WO2022215455A1 - 多孔体及び吸音材 - Google Patents

多孔体及び吸音材 Download PDF

Info

Publication number
WO2022215455A1
WO2022215455A1 PCT/JP2022/011521 JP2022011521W WO2022215455A1 WO 2022215455 A1 WO2022215455 A1 WO 2022215455A1 JP 2022011521 W JP2022011521 W JP 2022011521W WO 2022215455 A1 WO2022215455 A1 WO 2022215455A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
cross
hipe foam
weight
less
Prior art date
Application number
PCT/JP2022/011521
Other languages
English (en)
French (fr)
Inventor
洋平 金子
隼 中村
Original Assignee
株式会社ジェイエスピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021064030A external-priority patent/JP2022159685A/ja
Priority claimed from JP2021160988A external-priority patent/JP2023050728A/ja
Application filed by 株式会社ジェイエスピー filed Critical 株式会社ジェイエスピー
Priority to KR1020237037937A priority Critical patent/KR20230164729A/ko
Priority to EP22784440.4A priority patent/EP4321540A1/en
Priority to CN202280017528.2A priority patent/CN116897173A/zh
Priority to US18/553,641 priority patent/US20240199834A1/en
Publication of WO2022215455A1 publication Critical patent/WO2022215455A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/02Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F232/06Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/028Foaming by preparing of a high internal phase emulsion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2345/00Characterised by the use of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Derivatives of such polymers

Definitions

  • the present invention relates to a porous body based on a crosslinked polymer obtained by crosslinking a polymer of an acrylic monomer and/or a styrene monomer, and more specifically, it is obtained by polymerization of a high internal phase emulsion. It relates to a porous body (that is, HIPE foam) and a sound absorbing material.
  • a water-in-oil type high internal phase emulsion there is known a method of forming a HIPE) and polymerizing an organic phase in the emulsion to obtain a porous body composed of a crosslinked polymer called a HIPE foam or the like.
  • This porous body becomes a polymer reflecting the dispersion form of the organic phase and the aqueous phase in the high internal phase emulsion and the dispersion form of the aqueous phase during the polymerization. Therefore, this porous body has a cell structure in which a large number of cells are homogeneously present in the polymer, and an open cell structure in which a large number of pores communicating between the cells are formed.
  • Such porous bodies are expected to be applied to uses such as absorbents and separation materials.
  • Patent Document 1 proposes a flexible HIPE foam (that is, a porous body) whose density, glass transition temperature, and toughness index are adjusted. According to Patent Document 1, such a porous body is said to be excellent in flexibility and suitable for articles such as wiping products.
  • Porous bodies are being considered for use in a wide variety of applications, such as sound absorbing materials, damping materials, and cleaning products, and the development of porous bodies with excellent flexibility and ductility is desired.
  • the conventional porous body described in Patent Literature 1 has insufficient ductility, so when a large deformation is applied, it cannot be stretched sufficiently and may break.
  • a porous body is used as a sound absorbing material, development of a porous body having good sound absorbing properties is desired.
  • the present invention has been made in view of this background, and aims to provide a porous body that is flexible and has excellent ductility. Another object of the present invention is to provide a porous body that can be used as a sound absorbing material.
  • the gist of the present invention is as follows.
  • a porous body whose base resin is a crosslinked polymer in which a polymer of an acrylic monomer and/or a styrene monomer is crosslinked,
  • the storage elastic modulus of the porous body at 23° C. is 5 kPa or more and 2000 kPa or less,
  • the porous body has an apparent density of 10 kg/m 3 or more and 250 kg/m 3 or less
  • a porous body, wherein the crosslinked polymer has a molecular weight between crosslinks of 1.0 ⁇ 10 4 or more.
  • the above-mentioned crosslinked polymer according to [1] wherein the glass transition temperature of the crosslinked polymer is ⁇ 30° C. or higher, and the molecular weight between crosslink points of the crosslinked polymer is 1.0 ⁇ 10 4 or more and 12 ⁇ 10 4 or less.
  • Porous body
  • the crosslinked polymer is obtained by cross-linking a copolymer of the acrylic monomer and the styrene monomer, and the acrylic monomer is composed of (meth)acrylic acid and 1 carbon atoms.
  • the crosslinked polymer is obtained by combining a first crosslinking agent having a functional group equivalent of 130 g/eq or less and a second crosslinking agent having a functional group equivalent of more than 130 g/eq and 5000 g/eq or less.
  • the functional group equivalent of the second cross-linking agent is greater than the functional group equivalent of the first cross-linking agent by 100 g/eq or more, [ 1]
  • the crosslinked polymer is obtained by crosslinking the acrylic monomer and/or the styrene monomer polymer with a crosslinking agent having a functional group equivalent weight of 500 g/eq or more and 3000 g/eq or less.
  • the peak temperature of the loss tangent tan ⁇ in the temperature-loss tangent tan ⁇ curve measured by performing dynamic viscoelasticity measurement on the porous body under the conditions of frequency: 1 Hz, load: 10 mN, deformation mode: compression is 50 ° C. or less.
  • Flow velocity measured based on ISO 9053-1:2018 Flow resistance per unit thickness of the porous body at 0.5 mm/s is 7 ⁇ 10 4 N ⁇ s/m 4 or more and 1 ⁇ 10 6 N ⁇ s /m 4 or less, the sound absorbing material.
  • the above porous body is soft yet has excellent ductility, and has excellent durability against large deformation. Moreover, the porous body has a sound absorbing property and can be applied as a sound absorbing material.
  • FIG. 1 is a low-vacuum scanning electron micrograph of the porous body of Example 1-1.
  • FIG. 2 is a temperature-storage modulus curve showing the relationship between the temperature T and the storage modulus E' of the porous body of Example 1-1.
  • FIG. 3 is a temperature-loss tangent tan ⁇ curve showing the relationship between the temperature T and the loss tangent tan ⁇ of the porous body of Example 1-1.
  • porous body Preferred embodiments of the porous body are described below.
  • a numerical value or a physical property value is sandwiched before and after the " ⁇ "
  • it is used to include the values before and after it.
  • a numerical value or physical property value is expressed as a lower limit, it means that it is greater than or equal to the numerical value or physical property value, and when a numerical value or physical property value is expressed as an upper limit, it means that it is equal to or less than that numerical value or physical property value.
  • “parts by weight” and “% by weight” are substantially synonymous with “parts by mass” and "% by mass”, respectively.
  • the porous body herein refers to a porous body also called HIPE foam, PolyHIPE foam, polyHIPE material, HIPE-derived foam material, high internal phase emulsion porous body, high internal phase emulsion foam, etc. It is a crosslinked polymer.
  • the porous body can be obtained, for example, by polymerizing a monomer in a water-in-oil type high internal phase emulsion in which a high proportion of an aqueous phase is included in an organic phase.
  • High Internal Phase Emulsion is commonly called HIPE.
  • the porous body is appropriately referred to as "HIPE foam”.
  • the porous body has a continuous cell structure in which a large number of cells are present in the structure and a large number of through-holes are formed to communicate between adjacent cells.
  • HIPE foam has a large number of cells, uses a crosslinked polymer as a base resin, and has an open cell structure.
  • soft HIPE foam is a brittle material and is recognized as a material with low resistance to stresses such as friction, tension and shear.
  • tailoring certain physical properties of HIPE foams results in flexible, highly ductile HIPE foams.
  • HIPE foams are produced, for example, in a water-in-oil type high internal phase emulsion in which a high proportion of a water phase is included in an organic phase, in the presence of a cross-linking agent, a vinyl-based monomer (specifically, an acrylic It is a porous crosslinked polymer obtained by polymerizing a polystyrene-based monomer and/or a styrene-based monomer).
  • HIPE foams are, for example, acrylic and/or styrenic monomers obtained by polymerizing acrylic and/or styrenic monomers in a water-in-oil high internal phase emulsion.
  • a crosslinked polymer containing a component derived from is used as the base resin.
  • HIPE foams specifically contain components derived from acrylic and/or styrenic monomers in the polymer backbone of the crosslinked polymer.
  • the HIPE foam uses a cross-linked polymer obtained by cross-linking a polymer of an acrylic monomer and/or a styrene-based monomer as a base resin.
  • HIPE foam is a porous cured product obtained by curing a high internal phase emulsion, and it can be said that the cell walls are composed of a crosslinked polymer (for example, a vinyl-based crosslinked polymer). Bubbles can also be called pores.
  • the shape of the cell walls and cells in the HIPE foam reflects the dispersion form of the organic phase and the aqueous phase and the dispersion form of the aqueous phase (that is, the dispersed phase) in the high internal phase emulsion during polymerization.
  • HIPE foam The polymer is difficult to stretch during the manufacturing process of HIPE foam. Therefore, the HIPE foam generally becomes a polymer with less anisotropy and less likely to cause molecular orientation.
  • HIPE foams are manufactured by various methods such as foams obtained by an extrusion foaming method using an extruder, foamed particles obtained by in-mold molding of expanded particles obtained by expanding expandable resin particles, and the like. It can be easily distinguished from foams that are sometimes made by stretching.
  • a HIPE foam is a porous body having an open cell structure as described above.
  • the HIPE foam 1 has a cell structure in which a large number of cells 13 are uniformly present in the crosslinked polymer 11 constituting the HIPE foam 1. It has an open cell structure in which a large number of through holes 14 are formed to communicate with each other.
  • the bubble 13 is a portion surrounded by the bubble wall 12 .
  • the through-hole 14 is a hole that penetrates the bubble wall 12 and communicates between adjacent bubbles 13 .
  • the through-holes 14 are holes that are formed in the bubble walls 12 and communicate between the bubbles 13 that are adjacent to each other with the bubble walls 12 interposed therebetween.
  • the through hole 14 can also be called a through window or a connecting hole.
  • the average diameter of cells in the HIPE foam is preferably 10 ⁇ m or more and 200 ⁇ m or less.
  • the average diameter of the through-holes of the HIPE foam is approximately 1 ⁇ m or more and 30 ⁇ m or less.
  • the through-hole is a hole formed in the bubble wall and communicating between the bubbles, the diameter of the through-hole is usually smaller than the diameter of the bubble.
  • the average diameter of bubbles is the average value of equivalent circle diameters of bubbles.
  • the equivalent circle diameter of cells is the diameter of a perfect circle having the same area as the cells in the cross section of the HIPE foam.
  • the average diameter of the through-holes is the average value of the circle-equivalent diameters of the through-holes.
  • the equivalent circle diameter of the through-hole is the diameter of a perfect circle having the same area as the through-hole in the cross section of the HIPE foam. The method for measuring the average diameter of cells and the average diameter of through holes will be described later, but for example, they are measured by image analysis of the open cell structure of the HIPE foam.
  • the average diameter of cells in the HIPE foam is preferably 20 ⁇ m or more and 160 ⁇ m or less. In this case, the sound absorbing property of the sound absorbing material can be improved more easily. From the viewpoint of increasing the penetration of sound waves into the HIPE foam and making it easier to absorb relatively high-frequency sound, the average diameter of the cells in the HIPE foam is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more. It is preferably 50 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the average diameter of the cells in the HIPE foam is preferably 150 ⁇ m or less. It is more preferably 140 ⁇ m or less, even more preferably 120 ⁇ m or less.
  • the ratio of the average diameter of the through holes of the HIPE foam to the average diameter of the cells of the HIPE foam is preferably 0.05 or more and 0.5 or less.
  • the sound absorbing property of the sound absorbing material can be further enhanced in a wide frequency range.
  • the ratio of the average diameter of the through holes of the HIPE foam to the average diameter of the cells of the HIPE foam is more preferably 0.08 or more, and more preferably 0.1. It is more preferable that it is above.
  • the ratio of the average diameter of the through holes of the HIPE foam to the average diameter of the cells of the HIPE foam is preferably 0.4 or less. It is more preferably 0.3 or less.
  • the average diameter of the through holes of the HIPE foam is preferably 5 ⁇ m or more and 30 ⁇ m or less, more preferably 6 ⁇ m or more and 25 ⁇ m or less, and even more preferably 8 ⁇ m or more and 20 ⁇ m or less.
  • the average diameter of the cells can be controlled by adjusting the water droplet diameter of the aqueous phase (that is, the dispersed phase) of the high internal phase emulsion in the HIPE foam manufacturing method described below. For example, by reducing the diameter of water droplets, the cell diameter becomes finer, and in HIPE foam, the average cell diameter can be easily adjusted to, for example, 200 ⁇ m or less.
  • the through-holes are formed by breaking the oil film due to volumetric shrinkage of the polymer when the monomers are polymerized in the water-in-oil type high internal phase emulsion in the HIPE foam manufacturing method described later.
  • the oil film becomes the above-mentioned cell walls as the polymerization and cross-linking proceed.
  • the average diameter of the through-holes can be controlled by adjusting the polymerization rate, the composition and viscosity of the organic phase, the stirring power density, etc. in the HIPE foam manufacturing method described below.
  • the HIPE foam has a storage modulus at 23° C. of 5 kPa or more and 2000 kPa or less. Since the storage modulus is in this range, the HIPE foam has moderate flexibility. For example, the storage modulus of the HIPE foam can be adjusted within the above range depending on the use of the porous body. From the viewpoint of further increasing the flexibility of the HIPE foam, the storage modulus of the HIPE foam at 23° C. is preferably 1000 kPa or less, more preferably 600 kPa or less, and even more preferably 500 kPa or less. 300 kPa or less is particularly preferable.
  • the storage elastic modulus of the HIPE foam at 23° C. is preferably 10 kPa or more, more preferably 20 kPa or more. , more preferably 30 kPa or more, and particularly preferably 50 kPa or more.
  • the storage modulus measurement method will be described later, but the storage modulus is measured by performing dynamic viscoelasticity measurement on the HIPE foam under the conditions of frequency: 1 Hz, load: 10 mN, deformation mode: compression. be.
  • the storage elastic modulus is determined by controlling the type of crosslinking agent and its blending ratio, the type of monomer and its blending ratio, the ratio of the organic phase to the aqueous phase, etc. adjusted within the above range.
  • the storage elastic modulus at 0°C should be 3000 kPa or less from the viewpoint that the porous body tends to exhibit flexibility. is preferred, 2500 kPa or less is more preferred, and 2000 kPa or less is even more preferred. From the viewpoint of ensuring the ductility and strength of the porous body, the storage elastic modulus at 0° C.
  • the ratio of the storage elastic modulus at 0 ° C. to the storage elastic modulus at 23 ° C. is 0.005. It is preferably 0.5 or more, and more preferably 0.01 or more and 0.3 or less.
  • the HIPE foam has an apparent density of 10 kg/m 3 or more and 250 kg/m 3 or less.
  • the apparent density is within this range, the strength, resilience and ductility of the HIPE foam can be improved more easily. If the apparent density is too low, the restorability and strength are likely to be lowered, and the handling of the porous body may become difficult. On the other hand, if the apparent density is too high, ductility tends to decrease.
  • the apparent density of the HIPE foam can be adjusted within the above range depending on the use of the porous body.
  • the apparent density of the HIPE foam is preferably 20 kg/m 3 or more, more preferably 30 kg/m 3 or more, more preferably 35 kg/m 3 , from the viewpoint of making it easier to improve the resilience and strength of the HIPE foam. It is more preferably 40 kg/m 3 or more, particularly preferably 40 kg/m 3 or more, and most preferably 50 kg/m 3 or more.
  • the apparent density of the HIPE foam is preferably 200 kg/m 3 or less, more preferably 150 kg/m 3 or less, from the viewpoint of becoming a lightweight HIPE foam and easily improving the ductility of the HIPE foam. preferable.
  • the apparent density of the HIPE foam should be 10 kg/m 3 or more and 200 kg/m 3 or less from the viewpoint of further improving the sound absorption of the sound absorbing material in a wide frequency range. preferable. From the standpoint of enhancing such effects and increasing the mechanical strength of the sound absorbing material, the apparent density of the HIPE foam is more preferably 20 kg/m 3 or more, more preferably 30 kg/m 3 or more. 40 kg/m 3 or more is particularly preferred, and 45 kg/m 3 or more is most preferred.
  • the apparent density of the HIPE foam is more preferably 180 kg/m 3 or less, more preferably 150 kg/m 3 or less. It is preferably 120 kg/m 3 or less, particularly preferably 120 kg/m 3 or less.
  • the apparent density ⁇ of the HIPE foam is calculated by dividing the weight of the HIPE foam by the volume of the HIPE foam.
  • the volume of the HIPE foam can be calculated based on the outer dimensions of the HIPE foam.
  • the apparent density ⁇ of the HIPE foam is the total amount of the vinyl-based monomer, the cross-linking agent, the emulsifier, and the polymerization initiator, the amount of the aqueous phase (specifically, the aqueous liquid), and the By adjusting the ratio, etc., it is adjusted to the above range.
  • the molecular weight between cross-linking points Mc is an index of the degree of cross-linking of the cross-linked polymer constituting the HIPE foam.
  • the molecular weight between cross-linking points of the cross-linked polymer is 1.0 ⁇ 10 4 or more.
  • the HIPE foam has excellent ductility because the molecular weight between cross-links is in this range. If the molecular weight between cross-linking points is too low, the degree of cross-linking becomes excessively high, and the ductility of the HIPE foam may decrease.
  • the molecular weight between cross-linking points of the cross-linked polymer is preferably 2.0 ⁇ 10 4 or more, more preferably 2.5 ⁇ 10 4 or more. It is more preferably 3.0 ⁇ 10 4 or more.
  • the molecular weight between cross-linking points of the cross-linked polymer is preferably 12 ⁇ 10 4 or less, more preferably 10 ⁇ 10 4 or less. It is more preferably 8.0 ⁇ 10 4 or less, and particularly preferably 6.0 ⁇ 10 4 or less.
  • the molecular weight between cross-linking points of the cross-linked polymer can be 1.0 ⁇ 10 4 or more and 30 ⁇ 10 4 or less.
  • the mechanical properties such as ductility and resilience of the HIPE foam can be adjusted to suitable ranges for the sound absorbing material, and the handleability of the sound absorbing material can be improved.
  • the molecular weight between cross-linking points of the cross-linked polymer is more preferably 2.0 ⁇ 10 4 or more, and 2.5. It is more preferably 3.0 ⁇ 10 4 or more, more preferably 3.0 ⁇ 10 4 or more.
  • the molecular weight between cross-linking points of the cross-linked polymer is more preferably 25 ⁇ 10 4 or less, more preferably 20 ⁇ 10 4 . More preferably:
  • the molecular weight Mc between cross-linking points of the cross-linked polymer constituting the HIPE foam is measured as follows.
  • a dynamic mechanical analysis (DMA) is performed on the HIPE foam under the conditions of frequency: 1 Hz, load: 10 mN, and deformation mode: compression.
  • DMA dynamic mechanical analysis
  • Tg glass transition temperature
  • is the apparent density of the HIPE foam (unit: kg/m 3 ), and R is the gas constant (8.314 J/(K ⁇ mol)).
  • T is the temperature (unit: K) at an arbitrary point on the rubber-like plateau, and E' is the storage modulus (unit: kPa) at that temperature T.
  • Mc the inter-crosslinking molecular weight Mc, the above E' is measured in a temperature range of Tg + 50 ° C. to Tg + 80 ° C. (where Tg is the glass transition temperature of the crosslinked polymer constituting the HIPE foam). is preferred.
  • the Poisson's ratio is a value specific to a material, and is a value obtained by dividing the strain generated in the vertical direction by the strain generated in the parallel direction when stress is applied to the object and multiplying the result by -1. Theoretically, the Poisson's ratio ranges from -1 to 0.5. If the Poisson's ratio is a negative value, it means that collapsing in the vertical direction also collapses in the horizontal direction. Conversely, if the value is positive, it means that when it is compressed in the vertical direction, it expands in the horizontal direction. Under the measurement conditions of the dynamic viscoelasticity measurement, the strain generated in the crosslinked polymer constituting the HIPE foam is extremely small, and it can be considered that the volume change does not occur. Therefore, the storage elastic modulus E′ and the molecular weight between crosslinks Mc are calculated under the condition that the volume is constant, that is, the Poisson's ratio is 0.5.
  • the molecular weight Mc between cross-linking points of the cross-linked polymer constituting the HIPE foam can be reduced by blending a cross-linking agent in the method for producing the HIPE foam described later.
  • the above range is adjusted by adjusting the type of the polymer and the blending ratio thereof.
  • the glass transition temperature Tg of the crosslinked polymer constituting the HIPE foam is preferably ⁇ 30° C. or higher.
  • the ductility of the HIPE foam can be further improved. Too low a Tg tends to reduce ductility.
  • the Tg of the HIPE foam can be adjusted within the above range depending on the ductility required for the porous body application.
  • the glass transition temperature of the crosslinked polymer is preferably ⁇ 20° C. or higher, more preferably ⁇ 10° C. or higher.
  • the glass transition temperature is preferably 30° C. or lower, more preferably 20° C. or lower. °C or less is more preferable.
  • the glass transition temperature Tg of the crosslinked polymer constituting the HIPE foam is preferably -60°C or higher and 30°C or lower.
  • the sound absorbing property of the sound absorbing material can be improved in a relatively low frequency range.
  • the glass transition temperature Tg of the crosslinked polymer is preferably -50°C or higher, more preferably -40°C or higher, and -30°C. It is more preferable that it is above.
  • the glass transition temperature Tg of the crosslinked polymer is preferably 20° C. or less, more preferably 10° C. or less. , more preferably 0° C. or lower, and particularly preferably -10° C. or lower.
  • the glass transition temperature Tg of the crosslinked polymer constituting the HIPE foam is measured by differential scanning calorimetry (DSC) analysis based on JIS K7121:1987.
  • the glass transition temperature is the midpoint glass transition temperature of the DSC curve.
  • "(3) Case of measuring the glass transition temperature after performing a certain heat treatment" is adopted as the state adjustment of the test piece.
  • the glass transition temperature Tg of the crosslinked polymer constituting the HIPE foam can be determined by adjusting the type of vinyl-based monomer, the mixing ratio thereof, the type of cross-linking agent, the mixing ratio thereof, etc. in the method for producing the HIPE foam described later. , adjusted to the above range.
  • the temperature-loss tangent tan ⁇ curve (hereinafter referred to as "T-tan ⁇
  • the maximum value of the loss tangent tan ⁇ is preferably 0.8 or more and 1.6 or less.
  • the loss tangent tan ⁇ is measured by subjecting the HIPE foam to dynamic viscoelasticity measurement under the conditions of frequency: 1 Hz, load: 10 mN, deformation mode: compression.
  • the heating rate is preferably 10°C/min, and the temperature range is preferably -100 to 120°C.
  • the maximum value of the loss tangent tan ⁇ of the HIPE foam is more preferably 0.9 or more. It is more preferably 0 or more.
  • the maximum value of the loss tangent tan ⁇ of the HIPE foam is more preferably 1.5 or less, and 1.4 or less. is more preferable.
  • the maximum loss tangent tan ⁇ of the HIPE foam is preferably 0.4 or more.
  • the sound absorbing property of the sound absorbing material can be further enhanced in a relatively low frequency range.
  • the maximum value of the loss tangent tan ⁇ of the HIPE foam is more preferably 0.5 or more, further preferably 0.6 or more, and more preferably 0.7 or more. It is particularly preferred and most preferably 0.8 or more.
  • the half width of the tan ⁇ peak indicating the maximum value of the loss tangent tan ⁇ in the temperature-loss tangent tan ⁇ curve should be 10° C. or more and 25° C. or less. is preferred.
  • the half width of the tan ⁇ peak is more preferably 23° C. or less, more preferably 20° C. or less. preferable.
  • the half width of the tan ⁇ peak is preferably 12° C. or higher, more preferably 14° C. or higher.
  • the half-value width of the tan ⁇ peak can be 10°C or higher and 80°C or lower.
  • the half width of the tan ⁇ peak is more preferably 70 ° C. or less, further preferably 50 ° C. or less, and 40 ° C. The following are particularly preferred.
  • the half width of the tan ⁇ peak is more preferably 15° C. or higher, more preferably 20° C. or higher.
  • FIG. 3 shows an example of the T-tan ⁇ curve of HIPE foam. Note that the vertical axis in FIG. 3 is the loss tangent tan ⁇ , and the horizontal axis is the temperature.
  • the T-tan ⁇ curve has a tan ⁇ peak that maximizes the value of tan ⁇ in the vicinity of the glass transition temperature Tg of the crosslinked polymer constituting the HIPE foam.
  • the half width H of the tan ⁇ peak is the full width at half maximum in the T-tan ⁇ curve, and the maximum value of the loss tangent tan ⁇ (that is, the peak top in the DMA curve represented by the relationship between the temperature T (unit: ° C.) and the loss tangent tan ⁇ value), it means the temperature width of the tan ⁇ peak of the DMA curve at the position showing the loss tangent tan ⁇ value that is half (1/2) the maximum value of the tan ⁇ peak (see FIG. 3) .
  • the half width of the corresponding tan ⁇ peak tends to decrease.
  • the HIPE foam tends to be flexible even when the ambient temperature of the HIPE foam is higher than the Tg of the crosslinked polymer, but close to the Tg of the crosslinked polymer. From the point of view, it is preferable that the maximum value of the loss tangent tan ⁇ is large, and that the half width of the tan ⁇ peak is small.
  • the maximum value of the loss tangent tan ⁇ and the half width of the tan ⁇ peak can be obtained by controlling the type and blending ratio of the crosslinking agent, the type and blending ratio of the monomer, etc. described later in the HIPE foam manufacturing method described later. adjusted within the above range.
  • the soft cross-linking agent component derived from the soft cross-linking agent having a relatively long molecular chain described later is added to the crosslinked polymer.
  • the maximum value of the loss tangent tan ⁇ can be increased and the half width of the tan ⁇ peak can be decreased while keeping the molecular weight between cross-linking points within a predetermined range.
  • the peak temperature of the loss tangent tan ⁇ in the temperature-loss tangent tan ⁇ curve of the HIPE foam obtained by dynamic viscoelasticity measurement is preferably 50° C. or less.
  • the T-tan ⁇ curve is measured by subjecting the HIPE foam to dynamic viscoelasticity measurement under the conditions of frequency: 1 Hz, load: 10 mN, deformation mode: compression.
  • the heating rate is preferably 10°C/min, and the temperature range is preferably -100 to 120°C.
  • the T-tan ⁇ curve has a tan ⁇ peak such that the tan ⁇ value is maximized in the vicinity of the glass transition temperature Tg of the crosslinked polymer constituting the HIPE foam.
  • the loss tangent tan ⁇ obtained by dynamic viscoelasticity measurement is the ratio E′′/E′ of the loss elastic modulus E′′ to the storage elastic modulus E′ of the crosslinked polymer.
  • the value of the loss elastic modulus E′′ is relatively large with respect to the storage elastic modulus E′.
  • the general usage environment when using the HIPE foam as a sound absorbing material for example, under room temperature conditions of 1 to 30 ° C.
  • structure-borne sound can be efficiently attenuated in As a result, it is possible to improve the sound absorption of the sound absorbing material in a relatively low frequency range.
  • the tan ⁇ peak temperature of the HIPE foam is preferably 40°C or lower, more preferably 30°C or lower, and even more preferably 20°C or lower. If the tan ⁇ peak temperature of the HIPE foam is excessively high, structure-borne sound attenuation will be insufficient in the general environment in which the HIPE foam is used as a sound absorbing material, and the sound absorbing material will not be effective in a relatively low frequency range. It may lead to deterioration of sound absorption.
  • the tan ⁇ peak temperature is preferably ⁇ 60° C. or higher, more preferably ⁇ 50° C. or higher, and even more preferably ⁇ 40° C. or higher. -30°C or higher is particularly preferred.
  • the tan ⁇ peak temperature can be adjusted to a desired value by controlling the type of cross-linking agent and its blending ratio, the type of monomer and its blending ratio, etc. in the HIPE foam production method.
  • the peak temperature of tan ⁇ can be lowered by increasing the content of a component derived from a monomer that acts to lower the glass transition temperature, such as butyl acrylate.
  • a component derived from a monomer that acts to lower the glass transition temperature such as butyl acrylate.
  • tan ⁇ can be kept low.
  • the recovery rate of the HIPE foam after 25% compression at 23° C. is preferably 90% or more. In this case, the resilience of the HIPE foam becomes sufficiently high, making the HIPE foam more suitable for applications such as sound absorbing materials, vibration damping materials, cleaning products, cushion materials, and toys. From the same point of view, the recovery rate of the HIPE foam after 25% compression at 23° C. is more preferably 95% or more, more preferably 98% or more. HIPE foam has an upper limit of 100% recovery after 25% compression at 23°C. The recovery rate after 25% compression is measured according to JIS K6767:1999.
  • the pressure is released, and the thickness is measured 30 minutes after the release of the pressure. Based on the measurement results, the recovery rate is calculated from the formula: thickness after 30 minutes from pressure release/thickness before compression ⁇ 100.
  • the recovery rate after 25% compression at 23 ° C. is determined by the type and mixing ratio of the crosslinking agent described below, the type and mixing ratio of the monomer, and the ratio of the organic phase to the aqueous phase in the HIPE foam manufacturing method described later. By controlling the above, it is adjusted to the above range.
  • the HIPE foam preferably has a tensile elongation at break of 70% or more at 23°C.
  • the HIPE foam has sufficiently high ductility, and the HIPE foam can be suitably used for various purposes such as sound absorbing materials, vibration damping materials, cleaning products, cushion materials, and toys.
  • the HIPE foam has a tensile elongation at break of 75% or more, more preferably 80% or more, and particularly preferably 100% or more at 23°C. The tensile elongation at break at 23° C.
  • the value of the tensile elongation at break at 23 ° C. is measured based on JIS K7161-2: 2014 with respect to a test piece punched into the 1A shape of JIS K7161-2: 2014 at a tensile speed of 100 mm / min. It is the tensile breaking strain measured by conducting the test. A method for measuring the tensile elongation at break at 23°C will be described later. The tensile elongation at break at 23° C.
  • the type and blending ratio of the crosslinking agent is determined by controlling the type and blending ratio of the crosslinking agent, the type and blending ratio of the monomer, the ratio of the organic phase to the aqueous phase, and the like, which will be described later, in the HIPE foam manufacturing method described later. By doing so, it is adjusted within the above range.
  • the breaking energy per unit weight of the HIPE foam is preferably 50 mJ/g or more.
  • the strength of the HIPE foam becomes sufficiently high, and the HIPE foam can be suitably used for various purposes such as sound absorbing materials, vibration damping materials, cleaning products, cushion materials, and toys.
  • the breaking energy per unit weight of the HIPE foam is more preferably 60 mJ/g or more, still more preferably 80 mJ/g or more, and even more preferably 100 mJ/g or more.
  • the upper limit of the breaking energy per unit weight of the HIPE foam is not limited as long as the intended purpose of the present invention is achieved, but it is preferably approximately 3000 mJ / g, and 2500 mJ / g is more preferable.
  • a method for measuring the breaking energy per unit weight will be described later.
  • the breaking energy per unit weight is controlled in the HIPE foam manufacturing method described later, such as the type of crosslinking agent and its blending ratio, the type of monomer and its blending ratio, the ratio of the organic phase to the aqueous phase, and the like. By doing so, it is adjusted within the above range.
  • the crosslinked polymer constituting the HIPE foam is a polymer of a monofunctional vinyl monomer and a crosslinking agent, and has a component derived from the monofunctional vinyl monomer.
  • the vinyl-based monomers include styrene-based monomers, acrylic-based monomers, and the like. Acrylic monomers and/or styrene monomers can be used as vinyl monomers.
  • the crosslinked polymer constituting the HIPE foam may have a component derived from an acrylic monomer and a component derived from a cross-linking agent, and a component derived from a styrene monomer and It may have a component derived from a cross-linking agent.
  • the cross-linking agent constituting the HIPE foam may have a component derived from the acrylic monomer, a component derived from the styrene-based monomer, and a component derived from the cross-linking agent.
  • the crosslinked polymer is preferably composed of a polymer of a vinyl monomer containing an acrylic monomer and/or a styrene monomer and a crosslinking agent.
  • the crosslinked polymer preferably has an acrylic monomer component and/or a styrenic monomer component in the polymer backbone and also has a crosslinker component described later.
  • the toughness and stiffness of the HIPE foam are better balanced.
  • the styrene-based monomer component means a structural unit derived from the styrene-based monomer in the crosslinked polymer
  • the acrylic monomer component refers to a structural unit derived from the acrylic-based monomer in the crosslinked polymer.
  • the content of the acrylic monomer component and/or the styrene monomer component in the crosslinked polymer is preferably 50% by weight or more. , more preferably 60% by weight or more, more preferably 70% by weight or more. From the same point of view, the content of the acrylic monomer component and/or the styrene monomer component in the crosslinked polymer is preferably 98% by weight or less, more preferably 96% by weight or less. , more preferably 95% by weight or less, and particularly preferably 90% by weight or less.
  • Styrenic monomers include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p-methoxystyrene, pn -Styrene compounds such as butylstyrene, pt-butylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4,6-tribromostyrene, styrenesulfonic acid, sodium styrenesulfonate, etc.
  • Acrylic monomers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, and isobornyl acrylate.
  • dicyclopentanyl acrylate, adamantyl acrylate dicyclopentanyl acrylate, adamantyl acrylate; methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, methacryl methacrylic acid esters such as cyclohexyl acid, phenyl methacrylate, benzyl methacrylate, isobornyl methacrylate, dicyclopentanyl methacrylate and adamantyl methacrylate; Moreover, acrylamide, methacrylamide, acrylonitrile, etc. are mentioned as an acryl-type monomer.
  • the crosslinked polymer may be composed of a copolymer of a (meth)acrylic ester and a crosslinking agent, but a vinyl monomer containing a styrene monomer and a (meth)acrylic ester and a cross-linking agent.
  • the crosslinked polymer preferably has a styrenic monomer and a component (that is, structural unit) derived from a (meth)acrylic acid ester in the polymer skeleton. In this case, it is easy to obtain a HIPE foam composed of a crosslinked polymer having desired physical properties.
  • the crosslinked polymer is a crosslinked polymer, it has a component (that is, structural unit) derived from the crosslinking agent in the polymer skeleton.
  • the (meth)acrylic acid ester is an ester of (meth)acrylic acid and an alcohol, preferably an ester of (meth)acrylic acid and an alcohol having 1 to 20 carbon atoms.
  • the HIPE foam uses a crosslinked polymer obtained by crosslinking a copolymer of an acrylic monomer and a styrene monomer as a base resin, and the acrylic monomer is composed of (meth)acrylic acid and carbon. Esters with alcohols of numbers 1-20 are preferred. In this case, it is possible to easily obtain a HIPE foam having desired physical properties, and to easily adjust the glass transition temperature of the crosslinked polymer within a desired range.
  • the content of the acrylic-based monomer in the vinyl-based monomer is preferably 40% by weight or more, more preferably 50% by weight or more. It is preferably 60% by weight or more, and more preferably 60% by weight or more. Also, the weight ratio of the acrylic monomer and the styrene monomer is preferably 40:60 to 90:10, more preferably 50:50 to 80:20. In this case, it is possible to obtain the effects of reducing manufacturing costs and facilitating adjustment to desired physical properties.
  • (Meth)acrylic acid means acrylic acid and/or methacrylic acid.
  • the content of the acrylic monomer in the vinyl monomer is preferably 50% by weight or more, and 60% by weight or more, from the viewpoint of further improving sound absorption. and more preferably 70% by weight or more.
  • the content of styrene in the styrene monomer is preferably 50% by weight or more, more preferably 60% by weight or more, even more preferably 80% by weight or more, and 90% by weight. It is particularly preferable that it is above.
  • the number of carbon atoms in the hydrocarbon group constituting the (meth)acrylic acid ester is 1 to 20. preferably 2 to 18, more preferably 3 to 16, even more preferably 4 to 12.
  • the hydrocarbon group is an alkyl group.
  • the hydrocarbon group may be cyclic or acyclic.
  • the use of 2-ethylhexyl acrylate or butyl acrylate can easily lower the glass transition temperature of the crosslinked polymer.
  • the content of (meth)acrylic acid ester having a hydrocarbon group of 3 to 10 carbon atoms in the acrylic monomer is 50. It is preferably at least 80% by weight, even more preferably at least 90% by weight.
  • the crosslinked polymer has a crosslinked structure and contains a crosslinker component.
  • a cross-linking agent component is a structural unit derived from a cross-linking agent in a cross-linked polymer.
  • a cross-linking agent is a compound that cross-links (bonds) polymer chains constituting a polymer to form a cross-linked structure in the polymer.
  • the cross-linking agent for example, a vinyl-based compound having at least two functional groups selected from a vinyl group and an isopropenyl group in the molecule is used.
  • the vinyl-based compound also includes a compound containing a vinyl group and/or an isopropenyl group in the structure of a functional group, such as an acryloyl group or a methacryloyl group.
  • a functional group such as an acryloyl group or a methacryloyl group.
  • the number of functional groups in the vinyl compound is preferably 6 or less, preferably 5 or less, and more preferably 4 or less.
  • the cross-linking agent preferably has functional groups at least at both ends of the molecule, and more preferably has functional groups only at both ends of the molecule.
  • the crosslinked polymer may contain one type of crosslinker component, for example, made using one type of crosslinker. It is preferable to contain a hard cross-linking agent component derived from a hard cross-linking agent having a relatively short molecular chain and a soft cross-linking agent component derived from a soft cross-linking agent having a relatively long molecular chain, because it is easy to increase the .
  • the molecular weight Mc between cross-linking points of the cross-linked polymer constituting the HIPE foam, the storage elastic modulus at a temperature of 23° C., the maximum value of the loss tangent tan ⁇ and the like can be easily adjusted within the above ranges.
  • the hard cross-linking agent can be called the first cross-linking agent
  • the soft cross-linking agent can be called the second cross-linking agent
  • the hard cross-linking agent (that is, the first cross-linking agent) is preferably a vinyl compound having a functional group equivalent weight of 130 g/eq or less. Since such a hard cross-linking agent has a relatively short molecular chain, it is considered that the mobility of the polymer molecular chain is reduced by being copolymerized with the vinyl monomer. By using a hard-type cross-linking agent, it becomes easy to increase the rigidity of the HIPE foam. From the viewpoint of facilitating the production of HIPE foam, the lower limit of the functional group equivalent weight of the hard cross-linking agent is preferably 30 g/eq, more preferably 40 g/eq, and more preferably 50 g/eq.
  • the upper limit of the functional group equivalent weight of the hard cross-linking agent is preferably 120 g/eq.
  • the functional group equivalent of the hard cross-linking agent means the molar mass of the hard cross-linking agent per functional group (specifically, an alkenyl group such as a vinyl group and an isopropenyl group), and is a unit of the functional group equivalent. can also be expressed as [g/mol].
  • the soft cross-linking agent (that is, the second cross-linking agent) is preferably a vinyl compound having a functional group equivalent of more than 130 g/eq and not more than 5000 g/eq. Since such a soft cross-linking agent has a relatively long molecular chain, by being copolymerized with a vinyl monomer, the mobility of the polymer molecular chain is not greatly reduced, and the inter-polymer molecular chain is formed. It is thought that it can be crosslinked. By using a soft cross-linking agent, it is easy to increase the toughness of the HIPE foam.
  • the upper limit of the functional group equivalent weight of the soft cross-linking agent is preferably 5000 g/eq, more preferably 4000 g/eq, and further preferably 3000 g/eq. preferable.
  • the lower limit of the functional group equivalent weight of the soft cross-linking agent is preferably 150 g/eq, more preferably 180 g/eq, and even more preferably 200 g/eq.
  • the functional group equivalent of the soft cross-linking agent means the molar mass of the soft cross-linking agent per functional group (specifically, an alkenyl group such as a vinyl group or an isopropenyl group), and is a unit of the functional group equivalent. can also be expressed as [g/mol].
  • the functional group equivalent of the soft cross-linking agent is It is preferably 60 g/eq or more, more preferably 80 g/eq or more, even more preferably 100 g/eq or more, and even more preferably 120 g/eq or more than the functional group equivalent of the cross-linking agent.
  • the difference between the functional group equivalent weight of the soft cross-linking agent and the functional group equivalent weight of the hard cross-linking agent is preferably 60 g/eq or more, more preferably 80 g/eq or more, and 100 g/eq or more. and more preferably 120 g/eq or more.
  • the difference between the functional group equivalent weight of the soft cross-linking agent and the functional group equivalent weight of the hard cross-linking agent is preferably 3000 g/eq or less, more preferably 2000 g/eq or less, and even more preferably 1000 g/eq or less.
  • the weight average value of the functional group equivalents of all the hard cross-linking agents is calculated, and this value is taken as the functional group equivalent of the hard cross-linking agents.
  • the weight average value of the functional group equivalents of all the soft cross-linking agents is calculated, and this value is taken as the functional group equivalent of the soft cross-linking agents.
  • the above-mentioned crosslinked polymer contains a component derived from a soft cross-linking agent having a functional group equivalent of 130 g/eq or less and a functional group equivalent of more than 130 g/eq and 5000 g/eq. eq or less, and the functional group equivalent weight of the hard crosslinking agent is preferably 100 g/eq or more larger than the functional group equivalent weight of the soft crosslinking agent.
  • vinyl compounds used as hard crosslinking agents include vinyl compounds such as divinylbenzene; triallyl isocyanurate; and esters of polyhydric alcohols and (meth)acrylic acid.
  • Esters of polyhydric alcohols and (meth)acrylic acid include butanediol (meth)acrylates such as butanediol diacrylate; trimethylolpropane (meth)acrylates such as trimethylolpropane triacrylate; hexanes such as hexanediol diacrylate.
  • the number of functional groups in the hard-type cross-linking agent is two or more.
  • the functional groups are preferably vinyl groups and/or isopropenyl groups.
  • These hard cross-linking agents may be used alone, or two or more hard cross-linking agents may be used in combination.
  • the hard-type cross-linking agent component constituting the cross-linked polymer may be of one type or two or more types.
  • a hard cross-linking agent mainly composed of divinylbenzene and/or butanediol diacrylate as the hard cross-linking agent. It is more preferable to use a hard-type cross-linking agent as a component.
  • the main component of the hard cross-linking agent means a component that accounts for 50% by weight or more of the hard cross-linking agent.
  • the proportion of the vinyl compound, which is the main component in the hard crosslinking agent is preferably 60% by weight or more, more preferably 80% by weight or more, and even more preferably 90% by weight or more. .
  • vinyl compounds used as soft cross-linking agents include esters of polyhydric alcohol and (meth)acrylic acid, esters of polyether glycol and (meth)acrylic acid, and esters of urethane oligomer and (meth)acrylic acid. , esters of epoxy oligomers and (meth)acrylic acid, and (meth)acrylic modified silicones.
  • the vinyl compounds include nonanediol (meth)acrylates such as nonanediol diacrylate; decanediol (meth)acrylates such as decanediol diacrylate; polyethylene glycol (meth)acrylates such as polyethylene glycol diacrylate; Acrylates; polypropylene (meth)acrylates such as polypropylene glycol diacrylate; polytetramethylene glycol (meth)acrylates such as polytetramethylene glycol diacrylate; polyglycerin (meth)acrylates such as polyglycerin diacrylate; urethanes such as urethane diacrylate (Meth)acrylates; epoxy (meth)acrylates such as epoxy diacrylate; polyester (meth)acrylates such as polyester diacrylate; (meth)acrylic-modified silicones such as (meth)acrylic-modified silicone at both ends; caprolactone-modified trisisocyanurate, etc.
  • the number of functional groups in the soft cross-linking agent is two or more.
  • the functional groups are preferably vinyl groups and/or isopropenyl groups.
  • the soft cross-linking agent is selected from the group consisting of polyethylene glycol (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate and (meth) acrylic modified silicone. It is preferred to use at least one selected compound. Moreover, from the viewpoint of facilitating adjustment of the toughness of the HIPE foam, it is preferable to use a soft cross-linking agent containing polyethylene glycol di(meth)acrylate as a main component as the soft cross-linking agent. The number of repeating structural units derived from ethylene glycol in polyethylene glycol di(meth)acrylate is preferably 3-23.
  • a soft cross-linking agent having a functional group equivalent weight of 500 g/eq or more and 3000 g/eq or less. It is more preferable to use a soft cross-linking agent containing (meth)acrylate and/or epoxy (meth)acrylate as a main component, and it is even more preferable to use a soft cross-linking agent containing epoxy (meth)acrylate as a main component.
  • the main component of the soft cross-linking agent means a component whose proportion in the soft cross-linking agent is 50% by weight or more.
  • the proportion of the vinyl compound, which is the main component in the soft cross-linking agent is preferably 60% by weight or more, more preferably 80% by weight or more, and even more preferably 90% by weight or more. .
  • Table 1 shows the molecular weight of typical cross-linking agents and the molecular weight per functional group (that is, functional group equivalent weight).
  • the crosslinked polymer comprises at least a copolymer of an acrylic monomer, a styrene monomer, and a crosslinking agent
  • the molecular weight Mc between crosslinking points and the storage elastic modulus at a temperature of 23° C. are within the above ranges.
  • the content of the acrylic monomer component in the crosslinked polymer is the vinyl monomer constituting the crosslinked polymer.
  • the content of the styrene-based monomer component in the crosslinked polymer is 10 parts by weight or more with respect to a total of 100 parts by weight of the vinyl-based monomer component and the cross-linking agent component that constitute the crosslinked polymer.
  • the acrylic monomer it is preferable to use a (meth)acrylic acid ester having a hydrocarbon group with a carbon number of 3 to 10.
  • the hydrocarbon group has a carbon number of 3 to
  • the content of 10 (meth)acrylic acid esters is preferably 50% by weight or more, more preferably 80% by weight or more, and even more preferably 90% by weight or more.
  • the (meth)acrylic acid ester having a hydrocarbon group having 3 to 10 carbon atoms 2-ethylhexyl acrylate and/or butyl acrylate are preferable, and butyl acrylate is more preferable.
  • HIPE foam when HIPE foam is used as a sound absorbing material, from the viewpoint of facilitating adjustment of the peak temperature of tan ⁇ within the above range and from the viewpoint of better balance between the toughness and rigidity of the HIPE foam, acrylic
  • the content of the system monomer component is preferably 50 parts by weight or more and 95 parts by weight or less with respect to a total of 100 parts by weight of the vinyl monomer component and the cross-linking agent component constituting the crosslinked polymer. , 60 parts by weight or more and 90 parts by weight or less, and more preferably 70 parts by weight or more and 85 parts by weight or less.
  • the content of the styrene-based monomer component in the crosslinked polymer is 3 parts by weight or more with respect to a total of 100 parts by weight of the vinyl-based monomer component and the cross-linking agent component that constitute the crosslinked polymer. , 45 parts by weight or less, more preferably 5 parts by weight or more and 30 parts by weight or less, and even more preferably 10 parts by weight or more and 25 parts by weight or less.
  • the content of the cross-linking agent component in the cross-linked polymer (specifically, The total content of the soft cross-linking agent component and the hard cross-linking agent component) is 5 parts by weight or more with respect to the total 100 parts by weight of the vinyl monomer component and the cross-linking agent component constituting the crosslinked polymer. It is preferably 40 parts by weight or less, more preferably 6 parts by weight or more and 35 parts by weight or less, and even more preferably 10 parts by weight or more and 30 parts by weight or less.
  • the content of the cross-linking agent component in the cross-linked polymer is adjusted from the viewpoint of easily adjusting the tan ⁇ peak temperature of the cross-linked polymer to the desired range. It is preferably 3 parts by weight or more and 40 parts by weight or less, and preferably 4 parts by weight or more and 35 parts by weight or less, with respect to a total of 100 parts by weight of the constituting vinyl monomer component and the cross-linking agent component. more preferred.
  • the crosslinked polymer contains a crosslinker component having a functional group equivalent weight of 500 g/eq or more and 3000 g/eq or less
  • the crosslinked polymer has a functional group equivalent weight of 500 g/eq or more and 3000 g/eq or less. is preferably 20 to 40 parts by weight with respect to 100 parts by weight in total of the vinyl-based monomer component and the cross-linking agent component constituting the crosslinked polymer.
  • a cross-linking agent component having a functional group equivalent weight of 500 g/eq or more and 3000 g/eq or less corresponds to a soft cross-linking agent.
  • the content of the hard cross-linking agent component in the cross-linked polymer is 1 part by weight or more and 10 parts by weight per 100 parts by weight in total of the vinyl-based monomer component and the cross-linking agent component constituting the cross-linked polymer. parts by weight or less, more preferably 2 parts by weight or more and 6 parts by weight or less, and even more preferably 2 parts by weight or more and 5 parts by weight or less.
  • the addition of the soft cross-linking agent component in the cross-linked polymer is preferably 3 parts by weight or more and 40 parts by weight or less, 5 parts by weight or more, with respect to a total of 100 parts by weight of the vinyl-based monomer component and the cross-linking agent component that constitute the crosslinked polymer. It is more preferably 35 parts by weight or less, and even more preferably 8 parts by weight or more and 30 parts by weight or less.
  • the weight ratio of the hard cross-linking agent component to the soft cross-linking agent component is 0.05 from the viewpoint of facilitating adjustment of the molecular weight Mc between cross-linking points, the maximum value of the storage elastic modulus at a temperature of 23° C., the loss tangent tan ⁇ , etc. within the above range. above, preferably 1.0 or less, more preferably 0.06 or more and 0.6 or less, further preferably 0.08 or more and 0.5 or less, and 0.1 or more and 0 .4 or less is particularly preferred.
  • the rigidity of the HIPE foam can be easily increased, and the peak temperature of tan ⁇ and the like can be easily adjusted within the desired range.
  • the content of the soft cross-linking agent component in the cross-linked polymer is It is preferably 2 parts by weight or more and 40 parts by weight or less, and preferably 3 parts by weight or more and 35 parts by weight or less with respect to a total of 100 parts by weight of the constituting vinyl monomer component and the crosslinking agent component. more preferred.
  • the weight ratio of the hard cross-linking agent component to the soft cross-linking agent component is preferably 0.05 or more and 4 or less, more preferably 0.06 or more and 3 or less, and 0.08. More preferably, it is 2 or less.
  • HIPE foams are produced by polymerizing high internal phase emulsions, specifically by polymerizing water-in-oil high internal phase emulsions.
  • the organic phase of the water-in-oil type high internal phase emulsion is a continuous phase containing a vinyl monomer, a cross-linking agent, an emulsifier, a polymerization initiator, etc.
  • the aqueous phase is a dispersed phase containing water such as deionized water. be.
  • a first aspect is water-in-oil in which an aqueous phase containing water is included in an organic phase containing an acrylic monomer and/or a styrene monomer, a cross-linking agent, an emulsifier, and a polymerization initiator.
  • a method for producing a porous body by forming a type high internal phase emulsion and polymerizing an acrylic monomer and/or a styrenic monomer in the emulsion comprising:
  • the cross-linking agent is a vinyl compound having at least two functional groups selected from vinyl groups and isopropenyl groups in the molecule, and a first cross-linking agent having a functional group equivalent of 130 g / eq or less, and a functional group a second cross-linking agent having an equivalent weight of more than 130 g/eq and not more than 5000 g/eq;
  • the functional group equivalent of the second cross-linking agent is greater than the functional group equivalent of the first cross-linking agent by 100 g/eq or more,
  • the amount of the cross-linking agent added is 5 parts by weight or more and 40 parts by weight or less with respect to a total of 100 parts by weight of the acrylic monomer, the styrene-based monomer and the cross-linking agent,
  • a second aspect is water-in-oil in which an aqueous phase containing water is included in an organic phase containing an acrylic monomer and/or a styrene monomer, a cross-linking agent, an emulsifier, and a polymerization initiator.
  • the cross-linking agent is a vinyl compound having at least two functional groups selected from a vinyl group and an isopropenyl group in the molecule, and a cross-linking agent having a functional group equivalent weight of 500 g/eq to 3000 g/eq.
  • the amount of the cross-linking agent added is 20 parts by weight or more and 40 parts by weight or less with respect to a total of 100 parts by weight of the acrylic monomer, the styrene-based monomer, and the cross-linking agent.
  • a HIPE foam can be produced by carrying out an emulsification step, a polymerization step, and a drying step as follows. First, while stirring an oily liquid (organic phase) containing organic substances such as a vinyl monomer, a cross-linking agent, an emulsifier, and a polymerization initiator, an aqueous liquid (aqueous phase) containing water is added dropwise into the oily liquid. , to prepare a water-in-oil type high internal phase emulsion (emulsification step).
  • a high internal phase emulsion can be produced by adding the aqueous liquid to the oily liquid so that the volume ratio of the aqueous phase to the organic phase is, for example, three times or more.
  • the ratio of the aqueous phase to be included in the organic phase can be adjusted by the weight ratio of the organic phase and the aqueous phase.
  • the content of the aqueous phase in the high internal phase emulsion is preferably 300 to 3000 parts by weight, more preferably 400 to 2500 parts by weight, and 500 to 2000 parts by weight, relative to 100 parts by weight of the organic phase. Part is more preferred.
  • the high internal phase emulsion is heated to polymerize the organic phase vinyl monomer, cross-linking agent, etc. to obtain a polymerization product (specifically, a cross-linked polymer containing water) (polymerization step ). Thereafter, by drying the polymerization product, a HIPE foam composed of a crosslinked polymer is obtained (drying step).
  • the stirring speed in the emulsification step is not particularly limited, but can be adjusted, for example, in the range of stirring power density of 0.01 kW/m 3 to 10 kW/m 3 .
  • the stirring power density in the emulsification step is more preferably 0.03 to 7 kW/m 3 .
  • the stirring power density (unit: kW/m 3 ) in the emulsification process is calculated from the torque (unit: N m) and rotation speed (unit: rpm) of the stirring device used in the emulsification process, and the power during stirring (unit: kW) and dividing this power by the volume (unit: m 3 ) of the contents of the container in the emulsification process.
  • the method of adding the aqueous liquid to the oily liquid in the emulsification step is not particularly limited. It is possible to employ a method such as charging only the liquid, starting stirring, and charging the aqueous liquid into the container using a pump or the like under stirring to emulsify.
  • the addition rate of the aqueous liquid is not particularly limited, but is adjusted, for example, in the range of 10% by weight/min to 1000% by weight/min with respect to 100% by weight of the oily liquid. can do.
  • the addition rate of the aqueous liquid is more preferably 100 to 800% by weight/min, more preferably 200 to 600% by weight/min with respect to 100% by weight of the oily liquid (organic phase).
  • a batch-type emulsification process in which a stirring container equipped with a stirring device or a centrifugal shaker is used for emulsification, or an oily liquid and an aqueous liquid are continuously mixed in a line equipped with a static mixer, a mesh, or the like. Examples include a continuous emulsification process in which the ingredients are uniformly supplied and mixed.
  • the method of emulsification is not particularly limited.
  • the aqueous phase can contain water such as deionized water, a polymerization initiator, an electrolyte, and the like.
  • water such as deionized water, a polymerization initiator, an electrolyte, and the like.
  • an oily liquid and an aqueous liquid are separately prepared, and the aqueous liquid is added to the oily liquid under stirring to prepare a high internal phase emulsion.
  • additives such as a flame retardant, a flame retardant auxiliary, a light fastness agent, and a colorant can be appropriately blended in the aqueous phase and/or the organic phase.
  • Flame retardants are used to improve the flame retardancy of HIPE foams.
  • Flame retardants include organic compounds containing halogen, phosphorus, nitrogen, silicone, etc.; inorganic compounds containing metal hydroxides, phosphorus, nitrogen, etc.; A flame retardant may be used as long as it does not impair the effects of the present invention.
  • the blending amount is preferably 5 to 20 parts by weight with respect to a total of 100 parts by weight of the vinyl-based monomer component and the cross-linking agent component constituting the crosslinked polymer.
  • the flame retardant it is preferable to use a brominated bisphenol-based flame retardant from the viewpoint of easily imparting excellent flame retardancy even when a small amount is added.
  • a flame retardant and/or a brominated bisphenol flame retardant having a 2,3-dibromopropyl group such as 2,2-bis(4-(2,3-dibromo-2-methylpropoxy)-3, More preferably, 5-dibromophenyl)propane is used.
  • the HIPE foam can be appropriately blended with a flame retardant aid for the purpose of improving the flame retardant efficiency.
  • a flame retardant aid for example, when a halogen-based flame retardant is used, if a radical generator such as dicumyl peroxide is used as a flame retardant aid, the decomposition of the radical generator promotes desorption of the halogen in the flame retardant, resulting in flame retardant efficiency.
  • halogen-based flame retardant when used, if an antimony compound such as antimony trioxide is used as a flame retardant aid, the effect of radical trapping by the halogen-based flame retardant and the effect of blocking air by antimony oxide are synergistic. An improvement in flame retardant efficiency can be expected by combining them.
  • a single flame retardant may be used, or two or more flame retardants having different flame retardant mechanisms may be used in combination.
  • a polymerization initiator is used to initiate polymerization of a vinyl-based monomer.
  • a radical polymerization initiator can be used as the polymerization initiator.
  • LPO dilauroyl peroxide
  • LTCP bis(4-t-butylcyclohexyl)peroxydicarbonate
  • 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate di(3,5,5-trimethylhexanoyl) peroxide
  • t-butyl peroxypivalate t-hexyl peroxypivalate
  • t-butyl peroxyneoheptanoate t-butyl peroxyneo
  • Organic peroxides such as decanoate, t-hexylperoxyneodecanoate, di(2-ethylhexyl)peroxydicarbonate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, and
  • the one-hour half-life temperature of the polymerization initiator is preferably 95° C. or lower, more preferably 90° C. or lower. From the viewpoint of safety, the one-hour half-life temperature of the polymerization initiator is preferably 50° C. or higher, more preferably 55° C. or higher, in order to suppress decomposition of the polymerization initiator at room temperature.
  • One or more substances can be used as the polymerization initiator.
  • an organic peroxide having a 1-hour half-life temperature of 50 ° C. or more and less than 70 ° C.
  • a polymerization initiator can be added to the organic phase and/or the aqueous phase. Further, when adding a polymerization initiator to the aqueous phase, 2,2'azobis(2-(2-imidazolin-2-yl)propane) dihydrochloride, 2,2'azobis(2-methylpropionamidine dihydrochloride , potassium persulfate, ammonium persulfate, etc.
  • the amount of the polymerization initiator added is, for example, 0 per 100 parts by weight of the total of the vinyl monomer and the cross-linking agent. .1 to 5 parts by weight.
  • Emulsifiers are used for the formation and stabilization of high internal phase emulsions.
  • a surfactant can be used.
  • glycerol esters such as polyglycerin condensed ricinoleate, polyglycerin stearate, polyglycerin oleate, polyglycerin laurate, polyglycerin myristate; sorbitan oleate, sorbitan stearate, sorbitan laurate, sorbitan laurate sorbitol esters such as sorbitan palmitate; ethylene glycol sorbitan esters; ethylene glycol esters; copolymers of polyethylene glycol and polypropylene glycol;
  • the amount of the emulsifier to be added can be, for example, in the range of 1 to 30 parts by weight with respect to 100 parts by weight of the total of the vinyl monomer, the cross-linking agent and the emulsifier.
  • the electrolyte is used to impart ionic strength to the aqueous phase and enhance the stability of the emulsion.
  • a water-soluble electrolyte can be used as the electrolyte. Specifically, calcium chloride, sodium chloride, magnesium chloride, sodium acetate, sodium citrate, sodium sulfate, calcium sulfate, magnesium sulfate, sodium dihydrogen phosphate, disodium hydrogen phosphate and the like are used.
  • the amount of the electrolyte to be added can be, for example, in the range of 0.01 to 10 parts by weight with respect to 100 parts by weight of the aqueous liquid.
  • the polymerization temperature in the polymerization process is adjusted by, for example, the type of vinyl polymer, the type of polymerization initiator, the type of cross-linking agent, and the like.
  • the polymerization temperature is, for example, 50°C to 90°C.
  • the polymerization temperature is more preferably 70 to 85° C. from the viewpoint of increasing the productivity of the HIPE foam and making it easier to obtain a HIPE foam having a desired cell structure.
  • the polymerization time is preferably 0.5 to 15 hours, more preferably 0.5 to 12 hours, and 0.5 to 10 hours. is more preferred.
  • the water-containing crosslinked polymer is dried using an oven, vacuum dryer, high-frequency/microwave dryer, etc. By completing the drying, the locations where there were water droplets in the emulsion before polymerization become air bubbles in the polymer after drying, and a porous body can be obtained.
  • the crosslinked polymer can be dehydrated by pressing, for example, using a press machine. Squeezing may be done at room temperature (eg 23° C.), but it can also be done at a temperature above the glass transition temperature of the crosslinked polymer that makes up the HIPE foam, for example. In this case, dehydration by pressing is facilitated, and the drying time can be shortened. Dehydration of the crosslinked polymer can also be carried out by centrifugation. In this case also, the drying time is shortened.
  • the porous body Since the porous body is flexible, has excellent ductility, and has excellent restorability, it is suitable for a wide variety of uses such as damping materials and cleaning products. Moreover, since the porous body has a sound absorbing property, the porous body can be used as a sound absorbing material.
  • the porous body obtained by the above method can be used as a sound absorbing material or the like as it is. Moreover, by subjecting the porous body to cutting or the like as necessary, it is possible to obtain a sound absorbing material or the like having a desired shape.
  • a preferred embodiment of the sound absorbing material composed of a porous body is as follows.
  • a sound absorbing material composed of a porous material having a base resin of a crosslinked polymer in which a polymer of an acrylic monomer and/or a styrene monomer is crosslinked,
  • the peak temperature of the loss tangent tan ⁇ in the temperature-loss tangent tan ⁇ curve measured by performing dynamic viscoelasticity measurement on the porous body under the conditions of frequency: 1 Hz, load: 10 mN, deformation mode: compression is 50 ° C. or less.
  • Flow resistance per unit thickness of the porous body at 0.5 mm/s is 7 ⁇ 10 4 N ⁇ s/m 4 or more and 1 ⁇ 10 6 N ⁇ s /m 4 or less, the sound absorbing material.
  • the porous body uses a crosslinked polymer obtained by crosslinking a polymer of an acrylic monomer and a styrene monomer as a base resin, and the acrylic monomer is (meth)acrylic acid.
  • a sound absorbing material made of a conventional porous material for example, a sound absorbing material made of polyurethane foam is known.
  • the sound absorbing material made of polyurethane foam has a problem of low absorption of sound waves having a relatively low frequency of about 500 to 1000 Hz, such as road noise of automobiles.
  • the porous bodies according to [12] to [17] described above effectively attenuate both solid-borne sound propagating through the cell walls of the porous body and air-borne sound propagating through the air in the porous body. be able to. Therefore, a sound absorbing material made of such a porous body has good sound absorbing properties in a relatively low frequency range and excellent sound absorbing properties in a wide frequency range.
  • the porous body can be suitably used as a sound absorbing material for absorbing sound with a frequency of 100 to 5000 Hz. More specifically, the sound absorbing material composed of the porous body can be suitably used for automobiles, buildings, and the like.
  • the flow resistance per unit thickness of the porous body at a flow rate of 0.5 mm/s which is measured based on ISO 9053-1:2018, is 7 ⁇ 10 4 N ⁇ s/m 4 or more and 1 ⁇ 10 6 N ⁇ It is preferably s/m 4 or less.
  • the above-mentioned flow resistance is a value that indicates the difficulty of air flow inside the porous body when air is circulated through the porous body. The higher the flow resistance, the more difficult it is for the air to flow inside the porous body. do.
  • the value of the flow resistance per unit thickness of the porous body is considered to be an index that can appropriately express the characteristics of the porous body as a sound absorbing material.
  • the flow rate 0.5 mm / s You may calculate the flow resistance per unit thickness in.
  • the flow resistance is measured when air is flowed under the condition of, for example, a flow velocity of 1 to 3 mm / s, and based on the relationship between each flow velocity and the flow resistance, A flow resistance per unit thickness at a flow velocity of 0.5 mm/s may be calculated.
  • the flow resistance per unit thickness of the porous body is mainly related to the apparent density of the porous body, the bubble diameter, the ratio between the bubble diameter and the through-hole diameter, etc., the structure of the cell walls and cells in the porous body
  • the flow resistance per unit thickness of the porous body can be adjusted within the specific range. For example, when the density of the porous body decreases, the ratio of air bubbles to the volume of the porous body increases, and the flow resistance per unit thickness decreases. Also, for example, when the diameter of the air bubbles in the porous body increases, the air easily flows through the air bubbles in the porous body, and the flow resistance per unit thickness decreases.
  • the total normal incidence sound absorption coefficient at a frequency of 125 to 5000 Hz is preferably 8 or more, more preferably 9 or more. more preferred.
  • the total of the normal incidence sound absorption coefficients at a frequency of 500 to 1000 Hz is preferably 2.5 or more. It is more preferably 0 or more.
  • the minimum thickness of the sound absorbing material is preferably 10 mm or more, preferably 15 mm or more, and preferably 20 mm or more. By setting the minimum thickness of the sound absorbing material within the specific range, excellent sound absorbing properties can be exhibited in any part of the sound absorbing material. Further, when the sound absorbing material has a rectangular parallelepiped shape, the sound absorbing property of the sound absorbing material can be further enhanced by setting the minimum thickness of the sound absorbing material within the specific range. When the sound absorbing material has a rectangular parallelepiped shape, the maximum thickness of the sound absorbing material is preferably approximately 100 mm or less, more preferably 70 mm or less, and 50 mm or less from the viewpoint of improving handleability. is more preferred.
  • porous bodies specifically HIPE foams
  • a HIPE foam was produced by the following method. First, in a glass container with an internal volume of 3 L, equipped with a stirring device with a torque converter, styrene: 31 g and butyl acrylate: 47.5 g as vinyl monomers, a hard cross-linking agent (hereinafter referred to as the first cross-linking agent Divinylbenzene with a purity of 57% by weight: 4 g (2.3 g as divinylbenzene) as a soft cross-linking agent (hereinafter referred to as a second cross-linking agent) Polyethylene glycol diacrylate (specifically, new Nakamura Chemical Co., Ltd.
  • NK Ester A-400 / purity 95% by weight 10 g (9.5 g as polyethylene glycol diacrylate), polyglycerin condensed ricinoleate as an emulsifier (specifically, Sakamoto Yakuhin Kogyo Co., Ltd.) 7.5 g of company CRS-75) and 1 g of dilauroyl peroxide as a polymerization initiator were added. An organic phase was formed by mixing these in a glass vessel.
  • stirring power density was lowered to 0.1 kW/m 3
  • an aspirator was connected to the glass container to reduce the pressure in the container, and microbubbles contained in the emulsion were removed.
  • stirring was stopped and the inside of the vessel was returned to atmospheric pressure.
  • the contents of the glass container were filled into a container with a length of about 250 mm, a width of about 180 mm, and a depth of about 90 mm, and polymerized in an oven at 70°C for about 18 hours to obtain a HIPE foam containing water.
  • the HIPE foam was removed from the oven and cooled to room temperature.
  • the HIPE foam was removed from the container, washed with water, dehydrated, and dried in an oven at 85°C to constant weight.
  • a rectangular parallelepiped HIPE foam composed of a vinyl-based crosslinked polymer was obtained.
  • the apparent density of this HIPE foam was 94 g/L (ie 94 kg/m 3 ).
  • Table 2 shows the charging composition and the like of this example.
  • the content of various components (vinyl-based monomers and cross-linking agents) in the cross-linked polymer is determined by the blending amount of each component (for the cross-linking agent, the blending amount excluding impurities) and the vinyl-based monomer content at the time of preparation. It can be determined from the total blended amount of the polymer component and the cross-linking agent component (excluding impurities).
  • compound names are abbreviated as follows.
  • styrene BA butyl acrylate
  • DVB divinylbenzene
  • PEGDA polyethylene glycol diacrylate
  • EpDA epoxy diacrylate (specifically, both terminal acrylic-modified epoxy prepolymer)
  • PGPR polyglycerol condensed ricinoleate
  • LPO dilauroyl peroxide
  • Examples 1-2 to 1-12, Comparative Examples 1-1 to 1-4 A HIPE foam was produced in the same manner as in Example 1-1, except that the charging composition was changed as shown in Tables 2 to 4.
  • the stirring power density in the emulsification process was changed to 1.6 kW/m 3 .
  • the stirring power density in the emulsification process was changed to 0.7 kW/m 3 .
  • the stirring power density in the emulsification process was changed to 7.8 kW/m 3 .
  • the stirring power density in the emulsification process and defoaming process was changed to 0.03 kW/m 3 .
  • Tg Glass transition temperature: Tg
  • DSC250 manufactured by TA Instruments Japan Co., Ltd. was used as a measuring device. Specifically, first, about 2 mg of a test piece was taken from the vicinity of the center of the HIPE foam. As the state adjustment of the test piece, "(3) When measuring the glass transition temperature after performing a certain heat treatment" was adopted. Specifically, the sampled test piece was allowed to stand in a constant temperature and humidity room at a temperature of 23° C. and a humidity of 50% for 24 hours or more.
  • the test piece was heated at a heating rate of 10°C/min to a temperature about 30°C higher than the temperature at the end of the glass transition, held at this temperature for 10 minutes, and then cooled at a rate of 10°C/min. Cooled to about 50° C. below the glass transition temperature.
  • the Tg of the HIPE foam of Example 1-1 it was heated to 40°C and then cooled to -45°C. After cooling, this temperature was maintained for 10 minutes to stabilize the apparatus, and a DSC curve was obtained by performing DSC measurements at a heating rate of 20°C/min up to a temperature about 30°C higher than the temperature at the end of the glass transition. A midpoint glass transition temperature was obtained from this DSC curve, and this value was taken as the glass transition temperature Tg.
  • the measurement temperature range in Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-4 was -90°C to 70°C.
  • the molecular weight Mc between cross-linking points was calculated from the following formula (I) using the storage elastic modulus E′ and the temperature T in the rubber-like flat portion measured by the dynamic viscoelasticity measurement of the above three test pieces.
  • three temperatures T randomly selected from within the temperature range of Tg + 50 ° C. to Tg + 80 ° C., which are rubber-like plateaus in each of the TE 'curves of the above three test pieces, are selected.
  • the storage modulus E' at temperature T was determined.
  • the molecular weight between cross-linking points at each temperature was calculated from the following formula (I).
  • the arithmetic mean value of a total of nine molecular weights between crosslinks calculated from the TE' curves of the three test pieces was adopted as the molecular weight between crosslinks Mc.
  • Tg is the glass transition temperature of the crosslinked polymer that constitutes the HIPE foam.
  • Mc 2(1+ ⁇ ) ⁇ RT/E′ (I)
  • the storage elastic modulus E′ and the molecular weight between crosslinks Mc were calculated under the condition that the volume was constant, that is, the Poisson's ratio was set to 0.5.
  • Storage modulus at 0°C and 23°C, storage modulus ratio The storage modulus at 0°C and the storage modulus at 23°C were obtained from the storage modulus E' in the temperature range of -100 to 120°C measured by the dynamic viscoelasticity measurement (DMA).
  • DMA dynamic viscoelasticity measurement
  • the TE' curve of the porous body of Example 1-1 is shown in FIG.
  • the ratio of the storage modulus at 0°C to the storage modulus at 23°C was calculated.
  • a T-tan ⁇ curve in the temperature range of -100 to 120°C was obtained in the same manner as the measurement of the molecular weight between crosslinks Mc.
  • the loss tangent tan ⁇ is a value obtained by dividing the loss elastic modulus E′′ by the storage elastic modulus E′, and E′, E′′ and tan ⁇ can be obtained simultaneously in the dynamic viscoelasticity measurement.
  • the value of tan ⁇ at the peak top of the tan ⁇ peak in the T-tan ⁇ curve thus obtained was taken as the maximum value of the loss tangent tan ⁇ .
  • FIG. 3 shows the T-tan ⁇ curve of the HIPE foam of Example 1-1.
  • breaking energy The arithmetic average value of the energy in the region from the strain amount of 0% to the tensile breaking strain in the load-displacement curve measured by the tensile test was calculated.
  • breaking energy a value automatically calculated by Autograph AGS-10kNX was used.
  • the breaking energy per unit weight of the HIPE foam was calculated, and when the calculated value was 50 mJ/g or more, the strength was judged to be good and indicated as "Good” in the table. On the other hand, when the calculated value was less than 50 mJ/g, the strength was determined to be poor, and was described as "Poor" in the table.
  • the HIPE foams of Examples are flexible, excellent in ductility, and excellent in strength.
  • the HIPE foams of Examples 1-1 to 1-11 are even more excellent in resilience.
  • Comparative Example 1-1 was an example with a high apparent density and insufficient ductility.
  • Comparative Examples 1-2 and 1-3 are examples in which the molecular weight between cross-linking points was small, and the ductility was insufficient.
  • Comparative Examples 1-4 are examples with high storage modulus and insufficient ductility.
  • Example 2-1 First, in a glass container with an internal volume of 3 L, equipped with a stirring device with a torque converter, styrene: 14.5 g and butyl acrylate: 66 g as vinyl monomers, a hard cross-linking agent (hereinafter referred to as the first cross-linking agent Divinylbenzene with a purity of 57% by weight: 7 g (4.0 g as divinylbenzene) as a soft cross-linking agent (hereinafter referred to as a second cross-linking agent)
  • Polyethylene glycol diacrylate specifically, new NK Ester A-400 manufactured by Nakamura Chemical Co., Ltd.
  • 5 g 4.8 g as polyethylene glycol diacrylate
  • polyglycerin condensed ricinoleate as an emulsifier (specifically, CRS- manufactured by Sakamoto Pharmaceutical Co., Ltd.) 75): 7.5 g, and 0.5 g of dilauroyl peroxide
  • stirring power density was lowered to 0.03 kW/m 3
  • an aspirator was connected to the glass container to decompress the inside of the container, and microbubbles contained in the emulsion were removed.
  • stirring was stopped and the inside of the vessel was returned to atmospheric pressure.
  • the contents of the glass container were filled into a container with a length of about 250 mm, a width of about 180 mm, and a depth of about 90 mm, and polymerized in a hot water bath at 70°C for about 10 hours to obtain a water-containing HIPE foam.
  • the HIPE foam was removed from the hot water bath and cooled to room temperature.
  • the HIPE foam was removed from the container, washed with water, dehydrated, and dried in an oven at 85°C to constant weight.
  • a rectangular parallelepiped HIPE foam composed of a vinyl-based crosslinked polymer was obtained.
  • the density of the HIPE foam was 50 kg/ m3 .
  • Table 5 shows the charging composition and the like of this example.
  • the content of various components (vinyl-based monomers and cross-linking agents) in the cross-linked polymer is determined by the blending amount of each component (for the cross-linking agent, the blending amount excluding impurities) and the vinyl-based monomer content at the time of preparation. It can be determined from the total blended amount of the polymer component and the cross-linking agent component (excluding impurities).
  • compound names are abbreviated as follows.
  • styrene BA butyl acrylate
  • 2-EHA 2-ethylhexyl acrylate
  • DVB divinylbenzene
  • PEGDA polyethylene glycol diacrylate
  • PPGDA polypropylene glycol diacrylate
  • APG-400 manufactured by Shin-Nakamura Chemical Co., Ltd.
  • EpDA epoxy diacrylate (specifically, an epoxy prepolymer modified with acrylic at both ends, "EBECRYL (registered trademark) 3708" manufactured by Daicel-Ornex Co., Ltd.)
  • LPO dilauroyl peroxide
  • LTCP bis(4-t-butylcyclohexyl)peroxydicarbonate
  • Example 2-2 to 2-8 Comparative Examples 2-1 to 2-5
  • a sound absorbing material made of HIPE foam was produced in the same manner as in Example 2-1, except that the charging composition was changed as shown in Tables 5 and 6.
  • the stirring power density in the emulsification process was changed to 4.4 kW/m 3 .
  • the stirring power density in the emulsification process was changed to 0.2 kW/m 3 .
  • the stirring power density in the emulsification process was changed to 0.6 kW/m 3 .
  • the method for measuring the average diameter of air bubbles is as follows. Using a feather blade, samples for observation were cut out from the center of the rectangular parallelepiped HIPE foam in the width direction and thickness direction, and from the thickness direction center at both ends in the width direction. Next, the sample was observed with a low-vacuum scanning electron microscope (Miniscope (registered trademark) TM3030Plus manufactured by Hitachi High-Tech Science Co., Ltd.), and a cross-sectional photograph was taken.
  • FIG. 1 shows an example of a cross-sectional photograph of a HIPE foam. The detailed observation conditions were as follows.
  • the cross-sectional photograph taken is analyzed by image processing software (NanoHunter NS2K-Pro of Nano System Co., Ltd.), and the measurement area is set on the cross-sectional photograph of each sample so that the total area is 5 mm 2 or more. did.
  • the bubble diameters of the bubbles existing within the measurement area were calculated, and the arithmetic mean value of these values was taken as the bubble diameter of each sample.
  • the average cell diameter of the HIPE foam was obtained. Detailed analysis procedures and conditions were as follows.
  • a cross-sectional photograph of the HIPE foam was taken in the same procedure as the method for calculating the average diameter of cells, except that the observation magnification was changed to 500 times and the observation mode was changed to the backscattered electron method (standard).
  • the cross-sectional photograph taken was analyzed by image processing software (WinROOF2013 manufactured by Mitani Shoji Co., Ltd.), and measurement regions were set on the cross-sectional photograph of each sample so that the total area was 1 mm 2 or more.
  • the through-hole diameters of the through-holes existing within the measurement area were calculated, and the arithmetic mean value of these was used as the through-hole diameter of each sample.
  • the average diameter of the through-holes of the HIPE foam was determined by arithmetically averaging the through-hole diameters of the three obtained samples. Detailed analysis procedures and conditions were as follows.
  • T-tan ⁇ curve in the temperature range of -100 to 120°C was obtained in the same manner as the measurement of the molecular weight between cross-linking points Mc described above.
  • the value of tan ⁇ at the peak top in the obtained T-tan ⁇ curve was taken as the maximum value of loss tangent tan ⁇ , and the temperature at which tan ⁇ shows the maximum value was taken as the peak temperature of tan ⁇ .
  • the tan ⁇ peak appearing in the T-tan ⁇ curve two temperatures at which the tan ⁇ value is half the maximum value were determined, and the half width H was defined as the difference between these temperatures.
  • Flow resistance per unit thickness of HIPE foam was measured according to ISO 9053-1:2018. Specifically, a test piece having a disk shape with a diameter of 40 mm and a thickness of 20 mm was cut out from the vicinity of the center of the HIPE foam so as not to include the skin surface. This test piece is attached to a sample holder of a measuring device (flow resistance measurement system "AirReSys" manufactured by Nihon Onkyo Engineering Co., Ltd.), and air is circulated from one end face to the other end face of the test piece at a flow rate of 1 to 3 mm / s.
  • a measuring device flow resistance measurement system "AirReSys" manufactured by Nihon Onkyo Engineering Co., Ltd.
  • Sound absorption Sound absorption was evaluated based on the normal incidence sound absorption coefficient of the HIPE foam at 23° C. at each frequency, measured according to JIS A 1405-2. Specifically, a disc-shaped specimen having a thickness of 20 mm and a diameter of 40 mm was cut out from the vicinity of the center of the HIPE foam so as not to include the skin surface. This test piece was placed in a sample holder of a measurement device (Nippon Onkyo Engineering Co., Ltd. normal incidence sound absorption measurement system "WinZacMTX”), and the measurement was performed under the following conditions.
  • a measurement device Nippon Onkyo Engineering Co., Ltd. normal incidence sound absorption measurement system "WinZacMTX"
  • Measurement conditions/Measurement type Sound absorption/reflectance (reflection method) ⁇ Microphone format: 2-microphone method ⁇ Distance between sample surface and MicA: 80mm ⁇ Distance between microphones: 30mm ⁇ Sample diameter: 40 mm ⁇ Sample thickness: 20 mm ⁇ Length of back air layer: 0 mm ⁇ Temperature: 23°C
  • the normal incident sound absorption coefficient of the HIPE foam was measured at frequencies of 125 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 900 Hz, 1000 Hz, 1500 Hz, 2000 Hz, 2500 Hz, 3000 Hz, 3500 Hz, 4000 Hz, 4500 Hz and 5000 Hz. .
  • the sum of the vertical incident sound absorption coefficients at each frequency measured by the above method is listed in the "Total frequency” column of Tables 5 and 6 as the total of the normal incident sound absorption coefficients at frequencies of 125 to 5000 Hz.
  • the sum of the normal incident sound absorption coefficients at frequencies of 500 to 1000 Hz is calculated as the sum of the normal incident sound absorption coefficients at frequencies of 500 to 1000 Hz. 500 to 1000 Hz” column.
  • the HIPE foams of Examples 2-1 to 2-8 use a crosslinked polymer obtained by crosslinking a polymer of an acrylic monomer and/or a styrene monomer as a base resin. , and the peak temperature of tan ⁇ and the flow resistance per unit thickness are each within the specified ranges. Therefore, sound absorbing materials made of these HIPE foams have improved sound absorbing properties in a low frequency range and excellent sound absorbing properties in a wide frequency range.
  • the HIPE foam of Comparative Example 2-1 has too high flow resistance per unit thickness. Therefore, the sound absorbing material made of the HIPE foam of Comparative Example 2-1 is inferior to the sound absorbing material made of the HIPE foam of Examples 2-1 to 2-8 in sound absorption in all frequency regions.
  • the HIPE foam of Comparative Example 2-2 has a tan ⁇ peak temperature higher than the specific range, and the flow resistance per unit thickness is too low. Therefore, the sound absorbing material made of the HIPE foam of Comparative Example 2-2 is inferior to the sound absorbing materials of Examples 2-1 to 2-8 in sound absorption in a relatively low frequency range.
  • the HIPE foam of Comparative Example 2-3 has a lower flow resistance per unit thickness than Comparative Example 2-1, but a higher flow resistance than the specific range. Therefore, the sound absorbing material made of the HIPE foam of Comparative Example 2-3 is inferior to the sound absorbing materials of Examples 2-1 to 2-8 in sound absorption in all frequency regions.
  • the HIPE foams of Comparative Examples 2-4 have too low a flow resistance per unit thickness. Therefore, the sound absorbing material made of the HIPE foam of Comparative Example 2-4 is inferior to the sound absorbing materials of Examples 2-1 to 2-8 in sound absorption in a relatively low frequency range.
  • the HIPE foams of Comparative Examples 2-5 have too high a tan ⁇ peak temperature. Therefore, the sound absorbing material made of the HIPE foam of Comparative Example 2-5 is inferior to the sound absorbing materials of Examples 2-1 to 2-8 in sound absorption in a relatively low frequency range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

アクリル系単量体及び/又はスチレン系単量体の重合体が架橋された架橋重合体(11)を基材樹脂とする多孔体(1)である。多孔体(1)の23℃における貯蔵弾性率が5kPa以上2000kPa以下である。多孔体(1)の見掛け密度が10kg/m3以上250kg/m3以下である。架橋重合体(11)のガラス転移温度が-30℃以上である。架橋重合体(11)の架橋点間分子量が1.0×104以上である。多孔体(1)は、水相を有機相中に高比率で内包させた、油中水型の高内相エマルション中で単量体を重合することにより得られる。

Description

多孔体及び吸音材
 本発明は、アクリル系単量体及び/又はスチレン系単量体の重合体が架橋された架橋重合体を基材とする多孔体に関し、より具体的には、高内相エマルションの重合により得られる多孔体(つまり、HIPEフォーム)及び吸音材に関する。
 従来、水等の水性液体からなる水相を、ビニル系単量体、架橋剤、乳化剤、重合開始剤等を含む有機相中に高比率で内包させた油中水型の高内相エマルション(つまり、HIPE)を形成し、該エマルション中で有機相を重合することにより、HIPEフォーム等と呼ばれる、架橋重合体からなる多孔体を得る方法が知られている。この多孔体は、重合時における、高内相エマルション中での有機相と水相との分散形態や水相の分散形状が反映された重合体となる。そのため、この多孔体は、重合体中に多数の気泡が均質に存在する気泡構造を有すると共に、気泡間を連通する多数の細孔が形成された連続気泡構造を有する。このような多孔体は、吸収材、分離材等の用途への応用が期待されている。
 例えば、特許文献1には、密度、ガラス転移温度、靱性指数が調整された、柔軟性を有するHIPEフォーム(つまり、多孔体)が提案されている。特許文献1によれば、このような多孔体は、柔軟性に優れ、例えばふきとり用品等の物品に好適であるとされる。
特表2003-514052号公報
 多孔体は、吸音材、制振材、清掃用品等の多種多様な用途への適用が検討されており、柔軟性及び延性に優れた多孔体の開発が望まれている。例えば特許文献1に記載の従来の多孔体は、延性が不十分であるため、大きな変形が加えられると、十分に伸長できず、破断するおそれがある。また、多孔体を吸音材として使用する場合においては、良好な吸音性を有する多孔体の開発が望まれている。
 本発明は、かかる背景に鑑みてなされたものであり、柔軟で、延性に優れる多孔体を提供しようとするものである。また、本発明は、吸音材として適用可能な多孔体を提供しようとするものである。
 本発明の要旨は、以下の通りである。
[1]アクリル系単量体及び/又はスチレン系単量体の重合体が架橋された架橋重合体を基材樹脂とする多孔体であって、
 上記多孔体の23℃における貯蔵弾性率が5kPa以上2000kPa以下であり、
 上記多孔体の見掛け密度が10kg/m3以上250kg/m3以下であり、
 上記架橋重合体の架橋点間分子量が1.0×104以上である、多孔体。
[2]上記架橋重合体のガラス転移温度が-30℃以上であり、上記架橋重合体の架橋点間分子量が1.0×104以上12×104以下である、[1]に記載の多孔体。
[3]上記多孔体に対して、周波数:1Hz、荷重:10mN、変形モード:圧縮という条件の動的粘弾性測定を行うことにより測定される、温度-損失正接tanδ曲線における損失正接tanδの最大値が0.8以上1.6以下である、[1]または[2]に記載の多孔体。
[4]上記多孔体に対して、周波数:1Hz、荷重:10mN、変形モード:圧縮という条件の動的粘弾性測定を行うことにより測定される、温度-損失正接tanδ曲線における損失正接tanδの最大値を示すtanδピークの半値幅が10℃以上25℃以下である、[1]~[3]のいずれか1つに記載の多孔体。
[5]上記架橋重合体は、上記アクリル系単量体と上記スチレン系単量体との共重合体が架橋されてなり、上記アクリル系単量体が、(メタ)アクリル酸と炭素数1~20のアルコールとのエステルである、[1]~[4]のいずれか1つに記載の多孔体。
[6]上記架橋重合体は、官能基当量が130g/eq以下である第1架橋剤と、官能基当量が130g/eqを超え、5000g/eq以下である第2架橋剤とにより、上記アクリル系単量体及び/又は上記スチレン系単量体の重合体が架橋されてなり、上記第2架橋剤の官能基当量が上記第1架橋剤の官能基当量よりも100g/eq以上大きい、[1]~[5]のいずれか1つに記載の多孔体。
[7]上記架橋重合体は、官能基当量が500g/eq以上3000g/eq以下である架橋剤により、上記アクリル系単量体及び/又は上記スチレン系単量体の重合体が架橋されてなり、該架橋剤がウレタン(メタ)アクリレート及び/又はエポキシ(メタ)アクリレートである、[1]~[5]のいずれか1つに記載の多孔体。
[8]上記多孔体の、23℃における25%圧縮後の復元率が90%以上である、[1]~[7]のいずれか1つに記載の多孔体。
[9]上記多孔体の、23℃における引張破断伸びが70%以上である、[1]~[8]のいずれか1つに記載の多孔体。
[10]上記多孔体の、単位重量当たりの破断エネルギーが50mJ/g以上である、[1]~[9]のいずれか1つに記載の多孔体。
[11][1]~[10]のいずれか1つに記載の多孔体から構成される吸音材であって、
 周波数:1Hz、荷重:10mN、変形モード:圧縮という条件で上記多孔体に対して動的粘弾性測定を行うことにより測定される温度-損失正接tanδ曲線における損失正接tanδのピーク温度が50℃以下であり、
 ISO 9053-1:2018に基づいて測定される流速:0.5mm/sにおける上記多孔体の単位厚さあたりの流れ抵抗が7×104N・s/m4以上1×106N・s/m4以下である、吸音材。
 上記多孔体は、軟質でありながら延性に優れており、大きな変形に対する耐久性に優れている。また、上記多孔体は、吸音性を有し、吸音材として適用可能である。
図1は、実施例1-1の多孔体の低真空走査電子顕微鏡写真である。 図2は、実施例1-1の多孔体の温度Tと貯蔵弾性率E’との関係を示す温度-貯蔵弾性率曲線である。 図3は、実施例1-1の多孔体の温度Tと損失正接tanδとの関係を示す温度-損失正接tanδ曲線である。
(多孔体)
 以下に、多孔体の好ましい実施形態について説明する。本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。また、下限として数値又は物性値を表現する場合、その数値又は物性値以上であることを意味し、上限として数値又は物性値を表現する場合、その数値又は物性値以下であることを意味する。また、「重量部」、「重量%」は、それぞれ「質量部」、「質量%」と実質的に同義である。
 本明細書における多孔体は、HIPEフォーム(HIPE foam)、ポリHIPEフォーム(PolyHIPE foam)、ポリHIPE材料、HIPE由来フォーム物質、高内相エマルション多孔体、高内相エマルション発泡体等とも呼ばれる多孔質架橋重合体である。多孔体は、例えば、水相を有機相中に高比率で内包させた、油中水型の高内相エマルション中で単量体を重合することにより得られる。高内相エマルション(High Internal Phase Emulsion)は通称ハイプ(HIPE)と呼ばれる。以下の説明においては、多孔体を、適宜「HIPEフォーム」という。
 なお、多孔体は、構造中に多数の気泡が存在すると共に、隣接する気泡間を連通する多数の貫通孔が形成された、連続気泡構造を有する。
 HIPEフォームは、より具体的には、多数の気泡を有し、架橋重合体を基材樹脂とし、連続気泡構造を有する。一般に、軟質なHIPEフォームは脆い材料であり、摩擦、引張、せん断等の応力に対する耐久性が低い材料と認識されている。本明細書で開示されるように、HIPEフォームの所定物性を調整することにより、柔軟で、延性に優れたHIPEフォームとなる。さらに、柔軟で、延性及び復元性に優れたHIPEフォームを得ることも可能となる。
 HIPEフォームは、例えば、水相を有機相中に高比率で内包させた、油中水型の高内相エマルション中で、架橋剤の存在下でビニル系単量体(具体的には、アクリル系単量体及び/又はスチレン系単量体)を重合することにより得られる多孔質架橋重合体である。HIPEフォームは、例えば、油中水型高内相エマルション中でアクリル系単量体及び/又はスチレン系単量体を重合することにより得られる、アクリル系単量体及び/又はスチレン系単量体に由来する成分を含む架橋重合体を基材樹脂としている。HIPEフォームは、具体的には、架橋重合体の重合体骨格中にアクリル系単量体及び/又はスチレン系単量体に由来する成分を含む。換言すれば、HIPEフォームは、アクリル系単量体及び/又はスチレン系単量体の重合体が架橋されてなる架橋重合体を基材樹脂とする。
 また、HIPEフォームは、高内相エマルションを硬化してなる多孔質の硬化物であり、その気泡壁が架橋重合体(例えばビニル系架橋重合体)から構成されているともいえる。気泡は気孔ということもできる。HIPEフォームにおける気泡壁及び気泡の形状には、重合時における、高内相エマルションでの有機相と水相との分散形態や水相(つまり、分散相)の分散形状が反映されている。
 HIPEフォームの製造過程においては重合体が延伸されにくい。そのため、HIPEフォームは、一般的に、分子配向を生じにくいと共に、異方性の少ない重合体となる。HIPEフォームは、押出機を用いた押出発泡法により得られる発泡体や、発泡性樹脂粒子を発泡させて得られる発泡粒子を型内成形することにより得られる発泡粒子成形体等のように、製造時に延伸されて製造される発泡体とは容易に区別することができる。
[気泡構造]
 HIPEフォームは、上記のごとく連続気泡構造を有する多孔体である。図1に例示されるように、HIPEフォーム1は、これを構成する架橋重合体11中に多数の気泡13が均質に存在する気泡構造を有すると共に、気泡壁12を貫通し、隣接する気泡間を連通する多数の貫通孔14が形成された連続気泡構造を有する。なお、図1において、気泡13は、気泡壁12により囲まれた部分である。貫通孔14は、気泡壁12を貫通し、隣接する気泡13間を連通する穴である。具体的には、貫通孔14は、気泡壁12に形成されると共に、気泡壁12を挟んで隣接する気泡13間を連通する穴である。貫通孔14のことを、貫通窓、連結孔ということもできる。
 HIPEフォームの復元性、強度がより向上するという観点から、HIPEフォームの気泡の平均径は10μm以上200μm以下であることが好ましい。また、HIPEフォームの貫通孔の平均径は概ね1μm以上30μm以下である。なお、貫通孔は気泡壁に生じる、気泡間を連通する穴であることから、通常、貫通孔径は気泡径より小さくなる。
 気泡の平均径は、気泡の円相当径の平均値である。気泡の円相当径は、HIPEフォームの断面における気泡の面積と同じ面積の真円の直径である。また、貫通孔の平均径は、貫通孔の円相当径の平均値である。貫通孔の円相当径は、HIPEフォームの断面における貫通孔の面積と同じ面積の真円の直径である。気泡の平均径、貫通孔の平均径の測定方法については、後述するが、例えば、HIPEフォームの連続気泡構造を画像解析することにより測定される。
 上記HIPEフォームを吸音材として用いる場合、HIPEフォームの気泡の平均径は20μm以上160μm以下であることが好ましい。この場合には、吸音材の吸音性をより容易に向上させることができる。HIPEフォームへの音波の侵入性を高め、比較的周波数の高い音を吸音しやすくする観点からは、HIPEフォームの気泡の平均径は、30μm以上であることが好ましく、40μm以上であることがより好ましく、50μm以上であることがさらに好ましい。また、HIPEフォーム内に侵入した音波を気泡壁に衝突しやすくし、比較的周波数の低い音を吸音しやすくする観点からは、HIPEフォームの気泡の平均径は、150μm以下であることが好ましく、140μm以下であることがより好ましく、120μm以下であることがさらに好ましい。
 また、上記HIPEフォームを吸音材として用いる場合、HIPEフォームの気泡の平均径に対するHIPEフォームの貫通孔の平均径の比は0.05以上0.5以下であることが好ましい。この場合には、吸音材の吸音性を広い周波数領域においてより高めることができる。HIPEフォームへの音波の侵入性をより高める観点からは、HIPEフォームの気泡の平均径に対する、HIPEフォームの貫通孔の平均径の比は、0.08以上であることがより好ましく、0.1以上であることがさらに好ましい。また、HIPEフォーム内に侵入した音波を気泡壁に衝突しやすくする観点からは、HIPEフォームの気泡の平均径に対する、HIPEフォームの貫通孔の平均径の比は、0.4以下であることがより好ましく、0.3以下であることがさらに好ましい。また、HIPEフォームの貫通孔の平均径は、5μm以上30μm以下であることが好ましく、6μm以上25μm以下であることがより好ましく、8μm以上20μm以下であることがさらに好ましい。
 気泡の平均径は、後述のHIPEフォームの製造方法において、高内相エマルションの水相(つまり分散相)の水滴径を調整することにより制御できる。例えば、水滴径を小さくすることにより、気泡径が微細になり、HIPEフォームでは、気泡の平均径を容易に例えば200μm以下に調整できる。
 貫通孔は、後述のHIPEフォームの製造方法において、油中水型の高内相エマルション中で単量体が重合する際に、重合体の体積収縮等によって、油膜が破れることにより形成される。なお、油膜は、重合、架橋の進行により、上述の気泡壁となる。貫通孔の平均径は、後述のHIPEフォームの製造方法において、重合速度、有機相の組成や粘度、撹拌動力密度等を調整することにより制御できる。
[貯蔵弾性率]
 HIPEフォームの、23℃における貯蔵弾性率は5kPa以上2000kPa以下である。貯蔵弾性率がこの範囲にあるため、HIPEフォームは適度な柔軟性を有する。例えば多孔体の用途に応じて、HIPEフォームの貯蔵弾性率を上記範囲内において調整することができる。HIPEフォームの柔軟性をより高める観点からは、HIPEフォームの、23℃における貯蔵弾性率は、1000kPa以下であることが好ましく、600kPa以下であることがより好ましく、500kPa以下であることがさらに好ましく、300kPa以下であることが特に好ましい。また、HIPEフォームの柔軟性を維持しつつ、HIPEフォームの剛性を高める観点からは、HIPEフォームの、23℃における貯蔵弾性率は、10kPa以上であることが好ましく、20kPa以上であることがより好ましく、30kPa以上であることがさらに好ましく、50kPa以上であることが特に好ましい。貯蔵弾性率の測定方法については、後述するが、HIPEフォームに対して、周波数:1Hz、荷重:10mN、変形モード:圧縮という条件の動的粘弾性測定を行うことにより、貯蔵弾性率が測定される。貯蔵弾性率は、後述のHIPEフォームの製造方法において、後述の架橋剤の種類およびその配合割合、単量体の種類およびその配合割合、有機相と水相との比率等を制御することにより、上記範囲に調整される。
 また、常温(例えば23℃)よりも低い温度条件下で多孔体を使用する場合においても、多孔体が柔軟性を発現しやすくなる観点からは、0℃における貯蔵弾性率が3000kPa以下であることが好ましく、2500kPa以下であることがより好ましく、2000kPa以下であることがさらに好ましい。多孔体の延性や強度を確保する観点からは、0℃における貯蔵弾性率は概ね50kPa以上であることが好ましく、100kPa以上であることがより好ましい。
 また、常温から、常温よりも低い温度にわたる、広い温度域で良好な物性を発現しやすくなる観点からは、23℃での貯蔵弾性率に対する0℃での貯蔵弾性率の比は、0.005以上0.5以下であることが好ましく、0.01以上0.3以下であることがより好ましい。
[見掛け密度]
 HIPEフォームの見掛け密度は、10kg/m3以上250kg/m3以下である。見掛け密度がこの範囲であることにより、HIPEフォームの強度、復元性及び延性をより容易に向上させることができる。見掛け密度が低すぎると復元性や強度が低下しやすくなり、多孔体の取り扱いが困難になるおそれがある。一方、見掛け密度が高すぎると延性が低下する傾向がある。例えば多孔体の用途に応じて、HIPEフォームの見掛け密度を上記範囲内において調整することができる。HIPEフォームの復元性や強度をより向上させやすくなる観点からは、HIPEフォームの見掛け密度は20kg/m3以上であることが好ましく、30kg/m3以上であることがより好ましく、35kg/m3以上であることがさらに好ましく、40kg/m3以上であることが特に好ましく、50kg/m3以上であることが最も好ましい。また、軽量なHIPEフォームとなると共に、HIPEフォームの延性をより向上させやすくなる観点から、HIPEフォームの見掛け密度は200kg/m3以下であることが好ましく、150kg/m3以下であることがより好ましい。
 また、上記HIPEフォームを吸音材として用いる場合には、広い周波数領域における吸音材の吸音性をより向上させる観点から、HIPEフォームの見掛け密度を10kg/m3以上200kg/m3以下とすることが好ましい。かかる作用効果をより高めると共に、吸音材の機械的強度を高める観点からは、HIPEフォームの見掛け密度は20kg/m3以上であることがより好ましく、30kg/m3以上であることがさらに好ましく、40kg/m3以上であることが特に好ましく、45kg/m3以上であることが最も好ましい。また、優れた吸音性を確保しつつ吸音材の軽量性をより高める観点からは、HIPEフォームの見掛け密度は180kg/m3以下であることがより好ましく、150kg/m3以下であることがさらに好ましく、120kg/m3以下であることが特に好ましい。
 HIPEフォームの見掛け密度ρは、HIPEフォームの重量をHIPEフォームの体積にて除することにより算出される。HIPEフォームの体積は、HIPEフォームの外形寸法に基づいて算出することができる。
 HIPEフォームの見掛け密度ρは、後述のHIPEフォームの製造方法において、ビニル系単量体、架橋剤、乳化剤、及び重合開始剤の総量と、水相(具体的には、水性液体)の量との比率等を調整することにより、上記範囲に調整される。
[架橋点間分子量]
 架橋点間分子量Mcは、HIPEフォームを構成する架橋重合体の架橋度の指標となる。架橋重合体の架橋点間分子量は、1.0×104以上である。架橋点間分子量がこの範囲にあるため、HIPEフォームは優れた延性を有している。架橋点間分子量が低すぎると、架橋度が過度に高くなりHIPEフォームの延性が低下するおそれがある。HIPEフォームの延性をさらに向上させるという観点からは、架橋重合体の架橋点間分子量は、2.0×104以上であることが好ましく、2.5×104以上であることがより好ましく、3.0×104以上であることがさらに好ましい。また、優れた延性を確保しつつHIPEフォームの復元性をさらに向上させるという観点からは、架橋重合体の架橋点間分子量は、12×104以下であることが好ましく、10×104以下であることがより好ましく、8.0×104以下であることがさらに好ましく、6.0×104以下であることが特に好ましい。
 一方、上記HIPEフォームを吸音材として用いる場合には、架橋重合体の架橋点間分子量を、1.0×104以上30×104以下とすることができる。この場合には、HIPEフォームの延性及び復元性等の機械的物性を吸音材として好適な範囲に調整し、吸音材の取り扱い性を向上させることができる。HIPEフォームの延性をさらに向上させて吸音材としての取り扱い性をより向上させる観点からは、架橋重合体の架橋点間分子量は、2.0×104以上であることがより好ましく、2.5×104以上であることがさらに好ましく、3.0×104以上であることが特に好ましい。また、HIPEフォームの復元性を高めて吸音材としての取り扱い性をより向上させる観点からは、架橋重合体の架橋点間分子量は、25×104以下であることがより好ましく、20×104以下であることがさらに好ましい。
 HIPEフォームを構成する架橋重合体の架橋点間分子量Mcは、次のようにして測定される。HIPEフォームに対して、周波数:1Hz、荷重:10mN、変形モード:圧縮という条件の動的粘弾性測定(DMA:Dynamic Mechanical Analysis)を行う。動的粘弾性測定の昇温過程において、HIPEフォームの温度がガラス転移温度Tgを超えるまでの間は、横軸に温度、縦軸に貯蔵弾性率E’をプロットして得られる温度-貯蔵弾性率E’曲線(以下、「T-E’曲線」ともいう。)が比較的平坦な形状を示す。HIPEフォームの温度がガラス転移温度Tgの付近まで上昇すると、HIPEフォームを構成する架橋重合体がガラス状態からゴム状態へと転移する。そのため、T-E’曲線において、貯蔵弾性率E’はガラス転移温度Tgを境にして急低下する(図2参照)。その後、T-E’曲線はプラトー領域(ゴム状平坦部)を示す。このプラトー領域においてE’は温度に比例するため、以下の式(I)から架橋点間分子量Mcを計算することができる。
  Mc=2(1+μ)ρRT/E’ ・・・(I)
 式(I)において、μはポアソン比であり、μ=0.5である。ρはHIPEフォームの見かけ密度(単位:kg/m3)、Rは気体定数(8.314J/(K・mol))である。Tはゴム状平坦部上の任意の点における温度(単位:K)であり、E’は当該温度Tにおける貯蔵弾性率(単位:kPa)である。架橋点間分子量Mcを適切に算出できる観点から、上記E’は、Tg+50℃~Tg+80℃の温度域(但し、Tgは、HIPEフォームを構成する架橋重合体のガラス転移温度である)で測定することが好ましい。なお、ポアソン比とは材料固有の値であり、物体に応力を印加した際の、垂直方向に生じるひずみを平行方向に生じるひずみで除し、これに-1を乗じた値である。理論上、ポアソン比は-1から0.5の範囲の値をとる。ポアソン比が負の値である場合、縦方向に潰すと、横方向にも潰れることを意味する。逆に、正の値である場合は、縦方向に潰すと横方向に伸びることを意味する。上記動的粘弾性測定の測定条件では、HIPEフォームを構成する架橋重合体に生じる歪は極微小であり、体積変化が起こらないと見なすことができる。そのため、体積一定の条件、すなわちポアソン比を0.5として、貯蔵弾性率E’、架橋点間分子量Mcが算出される。
 HIPEフォームを構成する架橋重合体の架橋点間分子量Mcは、後述のHIPEフォームの製造方法において、架橋剤を配合することにより小さくすることができ、後述の架橋剤の種類およびその配合割合、単量体の種類およびその配合割合等を調整することにより、上記範囲に調整される。
[ガラス転移温度Tg]
 HIPEフォームを構成する架橋重合体のガラス転移温度Tgは-30℃以上であることが好ましい。HIPEフォームのTgをこの範囲とすることにより、HIPEフォームの延性をより向上させることができる。Tgが低すぎると、延性が低下する傾向がある。例えば多孔体の用途に要求される延性に応じて、HIPEフォームのTgを上記範囲内において調整することができる。HIPEフォームの延性をさらに向上させることができるという観点からは、架橋重合体のガラス転移温度は-20℃以上であることが好ましく、-10℃以上であることがより好ましい。また、HIPEフォームの室温(具体的には、23℃)における柔軟性がより向上するという観点から、ガラス転移温度は30℃以下であることが好ましく、20℃以下であることがより好ましく、10℃以下であることがさらに好ましい。
 一方、上記HIPEフォームを吸音材として用いる場合には、HIPEフォームを構成する架橋重合体のガラス転移温度Tgを-60℃以上30℃以下とすることが好ましい。この場合には、比較的低い周波数領域における吸音材の吸音性を向上させることができる。前述した作用効果を得つつHIPEフォームの強度を高める観点からは、架橋重合体のガラス転移温度Tgは-50℃以上であることが好ましく、-40℃以上であることがより好ましく、-30℃以上であることがさらに好ましい。また、比較的低い周波数領域における吸音材の吸音性をより確実に向上させる観点からは、架橋重合体のガラス転移温度Tgは20℃以下であることが好ましく、10℃以下であることがより好ましく、0℃以下であることがさらに好ましく、-10℃以下であることが特に好ましい。
 HIPEフォームを構成する架橋重合体のガラス転移温度Tgは、JIS K7121:1987に基づいた示差走査熱量(DSC)分析にて測定される。ガラス転移温度はDSC曲線の中間点ガラス転移温度のことである。試験片の状態調節として「(3)一定の熱処理を行った後、ガラス転移温度を測定する場合」を採用する。
 HIPEフォームを構成する架橋重合体のガラス転移温度Tgは、後述のHIPEフォームの製造方法において、ビニル系単量体の種類、その配合割合、架橋剤の種類、その配合割合等を調整することにより、上記範囲に調整される。
[tanδの最大値]
 HIPEフォームの延性と復元性をさらに向上させる観点からは、動的粘弾性測定(DMA:Dynamic Mechanical Analysis)を行うことにより得られる、HIPEフォームの温度-損失正接tanδ曲線(以下、「T-tanδ曲線」ともいう。)における損失正接tanδの最大値は、0.8以上1.6以下であることが好ましい。損失正接tanδは、HIPEフォームに対して、周波数:1Hz、荷重:10mN、変形モード:圧縮という条件の動的粘弾性測定を行うことにより測定される。なお、上記動的粘弾性測定において、加熱速度は10℃/min、温度範囲は-100~120℃であることが好ましい。
 より均一な架橋構造が架橋重合体に形成され、HIPEフォームの延性がさらに一層向上するという観点から、HIPEフォームの損失正接tanδの最大値は、0.9以上であることがより好ましく、1.0以上であることがさらに好ましい。また、架橋構造がより確実に形成され、HIPEフォームの復元性を高めやすくできる観点からは、HIPEフォームの損失正接tanδの最大値は、1.5以下であることがより好ましく、1.4以下であることがさらに好ましい。
 一方、上記HIPEフォームを吸音材として用いる場合には、HIPEフォームの損失正接tanδの最大値は0.4以上であることが好ましい。この場合には、比較的低い周波数領域における吸音材の吸音性をより高めることができる。かかる作用効果をより高める観点からは、HIPEフォームの損失正接tanδの最大値は0.5以上であることがより好ましく、0.6以上であることがさらに好ましく、0.7以上であることが特に好ましく、0.8以上であることが最も好ましい。
[tanδピークの半値幅]
 HIPEフォームの延性をさらに向上させると共に、可撓性を向上させる観点からは、温度-損失正接tanδ曲線における損失正接tanδの最大値を示すtanδピークの半値幅は10℃以上25℃以下であることが好ましい。より均一な架橋構造が架橋重合体に形成され、HIPEフォームの延性がさらに一層向上するという観点から、tanδピークの半値幅は23℃以下であることがより好ましく、20℃以下であることがさらに好ましい。また、HIPEフォームの復元性を維持しつつ、HIPEフォームの延性を高めやすくなる観点からは、tanδピークの半値幅は12℃以上であることが好ましく、14℃以上であることがより好ましい。
 一方、上記HIPEフォームを吸音材として用いる場合には、tanδピークの半値幅は10℃以上80℃以下とすることができる。HIPEフォームの延性をより向上させ、吸音材としての取り扱い性をより高める観点からは、tanδピークの半値幅は70℃以下であることがより好ましく、50℃以下であることがさらに好ましく、40℃以下であることが特に好ましい。また、HIPEフォームの復元性を維持しつつ、HIPEフォームの延性を高めやすくなる観点から、tanδピークの半値幅は15℃以上であることがより好ましく、20℃以上であることがさらに好ましい。
 損失正接tanδの最大値、tanδピークの半値幅の測定方法の詳細は後述するが、動的粘弾性測定(つまり、DMA)により測定される。図3に、HIPEフォームのT-tanδ曲線の一例を示す。なお、図3の縦軸は損失正接tanδであり、横軸は温度である。T-tanδ曲線は、HIPEフォームを構成する架橋重合体のガラス転移温度Tgの近傍においてtanδの値が最大となるようなtanδピークを有している。tanδピークの半値幅Hは、T-tanδ曲線における半値全幅であり、損失正接tanδの最大値(つまり、温度T(単位:℃)と損失正接tanδとの関係で表されるDMA曲線におけるピークトップ値)を示すtanδピークにおいて、該tanδピークの最大値の半分(1/2)となる損失正接tanδの値を示す位置における、DMA曲線の上記tanδピークの温度幅を意味する(図3参照)。
 一般に、損失正接tanδの最大値が大きくなると、対応するtanδピークの半値幅は小さくなる傾向がある。HIPEフォームの使用時において、HIPEフォームの周囲の温度が、架橋重合体のTgよりも高いが、架橋重合体のTgと近い温度である場合であっても、HIPEフォームを柔軟なものとしやすいという観点からは、損失正接tanδの最大値は大きい方が好ましく、tanδピークの半値幅は小さい方が好ましい。
 損失正接tanδの最大値及びtanδピークの半値幅は、後述のHIPEフォームの製造方法において、後述の架橋剤の種類およびその配合割合、単量体の種類およびその配合割合等を制御することにより、上記範囲に調整される。例えば、架橋重合体における、後述するハード系架橋剤成分の含有量を過度に多くしない一方で、後述する比較的分子鎖が長いソフト系架橋剤に由来するソフト系架橋剤成分を架橋重合体に適度に含有させることで、架橋点間分子量を所定の範囲にしつつ、損失正接tanδの最大値を大きくすることができ、また、tanδピークの半値幅を小さくすることができる。
[tanδのピーク温度]
 上記HIPEフォームを吸音材として用いる場合、動的粘弾性測定を行うことにより得られるHIPEフォームの温度-損失正接tanδ曲線における損失正接tanδのピーク温度は50℃以下であることが好ましい。T-tanδ曲線は、HIPEフォームに対して、周波数:1Hz、荷重:10mN、変形モード:圧縮という条件の動的粘弾性測定を行うことにより測定される。なお、上記動的粘弾性測定において、加熱速度は10℃/min、温度範囲は-100~120℃であることが好ましい。
 図3に一例を示すように、T-tanδ曲線は、HIPEフォームを構成する架橋重合体のガラス転移温度Tgの近傍においてtanδの値が最大となるようなtanδピークを有している。動的粘弾性測定により得られる損失正接tanδは架橋重合体の貯蔵弾性率E’に対する損失弾性率E”の比E”/E’である。HIPEフォームの損失正接tanδのピーク温度及びその近傍の温度範囲においては、損失弾性率E”の値が貯蔵弾性率E’に対して相対的に大きくなる。そして、貯蔵弾性率E’に対する損失弾性率E”の比E”/E’の値が大きくなると、架橋重合体に加わった振動が熱エネルギーに変換されやすくなり、振動が減衰しやすくなる。
 一方、HIPEフォーム内を伝播する音波のうち比較的低い周波数を有する成分は、主にHIPEフォームにおける気泡壁を伝播する。それ故、HIPEフォームの損失正接tanδのピーク温度を前記特定の範囲とすることにより、HIPEフォームを吸音材として使用する際の一般的な使用環境(例えば、温度1~30℃の室温条件下)において固体伝播音を効率よく減衰させることができる。その結果、比較的低い周波数領域における吸音材の吸音性を向上させることができる。
 かかる作用効果をより高める観点からは、HIPEフォームのtanδのピーク温度は40℃以下であることが好ましく、30℃以下であることがより好ましく、20℃以下であることがさらに好ましい。HIPEフォームのtanδのピーク温度が過度に高い場合には、HIPEフォームを吸音材として使用する際の一般的な使用環境において固体伝播音の減衰が不十分となり、比較的低い周波数領域における吸音材の吸音性の悪化を招くおそれがある。
 HIPEフォームの機械的強度を高める観点からは、tanδのピーク温度は、-60℃以上であることが好ましく、-50℃以上であることがより好ましく、-40℃以上であることがさらに好ましく、-30℃以上であることが特に好ましい。
 tanδのピーク温度は、HIPEフォームの製造方法において、架橋剤の種類およびその配合割合、単量体の種類およびその配合割合等を制御することにより所望の値に調整することができる。例えば、架橋重合体において、アクリル酸ブチルのようなガラス転移温度を低下させる作用のある単量体に由来する成分の含有量を増やすことで、tanδのピーク温度を低くすることができる。また、例えば、架橋重合体における架橋剤成分の含有量を過度に多くしない一方で、架橋剤成分として後述するソフト系架橋剤成分を適度に含有させることで、tanδのピーク温度の上昇を抑制し、tanδのピーク温度を低く維持することができる。
[25%圧縮後の復元率]
 HIPEフォームの、23℃における25%圧縮後の復元率は、90%以上であることが好ましい。この場合には、HIPEフォームの復元性が十分に高くなり、HIPEフォームが吸音材、制振材、清掃用品、クッション材料、玩具等の用途により好適になる。同様の観点から、HIPEフォームの、23℃における25%圧縮後の復元率は、95%以上であることがより好ましく、98%以上であることがさらに好ましい。HIPEフォームの、23℃における25%圧縮後の復元率の上限は100%である。25%圧縮後の復元率は、JIS K6767:1999に準拠して測定される。具体的には後述するが、25%圧縮した状態で22時間放置した後、除圧し、除圧から30分経過後の厚みを測定する。その測定結果に基づいて、復元率は、除圧から30分後の厚み/圧縮前の厚み×100という算出式から算出される。23℃における25%圧縮後の復元率は、後述のHIPEフォームの製造方法において、後述の架橋剤の種類およびその配合割合、単量体の種類およびその配合割合、有機相と水相との比率等を制御することにより、上記範囲に調整される。
[引張破断伸び]
 HIPEフォームの、23℃における引張破断伸びは、70%以上であることが好ましい。この場合には、HIPEフォームの延性が十分に高くなり、HIPEフォームを吸音材、制振材、清掃用品、クッション材料、玩具等の種々の用途により好適に用いることができる。同様の観点から、HIPEフォームの、23℃における引張破断伸びは、75%以上であることがより好ましく、80%以上であることがさらに好ましく、100%以上であることが特に好ましい。HIPEフォームの延性を維持しつつ、HIPEフォームの復元性を高めやすくなる観点から、HIPEフォームの、23℃における引張破断伸びは、500%以下であることが好ましく、400%以下であることがより好ましい。23℃における引張破断伸びの値は、具体的には、JIS K7161-2:2014の1A形状に打ち抜いた試験片に対し、JIS K7161-2:2014に基づいて引張速度100mm/minの条件で引張試験を行うことにより測定される引張破壊ひずみである。なお、23℃における引張破断伸びの測定方法については後述する。23℃における引張破断伸びは、後述のHIPEフォームの製造方法において、後述の架橋剤の種類およびその配合割合、単量体の種類およびその配合割合、有機相と水相との比率等を制御することにより、上記範囲に調整される。
[単位重量当たりの破断エネルギー]
 HIPEフォームの単位重量当たりの破断エネルギーは、50mJ/g以上であることが好ましい。この場合には、HIPEフォームの強度が十分に高くなり、HIPEフォームを吸音材、制振材、清掃用品、クッション材料、玩具等の種々の用途により好適に用いることができる。同様の観点から、HIPEフォームの単位重量当たりの破断エネルギーは、60mJ/g以上であることがより好ましく、80mJ/g以上であることがさらに好ましく、100mJ/g以上であることがさらにより好ましい。HIPEフォームの、単位重量当たりの破断エネルギーの上限は、本発明の所期の目的が達成される範囲であれば限定されるものではないが、概ね3000mJ/gであることが好ましく、2500mJ/gであることがより好ましい。単位重量当たりの破断エネルギーの測定方法については、後述する。単位重量当たりの破断エネルギーは、後述のHIPEフォームの製造方法において、後述の架橋剤の種類およびその配合割合、単量体の種類およびその配合割合、有機相と水相との比率等を制御することにより、上記範囲に調整される。
[構成成分]
 HIPEフォームを構成する架橋重合体は、具体的には、単官能のビニル系単量体と架橋剤との重合体であり、単官能のビニル系単量体に由来する成分を有する。本明細書において、ビニル系単量体は、スチレン系単量体、アクリル系単量体等である。ビニル系単量体としては、アクリル系単量体及び/又はスチレン系単量体を用いることができる。より具体的には、HIPEフォームを構成する架橋重合体は、アクリル系単量体に由来する成分および架橋剤に由来する成分を有していてもよく、スチレン系単量体に由来する成分および架橋剤に由来する成分を有していてよい。また、HIPEフォームを構成する架橋剤は、アクリル系単量体に由来する成分と、スチレン系単量体に由来する成分と、架橋剤に由来する成分とを有していてもよい。
 架橋重合体は、アクリル系単量体及び/又はスチレン系単量体を含むビニル系単量体と、架橋剤との重合体から構成されていることが好ましい。具体的には、架橋重合体は、重合体骨格中にアクリル系単量体成分及び/又はスチレン系単量体成分を有するとともに、後述の架橋剤成分を有することが好ましい。この場合には、HIPEフォームの靱性及び剛性のバランスがより良好になる。なお、スチレン系単量体成分は、架橋重合体におけるスチレン系単量体に由来する構成単位を意味し、アクリル系単量体成分は、架橋重合体におけるアクリル系単量体に由来する構成単位を意味する。
 所望の物性を有するHIPEフォームが得られやすくなるという観点から、架橋重合体における、アクリル系単量体成分及び/又はスチレン系単量体成分の含有割合は、50重量%以上であることが好ましく、60重量%以上であることがより好ましく、70重量%以上であることがさらに好ましい。同様の観点から、架橋重合体における、アクリル系単量体成分及び/又はスチレン系単量体成分の含有割合は、98重量%以下であることが好ましく、96重量%以下であることがより好ましく、95重量%以下であることがさらに好ましく、90重量%以下であることが特に好ましい。
 スチレン系単量体としては、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-メトキシスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、2,4,6-トリブロモスチレン、スチレンスルホン酸、スチレンスルホン酸ナトリウムなどのスチレン化合物等が挙げられる。アクリル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ヒドロキシエチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸イソボルニル、アクリル酸ジシクロペンタニル、アクリル酸アダマンチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸イソボルニル、メタクリル酸ジシクロペンタニル、メタクリル酸アダマンチル等のメタクリル酸エステル等が挙げられる。また、アクリル系単量体としては、アクリルアミド、メタクリルアミド、アクリロニトリル等も挙げられる。
 架橋重合体は、(メタ)アクリル酸エステルと、架橋剤との共重合体から構成されていても良いが、スチレン系単量体と、(メタ)アクリル酸エステルとを含むビニル系単量体と、架橋剤との共重合体から構成されていることが好ましい。換言すれば、架橋重合体は、重合体骨格中に、スチレン系単量体と、(メタ)アクリル酸エステルに由来する成分(つまり構成単位)とを有することが好ましい。この場合には、所望の物性を有する架橋重合体から構成されたHIPEフォームが得られやすい。
 なお、架橋重合体は、架橋された重合体であるため、重合体骨格中に架橋剤に由来する成分(つまり、構成単位)を有する。また、(メタ)アクリル酸エステルは、(メタ)アクリル酸とアルコールとのエステルであり、(メタ)アクリル酸と炭素数1~20のアルコールとのエステルであることが好ましい。
 前記HIPEフォームは、アクリル系単量体とスチレン系単量体との共重合体が架橋された架橋重合体を基材樹脂としており、前記アクリル系単量体が、(メタ)アクリル酸と炭素数1~20のアルコールとのエステルであることが好ましい。この場合には、所望の物性を有するHIPEフォームが得られやすくなると共に、架橋重合体のガラス転移温度を所望の範囲に調整しやすくなるという効果が得られる。
 ビニル系単量体がアクリル系単量体を含む場合、ビニル系単量体におけるアクリル系単量体の含有割合は、40重量%以上であることが好ましく、50重量%以上であることがより好ましく、60重量%以上であることがさらに好ましい。また、アクリル系単量体と、スチレン系単量体との重量比は、40:60~90:10であることが好ましく、50:50~80:20であることがより好ましい。この場合には、製造コストの削減や、所望の物性に調整しやすくなるという効果が得られる。なお、(メタ)アクリル酸は、アクリル酸及び/又はメタクリル酸を意味する。
 上記HIPEフォームを吸音材として用いる場合には、より吸音性を高める観点から、ビニル系単量体におけるアクリル系単量体の含有割合は、50重量%以上であることが好ましく、60重量%以上であることがより好ましく、70重量%以上であることがさらに好ましい。同様に、アクリル系単量体と、スチレン系単量体との重量比は、アクリル系単量体:スチレン系単量体=50:50~95:5であることが好ましく、60:40~90:10であることがより好ましい。この場合、スチレン系単量体中のスチレンの含有割合は50重量%以上であることが好ましく、60重量%以上であることがより好ましく、80重量%以上であることがさらに好ましく、90重量%以上であることが特に好ましい。
 また、物性に優れると共に、所望のガラス転移温度を有する架橋重合体を安定して得ることができるという観点から、(メタ)アクリル酸エステルを構成する炭化水素基の炭素数は、1~20であることが好ましく、2~18であることがより好ましく、3~16であることがさらに好ましく、4~12であることがさらにより好ましい。なお、炭化水素基は、アルキル基であることがより好ましい。また、炭化水素基は、環状であっても、非環状であってもよい。これらの中でも、炭化水素基の炭素数が3~10の(メタ)アクリル酸エステルを用いることが好ましく、アクリル酸2-エチルヘキシル及び/又はアクリル酸ブチルを用いることがより好ましく、アクリル酸ブチルを用いることがさらに好ましい。例えば、アクリル酸2-エチルヘキシルやアクリル酸ブチルを用いると、架橋重合体のガラス転移温度を容易に低くすることができる。
 上記HIPEフォームを吸音材として用いる場合には、より吸音性を高める観点から、アクリル系単量体中の、炭化水素基の炭素数が3~10の(メタ)アクリル酸エステルの含有割合が50重量%以上であることが好ましく、80重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。
 架橋重合体は、架橋構造を有しており、架橋剤成分を含有する。架橋剤成分は、架橋重合体における架橋剤に由来する構成単位のことである。架橋剤は、重合体を構成する高分子鎖間を架橋(結合)し、重合体中に架橋構造を形成する化合物である。
 架橋剤としては、例えば、ビニル基及びイソプロペニル基から選択される官能基を分子内に少なくとも2つ有するビニル系化合物が用いられる。架橋重合体が架橋剤成分を所定量含有することにより、架橋重合体の剛性、靭性を高めることや、架橋重合体の架橋点間分子量の値を小さくすることができる。なお、上記ビニル系化合物には、アクリロイル基やメタクリロイル基のように、官能基の構造中にビニル基及び/又はイソプロペニル基を含む化合物も含まれる。架橋剤を安定して重合させる観点から、ビニル系化合物における、官能基の数は、6個以下であることが好ましく、5個以下であることが好ましく、4個以下であることがさらに好ましい。また、架橋重合体の靭性をより高めやすくなるという観点から、架橋剤は、分子の少なくとも両末端に官能基を有することが好ましく、分子の両末端のみに官能基を有することがより好ましい。
 架橋重合体は、例えば1種類の架橋剤を用いて作製された、1種類の架橋剤成分を含有するものであってもよいが、架橋重合体の剛性を高めつつ、架橋重合体の靭性を高めやすいことから、比較的分子鎖が短いハード系架橋剤に由来するハード系架橋剤成分と、比較的分子鎖が長いソフト系架橋剤に由来するソフト系架橋剤成分とを含有することが好ましい。この場合には、HIPEフォームを構成する架橋重合体の架橋点間分子量Mc、温度23℃における貯蔵弾性率、損失正接tanδの最大値等を上記範囲に調整し易くなる。また、HIPEフォームの過度な脆化が抑制されやすくなると共に、厚みが薄い部位を有する等、複雑な形状を有するHIPEフォームを製造する場合であっても、HIPEフォームに欠け等が発生することを抑制することができる。なお、ハード系架橋剤のことを第1架橋剤といい、ソフト系架橋剤のことを第2架橋剤ということもできる。
 ハード系架橋剤(つまり、第1架橋剤)は、官能基当量が130g/eq以下であるビニル系化合物であることが好ましい。このようなハード系架橋剤は、比較的分子鎖が短いものであるため、ビニル系単量体と共重合されることにより、ポリマー分子鎖の可動性を低下させるものと考えられる。ハード系架橋剤を用いることで、HIPEフォームの剛性を高めやすくなる。なお、HIPEフォームを製造しやすくする観点から、ハード系架橋剤の官能基当量の下限は、30g/eqであることが好ましく、40g/eqであることがより好ましく、50g/eqであることがさらに好ましく、60g/eqであることがさらにより好ましい。また、ハード系架橋剤の官能基当量の上限は120g/eqであることが好ましい。なお、ハード系架橋剤の官能基当量は、官能基(具体的にはビニル基、イソプロペニル基などのアルケニル基)1個当たりのハード系架橋剤のモル質量を意味し、官能基当量の単位を[g/mol]とも表すことができる。
 ソフト系架橋剤(つまり、第2架橋剤)は、官能基当量が130g/eqを超え、5000g/eq以下であるビニル系化合物であることが好ましい。このようなソフト系架橋剤は、比較的分子鎖が長いものであるため、ビニル系単量体と共重合されることにより、ポリマー分子鎖の可動性を大きく低下させることなく、ポリマー分子鎖間を架橋できるものと考えられる。ソフト系架橋剤を用いることで、HIPEフォームの靭性を高めやすい。なお、取り扱いが容易であるという観点から、ソフト系架橋剤の官能基当量の上限は、5000g/eqであることが好ましく、4000g/eqであることがより好ましく、3000g/eqであることがさらに好ましい。また、ソフト系架橋剤の官能基当量の下限は150g/eqであることが好ましく、180g/eqであることがより好ましく、200g/eqであることがさらに好ましい。なお、ソフト系架橋剤の官能基当量は、官能基(具体的にはビニル基、イソプロペニル基などのアルケニル基)1個当たりのソフト系架橋剤のモル質量を意味し、官能基当量の単位を[g/mol]とも表すことができる。
 HIPEフォームの靱性及び剛性をより高め易くなるという観点、損失正接tanδの最大値やtanδピークの半値幅を上記範囲に調整し易くなるという観点から、ソフト系架橋剤の官能基当量は、ハード系架橋剤の官能基当量よりも、60g/eq以上大きいことが好ましく、80g/eq以上大きいことがより好ましく、100g/eq以上大きいことがさらに好ましく、120g/eq以上大きいことがさらにより好ましい。換言すれば、ソフト系架橋剤の官能基当量とハード系架橋剤の官能基当量との差が60g/eq以上であることが好ましく、80g/eq以上であることがより好ましく、100g/eq以上であることがさらに好ましく、120g/eq以上であることがさらにより好ましい。また、重合安定性がより高められ、剛性と靭性とに優れる多孔体を安定して得やすくなるという観点から、ソフト系架橋剤の官能基当量とハード系架橋剤の官能基当量との差は、3000g/eq以下であることが好ましく、2000g/eq以下であることがより好ましく、1000g/eq以下であることがさらに好ましい。なお、2種類以上のハード系架橋剤を用いる場合、すべてのハード系架橋剤の官能基当量の重量平均値を算出し、この値をハード系架橋剤の官能基当量とする。同様に、2種類以上のソフト系架橋剤を用いる場合、すべてのソフト系架橋剤の官能基当量の重量平均値を算出し、この値をソフト系架橋剤の官能基当量とする。
 前述した作用効果をより確実に得る観点からは、上記架橋重合体が、官能基当量が130g/eq以下であるソフト系架橋剤に由来する成分と、官能基当量が130g/eqを超え5000g/eq以下であるハード系架橋剤に由来する成分とを含み、上記ハード系架橋剤の官能基当量が、上記ソフト系架橋剤の官能基当量よりも100g/eq以上大きいことが好ましい。
 ハード系架橋剤として用いられるビニル系化合物としては、ジビニルベンゼン;トリアリルイソシアヌレート;多価アルコールと(メタ)アクリル酸とのエステル等のビニル系化合物が挙げられる。多価アルコールと(メタ)アクリル酸とのエステルとしては、ブタンジオールジアクリレート等のブタンジオール(メタ)アクリレート;トリメチロールプロパントリアクリレート等のトリメチロールプロパン(メタ)アクリレート;ヘキサンジオールジアクリレート等のヘキサンジオール(メタ)アクリレート;ペンタエリスリトールテトラアクリレート等のペンタエリスリトール(メタ)アクリレート等のビニル系化合物が挙げられる。ただし、ハード系架橋剤における官能基の数は2つ以上である。官能基は、ビニル基及び/又はイソプロペニル基であることが好ましい。これらのハード系架橋剤は、単独で使用されてもよく、2種以上のハード系架橋剤が併用されてもよい。つまり、架橋重合体を構成するハード系架橋剤成分は、1種であってもよく、2種以上であってもよい。なお、HIPEフォームの剛性を調整し易くなるという観点から、ハード系架橋剤としては、ジビニルベンゼン及び/又はブタンジオールジアクリレートを主成分とするハード系架橋剤を用いることが好ましく、ジビニルベンゼンを主成分とするハード系架橋剤を用いることがより好ましい。なお、ハード系架橋剤の主成分とは、ハード系架橋剤中の割合が50重量%以上である成分を意味する。また、ハード系架橋剤において主成分となる前記ビニル系化合物の割合は、60重量%以上であることが好ましく、80重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。
 ソフト系架橋剤として用いられるビニル系化合物としては、多価アルコールと(メタ)アクリル酸とのエステル、ポリエーテルグリコールと(メタ)アクリル酸とのエステル、ウレタンオリゴマーと(メタ)アクリル酸とのエステル、エポキシオリゴマーと(メタ)アクリル酸とのエステル、(メタ)アクリル変性シリコーン等が挙げられる。より具体的には、上記ビニル系化合物としては、ノナンジオールジアクリレート等のノナンジオール(メタ)アクリレート;デカンジオールジアクリレート等のデカンジオール(メタ)アクリレート;ポリエチレングリコールジアクリレート等のポリエチレングリコール(メタ)アクリレート;ポリプロピレングリコールジアクリレート等のポリプロピレン(メタ)アクリレート;ポリテトラメチレングリコールジアクリレート等のポリテトラメチレングリコール(メタ)アクリレート;ポリグリセリンジアクリレート等のポリグリセリン(メタ)アクリレート;ウレタンジアクリレート等のウレタン(メタ)アクリレート;エポキシジアクリレート等のエポキシ(メタ)アクリレート;ポリエステルジアクリレート等のポリエステル(メタ)アクリレート;両末端(メタ)アクリル変性シリコーン等の(メタ)アクリル変性シリコーン;カプロラクトン変性トリスイソシアヌレート等のカプロラクトン変性イソシアヌレート;エトキシ化ビスフェノールAジメタクリレート等のエトキシ化ビスフェノールA(メタ)アクリレート等が挙げられる。ただし、ソフト系架橋剤における官能基の数は2つ以上である。官能基は、ビニル基及び/又はイソプロペニル基であることが好ましい。これらのソフト系架橋剤は、単独で用いられてもよく、2種以上のソフト系架橋剤が併用されていてもよい。つまり、架橋重合体を構成するソフト系架橋剤成分は、1種であってもよく、2種以上であってもよい。これらの中でも、HIPEフォームの靭性を高めやすい観点から、ソフト系架橋剤としては、ポリエチレングリコール(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート及び(メタ)アクリル変性シリコーンからなる群より選択される少なくとも1種の化合物を用いることが好ましい。
 また、HIPEフォームの靭性を調整し易くなるという観点からは、ソフト系架橋剤としてポリエチレングリコールジ(メタ)アクリレートを主成分とするソフト系架橋剤を用いることが好ましい。ポリエチレングリコールジ(メタ)アクリレートにおけるエチレングリコール由来の繰り返し構成単位の数は、3~23であることが好ましい。また、HIPEフォームの延性や強度をより高めることができる観点からは、官能基当量が500g/eq以上3000g/eq以下であるソフト系架橋剤を用いることが好ましく、該ソフト系架橋剤として、ウレタン(メタ)アクリレート及び/又はエポキシ(メタ)アクリレートを主成分とするソフト系架橋剤を用いることがより好ましく、エポキシ(メタ)アクリレートを主成分とするソフト系架橋剤を用いることがさらに好ましい。なお、ソフト系架橋剤の主成分とは、ソフト系架橋剤中の割合が50重量%以上である成分を意味する。また、ソフト系架橋剤において主成分となる前記ビニル系化合物の割合は、60重量%以上であることが好ましく、80重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。
 代表的な架橋剤の分子量、官能基1つ当たりの分子量(つまり、官能基当量)を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 架橋重合体が、少なくとも、アクリル系単量体と、スチレン系単量体と、架橋剤との共重合体から構成される場合、架橋点間分子量Mc、温度23℃における貯蔵弾性率を上記範囲に調整し易くなる観点、HIPEフォームの靱性と剛性とのバランスがより良好になるという観点から、架橋重合体におけるアクリル系単量体成分の含有量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、30重量部以上、85重量部以下であることが好ましく、40重量部以上、75重量部以下であることがより好ましく、45重量部以上、65重量部以下であることがさらに好ましい。同様の観点から、架橋重合体におけるスチレン系単量体成分の含有量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、10重量部以上、50重量部以下であることが好ましく、15重量部以上、45重量部以下であることがより好ましく、20重量部以上、40重量部以下であることがさらに好ましい。また、アクリル系単量体としては、炭化水素基の炭素数が3~10の(メタ)アクリル酸エステルを用いることが好ましく、アクリル系単量体中の、炭化水素基の炭素数が3~10の(メタ)アクリル酸エステルの含有割合が50重量%以上であることが好ましく、80重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。
 また、炭化水素基の炭素数が3~10の(メタ)アクリル酸エステルとしては、アクリル酸2-エチルヘキシル及び/又はアクリル酸ブチルが好ましく、アクリル酸ブチルがより好ましい。
 一方、HIPEフォームを吸音材として用いる場合においては、tanδのピーク温度を上記範囲に調整し易くなる観点、HIPEフォームの靱性と剛性とのバランスがより良好になるという観点から、架橋重合体におけるアクリル系単量体成分の含有量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、50重量部以上、95重量部以下であることが好ましく、60重量部以上、90重量部以下であることがより好ましく、70重量部以上、85重量部以下であることがさらに好ましい。同様の観点から、架橋重合体におけるスチレン系単量体成分の含有量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、3重量部以上、45重量部以下であることが好ましく、5重量部以上、30重量部以下であることがより好ましく、10重量部以上、25重量部以下であることがさらに好ましい。
 架橋重合体の架橋点間分子量Mc、温度23℃における貯蔵弾性率を上記範囲に調整し易くなる観点から、架橋重合体中の架橋剤成分の含有量(具体的には、架橋重合体中のソフト系架橋剤成分とハード系架橋剤成分との合計含有量)は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、5重量部以上、40重量部以下であることが好ましく、6重量部以上、35重量部以下であることがより好ましく、10重量部以上、30重量部以下であることがさらに好ましい。
 一方、HIPEフォームを吸音材として用いる場合においては、架橋重合体のtanδのピーク温度を所望の範囲に調整し易くなる観点から、架橋重合体中の架橋剤成分の含有量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、3重量部以上、40重量部以下であることが好ましく、4重量部以上、35重量部以下であることがより好ましい。
 また、架橋重合体が、官能基当量が500g/eq以上3000g/eq以下である架橋剤成分を含む場合、架橋重合体中の官能基当量が500g/eq以上3000g/eq以下である架橋剤成分の含有量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、20重量部以上、40重量部であることが好ましい。なお、官能基当量が500g/eq以上3000g/eq以下である架橋剤成分は、ソフト系架橋剤に相当する。
 架橋重合体がハード系架橋剤成分とソフト系架橋剤成分とを含む場合において、HIPEフォームの剛性を高めやすく、架橋点間分子量Mc、温度23℃における貯蔵弾性率を上記範囲に調整し易くなる観点から、架橋重合体におけるハード系架橋剤成分の含有量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、1重量部以上、10重量部以下であることが好ましく、2重量部以上、6重量部以下であることがより好ましく、2重量部以上、5重量部以下であることがさらに好ましい。また、HIPEフォームが過度に脆化することを抑制しつつ、架橋点間分子量Mc、温度23℃における貯蔵弾性率を上記範囲に調整し易くなる観点から、架橋重合体におけるソフト系架橋剤成分の含有量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、3重量部以上、40重量部以下であることが好ましく、5重量部以上、35重量部以下であることがより好ましく、8重量部以上、30重量部以下であることがさらに好ましい。架橋点間分子量Mc、温度23℃における貯蔵弾性率や損失正接tanδの最大値等を上記範囲に調整し易くなる観点から、ソフト系架橋剤成分に対するハード系架橋剤成分の重量比が0.05以上、1.0以下であることが好ましく、0.06以上、0.6以下であることがより好ましく、0.08以上、0.5以下であることがさらに好ましく、0.1以上、0.4以下であることが特に好ましい。
 一方、HIPEフォームを吸音材として用いる場合においては、HIPEフォームの剛性を高めやすく、tanδのピーク温度等を所望の範囲に調整し易くなる観点から、架橋重合体におけるハード系架橋剤成分の含有量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、1重量部以上、20重量部以下であることが好ましく、2重量部以上、15重量部以下であることがより好ましく、3重量部以上、10重量部以下であることがさらに好ましい。また、HIPEフォームが過度に脆化することを抑制しつつ、tanδのピーク温度を所望の範囲に調整し易くなる観点から、架橋重合体におけるソフト系架橋剤成分の含有量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、2重量部以上、40重量部以下であることが好ましく、3重量部以上、35重量部以下であることがより好ましい。同様の観点から、ソフト系架橋剤成分に対するハード系架橋剤成分の重量比が0.05以上、4以下であることが好ましく、0.06以上、3以下であることがより好ましく、0.08以上、2以下であることがさらに好ましい。
[製造方法]
 HIPEフォームは、高内相エマルションを重合してなり、具体的には、油中水型高内相エマルションを重合させることにより製造される。油中水型高内相エマルションの有機相は、ビニル系単量体、架橋剤、乳化剤、重合開始剤等を含む連続相であり、水相は、脱イオン水等の水を含む分散相である。
 HIPEフォーム(つまり、多孔体)の製造方法のより好ましい態様(具体的には、第1の態様、第2の態様)は、以下の通りである。
 第1の態様は、アクリル系単量体及び/又はスチレン系単量体と、架橋剤と、乳化剤と、重合開始剤とを含む有機相に、水を含む水相を内包させた油中水型高内相エマルションを形成し、該エマルション中で、アクリル系単量体及び/又はスチレン系単量体を重合することにより、多孔体を製造する方法であって、
 上記架橋剤が、ビニル基及びイソプロペニル基から選択される官能基を分子内に少なくとも2個有するビニル系化合物であると共に、官能基当量が130g/eq以下である第1架橋剤と、官能基当量が130g/eqを超え、5000g/eq以下である第2架橋剤とを含み、
 上記第2架橋剤の官能基当量は、上記第1架橋剤の官能基当量よりも、100g/eq以上大きく、
 上記アクリル系単量体と上記スチレン系単量体と上記架橋剤との合計100重量部に対する、上記架橋剤の添加量が5重量部以上40重量部以下であり、
 上記アクリル系単量体と上記スチレン系単量体と上記架橋剤との合計100重量部に対する、上記第2架橋剤の添加量が3重量部以上40重量部以下であり、
 上記第2架橋剤の重量に対する上記第1架橋剤の重量の比が0.05以上1.0以下である、多孔体の製造方法にある。
 第2の態様は、アクリル系単量体及び/又はスチレン系単量体と、架橋剤と、乳化剤と、重合開始剤とを含む有機相に、水を含む水相を内包させた油中水型高内相エマルションを形成し、該エマルション中で、アクリル系単量体及び/又はスチレン系単量体を重合することにより、多孔体を製造する方法であって、
 上記架橋剤が、ビニル基及びイソプロペニル基から選択される官能基を分子内に少なくとも2個有するビニル系化合物であると共に、官能基当量が500g/eq以上3000g/eq以下である架橋剤とを含み、
 上記アクリル系単量体と上記スチレン系単量体と上記架橋剤との合計100重量部に対する、上記架橋剤の添加量が20重量部以上40重量部以下である、多孔体の製造方法にある。
 なお、上述したビニル系単量体の種類や含有量、架橋剤の種類や含有量等の説明が、多孔体の製造方法においても適宜参照される。
 具体的には、以下のように、乳化工程、重合工程、乾燥工程を行うことにより、HIPEフォームを製造することができる。
 まず、ビニル系単量体、架橋剤、乳化剤、重合開始剤等の有機物を含む油性液体(有機相)を撹拌しながら、油性液体中に水を含む水性液体(水相)を滴下することにより、油中水型高内相エマルションを作製する(乳化工程)。乳化工程では、体積比で水相が有機相の例えば3倍以上となるように油性液体に水性液体を添加することにより、高内相エマルションを作製することができる。なお、有機相に内包させる水相の比率は、有機相と水相との重量比で調整することができる。高内相エマルションにおける前記水相の含有量は、前記有機相100重量部に対して、300~3000重量部であることが好ましく、400~2500重量部であることがより好ましく、500~2000重量部であることがさらに好ましい。次いで、高内相エマルションを加熱して有機相のビニル系単量体、架橋剤等を重合させることにより、重合生成物(具体的には、水分を含んだ架橋重合体)を得る(重合工程)。その後、重合生成物を乾燥させることにより、架橋重合体から構成されたHIPEフォームを得る(乾燥工程)。
 乳化工程での撹拌速度は、特に限定されないが、例えば、撹拌動力密度が0.01kW/m3~10kW/m3の範囲にて調整することができる。所望の気泡構造を有するHIPEフォームをより容易に得やすくなる観点からは、乳化工程における撹拌動力密度は0.03~7kW/m3であることがより好ましい。なお、乳化工程における撹拌動力密度(単位:kW/m3)は、乳化工程において用いる撹拌装置のトルク(単位:N・m)、回転数(単位:rpm)から、撹拌時における動力(単位:kW)を算出し、この動力を乳化工程における容器の内容物の体積(単位:m3)で除することで求めることができる。
 乳化工程での油性液体への水性液体の添加方法は、特に限定されないが、撹拌容器内に油性液体と水性液体を投入した状態で撹拌を開始して乳化を行う方法や、撹拌容器内に油性液体のみを投入して撹拌を開始し、撹拌下で、容器内にポンプ等を用いて水性液体を投入して乳化を行う方法等を採用することができる。ポンプなどを用いて水性液体を投入する場合、水性液体の添加速度は、特に限定されないが、例えば、油性液体100重量%に対して10重量%/min~1000重量%/minの範囲にて調整することができる。水性液体の添加速度は、油性液体(有機相)100重量%に対して100~800重量%/minであることがより好ましく、200~600重量%/minであることがさらに好ましい。また、乳化の方法としては、撹拌装置を備えた撹拌容器や遠心振とう機を用いて乳化するバッチ式の乳化工程、スタティックミキサーやメッシュ等を備えたライン中に、油性液体と水性液体を連続的に供給して混合させる連続式の乳化工程などが挙げられる。乳化の方法は特に限定されない。
 水相は、脱イオン水等の水、重合開始剤、電解質などを含むことができる。乳化工程では、例えば、油性液体、水性液体をそれぞれ作製し、撹拌下で油性液体に水性液体を添加して、高内相エマルションを作製する。また、乳化工程において、水相及び/又は有機相には、難燃剤、難燃助剤、耐光剤、着色剤等の添加剤を適宜配合することができる。
 難燃剤は、HIPEフォームの難燃性を向上させるために用いられる。難燃剤としては、ハロゲン、リン、窒素、シリコーン等を含む有機化合物;金属水酸化物、リン、窒素等を含む無機化合物等が挙げられる。難燃剤は、本発明の効果を損なわない範囲で使用され得る。難燃剤を配合する場合、その配合量は、架橋重合体を構成するビニル系単量体成分と架橋剤成分との合計100重量部に対して、5~20重量部であることが好ましい。少量の添加でも優れた難燃性を付与しやすい観点から、難燃剤としては、臭素化ビスフェノール系難燃剤を用いることが好ましく、2,3-ジブロモ-2-メチルプロピル基を有する臭素化ビスフェノール系難燃剤及び/又は2,3-ジブロモプロピル基を有する臭素化ビスフェノール系難燃剤を用いることがより好ましく、2,2-ビス(4-(2、3-ジブロモ-2-メチルプロポキシ)-3,5-ジブロモフェニル)プロパンを用いることがさらに好ましい。
 また、HIPEフォームには、難燃効率を向上させる目的として、難燃助剤を適宜配合することができる。例えば、ハロゲン系難燃剤を用いる場合において、難燃助剤としてジクミルパーオキサイド等のラジカル発生剤を用いると、ラジカル発生剤の分解によって難燃剤中のハロゲンの脱離が促進され、難燃効率の向上が期待できる。また、ハロゲン系難燃剤を用いる場合において、難燃助剤として三酸化アンチモン等のアンチモン化合物を用いると、ハロゲン系難燃剤によるラジカルトラップの効果と、酸化アンチモンによる空気遮断の効果とが相乗的に複合されることで難燃効率の向上が期待できる。なお、難燃剤は単独で用いても良く、異なる難燃機構の難燃剤を2種以上併用しても良い。
 重合開始剤は、ビニル系単量体の重合を開始させるために用いられる。重合開始剤としては、ラジカル重合開始剤を用いることができる。具体的には、ジラウロイルパーオキサイド(LPO)、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(LTCP)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、t-ブチルパーオキシピバレエート、t-ヘキシルパーオキシピバレエート、t-ブチルパーオキシネオヘプタノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、ジ(2-エチルヘキシル)パーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、過酸化ベンゾイル等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’アゾビス(4-ジメチルバレロニトリル)、ジメチル2,2’アゾビス(2-メチルプロピオネート)、2,2’アゾビス(2-メチルブチロニトリル)等のアゾ化合物等が用いられる。重合時の水の沸騰を抑制するという観点から、重合開始剤の1時間半減期温度は、95℃以下であることが好ましく、90℃以下であることがより好ましい。また、安全性の観点から、室温における重合開始剤の分解を抑制するため、重合開始剤の1時間半減期温度は、50℃以上であることが好ましく、55℃以上であることがより好ましい。
 重合開始剤としては、1種類以上の物質を用いることができる。また、HIPEフォームの密度の均一性を低下させることなく、重合時間を短縮することができる観点からは、1時間半減期温度が50℃以上70℃未満である有機過酸化物と、1時間半減期温度が70℃以上90℃以下である有機過酸化物とを、組み合わせて用いることが好ましい。
 重合開始剤は、有機相及び/又は水相に添加することができる。また、水相に重合開始剤を添加する場合は、2,2’アゾビス(2-(2-イミダゾリン-2-イル)プロパン)ジヒドロクロリド、2,2’アゾビス(2-メチルプロピオナミジンジヒドロクロリド、過硫酸カリウム、過硫酸アンモニウム等の水溶性の重合開始剤を用いてもよい。重合開始剤の添加量は、例えば、ビニル系単量体と架橋剤との合計100重量部に対して、0.1~5重量部の範囲とすることができる。
 乳化剤は、高内相エマルションの形成及び安定化のために用いられる。乳化剤としては、例えば、界面活性剤を用いることができる。具体的には、ポリグリセリン縮合リシノレート、ポリグリセリンステアレート、ポリグリセリンオレエート、ポリグリセリンラウレート、ポリグリセリンミリステート等のグリセロールエステル類;ソルビタンオレエート、ソルビタンステアレート、ソルビタンラウレート、ソルビタンラウレート、ソルビタンパルミテート等のソルビトールエステル類;エチレングリコールソルビタンエステル類;エチレングリコールエステル類;ポリエチレングリコールとポリプロピレングリコールの共重合体等が用いられる。乳化剤の添加量は、例えば、ビニル系単量体と架橋剤と乳化剤との合計100重量部に対して、1~30重量部の範囲とすることができる。
 電解質は、水相にイオン強度を付与し、乳化物の安定性を高めるために用いられる。電解質としては、水溶性の電解質を用いることができる。具体的には、塩化カルシウム、塩化ナトリウム、塩化マグネシウム、酢酸ナトリウム、クエン酸ナトリウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム等が用いられる。電解質の添加量は、例えば、水性液体100重量部に対して、0.01~10重量部の範囲とすることができる。
 重合工程での重合温度は、例えば、ビニル系重合体の種類、重合開始剤の種類、架橋剤の種類等によって調整される。重合温度は、例えば50℃~90℃である。HIPEフォームの生産性を高めると共に、所望の気泡構造を有するHIPEフォームを得やすくなる観点からは、重合温度は、70~85℃であることがより好ましい。また、重合温度が前述した範囲内である場合、重合時間は、0.5~15時間であることが好ましく、0.5~12時間であることがより好ましく、0.5~10時間であることがさらに好ましい。
 乾燥工程では、オーブン、真空乾燥機、高周波・マイクロ波乾燥機等を用いて、水分を含んだ架橋重合体を乾燥する。乾燥が完了することで、重合前の乳化物において水滴があった箇所が、乾燥後の重合体においては気泡となり、多孔体を得ることができる。乾燥前に、例えばプレス機等を用いて圧搾することにより架橋重合体を脱水させることができる。圧搾は、室温(例えば23℃)で行ってもよいが、例えば、HIPEフォームを構成する架橋重合体のガラス転移温度以上の温度で行うこともできる。この場合には、圧搾による脱水が容易になり、乾燥時間を短くすることができる。また、遠心分離により、架橋重合体の脱水を行うこともできる。この場合にも乾燥時間が短くなる。
(吸音材)
 前記多孔体は、柔軟で、延性に優れると共に、復元性に優れているため、制振材、清掃用品等の多種多様な用途に好適である。また、前記多孔体は、吸音性を有しているため、前記多孔体を吸音材として使用することもできる。なお、上述の方法により得られた多孔体は、そのまま吸音材等として使用することができる。また、多孔体に必要に応じて切削加工等を施すことにより、所望の形状を備えた吸音材等とすることもできる。
 多孔体から構成される吸音材の好ましい態様は、以下の通りである。
[12]アクリル系単量体及び/又はスチレン系単量体の重合体が架橋された架橋重合体を基材樹脂とする多孔体から構成される吸音材であって、
 周波数:1Hz、荷重:10mN、変形モード:圧縮という条件で上記多孔体に対して動的粘弾性測定を行うことにより測定される温度-損失正接tanδ曲線における損失正接tanδのピーク温度が50℃以下であり、
 ISO 9053-1:2018に基づいて測定される流速:0.5mm/sにおける上記多孔体の単位厚さあたりの流れ抵抗が7×104N・s/m4以上1×106N・s/m4以下である、吸音材。
[13]前記温度-損失正接tanδ曲線における損失正接tanδの最大値が0.4以上である、[12]に記載の吸音材。
[14]前記架橋重合体の架橋点間分子量が1.0×10以上30×10以下である、[12]または[13]に記載の吸音材。
[15]前記多孔体が、アクリル系単量体及びスチレン系単量体の重合体が架橋された架橋重合体を基材樹脂としており、前記アクリル系単量体が、(メタ)アクリル酸と炭素数1以上20以下のアルコールとのエステルを含む、[12]~[14]のいずれか1つに記載の吸音材。
[16]前記多孔体の密度が10kg/m3以上200kg/m3以下である、[12]~[15]のいずれか1つに記載の吸音材。
[17]前記多孔体の気泡の平均径が20μm以上160μm以下である、[12]~[16]のいずれか1つに記載の吸音材。
[18]前記多孔体の気泡の平均径に対する、前記多孔体の気泡壁を貫通し、隣接する気泡間を連通する貫通孔の平均径の比が0.05以上0.5以下である、[12]~[17]のいずれか1つに記載の吸音材。
 従来の多孔質材料からなる吸音材としては、例えばポリウレタンフォームから構成された吸音材が知られている。しかし、ポリウレタンフォームから構成された吸音材は、例えば自動車のロードノイズ等の、500~1000Hz程度の比較的低い周波数を有する音波の吸収性が低いという問題があった。
 一方で、上述した[12]~[17]に係る多孔体は、多孔体の気泡壁を伝播する固体伝播音と、多孔体内の空気を伝播する空気伝播音との両方を効果的に減衰させることができる。それ故、かかる多孔体からなる吸音材は、比較的低い周波数領域における吸音性が良好で、広い周波数領域において優れた吸音性を有している。特に、前記多孔体は、周波数100~5000Hzの音を吸音するための吸音材として好適に用いることができる。より具体的には、前記多孔体から構成された吸音材は、例えば自動車や建築物などに好適に用いることができる。
[流れ抵抗]
 ISO 9053-1:2018に基づいて測定される、流速:0.5mm/sにおける前記多孔体の単位厚さあたりの流れ抵抗は7×104N・s/m4以上1×106N・s/m4以下であることが好ましい。前述した流れ抵抗は、多孔体に空気を流通させた場合における、多孔体の内部での空気の流れにくさを示す値であり、流れ抵抗が高いほど多孔体内部において空気が流れにくいことを意味する。
 微風速の空気を流した時の多孔体の内部における空気の流れにくさは、多孔体の内部における音波の伝わりにくさと相関する。そのため、多孔体の単位厚さあたりの流れ抵抗の値は、多孔体の吸音材としての特性を適切に表すことができる指標と考えられる。なお、単位厚さあたりの流れ抵抗の算出に当たっては、多孔体に対して流速:0.5mm/sの条件で空気を流した場合の流れ抵抗の値に基づいて、流速:0.5mm/sにおける単位厚さあたりの流れ抵抗を算出してもよい。また、測定精度を高める観点から、多孔体に対して、例えば流速:1~3mm/sの条件で空気を流した場合の流れ抵抗を測定し、各流速と流れ抵抗との関係に基づいて、流速0.5mm/sにおける単位厚さあたりの流れ抵抗を算出してもよい。
 多孔体の単位厚さあたりの流れ抵抗が過度に低くなると、多孔体内に侵入した音波が気泡壁に衝突しにくくなり、気泡壁による固体伝播音の減衰が不十分となるものと考えられる。そのため、この場合には、比較的低い周波数領域における吸音性の悪化を招くおそれがある。
 一方、多孔体の単位厚さあたりの流れ抵抗が過度に高い場合には、音波が多孔体内に侵入しにくくなり、音波と気泡壁との間で生じる粘性抵抗等による空気伝播音の減衰が不十分となるものと考えられる。そのため、この場合には、比較的高い周波数領域における吸音性が低下し、吸音性の悪化を招くおそれがある。
 多孔体の単位厚さあたりの流れ抵抗を前記特定の範囲とすることにより、多孔体内を伝播する音波のうち比較的高い周波数を有する空気伝播音と、比較的低い周波数を有する固体伝播音との両方をバランスよく減衰させることができる。その結果、比較的低い周波数領域における吸音性を向上させることができ、かつ広い周波数領域において吸音材の吸音性を向上させることができる。
 多孔体の単位厚さあたりの流れ抵抗は主に多孔体の見掛け密度や気泡径、気泡径と貫通孔径との比等に関連しているため、多孔体における気泡壁及び気泡の構造を制御することにより、多孔体の単位厚さあたりの流れ抵抗を前記特定の範囲に調整することができる。例えば、多孔体の密度が低くなると、多孔体の体積に占める気泡の割合が高くなり、単位厚さあたりの流れ抵抗が低下する。また、例えば、多孔体の気泡径が大きくなると、多孔体の気泡内を空気が流通しやすくなり、単位厚さあたりの流れ抵抗が低下する。
[吸音性]
 厚み20mmの前記多孔体を用いて23℃での垂直入射吸音率を測定した場合における、周波数125~5000Hzでの垂直入射吸音率の合計は8以上であることが好ましく、9以上であることがより好ましい。このような吸音性を有する多孔体を吸音材とすることにより、吸音材の吸音性を広い周波数領域においてより高めることができる。
 また、厚み20mmの前記多孔体を用いて23℃での垂直入射吸音率を測定した場合における、周波数500~1000Hzでの垂直入射吸音率の合計は2.5以上であることが好ましく、3.0以上であることがより好ましい。このような吸音性を有する多孔体を吸音材とすることにより、低い周波数領域における吸音材の吸音性をより高めることができる。なお、各周波数領域における垂直入射吸音率の合計の測定方法については、実施例で説明する。
[吸音材の厚み]
 前記吸音材の最小厚みは10mm以上であることが好ましく、15mm以上であることが好ましく、20mm以上であることが好ましい。吸音材の最小厚みを前記特定の範囲とすることにより、吸音材のどの部分においても優れた吸音性を発揮させることができる。また、吸音材が直方体形状を有する場合、吸音材の最小厚みを前記特定の範囲とすることにより、吸音材の吸音性をより高めることができる。なお、吸音材が直方体形状を有する場合、前記吸音材の最大厚みは、取り扱い性を高める観点からは、概ね100mm以下であることが好ましく、70mm以下であることがより好ましく、50mm以下であることがさらに好ましい。
 以下に、多孔体(具体的にはHIPEフォーム)の実施例及び比較例について説明する。
[実施例1-1]
 本例では、以下の方法によりHIPEフォームを製造した。まず、トルク変換器付撹拌装置の付いた、内容積が3Lのガラス容器に、ビニル系単量体としてのスチレン:31g及びブチルアクリレート:47.5g、ハード系架橋剤(以下、第1架橋剤という)としての純度57重量%のジビニルベンゼン:4g(ジビニルベンゼンとしては、2.3g)、ソフト系架橋剤(以下、第2架橋剤という)としてのポリエチレングリコールジアクリレート(具体的には、新中村化学工業株式会社製のNKエステルA-400/純度95重量%):10g(ポリエチレングリコールジアクリレートとしては、9.5g)、乳化剤としてのポリグリセリン縮合リシノレート(具体的には、阪本薬品工業株式会社製のCRS-75):7.5g、重合開始剤としてジラウロイルパーオキサイド:1gを投入した。これらをガラス容器内で混合することにより、有機相を形成した。
 撹拌動力密度1.1kW/m3で有機相を撹拌しながら、脱イオン水:900gを約450g/minの速度で添加し、脱イオン水の添加が終了してからも10分間撹拌を継続し、油中水型(つまりW/O型)の高内相エマルションを調製した。乳化完了後の撹拌動力密度は1.0kW/m3であった。なお、撹拌動力密度(単位:kW/m3)は、撹拌装置のトルク(単位:N・m)、回転数(単位:rpm)より動力(単位:kW)を算出し、内容物の体積(単位:m3)で除することで求めることができる。
 次いで、撹拌動力密度を0.1kW/m3に下げ、ガラス容器にアスピレーターを接続して容器内を減圧し、エマルション中に含まれる微小気泡を除去した。減圧開始から10分後、撹拌を停止して容器内を大気圧に戻した。
 ガラス容器の内容物を、縦約250mm、横約180mm、深さ約90mmの容器に充填し、70℃のオーブンにて約18時間かけて重合し、水を含有するHIPEフォームを得た。HIPEフォームをオーブンから取出し、室温まで冷却した。
 冷却後、容器からHIPEフォームを取出し、水で洗浄した後脱水し、85℃のオーブンで恒量になるまで乾燥した。このようにして、ビニル系架橋重合体から構成された、直方体形状のHIPEフォームを得た。このHIPEフォームの見掛け密度は94g/L(つまり、94kg/m3)であった。
 本例の仕込み組成等を表2に示す。なお、架橋重合体における、各種成分(ビニル系単量体及び架橋剤)の含有量は、仕込み時における、各種成分の配合量(架橋剤に関しては、不純物を除く配合量)と、ビニル系単量体成分と架橋剤成分(不純物を除く)との合計配合量とから求めることができる。
 表中においては、化合物名を以下のように省略した。
 St:スチレン
 BA:アクリル酸ブチル
 DVB:ジビニルベンゼン
 PEGDA:ポリエチレングリコールジアクリレート
 EpDA:エポキシジアクリレート(具体的には、両末端アクリル変性エポキシプレポリマー)
 PGPR:ポリグリセリン縮合リシノレート
 LPO:ジラウロイルパーオキサイド
[実施例1-2~1-12、比較例1-1~1-4]
 仕込み組成を表2~表4に示すように変更した点を除き、実施例1-1と同様にしてHIPEフォームを製造した。
 なお、仕込み組成以外の変更点としては、実施例1-2においては、乳化工程における撹拌動力密度を1.6kW/m3に変更した。実施例1-3、1-8および比較例1-1においては、乳化工程における撹拌動力密度を0.7kW/m3に変更した。実施例1-9においては、乳化工程における撹拌動力密度を7.8kW/m3に変更した。実施例1-10においては、乳化工程及び脱泡工程における撹拌動力密度を0.03kW/m3に変更した。
[評価]
 実施例1-1~1-12、比較例1-1~1-4について、下記の測定、評価を行った。結果を表2~表4に示す。
(見掛け密度:ρ)
 上記のようにして製造されたHIPEフォームから、その中心を含み、かつスキン面、つまり、重合時に容器と接触していた面を含まないようにして、厚み:25mm、幅:50mm、長さ:50mmの直方体状の試験片を3つ切り出した。次いで、試験片の重量と実寸法(具体的には、体積)を測定した。試験片の重量を体積で除することにより、試験片の見掛け密度を算出した。そして、3つの試験片の見掛け密度の算術平均値をHIPEフォームの見掛け密度ρとした。
(ガラス転移温度:Tg)
 JIS K7121:1987に基づき、示差走査熱量(つまり、DSC)分析によりTgを算出した。測定装置としては、ティー・エイ・インスツルメント・ジャパン株式会社製のDSC250を用いた。具体的には、まず、HIPEフォームの中心付近から約2mgの試験片を採取した。試験片の状態調節としては、「(3)一定の熱処理を行った後、ガラス転移温度を測定する場合」を採用した。具体的には、採取した試験片を、温度23℃、湿度50%の恒温恒湿室で24時間以上静置した。次いで、試験片に対して、10℃/分の加熱速度でガラス転移終了時の温度より約30℃高い温度まで加熱し、この温度のまま10分間保持した後、10℃/分の冷却速度でガラス転移温度より約50℃低い温度まで冷却した。例えば、実施例1-1のHIPEフォームのTgの測定においては、40℃まで加熱した後、-45℃まで冷却した。冷却後、この温度のまま10分間保持して装置を安定させ、20℃/分の加熱速度でガラス転移終了時の温度より約30℃高い温度までDSC測定を行うことによりDSC曲線を得た。このDSC曲線から中間点ガラス転移温度を求め、この値をガラス転移温度Tgとした。なお、実施例1-1~1-12、比較例1-1~1-4における測定温度範囲は-90℃~70℃の範囲であった。
(架橋点間分子量:Mc)
 HIPEフォームの中心付近から、10mm×10mm×10mmの立方体形状の、スキン面を有しない試験片を3つ切り出した。この3つの試験片に対して、動的粘弾性測定(DMA)を行うことにより、-100~120℃の温度領域におけるT-E’曲線を取得した。図2に、HIPEフォームのT-E’曲線の一例を示す。T-E’曲線は、横軸に温度、縦軸に貯蔵弾性率E’をプロットして得られる。測定装置としては、株式会社日立ハイテクサイエンス製のDMA7100を用いた。なお、測定条件の詳細は以下の通りである。
・変形モード:圧縮
・温度:-100~120℃
・加熱速度:10℃/min
・周波数:1Hz
・荷重:10mN
 上記3つの試験片に対する動的粘弾性測定より測定された、ゴム状平坦部における貯蔵弾性率E’と温度Tを用い,下記の式(I)から架橋点間分子量Mcを算出した。実施例においては、上記3つの試験片のT-E’曲線のそれぞれにおけるゴム状平坦部である、Tg+50℃~Tg+80℃の温度域内から無作為に選択された3つの温度Tを選択し、当該温度Tにおける貯蔵弾性率E’を決定した。次に、これらの貯蔵弾性率E’と温度Tを用い、下記の式(I)から各温度における架橋点間分子量を算出した。そして、3つの試験片のT-E’曲線から算出された合計9つの架橋点間分子量の算術平均値を架橋点間分子量Mcとして採用した。なお、Tgは、HIPEフォームを構成する架橋重合体のガラス転移温度である。
    Mc=2(1+μ)ρRT/E’ ・・・(I)
 なお、上記動的粘弾性測定の測定条件では、HIPEフォームを構成する架橋重合体に生じる歪は極微小であり、体積変化が起こらないと見なすことができる。そのため、体積一定の条件、すなわちポアソン比を0.5として、貯蔵弾性率E’、架橋点間分子量Mcを算出した。
(0℃、23℃での貯蔵弾性率、貯蔵弾性率比)
 上記動的粘弾性測定(DMA)により測定された-100~120℃の温度領域における貯蔵弾性率E’から、0℃での貯蔵弾性率と、23℃での貯蔵弾性率を求めた。代表例として、実施例1-1の多孔体のT-E’曲線を図2に示す。
また、23℃での貯蔵弾性率に対する0℃での貯蔵弾性率の比を算出した。
(損失正接tanδの最大値及びtanδピークの半値幅)
 架橋点間分子量Mcの測定と同様にして、-100~120℃の温度領域におけるT-tanδ曲線を取得した。なお、損失正接tanδは、損失弾性率E”を貯蔵弾性率E’で除した値であり、動的粘弾性測定において、E’、E”、tanδは同時に求めることができる。このようにして得られた、T-tanδ曲線におけるtanδピークのピークトップのtanδの値を損失正接tanδの最大値とした。また、T-tanδ曲線に現れたtanδピークにおいて、tanδの値が最大値の1/2となる2か所の位置における温度を求め、これらの温度差を半値幅Hとした。実施例1-1のHIPEフォームのT-tanδ曲線を図3に示す。
(引張破断伸び)
 HIPEフォームの中心付近から、厚み4mm、縦50mm、横180mmのサンプルを5つ切り出した。1A形状(JIS K 7161-2:2014)のダンベル抜型を用いて、サンプルを1A形状に打ち抜き、5つの試験片を得た。これらの試験片に対し、株式会社島津製作所のオートグラフAGS-10kNXを用いて、JIS K 7161-2:2014に基づいて、以下の条件で引張試験を行った。得られた荷重―変位曲線から、引張破壊ひずみを算出し、5つの測定結果の平均値を引張破断伸びとした。
 ・室温:23℃
 ・湿度:50%
 ・引張速度:100mm/min
 引張破断点が70%以上の場合に延性が良好であると判定し、表中に「Good」と表記した。一方、引張破断点が70%未満の場合に延性が不良である判定し、表中に「Poor」と表記した。
(破断エネルギー)
 上記引張試験により測定された荷重―変位曲線における、ひずみ量0%から、引張破壊ひずみまでの領域のエネルギーの算術平均値を算出した。なお、破断エネルギーはオートグラフAGS-10kNXによって自動的に算出される値を用いた。
 また、HIPEフォームの単位重量当たりの破断エネルギーを算出し、この算出値が50mJ/g以上の場合に強度が良好であると判定し、表中に「Good」と表記した。一方、算出値が50mJ/g未満の場合に強度が不良であると判定し、表中に「Poor」と表記した。
(総合判定)
 延性及び強度が全て良好の場合に、表中に「Good」と表記した。一方、いずれか一つでも不良の場合に表中に「Poor」と表記した。
(30分後、24時間後の復元率、圧縮永久歪)
 HIPEフォームの中心付近から、25mm×50mm×50mmのスキン面を有しない試験片を切り出し、この試験片を用いてJIS K 6767:1999に準拠して、圧縮永久歪を測定した。具体的には、温度:23℃、湿度:50%の環境下で、試験片を厚み25mmに対して25%歪んだ状態に圧縮し、そのまま22時間放置した後、除圧した。除圧から30分後および24時間後の厚みを測定した。以下の計算式から、除圧から30分後および24時間後の復元率(単位:%)、圧縮永久歪(単位:%)を算出した。
 (30分後の復元率)=(除圧から30分後の厚み)/(元の厚み)×100[%]
(24時間の復元率)=(除圧から24時間後の厚み)/(元の厚み)×100[%]
 (圧縮永久歪)=((元の厚み)-(除圧から24時間後の厚み))/(元の厚み)×100[%]
 なお、30分後の復元率や、24時間後の復元率が高いほど、HIPEフォームの復元性が良好であることを意味する。また、圧縮永久歪が小さいほど、HIPEフォームの復元性が良好であることを意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2~表4より理解されるように、実施例のHIPEフォームは、柔軟で、延性に優れると共に、強度にも優れる。これらの実施例のHIPEフォームの中でも、実施例1-1~1-11のHIPEフォームは、さらに復元性にも優れている。
 比較例1-1は、見掛け密度が大きい例であり、延性が不十分であった。
 比較例1-2及び1-3は、架橋点間分子量が小さい例であり、延性が不十分であった。
 比較例1-4は、貯蔵弾性率が高い例であり、延性が不十分であった。
 次に、吸音材として使用可能に構成されたHIPEフォームの例(実施例2-1~2-8、比較例2-1~2-5)を説明する。
[実施例2-1]
 まず、トルク変換器付撹拌装置の付いた、内容積が3Lのガラス容器に、ビニル系単量体としてのスチレン:14.5g及びブチルアクリレート:66g、ハード系架橋剤(以下、第1架橋剤という)としての純度57重量%のジビニルベンゼン:7g(ジビニルベンゼンとしては、4.0g)、ソフト系架橋剤(以下、第2架橋剤という)としてのポリエチレングリコールジアクリレート(具体的には、新中村化学工業株式会社製のNKエステルA-400):5g(ポリエチレングリコールジアクリレートとしては、4.8g)、乳化剤としてのポリグリセリン縮合リシノレート(具体的には、阪本薬品工業株式会社製のCRS-75):7.5g、重合開始剤としてジラウロイルパーオキサイド:0.5g及びビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート:0.5gを投入した。これらをガラス容器内で混合することにより、有機相を形成した。
 撹拌動力密度0.03kW/m3で有機相を撹拌しながら、脱イオン水:2090gを約450g/minの速度(有機相100重量%に対して、約450重量%/minの添加速度)で添加し、脱イオン水の添加が終了してからも10分間撹拌を継続し、油中水型(つまりW/O型)の高内相エマルションを調製した。
 次いで、撹拌動力密度を0.03kW/m3に下げ、ガラス容器にアスピレーターを接続して容器内を減圧し、エマルション中に含まれる微小気泡を除去した。減圧開始から10分後、撹拌を停止して容器内を大気圧に戻した。
 ガラス容器の内容物を、縦約250mm、横約180mm、深さ約90mmの容器に充填し、70℃の温水槽にて約10時間かけて重合し、水を含有するHIPEフォームを得た。HIPEフォームを温水槽から取出し、室温まで冷却した。
 冷却後、容器からHIPEフォームを取出し、水で洗浄した後脱水し、85℃のオーブンで恒量になるまで乾燥した。このようにして、ビニル系架橋重合体から構成された、直方体形状のHIPEフォームを得た。HIPEフォームの密度は50kg/m3であった。
 本例の仕込み組成等を表5に示す。なお、架橋重合体における、各種成分(ビニル系単量体及び架橋剤)の含有量は、仕込み時における、各種成分の配合量(架橋剤に関しては、不純物を除く配合量)と、ビニル系単量体成分と架橋剤成分(不純物を除く)との合計配合量とから求めることができる。
 表中においては、化合物名を以下のように省略した。
 St:スチレン
 BA:アクリル酸ブチル
 2-EHA:アクリル酸2-エチルヘキシル
 DVB:ジビニルベンゼン
 PEGDA:ポリエチレングリコールジアクリレート
 PPGDA:ポリプロピレングリコールジアクリレート(新中村化学工業株式会社製「APG-400」)
 EpDA:エポキシジアクリレート(具体的には、両末端アクリル変性エポキシプレポリマー、ダイセル・オルネクス株式会社製「EBECRYL(登録商標)3708」)
 LPO:ジラウロイルパーオキサイド
 LTCP:ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート
[実施例2-2~2-8、比較例2-1~2-5]
 仕込み組成を表5及び表6に示すように変更した点を除き、実施例2-1と同様にしてHIPEフォームからなる吸音材を製造した。
 なお、仕込み組成以外の変更点としては、実施例2-3、2-5および比較例2-2、2-5においては、乳化工程における撹拌動力密度を4.4kW/m3に変更した。実施例2-6、2-7においては、乳化工程における撹拌動力密度を0.2kW/m3に変更した。実施例2-8においては、乳化工程における撹拌動力密度を0.6kW/m3に変更した。比較例2-1、2-3においては、乳化工程における撹拌動力密度を7.8kW/m3に変更した。比較例2-4においては、乳化工程における撹拌動力密度を0.02kW/m3に変更した。
[評価]
 実施例2-1~2-8及び比較例2-1~2-5について、下記の測定、評価を行った。結果を表5及び表6に示す。なお、表5に示した評価項目のうち、ガラス転移温度Tg、架橋点間分子量及び23℃での貯蔵弾性率については、前述した方法と同一の方法により測定、評価を行った。同様に、表6に示した評価項目のうち、ガラス転移温度Tg及び架橋点間分子量については、前述した方法と同一の方法により測定、評価を行った。表6に示した比較例については、23℃での貯蔵弾性率の測定は行わなかった。
(気泡の平均径)
 気泡の平均径の測定方法は以下の通りである。フェザー刃を用いて、直方体形状のHIPEフォームにおける短手方向と厚み方向との中央、及び、短手方向の両端における厚み方向の中央から観察用の試料をそれぞれ切り出した。次いで、試料を、低真空走査電子顕微鏡(株式会社日立ハイテクサイエンス製のMiniscope(登録商標) TM3030Plus)で観察し、断面写真を撮影した。図1に、HIPEフォームの断面写真の一例を示す。なお、詳細な観察条件は以下の通りとした。
・試料の前処理:メタルコーティング装置(株式会社真空デバイスのMSP-1S)を用いて、試料の導電処理を行った。ターゲット電極にはAu-Pdを用いた。
・観察倍率:50倍
・加速電圧:5kV
・観察条件:表面(低倍率)
・観察モード:二次電子(標準)
 次に、撮影した断面写真を画像処理ソフト(ナノシステム(株)のNanoHunter NS2K-Pro)で解析し、各試料の断面写真上に、面積の合計が5mm2以上となるように計測領域を設定した。次いで、計測領域内に存在する気泡の気泡径を算出し、これらの算術平均値を各試料の気泡径とした。得られた3つの試料の気泡径を算術平均することで、HIPEフォームの気泡の平均径を求めた。詳細な解析の手順および条件は以下の通りとした。
(1)モノクロ変換
(2)平滑化フィルタ(3×3、8近傍、処理回数=1)
(3)濃度ムラ補正(背景より明るい、大きさ=5)
(4)NS法2値化(背景より暗い、鮮明度=9、感度=1、ノイズ除去、濃度範囲=0~255)
(5)収縮(8近傍、処理回数=1)
(6)特徴量(面積)による画像の選択(50~∞μm2のみ選択、8近傍)
(7)隣と接続されない膨張(8近傍、処理回数=3)
(8)円相当径計測(面積から計算、8近傍)
(貫通孔の平均径)
 観察倍率を500倍に、観察モードを反射電子法(標準)に変更した以外は、気泡の平均径の算出方法と同様の手順でHIPEフォームの断面写真を撮影した。次に、撮影した断面写真を画像処理ソフト(三谷商事株式会社製のWinROOF2013)で解析し、各試料の断面写真上に、面積の合計が1mm2以上となるように計測領域を設定した。次いで、計測領域内に存在する貫通孔の貫通孔径を算出し、これらの算術平均値を各試料の貫通孔径とした。得られた3つの試料の貫通孔径を算術平均することで、HIPEフォームの貫通孔の平均径を求めた。詳細な解析の手順および条件は以下の通りとした。
(1)モノクロ画像化
(2)平均化フィルタ(フィルタサイズ=3×3、回数=1)
(3)自動二値化(判別分析法、抽出領域=暗い領域、対象濃度範囲=0~255)
(4)モフォロジーの調整(膨張、回数=3)
(5)形状特徴からの計測(測定項目=円相当径、個数)
(tanδのピーク温度、最大値及びtanδピークの半値幅)
 前述した架橋点間分子量Mcの測定と同様にして、-100~120℃の温度範囲におけるT-tanδ曲線を取得した。得られたT-tanδ曲線におけるピークトップのtanδの値を損失正接tanδの最大値とし、tanδが最大値を示す温度をtanδのピーク温度とした。また、T-tanδ曲線に現れたtanδピークにおいて、tanδの値が最大値の1/2となる2つの温度を求め、これらの温度差を半値幅Hとした。
(単位厚さあたりの流れ抵抗)
 HIPEフォームの単位厚さあたりの流れ抵抗を、ISO 9053-1:2018に基づいて測定した。具体的には、HIPEフォームの中心付近から、スキン面が含まれないようにして直径40mm、厚さ20mmの円板形状を有する試験片を切り出した。この試験片を測定装置(日本音響エンジニアリング株式会社製流れ抵抗測定システム「AirReSys」)のサンプルホルダーに取り付け、試験片の一方の端面から他方の端面に向かって流速1~3mm/sの空気を流通させた。この時測定された、各流速と、試験片の一方の端面における圧力と他方の端面における圧力との差(つまり、差圧)との関係から、流速0.5mm/sにおける差圧を求めた。そして、流速0.5mm/sにおける差圧と試験片の形状と基づいて、単位厚さあたりの流れ抵抗(単位:N・s/m4)を算出した。その結果を、表5及び表6に記載した。
(吸音性)
 JIS A 1405-2に基づいて測定された、各周波数における、23℃でのHIPEフォームの垂直入射吸音率に基づいて吸音性の評価を行った。具体的には、HIPEフォームの中心付近から、スキン面が含まれないようにして厚み20mm、直径40mmの円板形状を有する試験片を切り出した。この試験片を測定装置(日本音響エンジニアリング株式会社製垂直入射吸音率測定システム「WinZacMTX」)のサンプルホルダーに配置し、以下の条件で測定を行った。
FFT分析条件
・サンプリング周波数:32,000Hz
・FFT点数:8192点
・出力信号:ランダム信号(本測定およびキャリブレーション時ともに)
・窓関数:Hanning(本測定およびキャリブレーション時ともに)
・オーバーラップ:75%(本測定およびキャリブレーション時ともに)
・本測定時の平均回数:400回
・キャリブレーション時の平均回数:800回
測定条件
・測定種類:吸音率/反射率(反射法)
・マイクロホン形式:2マイクロホン法
・サンプル表面とMicAまでの距離:80mm
・マイクロホン間距離:30mm
・サンプル径:40mm
・サンプル厚:20mm
・背後空気層の長さ:0mm
・温度:23℃
 以上により、周波数125Hz、200Hz、300Hz、400Hz、500Hz、600Hz、700Hz、800Hz、900Hz、1000Hz、1500Hz、2000Hz、2500Hz、3000Hz、3500Hz、4000Hz、4500Hz及び5000HzにおけるHIPEフォームの垂直入射吸音率を測定した。
 以上の方法により測定した各周波数における垂直入射吸音率を合計した値を周波数125~5000Hzにおける垂直入射吸音率の合計として表5及び表6の「全周波数」欄に記載した。また、以上の方法により測定した各周波数における垂直入射吸音率のうち、500~1000Hzにおける垂直入射吸音率を合計した値を周波数500~1000Hzにおける垂直入射吸音率の合計として表5及び表6の「500~1000Hz」欄に記載した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5に示したように、実施例2-1~2-8のHIPEフォームは、アクリル系単量体及び/又はスチレン系単量体の重合体が架橋された架橋重合体を基材樹脂としており、tanδのピーク温度及び単位厚さあたりの流れ抵抗がそれぞれ前記特定の範囲内にある。そのため、これらのHIPEフォームからなる吸音材は、低い周波数領域での吸音性が改善されているとともに、広い周波数領域において優れた吸音性を有している。
 一方、表6に示したように、比較例2-1のHIPEフォームは単位厚さあたりの流れ抵抗が高すぎる。それ故、比較例2-1のHIPEフォームからなる吸音材は、実施例2-1~2-8のHIPEフォームからなる吸音材に比べて全ての周波数領域において吸音性に劣っている。
 比較例2-2のHIPEフォームは、tanδのピーク温度が前記特定の範囲よりも高く、単位厚さあたりの流れ抵抗が低すぎる。そのため、比較例2-2のHIPEフォームからなる吸音材は、実施例2-1~2-8の吸音材に比べて比較的低い周波数領域での吸音性に劣っている。
 比較例2-3のHIPEフォームは、比較例2-1に比べて単位厚さあたりの流れ抵抗が低いものの、前記特定の範囲よりも流れ抵抗が高い。そのため、比較例2-3のHIPEフォームからなる吸音材は、実施例2-1~2-8の吸音材に比べて全ての周波数領域において吸音性に劣っている。
 比較例2-4のHIPEフォームは、単位厚さあたりの流れ抵抗が低すぎる。そのため、比較例2-4のHIPEフォームからなる吸音材は、実施例2-1~2-8の吸音材に比べて比較的低い周波数領域での吸音性に劣っている。
 比較例2-5のHIPEフォームは、tanδのピーク温度が高すぎる。そのため、比較例2-5のHIPEフォームからなる吸音材は、実施例2-1~2-8の吸音材に比べて比較的低い周波数領域での吸音性に劣っている。
 以上、実施例に基づいて本発明に係る多孔体及び吸音材の具体的な態様を説明したが、本発明に係る多孔体の具体的な態様は、実施例に示した態様に限定されるものではなく、本発明の趣旨を損なわない範囲で適宜構成を変更することができる。

Claims (11)

  1.  アクリル系単量体及び/又はスチレン系単量体の重合体が架橋された架橋重合体を基材樹脂とする多孔体であって、
     上記多孔体の23℃における貯蔵弾性率が5kPa以上2000kPa以下であり、
     上記多孔体の見掛け密度が10kg/m3以上250kg/m3以下であり、
     上記架橋重合体の架橋点間分子量が1.0×104以上である、多孔体。
  2.  上記架橋重合体のガラス転移温度が-30℃以上であり、上記架橋重合体の架橋点間分子量が1.0×104以上12×104以下である、請求項1に記載の多孔体。
  3.  上記多孔体に対して、周波数:1Hz、荷重:10mN、変形モード:圧縮という条件の動的粘弾性測定を行うことにより測定される、温度-損失正接tanδ曲線における損失正接tanδの最大値が0.8以上1.6以下である、請求項1または2に記載の多孔体。
  4.  上記多孔体に対して、周波数:1Hz、荷重:10mN、変形モード:圧縮という条件の動的粘弾性測定を行うことにより測定される、温度-損失正接tanδ曲線における損失正接tanδの最大値を示すtanδピークの半値幅が10℃以上25℃以下である、請求項1~3のいずれか1項に記載の多孔体。
  5.  上記架橋重合体は、上記アクリル系単量体と上記スチレン系単量体との共重合体が架橋されてなり、
     上記アクリル系単量体が、(メタ)アクリル酸と炭素数1~20のアルコールとのエステルである、請求項1~4のいずれか一項に記載の多孔体。
  6.  上記架橋重合体は、官能基当量が130g/eq以下である第1架橋剤と、官能基当量が130g/eqを超え、5000g/eq以下である第2架橋剤とにより、上記アクリル系単量体及び/又は上記スチレン系単量体の重合体が架橋されてなり、上記第2架橋剤の官能基当量が上記第1架橋剤の官能基当量よりも100g/eq以上大きい、請求項1~5のいずれか一項に記載の多孔体。
  7.  上記架橋重合体は、官能基当量が500g/eq以上3000g/eq以下である架橋剤により、上記アクリル系単量体及び/又は上記スチレン系単量体の重合体が架橋されてなり、該架橋剤がウレタン(メタ)アクリレート及び/又はエポキシ(メタ)アクリレートである、請求項1~5のいずれか一項に記載の多孔体。
  8.  上記多孔体の、23℃における25%圧縮後の復元率が90%以上である、請求項1~7のいずれか一項に記載の多孔体。
  9.  上記多孔体の、23℃における引張破断伸びが70%以上である、請求項1~8のいずれか一項に記載の多孔体。
  10.  上記多孔体の、単位重量当たりの破断エネルギーが50mJ/g以上である、請求項1~9のいずれか一項に記載の多孔体。
  11.  請求項1~10のいずれか1項に記載の多孔体から構成される吸音材であって、
     周波数:1Hz、荷重:10mN、変形モード:圧縮という条件で上記多孔体に対して動的粘弾性測定を行うことにより測定される温度-損失正接tanδ曲線における損失正接tanδのピーク温度が50℃以下であり、
     ISO 9053-1:2018に基づいて測定される流速:0.5mm/sにおける上記多孔体の単位厚さあたりの流れ抵抗が7×104N・s/m4以上1×106N・s/m4以下である、吸音材。
PCT/JP2022/011521 2021-04-05 2022-03-15 多孔体及び吸音材 WO2022215455A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237037937A KR20230164729A (ko) 2021-04-05 2022-03-15 다공체 및 흡음재
EP22784440.4A EP4321540A1 (en) 2021-04-05 2022-03-15 Porous body and sound-absorbing material
CN202280017528.2A CN116897173A (zh) 2021-04-05 2022-03-15 多孔体以及吸音材料
US18/553,641 US20240199834A1 (en) 2021-04-05 2022-03-15 Porous body and sound-absorbing material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-064030 2021-04-05
JP2021064030A JP2022159685A (ja) 2021-04-05 2021-04-05 多孔体
JP2021-160988 2021-09-30
JP2021160988A JP2023050728A (ja) 2021-09-30 2021-09-30 吸音材

Publications (1)

Publication Number Publication Date
WO2022215455A1 true WO2022215455A1 (ja) 2022-10-13

Family

ID=83546062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011521 WO2022215455A1 (ja) 2021-04-05 2022-03-15 多孔体及び吸音材

Country Status (4)

Country Link
US (1) US20240199834A1 (ja)
EP (1) EP4321540A1 (ja)
KR (1) KR20230164729A (ja)
WO (1) WO2022215455A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503177A (ja) * 1995-01-10 1999-03-23 ザ、プロクター、エンド、ギャンブル、カンパニー 水性流体を獲得および分配するために有用な高内部相エマルジョンから作られた吸収性フォーム
JP2003514052A (ja) 1999-11-02 2003-04-15 ザ、プロクター、エンド、ギャンブル、カンパニー 高内相エマルジョンから得られるフォーム物質
JP2004529212A (ja) * 2000-10-10 2004-09-24 ザ プロクター アンド ギャンブル カンパニー 高内相エマルジョンからの発泡体物質の急速調製
JP2012051984A (ja) * 2010-08-31 2012-03-15 Nitto Denko Corp 発泡体の製造方法
US20120214916A1 (en) * 2011-02-23 2012-08-23 Marc Arnold Dube Latex compositions and uses thereof
JP2013120804A (ja) * 2011-12-06 2013-06-17 Daicel Corp シート状カバリング剤、カバリング方法又は電子デバイスの製造方法
US20150111144A1 (en) * 2013-10-18 2015-04-23 Mridula Nair Polymeric composite materials, manufacture, and uses
US20160243277A1 (en) * 2013-09-23 2016-08-25 The Texas A & M University System Fast curing porous materials and control thereof
WO2021166947A1 (ja) * 2020-02-17 2021-08-26 株式会社ジェイエスピー Hipeフォーム及びその製造方法
JP2021127436A (ja) * 2020-02-17 2021-09-02 株式会社ジェイエスピー 多孔質ビニル系架橋重合体の製造方法
JP2021127437A (ja) * 2020-02-17 2021-09-02 株式会社ジェイエスピー Hipeフォーム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503177A (ja) * 1995-01-10 1999-03-23 ザ、プロクター、エンド、ギャンブル、カンパニー 水性流体を獲得および分配するために有用な高内部相エマルジョンから作られた吸収性フォーム
JP2003514052A (ja) 1999-11-02 2003-04-15 ザ、プロクター、エンド、ギャンブル、カンパニー 高内相エマルジョンから得られるフォーム物質
JP2004529212A (ja) * 2000-10-10 2004-09-24 ザ プロクター アンド ギャンブル カンパニー 高内相エマルジョンからの発泡体物質の急速調製
JP2012051984A (ja) * 2010-08-31 2012-03-15 Nitto Denko Corp 発泡体の製造方法
US20120214916A1 (en) * 2011-02-23 2012-08-23 Marc Arnold Dube Latex compositions and uses thereof
JP2013120804A (ja) * 2011-12-06 2013-06-17 Daicel Corp シート状カバリング剤、カバリング方法又は電子デバイスの製造方法
US20160243277A1 (en) * 2013-09-23 2016-08-25 The Texas A & M University System Fast curing porous materials and control thereof
US20150111144A1 (en) * 2013-10-18 2015-04-23 Mridula Nair Polymeric composite materials, manufacture, and uses
WO2021166947A1 (ja) * 2020-02-17 2021-08-26 株式会社ジェイエスピー Hipeフォーム及びその製造方法
JP2021127436A (ja) * 2020-02-17 2021-09-02 株式会社ジェイエスピー 多孔質ビニル系架橋重合体の製造方法
JP2021127437A (ja) * 2020-02-17 2021-09-02 株式会社ジェイエスピー Hipeフォーム

Also Published As

Publication number Publication date
US20240199834A1 (en) 2024-06-20
EP4321540A1 (en) 2024-02-14
KR20230164729A (ko) 2023-12-04

Similar Documents

Publication Publication Date Title
Gayathri et al. Sound absorption, thermal and mechanical behavior of polyurethane foam modified with nano silica, nano clay and crumb rubber fillers
WO2011021462A1 (ja) 発泡性改質樹脂粒子、改質樹脂発泡粒子、及び改質樹脂発泡粒子成形体
JP6323251B2 (ja) 発泡性複合樹脂粒子
JP7183161B2 (ja) 発泡性ポリスチレン系樹脂粒子、ポリスチレン系予備発泡粒子、発泡成形体、及びそれらの製造方法
JP2007246804A (ja) 樹脂発泡体の製造方法
WO2022215455A1 (ja) 多孔体及び吸音材
JP2010149024A (ja) マイクロカプセルの製造方法、マイクロカプセル、光学シート及び表皮材
WO2021166947A1 (ja) Hipeフォーム及びその製造方法
EP2623521A1 (en) Modified polystyrene resin particles and manufacturing method therefor, expandable particles and manufacturing method therefor, pre-expanded particles, and expanded molded article
JP2018145285A (ja) 発泡性ポリスチレン系樹脂粒子、ポリスチレン系予備発泡粒子及び発泡成形体
JP2023050728A (ja) 吸音材
JP7196078B2 (ja) 発泡性ポリスチレン系樹脂粒子、ポリスチレン系予備発泡粒子及び発泡成形体
JP7381880B2 (ja) Hipeフォーム
JP2022159685A (ja) 多孔体
JP7381879B2 (ja) 多孔質ビニル系架橋重合体の製造方法
EP3387051B1 (en) Process for producing a crushed foam coating
JP2022083297A (ja) 衝撃吸収材
JP7001362B2 (ja) 発泡性ポリスチレン系樹脂粒子、ポリスチレン系予備発泡粒子及び発泡成形体
WO2008038504A1 (fr) Particule de résine expansible, particule expansée, objet mousse et procédé destiné à les produire
JP2018193460A (ja) 発泡性ポリスチレン系樹脂粒子の製造方法、ポリスチレン系予備発泡粒子の製造方法及び発泡成形体の製造方法
JP5358074B2 (ja) マイクロカプセル、塗膜形成用樹脂組成物、塗膜及びマイクロカプセルの製造方法
JP2023163828A (ja) Hipeフォーム及び切削加工材料
KR20000069804A (ko) 규소 또는 게르마늄계 단량체로 제조된 미세다공성 중합성 발포체
JP6389659B2 (ja) 圧縮複合樹脂発泡成形体
JP2005036145A (ja) 発泡剤および樹脂発泡体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017528.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18553641

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237037937

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237037937

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022784440

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784440

Country of ref document: EP

Effective date: 20231106