WO2022217707A1 - 光电传感器及其制作方法、显示面板 - Google Patents

光电传感器及其制作方法、显示面板 Download PDF

Info

Publication number
WO2022217707A1
WO2022217707A1 PCT/CN2021/096967 CN2021096967W WO2022217707A1 WO 2022217707 A1 WO2022217707 A1 WO 2022217707A1 CN 2021096967 W CN2021096967 W CN 2021096967W WO 2022217707 A1 WO2022217707 A1 WO 2022217707A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transport layer
electrode
electron transport
hole transport
Prior art date
Application number
PCT/CN2021/096967
Other languages
English (en)
French (fr)
Inventor
蔡广烁
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/425,718 priority Critical patent/US20230180576A1/en
Publication of WO2022217707A1 publication Critical patent/WO2022217707A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of display technology, and in particular, to a photoelectric sensor, a manufacturing method thereof, and a display panel.
  • sensors using semiconductor heterostructures have the advantages of high photoelectric conversion efficiency, high reliability, and low cost.
  • the use of transparent oxide MoOx with high work function as the hole transport layer material can reduce the additional loss of light and improve the hole transport efficiency of the sensor.
  • the surface of the film layer is cleaned before each process of preparing the sensor. Since MoOx with high work function is easily soluble in water, when the surface of the hole transport layer prepared from MoOx is cleaned, MoOx will dissolve, resulting in Subsequent processes cannot be performed.
  • the existing sensor using molybdenum oxide as the hole transport layer material has the problem of difficult manufacturing process. Therefore, it is necessary to provide a photoelectric sensor, a manufacturing method thereof, and a display panel.
  • Embodiments of the present application provide a photoelectric sensor, a method for fabricating the same, and a display panel, which are used to solve the problem of difficulty in manufacturing processes of existing sensors using molybdenum oxide as a hole transport layer material.
  • An embodiment of the present application provides a photoelectric sensor, including:
  • the hole transport layer is disposed on the transparent base substrate
  • the light absorption layer is disposed on the side of the hole transport layer away from the transparent base substrate;
  • the electron transport layer is disposed on the side of the light absorbing layer away from the hole transport layer;
  • the side of the transparent base substrate away from the hole transport layer is the light incident side of the photoelectric sensor, and the material of the hole transport layer is molybdenum oxide.
  • the band gap of the molybdenum oxide is greater than or equal to 2.8 eV and less than or equal to 3.6 eV, and the work function of the molybdenum oxide is greater than or equal to 5.2 eV and less than or equal to 6.8 eV.
  • the light absorption layer is an intrinsic semiconductor
  • the electron transport layer is an electron type semiconductor
  • the hole transport layer, the light absorption layer and the electron transport layer form a semiconductor heterostructure.
  • the materials of the light absorption layer and the electron transport layer both include any one of amorphous silicon, microcrystalline silicon and polycrystalline silicon.
  • the photoelectric sensor includes:
  • the first electrode is disposed between the transparent base substrate and the hole transport layer;
  • the second electrode is disposed on the side of the electron transport layer away from the light absorption layer.
  • the first electrode is a single-layer or multi-layer structure formed of at least one metal oxide material selected from indium zinc oxide, indium tin oxide, zinc oxide, and gallium zinc oxide.
  • the second electrode is a single-layer or multi-layer structure formed of at least one metal material selected from molybdenum, copper, aluminum, titanium, nickel, and cadmium.
  • the photoelectric sensor includes an insulating layer, the insulating layer is disposed on the transparent base substrate and covers the first electrode and the electron transport layer, and the insulating layer is provided with A first via hole exposes the first electrode, and a second via hole exposes the electron transport layer.
  • the embodiment of the present application also provides a method for manufacturing a photoelectric sensor, comprising the following steps:
  • a patterning process is performed on the electron transport material, the light absorption material and the molybdenum oxide to form a hole transport layer, a light absorption layer and an electron transport layer which are sequentially stacked on the first electrode.
  • the manufacturing method further includes the following steps:
  • the insulating layer covering the hole transport layer, the light absorption layer and the electron transport layer;
  • a second electrode is formed on the electron transport layer and the insulating layer.
  • the band gap of the molybdenum oxide is greater than or equal to 2.8 eV and less than or equal to 3.6 eV, and the work function of the molybdenum oxide is greater than or equal to 5.2 eV and less than or equal to 6.8 eV.
  • the electron transport layer is an N-type semiconductor
  • the light absorption layer is an intrinsic semiconductor
  • the method for sequentially depositing the light absorbing material and the electron transport material on the molybdenum oxide is chemical vapor deposition or atomic layer deposition.
  • An embodiment of the present application further provides a display panel, including a photoelectric sensor and a pixel unit, the photoelectric sensor is disposed between at least part of the adjacent pixel units, and the photoelectric sensor includes:
  • the hole transport layer is disposed on the transparent base substrate
  • the light absorption layer is disposed on the side of the hole transport layer away from the transparent base substrate;
  • the electron transport layer is disposed on the side of the light absorbing layer away from the hole transport layer;
  • the light-emitting side of the pixel unit faces the transparent substrate
  • the side of the transparent substrate facing away from the hole transport layer is the light-incident side of the photoelectric sensor
  • the hole transport layer is The material is molybdenum oxide.
  • the display panel includes:
  • the first electrode layer is arranged on the transparent substrate, the first electrode layer includes a first electrode and a gate electrode that are in the same layer and arranged at intervals, and the hole transport layer is arranged on the first electrode away from the one side of the transparent substrate substrate;
  • a gate insulating layer disposed on the first electrode layer, the gate insulating layer exposing the first electrode
  • an active layer disposed on the gate insulating layer, including an undoped region and doped regions on both sides of the undoped region;
  • a source electrode and a drain electrode which are arranged on the active layer and are respectively connected to the two doped regions;
  • an insulating layer disposed on the electron transport layer, the source electrode and the drain electrode, the insulating layer exposing the electron transport layer and the drain electrode;
  • the second electrode is disposed on the side of the electron transport layer away from the light absorption layer, and is connected to the drain electrode.
  • the gate electrode, the active layer, the source electrode and the drain electrode constitute a switching thin film transistor, and the photoelectric sensing unit is connected to the switching thin film transistor.
  • the band gap of the molybdenum oxide is greater than or equal to 2.8 eV and less than or equal to 3.6 eV, and the work function of the molybdenum oxide is greater than or equal to 5.2 eV and less than or equal to 6.8 eV.
  • the light absorption layer is an intrinsic semiconductor
  • the electron transport layer is an electron type semiconductor
  • the hole transport layer, the light absorption layer and the electron transport layer form a semiconductor heterostructure.
  • the materials of the light absorption layer and the electron transport layer both include any one of amorphous silicon, microcrystalline silicon and polycrystalline silicon.
  • the embodiments of the present application provide a photoelectric sensor, a manufacturing method thereof, and a display panel, wherein the photoelectric sensor includes a transparent substrate, a hole transport layer, a light absorption layer, and an electron transport layer.
  • the hole transport layer is arranged on the transparent base substrate, the light absorption layer is arranged on the side of the hole transport layer away from the transparent base substrate, and the electron transport layer is arranged at the side of the light absorption layer away from the transparent base substrate.
  • One side of the hole transport layer, the side of the transparent substrate facing away from the hole transport layer is the light incident side of the photoelectric sensor, the material of the hole transport layer is molybdenum oxide, and the hole
  • the transport layer, the light absorption layer and the electron transport layer constitute a semiconductor heterostructure, so that the hole transport layer is arranged on the side close to the transparent base substrate, and the light absorption layer and the electron transport layer located above are used for air-conditioning
  • the hole transport layer is shielded to prevent the molybdenum oxide in the hole transport layer from being dissolved during the cleaning process of the film layer, thereby reducing the difficulty of manufacturing the photoelectric sensor using molybdenum oxide as the hole transport layer material.
  • FIG. 1 is a schematic structural diagram of a photoelectric sensor provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for manufacturing a photoelectric sensor provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for fabricating a photoelectric sensor according to an embodiment of the present application
  • FIG. 4 is a schematic plan view of a display panel provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a photoelectric sensor provided in an embodiment of the present application
  • the photoelectric sensor 100 includes a transparent substrate substrate 110 , a hole transport layer 120 , a light absorption layer 130 and an electron transport layer 140 .
  • the hole transport layer 120 is disposed on the transparent base substrate 110
  • the light absorption layer 130 is disposed on the side of the hole transport layer 120 away from the transparent base substrate 110
  • the electron transport layer 140 is disposed on the side of the transparent base substrate 110.
  • the material of the transparent base substrate 110 is glass.
  • the material of the transparent substrate 110 is not limited to glass, but can also be aluminum oxide, silicon, polyethylene naphthalate, polyethylene terephthalate, or polyimide, etc. Transparent material.
  • the photoelectric sensor 100 is a photoelectric sensor with a bottom light-receiving structure, and the side of the transparent substrate 110 away from the hole transport layer 120 is the photoelectric sensor 100 the light entrance side.
  • the ambient light is irradiated into the photoelectric sensor 100 through the side of the transparent base substrate 110 away from the hole transport layer 120 , passes through the hole transport layer 120 , and is finally absorbed by the light absorption layer 130 .
  • the light-absorbing layer 130 generates photoacoustic carriers after absorbing light energy, and under the action of an applied reverse voltage, the electrons and holes generated in the light-absorbing layer 130 accelerate and diffuse in opposite directions respectively, and drift to the electron transport layer 140 and the empty space.
  • the hole transport layer 120 generates a current proportional to the ambient light power, thereby converting the ambient light optical signal into an electrical signal.
  • the material of the hole transport layer 120 is molybdenum oxide.
  • molybdenum oxide Compared with the hole-type material used in the hole transport layer in the prior art, molybdenum oxide has a larger forbidden bandwidth and work function, and can The hole transport efficiency of the hole transport layer 120 is effectively improved, so that the photoelectric sensor 100 has a higher quantum efficiency.
  • molybdenum oxide can also reduce the additional absorption of light by the hole transport layer 120, thereby improving the photoelectricity.
  • the sensitivity of the sensor 100 and can also reduce the need for hole-type materials, thereby reducing production costs.
  • hole transport layer 120 By arranging the hole transport layer 120 on the side close to the transparent base substrate 110, in the actual process, molybdenum oxide, light absorbing material and hole transport material are deposited in sequence, and then the hole transport material, light absorbing material and molybdenum oxide are deposited in sequence.
  • a patterning process is used to form a stacked hole transport layer 120, a light absorption layer 130 and an electron transport layer 140, so that the hole transport layer 120 can be shielded by the light absorption layer 130 and the electron transport layer 140 located on the upper hole transport layer 120. , to prevent the molybdenum oxide in the hole transport layer 120 from being dissolved during the cleaning process of the film layer, thereby reducing the manufacturing difficulty of the photoelectric sensor 100 using MoOx as the material of the hole transport layer 120 .
  • the forbidden bandwidth of the molybdenum oxide is greater than or equal to 2.8 eV and less than or equal to 3.6 eV, and the work function of the molybdenum oxide is greater than or equal to 5.2 eV and less than or equal to 6.8 eV.
  • the forbidden bandwidth of the molybdenum oxide is 3.2 eV
  • the work function of the molybdenum oxide is 6 eV, so that the molybdenum oxide can have a larger forbidden bandwidth and work function, thereby effectively improving the
  • the hole transport efficiency of the hole transport layer 120 enables the photosensor 100 to have higher quantum efficiency, thereby improving the sensitivity of the photosensor 100 .
  • the forbidden bandwidth of the molybdenum oxide is not limited to the above-mentioned 3.2eV, but can also be 2.8eV, 3eV, 3.4eV, or 3.6eV, etc., and only needs to be between 2.8eV and 3.6eV.
  • the work function of the molybdenum oxide is not limited to the above-mentioned 6eV, but can also be 5.2eV, 5.6eV, 6.4eV, or 6.8eV, etc., and only needs to be between 5.2eV and 6.8eV.
  • the light absorption layer 130 is an intrinsic semiconductor
  • the electron transport layer 140 is an electron type semiconductor
  • the hole transport layer 120 , the light absorption layer 130 and the electron transport layer 140 form a semiconductor heterostructure.
  • the photoelectric sensor 100 is a photoelectric sensor having a semiconductor heterostructure
  • the light absorption layer 130 is an intrinsic semiconductor
  • the electron transport layer 140 is an electron type semiconductor
  • the hole transport layer 120 A semiconductor heterostructure is formed with the light absorption layer 130 and the electron transport layer 140 . Since the junction capacitance of the heterojunction itself in the semiconductor heterostructure is large, it can be used as a storage capacitor in the circuit, so there is no need to set an additional storage capacitor in the circuit of the photoelectric sensor, which can effectively improve the recognition rate of the photoelectric sensor.
  • the material of the light absorption layer 130 is intrinsic undoped silicon, and the form of silicon in the intrinsic undoped silicon is amorphous silicon.
  • the form of the intrinsic undoped silicon is not limited to amorphous silicon, but can also be microcrystalline silicon or polycrystalline silicon.
  • the material of the electron transport layer 140 is N-type heavily doped silicon, wherein the form of silicon is the same as that of silicon in intrinsic undoped silicon, and both are amorphous silicon.
  • the shape of the silicon in the N-type heavily doped silicon is not limited to the above-mentioned amorphous silicon, but can also be amorphous silicon or polycrystalline silicon, and the shape of the silicon in the N-type heavily doped silicon can be the same as this one.
  • the morphology of the silicon in the undoped silicon is the same or different.
  • the photosensor 100 includes a first electrode 150 and a second electrode 160 , and the first electrode 150 is disposed between the transparent base substrate 110 and the hole transport layer 120 , the second electrode 160 is disposed on the side of the electron transport layer 140 away from the light absorption layer 130 .
  • the first electrode 150 and the second electrode 160 are respectively connected to an external circuit for connecting an applied reverse voltage, so that the electrons and holes generated in the light absorbing layer 130 are accelerated to diffuse in opposite directions, and drift to
  • the electron transport layer 140 and the hole transport layer 120 generate a current proportional to the power of the ambient light, thereby converting the optical signal of the ambient light into an electrical signal.
  • the first electrode 150 is a transparent conductive electrode, and the material of the first electrode 150 is indium tin oxide, so that the light transmittance of the first electrode 150 can be improved, and the additional absorption of light by the first electrode 150 can be reduced.
  • the sensitivity of the photoelectric sensor 100 is further improved.
  • the material of the first electrode 150 is not limited to the above-mentioned indium tin oxide, and can also be any one of indium zinc oxide, zinc oxide and gallium zinc oxide, or can also be indium zinc oxide, oxide At least one metal oxide material of indium tin, zinc oxide, and gallium zinc oxide forms a multilayer structure.
  • the second electrode 160 is a metal conductive electrode, and the second electrode 160 is a double-layer structure formed by stacking molybdenum and copper sequentially from bottom to top.
  • the structure of the second electrode 160 is not limited to the above-mentioned double-layer metal structure formed by stacking molybdenum and copper sequentially from bottom to top, but can also be a single-layer metal material such as molybdenum, copper, or aluminum, or Multi-layer metal stack; or can be molybdenum/aluminum, molybdenum/titanium/aluminum, molybdenum/titanium/copper, nickel/copper, nickel/aluminum, aluminum/nickel, cadmium/copper, cadmium/aluminum, titanium/copper, A double-layer or three-layer metal stack formed by stacking two or three metal materials such as titanium/aluminum in sequence from bottom to top.
  • the photoelectric sensor 100 includes an insulating layer 170 , the insulating layer 170 is disposed on the transparent base substrate 110 and covers the first electrode 150 and the electron transport layer 140 ,
  • the insulating layer 170 is provided with a first via hole 171 and a second via hole 172 , the first via hole 171 exposes the first electrode 150 , and the second via hole 172 exposes the electron transport layer 140.
  • the first via hole 171 is used to expose the first electrode 150 , so that the first electrode 150 can be connected to other circuits of the photoelectric sensor 100 , and the second electrode 160 is connected to the second via hole 172 .
  • the electron transport layer 140 contacts.
  • the insulating layer 170 is a stacked structure formed of silicon nitride and silicon oxide.
  • the insulating layer 170 may be a single-layer or multi-layer structure formed of at least one material selected from aluminum oxide, silicon nitride, silicon dioxide, and aluminum nitride.
  • the photoelectric sensor 100 provided in this embodiment of the present application may be applied to various scenarios.
  • the photoelectric sensor may be applied to a sensor such as a fingerprint recognition sensor, a palmprint recognition sensor, or a facial recognition sensor.
  • FIG. 2 is a flowchart of the method for manufacturing a photoelectric sensor provided by an embodiment of the present application
  • FIG. 3 is an implementation of the present application.
  • a schematic flowchart of a manufacturing method of a photoelectric sensor provided by the example, the manufacturing method includes the following steps:
  • Step S10 forming the first electrode 150 on the transparent base substrate 110 .
  • the material of the transparent base substrate 110 is glass.
  • the material of the transparent substrate 110 is not limited to glass, but can also be aluminum oxide, silicon, polyethylene naphthalate, polyethylene terephthalate, or polyimide, etc. Transparent material.
  • a layer of transparent electrode material needs to be deposited on the transparent base substrate 110 first, and then a patterning process is performed on the layer of transparent electrode material to form the patterned first electrode 150 .
  • the transparent electrode material is indium tin oxide, which can improve the light transmittance of the first electrode 150 , reduce the additional absorption of light by the first electrode 150 , and further improve the sensitivity of the photoelectric sensor 100 .
  • the material of the first electrode 150 is not limited to the above-mentioned indium tin oxide, and can also be any one of indium zinc oxide, zinc oxide and gallium zinc oxide, or can also be indium zinc oxide, oxide At least one metal oxide material of indium tin, zinc oxide, and gallium zinc oxide forms a multilayer structure.
  • Step S20 depositing a layer of molybdenum oxide 121 on the transparent base substrate 110 and the first electrode 150 .
  • the method for depositing a layer of molybdenum oxide 121 includes sputtering, chemical vapor deposition (chemical vapor deposition) deposition, CVD) or evaporation, etc.
  • the molybdenum oxide 121 needs to be annealed.
  • the annealing can be done in an atmosphere of oxygen, nitrogen, argon or air.
  • the time and temperature required for the annealing process can be set according to settings, which are not limited here.
  • Step S30 sequentially depositing a light absorbing material 131 and an electron transporting material 141 on the molybdenum oxide 121 .
  • the method for depositing the light absorbing material 131 and the electron transporting material 141 is chemical vapor deposition.
  • the method for depositing the light absorbing material 131 and the electron transporting material 141 is not limited to chemical vapor deposition, and atomic layer deposition or plasma enhanced chemical vapor deposition can also be used.
  • the light absorbing material 131 is intrinsic undoped silicon, and the form of intrinsic undoped silicon is amorphous silicon. In practical applications, the form of intrinsic undoped silicon can also be microcrystalline silicon or polycrystalline silicon.
  • the electron transport material 141 is N-type heavily doped silicon, and the form of silicon in the N-type heavily doped silicon is amorphous silicon. In practical applications, the form of silicon in the N-type heavily doped silicon can also be microcrystalline silicon or polycrystalline silicon.
  • Step S40 performing a patterning process on the electron transport material 141 , the light absorbing material 131 and the molybdenum oxide 121 to form the hole transport layer 120 , the light absorbing layer 130 and the Electron transport layer 140 .
  • the electron transport material 141, the light absorbing material 131 and the molybdenum oxide 121 need to be patterned in sequence, and only one mask is needed to complete the above-mentioned patterning process. Patterning process of three film layers. After the patterning process of the electron transport material 141 is completed, the patterned electron transport layer 140 can be used as a mask, and the patterning process of the lower light absorbing material 131 can be continued. After the patterning process of the light-absorbing material 131 is completed, the patterned electron transport layer 140 and the light-absorbing layer 130 can be used as masks, and the patterning process of the lower molybdenum oxide 121 is continued to form the patterned hole transport layer 120. Thus, cleaning of the hole transport layer 120 can be avoided.
  • a method for patterning the electron transport material 141 , the light absorbing material 131 and the molybdenum oxide 121 is dry etching. In practical applications, wet etching may also be used to pattern the electron transport material 141 , the light absorbing material 131 and the molybdenum oxide 121 . In this way, the light absorbing layer 130 and the electron transport layer 140 located above the hole transport layer 120 can be used to shield the hole transport layer 120 to prevent the molybdenum oxide in the hole transport layer 120 from being dissolved during the film cleaning process, thereby preventing the The manufacturing difficulty of the photoelectric sensor 100 using molybdenum oxide as the material of the hole transport layer 120 is reduced.
  • the light absorption layer 130 is an intrinsic semiconductor
  • the electron transport layer 140 is an electron type semiconductor
  • the hole transport layer 120, the light absorption layer 130 and the electron transport layer 140 constitute a semiconductor Heterogeneous structure. Since the junction capacitance of the heterojunction itself in the semiconductor heterostructure is large, it can be used as a storage capacitor in the circuit, so there is no need to set an additional storage capacitor in the circuit of the photoelectric sensor, which can effectively improve the recognition rate of the photoelectric sensor.
  • the manufacturing method also includes the following steps:
  • Step S50 forming an insulating layer 170 on the transparent base substrate 110 , the insulating layer 170 covering the hole transport layer 120 , the light absorption layer 130 and the electron transport layer 140 .
  • the insulating layer 170 is a stacked structure formed of silicon nitride and silicon oxide.
  • the insulating layer 170 may be a single-layer or multi-layer structure formed of at least one material selected from aluminum oxide, silicon nitride, silicon dioxide, and aluminum nitride.
  • Step S60 etching the insulating layer 170 to form a first via hole 171 exposing the first electrode 150 and a second via hole 172 exposing the electron transport layer 140 .
  • the first via hole 171 exposes a part of the first electrode 150, which is used to connect the first electrode 150 with other circuits of the photoelectric sensor subsequently.
  • the second via hole 172 exposes a part of the electron transport layer 140 for the second electrode 160 to be subsequently formed to be in contact with the electron transport layer 140 .
  • Step S70 forming a second electrode 160 on the electron transport layer 140 and the insulating layer 170 .
  • the second electrode 160 is a metal conductive electrode, and the second electrode 160 is a double-layer structure formed by stacking molybdenum and copper sequentially from bottom to top.
  • the structure of the second electrode 160 is not limited to the above-mentioned double-layer metal structure formed by stacking molybdenum and copper sequentially from bottom to top, but can also be a single-layer metal material such as molybdenum, copper, or aluminum, or Multi-layer metal stack; or can be molybdenum/aluminum, molybdenum/titanium/aluminum, molybdenum/titanium/copper, nickel/copper, nickel/aluminum, aluminum/nickel, cadmium/copper, cadmium/aluminum, titanium/copper, A double-layer or three-layer metal stack formed by stacking two or three metal materials such as titanium/aluminum in sequence from bottom to top.
  • the forbidden bandwidth of the molybdenum oxide 121 is greater than or equal to 2.8 eV and less than or equal to 3.6 eV, and the work function of the molybdenum oxide is greater than or equal to 5.2 eV and less than or equal to 6.8 eV.
  • the forbidden bandwidth of the molybdenum oxide 121 is 3.2 eV
  • the work function of the molybdenum oxide is 6 eV, so that the molybdenum oxide can have a larger forbidden bandwidth and work function, thereby effectively improving the
  • the hole transport efficiency of the hole transport layer 120 enables the photosensor 100 to have higher quantum efficiency, thereby improving the sensitivity of the photosensor 100 .
  • the forbidden bandwidth of the molybdenum oxide 121 is not limited to the above-mentioned 3.2eV, but can also be 2.8eV, 3eV, 3.4eV, or 3.6eV, etc., and only needs to be between 2.8eV and 3.6eV.
  • the work function of the molybdenum oxide is not limited to the above-mentioned 6eV, but can also be 5.2eV, 5.6eV, 6.4eV, or 6.8eV, etc., and only needs to be between 5.2eV and 6.8eV.
  • FIG. 4 is a schematic plan view of the display panel provided by the embodiment of the present application
  • FIG. 5 is a schematic diagram of the display panel provided by the embodiment of the present application.
  • the display panel includes the photoelectric sensor 100 and the pixel unit 200 provided in the above-mentioned embodiments, the photoelectric sensor 100 is disposed between at least part of the adjacent pixel units 200, and this method will not affect the Pixel arrangement and display effect of the pixel unit 200 .
  • the photoelectric sensor 100 includes a transparent base substrate 110 , a hole transport layer 120 , a light absorption layer 130 and an electron transport layer 140 , the hole transport layer 120 is disposed on the transparent base substrate 110 , and the light absorption layer 130 The electron transport layer 140 is disposed on the side of the hole transport layer 120 away from the transparent base substrate 110 , and the electron transport layer 140 is disposed on the side of the light absorption layer 130 away from the hole transport layer 120 .
  • the display panel is an organic light emitting diode display panel with a bottom emission structure
  • the pixel unit 200 is formed on the transparent substrate 110, and the light-emitting side of the pixel unit 200 faces the transparent
  • the base substrate 110 , the side of the transparent base substrate 110 facing away from the hole transport layer 120 is the light incident side of the photoelectric sensor 100 .
  • the material of the hole transport layer 120 is molybdenum oxide.
  • molybdenum oxide Compared with the hole-type material used in the hole transport layer in the prior art, molybdenum oxide has a larger forbidden bandwidth and work function, and can The hole transport efficiency of the hole transport layer 120 is effectively improved, so that the photoelectric sensor 100 has a higher quantum efficiency.
  • molybdenum oxide can also reduce the additional absorption of light by the hole transport layer 120, thereby improving the photoelectricity.
  • the sensitivity of the sensor 100 and can also reduce the need for hole-type materials, thereby reducing production costs.
  • the display panel includes a first electrode layer 10 , a gate insulating layer 20 , an active layer 30 , a source electrode 40 , a drain electrode 50 , an interlayer dielectric layer 60 , an insulating layer 170 , and a second electrode 160 .
  • the first electrode layer 10 is disposed on the transparent base substrate 110, the first electrode layer 10 includes a first electrode 150 and a gate electrode 151 that are in the same layer and spaced apart, and the hole transport layer 120 is disposed on the same layer.
  • the first electrode 150 faces away from the side of the transparent base substrate 110 .
  • the gate insulating layer 20 is disposed on the first electrode layer 10 , and the gate insulating layer 20 exposes the first electrode 150 .
  • the active layer 30 is disposed on the gate insulating layer 20 and includes an undoped region 310 and doped regions 320 located on both sides of the undoped region 310 .
  • the source electrode 40 and the drain electrode 50 are disposed on the active layer 30 and are respectively connected to the two doped regions 320 on both sides of the undoped region 310 .
  • the interlayer dielectric layer 60 covers the source electrode 40, the drain electrode 50 and the gate insulating layer 20, and the insulating layer 170 is disposed on the interlayer dielectric layer 60, the electron transport layer 140, On the source electrode 40 and the drain electrode 50 and exposing the electron transport layer 140 and the drain electrode 50 , the second electrode 160 is disposed on the electron transport layer 140 away from the light absorption layer 130 . one side, and is connected to the drain 50 .
  • the gate electrode 151 , the active layer 30 , the source electrode 40 and the drain electrode 50 constitute a switching thin film transistor, and the switching thin film transistor is connected to the photosensor 100 .
  • the display panel further includes a cover plate 70, a black matrix 80 is provided on the side of the cover plate 70 facing the transparent substrate 110, the switching thin film transistors are arranged in alignment with the black matrix 80, and the photoelectric The sensor 100 is disposed outside the coverage area of the black matrix 80 .
  • the transparent substrate 110 also includes scan lines and signal lines not shown in the figure, the photosensitive element is electrically connected to the switching thin film transistor, and the gate 151 of the switching thin film transistor is electrically connected to the scan line , the source 40 of the switching thin film transistor is electrically connected to the signal line, the drain of the switching thin film transistor is electrically connected to the second electrode 160 of the photoelectric sensor 100, and the signal line is used to read the The photoelectric current signal output by the photoelectric sensor 100 realizes the photoelectric sensing function of the photoelectric sensor 100 .
  • the photoelectric sensor 100 may be applied to various scenarios.
  • the photoelectric sensor may be applied to sensors such as a fingerprint recognition sensor, a palmprint recognition sensor, or a facial recognition sensor.
  • the embodiments of the present application provide a photoelectric sensor, a manufacturing method thereof, and a display panel.
  • the photoelectric sensor includes a transparent substrate, a hole transport layer, a light absorption layer, and an electron transport layer.
  • the hole transport layer disposed on the transparent base substrate, the light absorption layer is disposed on the side of the hole transport layer away from the transparent base substrate, the electron transport layer is disposed on the light absorption layer away from the hole transport
  • One side of the layer, the side of the transparent substrate facing away from the hole transport layer is the light incident side of the photoelectric sensor, the material of the hole transport layer is molybdenum oxide, and the hole transport layer is
  • the light absorption layer and the electron transport layer constitute a semiconductor heterostructure, so that the hole transport layer is arranged on the side close to the transparent substrate substrate, and the hole transport layer is replaced by the light absorption layer and the electron transport layer located above.
  • the shielding is performed to prevent the molybdenum oxide in the hole transport layer from dissolving during the cleaning process of

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

本申请实施例提供一种光电传感器及其制作方法、显示面板,该光电传感器包括透明衬底基板、空穴传输层、吸光层和电子传输层,通过将空穴传输层设置在靠近透明衬底基板的一侧,利用吸光层和电子传输层对空穴传输层进行遮挡,避免空穴传输层中的氧化钼在清洗过程中发生溶解,降低光电传感器的制程难度。

Description

光电传感器及其制作方法、显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种光电传感器及其制作方法、显示面板。
背景技术
随着信息技术的快速发展,利用指纹、语音、面部、手、视网膜或者虹膜作为个人识别系统已经成为安全可靠的生物识别技术。从成本、易用性和准确性等层面上看,指纹识别已经成为用于验证身份的领先方法,以替代常规的密码和密钥。传统的光学指纹识别传感器存在成本高、体积大和图像失真等问题。基于硅芯片的传感器,由于其尺寸小、价格便宜等优势,逐渐取代传统的光学指纹识别传感器。然而,基于硅芯片的传感器存在容易发生静电击穿以及易受环境条件影响等问题,限制了其进一步应用。
技术问题
相比于硅基PN结传感器,采用半导体异质结构的传感器,具有高光电转化效率、高可靠性、低成本等优势。此外,利用具有高功函数的透明氧化物MoOx作为空穴传输层材料,可以减少光的额外损失,并提升传感器的空穴传输效率。在制备传感器的每一道制程之前都会对膜层表面进行清洗,由于高功函数的MoOx易溶于水,在对由MoOx制备而成的空穴传输层表面进行清洗时,MoOx会发生溶解,导致后续制程无法进行。
综上所述,现有采用氧化钼作为空穴传输层材料的传感器存在制程困难的问题。故,有必要提供一种光电传感器及其制作方法、显示面板。
技术解决方案
本申请实施例提供一种光电传感器及其制作方法、显示面板,用于解决现有采用氧化钼作为空穴传输层材料的传感器存在制程困难的问题。
本申请实施例提供一种光电传感器,包括:
透明衬底基板;
空穴传输层,所述空穴传输层设置于所述透明衬底基板上;
吸光层,所述吸光层设置于所述空穴传输层背离所述透明衬底基板的一侧;
电子传输层,所述电子传输层设置于所述吸光层背离所述空穴传输层的一侧;
其中,所述透明衬底基板背离所述空穴传输层的一侧为所述光电传感器的入光侧,所述空穴传输层的材料为氧化钼。
根据本申请一实施例,所述氧化钼的禁带宽大于或等于2.8eV且小于或等于3.6eV,所述氧化钼的功函数大于或等于5.2eV且小于或等于6.8eV。
根据本申请一实施例,所述吸光层为本征半导体,所述电子传输层为电子型半导体,所述空穴传输层与所述吸光层和所述电子传输层构成半导体异质结构。
根据本申请一实施例,所述吸光层和所述电子传输层的材料均包括非晶硅、微晶硅和多晶硅中的任意一种。
根据本申请一实施例,所述光电传感器包括:
第一电极,所述第一电极设置于所述透明衬底基板与所述空穴传输层之间;
第二电极,所述第二电极设置于所述电子传输层背离所述吸光层的一侧。
根据本申请一实施例,所述第一电极为氧化铟锌、氧化铟锡、氧化锌和氧化镓锌中的至少一种金属氧化物材料形成的单层或多层结构。
根据本申请一实施例,所述第二电极为钼、铜、铝、钛、镍和镉中的至少一种金属材料形成的单层或多层结构。
根据本申请一实施例,所述光电传感器包括绝缘层,所述绝缘层设置于所述透明衬底基板上,并且覆盖所述第一电极和所述电子传输层,所述绝缘层上设有第一过孔和第二过孔,所述第一过孔暴露出所述第一电极,所述第二过孔暴露出所述电子传输层。
本申请实施例还提供一种光电传感器的制作方法,包括以下步骤:
在透明衬底基板上形成第一电极;
在所述透明衬底基板以及所述第一电极上沉积一层氧化钼;
在所述氧化钼上依次沉积吸光材料和电子传输材料;
对所述电子传输材料、所述吸光材料和所述氧化钼进行图案化工艺,形成依次层叠设置于所述第一电极上的空穴传输层、吸光层和电子传输层。
根据本申请一实施例,所述制作方法还包括以下步骤:
在所述透明衬底基板上形成绝缘层,所述绝缘层覆盖所述空穴传输层、所述吸光层和所述电子传输层;
对所述绝缘层进行刻蚀,形成暴露出所述第一电极的第一过孔和暴露出所述电子传输层的第二过孔;
在所述电子传输层和所述绝缘层上形成第二电极。
根据本申请一实施例,所述氧化钼的禁带宽大于或等于2.8eV且小于或等于3.6eV,所述氧化钼的功函数大于或等于5.2eV且小于或等于6.8eV。
根据本申请一实施例,所述电子传输层为N型半导体,所述吸光层为本征半导体。
根据本申请一实施例,在所述氧化钼上依次沉积所述吸光材料和所述电子传输材料的方法为化学气相沉积法或者原子层沉积法。
本申请实施例还提供一种显示面板,包括光电传感器和像素单元,所述光电传感器设置于至少部分相邻所述像素单元之间,所述光电传感器包括:
透明衬底基板;
空穴传输层,所述空穴传输层设置于所述透明衬底基板上;
吸光层,所述吸光层设置于所述空穴传输层背离所述透明衬底基板的一侧;
电子传输层,所述电子传输层设置于所述吸光层背离所述空穴传输层的一侧;
其中,所述像素单元的出光侧朝向所述透明衬底基板,所述透明衬底基板背离所述空穴传输层的一侧为所述光电传感器的入光侧,所述空穴传输层的材料为氧化钼。
根据本申请一实施例,所述显示面板包括:
第一电极层,设置于所述透明衬底基板上,所述第一电极层包括同层并间隔设置的第一电极和栅极,所述空穴传输层设置于所述第一电极背离所述透明衬底基板的一侧;
栅极绝缘层,设置于所述第一电极层上,所述栅极绝缘层暴露出所述第一电极;
有源层,设置于所述栅极绝缘层上,包括非掺杂区和位于所述非掺杂区两侧的掺杂区;
源极和漏极,设置于所述有源层上,并且分别与两所述掺杂区连接;
绝缘层,设置于所述电子传输层、所述源极和所述漏极上,所述绝缘层暴露出所述电子传输层和所述漏极;
第二电极,设置于所述电子传输层背离所述吸光层的一侧,并且与所述漏极连接。
根据本申请一实施例,所述栅极、所述有源层、所述源极和所述漏极构成开关薄膜晶体管,所述光电传感单元与所述开关薄膜晶体管连接。
根据本申请一实施例,所述氧化钼的禁带宽大于或等于2.8eV且小于或等于3.6eV,所述氧化钼的功函数大于或等于5.2eV且小于或等于6.8eV。
根据本申请一实施例,所述吸光层为本征半导体,所述电子传输层为电子型半导体,所述空穴传输层与所述吸光层和所述电子传输层构成半导体异质结构。
根据本申请一实施例,所述吸光层和所述电子传输层的材料均包括非晶硅、微晶硅和多晶硅中的任意一种。
有益效果
本揭示实施例的有益效果:本申请实施例提供一种光电传感器及其制作方法、显示面板,所述光电传感器包括透明衬底基板、空穴传输层、吸光层和电子传输层,所述空穴传输层设置于所述透明衬底基板上,所述吸光层设置于所述空穴传输层背离所述透明衬底基板的一侧,所述电子传输层设置于所述吸光层背离所述空穴传输层的一侧,所述透明衬底基板背离所述空穴传输层的一侧为所述光电传感器的入光侧,所述空穴传输层的材料为氧化钼,所述空穴传输层与所述吸光层和所述电子传输层构成半导体异质结构,如此通过将空穴传输层设置在靠近透明衬底基板的一侧,并利用位于上方的吸光层和电子传输层对空穴传输层进行遮挡,避免空穴传输层中的氧化钼在膜层清洗的过程中发生溶解,从而降低采用氧化钼作为空穴传输层材料的光电传感器的制程难度。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的光电传感器的结构示意图;
图2为本申请实施例提供的光电传感器的制作方法的流程图;
图3为本申请实施例提供的光电传感器的制作方法的流程示意图
图4为本申请实施例提供的显示面板的平面示意图;
图5为本申请实施例提供的显示面板的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本揭示可用以实施的特定实施例。本揭示所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。在图中,结构相似的单元是用以相同标号表示。
下面结合附图和具体实施例对本揭示做进一步的说明:
本申请实施例提供一种光电传感器,下面结合图1进行详细说明。如图1所示,图1为本申请实施例提供的光电传感器的结构示意图,所述光电传感器100包括透明衬底基板110、空穴传输层120、吸光层130和电子传输层140,所述空穴传输层120设置于所述透明衬底基板110上,所述吸光层130设置于所述空穴传输层120背离所述透明衬底基板110的一侧,所述电子传输层140设置于所述吸光层130背离所述空穴传输层120的一侧。
在本申请实施例中,所述透明衬底基板110的材料为玻璃。在实际应用中,所述透明衬底基板110的材料不仅限于玻璃,也可以为氧化铝、硅、聚萘二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯或者聚酰亚胺等透明材料。
在本申请实施例中,如图1所示,所述光电传感器100为底部受光结构的光电传感器,所述透明衬底基板110背离所述空穴传输层120的一侧为所述光电传感器100的入光侧。环境光线通过透明衬底基板110背离所述空穴传输层120的一侧照射至所述光电传感器100内部,经过所述空穴传输层120,最终被所述吸光层130所吸收。吸光层130吸收光能后产生光声载流子,并在外加反向电压的作用下,吸光层130内产生的电子-空穴分别向相反的方向加速扩散,漂移到电子传输层140和空穴传输层120,产生了比例于环境光功率的电流,从而将环境光的光信号转变为电信号。
在本申请实施例中,所述空穴传输层120的材料为氧化钼,相较于现有技术中空穴传输层采用的空穴型材料,氧化钼具有较大的禁带宽和功函数,可以有效提高所述空穴传输层120的空穴传输效率,使得所述光电传感器100具有更高的量子效率,同时氧化钼还可以减少空穴传输层120对光线的额外吸收,从而提高所述光电传感器100的灵敏度,并且还可以减少空穴型材料的需求,从而降低生产成本。
通过将空穴传输层120设置在靠近透明衬底基板110的一侧,在实际制程中,依次沉积氧化钼、吸光材料、空穴传输材料,再对空穴传输材料、吸光材料和氧化钼进行图案化工艺,形成层叠设置的空穴传输层120、吸光层130和电子传输层140,如此可以利用位于上方空穴传输层120的吸光层130和电子传输层140对空穴传输层120进行遮挡,避免空穴传输层120中的氧化钼在膜层清洗的过程中发生溶解,从而降低采用MoOx作为空穴传输层120的材料的光电传感器100的制程难度。
进一步的,所述氧化钼的禁带宽大于或等于2.8eV且小于或等于3.6eV,所述氧化钼的功函数大于或等于5.2eV且小于或等于6.8eV。
在本申请实施例中,所述氧化钼的禁带宽为3.2eV,所述氧化钼的功函数为6eV,如此可以使所述氧化钼具有较大的禁带宽和功函数,以此有效提高所述空穴传输层120的空穴传输效率,使得所述光电传感器100具有更高的量子效率,从而提高所述光电传感器100的灵敏度。
在实际应用中,所述氧化钼的禁带宽不仅限于上述的3.2eV,也可以为2.8eV、3eV、3.4eV或者3.6eV等,仅需要介于2.8eV至3.6eV之间即可。所述氧化钼的功函数也不仅限于上述的6eV,也可以为5.2eV、5.6eV、6.4eV或者6.8eV等,仅需要介于5.2eV至6.8eV之间即可。
进一步的,所述吸光层130为本征半导体,所述电子传输层140为电子型半导体,所述空穴传输层120与所述吸光层130和所述电子传输层140构成半导体异质结构。
在本申请实施例中,所述光电传感器100为具有半导体异质结构的光电传感器,所述吸光层130为本征半导体,所述电子传输层140为电子型半导体,所述空穴传输层120与所述吸光层130和所述电子传输层140构成半导体异质结构。由于半导体异质结构中异质结本身的结电容较大,可以充当电路中的存储电容使用,因此光电传感器的电路中无需另外设置存储电容,从而可以有效提高光电传感器的识别率。
具体的,在本申请实施例中,所述吸光层130的材料为本征非掺杂硅,所述本征非掺杂硅中硅的形态为非晶硅。在实际应用中,所述本征非掺杂硅的形态不仅限于非晶硅,还可以为微晶硅或者多晶硅。
具体的,在本申请实施例中,所述电子传输层140的材料为N型重掺杂硅,其中硅的形态与本征非掺杂硅中硅的形态相同,均为非晶硅。在实际应用中,所述N型重掺杂硅中硅的形态不仅限于上述的非晶硅,也可以为非晶硅或者多晶硅,并且所述N型重掺杂硅中硅的形态可以与本征非掺杂硅中硅的形态相同,也可以不同。
进一步的,如图1所示,所述光电传感器100包括第一电极150和第二电极160,所述第一电极150设置于所述透明衬底基板110与所述空穴传输层120之间,所述第二电极160设置于所述电子传输层140背离所述吸光层130的一侧。所述第一电极150和所述第二电极160分别与外部电路连接,用于接入外加的反向电压,使得吸光层130内产生的电子-空穴分别向相反的方向加速扩散,漂移到电子传输层140和空穴传输层120,产生了比例于环境光功率的电流,从而将环境光的光信号转变为电信号。
具体的,所述第一电极150为透明导电电极,所述第一电极150的材料为氧化铟锡,如此可以提高第一电极150的透光率,减少第一电极150对光线的额外吸收,进一步提升所述光电传感器100的灵敏度。在实际应用中,所述第一电极150的材料不仅限于上述的氧化铟锡,也可以为氧化铟锌、氧化锌和氧化镓锌中的任意一种材料,或者也可以为氧化铟锌、氧化铟锡、氧化锌和氧化镓锌中的至少一种金属氧化物材料形成多层结构。
具体的,所述第二电极160为金属导电电极,所述第二电极160为钼和铜由下至上依次层叠所形成的双层叠构。在实际应用中,所述第二电极160的结构不仅限于上述钼和铜由下至上依次层叠所形成的双层金属结构,还可以为钼、铜或铝等一种金属材料所形成单层或者多层金属叠构;或者也可以为钼/铝、钼/钛/铝、钼/钛/铜、镍/铜、镍/铝、铝/镍、镉/铜、镉/铝、钛/铜、钛/铝等两种或者三种金属材料由下至上依次层叠所形成的双层或者三层金属叠构。
进一步的,如图1所示,所述光电传感器100包括绝缘层170,所述绝缘层170设置于所述透明衬底基板110,并且覆盖所述第一电极150和所述电子传输层140,所述绝缘层170上设有第一过孔171和第二过孔172,所述第一过孔171暴露出所述第一电极150,所述第二过孔172暴露出所述电子传输层140。所述第一过孔171用于暴露出所述第一电极150,以便于第一电极150与光电传感器100的其他电路进行搭接,所述第二电极160通过所述第二过孔172与所述电子传输层140接触。
具体的,所述绝缘层170为氮化硅和氧化硅形成的叠层结构。在实际应用中,所述绝缘层170可以为氧化铝、氮化硅、二氧化硅、氮化铝中至少一种材料形成的单层或者多层结构。
本申请实施例提供的光电传感器100可以应用于多种场景,示例性的,所光电传感器可以应用于指纹识别传感器、掌纹识别传感器或者面部识别传感器等传感器中。
本申请实施例还提供一种光电传感器的制作方法,下面结合图2至图3进行详细说明,其中图2为本申请实施例提供的光电传感器的制作方法的流程图,图3为本申请实施例提供的光电传感器的制作方法的流程示意图,所述制作方法包括以下步骤:
步骤S10:在透明衬底基板110上形成第一电极150。
具体的,所述步骤S  10中,所述透明衬底基板110的材料为玻璃。在实际应用中,所述透明衬底基板110的材料不仅限于玻璃,也可以为氧化铝、硅、聚萘二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯或者聚酰亚胺等透明材料。
具体的,所述步骤S10中,需要先在所述透明衬底基板110上沉积一层透明电极材料,再对该层透明电极材料进行图案化制程,形成图案化的第一电极150。所述透明电极材料为氧化铟锡,如此可以提高第一电极150的透光率,减少第一电极150对光线的额外吸收,进一步提升所述光电传感器100的灵敏度。在实际应用中,所述第一电极150的材料不仅限于上述的氧化铟锡,也可以为氧化铟锌、氧化锌和氧化镓锌中的任意一种材料,或者也可以为氧化铟锌、氧化铟锡、氧化锌和氧化镓锌中的至少一种金属氧化物材料形成多层结构。
步骤S20:在所述透明衬底基板110以及所述第一电极150上沉积一层氧化钼121。
具体地,所述步骤S20中,沉积一层氧化钼121的方法包括溅射(sputtter)、化学气相沉积(chemical vapor deposition, CVD)或者蒸镀等。在沉积完成之后,需要对氧化钼121进行退火处理,退火的可以在氧气、氮气、氩气或者空气的气氛中完成,退火工艺所需的时间和温度可以根据设定,此处不做限制。
步骤S30:在所述氧化钼121上依次沉积吸光材料131和电子传输材料141。
具体的,所述步骤S30中,沉积所述吸光材料131和所述电子传输材料141的方法为化学气相沉积法。在实际应用中,沉积所述吸光材料131和所述电子传输材料141的方法不仅限于化学气相沉积法,也可以采用原子层沉积法或者等离子体增强化学气相沉积法等。
具体的,所述吸光材料131为本征非掺杂硅,本征非掺杂硅的形态为非晶硅。在实际应用中,本征非掺杂硅的形态也可以是微晶硅或者多晶硅。
具体的,所述电子传输材料141为N型重掺杂硅,N型重掺杂硅中硅的形态为非晶硅。在实际应用中,N型重掺杂硅中硅的形态也可以是微晶硅或者多晶硅。
步骤S40:对所述电子传输材料141、所述吸光材料131和所述氧化钼121进行图案化工艺,形成依次层叠设置于所述第一电极150上的空穴传输层120、吸光层130和电子传输层140。
需要说明的是,所述步骤S40中,需要依次对所述电子传输材料141、所述吸光材料131和所述氧化钼121进行图案化工艺,且仅需要一张掩膜板即可完成对上述三个膜层的图案化工艺。在对所述电子传输材料141完成图案化工艺后,图案化的电子传输层140可以作为掩膜板,继续对下层的吸光材料131进行图案化工艺。在吸光材料131完成图案化工艺后,图案化的电子传输层140和吸光层130可以作为掩膜板,继续对下层的氧化钼121进行图案化工艺,以形成图案化的空穴传输层120,从而可以避免对空穴传输层120进行清洗。
具体地,对所述电子传输材料141、所述吸光材料131和所述氧化钼121进行图案化工艺的方法为干法刻蚀。在实际应用中,也可以采用湿法刻蚀对所述电子传输材料141、所述吸光材料131和所述氧化钼121进行图案化工艺。如此,可以利用位于上方空穴传输层120的吸光层130和电子传输层140对空穴传输层120进行遮挡,避免空穴传输层120中的氧化钼在膜层清洗的过程中发生溶解,从而降低采用氧化钼作为空穴传输层120的材料的光电传感器100的制程难度。
在本申请实施例中,所述吸光层130为本征半导体,所述电子传输层140为电子型半导体,所述空穴传输层120与所述吸光层130和所述电子传输层140构成半导体异质结构。由于半导体异质结构中异质结本身的结电容较大,可以充当电路中的存储电容使用,因此光电传感器的电路中无需另外设置存储电容,从而可以有效提高光电传感器的识别率。
进一步的,所述制作方法还包括以下步骤:
步骤S50:在所述透明衬底基板110上形成绝缘层170,所述绝缘层170覆盖所述空穴传输层120、所述吸光层130和所述电子传输层140。
具体的,所述绝缘层170为氮化硅和氧化硅形成的叠层结构。在实际应用中,所述绝缘层170可以为氧化铝、氮化硅、二氧化硅、氮化铝中至少一种材料形成的单层或者多层结构。
步骤S60:对所述绝缘层170进行刻蚀,形成暴露出所述第一电极150的第一过孔171和暴露出所述电子传输层140的第二过孔172。
具体地,所述步骤S60中,所述第一过孔171暴露出部分所述第一电极150,用于后续将第一电极150与光电传感器的其他电路进行搭接。第二过孔172暴露出部分所述电子传输层140,用于后续形成的第二电极160与电子传输层140接触。
步骤S70:在所述电子传输层140和所述绝缘层170上形成第二电极160。
具体地,所述步骤S70中,所述第二电极160为金属导电电极,所述第二电极160为钼和铜由下至上依次层叠所形成的双层叠构。在实际应用中,所述第二电极160的结构不仅限于上述钼和铜由下至上依次层叠所形成的双层金属结构,还可以为钼、铜或铝等一种金属材料所形成单层或者多层金属叠构;或者也可以为钼/铝、钼/钛/铝、钼/钛/铜、镍/铜、镍/铝、铝/镍、镉/铜、镉/铝、钛/铜、钛/铝等两种或者三种金属材料由下至上依次层叠所形成的双层或者三层金属叠构。
进一步的,所述氧化钼121的禁带宽大于或等于2.8eV且小于或等于3.6eV,所述氧化钼的功函数大于或等于5.2eV且小于或等于6.8eV。
在本申请实施例中,所述氧化钼121的禁带宽为3.2eV,所述氧化钼的功函数为6eV,如此可以使所述氧化钼具有较大的禁带宽和功函数,以此有效提高所述空穴传输层120的空穴传输效率,使得所述光电传感器100具有更高的量子效率,从而提高所述光电传感器100的灵敏度。
在实际应用中,所述氧化钼121的禁带宽不仅限于上述的3.2eV,也可以为2.8eV、3eV、3.4eV或者3.6eV等,仅需要介于2.8eV至3.6eV之间即可。所述氧化钼的功函数也不仅限于上述的6eV,也可以为5.2eV、5.6eV、6.4eV或者6.8eV等,仅需要介于5.2eV至6.8eV之间即可。
本申请实施例还提供一种显示面板,下面结合图4和图5进行详细说明,其中图4为本申请实施例提供的显示面板的平面示意图,图5为本申请实施例提供的显示面板的结构示意图,所述显示面板包括上述实施例所提供的光电传感器100和像素单元200,所述光电传感器100设置于至少部分相邻所述像素单元200之间,采用这种方式并不会影响到所述像素单元200的像素排布以及显示效果。
所述光电传感器100包括透明衬底基板110、空穴传输层120、吸光层130和电子传输层140,所述空穴传输层120设置于所述透明衬底基板110上,所述吸光层130设置于所述空穴传输层120背离所述透明衬底基板110的一侧,所述电子传输层140设置于所述吸光层130背离所述空穴传输层120的一侧。
在本申请实施例中,所述显示面板为底发光结构的有机发光二极管显示面板,所述像素单元200形成于所述透明衬底基板110上,所述像素单元200的出光侧朝向所述透明衬底基板110,所述透明衬底基板110背离所述空穴传输层120的一侧为所述光电传感器100的入光侧。
在本申请实施例中,所述空穴传输层120的材料为氧化钼,相较于现有技术中空穴传输层采用的空穴型材料,氧化钼具有较大的禁带宽和功函数,可以有效提高所述空穴传输层120的空穴传输效率,使得所述光电传感器100具有更高的量子效率,同时氧化钼还可以减少空穴传输层120对光线的额外吸收,从而提高所述光电传感器100的灵敏度,并且还可以减少空穴型材料的需求,从而降低生产成本。
进一步的,所述显示面板包括第一电极层10、栅极绝缘层20、有源层30、源极40、漏极50、层间介质层60、绝缘层170、第二电极160。所述第一电极层10设置于所述透明衬底基板110上,所述第一电极层10包括同层并间隔设置的第一电极150和栅极151,所述空穴传输层120设置于所述第一电极150背离所述透明衬底基板110的一侧。所述栅极绝缘层20设置于所述第一电极层10上,所述栅极绝缘层20暴露出所述第一电极150。所述有源层30设置于所述栅极绝缘层20上,包括非掺杂区310和位于所述非掺杂区310两侧的掺杂区320。所述源极40和所述漏极50设置于所述有源层30上,并且分别与位于非掺杂区310两侧的两个所述掺杂区320连接。
所述层间介质层60覆盖所述源极40、所述漏极50和所述栅极绝缘层20,所述绝缘层170设置于所述层间介质层60、所述电子传输层140、所述源极40和所述漏极50上,并暴露出所述电子传输层140和所述漏极50,所述第二电极160设置于所述电子传输层140背离所述吸光层130的一侧,并且与所述漏极50连接。
进一步的,所述栅极151与所述有源层30、所述源极40和所述漏极50构成开关薄膜晶体管,所述开关薄膜晶体管与所述光电传感器100连接。
所述显示面板还包括盖板70,所述盖板70面向所述透明衬底基板110的一侧设有黑色矩阵80,所述开关薄膜晶体管与所述黑色矩阵80对位设置,所述光电传感器100设置于所述黑色矩阵80的覆盖范围之外。
所述透明衬底基板110上还包括图中未示意的扫描线和信号线,所述光敏元件与所述开关薄膜晶体管电连接,所述开关薄膜晶体管的栅极151与所述扫描线电连接,所述开关薄膜晶体管的源极40与所述信号线电连接,所述开关薄膜晶体管的漏极与所述光电传感器100的第二电极160电连接,所述信号线用于读取所述光电传感器100输出的光电流信号,从而实现光电传感器100的光电传感功能。
在本申请实施例提供的显示面板中,光电传感器100可以应用于多种场景,示例性的,所光电传感器可以应用于指纹识别传感器、掌纹识别传感器或者面部识别传感器等传感器中。
综上所述,本申请实施例提供一种光电传感器及其制作方法、显示面板,所述光电传感器包括透明衬底基板、空穴传输层、吸光层和电子传输层,所述空穴传输层设置于所述透明衬底基板上,所述吸光层设置于所述空穴传输层背离所述透明衬底基板的一侧,所述电子传输层设置于所述吸光层背离所述空穴传输层的一侧,所述透明衬底基板背离所述空穴传输层的一侧为所述光电传感器的入光侧,所述空穴传输层的材料为氧化钼,所述空穴传输层与所述吸光层和所述电子传输层构成半导体异质结构,如此通过将空穴传输层设置在靠近透明衬底基板的一侧,并利用位于上方的吸光层和电子传输层对空穴传输层进行遮挡,避免空穴传输层中的氧化钼在膜层清洗的过程中发生溶解,从而降低采用氧化钼作为空穴传输层材料的光电传感器的制程难度。
综上所述,虽然本申请以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为基准。

Claims (19)

  1. 一种光电传感器,包括:
    透明衬底基板;
    空穴传输层,所述空穴传输层设置于所述透明衬底基板上;
    吸光层,所述吸光层设置于所述空穴传输层背离所述透明衬底基板的一侧;
    电子传输层,所述电子传输层设置于所述吸光层背离所述空穴传输层的一侧;
    其中,所述透明衬底基板背离所述空穴传输层的一侧为所述光电传感器的入光侧,所述空穴传输层的材料为氧化钼。
  2. 如权利要求1所述的光电传感器,其中,所述氧化钼的禁带宽大于或等于2.8eV且小于或等于3.6eV,所述氧化钼的功函数大于或等于5.2eV且小于或等于6.8eV。
  3. 如权利要求1所述的光电传感器,其中,所述吸光层为本征半导体,所述电子传输层为电子型半导体,所述空穴传输层与所述吸光层和所述电子传输层构成半导体异质结构。
  4. 如权利要求3所述的光电传感器,其中,所述吸光层和所述电子传输层的材料均包括非晶硅、微晶硅和多晶硅中的任意一种。
  5. 如权利要求1所述的光电传感器,其中,所述光电传感器包括:
    第一电极,所述第一电极设置于所述透明衬底基板与所述空穴传输层之间;
    第二电极,所述第二电极设置于所述电子传输层背离所述吸光层的一侧。
  6. 如权利要求5所述的光电传感器,其中,所述第一电极为氧化铟锌、氧化铟锡、氧化锌和氧化镓锌中的至少一种金属氧化物材料形成的单层或多层结构。
  7. 如权利要求5所述的光电传感器,其中,所述第二电极为钼、铜、铝、钛、镍和镉中的至少一种金属材料形成的单层或多层结构。
  8. 如权利要求5所述的光电传感器,其中,所述光电传感器包括绝缘层,所述绝缘层设置于所述透明衬底基板上,并且覆盖所述第一电极和所述电子传输层,所述绝缘层上设有第一过孔和第二过孔,所述第一过孔暴露出所述第一电极,所述第二过孔暴露出所述电子传输层。
  9. 一种光电传感器的制作方法,包括以下步骤:
    在透明衬底基板上形成第一电极;
    在所述透明衬底基板以及所述第一电极上沉积一层氧化钼;
    在所述氧化钼上依次沉积吸光材料和电子传输材料;
    对所述电子传输材料、所述吸光材料和所述氧化钼进行图案化工艺,形成依次层叠设置于所述第一电极上的空穴传输层、吸光层和电子传输层。
  10. 如权利要求9所述的光电传感器的制作方法,其中,所述制作方法还包括以下步骤:
    在所述透明衬底基板上形成绝缘层,所述绝缘层覆盖所述空穴传输层、所述吸光层和所述电子传输层;
    对所述绝缘层进行刻蚀,形成暴露出所述第一电极的第一过孔和暴露出所述电子传输层的第二过孔;
    在所述电子传输层和所述绝缘层上形成第二电极。
  11. 如权利要求9所述的光电传感器的制作方法,其中,所述氧化钼的禁带宽大于或等于2.8eV且小于或等于3.6eV,所述氧化钼的功函数大于或等于5.2eV且小于或等于6.8eV。
  12. 如权利要求9所述的光电传感器的制作方法,其中,所述电子传输层为N型半导体,所述吸光层为本征半导体,所述空穴传输层与所述吸光层和所述电子传输层构成半导体异质结构。
  13. 如权利要求9所述的光电传感器的制作方法,其中,在所述氧化钼上依次沉积所述吸光材料和所述电子传输材料的方法为化学气相沉积法或者原子层沉积法。
  14. 一种显示面板,包括光电传感器和像素单元,所述光电传感器设置于至少部分相邻所述像素单元之间,所述光电传感器包括:
    透明衬底基板;
    空穴传输层,所述空穴传输层设置于所述透明衬底基板上;
    吸光层,所述吸光层设置于所述空穴传输层背离所述透明衬底基板的一侧;
    电子传输层,所述电子传输层设置于所述吸光层背离所述空穴传输层的一侧;
    其中,所述像素单元的出光侧朝向所述透明衬底基板,所述透明衬底基板背离所述空穴传输层的一侧为所述光电传感器的入光侧,所述空穴传输层的材料为氧化钼。
  15. 如权利要求14所述的显示面板,其中,所述显示面板包括:
    第一电极层,设置于所述透明衬底基板上,所述第一电极层包括同层并间隔设置的第一电极和栅极,所述空穴传输层设置于所述第一电极背离所述透明衬底基板的一侧;
    栅极绝缘层,设置于所述第一电极层上,所述栅极绝缘层暴露出所述第一电极;
    有源层,设置于所述栅极绝缘层上,包括非掺杂区和位于所述非掺杂区两侧的掺杂区;
    源极和漏极,设置于所述有源层上,并且分别与两所述掺杂区连接;
    绝缘层,设置于所述电子传输层、所述源极和所述漏极上,所述绝缘层暴露出所述电子传输层和所述漏极;
    第二电极,设置于所述电子传输层背离所述吸光层的一侧,并且与所述漏极连接。
  16. 如权利要求15所述的显示装置,其中,所述栅极、所述有源层、所述源极和所述漏极构成开关薄膜晶体管,所述光电传感器与所述开关薄膜晶体管连接。
  17. 如权利要求14所述的显示装置,其中,所述氧化钼的禁带宽大于或等于2.8eV且小于或等于3.6eV,所述氧化钼的功函数大于或等于5.2eV且小于或等于6.8eV。
  18. 如权利要求14所述的显示装置,其中,所述吸光层为本征半导体,所述电子传输层为电子型半导体,所述空穴传输层与所述吸光层和所述电子传输层构成半导体异质结构。
  19. 如权利要求14所述的显示装置,其中,所述吸光层和所述电子传输层的材料均包括非晶硅、微晶硅和多晶硅中的任意一种。
PCT/CN2021/096967 2021-04-13 2021-05-28 光电传感器及其制作方法、显示面板 WO2022217707A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/425,718 US20230180576A1 (en) 2021-04-13 2021-05-28 Photoelectric sensor, method of manufacturing the same, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110394193.3A CN113193062A (zh) 2021-04-13 2021-04-13 光电传感器及其制作方法、显示面板
CN202110394193.3 2021-04-13

Publications (1)

Publication Number Publication Date
WO2022217707A1 true WO2022217707A1 (zh) 2022-10-20

Family

ID=76975797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096967 WO2022217707A1 (zh) 2021-04-13 2021-05-28 光电传感器及其制作方法、显示面板

Country Status (3)

Country Link
US (1) US20230180576A1 (zh)
CN (1) CN113193062A (zh)
WO (1) WO2022217707A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN110047902A (zh) * 2019-04-28 2019-07-23 华南理工大学 一种有机电致发光器件、显示面板的制作方法和显示装置
CN111819706A (zh) * 2018-03-23 2020-10-23 住友化学株式会社 光电转换元件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307940B2 (en) * 2003-06-30 2007-12-11 Semiconductor Energy Laboratory Co., Ltd. Optical pick-up device
TWI585955B (zh) * 2008-11-28 2017-06-01 半導體能源研究所股份有限公司 光感測器及顯示裝置
JP6108858B2 (ja) * 2012-02-17 2017-04-05 株式会社半導体エネルギー研究所 p型半導体材料および半導体装置
WO2013151142A1 (ja) * 2012-04-05 2013-10-10 コニカミノルタ株式会社 有機光電変換素子およびこれを用いた太陽電池
CN105206749A (zh) * 2015-08-31 2015-12-30 中国电子科技集团公司第四十八研究所 钙钛矿太阳能电池及其制备工艺
CN109841691A (zh) * 2018-11-07 2019-06-04 中国科学院大学 一种氧化钼薄膜制备方法及以氧化钼薄膜作为空穴传输层的硅异质结太阳电池
CN111106189B (zh) * 2020-01-06 2021-12-28 武汉华星光电技术有限公司 一种光电二极管及显示屏
CN111830743B (zh) * 2020-07-10 2023-03-31 Tcl华星光电技术有限公司 一种阵列基板及其制备方法
CN112599630B (zh) * 2020-12-07 2022-06-10 Tcl华星光电技术有限公司 光传感器和显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN111819706A (zh) * 2018-03-23 2020-10-23 住友化学株式会社 光电转换元件
CN110047902A (zh) * 2019-04-28 2019-07-23 华南理工大学 一种有机电致发光器件、显示面板的制作方法和显示装置

Also Published As

Publication number Publication date
US20230180576A1 (en) 2023-06-08
CN113193062A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
US11101304B2 (en) Diode and fabrication method thereof, array substrate and display panel
CN110164847B (zh) 阵列基板、光检测方法及组件、显示装置
US6740884B2 (en) Imaging array and methods for fabricating same
US11502133B2 (en) Display panel, manufacturing method thereof, and display device
CN109858443B (zh) 显示面板、显示装置和显示面板的制作方法
CN108242510B (zh) 电子器件及其制造方法
WO2021180214A1 (zh) 光线探测基板及其制备方法、光线探测设备
US11183610B2 (en) Photoelectric detector, preparation method thereof, display panel and display device
CN112928134B (zh) 阵列基板和显示面板
WO2022120949A1 (zh) 光传感器和显示装置
US20030201396A1 (en) Imaging array and methods for fabricating same
WO2021139089A1 (zh) 一种光电二极管及其制作方法以及显示屏
WO2022083429A1 (zh) 一种薄膜晶体管及其制作方法、驱动基板和电子设备
US20240038793A1 (en) Array substrate and manufacturing method thereof
WO2022217707A1 (zh) 光电传感器及其制作方法、显示面板
WO2021017315A1 (zh) 触控显示面板
WO2014015581A1 (zh) 传感器及其制造方法
WO2022141432A1 (zh) 光敏元件及其制备方法、显示装置
CN112750846B (zh) 一种oled显示面板及oled显示装置
US11263420B2 (en) Electronic device and manufacturing method thereof
CN113454795A (zh) 用于显示器下指纹和手势传感器的具有半导体活性层的光检测器
CN210443558U (zh) 一种光电传感器、显示面板及显示装置
TWI783805B (zh) 光電半導體之結構
WO2023050347A1 (zh) 显示基板及其制备方法、显示装置
US20220310674A1 (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936579

Country of ref document: EP

Kind code of ref document: A1