WO2014015581A1 - 传感器及其制造方法 - Google Patents

传感器及其制造方法 Download PDF

Info

Publication number
WO2014015581A1
WO2014015581A1 PCT/CN2012/084703 CN2012084703W WO2014015581A1 WO 2014015581 A1 WO2014015581 A1 WO 2014015581A1 CN 2012084703 W CN2012084703 W CN 2012084703W WO 2014015581 A1 WO2014015581 A1 WO 2014015581A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
layer
electrode
photodiode
passivation layer
Prior art date
Application number
PCT/CN2012/084703
Other languages
English (en)
French (fr)
Inventor
李田生
阎长江
徐少颖
谢振宇
Original Assignee
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US13/984,626 priority Critical patent/US9024320B2/en
Publication of WO2014015581A1 publication Critical patent/WO2014015581A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies

Definitions

  • Embodiments of the present invention relate to a sensor and a method of fabricating the same. Background technique
  • CT computed tomography
  • the sensor 12 includes a plurality of scan lines 15, a plurality of data lines 16, and a plurality of sensing units, each of which includes a photodiode 13 and a field effect transistor ( Field Effect Transistor, FET) 14.
  • the gate of the field effect transistor 14 is connected to a corresponding gate line 15 of the sensor 12.
  • the source of the field effect transistor 14 is connected to a corresponding data line 16 of the sensor 12, and the photodiode 13 is connected to the field.
  • the drain of the effect transistor 14 is connected.
  • One end of these data lines 16 is connected to the data readout circuit 18 via a connection pin 17.
  • the above sensor operates on the principle that the sensor 12 applies a drive scan signal through the scan line 15 to control the switching state of the field effect transistor 14 of each sense unit.
  • the photocurrent signal generated by the photodiode 13 is sequentially output through the data line 16 connected to the field effect transistor 14 and the data readout circuit 18, by controlling the timing of the signal on the scan line 15 and the data line 16.
  • the collecting function of the photocurrent signal is realized, that is, the control effect of the photocurrent signal generation generated by the photodiode 13 is realized by controlling the switching state of the FET 14.
  • sensors typically use a Thin Film Transistor (TFT) flat structure that is multi-layered in cross section.
  • TFT Thin Film Transistor
  • one sensing unit includes a substrate, a gate layer, a gate insulating layer, an active layer, a source and drain layer, a passivation layer, a PI junction of a PIN photosensor, and a transparent electrode window layer, and a bias line layer And the light barrier layer and so on.
  • TFT Thin Film Transistor
  • the embodiments of the present invention provide a sensor and a manufacturing method thereof, which are used to solve the technical problem that the existing sensor has a small light receiving area, a low light absorption and utilization rate, a high energy consumption, and an image quality cannot be further improved.
  • One aspect of the present invention provides a sensor comprising: a substrate substrate; and a set of gate lines and a set of data lines arranged in a cross over the substrate substrate, the set of gate lines and a set A plurality of sensing units arranged in an array, defined by the data lines, each of the sensing units including a thin film transistor device and a photodiode sensor device.
  • the thin film transistor device includes: a gate electrode over the substrate substrate and connected to a corresponding gate line; a gate insulating layer over the gate; an active layer over the gate insulating layer a layer; an ohmic layer over the active layer; a source and a drain over the ohmic layer and oppositely forming a channel, the source being connected to a corresponding data line; and being located at the source a barrier layer over the drain, the drain, and the channel;
  • the photodiode sensing device includes: a receiving electrode coupled to a drain of the thin film transistor device, over the receiving electrode and covering the thin film transistor device a photodiode, a transparent electrode over the photodiode, and a bias line connected to the transparent electrode.
  • Another aspect of the present invention provides a method of manufacturing a sensor, comprising: forming a pattern of a gate line, a pattern of a gate electrode connected to the gate line by a first patterning process on a base substrate; forming a cover substrate a gate insulating layer of the substrate, and a pattern of an active layer over the gate insulating layer, a pattern of an ohmic layer over the active layer, and a ohmic layer formed by a second patterning process And a pattern of a source and a drain forming a channel, and a pattern of a receiving electrode connected to the drain; and forming a source, a drain, and a channel by a third patterning process a pattern of the upper barrier layer; a pattern of a photodiode over the receiving electrode and covering the barrier layer by a fourth patterning process, and a pattern of transparent electrodes over the photodiode; a sub-patterning process to form a pattern of the first passivation layer, the first passivation layer
  • the coverage area of the photodiode and the transparent electrode is increased as compared with the conventional sensor, and thus the sensor
  • the overall light receiving area is increased, the absorption efficiency of light is improved, the image quality is improved, and the energy consumption is also reduced.
  • FIG. 1 is a schematic perspective view of a conventional sensor
  • FIG. 2a is a schematic top plan view of a sensing unit according to an embodiment of the sensor of the present invention (a seven-time patterning process);
  • FIG. 2b is a schematic cross-sectional structural view of a sensing unit according to an embodiment of the sensor of the present invention (a seven-time patterning process);
  • Figure 3a is a plan view of the manufacturing method embodiment of the present invention after the first patterning process
  • Figure 3b is a cross-sectional view of the manufacturing method embodiment of the present invention after the first patterning process
  • Figure 4a is an embodiment of the manufacturing method of the present invention
  • FIG. 4b is a cross-sectional view of the manufacturing method embodiment of the present invention after the second patterning process
  • FIG. 5a is a plan view of the manufacturing method embodiment of the present invention after the third patterning process
  • Figure 6a is a plan view of the embodiment of the manufacturing method of the present invention after the fourth patterning process
  • Figure 6b is a plan view of the fourth embodiment of the manufacturing method of the present invention
  • Figure 7a is a plan view of the embodiment of the manufacturing method of the present invention after the fifth patterning process
  • Figure 7b is a cross-sectional view of the embodiment of the manufacturing method of the present invention after the fifth patterning process.
  • an embodiment of the present invention provides a sensor and a manufacturing method thereof.
  • the sensor may comprise a plurality of types, such as an X-ray sensor or the like.
  • a sensor according to an embodiment of the present invention includes: a substrate substrate 32, a set of gate lines 30 and a set of data lines 31 arranged in a cross direction, a set of gate lines 30 and a set A plurality of sensing units P arranged in an array shape defined by the data lines 31; each of the sensing units includes a thin film transistor device 50 and a photodiode sensor device 60.
  • other sensing units may be formed identically.
  • the thin film transistor device 50 includes: on the substrate substrate 32 and a gate 38 connected to the adjacent gate line 30; a gate insulating layer 37 over the gate 38; an active layer 36 over the gate insulating layer 37; and an ohmic over the active layer 36 a layer 35; a source 33 and a drain 34 overlying the ohmic layer 35 and oppositely forming a channel, the source 33 being connected to an adjacent respective data line 31; and being located at the source 33, the drain 34, and a barrier layer 53 over the channel.
  • the channel includes a portion of the active layer 36 between the source 33 and the drain 34.
  • the photodiode sensor device 60 includes a receiving electrode 39 connected to the drain 34 of the thin film transistor device 50, a photodiode 40 over the receiving electrode 39 and covering the thin film transistor device 50, and a photodiode 40.
  • the bias line 42 is arranged parallel to the data line 31.
  • the base substrate 32 may be a substrate of a glass substrate, a plastic substrate or other materials.
  • the gate line 30, the gate line 38, the data line 31, the source 33, the drain 34, the receiving electrode 39, and the bias line 42 may be made of aluminum-niobium alloy (AlNd), aluminum (A1), or copper (a).
  • AlNd aluminum-niobium alloy
  • a single layer film of Cu), molybdenum (Mo), molybdenum-tungsten alloy (MoW) or chromium (Cr) may be a composite film composed of any combination of these metal materials.
  • the thickness of these single or composite films is, for example, between 150 nm and 450 nm.
  • the material of the ohmic layer 35 may be a doped semiconductor (n+a-Si) for forming an ohmic contact.
  • the material of the active layer 36 may be amorphous silicon (a-Si) and has a thickness of, for example, between 30 nm and 250 nm.
  • the barrier layer 53 may be made of silicon nitride or a resin or the like having a thickness of, for example, 150 nm to 400 nm, and may be made of the same material as the first passivation layer 43 and the second passivation layer 57 hereinafter. When the thin film transistor device is formed, when etching is performed to form a photodiode and a transparent electrode, the barrier layer can effectively protect the channel from being etched.
  • the gate insulating layer 37 may be made of silicon nitride and has a thickness of, for example, between 300 nm and 500 nm.
  • the material of the transparent electrode 41 may be a transparent conductive material such as indium tin oxide (ITO) or indium oxide (IZO).
  • the photodiode 40 may be a PIN type photodiode including: an N-type semiconductor (n+a-Si) over the receiving electrode 39 and covering the thin film transistor device, and an I-type semiconductor over the N-type semiconductor ( a-Si), and a P-type semiconductor (p+a-Si) on top of the I-type semiconductor.
  • PIN type photodiodes have the advantages of small junction capacitance, short transit time, and high sensitivity.
  • the photodiode 40 may be a MIS (Metal-Insulator-Semiconductor) type photodiode or the like, and the present invention is not limited thereto. Referring to FIG. 2a and FIG.
  • the sensor may further include a first passivation layer 43 over the transparent electrode 41 and covering the substrate, the first passivation layer 43 having the first The via hole 43a and the second via hole 43b are located above the first passivation layer 43 and electrically connected to the source 33 of the thin film transistor device 50 through the first via hole 43a, the bias line 42 It is located above the first passivation layer 43 and is electrically connected to the transparent electrode 41 through the second via 43b.
  • the data line 31 and the bias line 42 can be formed in the same patterning process, and in order to avoid intersection, the bias line 42 and the data line 31 need to be arranged in parallel.
  • the embodiment may further include a second passivation layer 57 overlying the substrate, over the data line 31 and the bias line 42, the second passivation layer 57 having a signal guiding region via.
  • Fig. 2b shows the cross-sectional structure of a sensing unit, so that the signal guiding region vias located at the periphery of the substrate are not shown in the drawing.
  • the source 33, the drain 34 and the receiving electrode 39 are made of the same material, and the source 33, the drain 34 and the receiving electrode 39 can be formed in the same patterning process; the data line 31 and the bias voltage
  • the material of the wire 42 can be the same, and the data line 31 and the bias line 42 can be formed in the same patterning process.
  • the first passivation layer 43 and the second passivation layer 57 hereinafter may be an inorganic insulating film such as silicon nitride or the like, or an organic insulating film such as a photosensitive resin material or a non-photosensitive resin material, for example, at a thickness of 1000 nm. Between 2000 nanometers.
  • the photodiode and the transparent electrode of the photodiode sensing device cover the thin film transistor device, the coverage area of the photodiode and the transparent electrode is increased as compared with, for example, the conventional sensor shown in FIG.
  • the overall light receiving area is increased, the light absorption efficiency is improved, the image quality is improved, and the energy consumption can be reduced.
  • the method of manufacturing the sensor of the embodiment of the present invention includes the following steps.
  • Step 101 A pattern of the gate line 30 and a pattern of the gate electrode 38 connected to the gate line 30 are formed on the base substrate 32 by one patterning process. Refer to Figure 3a and Figure 3b for the substrate structure after the first patterning process.
  • the patterning process generally includes processes such as substrate cleaning, film formation, photoresist coating, exposure, development, etching, and photoresist removal.
  • Substrate cleaning includes cleaning with deionized water, organic cleaning solution, and the like.
  • the film forming process is used to form a structural layer to be patterned.
  • a film is formed by physical vapor deposition (for example, magnetron sputtering), and a pattern is formed by wet etching.
  • a film is formed by chemical vapor deposition (CVD). Dry etching forms a pattern.
  • the exposure of the photoresist can be selected from a single tone mask or a two-tone mask (such as gray tone). Or a halftone mask) is performed to develop the exposed photoresist to obtain a corresponding photoresist pattern as an etching mask for the subsequent etching process.
  • the composition process of the following steps is the same as this, and will not be described again.
  • Step 102 forming a gate insulating layer 37 covering the base substrate 32, and forming a pattern of the active layer 36 over the gate insulating layer 37 by one patterning process, and the ohmic layer 35 over the active layer 36.
  • the source 33, the drain 34, and the receiving electrode 39 are made of the same material. Refer to Figure 4a and Figure 4b for the substrate structure after the second patterning process.
  • a gate insulating layer 37 is formed on the base substrate 32 on which the gate and the gate lines are formed, and then sequentially formed for the active layer film, the ohmic layer film, and the source/drain electrode layer film. .
  • a patterning process is performed on the stack of the active layer film, the ohmic layer film, and the source/drain electrode layer film, thereby obtaining the pattern of the active layer 36, the pattern of the ohmic layer 35, the pattern of the source 33 and the drain 34, and the receiving electrode, respectively. 39 graphics.
  • the pattern of the source 33 and the drain 34 and the pattern of the receiving electrode 39 are both obtained by the source/drain electrode layer film.
  • the ohmic layer film portion between the source 33 and the drain 34 is removed in the patterning process.
  • the patterning process is performed, for example, using a two-tone mask, forming a three-dimensional photoresist pattern, and ashing the photoresist pattern between the first and second etchings to obtain a modified photoresist pattern, here No longer.
  • the monotone mask can also be used, and the portion of the ohmic layer film between the source 33 and the drain 34 is retained in the patterning process.
  • Step 103 forming a pattern of the barrier layer 53 over the source 33, the drain 34, and the channel by a patterning process.
  • a patterning process Refer to Figure 5a and Figure 5b for the substrate structure after the third patterning process.
  • One of the purposes of providing the barrier layer 53 is to protect the channel of the thin film transistor device from being etched by the etch in step 104.
  • Step 104 forming a pattern of the photodiode 40 over the receiving electrode 39 and covering the barrier layer 53 by a patterning process, and a pattern of the transparent electrode 41 over the photodiode 40.
  • the above steps may include: sequentially depositing an N-type semiconductor layer, an I-type semiconductor layer, a P-type semiconductor layer, and a transparent electrode layer, and then forming a photovoltaic by a patterning process.
  • Graphic of diode 40 and diagram of transparent electrode 41 The substrate structure after the fourth patterning process is shown in Fig. 6a and Fig. 6b.
  • Step 105 Form a pattern of the first passivation layer 43 by one patterning process, the first passivation layer 43 has a first via hole 43a above the source electrode 33, and a second via hole 43b above the transparent electrode 41. .
  • Figure 7a and Figure 7b for the substrate structure after the fifth patterning process.
  • Step 106 forming a pattern of the data lines 31 over the first passivation layer 43 and electrically connected to the source 33 through the first via 43a by one patterning process, and being located on the first passivation layer 43 And a pattern of the bias line 42 connected to the point of the transparent electrode 41 through the second via 43b.
  • the data line 31 and the bias line 42 are made of the same material.
  • the preparation method of the embodiment may further comprise the following steps.
  • Step 107 Form a pattern of the second passivation layer 57 covering the substrate by one patterning process, the second passivation layer 57 having a signal guiding region via hole at the periphery of the substrate.
  • the substrate is formed into the structure shown in Figs. 2a and 2b after seven patterning processes.
  • the preparation of the sensor can be completed by using seven patterning processes, which reduces the use of the mask, reduces the manufacturing cost, and simplifies the comparison with the prior art.
  • the production process greatly increases the equipment productivity and the yield of the product, and, because the photodiode and the transparent electrode of the formed photodiode sensor device cover the thin film transistor device, the light absorption utilization ratio is higher than that of the conventional sensor. , image quality is better, and energy consumption is lower.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明的实施例公开了一种传感器及其制造方法,所述传感器包括多个呈阵列状排布的感测单元,每个感测单元包括薄膜晶体管器件和光电二极管传感器件,并且所述光电二极管传感器件包括:与所述薄膜晶体管器件的漏极连接的接收电极、位于所述接收电极之上并覆盖所述薄膜晶体管器件的光电二极管、位于所述光电二极管之上的透明电极,以及与所述透明电极连接的偏压线。

Description

传感器及其制造方法 技术领域
本发明的实施例涉及一种传感器及其制造方法。 背景技术
由于保健的需要, 各种无损伤医疗检测方法逐渐受到人们的青睐。 在诸 多无损伤检测方法中, 计算机断层扫描(CT )技术已经得到广泛的应用。 在 计算机断层扫描设备中必不可缺的一个部分就是传感器。
一种传感器的基本结构如图 1所示, 该传感器 12包括多条扫描线 15、 多条数据线 16以及多个感测单元, 每个感测单元包括一个光电二极管 13和 一个场效应晶体管 (Field Effect Transistor, FET) 14。 该场效应晶体管 14的栅 极与传感器 12中相应的扫描线 (Gate Line) 15连接, 场效应晶体管 14的源极 与传感器 12中相应的数据线 (Data Line) 16连接, 光电二极管 13与场效应晶 体管 14的漏极连接。这些数据线 16的一端通过连接引脚 17连接数据读出电 路 18。
上述传感器的工作原理为: 传感器 12通过扫描线 15施加驱动扫描信号 来控制每个感测单元的场效应晶体管 14的开关状态。 当场效应晶体管 14被 打开时, 光电二极管 13产生的光电流信号依次通过与场效应晶体管 14连接 的数据线 16、 数据读出电路 18而输出, 通过控制扫描线 15与数据线 16上 的信号时序来实现光电流信号的釆集功能,即通过控制场效应管 14的开关状 态来实现对光电二极管 13产生的光电流信号釆集的控制作用。
目前, 传感器通常釆用薄膜晶体管( Thin Film Transistor, TFT )平板结 构, 这种传感器在断面上分为多层。 例如, 一个感测单元包括基板、栅极层、 栅极绝缘层、 有源层、 源极与漏极层、 钝化层、 PIN光电传感器的 PI结和透 明电极窗口层, 以及偏压线层和挡光条层等。 当然, 不同传感器由于具体结 构的差异, 在断面上的具体图层也不尽相同。
在上述现有的传感器的结构中, 光电二极管的覆盖面积较为有限, 这使 得传感器的光接收面积较小, 光的吸收利用率较低, 能耗较高, 成像品质无 法进一步提升。 发明内容
本发明的实施例提供了一种传感器及其制造方法, 用以解决现有传感器 的光接收面积较小, 光的吸收利用率较低, 能耗较高, 成像品质无法进一步 提升的技术问题。
本发明的一个方面提供了一种传感器, 其包括: 衬底基板以及在所述衬 底基板之上呈交叉排列的一组栅线和一组数据线、 由所述一组栅线和一组数 据线所界定的多个呈阵列状排布的感测单元, 每个感测单元包括薄膜晶体管 器件和光电二极管传感器件。 所述薄膜晶体管器件包括: 位于所述衬底基板 之上并与相应栅线连接的栅极; 位于所述栅极之上的栅极绝缘层; 位于所述 栅极绝缘层之上的有源层; 位于所述有源层之上的欧姆层; 位于所述欧姆层 之上并相对而置形成沟道的源极和漏极, 所述源极与相应数据线连接; 以及 位于所述源极、 漏极和沟道之上的阻挡层; 所述光电二极管传感器件包括: 与所述薄膜晶体管器件的漏极连接的接收电极、 位于所述接收电极之上并覆 盖所述薄膜晶体管器件的光电二极管、位于所述光电二极管之上的透明电极, 以及与所述透明电极连接的偏压线。
本发明的另一个方面提供了一种传感器的制造方法, 包括: 在衬底基板 上通过第一次构图工艺形成栅线的图形、 与所述栅线连接的栅极的图形; 形 成覆盖衬底基板的栅极绝缘层, 并通过第二次构图工艺形成位于所述栅极绝 缘层之上的有源层的图形、 位于所述有源层之上的欧姆层的图形、 位于所述 欧姆层之上并相对而置形成沟道的源极和漏极的图形, 以及与所述漏极连接 的接收电极的图形; 通过第三次构图工艺形成位于所述源极、 漏极和沟道之 上的阻挡层的图形; 通过第四次构图工艺形成位于所述接收电极之上并覆盖 所述阻挡层的光电二极管的图形, 以及位于所述光电二极管之上的透明电极 的图形; 通过第五次构图工艺形成第一钝化层的图形, 所述第一钝化层在所 述源极的上方具有第一过孔, 在所述透明电极的上方具有第二过孔; 通过第 六次构图工艺形成位于所述第一钝化层之上、 并通过所述第一过孔与所述源 极连接的数据线的图形, 以及位于所述第一钝化层之上、 并通过所述第二过 孔与所述透明电极连接的偏压线的图形。 在本发明的实施例中的传感器, 由于光电二极管传感器件的光电二极管 和透明电极覆盖在薄膜晶体管器件之上, 所以与传统的传感器相比, 光电二 极管和透明电极的覆盖面积增大, 这样传感器的整体光接收面积增大, 对光 的吸收利用率提高, 成像品质得到提升, 并且能耗也有所降低。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有传感器的立体结构示意图;
图 2a为本发明传感器一实施例的一个感测单元的俯视结构示意图(经七 次构图工艺) ;
图 2b为本发明传感器一实施例的一个感测单元的截面结构示意图(经七 次构图工艺) ;
图 3a为本发明制造方法实施例在第一次构图工艺后的俯视图; 图 3b为本发明制造方法实施例在第一次构图工艺后的截面视图; 图 4a为本发明制造方法实施例在第二次构图工艺后的俯视图; 图 4b为本发明制造方法实施例在第二次构图工艺后的截面视图; 图 5a为本发明制造方法实施例在第三次构图工艺后的俯视图; 图 5b为本发明制造方法实施例在第三次构图工艺后的截面视图; 图 6a为本发明制造方法实施例在第四次构图工艺后的俯视图; 图 6b为本发明制造方法实施例在第四次构图工艺后的截面视图; 图 7a为本发明制造方法实施例在第五次构图工艺后的俯视图; 图 7b为本发明制造方法实施例在第五次构图工艺后的截面视图。
附图标记:
12-传感器 13-光电二极管 (现有技术) 14-场效应晶体管
15-扫描线 16-数据线(现有技术) 17-连接引脚
18-数据读出电路 30-栅线 31-数据线
32-衬底基板 33-源极 34-漏极
35-欧姆层 36-有源层 50-薄膜晶体管器件 38-栅极 39-接收电极 40-光电二极管
41-透明电极 57-第二钝化层 43-第一钝化层
42-偏压线 53-阻挡层 60-光电二极管传感器件 43a-第一过孔 43b-第二过孔 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一" 、 "第二" 以及类似的词语并不表示任何顺序、 数量或者重要性,而只是用来区分不同的组成部分。同样, "一个 "或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "连接" 或者 "相 连" 等类似的词语并非限定于物理的或者机械的连接, 而是可以包括电性的 连接, 不管是直接的还是间接的。 "上" 、 "下" 、 "左" 、 "右" 等仅用 于表示相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位置关系 也相应地改变。
针对现有传感器的光接收面积较小, 光的吸收利用率较低, 能耗较高, 成像品质无法进一步提升的技术问题, 本发明的实施例提供了一种传感器及 其制造方法。
在本发明以下实施例中, 所述传感器可以包含多种类型, 例如 X射线传 感器等。 如图 2a和图 2b所示, 本发明一个实施例的传感器包括: 衬底基板 32、彼此交叉排列的一组栅线 30和一组数据线 31、 由所述一组栅线 30和一 组数据线 31所界定的多个呈阵列状排布的感测单元 P;每个感测单元包括薄 膜晶体管器件 50和光电二极管传感器件 60。 在下面的描述和图示中针对单 个感测单元进行, 其他感测单元可以同样地形成。
在该实施例中, 所述薄膜晶体管器件 50包括: 位于衬底基板 32之上并 与相邻的相应栅线 30连接的栅极 38;位于栅极 38之上的栅极绝缘层 37;位 于栅极绝缘层 37之上的有源层 36;位于有源层 36之上的欧姆层 35;位于欧 姆层 35之上并相对而置形成沟道的源极 33和漏极 34, 所述源极 33与相邻 的相应数据线 31连接; 以及位于源极 33、 漏极 34和沟道之上的阻挡层 53。 该沟道包括有源层 36位于源极 33和漏极 34之间的部分。
所述光电二极管传感器件 60包括:与薄膜晶体管器件 50的漏极 34连接 的接收电极 39、位于接收电极 39之上并覆盖所述薄膜晶体管器件 50的光电 二极管 40、位于光电二极管 40之上的透明电极 41 , 以及与透明电极 41连接 的偏压线 42。 在该实施例中, 该偏压线 42平行于数据线 31布置。
本发明的实施例中,所述衬底基板 32可以为玻璃基板、塑料基板或其他 材料的基板。
例如, 所述栅线 30、 栅极 38、 数据线 31、 源极 33、 漏极 34、 接收电极 39和偏压线 42的材质可以为铝钕合金(AlNd ) 、 铝( A1 ) 、 铜( Cu ) 、 钼 ( Mo ) 、 钼钨合金 ( MoW )或铬(Cr ) 的单层膜, 也可以为这些金属材料 任意组合所构成的复合膜。 这些单层或复合膜的厚度例如在 150纳米至 450 纳米之间。
欧姆层 35的材质可以为掺杂质半导体(n+a-Si ) , 用于形成欧姆接触。 有源层 36的材质可以为非晶硅(a-Si ) , 厚度例如在 30纳米至 250纳米之 间。 阻挡层 53可以釆用氮化硅或树脂等,厚度例如在 150纳米至 400纳米之 间, 可以与下文中的第一钝化层 43和第二钝化层 57釆用相同的材质。 当薄 膜晶体管器件形成后, 在进行刻蚀以形成光电二极管和透明电极时, 阻挡层 可有效保护沟道不被刻蚀破坏。栅极绝缘层 37的材质可以为氮化硅,厚度例 如在 300纳米至 500纳米之间。透明电极 41的材质可以为氧化铟锡( ITO ) 、 氧化铟辞(IZO )等透明导电材料。
例如, 所述光电二极管 40可以为 PIN型光电二极管, 包括: 位于接收 电极 39之上并覆盖薄膜晶体管器件的 N型半导体 ( n+a-Si ) , 位于 N型半 导体之上的 I型半导体(a-Si ) , 以及位于 I型半导体之上的 P型半导体 ( p+a-Si ) 。 PIN型光电二极管具有结电容小、 渡越时间短、 灵敏度高等优 点。 在本发明的其它实施例中, 光电二极管 40还可以釆用 MIS (金属 -绝缘 体-半导体)型光电二极管等, 本发明不限于此。 请继续参照图 2a和图 2b所示, 该实施例中, 所述传感器还可以包括位 于透明电极 41之上并覆盖基板的第一钝化层 43 ,所述第一钝化层 43具有第 一过孔 43a和第二过孔 43b, 所述数据线 31位于第一钝化层 43之上, 并通 过第一过孔 43a与薄膜晶体管器件 50的源极 33电连接,所述偏压线 42位于 第一钝化层 43之上, 并通过第二过孔 43b与透明电极 41电连接。
该实施例中, 数据线 31和偏压线 42可在同一次构图工艺中形成, 这里 为避免交叉, 需要将偏压线 42和数据线 31平行设置。
此外, 该实施例在数据线 31和偏压线 42之上, 还可以进一步包括覆盖 基板的第二钝化层 57 , 所述第二钝化层 57具有信号引导区过孔。 图 2b为一 个感测单元的截面结构,因此位于基板周边的信号引导区过孔未在图中示出。
该实施例中,所述源极 33、漏极 34和接收电极 39的材质相同,源极 33、 漏极 34和接收电极 39可在同一次构图工艺中形成;所述数据线 31和偏压线 42的材质可以相同, 数据线 31和偏压线 42可在同一次构图工艺中形成。 第 一钝化层 43以及下文的第二钝化层 57可以釆用无机绝缘膜,例如氮化硅等, 或有机绝缘膜, 例如感光树脂材料或者非感光树脂材料等, 厚度例如在 1000 纳米至 2000纳米之间。
在本发明的实施例中, 由于光电二极管传感器件的光电二极管和透明电 极覆盖薄膜晶体管器件, 与例如图 1所示传统的传感器相比, 光电二极管和 透明电极的覆盖面积增大, 这样传感器的整体光接收面积增大, 对光的吸收 利用率提高, 成像品质得到提升, 并且能耗也可以得到降低。
本发明实施例的传感器的制造方法包括如下的步骤。
步骤 101、 在衬底基板 32上通过一次构图工艺形成栅线 30的图形、 与 栅线 30连接的栅极 38的图形。 第一次构图工艺后的基板结构请参照图 3a 和图 3b所示。
构图工艺通常依次包括基板清洗、 成膜、 光刻胶涂覆、 曝光、 显影、 刻 蚀、 光刻胶去除等工序。 基板清洗包括使用去离子水、 有机清洗液进行清洗 等。 成膜工艺用于形成将被构图的结构层。 例如, 对于金属层通常釆用物理 气相沉积方式(例如磁控溅射法)成膜, 并通过湿法刻蚀形成图形; 对于非 金属层通常釆用化学气相沉积(CVD )方式成膜, 通过干法刻蚀形成图形。 光刻胶的曝光根据需要可以选用单色调掩膜板或双色调掩膜板(例如灰色调 或半色调掩膜板)进行, 以便在对曝光后的光刻胶进行显影得到相应的光刻 胶图案, 作为后续刻蚀工艺的刻蚀掩膜。 以下步骤的构图工艺与此相同, 不 再赘述。
步骤 102、形成覆盖衬底基板 32的栅极绝缘层 37,并通过一次构图工艺 形成位于栅极绝缘层 37之上的有源层 36的图形、位于有源层 36之上的欧姆 层 35的图形、 位于欧姆层 35之上并相对而置形成沟道的源极 33和漏极 34 的图形, 以及与漏极 34连接的接收电极 39的图形。 所述源极 33、 漏极 34 和接收电极 39的材质相同。 第二次构图工艺后的基板结构请参照图 4a和图 4b所示。
在上述步骤 102的一个示例中,首先在形成有栅极和栅线的衬底基板 32 上形成栅极绝缘层 37, 然后依次形成用于有源层薄膜、 欧姆层薄膜、 源漏电 极层薄膜。 对于有源层薄膜、 欧姆层薄膜、 源漏电极层薄膜的叠层进行构图 工艺, 从而分别得到有源层 36的图形、 欧姆层 35的图形、 源极 33和漏极 34的图形和接收电极 39的图形。源极 33和漏极 34的图形和接收电极 39的 图形均通过源漏电极层薄膜得到。 在源极 33和漏极 34之间的欧姆层薄膜部 分在构图工艺中被去除。 该构图工艺例如使用双色调掩膜板进行, 形成三维 光刻胶图形, 并且在第一次和第二次刻蚀之间进行光刻胶图形的灰化以得到 改变的光刻胶图形, 这里不再赘述。 在上述步骤 102的另一个示例中, 也可 以釆用单色调掩模来进行, 则在源极 33和漏极 34之间的欧姆层薄膜部分在 构图工艺中被保留。
步骤 103、通过一次构图工艺形成位于源极 33、漏极 34和沟道之上的阻 挡层 53的图形。第三次构图工艺后的基板结构请参照图 5a和图 5b所示。设 置阻挡层 53的目的之一是保护薄膜晶体管器件的沟道在步骤 104中不被刻蚀 破坏。
步骤 104、通过一次构图工艺形成位于接收电极 39之上并覆盖所述阻挡 层 53的光电二极管 40的图形, 以及位于光电二极管 40之上的透明电极 41 的图形。
例如, 当光电二极管 40为 PIN型光电二极管时, 在该示例中上述步骤 可以包括: 依次沉积 N型半导体层、 I型半导体层、 P型半导体层和透明电 极层, 然后通过一次构图工艺形成光电二极管 40的图形和透明电极 41的图 第四次构图工艺后的基板结构请参照图 6a和图 6b所示。
步骤 105、 通过一次构图工艺形成第一钝化层 43的图形, 所述第一钝化 层 43在源极 33的上方具有第一过孔 43a,在透明电极 41的上方具有第二过 孔 43b。 第五次构图工艺后的基板结构请参照图 7a和图 7b所示。
步骤 106、 通过一次构图工艺形成位于第一钝化层 43之上、 并穿过第一 过孔 43a与源极 33电连接的数据线 31的图形,以及位于第一钝化层 43之上、 并穿过第二过孔 43b与透明电极 41点连接的偏压线 42的图形。 例如, 所述 数据线 31和偏压线 42的材质相同。
此外, 在步骤 106之后, 本实施例的制备方法还可以进一步包括如下步 骤。
步骤 107、 通过一次构图工艺形成覆盖基板的第二钝化层 57的图形, 所 述第二钝化层 57在基板的周边具有信号引导区过孔。
衬底基板经七次构图工艺后形成图 2a和图 2b所示的结构。
可见, 本发明传感器的实施例的制造方法中, 可共釆用七次构图工艺来 完成传感器的制备, 这对比于现有技术, 不但减少了掩模板的使用数量, 降 低了制造成本, 简化了生产工艺, 大大提升了设备产能及产品的良品率, 并 且, 由于所形成的光电二极管传感器件的光电二极管和透明电极覆盖薄膜晶 体管器件, 这与传统的传感器相比, 光的吸收利用率较高, 成像品质较佳, 并且能耗较低。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种传感器, 包括:
衬底基板以及在所述衬底基板之上呈交叉排列的一组栅线和一组数据 线、 由所述一组栅线和一组数据线所界定的多个呈阵列状排布的感测单元, 每个感测单元包括薄膜晶体管器件和光电二极管传感器件, 其中,
所述薄膜晶体管器件包括: 位于所述衬底基板之上并与相应栅线连接的 栅极;位于所述栅极之上的栅极绝缘层;位于所述栅极绝缘层之上的有源层; 位于所述有源层之上的欧姆层; 位于所述欧姆层之上并相对而置形成沟道的 源极和漏极, 所述源极与相应数据线连接; 以及位于所述源极、 漏极和沟道 之上的阻挡层;
所述光电二极管传感器件包括: 与所述薄膜晶体管器件的漏极连接的接 收电极、 位于所述接收电极之上并覆盖所述薄膜晶体管器件的光电二极管、 位于所述光电二极管之上的透明电极, 以及与所述透明电极连接的偏压线。
2、如权利要求 1所述的传感器,还包括: 位于所述透明电极之上并覆盖 基板的第一钝化层, 所述第一钝化层具有第一过孔和第二过孔, 所述数据线 位于所述第一钝化层之上, 并通过所述第一过孔与源极连接, 所述偏压线位 于所述第一钝化层之上, 并通过所述第二过孔与所述透明电极连接。
3、如权利要求 1或 2所述的传感器,还包括: 位于所述数据线和所述偏 压线之上并覆盖所述衬底基板的第二钝化层, 所述第二钝化层具有信号引导 区过孔。
4、 如权利要求 1~3 中任一项所述的传感器, 其中, 所述偏压线平行于 所述数据线设置。
5、 如权利要求 1-4中任一所述的传感器, 其中, 所述光电二极管为 PIN 型光电二极管, 包括: 位于所述接收电极之上并覆盖所述薄膜晶体管器件的
N型半导体, 位于所述 N型半导体之上的 I型半导体, 以及位于所述 I型半 导体之上的 P型半导体。
6、 如权利要求 1-5中任一所述的传感器, 其中, 所述源极、 漏极和接收 电极的材质相同, 所述数据线和偏压线的材质相同。
7、 一种传感器的制造方法, 包括: 在衬底基板上通过第一次构图工艺形成栅线的图形、 与所述栅线连接的 极极的图形;
形成覆盖衬底基板的栅极绝缘层, 并通过第二次构图工艺形成位于所述 栅极绝缘层之上的有源层的图形、 位于所述有源层之上的欧姆层的图形、 位 于所述欧姆层之上并相对而置形成沟道的源极和漏极的图形, 以及与所述漏 极连接的接收电极的图形;
通过第三次构图工艺形成位于所述源极、 漏极和沟道之上的阻挡层的图 形;
通过第四次构图工艺形成位于所述接收电极之上并覆盖所述阻挡层的光 电二极管的图形, 以及位于所述光电二极管之上的透明电极的图形;
通过第五次构图工艺形成第一钝化层的图形, 所述第一钝化层在所述源 极的上方具有第一过孔, 在所述透明电极的上方具有第二过孔;
通过第六次构图工艺形成位于所述第一钝化层之上、 并通过所述第一过 孔与所述源极连接的数据线的图形, 以及位于所述第一钝化层之上、 并通过 所述第二过孔与所述透明电极连接的偏压线的图形。
8、如权利要求 7所述的制造方法,在形成所述数据线的图形和所述偏压 线的图形之后, 进一步包括:
通过第七次构图工艺形成覆盖基板的第二钝化层的图形, 所述第二钝化 层具有信号引导区过孔。
9、 如权利要求 7或 8所述的制造方法, 其中, 所述源极、 漏极和接收电 极的材质相同, 所述数据线和偏压线的材质相同。
PCT/CN2012/084703 2012-07-26 2012-11-15 传感器及其制造方法 WO2014015581A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/984,626 US9024320B2 (en) 2012-07-26 2012-11-15 Sensor and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210262563.9 2012-07-26
CN201210262563.9A CN102790061B (zh) 2012-07-26 2012-07-26 一种传感器及其制造方法

Publications (1)

Publication Number Publication Date
WO2014015581A1 true WO2014015581A1 (zh) 2014-01-30

Family

ID=47155422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084703 WO2014015581A1 (zh) 2012-07-26 2012-11-15 传感器及其制造方法

Country Status (3)

Country Link
US (1) US9024320B2 (zh)
CN (1) CN102790061B (zh)
WO (1) WO2014015581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785745A (zh) * 2020-06-11 2020-10-16 上海交通大学 光传感器、光传感装置及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790068B (zh) * 2012-07-26 2014-10-22 北京京东方光电科技有限公司 一种传感器的制造方法
CN104469740A (zh) * 2014-10-13 2015-03-25 贵阳朗玛信息技术股份有限公司 基于网络的操作执行方法及装置
CN107248518B (zh) * 2017-05-26 2020-04-17 京东方科技集团股份有限公司 光电传感器及其制作方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1726600A (zh) * 2002-12-11 2006-01-25 三星电子株式会社 用于x射线检测器的薄膜晶体管阵列面板
CN1748314A (zh) * 2003-02-14 2006-03-15 佳能株式会社 固态图像拾取设备和辐射图像拾取设备
CN101427387A (zh) * 2004-07-01 2009-05-06 瓦润医药系统公司 使用连续膜的集成mis光敏器件
US20100051819A1 (en) * 2008-08-29 2010-03-04 Kwan-Wook Jung X-Ray Detection Panel and X-Ray Detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286691B2 (ja) * 2007-05-14 2013-09-11 三菱電機株式会社 フォトセンサー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1726600A (zh) * 2002-12-11 2006-01-25 三星电子株式会社 用于x射线检测器的薄膜晶体管阵列面板
CN1748314A (zh) * 2003-02-14 2006-03-15 佳能株式会社 固态图像拾取设备和辐射图像拾取设备
CN101427387A (zh) * 2004-07-01 2009-05-06 瓦润医药系统公司 使用连续膜的集成mis光敏器件
US20100051819A1 (en) * 2008-08-29 2010-03-04 Kwan-Wook Jung X-Ray Detection Panel and X-Ray Detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785745A (zh) * 2020-06-11 2020-10-16 上海交通大学 光传感器、光传感装置及其制备方法
CN111785745B (zh) * 2020-06-11 2023-09-08 上海交通大学 光传感器、光传感装置及其制备方法

Also Published As

Publication number Publication date
US9024320B2 (en) 2015-05-05
US20140077212A1 (en) 2014-03-20
CN102790061B (zh) 2016-05-11
CN102790061A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
US9236518B2 (en) Sensor and method for fabricating the same
JP6796150B2 (ja) 撮像パネル及びその製造方法
EP2879178B1 (en) Sensor and manufacturing method therefor
WO2015070665A1 (zh) X射线传感器的阵列基板及其制造方法
US9318629B2 (en) Method for fabricating sensor using multiple patterning processes
US8962371B2 (en) Method for fabricating sensor
WO2014015581A1 (zh) 传感器及其制造方法
US9312290B2 (en) Sensor and method for fabricating the same
WO2014015604A1 (zh) 传感器及其制造方法
WO2014015603A1 (zh) 传感器及其制造方法
WO2014015601A1 (zh) 传感器及其制造方法
US9171879B2 (en) Method for fabricating sensor
WO2013189139A1 (zh) 非晶硅平板x射线传感器的制作方法
WO2014015588A1 (zh) 传感器及其制造方法
WO2014015582A1 (zh) 传感器的制造方法
JP2019145594A (ja) アクティブマトリクス基板及びそれを備えた撮像パネルと製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13984626

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881812

Country of ref document: EP

Kind code of ref document: A1