WO2021180214A1 - 光线探测基板及其制备方法、光线探测设备 - Google Patents

光线探测基板及其制备方法、光线探测设备 Download PDF

Info

Publication number
WO2021180214A1
WO2021180214A1 PCT/CN2021/080521 CN2021080521W WO2021180214A1 WO 2021180214 A1 WO2021180214 A1 WO 2021180214A1 CN 2021080521 W CN2021080521 W CN 2021080521W WO 2021180214 A1 WO2021180214 A1 WO 2021180214A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
opening
light detecting
light detection
Prior art date
Application number
PCT/CN2021/080521
Other languages
English (en)
French (fr)
Inventor
孟凡理
陈江博
李凡
梁魁
李达
张硕
李泽源
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/630,651 priority Critical patent/US20220262834A1/en
Publication of WO2021180214A1 publication Critical patent/WO2021180214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14698Post-treatment for the devices, e.g. annealing, impurity-gettering, shor-circuit elimination, recrystallisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type

Definitions

  • the present disclosure belongs to the technical field of photoelectric sensors, and in particular relates to a light detection substrate, a preparation method thereof, and light detection equipment.
  • the metal-semiconductor-metal (Metal-Semiconductor-Metal, MSM) light detection structure has the advantages of fast response speed, small capacitance, simple process, easy integration, etc., so it is widely used in the field of semiconductor detection.
  • the metal-semiconductor-metal light detection structure in particular, can be integrated with various types of TFT (Thin Film Transistor) backplanes to form an X-ray (X-ray) flat panel detector.
  • TFT Thin Film Transistor
  • the semiconductor in the MSM photodetector usually uses hydrogenated amorphous silicon a-Si:H.
  • the active layer of the TFT used to output electrical signals in the TFT backplane usually uses amorphous silicon, but its mobility is low, only 0.5 to 1 cm/V s.
  • Semiconductor metal oxides such as IGZO (indium gallium zinc oxide, indium gallium zinc oxide), can provide greater channel carrier mobility, for example, a channel carrier mobility of up to 10 cm/V s, so IGZO TFT can obtain larger on-state current and switching ratio, so it can support photodetection with higher frame rate response speed, and it is a more advanced active layer material.
  • LTPS Low Temperature Poly-Silicon, low temperature polysilicon
  • TFTs TFTs
  • LTPS Low Temperature Poly-Silicon, low temperature polysilicon
  • a light detecting substrate including a base and a plurality of light detecting units arranged on the base, each of the plurality of light detecting units including a first electrode and a second electrode And a photoelectric conversion layer, the first electrode and the second electrode are located on the substrate, the photoelectric conversion layer is located on the side of the first electrode and the second electrode away from the substrate, the The orthographic projection of the photoelectric conversion layer on the substrate covers the orthographic projection of the first electrode and the second electrode on the substrate, and the orthographic projection of the first electrode and the second electrode on the substrate There is a space between the projections, wherein the photoelectric conversion layer is provided with at least one opening, and the orthographic projection of the at least one opening on the substrate is located in the space and is connected to the first electrode and the The orthographic projection of the second electrode on the substrate does not overlap.
  • the distance between the orthographic projection of the at least one opening on the substrate and the orthographic projection of the adjacent first electrode on the substrate is greater than or equal to 2 ⁇ m, and the at least one opening is in the The distance between the orthographic projection on the substrate and the orthographic projection of the adjacent second electrode on the substrate is greater than or equal to 2 ⁇ m.
  • the thickness of the first electrode and the second electrode in a direction perpendicular to the substrate is less than or equal to 2000 angstroms.
  • the thickness of the first electrode and the second electrode are both 500 angstroms.
  • the slope angle ranges of the first electrode and the second electrode are both in a range greater than 0° and less than 90°.
  • the plurality of light detection units are arranged in an array
  • the second electrodes in the plurality of light detection units are integrally formed
  • the integrally formed second electrode includes at least one first electrode along a first direction Line and at least one second electrode line along the second direction, the at least one first electrode line intersects the at least one second electrode line to form a plurality of light detection unit regions arranged in an array
  • Each of the light detecting unit regions is provided with a first electrode
  • the first electrode includes a first connection structure extending in the second direction and protruding from the first connection structure in the first direction
  • the integrally formed second electrode is provided with at least one protruding from the second electrode line along the first direction in each of the plurality of light detecting unit regions
  • the second finger structure; the protrusion direction of the at least one first finger structure is opposite to the protrusion direction of the at least one second finger structure, and the at least one second finger structure is on the base
  • the projection is located between the orthographic projections of the at
  • the first electrode has an "E" shape.
  • the at least one opening includes a first opening, and the first opening is located on a side of the "E"-shaped first electrode away from the first finger structure and adjacent to the second electrode line. between.
  • the at least one opening further includes a second opening, and the second opening is located between the "E"-shaped first electrode and an adjacent first electrode line.
  • the first opening is bar-shaped and extends along the second direction
  • the second opening is bar-shaped and extends along the first direction
  • the first opening is along the first direction.
  • the projection length of the two directions is greater than or equal to the projection length of the first electrode along the second direction
  • the projection length of the second opening along the first direction is greater than or equal to the projection length of the first electrode along the first direction. The projection length of the direction.
  • the first opening and the second opening intersect to form an "L" shape.
  • the first electrode and the second electrode are made of the same material and arranged in the same layer, each of the plurality of light detection units further includes an insulating layer, and the insulating layer is located on the Between the photoelectric conversion layer and the first electrode and the second electrode;
  • the at least one opening also penetrates the insulating layer.
  • the insulating layer includes an inorganic insulating layer, and the thickness of the inorganic insulating layer ranges from 100 to 500 angstroms.
  • the insulating layer includes an organic insulating layer, and the thickness of the organic insulating layer ranges from 1000 to 2000 angstroms.
  • each of the plurality of light detection units further includes an electrical signal output circuit, and the electrical signal output circuit is disposed on one of the first electrode and the second electrode that is close to the substrate.
  • a planarization layer is further provided between the electrical signal output circuit and the first electrode and the second electrode, and the electrical signal output circuit is connected to the First electrode.
  • the electrical signal output circuit includes a switching transistor; the first electrode of the switching transistor is connected to the first electrode, the second electrode is connected to the output terminal, and the gate is connected to the driving signal input terminal.
  • the electrical signal output circuit includes a reset transistor, a capacitor, an amplifying transistor, and a switching transistor, and the second pole of the reset transistor, the first pole of the capacitor, and the gate of the amplifying transistor are respectively connected
  • the first electrode; the first electrode of the amplifying transistor is connected to the drive current input terminal, the second electrode is connected to the first electrode of the switching transistor; the first electrode of the reset transistor is connected to the reset signal terminal, and the gate is connected to the drive Signal input terminal; and the second pole of the switch transistor is connected to the output terminal, and the gate is connected to the drive signal input terminal.
  • the photoelectric conversion layer is made of hydrogenated amorphous silicon material, and the active layers of the transistors in the electrical signal output circuit are all made of semiconductor metal oxide materials.
  • a light detecting device which includes the light detecting substrate described above and a driving circuit for driving the light detecting substrate.
  • a method for preparing the light detecting substrate as described above including: forming a plurality of light detecting units on a base, and forming the plurality of light detecting units includes forming on the base The first electrode and the second electrode, the photoelectric conversion layer, and at least one opening in the photoelectric conversion layer, so that the light detection substrate is formed such that: each of the plurality of light detection units includes a first electrode, A second electrode and a photoelectric conversion layer, the first electrode and the second electrode are located on the substrate, and the photoelectric conversion layer is located on a side of the first electrode and the second electrode away from the substrate ,
  • the orthographic projection of the photoelectric conversion layer on the substrate covers the orthographic projection of the first electrode and the second electrode on the substrate, and the first electrode and the second electrode are on the substrate
  • There is a spacer area between the orthographic projections on the photoelectric conversion layer, and the orthographic projection of at least one opening on the photoelectric conversion layer on the substrate is located in the spacer area and is connected
  • FIG. 1 is a schematic diagram of the structure of openings on the a-Si:H layer in the MSM light detection substrate in the related art
  • Fig. 2 is a cross-sectional view of the a-Si:H layer opening area and the non-opening area in the MSM light detecting substrate in the related art
  • FIG. 3 is a schematic diagram of current transmission between the HV electrode and the sense electrode when the a-Si:H layer in the MSM light detection substrate in the related art covers the entire surface;
  • FIG. 4 is a schematic top view of a light detecting substrate in an embodiment of the disclosure.
  • FIG. 5 is a partial structural cross-sectional view of the light detecting substrate in the embodiment of the disclosure along the section line AA in FIG. 4;
  • Fig. 6 is a circuit diagram of an electrical signal output circuit in an embodiment of the disclosure.
  • Fig. 7 is a circuit diagram of an electrical signal output circuit in an embodiment of the disclosure.
  • FIG. 8 is a partial structural cross-sectional view of the light detecting substrate in the embodiment of the disclosure along the section line AA in FIG. 4;
  • FIG. 9 is a flowchart of a method for preparing a light detecting substrate according to an embodiment of the disclosure.
  • the metal-semiconductor-metal (Metal-Semiconductor-Metal, MSM) light detection structure has the advantages of fast response speed, small capacitance, simple process and easy integration. It is widely used in the field of semiconductor detection, especially with various TFT backplanes. Integrated as X-ray (X-ray) flat panel detector.
  • the semiconductor in the MSM photodetector usually uses hydrogenated amorphous silicon a-Si:H.
  • the active layer of the TFT used to output electrical signals in the TFT backplane usually uses a semiconductor metal oxide, such as IGZO.
  • the problem with the IGZO active layer is stability, which is easily degraded by the influence of H ions.
  • the TFT characteristics are susceptible to the a-Si:H deposition process (in the chamber of the plasma enhanced chemical vapor deposition process)
  • the threshold voltage Vth shifts due to the influence of the diffusion of H ions in the a-Si:H layer covering the TFT backplane and rich in H ions.
  • the TFT characteristics are susceptible to the influence of H ions in the a-Si:H layer, making the IGZO channel implanted by H ions .
  • H ions act as donor ions to make the channel conductive, thereby causing a negative shift in the TFT threshold voltage Vth. Therefore, it is necessary to perform annealing treatment on the glass substrate after the deposition of the a-Si:H layer so that the H ions in the film can be released, and the Vth drift can be alleviated, so that the TFT characteristics can reach normal.
  • the a-Si:H layer is usually designed on the entire surface. Due to its large coverage area, even if it is annealed for a long time, the release of H ions inside the edge film of the MSM light detection substrate is still not complete. The threshold voltage of the TFT corresponding to the edge of the MSM light detection substrate can be recovered, but the TFT characteristics at the center of the MSM light detection substrate are still abnormal.
  • the entire surface of the MSM light detection substrate is covered with a-Si:H layer, the water vapor and other gases adsorbed in the film will be released during annealing. At this time, the entire surface is covered with a-Si:H The layer will block the release of gas so that the internal vapor pressure of the film is too high, causing the phenomenon of peeling of the film.
  • the related technical solution is to pattern and etch the a-Si:H layer after depositing it to form periodic openings, and then annealing.
  • the advantage of patterned openings is that periodic openings can be used as gas release channels, which can promote the release of water vapor and the release of H ions, which not only solves the problem of a-Si:H layer peeling, but also makes MSM light
  • the TFT characteristics of any part of the detection substrate can be restored by annealing.
  • a-Si:H layer opening and the underlying MSM metal film layer overlap in the direction perpendicular to the MSM light detection substrate, resulting in the pattern of the a-Si:H layer.
  • Chemical etching will also etch the MSM metal film layer or even cause over-etching, that is, the patterned etching of the a-Si:H layer will cause the MSM metal film layer to be etched and thinned or even disappear (as shown in Figure 2).
  • the subsequent annealing will oxidize the exposed MSM metal electrodes in the openings, which will damage the photoelectric properties of MSM, which is not conducive to the conduction of MSM photocurrent.
  • the MSM metal electrodes are etched and thinned and the exposed parts of the MSM metal electrode holes are oxidized, resulting in MSM
  • the photoelectric characteristics are damaged because the electrode is used as a wire for current transmission, and the photocurrent is very sensitive to the resistance of the electrode.
  • the resistance is inversely proportional to the thickness. Thinning the thickness and surface oxidation will greatly increase the resistance of the metal electrode, which is not conducive to the photocurrent.
  • the conduction of MSM leads to damage to the photoelectric characteristics of MSM.
  • the design of covering the entire surface of the MSM metal electrode and the upper a-Si:H layer easily leads to crosstalk of photocurrent signals generated by adjacent pixels 7 on the MSM light detection substrate.
  • the middle E-type electrode is the sense electrode 8 (ie, the low-potential electrode, which is finally connected to the ROIC (Readout Integrated Circuit)), and the other surrounding electrodes are the HV electrode 9 (ie, the high-potential electrode). Potential electrode, on which a constant high voltage signal is applied).
  • the current can be conducted from the HV electrode 9 to the sense electrode 8 through multiple paths (all the arrows in Fig. 3), which includes not only the interior of the pixel 7
  • the current transfer between the HV electrode 9 and the sense electrode 8 also includes the current transfer between the HV electrode 9 and the sense electrode 8 between the pixels 7.
  • the current between the pixels 7 will cause signal crosstalk.
  • the light detecting substrate includes a base 1 and a plurality of light detecting units 2 arranged on the base 1.
  • the multiple light detection units 2 are arranged in an array.
  • Each of the plurality of light detection units 2 includes a first electrode 21, a second electrode 22 and a photoelectric conversion layer 23.
  • the first electrode 21 and the second electrode 22 are located on the substrate 1.
  • the photoelectric conversion layer 23 is located on the side of the first electrode 21 and the second electrode 22 away from the substrate 1.
  • the orthographic projection of the photoelectric conversion layer 23 on the substrate 1 covers the orthographic projection of the first electrode 21 and the second electrode 22 on the substrate 1.
  • the first electrode 21 and the second electrode 22 have a space between the orthographic projections on the substrate 1.
  • the photoelectric conversion layer 23 is provided with at least one opening 100, and the orthographic projection of the at least one opening 100 on the substrate 1 is located in the spacer area and does not overlap with the orthographic projection of the first electrode 21 and the second electrode 22 on the substrate 1.
  • the photoelectric conversion layer 23 is made of hydrogenated amorphous silicon material (a-Si:H).
  • the light detecting substrate is integrated with TFT, and each light detecting unit 2 is integrated with TFT, and the TFT is used to output the current obtained by photoelectric conversion.
  • the active layer of the TFT is made of a semiconductor metal oxide material, such as IGZO (Indium Gallium Zinc Oxide), and the TFT with the active layer of this material has better current output characteristics.
  • the opening 100 is opened in the non-overlapping area (ie, does not overlap) between the photoelectric conversion layer 23 and the first electrode 21 and the second electrode 22 Therefore, when the opening 100 in the photoelectric conversion layer 23 is formed by etching, the first electrode 21 and the second electrode 22 located under the photoelectric conversion layer 23 can be prevented from being etched, so as to prevent the first electrode 21 and the second electrode 22 from being etched.
  • the thinning of the film layer can also prevent oxidation of the first electrode 21 and/or the second electrode 22 exposed at the opening 100 in the subsequent annealing process, thereby ensuring that the photoelectric characteristics of the light detecting substrate will not be damaged.
  • the release of H ions in the photoelectric conversion layer 23 can be promoted in the subsequent annealing process of the light detection substrate, and the influence of the diffusion of H ions on the characteristics of the TFT in the light detection substrate can be avoided.
  • the photoelectric conversion layer 23 of each light detecting unit 2 is provided with an opening 100, it can further ensure that the TFT characteristics of any place on the light detecting substrate can be normal after the subsequent annealing process.
  • the opening 100 opened in the photoelectric conversion layer 23 can also promote the release of water vapor and other gases during the annealing process, so as to prevent the photoelectric conversion layer 23 from peeling off during the annealing process.
  • the distance between the orthographic projection of the opening 100 on the substrate 1 and the orthographic projection of the first electrode 21 on the substrate 1 is greater than or equal to 2 ⁇ m, and the orthographic projection of the opening 100 on the substrate 1 is greater than or equal to 2 ⁇ m.
  • the distance between the orthographic projections of the two electrodes 22 on the substrate 1 is greater than or equal to 2 ⁇ m.
  • This arrangement can further ensure that the opening 100 on the photoelectric conversion layer 23 and the first electrode 21 and the second electrode 22 do not overlap in the direction perpendicular to the substrate 1, thereby further ensuring that the patterned etching process of the photoelectric conversion layer 23 will not
  • the first electrode 21 and the second electrode 22 are etched to further ensure that the photoelectric characteristics of the light detecting substrate will not be damaged.
  • the thickness of the first electrode 21 and the second electrode 22 are both less than or equal to 2000 angstroms. In this embodiment, for example, the thickness of the first electrode 21 and the second electrode 22 may both be 500 angstroms.
  • the first electrode 21 and the second electrode 22 use metallic conductive materials, such as molybdenum.
  • the opening position in the a-Si:H layer and the MSM metal film pattern underneath have a certain overlap in the direction perpendicular to the substrate 1, resulting in the etching of the a-Si:H layer.
  • the MSM metal will be over-etched, which requires the thickness of the MSM metal film to be greater than 2000 angstroms in order to maintain the light detection sensitivity of the MSM light detector.
  • the position of the opening 100 on the photoelectric conversion layer 23 is in the interval between the first electrode 21 and the second electrode 22, so the opening 100 does not overlap with the first electrode 21 and the second electrode 22, and therefore does not interfere with the first electrode 21 and the second electrode 22.
  • the first electrode 21 and the second electrode 22 cause etching, so the first electrode 21 and the second electrode 22 do not need to use an excessively thick metal film layer.
  • the first electrode 21 and the second electrode 22 are arranged in the same layer, and the applied electric field is a transverse electric field, so the resistance between the two electrodes is inversely proportional to the thickness of the metal film layer. Reducing the thickness of the metal film layer of the electrode is equivalent to increasing the resistance between the two electrodes, which helps to reduce the dark-state current of the light detection substrate, thereby reducing dark noise, which is very helpful for low-dose light detection.
  • the slope angle ranges of the first electrode 21 and the second electrode 22 are both in a range greater than 0° and less than 90°.
  • the slope angle is the angle between the sidewalls of the first electrode 21 and the second electrode 22 and the plane where the substrate 1 is located, and the first electrode 21 or the second electrode 22 is present in the angle range.
  • the cross-sectional shape of the MSM metal electrode along its thickness direction that is, the direction perpendicular to the substrate 1 is an inverted trapezoid, that is, the slope angle of the MSM metal electrode is generally greater than 90°. This makes the upper surface of the MSM metal electrode wide, the lower surface is narrow, and the upper surface edge is sharp.
  • the slope angles of the first electrode 21 and the second electrode 22 are set so that the cross-sectional shape of the first electrode 21 and the second electrode 22 along the thickness direction is a regular trapezoid, and the sharpness of the edge of the upper surface of the electrode is obtained. Cut, which helps to reduce the dark current.
  • a plurality of light detection units 2 are arranged in an array.
  • the second electrodes 22 in the plurality of light detecting units 2 are integrally formed.
  • the integrally formed second electrode 22 includes at least one first electrode line 221 along the first direction L and at least one second electrode line 222 along the second direction P.
  • the first electrode line 221 and the second electrode line intersect to form a plurality of light detection unit areas B arranged in an array, and one light detection unit area B corresponds to one light detection unit 2.
  • One first electrode 21 is provided in each of the plurality of light detection unit regions B.
  • the first electrode 21 includes a first connection structure 211 extending in the second direction P and at least one first finger structure 212 protruding from the first connection structure 211 in the first direction L.
  • the integrally formed second electrode 22 is provided with at least one second finger structure 223 extending from the second electrode line 222 along the first direction L in each of the plurality of light detecting unit regions B.
  • the protruding direction of the at least one first finger structure 212 is opposite to the extending direction of the at least one second finger structure 223.
  • the orthographic projection of the at least one first finger structure 212 on the substrate 1 is located between the orthographic projection of each of the same at least one second finger structure 223 in the light detection unit area B on the substrate 1 and is different from the orthographic projection of the at least one second finger structure 223 on the substrate 1.
  • the orthographic projection of each of the second finger structures 223 on the substrate 1 does not overlap. That is, in one light detection unit area B, at least one first finger structure 212 and at least one second finger structure 223 form an "interdigital electrode".
  • the first electrode has an "E" shape, and the E-shaped opening directions of the "E"-shaped first electrodes in the plurality of light detection unit regions are the same. As shown in FIG. 4, the E-shaped opening direction of the E-shaped first electrode in each of the multiple light detecting unit regions is the same.
  • the opening 100 includes a first opening 101 and a second opening 102.
  • the first opening 101 is located between two adjacent light detection units 2 along the first direction L of the array, specifically on the side of the "E"-shaped first electrode away from the first finger structure and the adjacent second Between electrode lines 222.
  • the second opening 102 is located between two adjacent light detection units 2 along the second direction P of the array, specifically between the “E”-shaped first electrode and an adjacent first electrode line 221.
  • the first direction L is the row direction
  • the second direction P is the column direction.
  • the first direction is the column direction and the second direction is the row direction.
  • the first opening 101 is bar-shaped and extends in the second direction
  • the second opening 102 is bar-shaped and extends in the first direction.
  • the first opening 101 and the second opening 102 may extend and intersect to form an "L"-shaped opening of an integrated structure, or may be disconnected from each other into two independent openings. Since the photoelectric conversion layer 23 does not have the above-mentioned first opening 101 and the second opening 102, the current converted by the photoelectric conversion layer 23 can be conducted between the first electrode 21 and the second electrode 22 through multiple paths. It includes the current transmission between the first electrode 21 and the second electrode 22 inside the light detecting unit 2 and the current transmission between the first electrode 21 and the second electrode 22 between adjacent light detecting units 2.
  • the adjacent light detecting units 2 are The photoelectric conversion layer 23 on the current transmission path between the adjacent light detection units 2 is at least partially etched away, so that the current transmission path between the adjacent light detection units 2 is at least partially cut off, thus causing the gap between the adjacent light detection units 2 The current transmission is reduced, so that the signal crosstalk between adjacent light detection units 2 can be suppressed, and the light detection effect of the light detection substrate can be improved.
  • the second electrode is formed by the intersection of at least one first electrode line and at least one second electrode line, and the first electrode is located at the intersection of at least one first electrode line and at least one second electrode line.
  • the projection length of the first electrode 21 in the second direction P of the array is smaller than the projection length of the second electrode 22 in the second direction P of the array;
  • the projection width of the first electrode 21 in the first direction L of the array is smaller than the projection width of the second electrode 22 in the first direction L of the array.
  • the first opening 101 is strip-shaped, and the length direction of the first opening 101 is along the second direction P of the array.
  • the second opening 102 is strip-shaped, and the length direction of the second opening 102 is along the first direction L of the array.
  • the length of the first opening 101 is greater than or equal to the projection length of the first electrode 21 in the second direction P of the array, and the orthographic projection of the first opening 101 in the second direction P of the array is the same as that of the first electrode 21 in the second direction P of the array.
  • the orthographic projections in the two directions P do not overlap.
  • the length of the second opening 102 is greater than or equal to the projection width of the first electrode 21 in the first direction L of the array, and the orthographic projection of the second opening 102 in the first direction L of the array is the same as that of the first electrode 21 in the first direction L of the array.
  • the orthographic projections in one direction L do not overlap.
  • the first opening 101 can completely cut off the current transmission path between the light detecting units 2 adjacent in the first direction L of the array, and the second opening 102 can completely cut off the light detecting units 2 adjacent in the second direction P of the array. Therefore, the current transmission between adjacent light detecting units 2 is greatly reduced, thereby further suppressing signal crosstalk between adjacent light detecting units 2 and improving the light detecting effect of the light detecting substrate.
  • the first opening 101 and the second opening 102 pass through to form an "L" shape. In this way, the signal crosstalk between adjacent light detection units 2 can be completely suppressed, and the light detection effect of the light detection substrate can be improved.
  • the first electrode 21 and the second electrode 22 are made of the same material and arranged in the same layer.
  • the light detecting unit 2 further includes an insulating layer 3, the insulating layer 3 is located between the photoelectric conversion layer 23 and the first electrode 21 and the second electrode 22; the opening 100 penetrates the insulating layer 3.
  • the insulating layer 3 may be an inorganic insulating layer, and the thickness of the inorganic insulating layer ranges from 100 to 500 angstroms.
  • the inorganic insulating layer is made of silicon nitride material or silicon oxide material.
  • the insulating layer 3 can function as an insulating layer when the light detecting substrate is not illuminated, thereby blocking the current transmission between the first electrode 21 and the second electrode 22 when there is no light, thereby reducing the dark current of the light detecting substrate and reducing The role of noise.
  • the light detecting substrate has light, since the thickness of the insulating layer 3 is relatively thin, it is basically equivalent to conduction, and the current transmission between the first electrode 21 and the second electrode 22 will not be affected.
  • the cross-sectional shape of the opening 100 perpendicular to the base 1 is a rectangle or the bottom side is a semicircular arc.
  • the insulating layer 3 may also be an organic insulating layer, and the thickness of the organic insulating layer ranges from 1000 to 2000 angstroms.
  • the thickness of the photoelectric conversion layer 23 ranges from 4000 to 8000 angstroms.
  • the light detecting unit 2 further includes an electrical signal output circuit 4, and the electrical signal output circuit 4 is disposed on the side of the first electrode 21 and the second electrode 22 close to the substrate 1.
  • a planarization layer 5 is also provided between the electrical signal output circuit 4 and the first electrode 21 and the second electrode 22.
  • the electrical signal output circuit 4 is connected to the first electrode 21 through a via hole opened in the planarization layer 5.
  • the electrical signal output circuit 4 is used for outputting the current signal converted by the photoelectric conversion layer 23, such as outputting it to an imaging device for imaging of light detection information.
  • the planarization layer 5 is made of resin material, and the resin material can be made relatively thick, so that the planarization layer 5 can better flatten the surface of the substrate 1 on which the electrical signal output circuit 4 is formed, thereby facilitating light detection The light detection effect of the substrate is better.
  • a light shielding metal layer 10 is provided above the electrical signal output circuit 4, and the light shielding metal layer 10 is used to shield the light irradiated from the light detecting unit 2 side to the electrical signal output circuit 4. Since the electrical signal output circuit 4 includes a transistor circuit, the arrangement of the light-shielding metal layer 10 can prevent the electrical performance of the transistor from changing under light irradiation, such as an increase in leakage current, and ensure the normal characteristics of the transistor.
  • the electrical signal output circuit 4 includes a reset transistor T1, a capacitor C, an amplifying transistor T2, and a switching transistor T3.
  • the first electrode 21 is connected to the second electrode of the reset transistor T1, the first electrode of the capacitor C, and the gate of the amplifying transistor T2.
  • the second pole of the amplifying transistor T2 is connected to the first pole of the switching transistor T3, and the first pole is connected to the driving current input terminal.
  • the gate of the reset transistor T1 is connected to the drive signal input terminal, and the first electrode of the reset transistor T1 is connected to the reset signal terminal.
  • the first pole of the amplifying transistor T2 is connected to the driving current input terminal to output the amplified current signal to the second pole, and the second pole is connected to the first pole of the switching transistor T3.
  • the gate of the switching transistor T3 is connected to the driving signal input terminal, and the second pole of the switching transistor T3 is connected to the output terminal to output the amplified current signal.
  • the second pole of the capacitor can be connected to other structures of the circuit to store the photocurrent. That is, the light detecting substrate in this embodiment is of the APS (active pixel sensor, active pixel image sensor) type.
  • the electrical signal output circuit 4 may also only include the switching transistor T3, and the first electrode 21 is connected to the first electrode of the switching transistor T3.
  • the gate of the switching transistor T3 is connected to the driving signal input terminal, and the second pole of the switching transistor T3 is connected to the output terminal to output the current signal converted by the photoelectric conversion layer 23.
  • the light detection substrate may also be a PPS (passive pixel sensor, passive pixel image sensor) type.
  • an embodiment of the present disclosure further provides a method for preparing a light detecting substrate, including: forming a plurality of light detecting units on a base, forming the plurality of light detecting units includes forming a first electrode on the base, and The second electrode, the photoelectric conversion layer, and at least one opening in the photoelectric conversion layer, so that the light detecting substrate has the structure in the above-mentioned embodiment.
  • the exposure process is first used for exposure, and then the reactive ion etching process is used.
  • the exposure process includes the steps of photoresist coating, exposure, development, etc., as long as the exposure mask of the photoelectric conversion layer is changed, the opening of the present disclosure can be formed.
  • the opening of the present disclosure can also be formed by changing the exposure program. Because they are all traditional crafts, I won't repeat them here.
  • step S102 a molybdenum film layer is formed on the substrate on which the electrical signal output circuit and the planarization layer are formed.
  • the thickness of the molybdenum film can be 500 angstroms.
  • step S104 the molybdenum film layer is patterned to form a first electrode and a second electrode.
  • an insulating layer is formed on the first electrode and the second electrode by a plasma enhanced chemical vapor deposition method.
  • the thickness of the insulating layer may be 200 angstroms.
  • a photoelectric conversion layer film is formed on the insulating layer by a plasma enhanced chemical vapor deposition method.
  • the thickness of the photoelectric conversion layer may be 5000 angstroms.
  • step S110 the photoelectric conversion layer film in the opening area is etched away by an exposure process and a reactive ion etching process (RIE), and then annealed in air at 150° C. for 4 hours.
  • RIE reactive ion etching process
  • the orthographic projection of the opening on the base is located in the spacer area, that is, the opening is opened in the non-overlapping area of the photoelectric conversion layer and the first electrode and the second electrode, which can be etched
  • the pattern of the photoelectric conversion layer and the opening avoid etching the first electrode and the second electrode located under the photoelectric conversion layer, so as to avoid the thinning of the film layer of the first electrode and the second electrode, and also avoid the subsequent annealing process.
  • the first electrode and/or the second electrode exposed at the opening are oxidized, so as to ensure that the photoelectric characteristics of the light detecting substrate will not be damaged.
  • the release of H ions in the photoelectric conversion layer can be promoted in the subsequent annealing process of the light detection substrate, and the influence of the diffusion of H ions on the characteristics of the TFT in the light detection substrate can be avoided.
  • the photoelectric conversion layer of each light detecting unit is provided with openings, it can further ensure that the TFT characteristics of any place on the light detecting substrate can be normal after the subsequent annealing process.
  • the openings opened in the photoelectric conversion layer can also promote the release of water vapor and other gases during the annealing process, so as to prevent the photoelectric conversion layer from peeling off during the annealing process.
  • An embodiment of the present disclosure also provides a light detection device, which includes the light detection substrate in the above embodiment and a driving circuit for driving the light detection substrate.
  • the photoelectric characteristics of the light detection device are improved, and at the same time, it can be ensured that the characteristics of the TFT integrated in the light detection device are normal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种光线探测基板及其制备方法、光线探测设备。该光线探测基板包括多个光线探测单元(2),其中的每一个包括第一电极(21)、第二电极(22)和光电转换层(23),第一电极(21)和第二电极(22)在基底(1)上的正投影之间具有间隔区,光电转换层(23)上开设有至少一个开口(100),至少一个开口(100)在基底(1)上的正投影位于间隔区。

Description

光线探测基板及其制备方法、光线探测设备
相关申请的相交引用
本申请要求于2020年3月13日在中国知识产权局提交的No.202010176046.4的中国专利申请的优先权,该中国专利申请的全部内容通过引用合并于此。
技术领域
本公开属于光电传感器技术领域,具体涉及一种光线探测基板及其制备方法、光线探测设备。
背景技术
目前,金属-半导体-金属(Metal-Semiconductor-Metal,MSM)光线探测结构具有响应速度快、电容小、工艺简单以及容易集成等优点,因而广泛应用于半导体探测领域中。金属-半导体-金属光线探测结构尤其是可与各类TFT(Thin Film Transistor,薄膜晶体管)背板集成为X-ray(X射线)平板探测器。
MSM光线探测器中的半导体通常采用氢化非晶硅a-Si:H。TFT背板中用于对电信号进行输出的TFT的有源层通常采用非晶硅,但是其迁移率较低,只有0.5~1cm/V s。半导体金属氧化物,如IGZO(indium gallium zinc oxide,铟镓锌氧化物),可以提供更大的沟道载流子迁移率,例如高达10cm/V s的沟道载流子迁移率,因而IGZO TFT可以获得更大的开态电流和开关比,因此可以支持更高帧率响应速度的光电探测,是更为先进的有源层材料。另外,LTPS(Low Temperature Poly-Silicon,低温多晶硅)也是一种制作TFT的有源层的材料,但是LTPS在大面积化背板制备中很难做到高均一性。
发明内容
根据本公开的一个方面,提供了一种光线探测基板,包括基底和设置在所 述基底上的多个光线探测单元,所述多个光线探测单元中的每一个包括第一电极、第二电极和光电转换层,所述第一电极和所述第二电极位于所述基底上,所述光电转换层位于所述第一电极和所述第二电极的远离所述基底的一侧,所述光电转换层在所述基底上的正投影覆盖所述第一电极和所述第二电极在所述基底上的正投影,所述第一电极和所述第二电极在所述基底上的正投影之间具有间隔区,其中,所述光电转换层上开设有至少一个开口,所述至少一个开口在所述基底上的正投影位于所述间隔区中并且与所述第一电极和所述第二电极在所述基底上的正投影不重叠。
在一些实施例中,所述至少一个开口在所述基底上的正投影与相邻第一电极在所述基底上的正投影之间的距离大于或等于2μm,所述至少一个开口在所述基底上的正投影与相邻第二电极在所述基底上的正投影之间的距离大于或等于2μm。
在一些实施例中,所述第一电极和所述第二电极的沿垂直于所述基底方向的厚度均小于或等于2000埃。
在一些实施例中,所述第一电极和所述第二电极的厚度均为500埃。
在一些实施例中,所述第一电极和所述第二电极的坡度角范围均在大于0°且小于90°的范围内。
在一些实施例中,所述多个光线探测单元呈阵列排布,所述多个光线探测单元中的第二电极一体形成,一体形成的第二电极包括沿第一方向的至少一条第一电极线和沿第二方向的至少一条第二电极线,所述至少一条第一电极线与所述至少一条第二电极线相交以形成呈阵列排布的多个光线探测单元区域,在所述多个光线探测单元区域中的每一个中设置有一个第一电极,所述第一电极包括沿所述第二方向延伸的第一连接结构以及沿所述第一方向从所述第一连接结构突出的至少一个第一指状结构;所述一体形成的第二电极在所述多个光线探测单元区域中的每一个中设置有沿所述第一方向从所述第二电极线突出的至少一个第二指状结构;所述至少一个第一指状结构的突出方向与所述至少一个第二指状结构的突出方向相反,并且所述至少一个第二指状结构在所述基底 上的正投影位于处于同一光线探测单元区域中的所述至少一个第一指状结构在所述基底上的正投影之间且与所述至少一个第一指状结构在所述基底上的正投影不重叠。
在一些实施例中,所述第一电极呈“E”形。
在一些实施例中,所述至少一个开口包括第一开口,所述第一开口位于所述“E”形第一电极的远离其第一指状结构的一侧与相邻的第二电极线之间。
在一些实施例中,所述至少一个开口还包括第二开口,所述第二开口位于所述“E”形第一电极与相邻的一条第一电极线之间。
在一些实施例中,所述第一开口为条形并且沿所述第二方向延伸,所述第二开口为条形并且沿所述第一方向延伸,并且所述第一开口沿所述第二方向的投影长度大于或等于所述第一电极沿所述第二方向的投影长度,所述第二开口沿所述第一方向的投影长度大于或等于所述第一电极沿所述第一方向的投影长度。
在一些实施例中,所述第一开口与所述第二开口相交以形成“L”形。
在一些实施例中,所述第一电极和所述第二电极采用相同材料制成且同层设置,所述多个光线探测单元中的每一个还包括绝缘层,所述绝缘层位于所述光电转换层与所述第一电极和所述第二电极之间;
所述至少一个开口还贯穿所述绝缘层。
在一些实施例中,所述绝缘层包括无机绝缘层,所述无机绝缘层的厚度范围为100~500埃。
在一些实施例中,所述绝缘层包括有机绝缘层,所述有机绝缘层的厚度范围为1000~2000埃。
在一些实施例中,所述多个光线探测单元中的每一个还包括电信号输出电路,所述电信号输出电路设置于所述第一电极和所述第二电极的靠近所述基底的一侧,所述电信号输出电路与所述第一电极和所述第二电极之间还设置有平坦化层,所述电信号输出电路通过开设在所述平坦化层中的过孔连接所述第一电极。
在一些实施例中,所述电信号输出电路包括开关晶体管;所述开关晶体管的第一极连接所述第一电极,第二极连接输出端,栅极连接驱动信号输入端。
在一些实施例中,所述电信号输出电路包括复位晶体管、电容、放大晶体管和开关晶体管,所述复位晶体管的第二极、所述电容的第一极以及所述放大晶体管的栅极分别连接所述第一电极;所述放大晶体管的第一极连接驱动电流输入端,第二极连接所述开关晶体管的第一极;所述复位晶体管的第一极连接复位信号端,栅极连接驱动信号输入端;以及所述开关晶体管的第二极连接输出端,栅极连接驱动信号输入端。
在一些实施例中,所述光电转换层采用氢化非晶硅材料制成,所述电信号输出电路中的晶体管的有源层均采用半导体金属氧化物材料制成。
根据本公开的另一方面,提供了一种光线探测设备,包括以上所述的光线探测基板以及用于驱动所述光线探测基板的驱动电路。
根据本公开的另一方面,提供了一种以上所述的光线探测基板的制备方法,包括:在基底上形成多个光线探测单元,形成所述多个光线探测单元包括在所述基底上形成第一电极和第二电极、光电转换层以及位于所述光电转换层中的至少一个开口,以使得所述光线探测基板形成为:所述多个光线探测单元中的每一个包括第一电极、第二电极和光电转换层,所述第一电极和所述第二电极位于所述基底上,所述光电转换层位于所述第一电极和所述第二电极的远离所述基底的一侧,所述光电转换层在所述基底上的正投影覆盖所述第一电极和所述第二电极在所述基底上的正投影,所述第一电极和所述第二电极在所述基底上的正投影之间具有间隔区,所述光电转换层上的至少一个开口在所述基底上的正投影位于所述间隔区中并且与所述第一电极和所述第二电极在所述基底上的正投影不重叠。
附图说明
图1为相关技术中的MSM光线探测基板中a-Si:H层上开孔的结构示意图;
图2为相关技术中的MSM光线探测基板中a-Si:H层开孔区域与未开孔区域 的剖视图;
图3为相关技术中的MSM光线探测基板中a-Si:H层整面覆盖时HV电极与sense电极之间的电流传输示意图;
图4为本公开实施例中光线探测基板的俯视示意图;
图5为本公开实施例中光线探测基板沿图4中AA剖切线的局部结构剖视图;
图6为本公开实施例中电信号输出电路的电路图;
图7为本公开实施例中电信号输出电路的电路图;
图8为本公开实施例中光线探测基板沿图4中AA剖切线的局部结构剖视图;以及
图9为本公开实施例的制备光线探测基板的方法流程图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开的一种光线探测基板及其制备方法、光线探测设备作进一步详细描述。
金属-半导体-金属(Metal-Semiconductor-Metal,MSM)光线探测结构具有响应速度快、电容小、工艺简单以及容易集成等优点而广泛应用于半导体探测领域中,尤其是可与各类TFT背板集成为X-ray(X射线)平板探测器。MSM光线探测器中半导体通常采用氢化非晶硅a-Si:H。TFT背板中用于对电信号进行输出的TFT的有源层通常采用半导体金属氧化物,如IGZO。IGZO有源层的问题在于稳定性,其很容易受到H离子的影响而劣化。
由于MSM光线探测器中a-Si:H(氢化非晶硅)层的影响,当与TFT背板集成时,TFT特性易受a-Si:H沉积过程(等离子增强化学气相沉积制程中腔室内富含H离子)以及覆盖TFT背板的a-Si:H层中H离子扩散的影响而发生阈值电压Vth漂移。原因在于,MSM光线探测器中a-Si:H层与具有IGZO有源层的TFT背板集成时,TFT特性易受a-Si:H层中H离子的影响使得IGZO沟道被H离子注入。H离子作为施主离子使沟道导体化,从而使得TFT阈值电压Vth发生负向 漂移。因此需要对沉积a-Si:H层后的玻璃基板进行退火处理使得膜层中的H离子可以得到释放,缓解Vth漂移,从而使TFT特性达到正常。
然而,在MSM光线探测结构,通常a-Si:H层整面设计,由于其覆盖范围过大,导致即使长时间退火,MSM光线探测基板的边缘膜层内部的H离子释放依然不彻底,结果与导致MSM光线探测基板边缘对应处的TFT的阈值电压可以得到恢复,但与MSM光线探测基板中心对应处的TFT特性仍然不正常。同时,当MSM光线探测基板最表层有整面的a-Si:H层覆盖时,由于膜层中吸附的水汽和其他气体等会在退火时释放,这时整面覆盖的a-Si:H层会阻隔气体释放从而使得膜层内部蒸汽压过高导致膜层剥离(peeling)的现象发生。
基于以上两个问题,相关的技术方案是在沉积a-Si:H层后对其进行图形化刻蚀形成周期开孔,然后再退火。图形化开孔的好处在于,周期性的开孔可作为放气通路,既可以促进水汽释放,也可以促进H离子释放,从而不仅使得a-Si:H层剥离问题得到解决,而且使得MSM光线探测基板任意一处的TFT特性都可以通过退火得以恢复。
相关技术中,APS(active pixel sensor,有源像素图像传感器)型MSM光线探测基板中a-Si:H层上开孔有三种图形化设计方案,如图1所示,分别是:a、MSM光线探测基板上阵列排布的各像素四周开孔6;b、MSM光线探测基板上仅TFT有源层的沟道上方开孔6;c、MSM光线探测基板上TFT整个有源层上方开孔6。但上述三类开孔设计中都存在一个问题,即a-Si:H层开孔与其下方MSM金属膜层在垂直MSM光线探测基板的方向具有交叠,导致对a-Si:H层的图形化刻蚀也会对MSM金属膜层产生刻蚀甚至导致过刻蚀,即a-Si:H层图形化刻蚀会导致MSM金属膜层被刻蚀变薄甚至消失(如图2所示。之后的退火会氧化开孔内裸露的MSM金属电极,因此造成MSM光电特性受到损害,不利于MSM光电流的传导。MSM金属电极被刻蚀变薄以及MSM金属电极孔内裸露部分被氧化造成MSM光电特性受损的原因为:电极作为电流传输的导线,光电流对于电极的电阻大小十分敏感。通常电阻与厚度成反比,厚度减薄和表面氧化会大大增加金属电极的电阻,不利于光电流的传导,从而导致MSM光电特性受损。
另外,目前的X-ray MSM光线探测基板常规设计中,MSM金属电极与上方a-Si:H层整面覆盖的设计容易导致MSM光线探测基板上相邻像素7产生光电流信号的串扰。如图3所示,中间E型电极为感测sense电极8(即低电势电极,该电极最终连接到ROIC(Readout Integrated Circuit,读出集成电路)),周围其他电极为HV电极9(即高电势电极,该电极上施加恒定高电压信号)。当a-Si:H在金属上方整面覆盖时,在光线探测中,电流可通过多条路径(如图3中所有箭头)从HV电极9传导至sense电极8,这其中不仅有像素7内部HV电极9与sense电极8之间的电流传输,也包含像素7间HV电极9与sense电极8之间的电流传输。像素7间的电流会造成信号串扰。
针对目前MSM光线探测基板所存在的问题,本公开实施例提供一种光线探测基板。如图4和图5所示,该光线探测基板包括基底1和设置在基底1上的多个光线探测单元2。多个光线探测单元2呈阵列排布。多个光线探测单元2中的每一个包括第一电极21、第二电极22和光电转换层23。第一电极21和第二电极22位于基底1上。光电转换层23位于第一电极21和第二电极22的远离基底1的一侧。光电转换层23在基底1上的正投影覆盖第一电极21和第二电极22在基底1上的正投影。第一电极21和第二电极22在基底1上的正投影之间具有间隔区。光电转换层23上开设有至少一个开口100,至少一个开口100在基底1上的正投影位于间隔区并且与第一电极21和第二电极22在基底1上的正投影不重叠。
光电转换层23采用氢化非晶硅材料(a-Si:H)制成。光线探测基板中集成有TFT,且每个光线探测单元2中均集成有TFT,TFT用于对光电转换获得的电流进行输出。TFT的有源层采用半导体金属氧化物材料制成,如IGZO(铟镓锌氧化物),具有该材料有源层的TFT的电流输出特性更佳。
通过使至少一个开口100中的每一个在基底1上的正投影位于间隔区,即开口100开设在光电转换层23与第一电极21和第二电极22的非叠置区域(即不重叠),能够在通过刻蚀形成光电转换层23中的开口100时,避免对位于光电转换层23下方的第一电极21和第二电极22造成刻蚀,以避免第一电极21 和第二电极22膜层变薄,还能避免后续退火工艺中对开口100处裸露的第一电极21和/或第二电极22造成氧化,从而确保该光线探测基板的光电特性不会受到损害。
另外,通过在光电转换层23中开设开口100,能够在该光线探测基板的后续退火工艺中促进光电转换层23中H离子的释放,避免H离子扩散对光线探测基板中TFT特性的影响。而且,由于各个光线探测单元2的光电转换层23上均开设有开口100,所以能进一步确保经过后续退火工艺后该光线探测基板上任意一处的TFT特性都能正常。同时,光电转换层23中开设的开口100还能在退火工艺中促进水汽和其他气体的释放,从而避免光电转换层23在退火工艺中出现剥离的情况。
可选的,本实施例中,开口100在基底1上的正投影与第一电极21在基底1上的正投影之间的距离大于或等于2μm,开口100在基底1上的正投影与第二电极22在基底1上的正投影之间的距离大于或等于2μm。如此设置,能够进一步确保光电转换层23上开口100与第一电极21和第二电极22在垂直于基底1的方向上无交叠,从而进一步确保光电转换层23的图形化刻蚀过程不会对第一电极21和第二电极22造成刻蚀,进而进一步确保该光线探测基板的光电特性不会受到损害。
可选的,第一电极21和第二电极22的厚度均小于或等于2000埃。本实施例中,如第一电极21和第二电极22的厚度可均为500埃。第一电极21和第二电极22采用金属导电材料,如钼。相关的技术中,由于a-Si:H层中的开孔位置与其下方的MSM金属膜层图形在垂直于基底1的方向上具有一定的交叠,导致在对a-Si:H层刻蚀的过程中会对MSM金属产生过刻,这就需要MSM金属膜层厚度大于2000埃,才能维持MSM光线探测器的光探测灵敏度。本实施例中,光电转换层23上开口100位置在第一电极21和第二电极22的间隔区中,因而开口100与第一电极21和第二电极22无交叠,因此不会对第一电极21和第二电极22造成刻蚀,因此第一电极21和第二电极22也就无需使用过厚的金属膜层。在该光线探测基板中,第一电极21和第二电极22同层设置,施加电场为横向 电场,因此两个电极间电阻与金属膜层厚度成反比。降低电极的金属膜层厚度相当于增大两个电极间的电阻,如此有助于降低该光线探测基板的暗态电流,进而降低暗噪声,这对于低剂量光线探测十分有帮助。
本实施例中,第一电极21和第二电极22的坡度角范围均在大于0°且小于90°的范围内。坡度角为第一电极21和第二电极22的侧壁与基底1所在平面之间的夹角,在该夹角范围内存在第一电极21或第二电极22。相关技术中,MSM金属电极沿其厚度方向(即垂直于基底1的方向)的截面形状为倒梯形,即MSM金属电极的坡度角通常大于90°。这使得MSM金属电极上表面宽,下表面窄,上表面边缘尖锐,在MSM金属电极加高压的情况下,容易漏电,产生较大的暗电流。本实施例中,第一电极21和第二电极22坡度角的设置,使第一电极21和第二电极22的沿其厚度方向的截面形状为正梯形,电极上表面边缘的尖锐程度得到了削减,从而有利于降低暗电流。
可选地,本实施例中,如图4所示,多个光线探测单元2呈阵列排布。多个光线探测单元2中的第二电极22一体形成。一体形成的第二电极22包括沿第一方向L的至少一条第一电极线221和沿第二方向P的至少一条第二电极线222。第一电极线221与第二电极线相交以形成呈阵列排布的多个光线探测单元区域B,一个光线探测单元区域B对应一个光线探测单元2。在多个光线探测单元区域B中的每一个中设置有一个第一电极21。第一电极21包括沿第二方向P延伸的第一连接结构211以及沿第一方向L从第一连接结构211突出的至少一个第一指状结构212。一体形成的第二电极22在多个光线探测单元区域B中的每一个中设置有沿第一方向L从第二电极线222延伸的至少一个第二指状结构223。至少一个第一指状结构212的突出方向与至少一个第二指状结构223的延伸方向相反。至少一个第一指状结构212在基底1上的正投影位于处于光线探测单元区域B中的同一至少一个第二指状结构223中的每一个在基底1上的正投影之间且与至少一个第二指状结构223中的每一个在基底1上的正投影不重叠。即在一个光线探测单元区域B中,至少一个第一指状结构212与至少一个第二指状结构223形成“叉指电极”。
可选地,第一电极呈“E”形,并且多个光线探测单元区域中的呈“E”形的第一电极的E形开口方向相同。如图4所示,多个光线探测单元区域中每一个的E形第一电极的E形开口方向均相同。
可选地,开口100包括第一开口101和第二开口102。第一开口101位于沿阵列第一方向L相邻的两个光线探测单元2之间,具体地在“E”形第一电极的远离其第一指状结构的一侧与相邻的第二电极线222之间。第二开口102位于沿阵列第二方向P相邻的两个光线探测单元2之间,具体地在“E”形第一电极与相邻的一条第一电极线221之间。第一方向L为行方向,第二方向P为列方向。当然,也可以是第一方向为列方向,第二方向为行方向。
第一开口101为条形并且沿第二方向延伸,第二开口102为条形并且沿第一方向延伸。第一开口101与第二开口102可以延伸相交以形成一体结构的“L”形开口,也可以相互断开为相互独立的两个开口。由于当光电转换层23上无上述第一开口101和第二开口102时,光电转换层23所转换的电流可通过多条路径在第一电极21和第二电极22之间传导,这其中不仅包括光线探测单元2内部第一电极21和第二电极22之间的电流传输,也包括相邻光线探测单元2之间第一电极21和第二电极22的电流传输。通过在第一方向L相邻的光线探测单元2之间设置第一开口101,并在第二方向P相邻的光线探测单元2之间设置第二开口102,由于相邻光线探测单元2之间的电流传输路径上的光电转换层23至少部分被刻蚀掉了,所以使相邻光线探测单元2之间的电流传输路径至少部分被切断了,因此会使相邻光线探测单元2之间的电流传输降低,从而能够抑制相邻光线探测单元2之间的信号串扰,提升光线探测基板的光线探测效果。
进一步可选地,本实施例中,由于第二电极由至少一条第一电极线和至少一条第二电极线相交形成,而第一电极位于至少一条第一电极线和至少一条第二电极线相交形成的光线探测单元区域中,则沿阵列的第二方向P,第一电极21在阵列的第二方向P上的投影长度小于第二电极22在阵列的第二方向P上的投影长度;沿阵列的第一方向L,第一电极21在阵列的第一方向L上的投影宽度小于第二电极22在阵列的第一方向L上的投影宽度。第一开口101为条形, 第一开口101的长度方向沿阵列的第二方向P。第二开口102为条形,第二开口102的长度方向沿阵列的第一方向L。第一开口101的长度大于或等于第一电极21在阵列的第二方向P上的投影长度,且第一开口101在阵列的第二方向P上的正投影与第一电极21在阵列的第二方向P上的正投影不重叠。第二开口102的长度大于或等于第一电极21在阵列的第一方向L上的投影宽度,且第二开口102在阵列的第一方向L上的正投影与第一电极21在阵列的第一方向L上的正投影不重叠。如此设置,第一开口101能够完全切断沿阵列第一方向L相邻的光线探测单元2之间的电流传输路径,第二开口102能够完全切断沿阵列第二方向P相邻的光线探测单元2之间的电流传输路径,从而使相邻光线探测单元2之间的电流传输大大降低,进而能够进一步抑制相邻光线探测单元2之间的信号串扰,提升光线探测基板的光线探测效果。
本实施例中,第一开口101和第二开口102贯通形成“L”形。如此能够彻底抑制相邻光线探测单元2之间的信号串扰,提升光线探测基板的光线探测效果。
可选地,第一电极21和第二电极22采用相同材料制成且同层设置。光线探测单元2还包括绝缘层3,绝缘层3位于光电转换层23与第一电极21和第二电极22之间;开口100贯穿绝缘层3。绝缘层3可为无机绝缘层,无机绝缘层的厚度范围为100~500埃。无机绝缘层采用氮化硅材料或氧化硅材料。绝缘层3能在光线探测基板无光照时起到绝缘层的作用,从而阻断无光照时第一电极21和第二电极22之间的电流传输,进而起到降低光线探测基板暗电流,降低噪音的作用。当光线探测基板有光照时,由于绝缘层3厚度较薄,所以基本相当于导通,不会影响第一电极21和第二电极22之间的电流传输。
可选地,开口100的垂直于基底1的截面形状为矩形或者底边为半圆弧形。
需要说明的是,绝缘层3也可以是有机绝缘层,有机绝缘层的厚度范围为1000~2000埃。光电转换层23的厚度范围为4000~8000埃。
可选地,光线探测单元2还包括电信号输出电路4,电信号输出电路4设置于第一电极21和第二电极22的靠近基底1的一侧。电信号输出电路4与第一 电极21和第二电极22之间还设置有平坦化层5。电信号输出电路4通过开设在平坦化层5中的过孔连接第一电极21。电信号输出电路4用于将光电转换层23转换的电流信号输出,如输出至成像设备用于光线探测信息的成像。平坦化层5采用树脂材料制成,树脂材料能做的比较厚,从而使平坦化层5能更好地使形成有电信号输出电路4的基底1表面趋于平坦,进而有利于使光线探测基板的光线探测效果更好。
另外,电信号输出电路4的上方还设置有遮光金属层10,遮光金属层10用于遮挡从光线探测单元2侧照射至电信号输出电路4上的光线。由于电信号输出电路4包括晶体管电路,所以遮光金属层10的设置能够避免晶体管在光线照射下电性能发生变化,如漏电流增大,确保晶体管的特性正常。
本实施例中,如图6所示,电信号输出电路4包括复位晶体管T1、电容C、放大晶体管T2和开关晶体管T3。第一电极21连接复位晶体管T1的第二极、电容C的第一极以及放大晶体管T2的栅极。放大晶体管T2的第二极连接开关晶体管T3的第一极,第一极连接驱动电流输入端。另外,复位晶体管T1的栅极连接驱动信号输入端,复位晶体管T1的第一极连接复位信号端。放大晶体管T2的第一极连接驱动电流输入端以向第二极输出放大后的电流信号,第二极连接开关晶体管T3的第一极。开关晶体管T3的栅极连接驱动信号输入端,开关晶体管T3的第二极连接输出端以输出放大后的电流信号。电容的第二极可连接电路其它结构,以存储光电流。即本实施例中的光线探测基板为APS(active pixel sensor,有源像素图像传感器)型。
可选地,在一些实施例中,如图7和图8所示,电信号输出电路4也可以只包括开关晶体管T3,第一电极21连接开关晶体管T3的第一极。开关晶体管T3的栅极连接驱动信号输入端,开关晶体管T3的第二极连接输出端以输出光电转换层23转换的电流信号。即光线探测基板也可以为PPS(passive pixel sensor,无源像素图像传感器)型。
基于光线探测基板的上述结构,本公开实施例还提供一种光线探测基板的制备方法,包括:在基底上形成多个光线探测单元,形成多个光线探测单元包 括在基底上形成第一电极和第二电极、光电转换层以及位于光电转换层中的至少一个开口,以使得所述光线探测基板具有上述实施例中具有的结构。
形成光电转换层时,先采用曝光工艺曝光,后通过反应离子刻蚀工艺。曝光工艺包括光刻胶的涂覆、曝光、显影等步骤,只要对光电转换层的曝光掩膜板进行改变即可形成本公开的开口。另外,也可以通过更改曝光程序形成本公开的开口。因为均是传统工艺,这里不再赘述。
本实施例中,光线探测基板的具体制备过程如图9所示。
在步骤S102中,在形成有电信号输出电路和平坦化层的基底上,形成钼膜层。钼膜层厚度可为500埃。
在步骤S104中,对钼膜层进行图形化处理以形成第一电极和第二电极。
在步骤S106中,通过等离子增强化学气相沉积法在第一电极和第二电极上形成绝缘层。绝缘层厚度可为200埃。
在步骤S108中,通过等离子增强化学气相沉积法在绝缘层上形成光电转换层膜。光电转换层膜厚度可为5000埃。
在步骤S110中,通过曝光工艺和反应离子刻蚀工艺(RIE)将开口区域的光电转换层膜刻蚀掉,然后在150℃下空气退火4小时。
电信号输出电路和平坦化层在基底上的制备均采用传统工艺,这里不再赘述。
本公开实施例所提供的光线探测基板,通过使开口在基底上的正投影位于间隔区,即开口开设在光电转换层与第一电极和第二电极的非叠置区域,能够在通过刻蚀形成光电转换层以及开口的图形时,避免对位于光电转换层下方的第一电极和第二电极造成刻蚀,以避免第一电极和第二电极膜层变薄,还能避免后续退火工艺中对开口处裸露的第一电极和/或第二电极造成氧化,从而确保该光线探测基板的光电特性不会受到损害。另外,通过在光电转换层中开设开口,能够在该光线探测基板的后续退火工艺中促进光电转换层中H离子的释放,避免H离子扩散对光线探测基板中TFT特性的影响。而且,由于各个光线探测单元的光电转换层上均开设有开口,所以能进一步确保经过后续退火工艺后该 光线探测基板上任意一处的TFT特性都能正常。同时,光电转换层中开设的开口还能在退火工艺中促进水汽和其他气体的释放,从而避免光电转换层在退火工艺中出现剥离的情况出现。
本公开实施例还提供一种光线探测设备,包括上述实施例中的光线探测基板以及用于驱动该光线探测基板的驱动电路。
通过采用上述实施例中的光线探测基板,提升了该光线探测设备的光电特性,同时还能确保该光线探测设备中集成的TFT特性都正常。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开所附权利要求限定范围的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种光线探测基板,包括基底和设置在所述基底上的多个光线探测单元,所述多个光线探测单元中的每一个包括第一电极、第二电极和光电转换层,所述第一电极和所述第二电极位于所述基底上,所述光电转换层位于所述第一电极和所述第二电极的远离所述基底的一侧,所述光电转换层在所述基底上的正投影覆盖所述第一电极和所述第二电极在所述基底上的正投影,所述第一电极和所述第二电极在所述基底上的正投影之间具有间隔区,其中,所述光电转换层上开设有至少一个开口,所述至少一个开口在所述基底上的正投影位于所述间隔区中并且与所述第一电极和所述第二电极在所述基底上的正投影不重叠。
  2. 根据权利要求1所述的光线探测基板,其中,所述至少一个开口在所述基底上的正投影与相邻第一电极在所述基底上的正投影之间的距离大于或等于2μm,所述至少一个开口在所述基底上的正投影与相邻第二电极在所述基底上的正投影之间的距离大于或等于2μm。
  3. 根据权利要求1或2所述的光线探测基板,其中,所述第一电极和所述第二电极的沿垂直于所述基底方向的厚度均小于或等于2000埃。
  4. 根据权利要求3所述的光线探测基板,其中,所述第一电极和所述第二电极的厚度均为500埃。
  5. 根据权利要求1-4中任一项所述的光线探测基板,其中,所述第一电极和所述第二电极的坡度角范围均在大于0°且小于90°的范围内。
  6. 根据权利要求1-5中任一项所述的光线探测基板,其中,所述多个光线探测单元呈阵列排布,所述多个光线探测单元中的第二电极一体形成,一体形成的第二电极包括沿第一方向的至少一条第一电极线和沿第二方向的至少一条第二电极线,所述至少一条第一电极线与所述至少一条第二电极线相交以形成呈阵列排布的多个光线探测单元区域,
    在所述多个光线探测单元区域中的每一个中设置有一个第一电极,所述第一电极包括沿所述第二方向延伸的第一连接结构以及沿所述第一方向从所述第一连接结构突出的至少一个第一指状结构;
    所述一体形成的第二电极在所述多个光线探测单元区域中的每一个中设置有沿所述第一方向从所述第二电极线突出的至少一个第二指状结构;
    所述至少一个第一指状结构的突出方向与所述至少一个第二指状结构的突出方向相反,并且所述至少一个第二指状结构在所述基底上的正投影位于处于同一光线探测单元区域中的所述至少一个第一指状结构在所述基底上的正投影之间且与所述至少一个第一指状结构在所述基底上的正投影不重叠。
  7. 根据权利要求6所述的光线探测基板,其中,所述第一电极呈“E”形。
  8. 根据权利要求7所述的光线探测基板,其中,所述至少一个开口包括第一开口,所述第一开口位于所述“E”形第一电极的远离其第一指状结构的一侧与相邻的第二电极线之间。
  9. 根据权利要求8所述的光线探测基板,其中,所述至少一个开口还包括第二开口,所述第二开口位于所述“E”形第一电极与相邻的一条第一电极线之间。
  10. 根据权利要求9所述的光线探测基板,其中,
    所述第一开口为条形并且沿所述第二方向延伸,所述第二开口为条形并且 沿所述第一方向延伸,并且所述第一开口沿所述第二方向的投影长度大于或等于所述第一电极沿所述第二方向的投影长度,所述第二开口沿所述第一方向的投影长度大于或等于所述第一电极沿所述第一方向的投影长度。
  11. 根据权利要求10所述的光线探测基板,其中,所述第一开口与所述第二开口相交以形成“L”形。
  12. 根据权利要求1-11中任一项所述的光线探测基板,其中,所述第一电极和所述第二电极采用相同材料制成且同层设置,所述多个光线探测单元中的每一个还包括绝缘层,所述绝缘层位于所述光电转换层与所述第一电极和所述第二电极之间;
    所述至少一个开口还贯穿所述绝缘层。
  13. 根据权利要求12所述的光线探测基板,其中,所述绝缘层包括无机绝缘层,所述无机绝缘层的厚度范围为100~500埃。
  14. 根据权利要求12所述的光线探测基板,其中,所述绝缘层包括有机绝缘层,所述有机绝缘层的厚度范围为1000~2000埃。
  15. 根据权利要求1所述的光线探测基板,其中,所述多个光线探测单元中的每一个还包括电信号输出电路,所述电信号输出电路设置于所述第一电极和所述第二电极的靠近所述基底的一侧,所述电信号输出电路与所述第一电极和所述第二电极之间还设置有平坦化层,所述电信号输出电路通过开设在所述平坦化层中的过孔连接所述第一电极。
  16. 根据权利要求15所述的光线探测基板,其中,所述电信号输出电路包括开关晶体管;
    所述开关晶体管的第一极连接所述第一电极,第二极连接输出端,栅极连接驱动信号输入端。
  17. 根据权利要求15所述的光线探测基板,其中,所述电信号输出电路包括复位晶体管、电容、放大晶体管和开关晶体管,
    所述复位晶体管的第二极、所述电容的第一极以及所述放大晶体管的栅极分别连接所述第一电极;
    所述放大晶体管的第一极连接驱动电流输入端,第二极连接所述开关晶体管的第一极;
    所述复位晶体管的第一极连接复位信号端,栅极连接驱动信号输入端;以及
    所述开关晶体管的第二极连接输出端,栅极连接驱动信号输入端。
  18. 根据权利要求15-17中任一项所述的光线探测基板,其中,所述光电转换层采用氢化非晶硅材料制成,所述电信号输出电路中的晶体管的有源层均采用半导体金属氧化物材料制成。
  19. 一种光线探测设备,包括权利要求1-18中任一项所述的光线探测基板以及用于驱动所述光线探测基板的驱动电路。
  20. 一种如权利要求1-18任一项所述的光线探测基板的制备方法,包括:在基底上形成多个光线探测单元,形成所述多个光线探测单元包括在所述基底上形成第一电极和第二电极、光电转换层以及位于所述光电转换层中的至少一个开口,以使得所述光线探测基板形成为:
    所述多个光线探测单元中的每一个包括第一电极、第二电极和光电转换层,所述第一电极和所述第二电极位于所述基底上,所述光电转换层位于所述第一电极和所述第二电极的远离所述基底的一侧,所述光电转换层在所述基底上的 正投影覆盖所述第一电极和所述第二电极在所述基底上的正投影,所述第一电极和所述第二电极在所述基底上的正投影之间具有间隔区,所述光电转换层上的至少一个开口在所述基底上的正投影位于所述间隔区中并且与所述第一电极和所述第二电极在所述基底上的正投影不重叠。
PCT/CN2021/080521 2020-03-13 2021-03-12 光线探测基板及其制备方法、光线探测设备 WO2021180214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/630,651 US20220262834A1 (en) 2020-03-13 2021-03-12 Light detection substrate, manufacturing method thereof and light detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010176046.4 2020-03-13
CN202010176046.4A CN111354756B (zh) 2020-03-13 2020-03-13 一种光线探测基板及其制备方法、光线探测设备

Publications (1)

Publication Number Publication Date
WO2021180214A1 true WO2021180214A1 (zh) 2021-09-16

Family

ID=71194479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080521 WO2021180214A1 (zh) 2020-03-13 2021-03-12 光线探测基板及其制备方法、光线探测设备

Country Status (3)

Country Link
US (1) US20220262834A1 (zh)
CN (1) CN111354756B (zh)
WO (1) WO2021180214A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354756B (zh) * 2020-03-13 2022-08-26 京东方科技集团股份有限公司 一种光线探测基板及其制备方法、光线探测设备
CN111769177B (zh) * 2020-08-13 2021-10-08 上海大学 一种x射线探测器及其制备方法
CN113467642A (zh) * 2021-07-05 2021-10-01 深圳市华星光电半导体显示技术有限公司 光触控检测电路和光触控显示面板
CN116648789A (zh) * 2021-12-21 2023-08-25 京东方科技集团股份有限公司 光电探测器、探测基板、其制作方法及探测装置
CN115000109A (zh) * 2022-06-08 2022-09-02 京东方科技集团股份有限公司 射线探测器及射线探测设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090146178A1 (en) * 2007-12-05 2009-06-11 Fujifilm Corporation Photodiode
CN107170842A (zh) * 2017-06-12 2017-09-15 京东方科技集团股份有限公司 光电探测结构及其制作方法、光电探测器
CN108878544A (zh) * 2017-05-15 2018-11-23 上海新微科技服务有限公司 硅基光电探测器及其制作方法
CN110752268A (zh) * 2019-10-28 2020-02-04 电子科技大学 一种集成周期限光结构的msm光电探测器的制备方法
CN111354756A (zh) * 2020-03-13 2020-06-30 京东方科技集团股份有限公司 一种光线探测基板及其制备方法、光线探测设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283544A (ja) * 2008-05-20 2009-12-03 Fuji Electric Systems Co Ltd 薄膜太陽電池及びその製造方法
CN101969080A (zh) * 2010-08-10 2011-02-09 电子科技大学 一种黑硅msm结构光电探测器及其制备方法
JP2012064822A (ja) * 2010-09-17 2012-03-29 Panasonic Corp 固体撮像装置及びその製造方法
US10468450B2 (en) * 2014-04-04 2019-11-05 Dose Smart Imaging Apparatus for radiation detection in a radiography imaging system
JP2016021445A (ja) * 2014-07-11 2016-02-04 キヤノン株式会社 光電変換装置、および、撮像システム
CN104332513B (zh) * 2014-10-22 2016-11-02 中国石油大学(北京) 一种NiO纳米线紫外光探测器及其制备方法与应用
JP2016127264A (ja) * 2014-12-26 2016-07-11 ソニー株式会社 固体撮像素子およびその製造方法、並びに電子機器
JP2019040897A (ja) * 2017-08-22 2019-03-14 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子及び電子機器
US11387279B2 (en) * 2018-05-18 2022-07-12 Sony Semiconductor Solutions Corporation Imaging element, electronic apparatus, and method of driving imaging element
WO2019235179A1 (ja) * 2018-06-05 2019-12-12 ソニーセミコンダクタソリューションズ株式会社 撮像装置
CN108962928B (zh) * 2018-07-13 2021-08-27 京东方科技集团股份有限公司 一种探测面板及探测装置
CN109276268A (zh) * 2018-11-21 2019-01-29 京东方科技集团股份有限公司 X射线探测装置及其制造方法
CN109830563B (zh) * 2019-02-26 2022-07-19 京东方科技集团股份有限公司 探测面板及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090146178A1 (en) * 2007-12-05 2009-06-11 Fujifilm Corporation Photodiode
CN108878544A (zh) * 2017-05-15 2018-11-23 上海新微科技服务有限公司 硅基光电探测器及其制作方法
CN107170842A (zh) * 2017-06-12 2017-09-15 京东方科技集团股份有限公司 光电探测结构及其制作方法、光电探测器
CN110752268A (zh) * 2019-10-28 2020-02-04 电子科技大学 一种集成周期限光结构的msm光电探测器的制备方法
CN111354756A (zh) * 2020-03-13 2020-06-30 京东方科技集团股份有限公司 一种光线探测基板及其制备方法、光线探测设备

Also Published As

Publication number Publication date
US20220262834A1 (en) 2022-08-18
CN111354756A (zh) 2020-06-30
CN111354756B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2021180214A1 (zh) 光线探测基板及其制备方法、光线探测设备
JP6099035B2 (ja) 光電変換装置及びその製造方法並びにx線画像検出装置
US6740884B2 (en) Imaging array and methods for fabricating same
US9941324B2 (en) Semiconductor device, method of manufacturing semiconductor device, photodiode array, and imaging apparatus
US11522090B2 (en) Flat panel detection substrate, fabricating method thereof and flat panel detector
US8143117B2 (en) Active device array substrate and method for fabricating the same
WO2015141777A1 (ja) 光検出装置
WO2016163347A1 (ja) フォトセンサ基板
US11894398B2 (en) Photodetector, display substrate, and method of manufacturing photodetector
KR20120024241A (ko) 유기 발광 디스플레이 장치 및 그 제조 방법
US20210210535A1 (en) Array substrate, manufacturing method thereof, flat panel detector and image apparatus
US6777685B2 (en) Imaging array and methods for fabricating same
WO2015035829A1 (zh) Tft及其制作方法、阵列基板及其制作方法、x射线探测器和显示装置
KR101400282B1 (ko) 엑스레이용 이미지 센서 및 그의 제조 방법
JP2016213432A (ja) 半導体素子、半導体素子の製造方法、フォトダイオードアレイおよび撮像装置
US20220093675A1 (en) Optical detection module, method for manufacturing optical detection module, and optical detection substrate
JP4600964B2 (ja) ゲーテッドフォトダイオードを有する固体イメージャ及びその製造方法
US4621275A (en) Solid-state imaging device
CN108878515B (zh) 薄膜晶体管及其制备方法、阵列基板
KR101498635B1 (ko) 이미지센서 및 이의 제조방법
CN109950355B (zh) 平板探测器及其制作方法
CN109037037B (zh) 低温多晶硅层、薄膜晶体管及其制作方法
KR101674207B1 (ko) 엑스레이 검출기
WO2020062415A1 (zh) 显示面板及其制造方法
KR20150067808A (ko) 엑스레이 검출기의 어레이 기판 및 그의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768475

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21768475

Country of ref document: EP

Kind code of ref document: A1