WO2022217777A1 - 一种低形变垂直焊接结构及工艺 - Google Patents

一种低形变垂直焊接结构及工艺 Download PDF

Info

Publication number
WO2022217777A1
WO2022217777A1 PCT/CN2021/108343 CN2021108343W WO2022217777A1 WO 2022217777 A1 WO2022217777 A1 WO 2022217777A1 CN 2021108343 W CN2021108343 W CN 2021108343W WO 2022217777 A1 WO2022217777 A1 WO 2022217777A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
inclined surface
area
plane
welding area
Prior art date
Application number
PCT/CN2021/108343
Other languages
English (en)
French (fr)
Inventor
原凯伦
黎鹏飞
徐兆锁
Original Assignee
营口诚源机械设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 营口诚源机械设备有限公司 filed Critical 营口诚源机械设备有限公司
Publication of WO2022217777A1 publication Critical patent/WO2022217777A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding

Definitions

  • the invention relates to the technical field of welding, in particular to a low-deformation vertical welding structure and process.
  • the workpiece to be welded is subjected to the action of an uneven temperature field, which will inevitably cause changes in shape and size, including instantaneous deformation when the temperature changes, and welding when the workpiece is completely cooled to the initial temperature. residual deformation.
  • double-sided welding is a relatively common form of welding.
  • the two vertical bodies to be welded are preheated by means of flame heating, so that both of them reach a temperature of about 80-100 °C, and then welding is performed.
  • flame heating so that both of them reach a temperature of about 80-100 °C
  • welding is performed.
  • the present invention provides a low-deformation vertical welding structure, which can effectively solve the problems in the background technology. At the same time, the present invention also claims a low-deformation vertical welding process, which has the same technical effect.
  • a low deformation vertical welded structure comprising:
  • the cylindrical structure, the inner side wall and the outer side wall are respectively gathered by the first inclined surface and the second inclined surface to form a ring-shaped convex structure at the end;
  • the plate structure is vertically connected with the end of the cylinder structure to form a flange or cover structure, and the parallel first and second planes are gathered through the third inclined surface and the fourth inclined surface respectively, so the The ends of the third inclined surface and the fourth inclined surface are connected by a third plane, the third plane is parallel to the first plane and the second plane, wherein the third inclined surface and the third plane are connected Then, a heated structure protruding relative to the fourth inclined surface is formed;
  • One side edge of the second plane is connected with the edge of the outer side wall or the inner side wall of the cylindrical structure to form a right-angle structure, and the right-angle structure is the first welding area;
  • the fourth inclined surface is in contact with the second inclined surface, and extends outward relative to the second inclined surface to form together with the first inclined surface a tank structure, the tank structure is the second welding area;
  • the fourth inclined surface When the second plane is connected to the inner sidewall, the fourth inclined surface is abutted with the first inclined surface, and extends outward relative to the first inclined surface to form together with the second inclined surface a tank structure, the tank structure is the second welding area;
  • the heat-receiving structure is disposed on one side of the second welding area for receiving heat and transferring heat to the first welding area and the second welding area, and is removed after welding is completed.
  • the included angle between the surfaces on both sides of the inclined surface of the end portion of the cylindrical structure constituting the second welding region is greater than 45°.
  • annular recessed area is provided on the third inclined surface.
  • the recessed area is a curved surface structure.
  • the included angle between the third inclined surface and the third plane is less than 45°.
  • the edge of the fourth inclined surface is coplanar with the side wall of the cylindrical structure.
  • the edge of the fourth inclined surface extends outward relative to the side wall of the cylindrical structure.
  • a low-deformation vertical welding process for welding the above-mentioned low-deformation vertical welding structure comprising the following steps:
  • the welding operation is performed on the first welding area and the second welding area that reach the set temperature range through heat transfer after heating;
  • Material removal is performed on the heated structure after the heat treatment is completed.
  • the welding of the second welding area is performed first, and then the welding of the first welding area is performed.
  • the cross-sectional size of the welding seam in the first welding area is larger than the cross-sectional size of the welding seam in the second welding area.
  • the instantaneous deformation and welding residual deformation occurred in the welding process are fully considered, and the original welding seam distribution form and the heating area in the preheating process are changed, thereby effectively reducing the deformation amount and internal stress of the final product, thereby obtaining More stable product structure.
  • Figure 1 is a cross-sectional view of a cylinder structure welded to the plate structure as a flange-like structure;
  • Figure 2 is a cross-sectional view of the plate structure as a flange-like structure
  • Figure 3 is a schematic diagram of the cylinder structure and the plate structure in Figures 1 and 2 after positioning (including the welding area and a partial display after the heated structural material is removed);
  • FIG. 4 is a schematic diagram of the distribution of the heating area, the metal heat conduction area and the air heat conduction area;
  • FIG. 6 is a cross-sectional view of a cylindrical structure welded to the plate structure as a cover-like structure
  • FIG. 7 is a cross-sectional view of the plate structure as a cover-like structure
  • Figure 8 is a schematic diagram of the cylinder structure and the plate structure in Figures 6 and 7 after positioning (including the welding area and a partial display after the heated structural material is removed);
  • Fig. 9 is the position schematic diagram of ⁇ angle
  • FIG. 10 is a schematic diagram of the setting of the recessed area
  • Figure 11 is a flow chart of a low deformation vertical welding process
  • a low deformation vertical welding structure comprising: a cylindrical structure 1, the inner side wall 11 and the outer side wall 12 are respectively gathered by the first inclined surface 13 and the second inclined surface 14 to form a ring-shaped convex structure at the end; the plate body structure 2. It is vertically connected with the end of the cylindrical structure 1 to form a flange or cover structure.
  • the parallel first plane 21 and the second plane 22 are gathered through the third inclined surface 23 and the fourth inclined surface 24 respectively, The ends of the third inclined surface 23 and the fourth inclined surface 24 are connected by a third plane 25 , and the third plane 25 is parallel to the first plane 21 and the second plane 22 , wherein, after the third inclined surface 23 and the third plane 25 are connected A heat-receiving structure protruding relative to the fourth inclined surface 24 is formed; one side edge of the second plane 22 is connected to the edge of the outer side wall 12 or the inner side wall 11 of the cylindrical structure 1 to form a right-angle structure, and the right-angle structure is the first welding area 3 .
  • the groove structure is the second welding area 4; when the second plane 22 is connected to the inner side wall 11, the fourth inclined surface 24 is in contact with the first inclined surface 13 and extends outward relative to the first inclined surface 13, while Together with the second inclined surface 14 , a groove structure is formed, and the groove structure is the second welding area 4 .
  • the heat receiving structure is arranged on one side of the second welding area 4 for receiving heat and transferring heat to the first welding area 3 and the second welding area 4, and is removed after the welding is completed.
  • the instantaneous deformation and welding residual deformation occurred in the welding process are fully considered, and the original welding seam distribution form and the heating area in the preheating process are changed, thereby effectively reducing the deformation amount and internal stress of the final product, thereby obtaining More stable product structure.
  • FIGS. 1 to 3 a specific embodiment is shown when the plate structure 2 is a flange-like structure.
  • the first inclined surface 13 and the second inclined surface 14 in FIG. 1 constitute the cylindrical structure 1 .
  • the end form, this structural form can be obtained by turning, wherein the second inclined surface 14 is attached to the fourth inclined surface 24 in the subsequent processing, and the first inclined surface 13 will be in contact with the solder later, so the second inclined surface
  • the machining accuracy of the surface 14 is greater than that of the first inclined surface 13. On the one hand, it can ensure the sealing performance at the position where the surfaces fit together, and on the other hand, it can also reduce the processing cost.
  • the third inclined surface 23 , the fourth inclined surface 24 and the third flat surface 25 in FIG. 2 can be obtained by the same processing method, wherein the heated structure formed by the connection of the third inclined surface 23 and the third flat surface 25 is not used as a product subsequently
  • the fourth inclined surface 24 is partly in contact with the second inclined surface 14 and partly in contact with the solder, so it is preferable to maintain the same processing accuracy as the second inclined surface 14 .
  • the extension length of the fourth inclined surface 24 relative to the second inclined surface 14 determines the final welding range of the second welding region 4 , which can be selected according to actual product requirements.
  • a more important point is to change the original method of directly heating the area to be welded between the cylinder structure 1 and the plate structure 2 by means of a flame, and to contact the heated structure with the flame and heat the two welded parts by means of heat conduction.
  • Preheating the area can effectively improve the uniformity of heating. See Figure 4.
  • the oval area is the metal heat conduction area 5
  • the triangular area is the air heat conduction area 6.
  • FIGS. 6-8 the specific embodiments when the plate structure 2 is a cover-like structure are shown.
  • the specific structural features and embodiments are the same as the above-mentioned embodiments, and the technical effects that can be achieved are also the same. Repeat.
  • the included angle between the two sides of the inclined surface where the end of the cylindrical structure 1 forms the second welding area 4 is greater than 45°.
  • the surface constituting the second welding area 4 in this preferred solution is the first inclined surface 13 , and the surfaces on both sides thereof are the cylindrical structure respectively.
  • the surfaces on both sides are the outer side wall 12 and the first inclined surface 13 of the cylindrical structure 1 respectively; the angle ⁇ between the surfaces on both sides is less than 45°, the reason for this setting is that this area is closer to the heating area , a larger thickness can alleviate the influence of instantaneous deformation.
  • the heat on one side is obtained by air heat conduction, it is more uniform and stable.
  • annular recessed area 26 is provided on the third inclined surface 23 .
  • the purpose of the above setting is to change the way of contact with the flame, to a certain extent, to make the heating area more concentrated, to change the heat radiation way, and to reduce the heat-affected area of instantaneous deformation.
  • the recessed area 26 is a curved surface structure. In this way, heat is avoided from heat reflection from a relatively concentrated direction, and the surface structure reflects heat more evenly, which can further improve the concentration and uniformity of heat, and reduce the deformation of the heated structure, thereby reducing the degree of influence on surrounding materials.
  • the angle between the third inclined surface 23 and the third plane 25 is less than 45°. Comparing the heating structure in step b in Fig. 3 with the heating structure in step b in Fig. 8, it can be seen that the angle restriction form in this preferred solution can relatively increase the area of the heated part. On the one hand, the increase of this area can avoid the open flame to be welded. On the other hand, the instantaneous deformation can be further removed from the final product structure that needs to be retained. Since the metal conducts heat faster, the above improvements do not have an excessive impact on the solid and air conduction of heat.
  • the edge of the fourth inclined surface 24 is coplanar with the side wall of the cylindrical structure 1; or, after the positioning of the cylindrical structure 1 and the plate structure 2 is completed, the fourth inclined surface 24 The edges extend outwardly relative to the side walls of the barrel structure 1 .
  • the above two setting methods can make the welding operation easier, ensure enough welding space, and effectively improve the welding stability. solution by removal.
  • a low-deformation vertical welding process for welding the above-mentioned low-deformation vertical welding structure, as shown in Figure 11, includes the following steps:
  • S3 Perform welding operations on the first welding area 3 and the second welding area 4 that reach the set temperature range through heat transfer after heating;
  • the present invention needs to ensure the flame size as much as possible, reduce the contact range of the open flame as much as possible, and ensure that the first welding area 3 and the second welding area 4 are heated by means of heat transfer; during the positioning process, it is necessary to Using a specific tooling, the design of the tooling is not the content of the protection of the present invention, but in order to ensure the effect of heating, a rotatable tooling structure can be designed, so that uniform heating can be achieved in the process of the tooling driving the workpiece to rotate through a fixed-point open flame The above-mentioned rotation is easy to achieve, and will not affect the production cost. It is mainly used to ensure the stability of the flame relative to the distance between the welding areas.
  • the heated structure is heat treated together with the final product structure that needs to be retained. After this process, the structure and size are stabilized, and the stability of the product can be effectively guaranteed by removing the heated structural material.
  • the amount of heated structural material to be removed can be selected according to actual needs, or to obtain a flat inner surface of the cylinder, or to obtain a slightly protruding outer surface. Choose according to actual needs, and the selected size can be obtained by machining.
  • the welding of the second welding area 4 is performed first, and then the welding of the first welding area 3 is performed, because during the heating process, the distance between the first welding area 3 and the heated structure is relatively far, so the The temperature rise will be slower.
  • the temperature of the first welding area 3 may be slightly lower. Therefore, in the present invention, the heating of the second welding area 4 is performed first. It will be transferred to the first welding area 3 for the second time, so as to ensure the stability of the temperature of the first welding area 3 in the end.
  • the cross-sectional size of the welding seam in the first welding area 3 is larger than that in the second welding area 3.
  • the cross-sectional size of the welding seam of the second welding area 4 so as to reduce the heat-affected range of the second welding area 4 as much as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

本发明涉及焊接技术领域,尤其涉及一种低形变垂直焊接结构,包括:筒体结构,具有第一倾斜面和第二倾斜面;板体结构,与筒体结构的端部垂直连接,以形成法兰类或盖体类结构,具有第三倾斜面、第四倾斜面和第三平面,第三倾斜面和第三平面连接后形成相对于第四倾斜面凸出的受热结构;上述结构分别形成第一焊接区域和第二焊接区域;受热结构设置于第二焊接区域一侧,用于受热且向第一焊接区域和第二焊接区域传递热量,且在焊接完成后去除。本发明中充分考虑焊接过程中所发生的瞬时变形和焊接残余变形,改变原本的焊缝分布形式和预热过程中的加热区域,从而有效的降低了最终产品的形变量和内部应力。本发明中还请求保护一种低形变垂直焊接工艺。

Description

一种低形变垂直焊接结构及工艺 技术领域
本发明涉及焊接技术领域,尤其涉及一种低形变垂直焊接结构及工艺。
背景技术
焊接过程中被焊工件受到不均匀温度场的作用,不可避免的会产生形状、尺寸的变化,包括随温度变化而变化时产生的瞬时变形,以及被焊工件完全冷却到初始温度时产生的焊接残余变形。
目前,在对应用于缸体或阀体类的垂直结构进行焊接的过程中,为了获得更加稳定且密封性更优的焊接结构,双侧焊缝为较为常用的焊接形式。在焊接前,通过火焰加热的方式对待焊接的两垂直体待焊位置进行预热,使得二者均达到80~100℃左右的温度后,再进行焊接。在上述加热的过程中,不可避免的会因温度瞬时升高而产生瞬时性变,且因为两道焊缝设置位置相对集中,因此使得焊接残余形变也难以降低。
鉴于上述问题,本设计人基于从事此类产品工程应用多年丰富的实务经验及专业知识,并配合学理的运用,积极加以研究创新,以期设计一种低形变垂直焊接结构及工艺。
发明内容
本发明提供了一种低形变垂直焊接结构,可有效解决背景技术中的问题,同时本发明中还请求保护一种低形变垂直焊接工艺,具有同样的技术效果。
为了达到上述目的,本发明所采用的技术方案是:
一种低形变垂直焊接结构,包括:
筒体结构,内侧壁和外侧壁分别通过第一倾斜面和第二倾斜面聚拢而在端部形成环状凸起结构;
板体结构,与所述筒体结构的端部垂直连接,以形成法兰类或盖体类结构,平行的第一平面和第二平面分别通过第三倾斜面和第四倾斜面聚拢,所述第三倾斜面和第四倾斜面端部通过第三平面连接,所述第三平面与所述第一平面和第二平面平行,其中,所述第三倾斜面和所述第三平面连接后形成相对于所述第四倾斜面凸出的受热结构;
所述第二平面一侧边缘与所述筒体结构的外侧壁或内侧壁边缘连接且形成直角结构,所述直角结构为第一焊接区域;
当所述第二平面与外侧壁连接时,所述第四倾斜面与所述第二倾斜面贴合,且相对于所述第二倾斜面向外延伸,而与所述第一倾斜面共同形成槽体结构,所述槽体结构为第二焊接区域;
当所述第二平面与内侧壁连接时,所述第四倾斜面与所述第一倾斜面贴合,且相对于所述第一倾斜面向外延伸,而与所述第二倾斜面共同形成槽体结构,所述槽体结构为第二焊接区域;
所述受热结构设置于所述第二焊接区域一侧,用于受热且向所述第一焊接区域和第二焊接区域传递热量,且在焊接完成后去除。
进一步地,所述筒体结构端部构成所述第二焊接区域的倾斜面两侧的面之间夹角大于45°。
进一步地,所述第三倾斜面上设置有环形的凹陷区域。
进一步地,所述凹陷区域为曲面结构。
进一步地,所述第三倾斜面和第三平面之间的夹角小于45°。
进一步地,所述筒体结构和板体结构定位完成后,所述第四倾斜面边缘与所述筒体结构的侧壁共面。
进一步地,所述筒体结构和板体结构定位完成后,所述第四倾斜面边缘相对于所述筒体结构的侧壁向外延伸。
一种低形变垂直焊接工艺,用于上述低形变垂直焊接结构的焊接,包括以下步骤:
对所述筒体结构和板体结构进行定位,形成所述第一焊接区域和第二焊接区域;
对所述受热结构的第三倾斜面进行明火加热;
对加热后通过热量传递而达到设定温度范围的第一焊接区域和第二焊接区域进行焊接操作;
焊接完成后进行热处理;
对热处理完成后的所述受热结构进行材料去除。
进一步地,在焊接过程中,首先进行第二焊接区域的焊接,随后进行第一焊接区域的焊接。
进一步地,所述第一焊接区域焊缝的截面尺寸大于所述第二焊接区域焊缝的截面尺寸。
通过本发明的技术方案,可实现以下技术效果:
本发明中充分考虑焊接过程中所发生的瞬时变形和焊接残余变形,改变原本的焊缝分布形式和预热过程中的加热区域,从而有效的降低了最终产品的形变量和内部应力,从而获得更加稳定的产品结构。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为板体结构作为法兰类结构时,与之焊接连接的筒体结构的剖视图;
图2为板体结构作为法兰类结构时的剖视图;
图3为图1和图2中的筒体结构和板体结构定位后的示意图(包括焊接区域及受热结构材料去除后的局部展示);
图4为加热区域、金属热传导区域和空气热传导区域的分布示意图;
图5为背景技术中的焊接方式与本发明中的焊接方式的对比图;
图6为板体结构作为盖体类结构时,与之焊接连接的筒体结构的剖视图;
图7为板体结构作为盖体类结构时的剖视图;
图8为图6和图7中的筒体结构和板体结构定位后的示意图(包括焊接区域及受热结构材料去除后的局部展示);
图9为α角的位置示意图;
图10为凹陷区域的设置示意图;
图11为低形变垂直焊接工艺的流程图;
附图标记:
1、筒体结构;11、内侧壁;12、外侧壁;13、第一倾斜面;14、第二倾斜面;2、板体结构;21、第一平面;22、第二平面;23、第三倾斜面;24、第四倾斜面;25、第三平面;26、凹陷区域;3、第一焊接区域;4、第二焊接区域;5、金属热传导区域;6、空气热传导区域。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本发明的描述中,需要说明的是,属于“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或者位置关系为基于附图所示的方位或者位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
一种低形变垂直焊接结构,包括:筒体结构1,内侧壁11和外侧壁12分别通过第一倾斜面13和第二倾斜面14聚拢而在端部形成环状凸起结构;板体结构2,与筒体结构1的端部垂直连接,以形成法兰类或盖体类结构,平行的第一平面21和第二平面22分别通过第三倾斜面23和第四倾斜面24聚拢,第三倾斜面23和第四倾斜面24端部通过第三平面25连接,第三平面25与第一平面21和第二平面22平行,其中,第三倾斜面23和第三平面25连接后形成相对于第四倾斜面24凸出的受热结构;第二平面22一侧边缘与筒体结构1的外侧壁12或内侧壁11边缘连接且形成直角结构,直角结构为第一焊接区域3。
当第二平面22与外侧壁12连接时,第四倾斜面24与第二倾斜面14贴合,且相对于第二倾斜面14向外延伸,而与第一倾斜面13共同形成槽体结构,槽体结构为第二焊接区域4;当第二平面22与内侧壁11连接时,第四倾斜面24与第一倾斜面13贴合,且相对于第一倾斜面13向外延伸,而与第二倾斜面14共同形成槽体结构,槽体结构为第二焊接区域4。
受热结构设置于第二焊接区域4一侧,用于受热且向第一焊接区域3和第二焊 接区域4传递热量,且在焊接完成后去除。
本发明中充分考虑焊接过程中所发生的瞬时变形和焊接残余变形,改变原本的焊缝分布形式和预热过程中的加热区域,从而有效的降低了最终产品的形变量和内部应力,从而获得更加稳定的产品结构。
具体的,如图1~3所示,展示了板体结构2为法兰类结构时的具体实施方式,图1中的第一倾斜面13和第二倾斜面14构成了筒体结构1的端部形式,此种结构形式可通过车加工获得,其中,第二倾斜面14在后续加工中与第四倾斜面24贴合,而第一倾斜面13后期会与焊料接触,因此第二倾斜面14的加工精度大于第一倾斜面13的加工精度为优,一方面可保证面贴合位置处的密封性,另外还可降低加工的成本。
图2中的第三倾斜面23、第四倾斜面24和第三平面25可通过同样的加工方式获得,其中,第三倾斜面23和第三平面25连接构成的受热结构后续并不作为产品的结构使用,因此满足较低的加工精度即可,但是针对第四倾斜面24,其部分与第二倾斜面14,部分与焊料接触,因此优选保持与第二倾斜面14相同的加工精度。第四倾斜面24相对于第二倾斜面14的延伸长度决定了最终第二焊接区域4的焊接范围,可根据实际的产品需要进行选择。
焊接后两个焊接区域的分布形式如图3中步骤b、c和图4所展示的,分别分布在第四倾斜面24和第二倾斜面14贴合位置的两侧,如图5所示,此种分布距离相对于原本位于筒体结构1或板体结构2壁厚方向的两侧有效的增加了焊缝距离,从一定程度上缓解了焊接过程中受热的集中性,同时通过增加筒体结构1和板体结构2之间的配合面积,可增加热传导,对瞬时变形进行缓解。
本发明中,更为重要的一点在于改变了原本通过火焰直接对筒体结构1和板体 结构2待焊接区域进行加热的方式,而通过受热结构与火焰接触,通过热传导的方式对两个焊接区域进行预热,可有效的提高受热的均匀性,参见图4,图中椭圆形区域为金属热传导区域5,三角形区域为空气热传导区域6,通过上述两区域可快速的使得待焊接位置到达设定的预热温度,在上述过程中,受热结构的设置一方面阻挡了明火,另一方面承受了因火焰加热而产生的瞬时变形,在焊接过程中,即便在二次焊接的过程中存在二次加热,形变量也会在此处相对集中,从而有效降低对最终产品的结构影响。在焊接完成后,对受热结构进行材料去除,可获得平整的产品表面和更加稳定的材料形式。
如图6~8所示,展示了板体结构2为盖体类结构时的具体实施方式,具体结构特点和实施方式与上述实施例相同,所能够起到的技术效果也相同,此处不再赘述。
作为上述实施例的优选,筒体结构1端部构成第二焊接区域4的倾斜面两侧的面之间夹角大于45°。当板体结构2为法兰类结构时,如图4所示,本优选方案中所指的构成第二焊接区域4的面为第一倾斜面13,其两侧的面分别为筒体结构1的内侧壁11和第二倾斜面14;当板体结构2为盖体类结构时,如图9所示,本优选方案中所指的构成第二焊接区域4的面为第二倾斜面14,其两侧的面分别为筒体结构1的外侧壁12和第一倾斜面13;上述两侧的面之间的夹角α小于45°,此设置的原因在于此区域更加靠近加热区域,较大的厚度可缓解瞬时变形所带来的影响。但在实施的过程中,由于此处一侧的热量通过空气热传导获得,因此更加均匀且稳定。
为了进一步提高产品的结构稳定性,第三倾斜面23上设置有环形的凹陷区域26。参见图10,上述设置的目的在于改变与火焰接触的方式,在一定程度上使得加热区域更加集中,改变热辐射方式,降低瞬时形变的热影响区域。
其中,凹陷区域26为曲面结构。从而避免热量从相对集中的方向进行热反射, 曲面结构对热量的反射更加平均,从而可进一步提高热量的集中性和均匀性,实现受热结构形变量的减低,从而降低对周围材料的影响程度。
作为上述实施例的优选,第三倾斜面23和第三平面25之间的夹角小于45°。通过图3中b步骤和图8中b步骤中的受热结构相比,可明确本优选方案中的角度限制形式可相对提高受热部分的面积,此种面积的增加一方面可避免明火对待焊接位置的影响,另一方面可令瞬时形变更加远离最终所需保留的产品结构,鉴于金属导热较快,上述改进并不对热量的固体和空气传导造成过大的影响。
作为上述实施例的优选,针对第四倾斜面24的设置存在两种优选方式:
筒体结构1和板体结构2定位完成后,第四倾斜面24边缘与筒体结构1的侧壁共面;或者,筒体结构1和板体结构2定位完成后,第四倾斜面24边缘相对于筒体结构1的侧壁向外延伸。
上述两种设置方式均可使得焊接操作较为容易的进行,保证足够的焊接空间,有效提升焊接的稳定性,逐渐增大的焊接区域逐渐靠近受热结构,对其所造成的变形影响均会通过材料去除的方式解决。
一种低形变垂直焊接工艺,用于上述低形变垂直焊接结构的焊接,如图11所示,包括以下步骤:
S1:对筒体结构1和板体结构2进行定位,形成第一焊接区域3和第二焊接区域4;
S2:对受热结构的第三倾斜面23进行明火加热;
S3:对加热后通过热量传递而达到设定温度范围的第一焊接区域3和第二焊接区域4进行焊接操作;
S4:焊接完成后进行热处理;
S5:对热处理完成后的受热结构进行材料去除。
本发明在明火加热的过程中,需尽量保证火焰大小,尽可能的减小明火接触范围,保证通过热量传递的方式对第一焊接区域3和第二焊接区域4进行加热;定位过程中,需采用特定的工装,针对工装的设计并不作为本发明保护的内容,但是为了保证加热的效果,可设计可旋转的工装结构,从而可通过定点的明火加热在工装带动工件旋转的过程中实现均匀的加热效果,避免火焰作用面积大小变化而带来的焊接质量差异,上述转动较易实现,对生产成本并不会产生影响,主要用于保证火焰相对于焊接区域间距离的稳定性。
焊接完成后,受热结构同最终所需保留的产品结构共同进行热处理,在此过程后,组织和尺寸获得稳定,随后通过对受热结构材料的去除可有效的保证产品的稳定性。
其中,针对法兰类结构和盖体类结构的不同应用场合,对于受热结构材料去除的多少可根据实际需要进行选择,或获得平整的缸体内表面,或获得略微突出的外表面,均可根据实际需要进行选择,通过机加工的方式均可获得所选的尺寸。
在焊接过程中,首先进行第二焊接区域4的焊接,随后进行第一焊接区域3的焊接,因为在加热的过程中,第一焊接区域3相对于受热结构的距离较远,因此此处的升温会更慢,当第二焊接区域4达到设定温度时,可能第一焊接区域3的温度还略低,因此本发明中首先执行第二焊接区域4的加热,在此过程中焊接的热量会二次向第一焊接区域3传递,从而保证最终第一焊接区域3温度的稳定性。
因为在第二焊接区域4处筒体结构1和板体结构2均通过较为薄弱的尖状部分参与焊接,因此为了避免此处的形变过大,第一焊接区域3焊缝的截面尺寸大于第二焊接区域4焊缝的截面尺寸,从而尽可能的减小第二焊接区域4所受到的热影响 范围。
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

  1. 一种低形变垂直焊接结构,其特征在于,包括:
    筒体结构,内侧壁和外侧壁分别通过第一倾斜面和第二倾斜面聚拢而在端部形成环状凸起结构;
    板体结构,与所述筒体结构的端部垂直连接,以形成法兰类或盖体类结构,平行的第一平面和第二平面分别通过第三倾斜面和第四倾斜面聚拢,所述第三倾斜面和第四倾斜面端部通过第三平面连接,所述第三平面与所述第一平面和第二平面平行,其中,所述第三倾斜面和所述第三平面连接后形成相对于所述第四倾斜面凸出的受热结构;
    所述第二平面一侧边缘与所述筒体结构的外侧壁或内侧壁边缘连接且形成直角结构,所述直角结构为第一焊接区域;
    当所述第二平面与外侧壁连接时,所述第四倾斜面与所述第二倾斜面贴合,且相对于所述第二倾斜面向外延伸,而与所述第一倾斜面共同形成槽体结构,所述槽体结构为第二焊接区域;
    当所述第二平面与内侧壁连接时,所述第四倾斜面与所述第一倾斜面贴合,且相对于所述第一倾斜面向外延伸,而与所述第二倾斜面共同形成槽体结构,所述槽体结构为第二焊接区域;
    所述受热结构设置于所述第二焊接区域一侧,用于受热且向所述第一焊接区域和第二焊接区域传递热量,且在焊接完成后去除。
  2. 根据权利要求1所述的低形变垂直焊接结构,其特征在于,所述筒体结构端部构成所述第二焊接区域的倾斜面两侧的面之间夹角大于45°。
  3. 根据权利要求1所述的低形变垂直焊接结构,其特征在于,所述第三 倾斜面上设置有环形的凹陷区域。
  4. 根据权利要求3所述的低形变垂直焊接结构,其特征在于,所述凹陷区域为曲面结构。
  5. 根据权利要求1所述的低形变垂直焊接结构,其特征在于,所述第三倾斜面和第三平面之间的夹角小于45°。
  6. 根据权利要求1所述的低形变垂直焊接结构,其特征在于,所述筒体结构和板体结构定位完成后,所述第四倾斜面边缘与所述筒体结构的侧壁共面。
  7. 根据权利要求1所述的低形变垂直焊接结构,其特征在于,所述筒体结构和板体结构定位完成后,所述第四倾斜面边缘相对于所述筒体结构的侧壁向外延伸。
  8. 一种低形变垂直焊接工艺,其特征在于,用于权利要求1中所述的低形变垂直焊接结构的焊接,包括以下步骤:
    对所述筒体结构和板体结构进行定位,形成所述第一焊接区域和第二焊接区域;
    对所述受热结构的第三倾斜面进行明火加热;
    对加热后通过热量传递而达到设定温度范围的第一焊接区域和第二焊接区域进行焊接操作;
    焊接完成后进行热处理;
    对热处理完成后的所述受热结构进行材料去除。
  9. 根据权利要求8所述的低形变垂直焊接工艺,其特征在于,在焊接过 程中,首先进行第二焊接区域的焊接,随后进行第一焊接区域的焊接。
  10. 根据权利要求8所述的低形变垂直焊接工艺,其特征在于,所述第一接区域焊缝的截面尺寸大于所述第二焊接区域焊缝的截面尺寸。
PCT/CN2021/108343 2021-04-14 2021-07-26 一种低形变垂直焊接结构及工艺 WO2022217777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110401206.5A CN113102911B (zh) 2021-04-14 2021-04-14 一种低形变垂直焊接结构及工艺
CN202110401206.5 2021-04-14

Publications (1)

Publication Number Publication Date
WO2022217777A1 true WO2022217777A1 (zh) 2022-10-20

Family

ID=76717611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108343 WO2022217777A1 (zh) 2021-04-14 2021-07-26 一种低形变垂直焊接结构及工艺

Country Status (2)

Country Link
CN (1) CN113102911B (zh)
WO (1) WO2022217777A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113102911B (zh) * 2021-04-14 2021-10-29 营口诚源机械设备有限公司 一种低形变垂直焊接结构及工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199576A (ja) * 1984-03-22 1985-10-09 Komatsu Zoki Kk 油圧配管用のチュ−ブとフランジの継手溶接方法
CN103008844A (zh) * 2012-12-18 2013-04-03 中冶南方(武汉)威仕工业炉有限公司 一种马弗管双层法兰的装焊工艺
CN103447702A (zh) * 2012-05-31 2013-12-18 洛阳建浩重工机械有限公司 一种克服大型磨机端盖焊接变形的方法
CN104028910A (zh) * 2014-06-26 2014-09-10 江苏海达电气有限公司 加强型高压gis壳体
CN204545732U (zh) * 2015-03-03 2015-08-12 番禺珠江钢管(珠海)有限公司 海上风力发电导管架基础法兰安装结构
CN107283032A (zh) * 2017-07-29 2017-10-24 江苏恒高电气制造有限公司 用于铝材主法兰同步焊接的mig和tig组合焊接工艺
CN111054989A (zh) * 2019-12-31 2020-04-24 河北建筑工程学院 一种铜铝tig压钎焊设备及工艺
CN113102911A (zh) * 2021-04-14 2021-07-13 营口诚源机械设备有限公司 一种低形变垂直焊接结构及工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064791A (ja) * 1983-09-16 1985-04-13 Kawasaki Heavy Ind Ltd 平板溶接構造における溶接後の板の弛みを防止する方法
US8528762B2 (en) * 2008-11-14 2013-09-10 Applied Materials, Inc. Electron beam welding of large vacuum chamber body having a high emissivity coating
CN101412157A (zh) * 2008-11-21 2009-04-22 中信重工机械股份有限公司 大型矿用磨机端法兰焊接变形的控制方法
CN101480762B (zh) * 2008-12-12 2010-09-22 江阴市东发机械设备制造有限公司 钢基复合板塔器的制造方法
CN202555977U (zh) * 2012-03-27 2012-11-28 中信重工机械股份有限公司 一种大型矿用磨机筒体和端部法兰焊接坡口结构
CN103203558A (zh) * 2013-03-04 2013-07-17 长沙理工大学 一种减少液压油缸进出油口焊接变形的新方法
CN106838338B (zh) * 2017-03-09 2019-01-15 中国科学院合肥物质科学研究院 一种低温调节阀的焊接工艺
CN112318052A (zh) * 2020-10-28 2021-02-05 十堰合威锻压工程技术股份有限公司 一种f型焊接连接板结构
CN112536543A (zh) * 2020-11-27 2021-03-23 武汉重型机床集团有限公司 一种释放应力集中的焊接结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199576A (ja) * 1984-03-22 1985-10-09 Komatsu Zoki Kk 油圧配管用のチュ−ブとフランジの継手溶接方法
CN103447702A (zh) * 2012-05-31 2013-12-18 洛阳建浩重工机械有限公司 一种克服大型磨机端盖焊接变形的方法
CN103008844A (zh) * 2012-12-18 2013-04-03 中冶南方(武汉)威仕工业炉有限公司 一种马弗管双层法兰的装焊工艺
CN104028910A (zh) * 2014-06-26 2014-09-10 江苏海达电气有限公司 加强型高压gis壳体
CN204545732U (zh) * 2015-03-03 2015-08-12 番禺珠江钢管(珠海)有限公司 海上风力发电导管架基础法兰安装结构
CN107283032A (zh) * 2017-07-29 2017-10-24 江苏恒高电气制造有限公司 用于铝材主法兰同步焊接的mig和tig组合焊接工艺
CN111054989A (zh) * 2019-12-31 2020-04-24 河北建筑工程学院 一种铜铝tig压钎焊设备及工艺
CN113102911A (zh) * 2021-04-14 2021-07-13 营口诚源机械设备有限公司 一种低形变垂直焊接结构及工艺

Also Published As

Publication number Publication date
CN113102911B (zh) 2021-10-29
CN113102911A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2022217777A1 (zh) 一种低形变垂直焊接结构及工艺
TWI621496B (zh) Liquid cooling jacket manufacturing method
JP5337066B2 (ja) スパークプラグ用主体金具組立体の製造方法、スパークプラグの製造方法、及び、スパークプラグ用主体金具組立体の製造装置
CN106670640B (zh) 一种适用于薄壁顶盖小直径法兰盘的电子束焊接方法
CN103737220B (zh) 两端中心带预留口封闭筒体的搅拌摩擦焊内支撑装置
WO2012129995A1 (zh) 插入式大斜管与筒体接头的焊接变形控制方法
JP5417349B2 (ja) 薄板部材の溶接方法、およびその溶接方法を用いた缶体の製造方法
WO2021120912A1 (zh) 扬克缸缸段预加工件以及用于制造扬克缸的方法
CN103817446B (zh) 一种钠硫电池真空激光焊接用夹具
CN206369028U (zh) 不锈钢汽车排气管法兰
CN107876966A (zh) 一种减少搅拌摩擦焊接对搭接接头缺陷的焊接方法
CN109365979A (zh) 一种膜片膜盒环缝焊接工艺
CN204449678U (zh) 一种管板插接焊接接头
CN203712098U (zh) 一种钠硫电池激光焊接用定位装置
CN207953063U (zh) 环形支撑装置
JP2008260987A (ja) 溶接鋼管の熱処理方法及び熱処理装置
CN106624278B (zh) 一种变壁厚铝材焊接方法
CN105817841A (zh) 异型管成型方法
TWI301087B (zh)
JPS6397376A (ja) 電子ビ−ム溶接方法
CN204513781U (zh) 一种不锈钢外夹套搪瓷储热换热内胆
CN103111750A (zh) 焊接头及增强搅拌摩擦焊接强度的方法
JPH07205302A (ja) 合成樹脂管の突き合わせ接続方法
SU1562080A1 (ru) Конструкци па ного телескопического соединени
TW202210212A (zh) 衛浴掛件板金材之銲接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936649

Country of ref document: EP

Kind code of ref document: A1