WO2022215114A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2022215114A1
WO2022215114A1 PCT/JP2021/014488 JP2021014488W WO2022215114A1 WO 2022215114 A1 WO2022215114 A1 WO 2022215114A1 JP 2021014488 W JP2021014488 W JP 2021014488W WO 2022215114 A1 WO2022215114 A1 WO 2022215114A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
installation
cutting
installation surface
main body
Prior art date
Application number
PCT/JP2021/014488
Other languages
English (en)
French (fr)
Inventor
利紀 森重
勝也 中木原
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to EP21935922.1A priority Critical patent/EP4321285A4/en
Priority to PCT/JP2021/014488 priority patent/WO2022215114A1/ja
Priority to CN202180086256.7A priority patent/CN116867593A/zh
Priority to JP2021576996A priority patent/JP7052176B1/ja
Publication of WO2022215114A1 publication Critical patent/WO2022215114A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/109Shank-type cutters, i.e. with an integral shaft with removable cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/006Details of the milling cutter body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/36Other features of the milling insert not covered by B23C2200/04 - B23C2200/32
    • B23C2200/367Mounted tangentially, i.e. where the rake face is not the face with largest area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/16Fixation of inserts or cutting bits in the tool
    • B23C2210/168Seats for cutting inserts, supports for replacable cutting bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/28Arrangement of teeth
    • B23C2210/282Unequal angles between the cutting edges, i.e. cutting edges unequally spaced in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2250/00Compensating adverse effects during milling
    • B23C2250/16Damping vibrations

Definitions

  • the present disclosure relates to cutting tools.
  • a cutting tool comprising a rotatable main body and a plurality of cutting inserts arranged on the wall surface of a chip discharge groove formed on the outer periphery of the main body is known (see, for example, Japanese Unexamined Patent Application Publication No. 2016-190274. ).
  • a cutting tool is a cutting tool rotatable around a rotation axis and includes a main body.
  • the main body has a leading end surface, a trailing end surface, and side surfaces.
  • the side surface is continuous with the tip surface.
  • the rear end surface is continuous with the side surface and is located on the opposite side of the front end surface in the direction along the rotation axis.
  • a first spiral groove and a second spiral groove are formed on the side surface of the main body.
  • the second groove is adjacent to the rear side in the rotation direction of the main body when viewed from the first groove.
  • the first groove has four or more installation surfaces inside.
  • the four or more mounting surfaces are for mounting cutting inserts.
  • the four or more installation surfaces include a first installation surface and a second installation surface that are arranged thirdly from the tip surface side of the main body.
  • the first installation surface is positioned closest to the rear end surface among the four or more installation surfaces.
  • the second installation surface is positioned closer to the tip surface than the first installation surface.
  • the four or more installation surfaces each have fixing holes for fixing the cutting inserts.
  • the center of each fixing hole is the center of each of the four or more installation surfaces.
  • a first cross section passing through the center of the first installation surface and perpendicular to the rotation axis the intersection of the side surface and a half line that passes through the center of the first installation surface and extends outward from the rotation axis as a starting point Let it be the first starting point.
  • the intersection of the side wall of the second groove on the side of the first groove and the side surface is defined as the first end point.
  • a second cross section that passes through the center of the second installation surface and is perpendicular to the rotation axis the intersection of the side surface and a half line that passes through the center of the second installation surface and extends outward from the rotation axis. Let it be the second starting point.
  • the second end point is the intersection of the side wall of the second groove on the side of the first groove and the side surface.
  • FIG. 1 is a schematic perspective view of a cutting tool according to Embodiment 1 of the present disclosure.
  • 2 is a schematic side view of the cutting tool shown in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 4 is a schematic side view of the cutting tool shown in FIG. 1.
  • FIG. 5 is a schematic cross-sectional view taken along the line segment VV in FIG.
  • FIG. 6 is a schematic front view of the cutting tool shown in FIG. 1 as seen from the tip surface side.
  • 7 is a schematic side view for explaining the configuration of the cutting tool shown in FIG. 1.
  • FIG. 8 is a schematic side view for explaining the rake angle in the axial direction of the cutting tool shown in FIG. 1.
  • FIG. 1 is a schematic perspective view of a cutting tool according to Embodiment 1 of the present disclosure.
  • 2 is a schematic side view of the cutting tool shown in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view taken along line III-
  • FIG. 9 is a schematic side view for explaining the rake angle in the axial direction of the cutting tool shown in FIG. 1.
  • FIG. FIG. 10 is a schematic perspective view of a cutting tool according to Embodiment 2 of the present disclosure.
  • 11 is a schematic side view of the cutting tool shown in FIG. 10.
  • FIG. 12 is a schematic cross-sectional view taken along line XII-XII in FIG. 11.
  • FIG. 13 is a schematic side view of the cutting tool shown in FIG. 10.
  • FIG. 14 is a schematic cross-sectional view taken along line XIV-XIV in FIG. 13.
  • FIG. 15 is a schematic front view of the cutting tool shown in FIG. 10 as seen from the tip surface side.
  • FIG. 16 is a schematic diagram for explaining the test method.
  • the present disclosure has been made to solve the above problems. More specifically, the present invention provides a cutting tool capable of suppressing chatter vibration during cutting.
  • a cutting tool is a cutting tool rotatable around a rotation axis and includes a main body.
  • the main body has a leading end surface, a trailing end surface, and side surfaces.
  • the side surface is continuous with the tip surface.
  • the rear end surface is continuous with the side surface and is located on the opposite side of the front end surface in the direction along the rotation axis.
  • a first spiral groove and a second spiral groove are formed on the side surface of the main body.
  • the second groove is adjacent to the rear side in the rotation direction of the main body when viewed from the first groove.
  • the first groove has four or more installation surfaces inside.
  • the four or more mounting surfaces are for mounting cutting inserts.
  • the four or more installation surfaces include a first installation surface and a second installation surface that are arranged thirdly from the tip surface side of the main body.
  • the first installation surface is positioned closest to the rear end surface among the four or more installation surfaces.
  • the second installation surface is positioned closer to the tip surface than the first installation surface.
  • the four or more installation surfaces each have fixing holes for fixing the cutting inserts.
  • the center of each fixing hole is the center of each of the four or more installation surfaces.
  • a first cross section passing through the center of the first installation surface and perpendicular to the rotation axis the intersection of the side surface and a half line that passes through the center of the first installation surface and extends outward from the rotation axis as a starting point Let it be the first starting point.
  • the intersection of the side wall of the second groove on the side of the first groove and the side surface is defined as the first end point.
  • a second cross section that passes through the center of the second installation surface and is perpendicular to the rotation axis the intersection of the side surface and a half line that passes through the center of the second installation surface and extends outward from the rotation axis. Let it be the second starting point.
  • the second end point is the intersection of the side wall of the second groove on the side of the first groove and the side surface.
  • chip clogging is less likely to occur toward the rear end face side of the first groove. That is, since the bottom surface of the work material (workpiece) is on the tip surface side, the space for discharging chips generated from the cutting insert is relatively small.
  • the main body portion has a portion for holding the cutting insert on the front end face side, so the space for discharging chips is relatively small. For this reason, chips tend to clog the first and second cutting inserts from the tip surface side.
  • the capacity of the space from which chips are discharged is about the same as the capacity of the space for the above-described cutting insert on the tip surface side. Even if there is, chips may accumulate downward (on the tip surface side) due to gravity. For this reason, chips tend to clog closer to the tip surface side of the main body.
  • the surface (upper surface) of the work material is located on the rear end surface side of the first groove, and a sufficient space can be secured behind the surface. For this reason, the rear end surface side of the first groove is relatively less likely to be clogged with chips compared to the front end surface side.
  • the width of the groove can be reduced toward the rear end face side.
  • the first length of the first cutting insert located on the rear end face side of the first groove can be longer than the second length of the second cutting insert. That is, the volume of the portion of the body supporting the first cutting insert can be made larger than the volume of the portion of the body supporting the second cutting insert.
  • the rigidity of the main body can be increased by increasing the volume of the main body. Therefore, chatter vibration during cutting can be suppressed.
  • the first installation surface A line segment that connects a first point that is the same in the direction along the center and the rotation axis and a second point that is the same in the direction along the rotation axis as the center of the second installation surface, and the rotation axis.
  • the angle may be the groove angle. In this case, the groove angle may be greater than the insert placement angle.
  • the upper end of the side wall of the first groove approaches the first cutting insert and the second cutting insert toward the rear end surface of the main body.
  • the width of the first groove becomes narrower toward the rear end face side. Therefore, the volume of the portion of the main body that supports the first cutting insert can be easily made larger than the volume of the portion of the main body that supports the second cutting insert.
  • the first width may be the shortest distance from the first installation surface to the upper end of the side wall of the first groove located on the front side in the rotation direction of the main body.
  • the second width may be the shortest distance from the center of the second installation surface to the upper end of the side wall of the first groove when the main body is viewed from a direction perpendicular to the rotation axis and parallel to the second installation surface.
  • the first width may be less than the second width.
  • the width of the first groove (first width) at the portion where the first cutting insert is arranged is smaller than the width (second width) of the first groove at the portion where the second cutting insert is arranged. . Therefore, the volume of the portion of the main body that supports the first cutting insert can be easily made larger than the volume of the portion of the main body that supports the second cutting insert.
  • the cutting tools of (1) to (3) above further comprise four or more cutting inserts placed inside the first groove and placed on the four or more installation surfaces respectively.
  • the four or more cutting inserts may include a first cutting insert and a second cutting insert.
  • the first cutting insert may be installed on the first installation surface.
  • a second cutting insert may be installed on the second installation surface.
  • Each of the four or more cutting inserts may have a rake face facing forward in the rotational direction of the main body and a flank continuous with the rake face on the side surface of the main body.
  • Each ridgeline of the rake face and the flank face may be a cutting edge.
  • the angle formed by the tangent line on the tip surface side of the cutting edge of the first cutting insert and the rotation axis is defined as the first axial direction. It may be a rake angle.
  • the angle formed by the tangential line on the tip surface side of the cutting edge of the second cutting insert and the rotation axis when viewed from the direction perpendicular to the rotation axis and parallel to the second installation surface is defined as the second axis direction. It may be a rake angle. In this case, the first axial rake angle may be smaller than the second axial rake angle.
  • the first groove may intersect the tip surface.
  • the edge of the first groove on the tip surface may be curved and convex toward the rotating shaft.
  • the edge may include a first region positioned closer to the four or more installation surfaces and a second region positioned farther from the four or more installation surfaces than the first region.
  • the curvature of the first region may be greater than the curvature of the second region.
  • chips generated by cutting with the cutting insert can be quickly flowed along the inner surface of the first groove on the tip surface side of the main body. Therefore, it is possible to suppress the occurrence of chip clogging on the tip surface side of the main body.
  • FIG. 1 is a schematic perspective view of a cutting tool according to Embodiment 1 of the present disclosure.
  • 2 and 4 are schematic side views of the cutting tool shown in FIG.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG.
  • FIG. 5 is a schematic cross-sectional view taken along the line segment VV in FIG.
  • FIG. 6 is a schematic front view of the cutting tool shown in FIG. 1 as seen from the tip surface side.
  • 7 is a schematic side view for explaining the configuration of the cutting tool shown in FIG. 1.
  • FIG. 8 is a schematic side view for explaining the rake angle in the axial direction of the cutting tool shown in FIG. 1.
  • FIG. 9 is a schematic side view for explaining the rake angle in the axial direction of the cutting tool shown in FIG. 1.
  • FIG. 1 is a schematic perspective view of a cutting tool according to Embodiment 1 of the present disclosure.
  • 2 and 4 are schematic side views of the cutting tool shown in FIG.
  • FIG. 3
  • a cutting tool 1 includes a body portion 10 and four or more cutting inserts 50.
  • the body portion 10 has a substantially cylindrical shape.
  • the body portion 10 is rotatable around a rotation shaft 10a.
  • the body portion 10 has a front end surface 10b, a rear end surface 10c, and a side surface 10e.
  • the rear end face 10c is located on the side opposite to the front end face 10b.
  • the side surface 10e is an outer peripheral surface that connects the front end surface 10b and the rear end surface 10c.
  • a plurality of spiral grooves 20 are formed in the side surface 10e of the main body 10. Specifically, a first groove 20a, a second groove 20b and a third groove 20c are formed in the side surface 10e.
  • the second groove 20b is adjacent to and spaced from the rear side of the main body 10 in the rotation direction RD when viewed from the first groove 20a.
  • the third groove 20c is adjacent to and spaced from the front side in the rotation direction RD of the main body 10 when viewed from the first groove 20a.
  • three grooves 20 are formed in the main body 10, but the number of grooves 20 may be four or more, or two.
  • the four or more cutting inserts 50 are arranged in each of the first groove 20a, the second groove 20b, and the third groove 20c. Inside the first groove 20 a , the four or more cutting inserts 50 include a first cutting insert 51 and a second cutting insert 52 that are placed thirdly from the front end face 10 b side of the main body 10 .
  • the first cutting insert 51 is positioned closest to the rear end face 10c among the four or more cutting inserts 50.
  • the second cutting insert 52 is located closer to the tip surface 10b than the first cutting insert 51 is.
  • the second cutting insert 52 is the second cutting insert from the rear end face 10c side.
  • a plurality of installation surfaces for installing the cutting insert 50 are formed on the inner surface of the first groove 20a.
  • the plurality of installation surfaces may be planar.
  • the plurality of installation surfaces are formed so as to face the front side in the rotation direction RD of the body portion 10 in the first groove 20a.
  • a first installation surface 10da is formed in a region on the rear end surface 10c side of the first groove 20a.
  • a first cutting insert 51 is installed on the first installation surface 10da of the body portion 10 .
  • a fixing hole 2 which is a screw hole, is formed in the first installation surface 10da.
  • the fixing hole 2 is formed so as to extend in a direction (circumferential direction) along the rotation direction RD of the body portion 10 .
  • a through hole into which the fixing screw 30 is inserted is formed in the first cutting insert 51 .
  • the first cutting insert 51 is arranged on the first installation surface 10da so that the through hole and the fixing hole 2 overlap.
  • the fixing screw 30 is inserted and fixed in the fixing hole 2 via the through hole of the first cutting insert 51 .
  • the fixing screw 30 fixes the first cutting insert 51 to the first installation surface 10da.
  • a second installation surface 10db is formed closer to the tip surface 10b than the first installation surface 10da.
  • a second cutting insert 52 is installed on the second installation surface 10db of the body portion 10 .
  • FIG. 3 is a schematic cross-sectional view of the cutting tool 1 in a first cross section passing through the center 2a of the first installation surface 10da and perpendicular to the rotating shaft 10a.
  • the length from the first installation surface 10da to the second groove 20b in the circumferential direction along the rotation direction RD of the main body 10 is defined as a first length L1.
  • the point of intersection with the outermost circumference of the trajectory is set as the starting point 10ea.
  • the center 2a is the center point of the fixing hole 2 on the first installation surface 10da.
  • a line segment connecting a line of intersection (intersection point 20ba) between the side wall of the second groove 20b (the side wall on the side of the first groove 20a) and the side surface 10e of the main body 10 and the rotation shaft 10a, and the side surface 10e and the outermost circumference of the trajectory is defined as the end point 10eb.
  • the length along the side surface 10e from the start point 10ea to the end point 10eb is defined as the first length L1.
  • indices indicating the length from the start point 10ea to the end point 10eb a line segment connecting the rotation shaft 10a and the center 2a and a line segment connecting the rotation shaft 10a and the intersection 20ba in the cross section are used. You may use the angle (center angle (theta) 1) to make.
  • FIG. 5 is a schematic cross-sectional view of the cutting tool 1 in a second cross section passing through the center 2a of the second installation surface 10db and perpendicular to the rotating shaft 10a.
  • the length from the second installation surface 10db to the second groove 20b in the circumferential direction along the rotation direction RD of the main body 10 is defined as a second length L2.
  • a line segment connecting a line of intersection (intersection point 20ba) between the side wall of the second groove 20b (the side wall on the side of the first groove 20a) and the side surface 10e of the main body 10 and the rotation shaft 10a, and the side surface 10e and the outermost circumference of the trajectory is defined as the end point 10eb.
  • the length along the side surface 10e from the start point 10ea to the end point 10eb is defined as the second length L2.
  • a line segment connecting the rotation shaft 10a and the center 2a and a line segment connecting the rotation shaft 10a and the intersection 20ba in the cross section are used as an index indicating the length from the start point 10ea to the end point 10eb. You may use the angle (center angle (theta) 2) to make.
  • the first length L1 is longer than the second length L2.
  • the central angle ⁇ 1 is larger than the central angle ⁇ 2.
  • the relationship between the lengths of the portions of the body portion 10 adjacent to the first cutting insert 51 and the second cutting insert 52 installed in the first groove 20a also holds for the cutting inserts 50 placed in each of the other grooves 20 .
  • the first groove 20a intersects the tip surface 10b.
  • the edge 21 of the first groove 20a on the tip surface 10b has a curved shape convex toward the rotation shaft 10a.
  • the edge portion 21 includes a first region 21a and a second region 21b.
  • the first region 21a is located on the side closer to the plurality of installation surfaces 10d inside the first groove 20a.
  • the second region 21b is located farther from the installation surfaces 10d inside the first groove 20a than the first region 21a. From another point of view, the first region 21a is located on the side closer to the plurality of cutting inserts 50 arranged in the first groove 20a.
  • the second region 21b is located on the side opposite to the plurality of cutting inserts 50 when viewed from the first region 21a.
  • the curvature of the first region 21a is greater than the curvature of the second region 21b.
  • the first region 21a is arranged in a region closer to the rotating shaft 10a than the second region 21b.
  • the shape of the edge 21 has a corresponding curvature when a certain point of the edge 21 is determined.
  • the shape of the first region 21a may have substantially the same curvature for all points of the first region 21a.
  • the shape of the first region 21a may have different curvatures corresponding to points on the first region 21a.
  • the shape of the second region 21b may have substantially the same curvature for all points of the second region 21b.
  • the shape of the second region 21b may have different curvatures corresponding to points on the second region 21b.
  • the “curvature” of the first region 21a means a range of curvature values corresponding to all points on the first region 21a.
  • the “curvature” of the second region 21b means the range of curvature values corresponding to all points on the second region 21b.
  • FIG. 7 is a schematic side view of the cutting tool 1 viewed from a direction perpendicular to the rotating shaft 10a and parallel to the second installation surface 10db. As shown in FIG. 7, the direction in which the plurality of cutting inserts 50 are arranged in one groove 20 in the cutting tool 1 and the extension of the side wall upper end 24 on the front side in the rotation direction RD from the cutting insert 50 in the groove 20 direction is different. From a different point of view, the cutting tool 1 described above has the following features.
  • a center 10daa of the first installation surface 10da on which the first cutting insert 51 is arranged is specified.
  • the center 10daa may be the center 2a of the fixing hole 2 of the first installation surface 10da shown in FIG.
  • the center 10dba of the second installation surface 10db on which the second cutting insert 52 is arranged is specified.
  • the center 10dba may be the center 2a of the fixing hole 2 of the second installation surface 10db shown in FIG.
  • the angle between the rotation axis 10a and the line segment 55 connecting the center 10daa of the first installation surface 10da and the center 10dba of the second installation surface 10db is defined as an insert arrangement angle ⁇ 4.
  • a first point 24a having the same position in the direction along the rotation axis 10a as the center 10daa of the first installation surface 10da is specified.
  • a second point 24b having the same position in the direction along the rotation axis 10a as the center 10dba of the second installation surface 10db is specified.
  • the angle formed by the line segment 25 connecting the first point 24a and the second point 24b and the rotating shaft 10a is defined as a groove angle ⁇ 3.
  • the groove angle ⁇ 3 is greater than the insert placement angle ⁇ 4.
  • FIG. 8 is a schematic side view of the cutting tool 1 viewed from a direction perpendicular to the rotating shaft 10a and parallel to the first installation surface 10da.
  • FIG. 9 is a schematic side view of the cutting tool 1 seen from a direction perpendicular to the rotating shaft 10a and parallel to the second installation surface 10db.
  • the distance between the plurality of cutting inserts 50 and the side wall upper end 24 of the groove 20 decreases toward the rear end face 10c side of the body portion 10 .
  • the distance from the first installation surface 10da to the side wall upper end 24 is different from the distance from the second installation surface 10db to the side wall upper end 24. That is, as shown in FIG.
  • the shortest distance from the center 10daa of the first installation surface 10da to the upper end 24 of the side wall of the first groove 20a located forward of the first installation surface 10da in the rotation direction RD of the main body 10. is the first width W1.
  • the shortest distance from the center 10dba of the second installation surface 10db to the side wall upper end 24 of the first groove 20a is defined as a second width W2.
  • the first width W1 is smaller than the second width W2.
  • the cutting tool 1 is arranged inside the third groove 20c, and is arranged to overlap the first cutting insert 51 in the direction along the rotating shaft 10a.
  • An insert 53 is provided.
  • the cutting tool 1 is arranged inside the third groove 20c, and is arranged so as to overlap the position of the second cutting insert 52 in the direction along the rotating shaft 10a.
  • a cutting insert 54 is provided.
  • the cutting tool 1 is arranged inside the second groove 20b, and the fifth cutting insert 51 is arranged so as to overlap the first cutting insert 51 in the direction along the rotating shaft 10a.
  • An insert 56 is provided.
  • the cutting tool 1 is arranged inside the second groove 20b, and is arranged so as to overlap the second cutting insert 52 in the direction along the rotating shaft 10a.
  • a cutting insert 57 is provided.
  • the relationship between the lengths of the portions of the main body 10 adjacent to the third cutting insert 53 and the fourth cutting insert 54 arranged in the third groove 20c is , the length relationship of the portion of the main body 10 adjacent to the first cutting insert 51 and the second cutting insert 52 arranged in the first groove 20a.
  • the relationship between the lengths of the portion of the body portion 10 adjacent to the fifth cutting insert 56 and the sixth cutting insert 57 arranged in the second groove 20b is the same as the relationship between the lengths of the portion of the body portion 10 adjacent to the first cutting insert 51 and the second cutting insert 52 arranged in the first groove 20a.
  • each of the plurality of cutting inserts 50 has a rake face 50b facing forward in the rotational direction RD in the main body 10 and a rake face 50b on the side 10e of the main body 10. It has a flank 50c that continues to the surface 50b. Each ridgeline of the rake face 50b and the flank face 50c forms a cutting edge 50a.
  • the formed angle may be the first rake angle ⁇ 5.
  • the formed angle may be the rake angle ⁇ 6 in the second axial direction.
  • the first axial rake angle ⁇ 5 is smaller than the second axial rake angle ⁇ 6.
  • the length from the first installation surface 10da on which the first cutting insert 51 is arranged to the second groove 20b in the circumferential direction along the rotation direction RD of the body portion 10 is defined as the first length L1. do.
  • the length from the second installation surface 10db on which the second cutting insert 52 is arranged to the second groove 20b in the circumferential direction is defined as a second length L2.
  • the cutting tool 1 is configured such that the first length L1 is longer than the second length L2.
  • the volume of the portion of the body portion 10 that supports the first cutting insert 51 (the portion of the body portion 10 that supports the first cutting insert 51 from the rear side in the rotation direction RD of the body portion 10) can be reduced to 2 larger than the volume of the portion of the body 10 that supports the cutting insert 52;
  • the first groove 20a and the second groove 20b have substantially the same width throughout the extending direction, it is possible to increase the rigidity of the main body 10 by increasing the volume of the main body 10. . Therefore, chatter vibration during cutting can be suppressed.
  • the groove angle ⁇ 3 is larger than the insert arrangement angle ⁇ 4 as shown in FIG.
  • the side wall upper end 24 of the first groove 20a approaches the first cutting insert 51 and the second cutting insert 52 side toward the rear end surface 10c side of the body portion 10 .
  • the width of the first groove 20a becomes narrower toward the rear end surface 10c. Therefore, the volume of the portion of the body portion 10 that supports the first cutting insert 51 can be easily made larger than the volume of the portion of the body portion 10 that supports the second cutting insert 52 .
  • the rigidity of the body portion 10 can be increased.
  • the upper end 24 of the side wall of the first groove 20a is located on the front side of the first installation surface 10da in the rotation direction RD of the main body 10 from the center 10daa of the first installation surface 10da.
  • the shortest distance from the center 10dba of the second installation surface 10db to the side wall upper end 24 of the first groove 20a is defined as a second width W2.
  • the first width W1 is smaller than the second width W2.
  • first width W1 is the width of the first groove 20a at the portion where the second cutting insert 52 is arranged (second width W1). width W2). Therefore, the volume of the portion of the body portion 10 that supports the first cutting insert 51 can be easily made larger than the volume of the portion of the body portion 10 that supports the second cutting insert 52 . As a result, the rigidity of the body portion 10 can be increased.
  • a third groove 20c is formed in the side surface 10e of the body portion 10.
  • the third groove 20c is adjacent to the front side of the body portion 10 in the rotation direction RD when viewed from the first groove 20a.
  • the cutting tool 1 is arranged inside the third groove 20c and has a third cutting insert 53 arranged so as to overlap the position of the first cutting insert 51 in the direction along the rotating shaft 10a.
  • the cutting tool 1 is provided with a fourth cutting insert 54 arranged inside the third groove 20c so as to overlap the second cutting insert 52 in the direction along the rotating shaft 10a.
  • the volume of the portion of the body portion 10 that supports the third cutting insert 53 can be made larger than the volume of the portion of the body portion 10 that supports the fourth cutting insert 54 . Therefore, the rigidity of the body portion 10 can be increased.
  • the first axial rake angle ⁇ 5 with respect to the rake face 50b of the first cutting insert 51 is smaller than the second axial rake angle ⁇ 6 with respect to the rake face 50b of the second cutting insert 52.
  • chips can easily flow toward the front end face 10b side of the body portion 10.
  • the occurrence of burrs can be suppressed.
  • the area of the first groove 20a on the rear end face 10c side is less likely to be clogged with chips, it is possible to suppress the occurrence of burrs while suppressing the occurrence of chip clogging.
  • the edge 21 of the first groove 20a on the tip surface 10b has a curved shape that is convex toward the rotating shaft 10a.
  • the curvature of the first region 21a at the edge 21 is greater than the curvature of the second region 21b.
  • chips generated by cutting with the cutting insert 50 can quickly flow along the inner surface of the first groove 20a. Therefore, it is possible to suppress the occurrence of clogging of chips on the tip surface side of the body portion 10 .
  • FIG. 10 is a schematic perspective view of a cutting tool according to Embodiment 2 of the present disclosure.
  • 11 and 13 are schematic side views of the cutting tool shown in FIG. 12 is a schematic cross-sectional view taken along line XII-XII in FIG. 11.
  • FIG. 14 is a schematic cross-sectional view taken along line XIV-XIV in FIG. 13.
  • FIG. 15 is a schematic front view of the cutting tool shown in FIG. 10 as seen from the tip surface side.
  • the cutting tool 1 shown in FIGS. 10 to 15 basically has the same configuration as the cutting tool 1 shown in FIGS.
  • the structure of the cutting insert 50 and the method of fixing the cutting insert 50 to the main body 10 are different from the cutting tool 1 shown in FIGS. A specific description will be given below.
  • a plurality of spiral grooves 20 are formed on the side surface 10e of the main body 10. As shown in FIG. Each of the plurality of grooves 20 is separated into a portion (front end side groove 201) on the front end surface 10b side of the main body 10 and a rear end side groove 202 spaced apart from the front end side groove. Specifically, a first groove 20a, a second groove 20b and a third groove 20c are formed in the side surface 10e.
  • the first groove 20a includes a front end side groove 201a and a rear end side groove 202a. 10 to 15, three grooves 20 are formed in the main body 10, but the number of grooves 20 may be four or more, or two.
  • the four or more cutting inserts 50 are arranged in each of the first groove 20a, the second groove 20b, and the third groove 20c. Specifically, for example, one cutting insert 50 is arranged in the tip side groove 201a of the first groove 20a. Four cutting inserts 50 are arranged in the rear end groove 202a of the first groove 20a. In addition, the number of cutting inserts 50 arranged in the rear end side groove 202a may be 5 or more or 3 or less. The number of cutting inserts 50 arranged in the tip side groove 201a may be two or more. Inside the first groove 20 a , the four or more cutting inserts 50 include a first cutting insert 51 and a second cutting insert 52 that are placed thirdly from the front end face 10 b side of the main body 10 .
  • the first cutting insert 51 among the four or more cutting inserts 50 is located closest to the rear end face 10c in the rear end groove 202a.
  • the second cutting insert 52 is located closer to the tip surface 10b than the first cutting insert 51 is.
  • the second cutting insert 52 is the second cutting insert from the rear end surface 10c side and the fourth cutting insert from the front end surface 10b side.
  • a plurality of installation surfaces for installing the cutting insert 50 are formed on the inner surface of the first groove 20a.
  • the plurality of installation surfaces 10d are formed so as to face the radially outer side of the body portion 10 in the first grooves 20a.
  • a first installation surface 10da is formed in a region of the first groove 20a on the rear end surface 10c side.
  • the first installation surface 10da is arranged to face the radially outer side of the body portion 10 .
  • a first cutting insert 51 is installed on the first installation surface 10da of the body portion 10 .
  • a fixing hole 2 which is a screw hole, is formed in the first installation surface 10da.
  • the fixing hole 2 is formed so as to extend in a direction (radial direction) toward the rotating shaft 10a of the body portion 10.
  • a through hole into which the fixing screw 30 is inserted is formed in the first cutting insert 51 .
  • the first cutting insert 51 is arranged on the first installation surface 10da so that the through hole and the fixing hole 2 overlap.
  • the fixing screw 30 is inserted and fixed in the fixing hole 2 via the through hole of the first cutting insert 51 .
  • the first cutting insert 51 is fixed to the first installation surface 10da by the fixing screw 30 arranged so as to extend in the radial direction.
  • a second installation surface 10db is formed closer to the tip surface 10b than the first installation surface 10da.
  • the second installation surface 10db is also arranged so as to face the radially outer side of the body portion 10 .
  • a second cutting insert 52 is installed on the second installation surface 10db of the body portion 10 . The method of fixing the second cutting insert 52 to the second installation surface 10db is the same as the method of fixing the first cutting insert 51 to the first installation surface 10da.
  • FIG. 12 is a schematic cross-sectional view of the cutting tool 1 in a first cross section passing through the center 2a of the first installation surface 10da and perpendicular to the rotating shaft 10a.
  • the length from the first installation surface 10da to the second groove 20b in the circumferential direction along the rotation direction RD of the main body 10 is defined as a first length L1.
  • the point of intersection with the outermost circumference of the trajectory is set as the starting point 10ea.
  • the center 2a is the center point of the fixing hole 2 on the first installation surface 10da.
  • a line segment connecting a line of intersection (intersection point 20ba) between the side wall of the second groove 20b (the side wall on the side of the first groove 20a) and the side surface 10e of the main body 10 and the rotation shaft 10a, and the side surface 10e and the outermost circumference of the trajectory is defined as the end point 10eb.
  • the length along the side surface 10e from the start point 10ea to the end point 10eb is defined as the first length L1.
  • indices indicating the length from the start point 10ea to the end point 10eb a line segment connecting the rotation shaft 10a and the center 2a and a line segment connecting the rotation shaft 10a and the intersection 20ba in the cross section are used. You may use the angle (center angle (theta) 1) to make.
  • FIG. 14 is a schematic cross-sectional view of the cutting tool 1 in a second cross section passing through the center 2a of the second installation surface 10db and perpendicular to the rotating shaft 10a.
  • the length from the second installation surface 10db to the second groove 20b in the circumferential direction along the rotation direction RD of the main body 10 is defined as a second length L2.
  • a line segment connecting a line of intersection (intersection point 20ba) between the side wall of the second groove 20b (the side wall on the side of the first groove 20a) and the side surface 10e of the main body 10 and the rotation shaft 10a, and the side surface 10e and the outermost circumference of the trajectory is defined as the end point 10eb.
  • the length along the side surface 10e from the start point 10ea to the end point 10eb is defined as the second length L2.
  • indices indicating the length from the start point 10ea to the end point 10eb a line segment connecting the rotation shaft 10a and the center 2a and a line segment connecting the rotation shaft 10a and the intersection 20ba in the cross section are used. You may use the angle (center angle (theta) 2) to make.
  • the first length L1 is longer than the second length L2. Also, the central angle ⁇ 1 is larger than the central angle ⁇ 2.
  • the relationship between the lengths of the portions of the main body 10 adjacent to the first cutting insert 51 and the second cutting insert 52 installed in the first groove 20a also holds for the cutting inserts 50 placed in each of the other grooves 20 .
  • the tip side groove 201a of the first groove 20a intersects the tip surface 10b.
  • the edge 21 of the first groove 20a (tip-side groove 201a) on the tip surface 10b includes a curved portion convex toward the rotation shaft 10a.
  • the edge portion 21 includes a first region 21a and a second region 21b.
  • the first region 21a is located on the side closer to the plurality of installation surfaces 10d inside the first groove 20a.
  • the second region 21b is located farther from the installation surfaces 10d inside the first groove 20a than the first region 21a.
  • the first region 21a is located on the side closer to the plurality of cutting inserts 50 arranged in the first groove 20a.
  • the first region 21a has a curved shape that is convex toward the rotating shaft 10a.
  • the second region 21b is located on the side opposite to the plurality of cutting inserts 50 installed in the first grooves 20a when viewed from the first region 21a.
  • the second region 21b has a substantially linear shape.
  • the curvature of the first region 21a is greater than the curvature of the second region 21b.
  • the first region 21a includes a portion closer to the rotating shaft 10a than the second region 21b.
  • the cutting tool 1 is arranged inside the third groove 20c, and is arranged so as to overlap the first cutting insert 51 in the direction along the rotating shaft 10a.
  • An insert 53 is provided.
  • the cutting tool 1 is arranged inside the third groove 20c, and is arranged so as to overlap the position of the second cutting insert 52 in the direction along the rotating shaft 10a.
  • a cutting insert 54 is provided.
  • the cutting tool 1 is arranged inside the second groove 20b, and the fifth cutting insert 51 is arranged so as to overlap the first cutting insert 51 in the direction along the rotating shaft 10a.
  • An insert 56 is provided.
  • the cutting tool 1 is arranged inside the second groove 20b, and is arranged so as to overlap the second cutting insert 52 in the direction along the rotating shaft 10a.
  • a cutting insert 57 is provided.
  • the relationship between the lengths of the portions of the main body 10 adjacent to the third cutting insert 53 and the fourth cutting insert 54 arranged in the third groove 20c is , the length relationship of the portion of the main body 10 adjacent to the first cutting insert 51 and the second cutting insert 52 arranged in the first groove 20a.
  • the relationship between the lengths of the portion of the body portion 10 adjacent to the fifth cutting insert 56 and the sixth cutting insert 57 arranged in the second groove 20b is the same as the relationship between the lengths of the portion of the body portion 10 adjacent to the first cutting insert 51 and the second cutting insert 52 arranged in the first groove 20a.
  • Example 1 A test was conducted on the effect of suppressing chatter vibration.
  • NVX5080 manufactured by DMG Mori Seiki Co., Ltd., spindle size BBT No. 50
  • S50C which is classified as a carbon steel material SC material according to the Japanese Industrial Standards (JIS) G4051:2016, was used.
  • a square bar was used as the work material so that sufficient rigidity could be secured during cutting.
  • the size of the work material was 85 mm ⁇ 100 mm ⁇ 300 mm. The work material was fixed by gripping the side surface with a vise.
  • the tool used was a shank type with a tool diameter of ⁇ 32 mm, an effective blade length of 35 mm, an effective blade count of 3, a total blade count of 12, and a shank diameter of ⁇ 32 mm.
  • a general-purpose cutting insert with model number AOMT11T308PEER-G manufactured by Sumitomo Electric Hardmetal Co., Ltd. was used as the cutting insert.
  • An example tool has the configuration shown in FIGS.
  • a tool of the comparative example a tool having the same configuration as the tool of the above example was used except that the central angle ⁇ 1 shown in FIG. 3 and the central angle ⁇ 2 shown in FIG. 5 were the same. .
  • FIG. 16 is a schematic diagram for explaining the test method.
  • a test was conducted in which a work material 100 was cut by the tools of the example and the comparative example.
  • the cutting conditions were a rotation speed of 150 m/min, a feed amount of 0.1 mm/tooth, and an axial depth of cut 101 of 30 mm.
  • the initial value of the depth of cut 102 in the radial direction was 5 mm, and was increased by 5 mm until chatter vibration occurred.
  • the tool protrusion length was 60 mm from the holder.
  • a down-cut method was used as shown in FIG.
  • the oil supply method (coolant supply method) during cutting was set to dry.
  • chatter vibration occurred when a high-pitched sound was generated.
  • the tool of the example and the tool of the comparative example were used to compare the depth of cut in the radial direction at which chatter vibration occurred.
  • chatter vibration did not occur when the depth of cut in the radial direction was 5 mm, 10 mm, and 15 mm. However, when the radial depth of cut was 20 mm, chatter vibration occurred. Also, when the radial depth of cut was 25 mm, chatter vibration was significantly generated.
  • chatter vibration did not occur when the radial depth of cut was 5 mm, 10 mm, 15 mm, and 20 mm. Chatter vibration occurred when the radial depth of cut was 25 mm. Also, when the radial depth of cut was 30 mm, chatter vibration was significantly generated.
  • the tool of the example has a larger radial depth of cut that can be applied without generating chatter vibration than the tool of the comparative example, indicating that the chatter resistance is high.
  • Example 2 A test was conducted on the relationship between the occurrence of burrs and the rake angle in the axial direction.
  • Example 1 For the test, the same vertical machining center as in Example 1 was used. In addition, a work material having the same material and shape as the work material used in Example 1 was used as the work material.
  • the tool used was a shank type with a tool diameter of ⁇ 25 mm and a shank diameter of ⁇ 25 mm.
  • a tool 1 having an axial rake angle (axial rake) of 16° and a tool 2 having an axial rake angle of -1° were prepared.
  • a general-purpose cutting insert with model number AOMT11T308PEER-G manufactured by Sumitomo Electric Hardmetal Co., Ltd. was used as the cutting insert.
  • the cutting conditions were a rotation speed of 200 m/min, a feed amount of 0.1 mm/tooth, an axial depth of cut of 15 mm, and a radial depth of cut of 2 mm.
  • the tool protrusion length was 63 mm from the holder.
  • Example 1 As for the cutting method, a down-cut method was used as in Example 1. The lubrication method during cutting was dry.
  • the work material was cut using tools 1 and 2 under the above cutting conditions. After that, the sizes of the burrs on the upper surfaces of the workpieces were compared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

本開示の一態様に係る切削工具は、回転軸周りに回転可能な切削工具であって、本体部を備える。本体部は、先端面と、後端面と、側面とを有する。本体部の側面には、らせん状の第1溝および第2溝が形成される。第2溝は、第1溝から見て本体部における回転方向の後側に隣接する。第1溝は、切削インサートを設置するため、内部に4つ以上の設置面を有する。第1設置面は、4つ以上の設置面のうち最も後端面側に位置する。第2設置面は、第1設置面より先端面側に位置する。第1設置面から、本体部の回転方向に沿った周方向における第2溝までの長さを第1長さとする。第2設置面から、周方向における第2溝までの長さを第2長さとする。第1長さは第2長さより長い。

Description

切削工具
 本開示は、切削工具に関する。
 従来、回転可能な本体と、当該本体の外周に形成された切屑排出溝の壁面に配置された複数の切削インサートとを備える切削工具が知られている(たとえば、特開2016-190274号公報参照)。
特開2016-190274号公報
 本開示の一態様に係る切削工具は、回転軸周りに回転可能な切削工具であって、本体部を備える。本体部は、先端面と、後端面と、側面とを有する。側面は、先端面に連なる。後端面は、側面に連なり、かつ、回転軸に沿った方向において先端面と反対側に位置する。本体部の側面には、らせん状の第1溝および第2溝が形成される。第2溝は、第1溝から見て本体部における回転方向の後側に隣接する。第1溝は、内部に4つ以上の設置面を有する。4つ以上の設置面は、切削インサートを設置するためのものである。4つ以上の設置面は、本体部の先端面側から3番目以降に配置された第1設置面および第2設置面を含む。第1設置面は、4つ以上の設置面のうち最も後端面側に位置する。第2設置面は、第1設置面より先端面側に位置する。4つ以上の設置面は、切削インサートを固定するための固定穴をそれぞれ有する。4つ以上の設置面において、それぞれの固定穴の中心を、4つ以上の設置面のそれぞれの中心とする。第1設置面の中心を通り、かつ、回転軸に垂直な第1断面において、第1設置面の中心を通り、回転軸を起点として側面の外側に向かって伸びる半直線と側面との交点を第1始点とする。第1断面において、第2溝の第1溝側の側壁と側面との交点を第1終点とする。第1断面における、第1始点から第1終点までの本体部の側面の長さを第1長さとする。第2設置面の中心を通り、かつ、回転軸に垂直な第2断面において、第2設置面の中心を通り、回転軸を起点として側面の外側に向かって伸びる半直線と側面との交点を第2始点とする。第2断面において、第2溝の第1溝側の側壁と側面との交点を第2終点とする。第2断面における、第2始点から第2終点までの本体部の側面の長さを第2長さとする。この場合、第1長さは第2長さより長い。
図1は、本開示の実施形態1に係る切削工具の斜視模式図である。 図2は、図1に示した切削工具の側面模式図である。 図3は、図2の線分III-IIIにおける断面模式図である。 図4は、図1に示した切削工具の側面模式図である。 図5は、図4の線分V-Vにおける断面模式図である。 図6は、図1に示した切削工具を先端面側から見た正面模式図である。 図7は、図1に示した切削工具の構成を説明するための側面模式図である。 図8は、図1に示した切削工具の軸方向すくい角を説明するための側面模式図である。 図9は、図1に示した切削工具の軸方向すくい角を説明するための側面模式図である。 図10は、本開示の実施形態2に係る切削工具の斜視模式図である。 図11は、図10に示した切削工具の側面模式図である。 図12は、図11の線分XII-XIIにおける断面模式図である。 図13は、図10に示した切削工具の側面模式図である。 図14は、図13の線分XIV-XIVにおける断面模式図である。 図15は、図10に示した切削工具を先端面側から見た正面模式図である。 図16は、試験方法を説明するための模式図である。
 [本開示が解決しようとする課題]
 従来の切削工具では、切削インサートの配置を調整することにより、切削加工の際の振動(いわゆるびびり振動)を抑制している。しかし、切削インサートの配置調整によるびびり振動の抑制には限界がある。
 本開示は、上記のような課題を解決するために成されたものである。より具体的には、切削加工の際のびびり振動を抑制する事が可能な切削工具を提供する。
 [本開示の効果]
 本開示による切削工具によると、切削加工の際のびびり振動を抑制できる。
 [実施形態の概要]
 最初に本開示の実施態様を列記して説明する。
 (1) 本開示の一態様に係る切削工具は、回転軸周りに回転可能な切削工具であって、本体部を備える。本体部は、先端面と、後端面と、側面とを有する。側面は、先端面に連なる。後端面は、側面に連なり、かつ、回転軸に沿った方向において先端面と反対側に位置する。本体部の側面には、らせん状の第1溝および第2溝が形成される。第2溝は、第1溝から見て本体部における回転方向の後側に隣接する。第1溝は、内部に4つ以上の設置面を有する。4つ以上の設置面は、切削インサートを設置するためのものである。4つ以上の設置面は、本体部の先端面側から3番目以降に配置された第1設置面および第2設置面を含む。第1設置面は、4つ以上の設置面のうち最も後端面側に位置する。第2設置面は、第1設置面より先端面側に位置する。4つ以上の設置面は、切削インサートを固定するための固定穴をそれぞれ有する。4つ以上の設置面において、それぞれの固定穴の中心を、4つ以上の設置面のそれぞれの中心とする。第1設置面の中心を通り、かつ、回転軸に垂直な第1断面において、第1設置面の中心を通り、回転軸を起点として側面の外側に向かって伸びる半直線と側面との交点を第1始点とする。第1断面において、第2溝の第1溝側の側壁と側面との交点を第1終点とする。第1断面における、第1始点から第1終点までの本体部の側面の長さを第1長さとする。第2設置面の中心を通り、かつ、回転軸に垂直な第2断面において、第2設置面の中心を通り、回転軸を起点として側面の外側に向かって伸びる半直線と側面との交点を第2始点とする。第2断面において、第2溝の第1溝側の側壁と側面との交点を第2終点とする。第2断面における、第2始点から第2終点までの本体部の側面の長さを第2長さとする。この場合、第1長さは第2長さより長い。
 ここで第1溝の後端面側に向かうほど切り屑詰まりは発生しにくくなる。すなわち、先端面側には被削材(加工物)の底面があるため、切削インサートから発生した切り屑が排出されるスペースが相対的に小さい。第1溝において先端面側から2番目の切削インサートに関しても、本体部に先端面側の切削インサートを保持する部分があるため、切り屑が排出されるスペースが相対的に小さい。このため、上述した先端面側から1番目および2番目の切削インサートに関しては、切り屑が詰まりやすい。一方、第1溝において先端面側から3番目以降に配置された切削インサートに関しては、切り屑が排出されるスペースの容量が、上述した先端面側の切削インサートに関する当該スペースの容量と同程度であったとしても、切り屑は重力により下方(先端面側)に溜まる場合がある。このため、本体部の先端面側ほど切り屑が詰まりやすい。また、第1溝における後端面側には、被削材の表面(上面)が位置し、当該表面より後方には十分なスペースが確保できる。このため、第1溝における後端面側は、先端面側と比較して相対的に切り屑が詰まり難い。このため、第1溝および第2溝において後端面側の領域ほど、当該溝の幅を小さくすることができる。この結果、第1溝の後端面側に位置する第1切削インサートに関する第1長さを、第2切削インサートに関する第2長さより長くできる。すなわち、第1切削インサートを支持する本体部の部分の体積を、第2切削インサートを支持する本体部の部分の体積より大きくできる。この結果、第1溝および第2溝が、延在方向の全体にわたってほぼ同じ幅を有する場合と比べて、本体部の体積を大きくすることで本体部の剛性を高めることができる。そのため、切削加工の際のびびり振動を抑制できる。
 (2) (1)の切削工具において、回転軸に垂直で、かつ、第2設置面と平行な方向から本体部を見た場合に、第1設置面の中心と第2設置面の中心とを結ぶ線分と回転軸とのなす角度をインサート配置角度としてもよい。回転軸に垂直で、かつ、第2設置面と平行な方向から本体部を見た場合に、第1設置面より回転方向の前側に位置する第1溝の側壁上端において、第1設置面の中心と回転軸に沿った方向での位置が同じ第1点と、第2設置面の中心と回転軸に沿った方向での位置が同じ第2点とを結ぶ線分と回転軸とのなす角度を溝角度としてもよい。この場合、溝角度はインサート配置角度より大きくてもよい。
 この場合、第1溝の上記側壁上端は、本体部の後端面側に向かうほど第1切削インサートおよび第2切削インサート側に近づくことになる。この結果、第1溝の幅は後端面側に向かうほど狭くなる。このため、第1切削インサートを支持する本体部の部分の体積を、第2切削インサートを支持する本体部の部分の体積より容易に大きくできる。
 (3) 上記(1)または(2)の上記切削工具において、回転軸に垂直で、かつ、第1設置面と平行な方向から前記本体部を見た場合に、第1設置面の中心から、第1設置面より本体部における回転方向の前側に位置する第1溝の側壁上端までの最短距離を第1幅としてもよい。回転軸に垂直で、かつ、第2設置面と平行な方向から本体部を見た場合に、第2設置面の中心から第1溝の側壁上端までの最短距離を第2幅としてもよい。第1幅は第2幅より小さくてもよい。
 この場合、第1切削インサートが配置された部分での第1溝の幅(第1幅)が、第2切削インサートが配置された部分での第1溝の幅(第2幅)より小さくなる。そのため、第1切削インサートを支持する本体部の部分の体積を、第2切削インサートを支持する本体部の部分の体積より容易に大きくできる。
 (4) 上記(1)から(3)の切削工具は、第1溝の内部に配置され、かつ、4つ以上の設置面の上にそれぞれ配置された、4つ以上の切削インサートをさらに備えてもよい。4つ以上の切削インサートは、第1切削インサートおよび第2切削インサートを含んでもよい。第1切削インサートは、第1設置面の上に設置されてもよい。第2切削インサートは、第2設置面の上に設置されてもよい。4つ以上の切削インサートのそれぞれは、本体部における回転方向の前側に向くすくい面と、本体部の側面側においてすくい面に連なる逃げ面とを有してもよい。すくい面と逃げ面とのそれぞれの稜線は、切れ刃であってもよい。回転軸に垂直で、かつ、第1設置面と平行な方向から本体部を見た場合に、第1切削インサートの切れ刃の先端面側における接線と回転軸とのなす角度を第1軸方向すくい角としてもよい。回転軸に垂直で、かつ、第2設置面と平行な方向から本体部を見た場合に、第2切削インサートの切れ刃の先端面側における接線と回転軸とのなす角度を第2軸方向すくい角としてもよい。この場合、第1軸方向すくい角は、第2軸方向すくい角より小さくてもよい。
 この場合、第1溝において後端面側に位置する第1切削インサートの軸方向すくい角を小さくすることで、切り屑が本体部の先端面側に流れ易くなり、結果的にバリの発生を抑制できる。また、第1溝における後端面側の領域では切り屑が詰まり難いため、切り屑の詰まりの発生を抑制しつつ、バリの発生を抑制できる。
 (5) 上記(1)から(4)の切削工具において、第1溝は先端面と交差してもよい。先端面における第1溝の縁部は回転軸側に凸である曲線状であってもよい。縁部は、4つ以上の設置面に近い側に位置する第1領域と、第1領域と比べて4つ以上の設置面から遠い側に位置する第2領域とを含んでもよい。第1領域の曲率は、第2領域の曲率より大きくてもよい。
 この場合、本体部の先端面側において、切削インサートの切削により発生した切り屑を、第1溝の内面に沿って速やかに流すことができる。このため、本体部の先端面側における切り屑の詰まりの発生を抑制できる。
 [実施形態の詳細]
 本開示の実施形態の詳細を、図面を参照しながら説明する。以下の図面では、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さない。
 (実施形態1)
 <切削工具の構成>
 図1は、本開示の実施形態1に係る切削工具の斜視模式図である。図2および図4は、図1に示した切削工具の側面模式図である。図3は、図2の線分III-IIIにおける断面模式図である。図5は、図4の線分V-Vにおける断面模式図である。図6は、図1に示した切削工具を先端面側から見た正面模式図である。図7は、図1に示した切削工具の構成を説明するための側面模式図である。図8は、図1に示した切削工具の軸方向すくい角を説明するための側面模式図である。図9は、図1に示した切削工具の軸方向すくい角を説明するための側面模式図である。
 図1から図9に示されるように、本開示の一態様に係る切削工具1は、本体部10と、4つ以上の切削インサート50とを備える。本体部10は、ほぼ円柱形状を有する。本体部10は回転軸10a周りに回転可能である。本体部10は、先端面10bと、後端面10cと、側面10eとを有する。後端面10cは、先端面10bと反対側に位置する。側面10eは、先端面10bと後端面10cとを接続する外周面である。
 本体部10の側面10eには、らせん状の複数の溝20が形成される。具体的には、側面10eには、第1溝20a、第2溝20bおよび第3溝20cが形成される。第2溝20bは、第1溝20aから見て本体部10における回転方向RDの後側に間隔を隔てて隣接する。第3溝20cは、第1溝20aから見て本体部10における回転方向RDの前側に間隔を隔てて隣接する。なお、図1から図9に示した切削工具1では、本体部10に3つの溝20が形成されているが、溝20の数は4以上であってもよく、2であってもよい。
 第1溝20a、第2溝20b、第3溝20cのそれぞれには、4つ以上の切削インサート50が配置されている。第1溝20aの内部において、4つ以上の切削インサート50は、本体部10の先端面10b側から3番目以降に配置された第1切削インサート51および第2切削インサート52を含む。
 図1などに示されるように、第1切削インサート51は、4つ以上の切削インサート50のうち最も後端面10c側に位置する。第2切削インサート52は、第1切削インサート51より先端面10b側に位置する。図示されている切削工具1では、第2切削インサート52は、後端面10c側から2番目に配置された切削インサートである。
 第1溝20aの内面には、切削インサート50を設置するための複数の設置面が形成されている。複数の設置面は、平面状であってもよい。複数の設置面は、第1溝20aにおいて本体部10の回転方向RDの前側に面するように形成されている。具体的には、第1溝20aの後端面10c側の領域には、第1設置面10daが形成されている。本体部10における第1設置面10daには第1切削インサート51が設置される。具体的には、第1設置面10daにはネジ穴である固定穴2が形成されている。固定穴2は、本体部10の回転方向RDに沿った方向(周方向)に延びるように形成されている。第1切削インサート51には固定ネジ30を挿入する貫通穴が形成されている。第1設置面10da上に、当該貫通穴と固定穴2とが重なるように第1切削インサート51が配置される。固定ネジ30は第1切削インサート51の貫通穴を介して固定穴2に挿入され固定されている。このように、固定ネジ30によって第1切削インサート51が第1設置面10daに固定される。
 第1溝20aにおいて、第1設置面10daより先端面10b側に第2設置面10dbが形成されている。本体部10における第2設置面10dbに第2切削インサート52が設置される。
 図3は、第1設置面10daの中心2aを通り、かつ、回転軸10aに垂直な第1断面における切削工具1の断面模式図である。図3に示されるように、第1設置面10daから、本体部10の回転方向RDに沿った周方向における第2溝20bまでの長さを第1長さL1とする。具体的には、第1設置面10daの中心2aを通り、回転軸10aに垂直な断面を考える。当該断面において、第1設置面10daの中心2aを通り、回転軸10aを起点として側面10eの外側に向かって伸びる半直線と、本体部10が回転軸10aを中心に回転する際の側面10eの軌跡の最外周との交点を始点10eaとする。なお、上記中心2aは、第1設置面10daにおける固定穴2の中心点とする。また、上記断面において、第2溝20bの側壁(第1溝20a側の側壁)と本体部10の側面10eとの交線(交点20ba)と回転軸10aとを結ぶ線分と、上記側面10eの軌跡の最外周との交点を終点10ebとする。当該断面において、上記始点10eaから上記終点10ebまでの側面10eに沿った長さを上記第1長さL1とする。また、上記始点10eaと上記終点10ebまでの長さを示す指標としては、上記断面において、回転軸10aと上記中心2aとを結ぶ線分と、回転軸10aと上記交点20baとを結ぶ線分とのなす角度(中心角θ1)を用いてもよい。
 図5は、第2設置面10dbの中心2aを通り、かつ、回転軸10aに垂直な第2断面における切削工具1の断面模式図である。図5に示されるように、第2設置面10dbから、本体部10の回転方向RDに沿った周方向における第2溝20bまでの長さを第2長さL2とする。具体的には、第2設置面10dbの中心2aを通り、回転軸10aに垂直な断面を考える。当該断面において、第2設置面10dbの中心2aを通り、回転軸10aを起点として側面10eの外側に向かって伸びる半直線と、本体部10が回転軸10aを中心に回転する際の側面10eの軌跡の最外周との交点を始点10eaとする。なお、上記中心2aは、第2設置面10dbにおける固定穴2の中心点とする。また、上記断面において、第2溝20bの側壁(第1溝20a側の側壁)と本体部10の側面10eとの交線(交点20ba)と回転軸10aとを結ぶ線分と、上記側面10eの軌跡の最外周との交点を終点10ebとする。当該断面において、上記始点10eaから上記終点10ebまでの側面10eに沿った長さを上記第2長さL2とする。また、上記始点10eaから上記終点10ebまでの長さを示す指標としては、上記断面において、回転軸10aと上記中心2aとを結ぶ線分と、回転軸10aと上記交点20baとを結ぶ線分とのなす角度(中心角θ2)を用いてもよい。
 図1から図5に示した切削工具1では、第1長さL1が第2長さL2より長い。また、上記中心角θ1は上記中心角θ2より大きい。また、上述した第1溝20aに設置された第1切削インサート51および第2切削インサート52に隣接する本体部10の部分の長さの関係(第1長さL1と第2長さL2との関係)は、他の溝20のそれぞれに設置された切削インサート50に関しても成立する。
 図1および図6に示されるように、切削工具1において、第1溝20aは先端面10bと交差する。回転軸10aに沿って先端面10bを見た場合において、先端面10bにおける第1溝20aの縁部21は回転軸10a側に凸である曲線状である。具体的には、図6に示されるように、縁部21は、第1領域21aと第2領域21bとを含む。第1領域21aは、第1溝20aの内部の複数の設置面10dに近い側に位置する。第2領域21bは、第1領域21aと比べて、第1溝20aの内部の複数の設置面10dから遠い側に位置する。別の観点から言えば、第1領域21aは、第1溝20aに配置された複数の切削インサート50に近い側に位置する。第2領域21bは、第1領域21aから見て複数の切削インサート50と反対側に位置する。第1領域21aの曲率は、第2領域21bの曲率より大きい。また、第1領域21aは、第2領域21bより回転軸10aに近い領域に配置されている。
 回転軸10aに沿って先端面10bを見た場合において、この縁部21の形状は、縁部21のある点を決めた場合に、対応する曲率を有している。第1領域21aの形状は、第1領域21aの全ての点に対して実質的に同一の曲率を有していてもよい。第1領域21aの形状は、第1領域21a上の点に対応して異なる曲率を有していてもよい。同様に、第2領域21bの形状は、第2領域21bの全ての点に対して実質的に同一の曲率を有していてもよい。同様に、第2領域21bの形状は、第2領域21b上の点に対応して異なる曲率を有していてもよい。本明細書において、第1領域21aの「曲率」とは、第1領域21a上の全ての点に対応する曲率の値の範囲を意味している。同様に、本明細書において、第2領域21bの「曲率」とは、第2領域21b上の全ての点に対応する曲率の値の範囲を意味している。
 図7は、回転軸10aに垂直で、かつ、第2設置面10dbと平行な方向から見た切削工具1の側面模式図である。図7に示されるように、切削工具1において複数の切削インサート50が1つの溝20において配列されている方向と、当該溝20において切削インサート50より回転方向RDの前側の側壁上端24の延在方向とは異なっている。異なる観点から言えば、上述した切削工具1は以下の特徴を備える。
 図7に示されるように、回転軸10aに垂直で、かつ、第2設置面10dbと平行な方向から本体部10を見た場合を考える。第1切削インサート51が配置された第1設置面10daの中心10daaを特定する。当該中心10daaは、図3に示した第1設置面10daの固定穴2の中心2aとしてもよい。第2切削インサート52が配置された第2設置面10dbの中心10dbaを特定する。当該中心10dbaは、図5に示した第2設置面10dbの固定穴2の中心2aとしてもよい。第1設置面10daの中心10daaと第2設置面10dbの中心10dbaとを結ぶ線分55と、回転軸10aとのなす角度をインサート配置角度θ4とする。
 回転軸10aに垂直で、かつ、第2設置面10dbと平行な方向から本体部10を見た場合に、第1設置面10daより回転方向RDの前側に位置する第1溝20aの側壁上端24において、第1設置面10daの中心10daaと回転軸10aに沿った方向での位置が同じ第1点24aを特定する。第2設置面10dbの中心10dbaと回転軸10aに沿った方向での位置が同じ第2点24bを特定する。第1点24aと第2点24bとを結ぶ線分25と回転軸10aとのなす角度を溝角度θ3とする。溝角度θ3はインサート配置角度θ4より大きい。
 図8は、回転軸10aに垂直で、かつ、第1設置面10daと平行な方向から見た切削工具1の側面模式図である。図9は、回転軸10aに垂直で、かつ、第2設置面10dbと平行な方向から見た切削工具1の側面模式図である。上述した切削工具1では、複数の切削インサート50と、上記溝20の側壁上端24との間の距離は、本体部10の後端面10c側に向かうにつれて小さくなっている。異なる観点から言えば、上述した切削工具1では、第1設置面10daから側壁上端24までの距離と、第2設置面10dbから側壁上端24までの距離とが異なっている。つまり、図8に示されるように、第1設置面10daの中心10daaから、第1設置面10daより本体部10における回転方向RDの前側に位置する第1溝20aの側壁上端24までの最短距離を第1幅W1とする。図9に示されるように、第2設置面10dbの中心10dbaから第1溝20aの側壁上端24までの最短距離を第2幅W2とする。第1幅W1は第2幅W2より小さい。
 上記切削工具1は、図3に示されるように、第3溝20cの内部に配置され、第1切削インサート51と回転軸10aに沿った方向での位置が重なるように配置された第3切削インサート53を備える。また、図5に示されるように、切削工具1は、第3溝20cの内部に配置され、第2切削インサート52と回転軸10aに沿った方向での位置が重なるように配置された第4切削インサート54を備える。
 上記切削工具1は、図3に示されるように、第2溝20bの内部に配置され、第1切削インサート51と回転軸10aに沿った方向での位置が重なるように配置された第5切削インサート56を備える。また、図5に示されるように、切削工具1は、第2溝20bの内部に配置され、第2切削インサート52と回転軸10aに沿った方向での位置が重なるように配置された第6切削インサート57を備える。第3溝20cに配置された第3切削インサート53および第4切削インサート54と隣接する本体部10の部分の長さの関係(第1長さL1及び第2長さL2の関係に対応)は、第1溝20aに配置された第1切削インサート51および第2切削インサート52と隣接する本体部10の部分の長さの関係と同じである。また、第2溝20bに配置された第5切削インサート56および第6切削インサート57と隣接する本体部10の部分の長さの関係(第1長さL1及び第2長さL2の関係に対応)は、第1溝20aに配置された第1切削インサート51および第2切削インサート52と隣接する本体部10の部分の長さの関係と同じである。
 図8および図9に示されるように、切削工具1において、複数の切削インサート50のそれぞれは、本体部10における回転方向RDの前側に向くすくい面50bと、本体部10の側面10e側においてすくい面50bに連なる逃げ面50cとを有する。すくい面50bと逃げ面50cとのそれぞれの稜線は、切れ刃50aとなっている。回転軸10aに垂直で、かつ、第1設置面10daと平行な方向から本体部10を見た場合に、第1切削インサート51の切れ刃50aの先端面10b側における接線と回転軸10aとのなす角度を第1軸方向すくい角θ5としてもよい。回転軸10aに垂直で、かつ、第2設置面10dbと平行な方向から本体部10を見た場合に、第2切削インサート52の切れ刃50aの先端面10b側における接線と回転軸10aとのなす角度を第2軸方向すくい角θ6としてもよい。この場合、第1軸方向すくい角θ5は、第2軸方向すくい角θ6より小さい。
 <作用効果>
 上記切削工具1において、第1切削インサート51が配置された第1設置面10daから、本体部10の回転方向RDに沿った周方向における第2溝20bまでの長さを第1長さL1とする。第2切削インサート52が配置された第2設置面10dbから、周方向における第2溝20bまでの長さを第2長さL2とする。上記切削工具1では、第1長さL1が第2長さL2より長くなるように構成されている。
 このようにすれば、第1切削インサート51を支持する本体部10の部分(第1切削インサート51を本体部10の回転方向RDにおける後側から支持する本体部10の部分)の体積を、第2切削インサート52を支持する本体部10の部分の体積より大きくできる。この結果、第1溝20aおよび第2溝20bが、延在方向の全体にわたってほぼ同じ幅を有する場合と比べて、本体部10の体積を大きくすることで本体部10の剛性を高めることができる。そのため、切削加工の際のびびり振動を抑制できる。
 上記切削工具1において、図7に示されるように溝角度θ3はインサート配置角度θ4より大きい。この場合、第1溝20aの上記側壁上端24は、本体部10の後端面10c側に向かうほど第1切削インサート51および第2切削インサート52側に近づくことになる。この結果、第1溝20aの幅は後端面10c側に向かうほど狭くなる。このため、第1切削インサート51を支持する本体部10の部分の体積を、第2切削インサート52を支持する本体部10の部分の体積より容易に大きくできる。この結果、本体部10の剛性を高めることができる。
 上記切削工具1において、図8に示されるように、第1設置面10daの中心10daaから、第1設置面10daより本体部10における回転方向RDの前側に位置する第1溝20aの側壁上端24までの最短距離を第1幅W1とする。図9に示されるように第2設置面10dbの中心10dbaから第1溝20aの側壁上端24までの最短距離を第2幅W2とする。第1幅W1は第2幅W2より小さい。この場合、第1切削インサート51が配置された部分での第1溝20aの幅(第1幅W1)が、第2切削インサート52が配置された部分での第1溝20aの幅(第2幅W2)より小さくなる。そのため、第1切削インサート51を支持する本体部10の部分の体積を、第2切削インサート52を支持する本体部10の部分の体積より容易に大きくできる。この結果、本体部10の剛性を高めることができる。
 上記切削工具1において、本体部10の側面10eには、第3溝20cが形成されている。第3溝20cは、第1溝20aから見て本体部10における回転方向RDの前側に隣接している。切削工具1は、第3溝20cの内部に配置され、第1切削インサート51と回転軸10aに沿った方向での位置が重なるように配置された第3切削インサート53を備えている。切削工具1は、第3溝20cの内部に配置され、第2切削インサート52と回転軸10aに沿った方向での位置が重なるように配置された第4切削インサート54を備えている。
 この場合、第3切削インサート53を支持する本体部10の部分の体積を、第4切削インサート54を支持する本体部10の部分の体積より大きくできる。このため、本体部10の剛性を高めることができる。
 上記切削工具1において、第1切削インサート51のすくい面50bに関する第1軸方向すくい角θ5は、第2切削インサート52のすくい面50bに関する第2軸方向すくい角θ6より小さい。この場合、第1溝20aにおいて後端面10c側に位置する第1切削インサート51の第1軸方向すくい角θ5を小さくすることで、切り屑が本体部10の先端面10b側に流れ易くなり、結果的にバリの発生を抑制できる。また、第1溝20aにおける後端面10c側の領域では切り屑が詰まり難いため、切り屑の詰まりの発生を抑制しつつ、バリの発生を抑制できる。
 上記切削工具1において、先端面10bにおける第1溝20aの縁部21は回転軸10a側に凸である曲線状である。縁部21における第1領域21aの曲率は、第2領域21bの曲率より大きい。
 この場合、本体部10の先端面10b側において、切削インサート50の切削により発生した切り屑を、第1溝20aの内面に沿って速やかに流すことができる。このため、本体部10の先端面側における切り屑の詰まりの発生を抑制できる。
 (実施形態2)
 図10は、本開示の実施形態2に係る切削工具の斜視模式図である。図11および図13は、図10に示した切削工具の側面模式図である。図12は、図11の線分XII-XIIにおける断面模式図である。図14は、図13の線分XIV-XIVにおける断面模式図である。図15は、図10に示した切削工具を先端面側から見た正面模式図である。
 図10から図15に示した切削工具1は、基本的には図1から図9に示した切削工具1と同様の構成を備えるが、本体部10における溝20の形状、当該溝20に配置された切削インサート50の構造および切削インサート50の本体部10に対する固定方法が図1から図9に示した切削工具1と異なっている。以下、具体的に説明する。
 図10から図15に示されるように、本体部10の側面10eには、らせん状の複数の溝20が形成される。複数の溝20のそれぞれは、本体部10の先端面10b側の部分(先端側溝201)と、当該先端側溝から間隔隔てて配置された後端側溝202とに分離されている。具体的には、側面10eには、第1溝20a、第2溝20bおよび第3溝20cが形成される。第1溝20aは、先端側溝201aと、後端側溝202aとを含む。なお、図10から図15に示した切削工具1では、本体部10に3つの溝20が形成されているが、溝20の数は4以上であってもよく、2であってもよい。
 第1溝20a、第2溝20b、第3溝20cのそれぞれには、4つ以上の切削インサート50が配置されている。具体的には、たとえば第1溝20aの先端側溝201aには1つの切削インサート50が配置されている。第1溝20aの後端側溝202aには4つの切削インサート50が配置されている。なお、後端側溝202aに配置される切削インサート50の数は5以上でも、3以下でもよい。先端側溝201aに配置される切削インサート50の数は2以上でもよい。第1溝20aの内部において、4つ以上の切削インサート50は、本体部10の先端面10b側から3番目以降に配置された第1切削インサート51および第2切削インサート52を含む。
 図10などに示されるように、第1切削インサート51は、4つ以上の切削インサート50のうち、後端側溝202aにおいて最も後端面10c側に位置する。第2切削インサート52は、第1切削インサート51より先端面10b側に位置する。図示されている切削工具1では、第2切削インサート52は、後端面10c側から2番目、かつ先端面10b側から4番目に配置された切削インサートである。
 第1溝20aの内面には、切削インサート50を設置するための複数の設置面が形成されている。複数の設置面10dは、第1溝20aにおいて本体部10の径方向の外側に面するように形成されている。具体的には、第1溝20aの後端面10c側の領域には、図12に示されるように第1設置面10daが形成されている。第1設置面10daは本体部10の径方向外側に面するように配置されている。本体部10における第1設置面10daには第1切削インサート51が設置される。具体的には、第1設置面10daにはネジ穴である固定穴2が形成されている。固定穴2は、本体部10の回転軸10aに向かう方向(径方向)に延びるように形成されている。第1切削インサート51には固定ネジ30を挿入する貫通穴が形成されている。第1設置面10da上に、当該貫通穴と固定穴2とが重なるように第1切削インサート51が配置される。固定ネジ30は第1切削インサート51の貫通穴を介して固定穴2に挿入され固定されている。このように、径方向に延びるように配置された固定ネジ30によって第1切削インサート51が第1設置面10daに固定される。
 第1溝20aにおいて、第1設置面10daより先端面10b側に第2設置面10dbが形成されている。第2設置面10dbも第1設置面10daと同様、本体部10の径方向外側に面するように配置されている。本体部10における第2設置面10dbに第2切削インサート52が設置される。第2設置面10dbに対する第2切削インサート52の固定方法は、第1設置面10daに対する第1切削インサート51の固定方法と同様である。
 図12は、第1設置面10daの中心2aを通り、かつ、回転軸10aに垂直な第1断面における切削工具1の断面模式図である。図12に示されるように、第1設置面10daから、本体部10の回転方向RDに沿った周方向における第2溝20bまでの長さを第1長さL1とする。具体的には、第1設置面10daの中心2aを通り、回転軸10aに垂直な断面を考える。当該断面において、第1設置面10daの中心2aを通り、回転軸10aを起点として側面10eの外側に向かって伸びる半直線と、本体部10が回転軸10aを中心に回転する際の側面10eの軌跡の最外周との交点を始点10eaとする。なお、上記中心2aは、第1設置面10daにおける固定穴2の中心点とする。また、上記断面において、第2溝20bの側壁(第1溝20a側の側壁)と本体部10の側面10eとの交線(交点20ba)と回転軸10aとを結ぶ線分と、上記側面10eの軌跡の最外周との交点を終点10ebとする。当該断面において、上記始点10eaから上記終点10ebまでの側面10eに沿った長さを上記第1長さL1とする。また、上記始点10eaと上記終点10ebまでの長さを示す指標としては、上記断面において、回転軸10aと上記中心2aとを結ぶ線分と、回転軸10aと上記交点20baとを結ぶ線分とのなす角度(中心角θ1)を用いてもよい。
 図14は、第2設置面10dbの中心2aを通り、かつ、回転軸10aに垂直な第2断面における切削工具1の断面模式図である。図14に示されるように、第2設置面10dbから、本体部10の回転方向RDに沿った周方向における第2溝20bまでの長さを第2長さL2とする。具体的には、第2設置面10dbの中心2aを通り、回転軸10aに垂直な断面を考える。当該断面において、第2設置面10dbの中心2aを通り、回転軸10aを起点として側面10eの外側に向かって伸びる半直線と、本体部10が回転軸10aを中心に回転する際の側面10eの軌跡の最外周との交点を始点10eaとする。なお、上記中心2aは、第2設置面10dbにおける固定穴2の中心点とする。また、上記断面において、第2溝20bの側壁(第1溝20a側の側壁)と本体部10の側面10eとの交線(交点20ba)と回転軸10aとを結ぶ線分と、上記側面10eの軌跡の最外周との交点を終点10ebとする。当該断面において、上記始点10eaから上記終点10ebまでの側面10eに沿った長さを上記第2長さL2とする。また、上記始点10eaと上記終点10ebまでの長さを示す指標としては、上記断面において、回転軸10aと上記中心2aとを結ぶ線分と、回転軸10aと上記交点20baとを結ぶ線分とのなす角度(中心角θ2)を用いてもよい。
 図10から図14に示した切削工具1では、第1長さL1が第2長さL2より長い。また、上記中心角θ1は上記中心角θ2より大きい。なお、上述した第1溝20aに設置された第1切削インサート51および第2切削インサート52に隣接する本体部10の部分の長さの関係(第1長さL1と第2長さL2との関係)は、他の溝20のそれぞれに設置された切削インサート50に関しても成立する。
 図10および図15に示されるように、切削工具1において、第1溝20aの先端側溝201aは先端面10bと交差する。回転軸10aに沿って先端面10bを見た場合において、先端面10bにおける第1溝20a(先端側溝201a)の縁部21は、回転軸10a側に凸である曲線状である部分を含む。具体的には、図15に示されるように、縁部21は、第1領域21aと第2領域21bとを含む。第1領域21aは、第1溝20aの内部の複数の設置面10dに近い側に位置する。第2領域21bは、第1領域21aと比べて、第1溝20aの内部の複数の設置面10dから遠い側に位置する。別の観点から言えば、第1領域21aは、第1溝20aに配置された複数の切削インサート50に近い側に位置する。第1領域21aは回転軸10a側に凸である曲線状の形状を有する。第2領域21bは、第1領域21aから見て第1溝20aに設置された複数の切削インサート50と反対側に位置する。第2領域21bは実質的に直線状の形状を有する。第1領域21aの曲率は、第2領域21bの曲率より大きい。また、第1領域21aは、第2領域21bより回転軸10aに近い部分を含む。
 上記切削工具1は、図12に示されるように、第3溝20cの内部に配置され、第1切削インサート51と回転軸10aに沿った方向での位置が重なるように配置された第3切削インサート53を備える。また、図14に示されるように、切削工具1は、第3溝20cの内部に配置され、第2切削インサート52と回転軸10aに沿った方向での位置が重なるように配置された第4切削インサート54を備える。
 上記切削工具1は、図12に示されるように、第2溝20bの内部に配置され、第1切削インサート51と回転軸10aに沿った方向での位置が重なるように配置された第5切削インサート56を備える。また、図14に示されるように、切削工具1は、第2溝20bの内部に配置され、第2切削インサート52と回転軸10aに沿った方向での位置が重なるように配置された第6切削インサート57を備える。第3溝20cに配置された第3切削インサート53および第4切削インサート54と隣接する本体部10の部分の長さの関係(第1長さL1及び第2長さL2の関係に対応)は、第1溝20aに配置された第1切削インサート51および第2切削インサート52と隣接する本体部10の部分の長さの関係と同じである。また、第2溝20bに配置された第5切削インサート56および第6切削インサート57と隣接する本体部10の部分の長さの関係(第1長さL1及び第2長さL2の関係に対応)は、第1溝20aに配置された第1切削インサート51および第2切削インサート52と隣接する本体部10の部分の長さの関係と同じである。
 図10から図15に示した切削工具1によっても、図1から図9に示した切削工具1と同様の効果を得ることができる。
 (実施例1)
 びびり振動の抑制効果に関して試験を行った。
 <装置・試料>
 試験には、立形マシニングセンタ(DMG森精機株式会社製NVX5080、主軸サイズBBT50番)を用いた。
 被削材の材質としては、日本工業規格(JIS)G4051:2016の規定による炭素鋼鋼材S-C材に分類されるS50Cを用いた。切削加工時に十分な剛性が確保できるよう、被削材は角材を用いた。被削材のサイズは85mm×100mm×300mmとした。被削材は、側面をバイスで把持することで固定した。
 工具は、工具径φ32mm、有効刃長35mm、有効刃数3枚、総刃数12枚、シャンク径φ32mmのシャンクタイプを用いた。切削インサートとしては、住友電工ハードメタル社製型番AOMT11T308PEER-Gである汎用型の切削インサートを用いた。実施例の工具は図1から図9に示した構成を有する。また、比較例の工具としては、図3に示した中心角θ1と、図5に示した中心角θ2とが同じとした以外は、上記実施例の工具と同様の構成を有する工具を用いた。
 <試験方法>
 図16は、試験方法を説明するための模式図である。図16に示すように、被削材100を実施例および比較例の工具により切削する試験を行った。切削条件としては、回転速度を150m/分、送り量を0.1mm/刃、軸方向切込み量101を30mmとした。径方向切込み量102については、初期値を5mmとし、びびり振動が発生するまで5mmずつ大きくした。工具突出し長はホルダから60mmとした。
 切削方式としては、図16に示すようにダウンカット方式とした。切削時の給油方法(クーラントの供給方法)をドライとした。
 びびり振動の発生の有無についての判断基準としては、高い音の発生の有無を基準とした。高い音が発生した場合にびびり振動が発生したと判断した。
 上記の切削条件で、実施例の工具と比較例の工具を用い、びびり振動が発生する径方向切込み量を比較した。
 <結果>
 比較例の工具では、径方向切込み量が5mm、10mm、15mmの場合にびびり振動の発生は無かった。しかし、径方向切り込み量が20mmの場合、びびり振動が発生した。また、径方向切り込み量が25mmの場合、びびり振動の発生が顕著であった。
 一方、実施例の工具では、径方向切込み量が5mm、10mm、15mm、20mmの場合にびびり振動の発生は無かった。径方向切り込み量が25mmの場合、びびり振動が発生した。また、径方向切り込み量が30mmの場合、びびり振動の発生が顕著であった。
 このように、実施例の工具の方が、比較例の工具よりびびり振動を発生させることなく適用できる径方向切込み量が大きくなっていることから、耐びびり性が高いことが示された。
 (実施例2)
 バリの発生と軸方向すくい角との関係に関して試験を行った。
 <装置・試料>
 試験には、実施例1と同じ立形マシニングセンタを用いた。また、被削材として実施例1において用いた被削材と同じ材質及び形状の被削材を用いた。
 工具は、工具径φ25mm、シャンク径φ25mmのシャンクタイプを用いた。被削材の上面部を加工する切削インサートの軸方向すくい角(アキシャルレーキ)が16°である工具1と、当該軸方向すくい角が-1°である工具2を準備した。
 切削インサートとしては、住友電工ハードメタル社製型番AOMT11T308PEER-Gである汎用型の切削インサートを用いた。
 <試験方法>
 切削条件としては、回転速度を200m/分、送り量を0.1mm/刃、軸方向切込み量を15mm、径方向切込み量を2mmとした。工具突出し長はホルダから63mmとした。
 切削方式としては、実施例1と同様にダウンカット方式とした。切削時の給油方法をドライとした。
 上記の切削条件で、工具1および工具2を用いて被削材を切削加工した。その後、被削材の上面部におけるバリの大きさを比較した。
 <結果>
 工具1を用いた場合より、工具2を用いた場合の方が、目視で確認されるバリの発生が抑制されていた。このため、軸方向すくい角を小さくすることでバリが抑制されることが示された。
 今回開示された実施形態は全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の基本的な範囲は、上記した実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1 切削工具、2 固定穴、2a,10daa,10dba 中心、10 本体部、10a 回転軸、10b 先端面、10c 後端面、10d 設置面、10da 第1設置面、10db 第2設置面、10e 側面、10ea 始点、10eb 終点、20 溝、20a 第1溝、20b 第2溝、20ba 交点、20c 第3溝、21 縁部、21a 第1領域、21b 第2領域、24 側壁上端、24a 第1点、24b 第2点、25,55 線分、30 固定ネジ、50 切削インサート、50a 切れ刃、50b すくい面、50c 逃げ面、51 第1切削インサート、52 第2切削インサート、53 第3切削インサート、54 第4切削インサート、56 第5切削インサート、57 第6切削インサート、100 被削材、101 軸方向切込み量、102 径方向切込み量、201,201a 先端側溝、202,202a 後端側溝、L1 第1長さ、L2 第2長さ、RD 回転方向、W1 第1幅、W2 第2幅、θ1,θ2 中心角、θ3 溝角度、θ4 インサート配置角度、θ5 第1軸方向すくい角、θ6 第2軸方向すくい角。

Claims (5)

  1.  回転軸周りに回転可能な切削工具であって、
     先端面と、前記先端面に連なる側面と、前記側面に連なり、かつ、前記回転軸に沿った方向において前記先端面と反対側に位置する後端面とを有する本体部を備え、
     前記本体部の前記側面には、らせん状の第1溝および第2溝が形成され、
     前記第2溝は、前記第1溝から見て前記本体部における回転方向の後側に隣接し、
     前記第1溝は、内部に4つ以上の設置面を有し、
     前記4つ以上の設置面は、切削インサートを設置するためのものであり、
     前記4つ以上の設置面は、前記本体部の前記先端面側から3番目以降に配置された第1設置面および第2設置面を含み、
     前記第1設置面は、前記4つ以上の設置面のうち最も前記後端面側に位置し、
     前記第2設置面は、前記第1設置面より前記先端面側に位置し、
     前記4つ以上の設置面は、前記切削インサートを固定するための固定穴をそれぞれ有し、
     前記4つ以上の設置面において、それぞれの前記固定穴の中心を、前記4つ以上の設置面のそれぞれの中心とし、
     前記第1設置面の前記中心を通り、かつ、前記回転軸に垂直な第1断面において、前記第1設置面の前記中心を通り、前記回転軸を起点として前記側面の外側に向かって伸びる半直線と前記側面との交点を第1始点とし、
     前記第1断面において、前記第2溝の前記第1溝側の側壁と前記側面との交点を第1終点とし、
     前記第1断面における、前記第1始点から前記第1終点までの前記本体部の前記側面の長さを第1長さとし、
     前記第2設置面の前記中心を通り、かつ、前記回転軸に垂直な第2断面において、前記第2設置面の前記中心を通り、前記回転軸を起点として前記側面の外側に向かって伸びる半直線と前記側面との交点を第2始点とし、
     前記第2断面において、前記第2溝の前記第1溝側の側壁と前記側面との交点を第2終点とし、
     前記第2断面における、前記第2始点から前記第2終点までの前記本体部の前記側面の長さを第2長さとした場合、
     前記第1長さは、前記第2長さより長い、切削工具。
  2.  前記回転軸に垂直で、かつ、前記第2設置面と平行な方向から前記本体部を見た場合に、
     前記第1設置面の前記中心と前記第2設置面の前記中心とを結ぶ線分と前記回転軸とのなす角度をインサート配置角度とし、
     前記第1設置面より前記回転方向の前側に位置する前記第1溝の側壁上端において、前記第1設置面の前記中心と前記回転軸に沿った方向での位置が同じ第1点と、前記第2設置面の前記中心と前記回転軸に沿った前記方向での位置が同じ第2点とを結ぶ線分と前記回転軸とのなす角度を溝角度とした場合、
     前記溝角度は前記インサート配置角度より大きい、請求項1に記載の切削工具。
  3.  前記回転軸に垂直で、かつ、前記第1設置面と平行な方向から前記本体部を見た場合に、前記第1設置面の前記中心から、前記第1設置面より前記本体部における前記回転方向の前側に位置する前記第1溝の側壁上端までの最短距離を第1幅とし、
     前記回転軸に垂直で、かつ、前記第2設置面と平行な方向から前記本体部を見た場合に、前記第2設置面の前記中心から前記第1溝の前記側壁上端までの最短距離を第2幅とした場合、
     前記第1幅は、前記第2幅より小さい、請求項1または請求項2に記載の切削工具。
  4.  前記第1溝の内部に配置され、かつ、前記4つ以上の設置面の上にそれぞれ配置された、4つ以上の切削インサートをさらに備え、
     前記4つ以上の切削インサートは、第1切削インサートおよび第2切削インサートを含み、
     前記第1切削インサートは、前記第1設置面の上に設置されており、
     前記第2切削インサートは、前記第2設置面の上に設置されており、
     前記4つ以上の切削インサートのそれぞれは、前記本体部における前記回転方向の前側に向くすくい面と、前記本体部の前記側面側において前記すくい面に連なる逃げ面とを有し、
     前記すくい面と前記逃げ面とのそれぞれの稜線は、切れ刃であり、
     前記回転軸に垂直で、かつ、前記第1設置面と平行な方向から前記本体部を見た場合に、前記第1切削インサートの前記切れ刃の前記先端面側における接線と前記回転軸とのなす角度を第1軸方向すくい角とし、
     前記回転軸に垂直で、かつ、前記第2設置面と平行な方向から前記本体部を見た場合に、前記第2切削インサートの前記切れ刃の前記先端面側における接線と前記回転軸とのなす角度を第2軸方向すくい角とした場合、
     前記第1軸方向すくい角は、前記第2軸方向すくい角より小さい、請求項1から請求項3のいずれか1項に記載の切削工具。
  5.  前記第1溝は前記先端面と交差し、
     前記先端面における前記第1溝の縁部は前記回転軸側に凸である曲線状であり、
     前記縁部は、前記4つ以上の設置面に近い側に位置する第1領域と、前記第1領域と比べて前記4つ以上の設置面から遠い側に位置する第2領域とを含み、
     前記第1領域の曲率は、前記第2領域の曲率より大きい、請求項1から請求項4のいずれか1項に記載の切削工具。
PCT/JP2021/014488 2021-04-05 2021-04-05 切削工具 WO2022215114A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21935922.1A EP4321285A4 (en) 2021-04-05 2021-04-05 CUTTING TOOL
PCT/JP2021/014488 WO2022215114A1 (ja) 2021-04-05 2021-04-05 切削工具
CN202180086256.7A CN116867593A (zh) 2021-04-05 2021-04-05 切削刀具
JP2021576996A JP7052176B1 (ja) 2021-04-05 2021-04-05 切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014488 WO2022215114A1 (ja) 2021-04-05 2021-04-05 切削工具

Publications (1)

Publication Number Publication Date
WO2022215114A1 true WO2022215114A1 (ja) 2022-10-13

Family

ID=81260069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014488 WO2022215114A1 (ja) 2021-04-05 2021-04-05 切削工具

Country Status (4)

Country Link
EP (1) EP4321285A4 (ja)
JP (1) JP7052176B1 (ja)
CN (1) CN116867593A (ja)
WO (1) WO2022215114A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199314U (ja) * 1985-05-30 1986-12-13
JPH0179510U (ja) * 1987-11-11 1989-05-29
JPH04183512A (ja) * 1990-11-16 1992-06-30 Toshiba Tungaloy Co Ltd スローアウェイ式エンドミル
JPH081426A (ja) * 1994-06-15 1996-01-09 Toshiba Tungaloy Co Ltd ラフィングエンドミル
JP2004510594A (ja) * 2000-10-04 2004-04-08 ケンナメタル インコーポレイテッド ミリングカッター
WO2005032776A1 (en) * 2003-09-29 2005-04-14 Kennametal Inc. Rotary cutting tool having irregular insert orientation
JP2014083629A (ja) * 2012-10-23 2014-05-12 Mitsubishi Materials Corp 刃先交換式切削工具及びその工具本体
JP2016190274A (ja) 2015-03-30 2016-11-10 国立大学法人名古屋大学 転削工具
WO2019030862A1 (ja) * 2017-08-09 2019-02-14 オーエスジー株式会社 インデキサブル式切削工具
WO2019163677A1 (ja) * 2018-02-26 2019-08-29 京セラ株式会社 切削工具及び切削加工物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183512B2 (ja) 2003-01-10 2008-11-19 Idec株式会社 スイッチ装置
JP5991563B2 (ja) * 2013-12-25 2016-09-14 株式会社タンガロイ 刃先交換式回転切削工具及び工具ボデー

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199314U (ja) * 1985-05-30 1986-12-13
JPH0179510U (ja) * 1987-11-11 1989-05-29
JPH04183512A (ja) * 1990-11-16 1992-06-30 Toshiba Tungaloy Co Ltd スローアウェイ式エンドミル
JPH081426A (ja) * 1994-06-15 1996-01-09 Toshiba Tungaloy Co Ltd ラフィングエンドミル
JP2004510594A (ja) * 2000-10-04 2004-04-08 ケンナメタル インコーポレイテッド ミリングカッター
WO2005032776A1 (en) * 2003-09-29 2005-04-14 Kennametal Inc. Rotary cutting tool having irregular insert orientation
JP2014083629A (ja) * 2012-10-23 2014-05-12 Mitsubishi Materials Corp 刃先交換式切削工具及びその工具本体
JP2016190274A (ja) 2015-03-30 2016-11-10 国立大学法人名古屋大学 転削工具
WO2019030862A1 (ja) * 2017-08-09 2019-02-14 オーエスジー株式会社 インデキサブル式切削工具
WO2019163677A1 (ja) * 2018-02-26 2019-08-29 京セラ株式会社 切削工具及び切削加工物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4321285A4

Also Published As

Publication number Publication date
JPWO2022215114A1 (ja) 2022-10-13
EP4321285A4 (en) 2024-06-19
EP4321285A1 (en) 2024-02-14
CN116867593A (zh) 2023-10-10
JP7052176B1 (ja) 2022-04-12

Similar Documents

Publication Publication Date Title
JP5365298B2 (ja) ドリル用インサートおよびインサートドリル
EP2181787B1 (en) End mill
JP4976181B2 (ja) スローアウェイドリルのチップ配置方法
WO2012117813A1 (ja) ガイドパッド、切削工具本体および切削工具
CA2960464A1 (en) Drill and drill head
CN110446575B (zh) 球头立铣刀
JP6470043B2 (ja) 旋削加工用工具
WO2018079489A1 (ja) 切削工具及び切削加工物の製造方法
JP2008137125A (ja) ドリル
WO2021038841A1 (ja) ドリル
WO2019044791A1 (ja) テーパーリーマ
JP5383149B2 (ja) ドリルおよび切削方法
JP5652540B2 (ja) ガイドパッド、切削工具本体および切削工具
JP2006281407A (ja) 非鉄金属加工用ドリル
WO2008050389A1 (en) Drill
WO2022215114A1 (ja) 切削工具
JP2009184044A (ja) 段付きツイストドリルおよびその製造方法
JP6941047B2 (ja) 回転工具及び切削加工物の製造方法
WO2021230176A1 (ja) ドリル及び切削加工物の製造方法
JP4815386B2 (ja) 3枚刃ボールエンドミル及び4枚刃ボールエンドミル
KR20110139217A (ko) 반경 방향 절삭날을 갖춘 절삭 공구
JP4965140B2 (ja) スローアウェイエンドミルおよび回転切削工具
WO2022049659A1 (ja) 回転切削工具用切削インサートおよび回転切削工具
CN112118928B (zh) 用于钻头的切削刀具以及钻头
JP4747283B2 (ja) 総形カッタ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021576996

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17768480

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935922

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180086256.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021935922

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021935922

Country of ref document: EP

Effective date: 20231106