WO2022216115A1 - 전고체전지 제조방법 및 이에 의한 전고체전지 - Google Patents

전고체전지 제조방법 및 이에 의한 전고체전지 Download PDF

Info

Publication number
WO2022216115A1
WO2022216115A1 PCT/KR2022/005133 KR2022005133W WO2022216115A1 WO 2022216115 A1 WO2022216115 A1 WO 2022216115A1 KR 2022005133 W KR2022005133 W KR 2022005133W WO 2022216115 A1 WO2022216115 A1 WO 2022216115A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state battery
negative electrode
battery
solid electrolyte
Prior art date
Application number
PCT/KR2022/005133
Other languages
English (en)
French (fr)
Inventor
이정필
한혜은
하회진
김동현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220043008A external-priority patent/KR20220140428A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22785024.5A priority Critical patent/EP4138170A1/en
Priority to CN202280004102.3A priority patent/CN115552687A/zh
Priority to JP2023506059A priority patent/JP2023536129A/ja
Publication of WO2022216115A1 publication Critical patent/WO2022216115A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an all-solid-state battery and to an all-solid-state battery by the same. Specifically, it relates to a method for manufacturing an all-solid-state battery with improved safety and increased lifespan characteristics by suppressing the formation of lithium dendrites, and an all-solid-state battery thereby.
  • Lithium secondary batteries which are rechargeable and have a high energy density, are attracting attention as a new energy source with eco-friendly characteristics because they can dramatically reduce the use of fossil fuels and do not generate by-products from the use of energy.
  • a lithium secondary battery is spotlighted as an energy source for a device having a high output and high energy density, such as an electric vehicle, as well as a wearable device or a portable device. To this end, many studies are being conducted to increase the operating voltage and energy density of the lithium secondary battery.
  • a lithium ion secondary battery including an electrolyte and a separator has a high risk of fire and explosion.
  • an all-solid-state battery using a non-flammable solid as an electrolyte has been proposed.
  • the all-solid-state battery uses a solid electrolyte, not only safety is high, but also the movement speed of lithium ions is fast, and the energy density is increased by reducing the thickness of the anode.
  • lithium dendrites may grow along the gaps in the solid electrolyte layer. Such lithium dendrites may cause a short circuit of the battery or a decrease in capacity.
  • Patent Document 1 relates to a method for manufacturing an all-solid-state battery capable of obtaining high output and excellent cycle characteristics, and specifically, a first step of assembling an all-solid-state battery, and heating the all-solid-state battery in an uncharged state and a third process of cooling the all-solid-state battery to an uncharged state, wherein the second process is performed by heating the all-solid-state battery while pressurizing.
  • the negative electrode of Patent Document 1 contains a carbonaceous material such as graphite as the negative electrode active material, and when lithium adhesion and detachment occurs on the surface of the negative electrode that does not contain the negative electrode active material, to suppress the formation of lithium dendrites. technology is not recognized.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2019-40759 (2019.03.14)
  • the present invention is to solve the above problems, and by increasing the interfacial bonding area between the solid electrolyte layer and the negative electrode, the generation of lithium dendrites is minimized to improve the lifespan characteristics and safety of the all-solid-state battery manufacturing method and the all-solid-state battery thereby aims to provide
  • an all-solid-state battery manufacturing method for achieving this object, (a) preparing an electrode assembly in which a solid electrolyte layer is disposed between a positive electrode and a negative electrode, (b) accommodating the electrode assembly in a battery case Assembling an all-solid-state battery, (c) primary pressurizing the all-solid-state battery, and (d) secondary pressurizing the all-solid-state battery, wherein the secondary pressurizing includes heating and pressurizing This can be done at the same time.
  • the temperature range of step (d) may be 60 °C to 150 °C.
  • Step (d) may be carried out for a time period of 12 hours or more to 30 hours or less.
  • the pressing jig for pressing the all-solid-state battery of step (d) is a positioning jig having a pair of structures including a first pressing jig and a second pressing jig, and the first pressing jig to press the all-solid-state battery
  • a process of pressurizing and heating in a state where the interval between the and second pressing jig is set, and resetting the interval between the first pressing jig and the second pressing jig when the thickness of the all-solid-state battery is smaller than the initial thickness, thereby pressurizing and heating may include
  • the contact surface between the negative electrode and the solid electrolyte layer boundary may increase after step (d) rather than before step (d).
  • the step (c) may be pressurized by the CIP method.
  • the negative electrode may not include a negative electrode mixture.
  • the present invention provides an all-solid-state battery manufactured by the all-solid-state battery manufacturing method, and a battery module including the all-solid-state battery as a unit cell.
  • the present invention can also be provided in a form in which various means for solving the above problems are combined.
  • the present invention includes the step of pressurizing and heating the all-solid-state battery, the interfacial contact between the solid electrolyte layer and the negative electrode can be significantly improved.
  • the present invention can provide a method for manufacturing an all-solid-state battery having a long lifespan characteristic and improved safety, and an all-solid-state battery thereby.
  • FIG. 1 is a schematic diagram of an all-solid-state battery manufacturing method according to the present invention.
  • the present invention is a method for manufacturing an all-solid-state battery using an electrode assembly including a positive electrode including a positive electrode mixture, a negative electrode not including a negative electrode mixture, and a solid electrolyte layer, specifically, (a ) preparing an electrode assembly having a solid electrolyte layer disposed between the positive electrode and the negative electrode, (b) accommodating the electrode assembly in a battery case and assembling an all-solid-state battery, (c) primary pressurizing the all-solid-state battery and (d) secondary pressurizing the all-solid-state battery. In the secondary pressurizing step, heating and pressurization may be performed at the same time.
  • lithium is inserted into a region in which the solid electrolyte layer and the negative electrode mixture contact and moves into the negative electrode active material.
  • a negative electrode having no negative electrode mixture and consisting only of a negative electrode current collector if the contact between the negative electrode current collector and the solid electrolyte layer is not uniformly made, lithium adhesion occurs only in a portion of the negative electrode current collector in contact with the solid electrolyte layer. As such, as a result of lithium growth occurring only in a portion of the negative electrode current collector, lithium dendrites may be formed.
  • the present invention proposes a method for manufacturing an all-solid-state battery capable of increasing the interfacial contact between the solid electrolyte layer and the negative electrode.
  • the electrode assembly is prepared so that the solid electrolyte layer 130 is disposed between the positive electrode 110 and the negative electrode 120 as a semi-assembled state of the all-solid-state battery.
  • the positive electrode 110 is illustrated in a form in which a positive electrode mixture 112 is coated on a positive electrode current collector 111 , and the negative electrode 120 is composed of only a negative electrode current collector.
  • the positive electrode 110 may have a form in which positive electrode tabs protruding downward in the drawing are coupled to the positive electrode lead 113
  • the negative electrode 120 has a type in which negative electrode tabs are coupled to the negative lead 123 so as to protrude upward in the drawing.
  • the electrode assembly may be accommodated in the battery case 201 and the all-solid-state battery 101 may be assembled by sealing the battery case 201 .
  • the battery case 201 may be a pouch-type battery case formed by molding a laminate sheet in which an external resin layer is bonded to the outside of the metal layer and an internal adhesive layer is bonded to the inside of the metal layer.
  • the positive electrode lead 113 and the negative electrode lead 123 may protrude to the outside of the battery case 201 to function as an electrode terminal.
  • FIG. 1C shows a state in which the all-solid-state battery 101 is placed in the chamber 140 in order to press the all-solid-state battery 101 according to a CIP (Cold Isostatic Pressing) processing method.
  • CIP Cold Isostatic Pressing
  • the CIP processing method also called cold isostatic pressing, is a method of pressing by applying the same pressure to the molded body in all directions. Since the CIP processing method is a method of infinitely multiaxial pressurization, it has excellent homogeneity compared to other molding methods and has the advantage of lowering the risk of damage to the all-solid-state battery by the pressing force.
  • the step of first pressing the all-solid-state battery may be performed.
  • the first pressing may be performed simultaneously with the heating process.
  • the pressing jig 150 may be composed of a first pressing jig and a second pressing jig disposed on both sides of the all-solid-state battery, and the pressing jig 150 may itself be of a temperature controllable form, When the all-solid-state battery 101 is pressurized with the jig 150, heating may be performed simultaneously. Alternatively, by arranging the all-solid-state battery disposed between the pressurizing jigs in an oven capable of maintaining a constant temperature, it may be configured to simultaneously pressurize and heat.
  • the present invention uses a method of manufacturing an electrode assembly by laminating a positive electrode, a solid electrolyte layer and a negative electrode, and applying a pressure in parallel to the interface between the electrode of the electrode assembly and the solid electrolyte layer, and the solid electrolyte layer and the Since the negative electrode can be easily deformed by heating, the interfacial contact between the all-solid-state battery and the negative electrode can be improved.
  • the pressure jig 150 may be a static pressure jig that continuously applies a constant pressure, or may be a stereotactic jig that can set a constant interval between a pair of pressure jigs.
  • the pressure jig is a stereotaxic jig
  • the volume of the electrode assembly and the all-solid-state battery is reduced according to the initially set interval of the pressure jig, the force for pressing the electrode assembly and the all-solid-state battery is reduced as time elapses. Therefore, a process of resetting the position of the pressure jig may be required.
  • the pressing jig for pressing the all-solid-state battery is a stereotactic jig having a pair of structures including a first pressing jig and a second pressing jig, and is configured to press the all-solid-state battery. Pressurizing and heating in a state where the interval between the first pressing jig and the second pressing jig is set, and when the thickness of the all-solid-state battery is smaller than the initial thickness, resetting the interval between the first pressing jig and the second pressing jig and heating And it may include a process of pressing.
  • a constant pressing force may be applied to the all-solid-state battery for a set time, so the process of resetting the interval between the first pressing jig and the second pressing jig is unnecessary.
  • the present invention includes a process of primary pressurization and a process of secondary pressurization
  • the process of secondary pressurization includes a process in which heating and pressurization are performed at the same time, so that the interfacial contact between the solid electrolyte layer and the cathode is further improved.
  • the process of secondary pressurization includes a process in which heating and pressurization are performed at the same time, so that the interfacial contact between the solid electrolyte layer and the cathode is further improved.
  • step (c) As a case in which heating is performed together with pressure in step (c), the pressure and temperature of each of steps (c) and (d) may be the same, or may be set to different pressures and temperatures.
  • step (c) and the step (d) can each independently set the pressure and temperature.
  • steps (c) and (d) may be performed differently in steps (c) and (d).
  • the pressurization and heating times of steps and (d) may be carried out for 12 hours or more. Specifically, it is necessary to prevent an inefficient increase in the manufacturing time of the all-solid-state battery, so that the pressurization and heating time may be carried out for 12 hours or more to 30 hours or less.
  • the pressing force of steps (c) and (d) may be applied with a constant magnitude.
  • the components of the all-solid-state battery may be prevented from being damaged by initially pressurizing at a low pressure and then pressurizing while increasing the pressing force step by step.
  • the effect of improving the contact between the all-solid-state battery and the negative electrode may be increased.
  • the heating temperature may also be increased stepwise.
  • step (c) may be performed only as a pressurizing process without a heating process.
  • the pressing force and/or pressing time of step (c) may be the same as the pressing force and/or pressing time of step (d), or may be set differently.
  • the all-solid-state battery is pressurized through the first pressurization of step (c) and the second pressurization of step (d), and the process of heating is carried out together during the second pressurization, wherein the negative electrode and the solid electrolyte layer
  • the contact surface of the boundary of (d) increases after step (d) rather than before step (d). Accordingly, uniform contact can be made over the entire interface between the anode and the solid electrolyte layer.
  • the positive electrode for example, is manufactured by coating a positive electrode mixture containing a positive electrode active material on a positive electrode current collector and then drying the positive electrode mixture, if necessary, a binder, a conductive material, a filler, etc. are optionally further added may be included.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, sintered carbon, or a surface of aluminum or stainless steel. Carbon, nickel, titanium, silver or the like surface-treated may be used.
  • the positive electrode current collector may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface thereof, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven body are possible.
  • the positive active material is a material capable of causing an electrochemical reaction, and may include at least one of the positive active materials represented by the following Chemical Formulas 1 to 3.
  • M is at least one selected from the group consisting of Ti, Cd, Cu, Cr, Mo, Mg, Al, Ni, Mn, Nb, V and Zr.
  • the positive active material is selected from the group consisting of a lithium metal oxide having a layered structure represented by Formula 1, a lithium manganese oxide having a spinel structure represented by Formula 2, and a lithium-containing phosphate oxide having an olivine structure represented by Formula 3 It may include one or two or more substances.
  • the layered lithium metal oxide is not limited in its type, but for example, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium cobalt-nickel oxide, lithium cobalt-manganese oxide, lithium manganese-nickel oxide , lithium nickel-manganese-cobalt oxide, and one or two or more selected from the group consisting of materials in which other elements are substituted or doped.
  • the spinel-structured lithium manganese oxide is also not limited in its type, but for example, one or two selected from the group consisting of lithium manganese oxide, lithium nickel manganese oxide, and materials in which other elements are substituted or doped therein. The above can be mentioned.
  • lithium-containing phosphate of the olivine structure is not limited in its type, and examples thereof include lithium iron phosphate and other elements substituted therewith.
  • the elliptic element may be one or two or more elements selected from the group consisting of Al, Mg, Mn, Ni, Co, Cr, V, and one or two or more Fe selected from the group consisting of doped materials.
  • the binder is a component that assists in bonding between the active material and the conductive material and bonding to the current collector, and is typically added in an amount of 1 wt% to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, It may include at least one selected from the group consisting of polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), styrene-butyrene rubber, fluororubber, and copolymers thereof.
  • CMC carboxymethylcellulose
  • EPDM rubber ethylene-propylene-diene monomer rubber
  • fluororubber styrene-butyrene rubber
  • the conductive material is typically added in an amount of 1 wt% to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as ethylene black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives, graphene and carbon nanotubes may be used.
  • the filler is optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery.
  • polyolefin-based polymers such as polyethylene and polypropylene
  • a fibrous material such as glass fiber or carbon fiber is used.
  • the negative electrode may include only the negative electrode current collector without including the negative electrode mixture.
  • the negative electrode current collector is generally made to have a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface. Carbon, nickel, titanium, a surface treated with silver, etc., an aluminum-cadmium alloy, etc. may be used.
  • the solid electrolyte constituting the solid electrolyte layer may be any one selected from the group consisting of a sulfide-based solid electrolyte, an oxide-based solid electrolyte, and a polymer-based solid electrolyte.
  • the sulfide-based solid electrolyte may contain a sulfur atom (S), have ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and may have electronic insulation properties.
  • S sulfur atom
  • the sulfide-based solid electrolyte contains at least Li, S and P as elements and preferably has lithium ion conductivity, but may contain elements other than Li, S and P depending on the purpose or case.
  • Li 6 PS 5 Cl Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiCl, Li 2 SP 2 S 5 -H 2 S, Li 2 SP 2 S 5 -H 2 S-LiCl, Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 OP 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 OP 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -P 2 O 5 , Li 2 SP 2 S 5 -SiS 2 , Li 2 SP 2 S 5 -SiS 2 - LiCl, Li 2 SP 2 S 5 -SnS, Li 2 SP 2 S 5 -Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2 -ZnS, Li
  • an amorphization method may be used as a method of synthesizing the sulfide-based inorganic solid electrolyte material.
  • the amorphization method include a mechanical milling method, a solution method, or a melt quenching method. This is because processing at room temperature (25°C) is possible and the manufacturing process can be simplified.
  • the oxide-based solid electrolyte is preferably a compound containing an oxygen atom (O), having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and having electronic insulating properties.
  • O oxygen atom
  • a phosphorus compound containing Li, P and O may also be used.
  • lithium phosphate Li 3 PO 4
  • LiPON in which a part of the oxygen of lithium phosphate is replaced with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON LiA 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the polymer-based solid electrolyte may each independently be a solid polymer electrolyte formed by adding a polymer resin to a solvated lithium salt, or a polymer gel electrolyte in which an organic electrolyte containing an organic solvent and a lithium salt is contained in a polymer resin.
  • the solid polymer electrolyte is an ion conductive material, and is not particularly limited as long as it is a polymer material commonly used as a solid electrolyte material of an all-solid-state battery.
  • the solid polymer electrolyte is, for example, a polyether-based polymer, a polycarbonate-based polymer, an acrylate-based polymer, a polysiloxane-based polymer, a phosphazene-based polymer, a polyethylene oxide, a polyethylene derivative, an alkylene oxide derivative, a phosphoric acid ester polymer, and a polyedge.
  • the solid polymer electrolyte is a polymer resin in which an amorphous polymer such as polymethyl methacrylate (PMMA), polycarbonate, polysiloxane and/or phosphazene is copolymerized as a comonomer in a polyethyleneoxide (PEO) main chain branched copolymer, comb type A polymer resin (comb-like polymer) and a cross-linked polymer resin may be included.
  • PMMA polymethyl methacrylate
  • PEO polyethyleneoxide
  • comb type A polymer resin comb-like polymer
  • cross-linked polymer resin may be included.
  • the polymer gel electrolyte includes an organic electrolyte containing lithium salt and a polymer resin, and the organic electrolyte contains 60 to 400 parts by weight based on the weight of the polymer resin.
  • the polymer applied to the gel electrolyte is not limited to a specific component, but for example, polyvinylchloride (PVC), polymethyl methacrylate (Poly (Methyl methacrylate), PMMA), polyacrylonitrile ( Polyacrylonitrile, PAN), polyvinylidene fluoride (poly(vinylidene fluoride, PVDF), polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), etc. may be included.
  • PVC polyvinylchloride
  • PVDF polymethyl methacrylate
  • PVDF polyacrylonitrile
  • PVDF-HFP polyvinylidene fluoride-hexafluoropropylene
  • the solid electrolyte layer may include a binder in order to secure the binding force of the solid electrolyte particles.
  • the binder for example, polytetrafluoroethylene (polytetrafluoroethylene), polyethylene oxide (polyethylene oxide), polyethylene glycol (polyethyleneglycol), polyacrylonitrile (polyacrylonitrile), polyvinyl chloride (polyvinylchloride), polymethyl methacrylate (polymethylmethacrylate), polypropyleneoxide, polyphosphazene, polysiloxane, polydimethylsiloxane, polyvinylidenefluoride, polyvinylidene fluoride-hexafluoropropylene public Copolymer (PVDF-HFP), polyvinylidene fluoride-chlorotrifluoroethylene copolymer (PVDF-CTFE), polyvinylidene fluoride-tetrafluoroethylene copolymer (PVDF-TFE), poly
  • the present invention provides a battery module comprising, as a unit cell, an all-solid-state battery manufactured by the all-solid-state battery manufacturing method as described above, wherein the battery module is a medium-to-large device that requires high-temperature stability, long cycle characteristics, and high capacity characteristics. It can be used as an energy source.
  • Examples of the medium-to-large device include a power tool powered by an omniscient motor; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter); electric golf carts; and a power storage system, but is not limited thereto.
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter)
  • E-scooter electric bicycles
  • electric scooters E-scooter
  • electric golf carts and a power storage system, but is not limited thereto.
  • aramidite Li 6 PS 5 Cl
  • polytetrafluoroethylene as a binder were dispersed and stirred in anisole in a weight ratio of 95: 5 to prepare a solid electrolyte layer slurry did.
  • the solid electrolyte layer slurry was coated on a polyethylene terephthalate release film and then vacuum dried at 100° C. for 12 hours to prepare a solid electrolyte layer having a thickness of 50 ⁇ m.
  • the solid electrolyte layer was interposed between Ni foils, sealed with an aluminum pouch, and then fixed to a pressure jig.
  • the electrochemical impedance was measured at 60 °C under the conditions of amplitude 10 mV and scan range 500 kHz to 0.1 mHz.
  • Ion resistance according to the measured pressure is shown in Table 1 below.
  • the solid electrolyte layer of the present invention contains a binder
  • the ionic resistance slightly increases as the structure changes in the solid electrolyte layer or the thermal stability of the binder decreases.
  • the solid electrolyte layer prepared in Experimental Example 1 was placed on a pressure jig and heat treatment was performed at the same time, and the change in ion resistance was measured using the same apparatus and conditions as in Example 1.
  • the ionic resistance measured in this way is shown in Table 3 below.
  • the initial condition refers to the initial state in which no pressure is applied to the pressure jig at room temperature (25° C.).
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 as a positive electrode active material
  • aryodite Li 6 PS 5 Cl
  • furnace black as a conductive material
  • polytetrafluoroethylene as a binder It was prepared in a weight ratio of 77.5: 19.5: 1.5: 1.5, and dispersed and stirred in anisole to prepare a positive electrode slurry.
  • the positive electrode slurry was applied to an aluminum current collector having a thickness of 14 ⁇ m using a doctor blade, and then vacuum dried at 100° C. for 12 hours to prepare a positive electrode.
  • aramidite Li 6 PS 5 Cl
  • polytetrafluoroethylene as a binder were dispersed and stirred in anisole in a weight ratio of 95: 5 to prepare a solid electrolyte layer slurry did.
  • the solid electrolyte layer slurry was coated on a polyethylene terephthalate release film and vacuum dried at 100° C. for 12 hours to prepare a solid electrolyte layer.
  • anode for an all-solid-state battery including a coating layer and an ion transport layer Ag was sputtered to a size of 30 nm on a nickel current collector having a thickness of 10 ⁇ m to form a coating layer made of an Ag layer. Thereafter, a slurry in which acetylene black and polyvinylidene fluoride were mixed in a weight ratio of 97:3 was coated on the Ag layer to form an ion transport layer, and then dried to prepare an anode having a multilayer structure.
  • the positive electrode, the solid electrolyte layer, and the negative electrode were sequentially stacked to prepare an all-solid-state battery.
  • the all-solid-state battery was placed on a pressure jig and heat-treated in an oven at 100° C. for 1 day under pressure of 5.5 Mpa.
  • Example 1 an all-solid-state battery was manufactured in the same manner as in Example 1, except that the all-solid-state battery was placed in a pressure jig and heat-treated in an oven at 150° C. for 12 hours.
  • Example 1 an all-solid-state battery was manufactured in the same manner as in Example 1, except that only the first pressing step was performed and the second pressing step was not performed.
  • Example 1 an all-solid-state battery was prepared in the same manner as in Example 1, except that the all-solid-state battery was placed on a pressurizing jig, pressurized at 11 Mpa, and no heat treatment was performed in the second pressurizing step. .
  • Example 1 the all-solid-state battery was prepared in the same manner as in Example 1, except that the all-solid-state battery was placed on a pressurizing jig in the second pressurizing step and pressurized at 11 Mpa for 2 days, and the heat treatment was not performed. prepared.
  • Example 1 an all-solid-state battery was manufactured in the same manner as in Example 1, except that only heat treatment was performed without disposing the all-solid-state battery on a pressing jig in the secondary pressurizing step.
  • Example 1 the all-solid-state battery was prepared in the same manner as in Example 1, except that in the second pressurizing step, the all-solid-state battery was not placed on a pressure jig and only heat treatment was performed in an oven at 100° C. for 2 days. prepared.
  • Example 1 the all-solid-state battery was placed in a pressure jig and pressurized to 5.5 Mpa in the same manner as in Example 1, except that in the second pressurizing step, heat treatment was performed in an oven at 100° C. for 3 hours. An all-solid-state battery was manufactured.
  • Example 1 in the same manner as in Example 1, except that in the second pressurizing step, the all-solid-state battery was placed in a pressurizing jig and heat-treated in an oven at 100° C. for 5 hours under pressure of 11 Mpa. An all-solid-state battery was manufactured.
  • Example 1 in the same manner as in Example 1, except that the all-solid-state battery was placed in a pressure jig in the second pressurizing step and heat-treated in an oven at 100° C. for 10 hours under pressure of 11 Mpa. An all-solid-state battery was manufactured.
  • Example 2 The same as in Example 1, except that the electrode assembly was prepared by roll pressing each of the positive electrode, the solid electrolyte layer, and the negative electrode without applying a pressing force to the electrode assembly by pressing the all-solid-state battery as in Example 1 An all-solid-state battery was manufactured by this method.
  • the all-solid-state batteries prepared in Examples 1, 2 and Comparative Examples 1 to 4 were charged at 0.05 in a constant current-constant voltage mode at 60° C. to 4.25 V, and discharged at 0.05 C to 3.0 V, while initial charging capacity, initial The discharge capacity was measured, and the results are shown in Table 4 below.
  • life evaluation was performed at 0.1C in the range of 3.7V to 4.2V.
  • Table 4 describes the number of cycles in which a short occurred during charging and discharging of the all-solid-state battery and the capacity retention rate at that time.
  • Comparative Examples 6 to 8 even if heating and pressurization are performed simultaneously, when the heating and pressurization time is shorter than 12 hours, the effect of improving the ion resistance is not large, so the life improvement effect is significantly low.
  • Comparative Examples 7 and 8 it can be seen that even when the pressing force is higher than in Examples 1 and 2, when the heating and pressing times are short, the capacity retention rate and cycle characteristics are poor.
  • the contact surface between the anode and the solid electrolyte layer is increased to improve the ion resistance of the battery As a result, it can be seen that the capacity retention rate and lifespan characteristics are improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본원발명은 전고체전지 제조방법에 관한 것으로, (a) 양극과 음극 사이에 고체전해질층이 배치된 전극조립체를 준비하는 단계, (b) 상기 전극조립체를 가압 및 가열하는 단계, (c) 상기 전극조립체를 전지케이스에 수용하여 전고체전지를 조립하는 단계, 및 (d) 상기 전고체전지를 가압 및 가열하는 단계를 포함하고, 상기 음극은 음극 합제를 포함하지 않는 바, 수명 특성이 향상되고 안전성이 확보되는 전고체전지 제조방법에 관한 것이다. (대표도) 도 1

Description

전고체전지 제조방법 및 이에 의한 전고체전지
본 출원은 2021년 4월 9일자 한국 특허 출원 제 2021-0046816 호 및 2022년 4월 6일자 한국 특허 출원 제 2022-0043008 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본원발명은 전고체전지 제조방법 및 이에 의한 전고체전지에 관한 것이다. 구체적으로, 리튬 덴드라이트 형성을 억제하여 수명 특성이 증가하고 안전성이 향상된 전고체전지 제조방법 및 이에 의한 전고체전지에 관한 것이다.
재충전이 가능하며 높은 에너지 밀도를 갖는 리튬 이차전지는 화석 연료의 사용을 획기적으로 줄일 수 있을 뿐 아니라 에너지의 사용에 따른 부산물이 발생하지 않기 때문에 친환경 특성을 갖는 새로운 에너지원으로 주목받고 있다.
리튬 이차전지는 웨어러블(wearable) 디바이스 또는 포터블(portable) 디바이스 뿐만 아니라, 전기자동차와 같은 고출력 및 고에너지 밀도를 갖는 디바이스의 에너지원으로도 각광받고 있다. 이를 위해 리튬 이차전지의 작동 전압 및 에너지 밀도를 증가시키기 위한 많은 연구가 진행되고 있다.
리튬 이차전지의 일종으로 전해액과 분리막을 포함하는 리튬 이온 이차전지는 화재 및 폭발의 위험이 높다. 이에 대한 해결책으로서, 불연성의 고체를 전해질로 사용한 전고체전지가 제시되고 있다.
전고체전지는 고체전해질을 사용하기 때문에 안전성이 높을 뿐만 아니라, 리튬 이온의 이동 속도가 빠르고, 음극의 두께를 줄임으로써 에너지 밀도가 증가된 장점이 있다.
특히 전고체전지의 에너지 밀도를 향상시키는 수단으로서, 음극 합제를 포함하지 않고, 집전체로만 구성되는 음극 형태가 제안되었다.
음극 합제가 없는 음극집전체를 포함하는 전고체전지를 충전하면, 리튬 이온이 양극에서 음극으로 이동하고, 음극집전체와 고체전해질층이 접촉하는 부분의 음극집전체에 리튬이 부착(plating)된다. 이 상태의 전고체전지를 방전하면 음극집전체에 부착되었던 리튬이 탈리(stripping)되어 양극으로 이동한다.
전고체전지의 충방전이 반복됨에 따라 음극집전체에 부착된 리튬은 점점 크기가 증가하고 고체전해질층의 틈새를 따라 리튬 덴드라이트가 성장할 수 있다. 이러한 리튬 덴드라이트는 전지의 단락 또는 용량 저하의 원인이 될 수 있다.
고체전해질층과 음극집전체의 접촉면이 좁은 경우, 리튬이 좁은 면적에만 부착되기 때문에 리튬 덴드라이트 발생 가능성이 높아진다. 그러므로, 음극집전체와 고체전해질층의 접촉면을 향상시키기 위한 기술이 필요하다.
이와 관련하여, 특허문헌 1은 높은 출력과 우수한 사이클 특성을 얻을 수 있는 전고체전지의 제조방법에 관한 것으로서, 구체적으로 전고체전지를 조립하는 제1공정, 상기 전고체전지를 미충전 상태로 가열하는 제2공정, 및 상기 전고체전지를 미충전 상태로 냉각하는 제3공정을 포함하고, 상기 제2공정은 상기 전고체전지를 가압하면서 가열하는 과정으로 진행된다.
특허문헌 1의 음극은 흑연 등의 탄소질 재료 등을 음극 활물질로 포함하고 있는 바, 음극 활물질을 포함하지 않는 음극의 표면에 리튬의 부착과 탈리가 일어나는 경우에 리튬 덴드라이트의 형성을 억제하기 위한 기술을 인식하지 못하고 있다.
따라서, 음극 합제가 없는 애노드 프리(anode-free) 음극을 포함하는 전고체전지의 리튬 덴드라이트의 형성을 억제하기 위한 기술이 필요한 실정이다.
(특허문헌 1) 일본 공개특허공보 제2019-40759호 (2019.03.14)
본원발명은 상기와 같은 문제를 해결하기 위한 것으로서, 고체전해질층과 음극의 계면 접착 면적을 넓힘으로써 리튬 덴드라이트의 발생을 최소화하여 수명 특성과 안전성이 향상된 전고체전지 제조방법 및 이에 의한 전고체전지를 제공하는 것을 목적으로 한다.
이러한 목적을 달성하기 위한 본원발명에 따른 전고체전지 제조방법은, (a) 양극과 음극 사이에 고체전해질층이 배치된 전극조립체를 준비하는 단계, (b) 상기 전극조립체를 전지케이스에 수용하여 전고체전지를 조립하는 단계, (c) 상기 전고체전지를 1차 가압하는 단계, 및 (d) 상기 전고체전지를 2차 가압하는 단계를 포함하고, 상기 2차 가압하는 단계는 가열과 가압이 동시에 이루어질 수 있다.
상기 (d)단계의 온도 범위는 60℃ 내지 150℃일 수 있다.
상기 (d)단계는 12시간 이상 내지 30시간 이하의 시간 동안 진행될 수 있다.
상기 (d) 단계의 상기 전고체전지를 가압하는 가압 지그는 제1가압 지그와 제2가압 지그를 포함하는 한 쌍의 구조로 이루어진 정위 지그로서, 상기 전고체전지를 가압하도록 상기 제1가압 지그와 제2가압 지그의 간격을 설정한 상태로 가압 및 가열하고, 상기 전고체전지의 두께가 초기 두께보다 줄어들면, 상기 제1가압 지그와 제2가압 지그의 간격을 재설정하여 가압 및 가열하는 과정을 포함할 수 있다.
상기 음극과 고체전해질층 경계의 접촉면은 (d)단계 이전 보다 (d)단계 이후에 증가할 수 있다.
상기 단계(c)는 CIP 방법으로 가압할 수 있다.
상기 음극은 음극 합제를 포함하지 않을 수 있다.
본원발명은, 상기 전고체전지 제조방법에 의해 제조된 전고체전지, 및, 상기 전고체전지를 단위셀로 포함하는 전지모듈을 제공한다.
본원발명은 또한, 상기 과제의 해결 수단을 다양하게 조합한 형태로도 제공이 가능하다.
이상에서 설명한 바와 같이, 본원발명은 전고체전지를 가압 및 가열하는 단계를 포함하기 때문에, 고체전해질층과 음극의 계면 접촉을 현저히 향상시킬 수 있다.
또한, 음극 합제를 포함하지 않는 음극을 사용함에도 음극 표면 중 국부적인 부분에서 리튬핵이 형성되는 것을 방지하여 상기 리튬핵이 리튬 덴드라이트로 성장하는 것을 억제할 수 있다.
이와 같이 본원발명은 장시간 수명 특성이 확보되고 안전성이 향상된 전고체전지 제조방법 및 이에 의한 전고체전지를 제공할 수 있다.
도 1은 본원발명에 따른 전고체전지 제조방법의 개략도이다.
이하 첨부된 도면을 참조하여 본원발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본원발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본원발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본원발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 구성요소를 한정하거나 부가하여 구체화하는 설명은, 특별한 제한이 없는 한 모든 발명에 적용될 수 있으며, 특정한 발명에 대한 설명으로 한정되지 않는다.
또한, 본원의 발명의 설명 및 청구범위 전반에 걸쳐서 단수로 표시된 것은 별도로 언급되지 않는 한 복수인 경우도 포함한다.
또한, 본원의 발명의 설명 및 청구범위 전반에 걸쳐서 "또는"은 별도로 언급되지 않는 한 "및"을 포함하는 것이다. 그러므로 "A 또는 B를 포함하는"은 A를 포함하거나, B를 포함하거나, A 및 B를 포함하는 상기 3가지 경우를 모두 의미한다.
본원발명을 도면에 따라 상세한 실시예와 같이 설명한다.
도 1을 참조하면, 본원발명은 양극 합제를 포함하는 양극, 음극 합제를 포함하지 않는 음극, 및 고체전해질층을 포함하는 전극조립체를 이용하여 전고체전지를 제조하는 방법으로서, 구체적으로, (a) 양극과 음극 사이에 고체전해질층이 배치된 전극조립체를 준비하는 단계, (b) 상기 전극조립체를 전지케이스에 수용하여 전고체전지를 조립하는 단계, (c) 상기 전고체전지를 1차 가압하는 단계, 및 (d) 상기 전고체전지를 2차 가압하는 단계를 포함하고, 상기 2차 가압하는 단계는 가열과 가압이 동시에 이루어질 수 있다.
일반적으로 음극 합제가 형성된 음극을 포함하는 전고체전지에 있어서, 고체전해질층과 음극 합제가 접촉하는 영역에 리튬이 삽입되어 음극활물질 내로 이동하게 된다. 음극 합제가 없고 음극집전체로만 구성되는 음극은 음극집전체와 고체전해질층 사이의 접촉이 균일하게 이루어지지 못할 경우, 고체전해질층과 접촉된 음극집전체의 일부 영역에서만 리튬의 부착이 일어나게 된다. 이와 같이, 음극집전체의 일부분에만 리튬의 성장이 생기는 결과, 리튬 덴드라이트가 형성될 수 있다.
이와 같은 문제를 해결하기 위하여, 본원발명은 고체전해질층과 음극의 계면 접촉을 증가시킬 수 있는 전고체전지 제조방법을 제시한다.
구체적으로, 전고체전지의 반조립 상태로서 양극(110)과 음극(120) 사이에 고체전해질층(130)이 배치되도록 전극조립체를 준비한다. 양극(110)은 양극 집전체(111)에 양극 합제(112)가 코팅되어 있고, 음극(120)은 음극집전체로만 구성되는 형태로 도시되어 있다.
양극(110)은 도면 상 하측으로 돌출되는 양극탭들이 양극리드(113)에 결합된 형태일 수 있고, 음극(120)은 도면 상 상측으로 돌출되도록 음극탭들이 음극리드(123)에 결합된 형태일 수 있다.
전극조립체는 전지케이스(201)에 수용되고 전지케이스(201)를 밀봉하여 전고체전지(101)를 조립할 수 있다. 전지케이스(201)는 금속층의 외측에 외부 수지층이 결합되고 상기 금속층의 내측에 내부 접착층이 결합된 라미네이트 시트를 성형한 파우치형 전지케이스일 수 있다.
전지케이스(201)를 밀봉한 상태에서 양극리드(113)와 음극리드(123)는 전지케이스(201)의 외측으로 돌출되어 전극단자로 기능할 수 있다.
도 1의 (c)는 전고체전지(101)를 CIP(Cold Isostatic Pressing) 가공법에 따라 가압하기 위하여 전고체전지(101)를 챔버(140)에 넣은 상태를 도시하고 있다.
CIP 가공법은, 냉간등압성형이라고도 하며, 성형체에 대해 모든 방향에서 동일한 압력을 인가하여 가압하는 방법이다. CIP 가공법은 무한 다축적으로 가압하는 방법이기 때문에 타 성형법과 비교할 때 균질성이 우수하고, 가압력에 의해 전고체전지가 손상될 위험을 낮출 수 있는 장점이 있다.
상기 CIP 가공 과정으로 전고체전지를 1차 가압하는 단계를 진행할 수 있는 바, 선택적으로, 상기 1차 가압하는 단계는 가열하는 과정과 동시에 진행될 수 있다.
도 1의 (d)는, 챔버(140)에 수용되어 1차 가압된 전고체전지(101)를 챔버(140)에서 꺼내어 한 쌍의 가압 지그(150) 사이에 배치하고, 그 상태로 가열하기 위하여 온도가 설정된 오븐(160) 내에 배치한 상태를 도시하고 있다.
가압 지그(150)는 전고체전지의 양측면 각각에 배치되는 제1가압 지그와 제2가압 지그로 구성될 수 있으며, 상기 가압 지그(150)는 그 자체가 온도 조절이 가능한 형태일 수 있으며, 가압 지그(150)로 전고체전지(101)를 가압할 때, 가열이 동시에 이루어지는 형태일 수 있다. 또는 가압 지그 사이에 배치된 전고체전지를 일정한 온도가 유지될 수 있는 오븐 내에 배치함으로써 가압과 가열이 동시에 이루어질 수 있도록 구성할 수 있다.
이와 같이, 가압과 가열이 동시에 진행되는 경우에는, 전고체전지에 적용되는 총 에너지가 열과 압력에 의해 증가되기 때문에, 고체전해질층과 음극 계면에서 입자와 입자, 및 층과 층의 접촉이 증가될 수 있다.
또한, 본원발명은 양극, 고체전해질층 및 음극을 적층하여 전극조립체를 제조하고, 상기 전극조립체의 전극과 고체전해질층의 계면에 평행하게 압력을 인가하는 방법을 사용하고 있으며, 상기 고체전해질층과 음극은 가열로 인해 변형이 용이한 상태가 될 수 있는 바, 전고체전지와 음극 간의 계면 접촉이 개선될 수 있다.
가압 지그(150)는 일정한 압력을 지속적으로 인가하는 정압 지그일 수 있고, 또는, 한 쌍의 가압 지그들 사이 간격을 일정하게 설정할 수 있는 정위 지그 일 수 있다.
상기 가압 지그가 정위 지그인 경우, 초기에 설정된 가압 지그의 간격에 따라 전극조립체 및 전고체전지의 부피가 줄어들기 때문에, 시간이 경과할수록 전극조립체와 전고체전지를 가압하는 힘이 줄어들게 된다. 따라서, 가압 지그의 위치를 재설정해주는 과정이 필요할 수 있다.
구체적으로, 상기 (d) 단계에, 상기 전고체전지를 가압하는 가압 지그는 제1가압 지그와 제2가압 지그를 포함하는 한 쌍의 구조로 이루어진 정위 지그로서, 상기 전고체전지를 가압하도록 상기 제1가압 지그와 제2가압 지그의 간격을 설정한 상태로 가압 및 가열하고, 상기 전고체전지의 두께가 초기 두께보다 줄어들면, 상기 제1가압 지그와 제2가압 지그의 간격을 재설정하여 가열 및 가압하는 과정을 포함할 수 있다.
또는, 상기 가압 지그가 정압 지그인 경우, 설정된 시간 동안 전고체전지에 일정한 가압력이 인가될 수 있으므로, 상기 제1가압 지그와 제2가압 지그의 간격을 재설정하는 과정이 불필요하다.
이와 같이, 본원발명은 1차 가압하는 과정과 2차 가압하는 과정을 포함하고, 상기 2차 가압하는 과정은 가열 및 가압이 동시에 이루어지는 과정을 포함하는 바, 고체전해질층과 음극 간의 계면 접촉을 더욱 향상시킬 수 있다. 이를 통해서 이온저항이 낮은 전고체전지를 제공할 수 있다. 또한, 리튬 덴드라이트의 생성을 억제함으로써, 수명 특성이 향상된 전고체전지를 제공할 수 있다.
상기 (c)단계에서 가압과 함께 가열이 진행되는 경우로서, 상기 (c)단계와 (d)단계 각각의 가압력과 온도는 동일할 수 있으며, 또는 서로 다른 가압력과 온도로 설정할 수 있다.
즉, 상기 (c)단계와 (d)단계는 각각 독립적으로 가압력과 온도를 설정할 수 있다.
한편, 상기 (c)단계와 (d)단계의 가압 및 가열 시간은 상기 (c)단계와 (d)단계에서 서로 다르게 진행될 수 있다.
예를 들어, 전고체전지에 고압 및 고온을 빠르게 인가하는 경우 전고체전지의 구성 성분이 손상될 수 있는 점, 및 고체전해질층과 음극의 접촉을 향상시키기 위한 목적을 고려할 때, 상기 (c)단계와 (d)단계의 가압 및 가열 시간은 12시간 이상 진행될 수 있다. 상세하게는, 전고체전지의 제조 시간이 비효율적으로 증가하는 것을 방지할 필요가 있는 바, 상기 (c)단계와 (d)단계의 가압력과 온도가 적절하게 설정되는 것을 전제로, 가압 및 가열 시간은 12시간 이상 내지 30 시간 이내로 진행될 수 있다.
하나의 구체적인 예로서, (c)단계와 (d)단계의 가압력은 일정한 크기로 인가될 수 있다. 또는, 초기에는 낮은 압력으로 가압하고 단계적으로 가압력을 높이면서 가압함으로써 전고체전지의 성분들이 손상되는 것을 방지할 수 있다. 또한, 전고체전지와 음극 간의 접촉성 향상 효과가 증가할 수 있다.
또한, 이와 같이 (c)단계와 (d)단계의 가압력이 단계적으로 증가할 때, 가열하는 온도도 단계적으로 증가할 수 있다.
하나의 구체적인 예에서, 상기 (c)단계는 가열하는 과정 없이 가압하는 과정으로만 진행될 수 있다. 이 때 상기 (c)단계의 가압력 및/또는 가압 시간은 (d)단계의 가압력 및/또는 가압 시간과 동일할 수 있고, 또는, 다르게 설정할 수 있다.
본원발명은 (c)단계의 1차 가압 및 (d)단계의 2차 가압을 통해 전고체전지를 가압하고, 상기 2차 가압시에는 가열하는 과정을 함께 진행하는 바, 상기 음극과 고체전해질층의 경계의 접촉면은 (d)단계 이전 보다 (d)단계 이후에 증가하게 된다. 따라서, 음극과 고체전해질층 간의 계면 전체에서 균일한 접촉이 이루어질 수 있다.
따라서, 음극과 고체전해질층 사이에 리튬 덴드라이트가 성장하는 것을 최소화할 수 있다.
상기 양극은, 예를 들어, 양극집전체 상에 양극 활물질을 포함하고 있는 양극 합제를 도포한 후 건조하여 제조되며, 상기 양극 합제에는, 필요에 따라, 바인더, 도전재, 충진재 등이 선택적으로 더 포함될 수도 있다.
상기 양극집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 양극집전체는, 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은 전기화학적 반응을 일으킬 수 있는 물질이며, 하기 화학식 1 내지 3으로 표현되는 양극 활물질 중 적어도 하나를 포함할 수 있다.
LiaCo1-xMxO2 (1)
LiaMn2-yMyO4 (2)
LiaFe1-zMzPO4 (3)
상기 식에서 0.8≤a≤1.2; 0≤x≤0.8; 0≤y≤0.6, 0≤z≤0.5 이고,
M은 Ti, Cd, Cu, Cr, Mo, Mg, Al, Ni, Mn, Nb, V 및 Zr로 이루어진 군에서 선택되는 1종 이상이다.
즉, 상기 양극 활물질은 화학식 1로 표시되는 층상 구조의 리튬 금속 산화물, 화학식 2로 표시되는 스피넬 구조의 리튬 망간계 산화물 및 화학식 3으로 표시되는 올리빈 구조의 리튬 함유 인산화물로 구성된 군에서 선택되는 하나 또는 둘 이상의 물질을 포함할 수 있다.
상기 층상 구조의 리튬 금속 산화물은 그 종류에 있어 제한되지는 않지만, 예를 들어, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 코발트-니켈 산화물, 리튬 코발트-망간 산화물, 리튬 망간-니켈 산화물, 리튬 니켈-망간-코발트 산화물 및 이들에 타원소가 치환 또는 도핑된 물질로 구성된 군에서 선택되는 하나 또는 둘 이상인 것을 들 수 있다.
상기 리튬 니켈-망간-코발트 산화물은 Li1+zNibMncCo1-(b+c+d)MdO(2-e)Ae (여기서, -0.5≤z≤0.5, 0.1≤b≤0.8, 0.1≤c≤0.8, 0≤d≤0.2, 0≤e≤0.2, b+c+d<1 임, M = Al, Mg, Cr, Ti, Si 또는 Y이고, A = F, P 또는 Cl 임)로 표현될 수 있다.
상기 스피넬 구조의 리튬 망간계 산화물 또한 그 종류에 있어 제한되지는 않지만, 예를 들어, 리튬 망간 산화물, 리튬 니켈 망간 산화물 및 이들에 타원소가 치환 또는 도핑된 물질로 구성된 군에서 선택되는 하나 또는 둘 이상인 것을 들 수 있다.
또한, 상기 올리빈 구조의 리튬 함유 인산염도 그 종류에 있어 제한되지는 않지만, 예를 들어, 리튬 철인산화물 및 이에 타원소가 치환 또는 것을 들 수 있다.
상기 타원소는 Al, Mg, Mn, Ni, Co, Cr, V 및 도핑된 물질로 구성된 군에서 선택되는 하나 또는 둘 이상인 Fe로 구성된 군에서 선택되는 하나 또는 둘 이상의 원소일 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 관한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 스티렌 부티렌 고무, 불소 고무, 및 이들의 공중합제로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 중량% 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 에틸렌 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재, 그래핀 및 탄소나노튜브 등이 사용될 수 있다.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
상기 음극은 음극 합제를 포함하지 않고 음극집전체로만 구성될 수 있다.
상기 음극집전체는 일반적으로 3 μm 내지 500 μm의 두께로 만들어진다. 이러한 음극집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 고체전해질층을 구성하는 고체전해질은 황화물계 고체전해질, 산화물계 고체전해질 및 고분자계 고체전해질로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 황화물계 고체전해질은, 황 원자(S)를 함유하고, 또한 주기율표 제1족 또는 제2족에 속하는 금속의 이온 전도성을 가지며, 전자 절연성을 갖을 수 있다. 황화물계 고체전해질은, 원소로서 적어도 Li, S 및 P를 함유하고, 리튬 이온 전도성을 갖는 것이 바람직하지만, 목적 또는 경우에 따라, Li, S 및 P 이외의 다른 원소를 포함할 수 있다.
구체적인 황화물계 무기 고체전해질로서, 예를 들면, Li6PS5Cl, Li2S-P2S5, Li2S-P2S5-LiCl, Li2S-P2S5-H2S, Li2S-P2S5-H2S-LiCl, Li2S-LiI-P2S5, Li2S-LiI-Li2O-P2S5, Li2S-LiBr-P2S5, Li2S-Li2O-P2S5, Li2S-Li3PO4-P2S5, Li2S-P2S5-P2O5, Li2S-P2S5-SiS2, Li2S-P2S5-SiS2-LiCl, Li2S-P2S5-SnS, Li2S-P2S5-Al2S3, Li2S-GeS2, Li2S-GeS2-ZnS, Li2S-Ga2S3, Li2S-GeS2-Ga2S3, Li2S-GeS2-P2S5, Li2S-GeS2-Sb2S5, Li2S-GeS2-Al2S3, Li2S-SiS2, Li2S-Al2S3, Li2S-SiS2-Al2S3, Li2S-SiS2-P2S5, Li2S-SiS2-P2S5-LiI, Li2S-SiS2-LiI, Li2S-SiS2-Li4SiO4, Li2S-SiS2-Li3PO4, 및 Li10GeP2S12 등이 사용될 수 있다.
상기 황화물계 무기 고체전해질 재료를 합성하는 방법으로 비정질화법을 사용할 수 있다. 상기 비정질화법으로, 예를 들면 메커니컬 밀링법, 용액법 또는 용융 급랭법을 들 수 있다. 상온(25℃)의 처리가 가능해져, 제조 공정의 간략화를 도모할 수 있기 때문이다.
상기 산화물계 고체전해질은, 산소 원자(O)를 함유하고, 주기율표 제1족 또는 제2족에 속하는 금속의 이온 전도성을 가지며, 전자 절연성을 갖는 화합물이 바람직하다.
상기 산화물계 고체전해질로서, 예를 들면 LixaLayaTiO3〔xa=0.3~0.7, ya=0.3~0.7〕(LLT), LixbLaybZrzbMbb mbOnb(Mbb 는 Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In 및 Sn 중 적어도 1종 이상의 원소이며, xb는 5≤xb≤10을 충족시키고, yb는 1≤yb≤4를 충족시키며, zb는 1≤zb≤4를 충족시키고, mb는 0≤mb≤2를 충족시키며, nb는 5≤nb≤20을 충족시킴), LixcBycMcc zcOnc(Mcc는 C, S, Al, Si, Ga, Ge, In 및 Sn 중 적어도 1종 이상의 원소이며, xc는 0≤xc≤5를 충족시키고, yc는 0≤yc≤1을 충족시키며, zc는 0≤zc≤1을 충족시키고, nc는 0≤nc≤6을 충족시킴), Lixd(Al, Ga)yd(Ti, Ge)zdSiadPmdOnd(단, 1≤xd≤3, 0≤yd≤1, 0≤zd≤2, 0≤ad≤1, 1≤md≤7, 3≤nd≤13), Li(3-2xe)Mee xeDeeO(xe는 0 이상 0.1 이하의 수를 나타내고, Mee는 2가의 금속 원자를 나타낸다. Dee는 할로젠 원자 또는 2종 이상의 할로젠 원자의 조합을 나타냄), LixfSiyfOzf(1≤xf≤5, 0<yf≤3, 1≤zf≤10), LixgSygOzg(1≤xg≤3, 0<yg≤2, 1≤zg≤10), Li3BO3-Li2SO4, Li2O-B2O3-P2O5, Li2O-SiO2, Li6BaLa2Ta2O12, Li3PO(4-3/2w)Nw(w는 w<1), LISICON(Lithium super ionic conductor)형 결정 구조를 갖는 Li3.5Zn0.25GeO4, 페로브스카이트형 결정 구조를 갖는 La0.55Li0.35TiO3, NASICON(Natrium super ionic conductor)형 결정 구조를 갖는 LiTi2P3O12, Li1+xh+yh(Al, Ga)xh(Ti, Ge)2-xhSiyhP3-yhO12(단, 0≤xh≤1, 0≤yh≤1), 가닛형 결정 구조를 갖는 Li7La3Zr2O12(LLZ) 등을 들 수 있다. 또는, Li, P 및 O를 포함하는 인 화합물도 사용할 수 있다. 예를 들면 인산 리튬(Li3PO4), 인산 리튬의 산소의 일부를 질소로 치환한 LiPON, LiPOD1(D1은, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt 및 Au 등으로부터 선택된 적어도 1종) 등을 들 수 있다. 또는, LiA1ON(A1은, Si, B, Ge, Al, C 및 Ga 등으로부터 선택된 적어도 1종) 등도 사용할 수 있다.
상기 고분자계 고체전해질은 각각 독립적으로 용매화된 리튬염에 고분자 수지가 첨가되어 형성된 고체 고분자 전해질이거나, 유기 용매와 리튬염을 함유한 유기 전해액을 고분자 수지에 함유시킨 고분자 겔 전해질일 수 있다.
예를 들어, 상기 고체 고분자 전해질은 이온 전도성 재질로 통상적으로 전고체전지의 고체전해질 재료로 사용되는 고분자 재료이면 특별히 한정되는 것은 아니다. 상기 고체 고분자 전해질은 예를 들어, 폴리에테르계 고분자, 폴리카보네이트계 고분자, 아크릴레이트계 고분자, 폴리실록산계 고분자, 포스파젠계 고분자, 폴리에틸렌옥사이드, 폴리에틸렌 유도체, 알킬렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리에지테이션 리신, 폴리에스테르설파이드, 폴리비닐알코올, 폴리불화비닐리덴, 또는 이온성 해리기를 포함하는 중합체 등을 포함할 수 있다. 또는, 상기 고체 고분자 전해질은 고분자 수지로서 PEO(polyethyleneoxide) 주쇄에 폴레메틸메타크릴레이트(PMMA), 폴리카보네이트, 폴리실록산 및/또는 포스파젠과 같은 무정형 고분자를 공단량체로 공중합시킨 가지형 공중합체, 빗형 고분자 수지 (comb-like polymer) 및 가교 고분자 수지 등이 포함될 수 있다.
상기 고분자 겔 전해질은 리튬염을 포함하는 유기 전해액과 고분자 수지를 포함하는 것으로서, 상기 유기 전해액은 고분자 수지의 중량 대비 60~400 중량부를 포함하는 것이다. 겔 전해질에 적용되는 고분자는 특정한 성분으로 한정되는 것은 아니나, 예를 들어, 폴리비닐클로라이드계(Polyvinylchloride, PVC), 폴리메틸메타크릴레이트(Poly(Methyl methacrylate), PMMA)계, 폴리아크릴로니트릴(Polyacrylonitrile, PAN), 폴리불화비닐리덴(poly(vinylidene fluoride, PVDF), 폴리불화비닐리덴-육불화프로필렌(poly(vinylidene fluoride-hexafluoropropylene: PVDF-HFP) 등이 포함될 수 있다.
상기 고체전해질층은 고체전해질 입자의 결착력을 확보하기 위하여 바인더를 포함할 수 있다. 상기 바인더는, 예를 들어, 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리에틸렌글리콜(polyethyleneglycol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐클로라이드(polyvinylchloride), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리프로필렌옥사이드(polypropyleneoxide), 폴리포스파젠(Polyphosphazene), 폴리실록산(Polysiloxane), 폴리디메틸실록산(polydimethylsiloxane), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 공중합체(PVDF-HFP), 폴리비닐리덴플루오라이드-클로로트리플루오로에틸렌 공중합체(PVDF-CTFE), 폴리비닐리덴플루오라이드-테트라풀루오로에틸렌 공중합체(PVDF-TFE), 폴리비닐리덴카보네이트(polyvinylidenecarbonate), 폴리비닐피롤리디논(polyvinylpyrrolidinone), 스티렌부타디엔 고무(styrene-butadiene rubber), 니트릴부타디엔 고무(nitrile-butadiene rubber), 및 수소화 니트릴부타디엔 고무(Hydrogenated nitrile butadiene rubber)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본원발명은 상기와 같은 전고체전지 제조방법에 의해 제조된 전고체전지를 단위셀로 포함하는 전지모듈을 제공하며, 상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성이 요구되는 중대형 디바이스의 에너지원으로 사용될 수 있다.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차 (electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하는, 본원발명의 실시예를 참조하여 설명하지만, 이는 본원발명의 더욱 용이한 이해를 위한 것으로, 본원발명의 범주가 그것에 의해 한정되는 것은 아니다.
<실험예 1> 가압 지그의 압력에 따른 고체전해질층의 이온저항 변화
고체전해질층을 제조하기 위하여, 고체전해질로서 아기로다이트(Li6PS5Cl)와 바인더로서 폴리테트라플루오로에틸렌을 95 : 5의 중량비로 아니솔에 분산 및 교반하여 고체전해질층 슬러리를 제조하였다.
상기 고체전해질층 슬러리를 폴리에틸렌테레프탈레이트 이형 필름에 코팅한 후 100 ℃에서 12시간 동안 진공 건조하여 두께가 50 ㎛인 고체전해질층을 제조하였다.
상기 고체전해질층을 Ni foil 사이에 개재하고, 이를 알루미늄 파우치로 밀봉한 후 가압 지그에 고정하였다.
분석 장치(Bio logic science instruments사의 VMP3 모델)를 사용하여 60 ℃에서 amplitude 10 mV 및 scan range 500 kHz 내지 0.1 mHz 조건으로 전기화학적 임피던스를 측정하였다.
이와 같이 측정된 압력에 따른 이온저항은 하기 표 1과 같다.
가압 지그 압력 (Mpa) 0 2.75 5.5 11 20
이온저항 (ohm) 4.2 4 3.8 3.7 3.7
상기 표 1을 참조하면, 지그의 압력이 인가됨에 따라 고체전해질층의 이온저항은 소폭 감소하는 경향을 보이나, 11 Mpa 보다 강한 압력이 인가되더라도 이온저항은 일정한 값으로 측정되는 바, 더 이상 개선되지 않는다.
따라서, 가압력을 인가하는 것만으로는 고체전해질층 자체, 및/또는 고체전해질층과 Ni foil 간의 접촉이 개선되는 데에 한계가 있음을 알 수 있다.
<실험예 2> 온도에 따른 고체전해질층의 이온저항 변화
상기 실험예 1에서 제작된 고체전해질층을 가압 지그에 배치되지 않은 상태로 열처리하면서, 상기 실시예1과 동일한 장치 및 조건으로 이온저항 변화를 측정하였다. 이와 같이 측정된 온도에 따른 이온저항은 하기 표 2와 같다.
열처리 온도 (℃) 25 60 100 150 180
이온저항 (ohm) 4.2 4.2 4.1 4.1 4.4
상기 표 2를 참조하면, 고체전해질층에 압력이 인가되지 않은 상태에서 열처리만 하는 경우에는 열처리 온도가 증가하더라도 이온저항이 거의 감소하지 않고 있는 바, 고체전해질층과 Ni foil 계면에서의 접촉 개선이 거의 없는 것으로 보인다. 이는, 황화물계 고체전해질이나 산화물계 고체전해질이 sintering과 같은 효과를 얻기 위해서는 300 ℃ 내지 400 ℃ 이상의 온도에서 열처리가 필요한 점을 감안할 때, 당연한 결과이다.
다만, 본원발명의 고체전해질층은 바인더를 함유하고 있기 때문에, 180 ℃의 고온에서 장시간 열처리하는 경우 고체전해질층 내에서의 구조 변화 혹은 바인더의 열적 안정성이 저하되면서 이온저항이 소폭 증가하였다.
<실험예 3> 열과 압력에 따른 고체전해질층의 이온저항 변화
상기 실험예 1에서 제조된 고체전해질층을 가압 지그에 배치하고 열처리를 동시에 하면서, 상기 실시예1과 동일한 장치 및 조건으로 이온저항 변화를 측정하였다. 이와 같이 측정된 이온저항은 하기 표 3과 같다.
하기 표 3에서 초기 조건은 상온(25 ℃)에서 가압지그에 압력을 인가하지 않은 상태의 최초 상태를 의미한다.
조건 초기 25 ℃ for 2day under 5.5 MPa 40 ℃ for 2day under 5.5 MPa 60 ℃ for 2day under 5.5 MPa 100 ℃ for 12hr under 5.5 MPa 100 ℃ for 1day under 5.5 Mpa 150 ℃ for 12hr under 5.5 Mpa
이온저항 (ohm) 4.2 3.8 3.5 2.8 3.0 2.7 2.7
상기 표 3을 참조하면, 열과 압력을 인가하지 않은 초기 상태를 기준으로, 온도가 40℃까지 증가할 때는 이온저항이 약 17% 감소되어 초기 대비 약 83% 수준으로 나타난다. 온도를 더욱 증가하여 60℃ 이상으로 가열하면서 가압하는 경우에는, 고체전해질층의 이온저항이 현저히 감소하는 것을 확인할 수 있다. 이는, 상기 실험예 1 및 실험예 2에서는 예상하기 힘든 결과로, 초기 대비 약 64% 수준이다. 따라서, 가압과 함께 60℃ 이상의 온도로 가열하는 경우, 이온저항 감소 효과를 크게 얻을 수 있다.
<실시예 1>
전고체전지용 양극을 제조하기 위하여, 양극 활물질로서 LiNi0.8Co0.1Mn0.1O2, 고체전해질로서 아기로다이트(Li6PS5Cl), 도전재로서 퍼니스 블랙 및 바인더로서 폴리테트라플루오로에틸렌을 77.5 : 19.5 : 1.5 : 1.5 중량비로 준비하고, 아니솔(Anisole)에 분산 및 교반하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 14 ㎛ 두께의 알루미늄 집전체에 닥터 블레이드를 이용하여 도포한 후, 100 ℃에서 12시간 동안 진공 건조하여 양극을 제조하였다.
고체전해질층을 제조하기 위하여, 고체전해질로서 아기로다이트(Li6PS5Cl)와 바인더로서 폴리테트라플루오로에틸렌을 95 : 5의 중량비로 아니솔에 분산 및 교반하여 고체전해질층 슬러리를 제조하였다. 상기 고체전해질층 슬러리를 폴리에틸렌테레프탈레이트 이형 필름에 코팅한 후 100 ℃에서 12시간 동안 진공 건조하여 고체전해질층을 제조하였다.
코팅층과 이온 전달층을 포함하는 전고체전지용 음극을 제조하기 위하여, 10 ㎛ 두께의 니켈 집전체 상에 Ag를 30 ㎚의 크기로 스퍼터링하여 Ag층으로된 코팅층을 형성하였다. 이후, 상기 Ag층 상에 아세틸렌 블랙과 폴리불화비닐리덴이 97 : 3 중량비로 혼합된 슬러리를 코팅하여 이온 전달층을 형성한 후 건조하여 다층 구조를 갖는 음극을 제조하였다.
상기 양극, 고체전해질층 및 음극을 순차적으로 적층하여 전고체전지를 제조하였다.
상기 전고체전지를 1차 가압하기 위하여 25 ℃에서 CIP 가공법에 따라 압력을 인가하였다. 이 때 인가된 압력은 500 MPa이다.
상기 전고체전지를 2차 가압하기 위하여, 상기 전고체전지를 가압 지그에 배치하고 5.5 Mpa로 가압한 상태로 100 ℃ 오븐에서 1일 동안 열처리하였다.
<실시예 2>
상기 실시예 1에서, 상기 전고체전지를 가압지그에 배치하고 150 ℃ 오븐에서 12시간 동안 열처리한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전고체전지를 제조하였다.
<비교예 1>
상기 실시예 1에서, 1차 가압하는 단계만 진행하고, 2차 가압하는 단계를 진행하지 않은 것을 제외하고 상기 실시예 1과 동일한 방법으로 전고체전지를 제조하였다.
<비교예 2>
상기 실시예 1에서, 2차 가압하는 단계에서 전고체전지를 가압지그에 배치하고 11 Mpa로 가압하며, 열처리는 진행하지 않은 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전고체전지를 제조하였다.
<비교예 3>
상기 실시예 1에서, 2차 가압하는 단계에서 전고체전지를 가압지그에 배치하고 11Mpa로 2일 동안 가압하며, 열처리는 진행하지 않은 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전고체전지를 제조하였다.
<비교예 4>
상기 실시예 1에서, 2차 가압하는 단계에서 상기 전고체전지를 가압지그에 배치하지 않고 열처리만 진행한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전고체전지를 제조하였다.
<비교예 5>
상기 실시예 1에서, 2차 가압하는 단계에서 상기 전고체전지를 가압지그에 배치하지 않고 100 ℃ 오븐에서 2일 동안 열처리만 진행한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전고체전지를 제조하였다.
<비교예 6>
상기 실시예 1에서, 2차 가압하는 단계에서 100 ℃ 오븐에서 3시간 동안 열처리한 것을 제외하고, 상기 전고체전지를 가압 지그에 배치하고 5.5 Mpa로 가압한 상태로 상기 실시예 1과 동일한 방법으로 전고체전지를 제조하였다.
<비교예 7>
상기 실시예 1에서, 2차 가압하는 단계에서 상기 전고체전지를 가압 지그에 배치하고 11 Mpa로 가압한 상태로 100 ℃ 오븐에서 5시간 동안 열처리한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전고체전지를 제조하였다.
<비교예 8>
상기 실시예 1에서, 2차 가압하는 단계에서 상기 전고체전지를 가압 지그에 배치하고 11 Mpa로 가압한 상태로 100 ℃ 오븐에서 10시간 동안 열처리한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전고체전지를 제조하였다.
<비교예 9>
상기 실시예 1과 같이 전고체전지를 가압하여 전극조립체에 대해 가압력을 인가하지 않고, 양극, 고체전해질층 및 음극 각각을 롤 프레싱한 후 전극조립체를 제조한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전고체전지를 제조하였다.
<실험예 4> 전고체전지 평가
상기 실시예 1, 실시예 2 및 비교예 1 내지 4에서 제조된 전고체전지를 60 ℃에서 4.25V까지 정전류-정전압 모드로 0.05로 충전하고, 3.0V까지 0.05C로 방전하면서 초기 충전용량, 초기 방전용량을 측정하였고, 그 결과를 하기 표 4에 기재하였다.
또한, 3.7V 내지 4.2V 범위에서 0.1C로 수명 평가를 진행하였다. 하기 표 4에는 전고체전지의 충방전시 쇼트가 발생한 cycle 횟수와 그 때의 용량유지율을 기재하였다.
충전용량(mAh) 방전용량(mAh) 효율 (%) 용량유지율 (%@cycle)
실시예 1 23.2 20.8 89.7 89.2@80
실시예 2 23.9 21.7 90. 8 87.8@80
비교예 1 23.4 20.3 86.8 72.5@20
비교예 2 24.2 21.2 87.6 81.0@20
비교예 3 24 21.1 87.9 80.2@20
비교예 4 23.5 20.2 86.0 74.3@20
비교예 5 23.8 20.3 85.3 75.2@20
비교예 6 23.8 21.0 88.2 36.6@60
비교예 7 24.1 21.2 88.0 63.2@40
비교예 8 24.3 21.6 88.9 76.5@40
비교예 9 short - - -
상기 표 4를 참조하면, 2차 가압하는 단계에서 열과 압력이 동시에 인가된 실시예 1 및 실시예 2의 전고체전지의 경우, 압력만 인가된 비교예 2 및 비교예 3과 가열만 진행한 비교예 4 및 비교예 5와 비교할 때 초기 효율이 우수하게 나타난다.
또한, 전극조립체가 형성된 상태로 가압하지 않고, 반제품인 전극 및 고체전해질층을 각각 가압한 경우인 비교예 9의 경우, 전극과 전해질막 간의 계면 형성이 원활하지 못하여 전지가 정상적으로 구동하지 않았다.
특히, 음극 합제를 포함하지 않고 충방전시 리튬 플레이팅(Li plating)과 스트리핑(stripping) 기작으로 운용되는 전고체전지의 경우, 사이클이 진행될 때 리튬 덴드라이트에 의해 용량 퇴화 및 쇼트가 발생하는데, 실시예 1과 실시예 2의 경우처럼 열과 압력에 의해 전고체전지의 이온저항이 개선된 경우 수명 특성이 현저히 향상되는 것을 알 수 있다.
그러나, 비교예 6 내지 비교예 8과 같이 가열 및 가압을 동시에 진행하더라도 가열 및 가압 시간이 12시간 미만으로 짧은 경우에는 이온저항 개선 효과가 크지 않기 때문에 수명 향상 효과가 현저히 낮은 것으로 나타난다. 특히, 비교예 7과 비교예 8과 같이 실시예 1 및 실시예 2 보다 가압력이 높더라도 가열 및 가압 시간이 짧은 경우에는 용량유지율과 사이클 특성이 열악한 것을 알 수 있다.
따라서, 본원발명에 따른 전고체전지 제조방법과 같이, 2차 가압하는 단계에서 가열과 가압이 동시에 12시간 이상으로 이루어지는 경우에는, 음극과 고체전해질층 경계의 접촉면이 증가하여 전지의 이온저항이 개선되는 결과, 용량유지율과 수명 특성이 향상되는 것을 알 수 있다.
본원발명이 속한 분야의 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본원발명의 범주내의 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
(부호의 설명)
101: 전고체전지
110: 양극
111: 양극집전체
112: 양극 합제
113: 양극리드
120: 음극
123: 음극리드
130: 고체전해질층
140: 챔버
150: 가압 지그
160: 오븐
201: 전지케이스

Claims (9)

  1. (a) 양극과 음극 사이에 고체전해질층이 배치된 전극조립체를 준비하는 단계;
    (b) 상기 전극조립체를 전지케이스에 수용하여 전고체전지를 조립하는 단계;
    (c) 상기 전고체전지를 1차 가압하는 단계; 및
    (d) 상기 전고체전지를 2차 가압하는 단계;
    를 포함하고,
    상기 2차 가압하는 단계는 가열과 가압이 동시에 이루어지는 전고체전지 제조방법.
  2. 제1항에 있어서, 상기 (d)단계의 온도 범위는 60℃ 내지 150℃인 전고체전지 제조방법.
  3. 제1항에 있어서, 상기 (d)단계는 12시간 이상 내지 30시간 이하의 시간 동안 진행되는 전고체전지 제조방법.
  4. 제1항에 있어서, 상기 (d) 단계에서,
    상기 전고체전지를 가압하는 가압 지그는 제1가압 지그와 제2가압 지그를 포함하는 한 쌍의 구조로 이루어진 정위 지그로서,
    상기 전고체전지를 가압하도록 상기 제1가압 지그와 제2가압 지그의 간격을 설정한 상태로 가압 및 가열하고,
    상기 전고체전지의 두께가 초기 두께보다 줄어들면, 상기 제1가압 지그와 제2가압 지그의 간격을 재설정하여 가압 및 가열하는 과정을 포함하는 전고체전지 제조방법.
  5. 제1항에 있어서, 상기 음극과 고체전해질층 경계의 접촉면은 (d)단계 이전 보다 (d)단계 이후에 증가하는 전고체전지 제조방법.
  6. 제1항에 있어서, 상기 단계(c)는 CIP 방법으로 가압하는 과정인 전고체전지 제조방법.
  7. 제1항에 있어서, 상기 음극은 음극 합제를 포함하지 않는 전고체전지 제조방법.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 전고체전지 제조방법에 의해 제조된 전고체전지.
  9. 제8항에 따른 전고체전지를 단위셀로 포함하는 전지모듈.
PCT/KR2022/005133 2021-04-09 2022-04-08 전고체전지 제조방법 및 이에 의한 전고체전지 WO2022216115A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22785024.5A EP4138170A1 (en) 2021-04-09 2022-04-08 Method for preparing all-solid-state battery and all-solid-state prepared thereby
CN202280004102.3A CN115552687A (zh) 2021-04-09 2022-04-08 制备全固态电池的方法和由此制备的全固态电池
JP2023506059A JP2023536129A (ja) 2021-04-09 2022-04-08 全固体電池の製造方法及びこれによる全固体電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0046816 2021-04-09
KR20210046816 2021-04-09
KR10-2022-0043008 2022-04-06
KR1020220043008A KR20220140428A (ko) 2021-04-09 2022-04-06 전고체전지 제조방법 및 이에 의한 전고체전지

Publications (1)

Publication Number Publication Date
WO2022216115A1 true WO2022216115A1 (ko) 2022-10-13

Family

ID=83546488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005133 WO2022216115A1 (ko) 2021-04-09 2022-04-08 전고체전지 제조방법 및 이에 의한 전고체전지

Country Status (4)

Country Link
EP (1) EP4138170A1 (ko)
JP (1) JP2023536129A (ko)
CN (1) CN115552687A (ko)
WO (1) WO2022216115A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150128057A (ko) * 2014-05-08 2015-11-18 현대자동차주식회사 전-고체 이차전지에 적용된 다종 고체 전해질
KR20180003830A (ko) * 2016-07-01 2018-01-10 주식회사 유뱃 높은 에너지 밀도를 가진 전기화학 에너지 소자 및 그 제조 방법
JP2019040759A (ja) 2017-08-25 2019-03-14 日立造船株式会社 全固体電池の製造方法
KR20200129379A (ko) * 2019-05-08 2020-11-18 주식회사 엘지화학 전고체전지의 제조방법 및 이를 이용하여 제조되는 전고체전지
KR20210018040A (ko) * 2019-08-05 2021-02-17 삼성전자주식회사 산화물, 그 제조방법, 이를 포함하는 고체 전해질 및 전기화학소자
KR20210046816A (ko) 2018-09-19 2021-04-28 헤라우스 넥센소스 게엠베하 인쇄 회로 기판 상의 표면 장착을 위한 저항 구성 요소 및 적어도 하나의 저항 구성 요소가 배치되어 있는 인쇄 회로 기판
KR20220043008A (ko) 2020-09-28 2022-04-05 국립낙동강생물자원관 여뀌바늘 추출물을 이용한 항산화 또는 항균용 조성물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150128057A (ko) * 2014-05-08 2015-11-18 현대자동차주식회사 전-고체 이차전지에 적용된 다종 고체 전해질
KR20180003830A (ko) * 2016-07-01 2018-01-10 주식회사 유뱃 높은 에너지 밀도를 가진 전기화학 에너지 소자 및 그 제조 방법
JP2019040759A (ja) 2017-08-25 2019-03-14 日立造船株式会社 全固体電池の製造方法
KR20210046816A (ko) 2018-09-19 2021-04-28 헤라우스 넥센소스 게엠베하 인쇄 회로 기판 상의 표면 장착을 위한 저항 구성 요소 및 적어도 하나의 저항 구성 요소가 배치되어 있는 인쇄 회로 기판
KR20200129379A (ko) * 2019-05-08 2020-11-18 주식회사 엘지화학 전고체전지의 제조방법 및 이를 이용하여 제조되는 전고체전지
KR20210018040A (ko) * 2019-08-05 2021-02-17 삼성전자주식회사 산화물, 그 제조방법, 이를 포함하는 고체 전해질 및 전기화학소자
KR20220043008A (ko) 2020-09-28 2022-04-05 국립낙동강생물자원관 여뀌바늘 추출물을 이용한 항산화 또는 항균용 조성물

Also Published As

Publication number Publication date
EP4138170A1 (en) 2023-02-22
JP2023536129A (ja) 2023-08-23
CN115552687A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2018012694A1 (ko) 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
WO2023018174A1 (ko) 산화물계 고체전해질 및 황화물계 고체전해질이 코팅된 양극활물질 및 이를 포함하는 전고체전지
WO2018169359A1 (ko) 전고체 전지용 전극 조립체 및 이를 제조하는 방법
WO2019212314A1 (ko) 고분자계 고체 전해질을 포함하는 전고체 전지의 제조 방법 및 그 방법으로 제조된 전고체 전지
WO2020080805A1 (ko) 전고체 전지 제조 방법
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020226412A1 (ko) 복합 전극을 포함하는 전고체전지
WO2018174565A1 (ko) 전고체 전지용 전극 및 이를 제조하는 방법
WO2022019532A1 (ko) 전지셀 용량 측정 장치 및 전지셀 용량 측정 방법
WO2020214016A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2020050559A1 (ko) 분리막 기재가 없는 이차전지용 분리막
WO2020091400A1 (ko) 무기물 코팅층이 형성된 가교 폴리올레핀 분리막 및 이를 포함한 고출력 이차 전지
WO2019088698A2 (ko) 분리막 기재가 없는 분리막 및 이를 포함하는 전기화학소자
WO2022216115A1 (ko) 전고체전지 제조방법 및 이에 의한 전고체전지
WO2022098151A1 (ko) 코팅층과 이온 전달층을 포함하는 전고체전지용 음극 및 이를 포함하는 리튬 이차전지.
WO2022114538A1 (ko) 리튬 이차전지의 제조 방법 및 이에 의하여 제조된 리튬 이차전지
WO2022010292A1 (ko) 고체 전해질 재료를 포함하는 전고체 전지를 제조하는 방법
WO2022098049A1 (ko) 음극보다 면적이 넓은 양극을 포함하는 전고체전지 및 이의 제조방법
WO2021206430A1 (ko) 전고체 전지 및 상기 전고체 전지를 제조하는 방법
WO2022211447A1 (ko) 2종의 고체전해질층을 포함하는 전고체전지
WO2023121323A1 (ko) 2종의 고체전해질층을 포함하는 전고체전지 및 이의 제조방법
WO2022211448A1 (ko) 다공성 집전체를 포함하는 전고체전지 및 이를 포함하는 전지모듈
WO2021085946A1 (ko) 음극 활물질의 제조 방법, 음극 활물질, 이를 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021086132A1 (ko) 음극의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22785024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022785024

Country of ref document: EP

Effective date: 20221115

ENP Entry into the national phase

Ref document number: 2023506059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE