸沙丙蝶呤的制备方法
CN103189354A (zh) 具有抗病毒功效的1,4-二氢吡啶衍生物
CN109721560A (zh) 一种马来酸伊索拉定的制备方法
CN112225736B (zh) 一种6-溴咪唑并[1.2-a]吡啶-3-甲醛的制备方法
CN111732553B (zh) 一种合成除草剂精噁唑禾草灵的方法
CN106699626B (zh) 一种2-羟基-3-甲氧基-3,3-二苯基丙酸盐消旋体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936688

Country of ref document: EP

Kind code of ref document: A1