WO2022213637A1 - 滤网安装状态检测方法、装置、电子设备及存储介质 - Google Patents

滤网安装状态检测方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022213637A1
WO2022213637A1 PCT/CN2021/135849 CN2021135849W WO2022213637A1 WO 2022213637 A1 WO2022213637 A1 WO 2022213637A1 CN 2021135849 W CN2021135849 W CN 2021135849W WO 2022213637 A1 WO2022213637 A1 WO 2022213637A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
time point
light quantity
filter screen
change
Prior art date
Application number
PCT/CN2021/135849
Other languages
English (en)
French (fr)
Inventor
韩钟辉
张晓斌
刘光朋
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022213637A1 publication Critical patent/WO2022213637A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver

Definitions

  • the present application relates to the technical field of smart home appliances, and in particular, to a method, device, electronic device and storage medium for detecting the installation state of a filter screen.
  • air exchange equipment such as air conditioners and air purifiers are equipped with filters for filtering air. After long-term use, they need to be cleaned or replaced to ensure the normal operation of such air exchange equipment. effect.
  • the purpose of the present application is to provide a method, device, electronic device and storage medium for detecting the installation state of a filter screen. It is used to solve the problem that the existing technology cannot accurately detect whether the filter screen is successfully installed.
  • the present application discloses a method for detecting the installation state of a filter screen, which is applied to a smart device.
  • the smart device includes a filter screen, a light emitting unit and a light receiving unit arranged on both sides of the filter screen.
  • the method includes: :
  • the light transmission amount information includes a plurality of light amount values
  • the light amount values represent the light beams received by the light receiving unit and emitted by the light emission unit and passed through the filter screen
  • determine the light amount change characteristics According to the light amount change characteristics, determine the installation state of the filter screen.
  • determining the sudden change time point according to the difference between the light intensity values corresponding to each of the receiving time points includes: according to the light intensity value corresponding to each of the receiving time points and a prediction The effective value interval is set, and the effective light value is determined; wherein, the effective light value is the light value located in the effective value interval; the receiving time point corresponding to the effective light value is determined.
  • the sudden change time point includes a first type of time point and a second type of time point
  • the first type of time point is that the light intensity value corresponding to the current receiving time point is higher than that of the previous one.
  • the light intensity value corresponding to the receiving time point changes the receiving time point by the first preset value;
  • the second type of time point is the light intensity value corresponding to the current receiving time point compared with the light corresponding to the previous receiving time point.
  • the receiving time point of the second preset value of the magnitude change wherein the first preset value is smaller than the second preset value; according to the timing characteristics between the multiple sudden change time points, the light quantity change feature is determined, Including: within a preset time period, if the first type of time point is before the second type of time point, determining that the light quantity change feature is a first light quantity feature, and the first light quantity feature represents the filter screen If the first type of time point is after the second type of time point, it is determined that the light quantity change feature is the second light quantity characteristic, and the second light quantity characteristic represents the installation process of the filter screen.
  • the light intensity value corresponding to the second type of time point is 0.
  • the light quantity change characteristic includes a first light quantity characteristic and a second light quantity characteristic
  • the first light quantity characteristic is the light quantity change of the light beam received by the light receiving unit during the installation of the filter screen
  • the second light quantity characteristic is the light quantity change characteristic of the light beam received by the light receiving unit in the process of removing the filter screen.
  • the method further includes: outputting prompt information corresponding to the installation state of the filter screen.
  • the present application discloses a filter screen installation state detection device, which is applied to a smart device.
  • the smart device includes a filter screen, a light emitting unit and a light receiving unit disposed on both sides of the filter screen.
  • the device includes :
  • the acquisition module is used to acquire the light transmission amount information, the light transmission amount information includes a plurality of light amount values, and the light amount values represent the light amount received by the light receiving unit and transmitted by the light emission unit and passed through the light transmission unit. the energy level of the beam of said filter;
  • a determining module configured to determine the light quantity variation characteristic according to the variation relationship between the light quantity values in the light transmission quantity information, and determine the installation state of the filter screen according to the light quantity variation characteristic.
  • the light intensity value of the light beam according to the difference between the light intensity values corresponding to each of the receiving time points, the sudden change time point is determined, wherein the sudden change time point is the receiving time indicating that the light intensity change value is greater than the first threshold value point, the light quantity change value is the change amount of the light quantity value corresponding to the current receiving time point compared with the light quantity value corresponding to the previous receiving time point;
  • the light quantity change characteristic is determined.
  • the determining module when determining the sudden change time point according to the difference between the light quantity values corresponding to each of the receiving time points, is specifically configured to: according to each of the receiving time points The light intensity value corresponding to the point and the preset effective value interval are used to determine the effective light intensity value; wherein, the effective light intensity value is the light intensity value located in the effective value interval; The receiving time point corresponding to the value is determined, and the effective receiving time point is determined; the mutation time point is determined according to the difference between the effective light quantity values corresponding to each said receiving time point.
  • the sudden change time point includes a first type of time point and a second type of time point
  • the first type of time point is that the light intensity value corresponding to the current receiving time point is higher than that of the previous one.
  • the light intensity value corresponding to the receiving time point changes the receiving time point by the first preset value;
  • the second type of time point is the light intensity value corresponding to the current receiving time point compared with the light corresponding to the previous receiving time point.
  • the receiving time point of the second preset value of the magnitude change wherein the first preset value is smaller than the second preset value; the determining module determines the When the light quantity change feature is described, it is specifically used to: within a preset time period, if the first type of time point is before the second type of time point, determine that the light quantity change characteristic is the first light quantity characteristic, and the first type of time point is determined as the first light quantity characteristic.
  • a light quantity characteristic characterizes the disassembly process of the filter; if the first type of time point is after the second type of time point, the light quantity change characteristic is determined to be the second light quantity characteristic, and the second light quantity characteristic represents The installation process of the filter screen.
  • the light intensity value corresponding to the second type of time point is 0.
  • the light quantity change characteristic includes a first light quantity characteristic and a second light quantity characteristic
  • the first light quantity characteristic is the light quantity change of the light beam received by the light receiving unit during the installation of the filter screen
  • the second light quantity characteristic is the light quantity change characteristic of the light beam received by the light receiving unit in the process of removing the filter screen.
  • the determining module is further configured to: output prompt information corresponding to the installation state of the filter screen.
  • the present application discloses an electronic device, comprising: a processor, a memory and a transceiver;
  • the processor is used to control the transceiver to send and receive signals; the memory is used to store a computer program; the processor is further used to call and run the computer program stored in the memory, so that the electronic device executes the method provided by any one of the implementation manners of the first aspect above.
  • the present application discloses a computer-readable storage medium, including computer code, which, when executed on a computer, causes the computer to execute the method provided by any one of the implementations of the above first aspect.
  • the present application discloses a computer program product, including program code, when the computer runs the computer program product, the program code executes the method provided by any one of the implementation manners of the above first aspect.
  • the present application discloses a chip including a processor.
  • the processor is configured to call and run the computer program stored in the memory, so as to perform the corresponding operations and/or processes performed in the imaging method of the embodiments of the present application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used for reading and executing the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information to be processed, and the processor acquires the data and/or information from the communication interface and processes the data and/or information.
  • the communication interface may be an input-output interface.
  • the present application obtains light transmission amount information, the light transmission amount information includes a plurality of light amount values, and the light amount values represent the light transmitted by the light emission unit and received by the light receiving unit.
  • the energy level of the light beam passing through the filter screen according to the change relationship between the light amount values in the light transmission amount information, determine the light amount change characteristics; according to the light amount change characteristics, determine the filter screen
  • the installation state when the user replaces the filter in the device, the occluded state of the light receiving unit set in the device will change, and the energy level of the light beam it receives will change.
  • the light transmittance information of the energy level change determines the light quantity change characteristic, and then determines the installation state of the filter screen corresponding to the light quantity change characteristic, realizes the accurate detection of the filter screen installation state, and avoids missed detection due to the uninstalled state of the filter screen. As a result, there is a problem that the device runs without a filter, which improves the user experience.
  • 1 is an application scenario diagram of the method for detecting the installation state of a filter screen provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a method for detecting a filter screen installation state provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a light emitting unit and a light receiving unit provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram illustrating a comparison between a light quantity change feature and a disassembly process of an air-conditioning filter provided by an embodiment of the present application;
  • FIG. 5 is a flowchart of a method for detecting a filter screen installation state provided by another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of step S203 in the embodiment shown in FIG. 5;
  • FIG. 7 is a schematic diagram of light quantity change characteristics during the loading and unloading process of a single-layer air-conditioning filter screen provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of light quantity change characteristics during the loading and unloading process of a multi-layer independent air conditioner filter screen provided by an embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of a filter screen installation state detection device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • connection and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of the two components.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of the two components.
  • the specific meanings of the above terms in this application can be understood according to specific situations.
  • Smart home appliances refer to home appliances formed by introducing microprocessors, sensor technology, and network communication technology into home appliances. They have the characteristics of intelligent control, intelligent perception and intelligent application. The operation process of intelligent home appliances often depends on the The application and processing of modern technologies such as networking, the Internet, and electronic chips, for example, smart home appliances can be connected to electronic devices to realize remote control and management of smart home appliances by users.
  • Terminal equipment refers to the electronic equipment with wireless connection function.
  • the terminal equipment can communicate with the above-mentioned smart home appliances by connecting to the Internet, or directly communicate with the above-mentioned smart home appliances through Bluetooth, wifi, etc.
  • the terminal device is, for example, a mobile device, a computer, an in-vehicle device built in a hover vehicle, or the like, or any combination thereof.
  • Mobile devices may include, for example, mobile phones, smart home devices, wearable devices, smart mobile devices, virtual reality devices, etc., or any combination thereof, wherein the wearable devices include, for example, smart watches, smart bracelets, pedometers, and the like.
  • Multiple refers to two or more, and other quantifiers are similar.
  • And/or which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the associated objects are an "or” relationship.
  • Correspondence may refer to an association relationship or binding relationship, and the correspondence between A and B refers to an association relationship or binding relationship between A and B.
  • FIG. 1 is an application scenario diagram of the method for detecting the installation state of a filter screen provided by an embodiment of the present application.
  • the method provided by this embodiment is applied in a smart home scenario.
  • the execution body of the method may be It is a smart air conditioner.
  • the smart air conditioner communicates with the terminal device or cloud server. After the user replaces the filter screen of the smart air conditioner, the smart air conditioner automatically detects the installation status of the filter screen, and displays the detection result through its own display.
  • the unit or the sounding unit outputs, or sends the detection result to the terminal device or cloud server to inform the user of the installation status of the filter, so as to avoid the problem of the device running without a filter due to the missed detection of the filter is not installed.
  • the filter screen of the indoor unit of the smart air conditioner is installed at the air outlet of the indoor unit to filter the air out of the air conditioner.
  • the air conditioner As the air conditioner is used for a long time, dust will accumulate on the air conditioner filter, which will block the mesh, which will affect the air output of the air conditioner and other health problems. , and send a prompt message to the user to remind the user to replace or clean the filter.
  • the air conditioner filter is not an essential part for the operation of the indoor unit of the air conditioner, the air conditioner can also be started normally if the air conditioner filter is not installed in time. Therefore, in this application scenario, the user often forgets to install the air conditioner filter.
  • a mechanical trigger structure is usually arranged at the installation position of the filter screen.
  • the trigger structure is triggered, thereby confirming that the air conditioner filter screen has been installed correctly.
  • the air-conditioning filter referred to in this embodiment may include a dust filter, and/or an air particulate filter for filtering PM2.5 particles and PM10 particles, etc. Therefore, when the air-conditioning filter includes multiple independent When the filter screen is used, it is necessary to set up multiple detection structures to test each independent filter screen respectively, which increases the overall complexity of the structure and increases the equipment design and processing costs.
  • FIG. 2 is a flow chart of a method for detecting the installation state of a filter screen provided by an embodiment of the present application, which is applied to a smart device.
  • the smart device includes a filter screen, a light emitting unit and a light receiving unit arranged on both sides of the filter screen, wherein, exemplarily , the intelligent device is, for example, an intelligent air conditioner, and the execution body of the method provided in this embodiment may be an intelligent air conditioner or a controller in an intelligent air conditioner.
  • the method for detecting the installation state of a filter screen provided in this embodiment includes the following steps:
  • Step S101 acquiring light transmittance information, which includes a plurality of light magnitude values, and the light magnitude values represent the energy level of the light beams received by the light receiving unit and emitted by the light emitting unit and passed through the filter.
  • FIG. 3 is a schematic diagram of a light emitting unit and a light receiving unit provided by an embodiment of the application.
  • the relative arrangement of the light emitting unit 31 and the light receiving unit 32 wherein the light emitting unit 31 can transmit Infrared, laser and other light beams, the light emitting unit 31 and the light receiving unit 32 are arranged on both sides of the air conditioning filter 33, more specifically, the light emitting unit 31 and the light receiving unit 32 are arranged on the fixed structure 34 for installing the air conditioning filter,
  • the air-conditioning filter 33 is installed on the fixed structure 34, the light beam emitted by the light emitting unit 31 passes through the air-conditioning filter 33 and is received by the light-receiving unit 32.
  • the air-conditioning filter 33 Since the air-conditioning filter 33 will block a part of the light beam, at this time, the The energy level of the light beam received by the light receiving unit 32 is low; and when the air conditioning filter 33 is taken out, the light beam emitted by the light transmitting unit 31 will not be blocked by the air conditioning filter 33, so the light beam received by the light receiving unit 32 has a lower energy level.
  • the energy level is relatively high, and the value representing the energy level of the light beam received by the light receiving unit 32 is the light quantity value. After the light receiving unit 32 receives the light beam, it is converted into a corresponding value according to the energy intensity of the light beam. generated by the digital signal, which will not be repeated here.
  • the transmitted light quantity information may be a sequence consisting of a plurality of light quantity values, more specifically, for example, the transmitted light quantity information is [a, 0, b, ...].
  • a, 0, b are light quantity values, which represent the energy level of the light beam, so the light quantity value is greater than or equal to zero.
  • Step S102 determining the variation characteristics of the light quantity according to the variation relationship between the light quantity values in the transmitted light quantity information.
  • each light quantity value in the light transmission quantity information since the energy intensity of the light beam represented by each light quantity value is related to whether the light beam is blocked and attenuated after being emitted by the light emitting unit, therefore, when When there is a change between the light values in the light transmittance information, it means that the state of the air conditioner filter installed between the light emitting unit and the light receiving unit has also changed.
  • the process of the filter screen being installed and dismantled shows a certain regularity, that is, the change of light quantity.
  • the light transmission amount information A is [a, 0, b, . feature; the light transmission amount information B is [b, 0, a, ...], and according to the change relationship between the light amount values in the light transmission amount information B, it is determined that the corresponding light amount change feature is the second light amount change feature, wherein , a, 0, b are light value, and the light value is greater than or equal to zero.
  • Step S103 determining the installation state of the filter screen according to the change characteristics of the light quantity.
  • the light quantity change feature represents different dynamic processes of the air conditioning filter, for example, the light quantity change feature represents the installation process or the disassembly process of the air conditioning filter. More specifically, for example, the light quantity change characteristic includes a first light quantity characteristic and a second light quantity characteristic, the first light quantity characteristic is the light quantity change characteristic of the light beam received by the light receiving unit in the process of installing the filter screen, and the second light quantity characteristic is the process of removing the filter screen. The light quantity variation characteristic of the light beam received by the light receiving unit.
  • the installation status of the filter can be determined according to the change characteristics of the light quantity.
  • FIG. 4 is a schematic diagram illustrating a comparison between a light quantity change feature and a disassembly process of an air conditioner filter according to an embodiment of the application.
  • the air conditioner filter includes a filter area 41 and a frame area 42. When the air conditioner filter is disassembled During the process, the filter area 41 and the frame area 42 of the air conditioner filter pass through and block the light beam 43.
  • the corresponding light value is a;
  • the frame area 42 of the screen blocks the light beam 43, the corresponding light quantity value is 0, and when the frame area 42 of the air conditioning filter leaves the light beam 43, the corresponding light quantity value is b.
  • the variation relationship between the above-mentioned light quantity values forms a first light quantity feature.
  • the generated light quantity value corresponds to the second light quantity feature, which will not be repeated here.
  • the air-conditioning filter includes a plurality of independent filters that can be disassembled and assembled independently, and the light quantity change feature may also include a third light quantity feature, a fourth light quantity feature, etc., which respectively represent the characteristics of different independent filters.
  • the combination of the installation process and the disassembly process can determine the current installation status of each independent filter screen.
  • the static light transmittance is tested by the light-emitting unit and the light-receiving unit arranged on both sides of the air-conditioning filter, so as to determine whether the air-conditioning filter is in the installed state or the non-installed state (that is, if If the transmittance is 100%, the filter is not installed; if the transmittance is less than 100%, the filter is installed).
  • the air conditioner filter includes a plurality of independently removable filters
  • the light-receiving unit tests the static transmittance, which can only determine the transmittance.
  • the light rate that is, the energy level of the beam
  • the light transmittance has decreased. Therefore, it is impossible to determine the current The exact installation status of the filter.
  • the light transmission amount information includes a plurality of light amount values, and the light amount values represent the energy level of the light beam received by the light receiving unit and emitted by the light emission unit and passing through the filter screen ;According to the change relationship between the light quantity values in the light transmittance information, determine the light quantity change characteristics; According to the light quantity change characteristics, determine the installation status of the filter screen, because when the user replaces the filter screen in the equipment, the equipment will be triggered.
  • the occluded state of the light-receiving unit set inside changes, so that the energy level of the light beam it receives changes, and the light amount change feature is determined by the light transmission amount information that characterizes the change process of the energy level of the light beam, and the light amount change feature can be It shows the installation and removal process of the filter screen, and then determines the installation state of the filter screen by showing the light quantity change characteristics during the installation and removal process of the filter screen. It is impossible to accurately judge the installation status of each filter.
  • the light transmittance information can be obtained through the light emitting unit and the light receiving unit provided in the smart air conditioner for detecting the clogging degree of the air conditioner filter, there is no need to additionally provide a mechanical trigger structure to judge the installation state, reducing the indoor air conditioner.
  • the design of the machine is complicated and the processing cost is reduced.
  • FIG. 5 is a flowchart of a method for detecting the installation state of a filter screen provided by another embodiment of the present application. As shown in FIG. 5 , the method for detecting the installation state of a filter screen provided by this embodiment On the basis of the state detection method, step S102 is further refined, and the step of outputting prompt information is added, then the filter installation state detection method provided by this embodiment includes the following steps:
  • Step S201 acquiring light transmission amount information, where the light transmission amount information includes a plurality of light amount values and corresponding timing information.
  • the transmitted light quantity information includes a plurality of light quantity values, and the light quantity values represent the energy level of the light beams received by the light receiving unit and emitted by the light emitting unit and passed through the filter screen.
  • the light transmittance information also includes timing information, and the timing information is used to represent the receiving time point when the light receiving unit receives the light beam corresponding to each light quantity value.
  • the timing information includes a plurality of receiving time points, and each receiving time point corresponds to a light quantity value respectively. The receiving time point represents the time when the light receiving unit receives the light beam corresponding to each light quantity value.
  • Step S202 determine the light intensity value of the light beam received at each receiving time point.
  • Step S203 Determine the sudden change time point according to the difference between the light intensity values corresponding to each receiving time point.
  • the timing information is, for example, a set of sequences including multiple receiving time points, the interval between each receiving time point is a sampling interval, and the sampling interval is, for example, 1 second, that is, every 1 second interval, a receiving time point is generated , and obtain the light value once.
  • the air-conditioning filter when the air-conditioning filter is in a static state, the light values basically do not change.
  • the air-conditioning filter is in a moving state, for example, when the user removes the filter to clean and replace the filter, due to When the filter moves, the light value will change accordingly, and the time point corresponding to the sudden change of the light value is the sudden change time point.
  • the sudden change time point is the receiving time point representing that the light quantity change value is greater than the first threshold value
  • the light quantity change value is the change amount of the light quantity value corresponding to the current receiving time point compared with the light quantity value corresponding to the previous receiving time point .
  • step S203 includes three specific implementation steps of steps S2031, S2032, and S2033:
  • the effective light intensity value is the light intensity value located in the effective value interval.
  • S2032 Determine the effective receiving time point corresponding to the receiving time point corresponding to the effective light quantity value.
  • S2033 Determine a sudden change time point according to the difference between the effective light intensity values corresponding to each receiving time point.
  • the valid value interval can be obtained through preset configuration information.
  • the valid value interval is ⁇ [0], [0.4-0.5], [0.95-1] ] ⁇ , that is, the effective light value is a light value in the range of 0, 40%-50% of the maximum light value, and 95%-100% of the maximum light value.
  • the effective light value is 0, the corresponding beam is blocked by the frame area of the air conditioner filter; the effective light value is 0.4-0.5, the corresponding beam is blocked by the filter area of the air conditioner filter; the effective light value is 0.95-1, The corresponding beam is not blocked.
  • the valid value interval may be set by the user according to experience, or may be determined by the intelligent air conditioner after processing the collected historical data of the light quantity value, which will not be described in detail here.
  • the air-conditioning filter Since the air-conditioning filter is generally disassembled and installed manually by the user, in the process, the light beam will be blocked by the air-conditioning filter from different angles and positions to different degrees, and there may also be complex phenomena such as reflection and refraction of the light beam. Therefore, the light quantity value of the light beam received by the light receiving unit will also fluctuate to a certain extent. During this process, the light beam received by the light receiving unit is not a stable value, because this embodiment passes between the light quantity values. Therefore, the fluctuation of the light quantity value will interfere with the determination of the sudden change time point, thereby affecting the accurate judgment of the light quantity change characteristics.
  • the effective light quantity value is determined through the effective value interval, and only the stable light quantity value in the valid value interval is selected to determine the sudden change time point, thereby avoiding the sudden change time point caused by the fluctuation of the light quantity value. Inaccurate problems, improve the accuracy of judging the characteristics of light changes.
  • Step S204 according to the time series characteristics between the multiple sudden change time points, determine the light quantity change characteristics.
  • the sudden change time point includes a first type of time point and a second type of time point
  • the first type of time point is that the light intensity value corresponding to the current receiving time point changes from the light intensity value corresponding to the previous receiving time point by the first predetermined time point.
  • the receiving time point of the set value; the second type of time point is the receiving time point when the light intensity value corresponding to the current receiving time point is changed by a second preset value from the light intensity value corresponding to the previous receiving time point, wherein the first preset The value is less than the second preset value.
  • the light quantity change characteristics are determined according to the time series characteristics between multiple mutation time points, including:
  • the light quantity change characteristic is determined as the first light quantity characteristic, and the first light quantity characteristic characterizes the disassembly process of the filter; if the first type of time point is before the second type of time point After the second type of time point, the light quantity change characteristic is determined as the second light quantity characteristic, and the second light quantity characteristic characterizes the installation process of the filter screen.
  • the light quantity value corresponding to the second type of time point is 0.
  • FIG. 7 is a schematic diagram of light quantity change characteristics during the loading and unloading process of a single-layer air conditioner filter provided by an embodiment of the present application.
  • the sudden change time point A is the first type of time point, and the corresponding light quantity value changes from 70 to 0.
  • the mutation time point B is the second type of time point, and the corresponding light value changes from 0 to 100, that is, from the air-conditioning filter.
  • the first type of time point is before the second type of time point
  • the light quantity change characteristic is the first light quantity characteristic, that is, it represents the process of removing the air conditioner filter; correspondingly, the sudden change Time point C is the second type of time point, and sudden change time point D is the first type of time point.
  • the first type of time point is after the second type of time point. process.
  • FIG. 8 is a schematic diagram of light intensity change characteristics during the loading and unloading process of a multi-layer independent air conditioner filter provided by an embodiment of the present application.
  • the sudden change time point A1 is the first type of time point, and the corresponding light intensity value changes from 40 to The moment of 0, that is, the moment when the filter area of the air-conditioning filter a blocks the light beam to the frame area that blocks the light beam
  • the mutation time point B1 is the second type of time point
  • the first type of time point is before the second type of time point, and the light quantity change characteristic is the first light quantity characteristic, that is, it represents the process of removing the air conditioner filter a
  • the mutation time point A2 is the first type of time point, which corresponds to the moment when the light quantity value changes from 70 to 0, that is, the moment when the filter area of the air conditioner filter b blocks the light beam to the frame area that blocks the light beam
  • the mutation time point B2 It is the second type of time point, and the corresponding light value changes from 0 to 100, that is, the moment when the light beam is blocked from the frame area of the air conditioner filter b to not blocked.
  • the first type of time point is at the second type of time point.
  • the light quantity change feature is the first light quantity feature, that is, it represents the process of removing the air conditioner filter b.
  • each mutation time point it is also possible to determine the first light quantity feature corresponding to the air conditioning filter c, that is, to represent the process of removing the air conditioning filter c.
  • the respective installation processes can be determined, which will not be repeated here. .
  • the disassembly process and the installation process of the air conditioning filter are determined, so as to determine the installation state of the filter.
  • step S205 the installation state of the filter screen is determined according to the change characteristics of the light quantity.
  • Step S206 outputting prompt information corresponding to the installation state of the filter screen.
  • the smart air conditioner is provided with a display unit, such as a display screen, through which prompt information corresponding to the installation status is displayed to inform the user that the air conditioner filter has been installed correctly or not.
  • a display unit such as a display screen
  • prompt information corresponding to the installation status is displayed to inform the user that the air conditioner filter has been installed correctly or not.
  • the display shows "Filter 1 is installed correctly, Filter 2 is not installed”.
  • the user can understand the installation situation of the filter screen of the smart air conditioner.
  • FIG. 9 is a schematic structural diagram of a filter installation state detection device provided by an embodiment of the application, applied to a smart device.
  • the smart device includes a filter, a light emitting unit and a light receiving unit disposed on both sides of the filter, as shown in FIG. 9 .
  • the filter screen installation state detection device 3 provided in this embodiment includes:
  • the acquisition module 31 is used to acquire light transmission amount information, the light transmission amount information includes a plurality of light amount values, and the light amount values represent the energy level of the light beams received by the light receiving unit and emitted by the light emission unit and passed through the filter;
  • the determining module 32 is configured to determine the variation characteristics of the light quantity according to the variation relationship between the light quantity values in the light transmission quantity information, and determine the installation state of the filter screen according to the variation characteristics of the light quantity.
  • the light transmission amount information includes timing information, and the timing information is used to represent the time point when the light receiving unit receives the light beam corresponding to each light amount value; the determining module 32 is based on the light transmission amount information in the
  • the variation relationship between the light quantity values when determining the light quantity variation characteristics, is specifically used to: determine the light quantity value of the light beam received at each receiving time point according to the time sequence information; according to the light quantity corresponding to each receiving time point The difference between the values determines the sudden change time point, where the sudden change time point is the receiving time point that indicates that the light quantity change value is greater than the first threshold value, and the light quantity change value is the light quantity value corresponding to the current receiving time point compared with the previous receiving time point. Corresponding variation of the light quantity value; according to the time series characteristics between multiple sudden change time points, the light quantity variation characteristic is determined.
  • the determining module 32 when determining the sudden change time point according to the difference between the light quantity values corresponding to each receiving time point, is specifically configured to: according to the light quantity corresponding to each receiving time point value and the preset effective value interval, determine the effective light quantity value; wherein, the effective light quantity value is the light quantity value located in the valid value interval; the receiving time point corresponding to the effective light quantity value is determined as the effective receiving time point; According to the difference between the effective light values corresponding to each receiving time point, the sudden change time point is determined.
  • the mutation time point includes a first type of time point and a second type of time point
  • the first type of time point is the light intensity value corresponding to the current receiving time point compared with the light intensity corresponding to the previous receiving time point
  • the receiving time point when the value changes by the first preset value
  • the second type of time point is the receiving time point when the light intensity value corresponding to the current receiving time point changes by the second preset value compared with the light intensity value corresponding to the previous receiving time point, wherein , the first preset value is smaller than the second preset value
  • the determination module 32 determines the light quantity change characteristics according to the time sequence characteristics between multiple sudden change time points, it is specifically used for: within the preset time period, if the first type of time If the point is before the second type of time point, the light quantity change characteristic is determined as the first light quantity characteristic, and the first light quantity characteristic characterizes the disassembly process of the filter; if the first type of time point is after the second type of time point, the light quantity change
  • the light intensity value corresponding to the second type of time point is 0.
  • the light quantity change characteristic includes a first light quantity characteristic and a second light quantity characteristic
  • the first light quantity characteristic is the light quantity change characteristic of the light beam received by the light receiving unit during the installation of the filter screen
  • the second light quantity characteristic is the disassembly The light quantity variation characteristics of the light beam received by the light receiving unit during the filtering process.
  • the determining module 32 is further configured to: output prompt information corresponding to the installation state of the filter screen.
  • the filter screen installation state detection device 3 provided in this embodiment can implement the technical solution of the method embodiment shown in any one of FIGS. 2-8 , and its implementation principle and technical effect are similar, and are not repeated here.
  • FIG. 10 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 4 provided by this embodiment includes: a memory 41 , a processor 42 and a computer program.
  • the computer program is stored in the memory 41 and is configured to be executed by the processor 42 to implement the filter installation state detection method provided by any one of the embodiments corresponding to FIG. 2 to FIG. 8 of the present application.
  • the memory 41 and the processor 42 are connected through a bus 43 .
  • An embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the filter screen provided by any one of the embodiments corresponding to FIG. 2 to FIG. 8 of the present application Installation status detection method.
  • the computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • An embodiment of the present application provides a computer program product, including a computer program, and the computer program is executed by a processor as the filter installation state detection method provided by any one of the embodiments corresponding to FIG. 2 to FIG. 8 of the present application.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division.
  • there may be other division methods for example, multiple modules or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请实施例公开了一种滤网安装状态检测方法、装置、电子设备及存储介质,通过获取透光量信息,透光量信息中包括多个光量值,光量值表征光接收单元接收到的由光发射单元发射并穿过滤网的光束的能量水平;根据透光量信息中各光量值之间的变化关系,确定光量变化特征;根据光量变化特征,确定滤网的安装状态,由于在用户对设备内的滤网进行更换时,会引发设备内设置的光接收单元的被遮挡状态发生变化,通过表征该光束的能量水平变化的透光量信息确定光量变化特征,进而确定与该光量变化特征对应的滤网的安装状态,实现了对滤网安装状态的精确检测。

Description

滤网安装状态检测方法、装置、电子设备及存储介质
本申请要求于2021年4月8日提交中国专利局、申请号为202110379754.2、申请名称为“滤网安装状态检测方法、装置、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能家电技术领域,尤其涉及一种滤网安装状态检测方法、装置、电子设备及存储介质。
背景技术
目前,例如空调、空气净化器等空气交换设备,其内部均设置有用于对空气进行过滤的滤网,在长时间使用后,需要对其进行清洗或更换,以保证此类空气交换设备的正常功效。
然而,在对此类空气交换设备进行滤网更换的过程中,现有技术中无法准确的检测滤网是否成功安装,若滤网没有成功安装,将会导致设备无虑网运行的问题,影响设备的空气过滤效果,降低用户使用体验。
相应地,本领域需要一种新的滤网安装状态检测方法、装置、电子设备及存储介质来解决上述问题。
发明内容
本申请的目的在于提供一种滤网安装状态检测方法、装置、电子设备及存储介质。用于解决现有技术中无法准确的检测滤网是否成功安装的问题。
第一方面,本申请公开了一种滤网安装状态检测方法,应用于智能设备,所述智能设备包括滤网、设置于所述滤网两侧的光发射单元和光接收单元,所述方法包括:
获取透光量信息,所述透光量信息中包括多个光量值,所述光量值表征所述光接收单元接收到的由所述光发射单元发射并穿过所述滤网的光束的能量水平;根据所述透光量信息中各所述光量值之间的变化关系,确定光量变化特征;根据所述光量变化特征,确定所述滤网的安装状态。
在一种可能的实现方式中,所述透光量信息中包括时序信息,所述时序信息用于表征所述光接收单元接收到各所述光量值对应的光束的接收时间点;根据所述透光量信息中各所述光量值之间的变化关系,确定光量变化特征,包括:根据所述时序信息,确定在每一所述接收时间点接收到的光束的光量值;根据每一所述接收时间点对应的光量值之间的差值,确定突变时间点,其中,所述突变时间点为表征光量变化值大于第一阈值的接收时间点,所述光量变化值为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值的变化量;根据多个所述突变时间点之间的时序特征,确定所述光量变化特征。
在一种可能的实现方式中,根据每一所述接收时间点对应的光量值之间的差值,确定突变时间点,包括:根据每一所述接收时间点对应的光量值和预设的有效取值区间,确定 有效光量值;其中,所述有效光量值为位于所述有效取值区间的所述光量值;将所述有效光量值对应的接收时间点,确定有效接收时间点;根据每一所述接收时间点对应的有效光量值之间的差值,确定突变时间点。
在一种可能的实现方式中,所述突变时间点包括第一类时间点和第二类时间点,所述第一类时间点为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值变化第一预设值的接收时间点;所述第二类时间点为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值变化第二预设值的接收时间点,其中,所述第一预设值小于第二预设值;根据多个所述突变时间点之间的时序特征,确定所述光量变化特征,包括:在预设时长内,若所述第一类时间点在所述第二类时间点之前,则确定所述光量变化特征为第一光量特征,所述第一光量特征表征所述滤网的拆卸过程;若所述第一类时间点在所述第二类时间点之后,则确定所述光量变化特征为第二光量特征,所述第二光量特征表征所述滤网的安装过程。
在一种可能的实现方式中,所述第二类时间点对应的光量值为0。
在一种可能的实现方式中,所述光量变化特征包括第一光量特征和第二光量特征,所述第一光量特征为安装所述滤网过程中所述光接收单元接收的光束的光量变化特征,所述第二光量特征为拆卸所述滤网过程中所述光接收单元接收的光束的光量变化特征。
在一种可能的实现方式中,所述方法还包括:输出与所述滤网的安装状态对应的提示信息。
第二方面,本申请公开了一种滤网安装状态检测装置,应用于智能设备,所述智能设备包括滤网、设置于所述滤网两侧的光发射单元和光接收单元,所述装置包括:
获取模块,用于获取透光量信息,所述透光量信息中包括多个光量值,所述光量值表征所述光接收单元接收到的由所述光发射单元发射并穿过所述滤网的光束的能量水平;
确定模块,用于根据所述透光量信息中各所述光量值之间的变化关系,确定光量变化特征,并根据所述光量变化特征,确定所述滤网的安装状态。
在一种可能的实现方式中,所述透光量信息中包括时序信息,所述时序信息用于表征所述光接收单元接收到各所述光量值对应的光束的接收时间点;所述确定模块在根据所述透光量信息中各所述光量值之间的变化关系,确定光量变化特征时,具体用于:根据所述时序信息,确定在每一所述接收时间点接收到的光束的光量值;根据每一所述接收时间点对应的光量值之间的差值,确定突变时间点,其中,所述突变时间点为表征光量变化值大于第一阈值的接收时间点,所述光量变化值为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值的变化量;根据多个所述突变时间点之间的时序特征,确定所述光量变化特征。
在一种可能的实现方式中,所述确定模块在根据每一所述接收时间点对应的光量值之间的差值,确定突变时间点时,具体用于:根据每一所述接收时间点对应的光量值和预设的有效取值区间,确定有效光量值;其中,所述有效光量值为位于所述有效取值区间的所述光量值;将所述有效光量值对应的接收时间点,确定有效接收时间点;根据每一所述接收时间点对应的有效光量值之间的差值,确定突变时间点。
在一种可能的实现方式中,所述突变时间点包括第一类时间点和第二类时间点,所述第一类时间点为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值 变化第一预设值的接收时间点;所述第二类时间点为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值变化第二预设值的接收时间点,其中,所述第一预设值小于第二预设值;所述确定模块在根据多个所述突变时间点之间的时序特征,确定所述光量变化特征时,具体用于:在预设时长内,若所述第一类时间点在所述第二类时间点之前,则确定所述光量变化特征为第一光量特征,所述第一光量特征表征所述滤网的拆卸过程;若所述第一类时间点在所述第二类时间点之后,则确定所述光量变化特征为第二光量特征,所述第二光量特征表征所述滤网的安装过程。
在一种可能的实现方式中,所述第二类时间点对应的光量值为0。
在一种可能的实现方式中,所述光量变化特征包括第一光量特征和第二光量特征,所述第一光量特征为安装所述滤网过程中所述光接收单元接收的光束的光量变化特征,所述第二光量特征为拆卸所述滤网过程中所述光接收单元接收的光束的光量变化特征。
在一种可能的实现方式中,所述确定模块还用于:输出与所述滤网的安装状态对应的提示信息。
第三方面,本申请公开了一种电子设备,包括:处理器、存储器和收发器;
处理器用于控制收发器收发信号;存储器用于存储计算机程序;处理器还用于调用并运行存储器中存储的计算机程序,使得该电子设备执行以上第一方面的任一实现方式提供的方法。
第四方面,本申请公开了一种计算机可读存储介质,包括计算机代码,当其在计算机上运行时,使得计算机执行以上第一方面的任一实现方式提供的方法。
第五方面,本申请公开了一种计算机程序产品,包括程序代码,当计算机运行计算机程序产品时,该程序代码执行以上第一方面的任一实现方式提供的方法。
第六方面,本申请公开了一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请实施例的成像方法中执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
结合上述技术方案,本申请通过获取透光量信息,所述透光量信息中包括多个光量值,所述光量值表征所述光接收单元接收到的由所述光发射单元发射并穿过所述滤网的光束的能量水平;根据所述透光量信息中各所述光量值之间的变化关系,确定光量变化特征;根据所述光量变化特征,确定所述滤网的安装状态,由于在用户对设备内的滤网进行更换时,会引发设备内设置的光接收单元的被遮挡状态发生变化,进而使其接收到的光束的能量水平发生变化,通过表征该光束的能量水平变化的透光量信息确定光量变化特征,进而确定与该光量变化特征对应的滤网的安装状态,实现了对滤网安装状态的精确检测,避免了由于滤网未安装状态的漏检而导致的设备无滤网运行的问题,提高用户使用体验。
附图说明
图1为本申请实施例提供的滤网安装状态检测方法的一种应用场景图;
图2为本申请一个实施例提供的滤网安装状态检测方法的流程图;
图3为本申请实施例提供的一种光发射单元和光接收单元的示意图;
图4为本申请实施例提供的一种光量变化特征与空调滤网的拆卸过程的对照示意图;
图5为本申请另一个实施例提供的滤网安装状态检测方法的流程图;
图6为图5所示实施例中步骤S203的流程示意图;
图7为本申请实施例提供的一种单层空调滤网装卸过程的光量变化特征示意图;
图8为本申请实施例提供的一种多层独立空调滤网装卸过程的光量变化特征示意图;
图9为本申请一个实施例提供的滤网安装状态检测装置的结构示意图;
图10为本申请一个实施例提供的电子设备的示意图。
具体实施方式
首先,本领域技术人员应当理解的是,这些实施方式仅仅用于解释本申请的技术原理,并非旨在限制本申请的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。例如,虽然本申请的滤网安装状态检测方法是结合智能空调来描述的,但是这并不是限定的,其他具有滤网安装状态检测需求的设备均可配置本申请的滤网安装状态检测方法,如空气净化器设备。
此外,还需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个构件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本申请中的具体含义。
首先对本申请所涉及的名词进行解释:
1)智能家电设备,是指将微处理器、传感器技术、网络通信技术引入家电设备后形成的家电产品,具有智能控制、智能感知及智能应用的特征,智能家电设备的运作过程往往依赖于物联网、互联网以及电子芯片等现代技术的应用和处理,例如智能家电设备可以通过连接电子设备,实现用户对智能家电设备的远程控制和管理。
2)终端设备,指具有无线连接功能的电子设备,终端设备可以通过连接互联网,与如上的智能家电设备进行通信连接,也可以直接通过蓝牙、wifi等方式与如上的智能家电设备进行通信连接。在一些实施例中,终端设备例如为移动设备、电脑、或悬浮车中内置的车载设备等,或其任意组合。移动设备例如可以包括手机、智能家居设备、可穿戴设备、智能移动设备、虚拟现实设备等,或其任意组合,其中,可穿戴设备例如包括:智能手表、智能手环、计步器等。
3)“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
4)“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
下面对本申请实施例的应用场景进行解释:
图1为本申请实施例提供的滤网安装状态检测方法的一种应用场景图,如图1所示,本实施例提供的方法应用于智能家居场景下,具体地,本方法的执行主体可以为智能空调, 如图1所示,智能空调与终端设备或者云服务器通信连接,用户在对智能空调进行滤网更换后,智能空调自动检测滤网的安装状态,并将检测结果通过自身的显示单元或发声单元输出,或者,将检测结果发送给终端设备或云服务器,以告知用户滤网的安装状态,避免出现由于滤网未安装状态的漏检而导致的设备无滤网运行的问题。
以智能空调为例,智能空调室内机的滤网是安装在室内机的出风口位置,用于对空调出风进行过滤。随着空调使用时长的积累,空调滤网上会堆积灰尘,堵塞网孔,造成对空调出风量的影响以及其他卫生问题,因此,智能空调通过对空调滤网进行检测,根据空调滤网的堵塞程度,向用户发出提示信息,以提醒用户对滤网进行更换或清洗。然而,由于空调滤网对于空调室内机的运行并非必要部件,及时未安装空调滤网,空调也可以正常的启动运行,因此,在该应用场景下,常出现用户忘记安装空调滤网的情况,导致空调室内机无滤网运行,造成使用隐患。为了解决上述问题,现有技术中,通常是通过在滤网安装位置设置机械触发结构,当空调滤网被安装在预设的安装位置后,触发结构被触发,进而确定空调滤网已正确安装。
然而,上述技术方案中,存在以下技术问题,第一,由于空调室内机的内部空间紧凑,在其内部设置用于专门检测滤网是否安装正确的机械触发机构,会提高设计和制造复杂度,增加设备的生成成本。第二,本实施例中所指的空调滤网,可以包括滤尘网,和/或,用于过滤PM2.5颗粒、PM10颗粒的空气颗粒物过滤网等,因此,当空调滤网包括多个独立滤网时,需要设置多个检测结构分别对每一独立滤网进行检测,增加了结构的整体复杂性,提高了设备设计、加工成本。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图2为本申请一个实施例提供的滤网安装状态检测方法的流程图,应用于智能设备,智能设备包括滤网、设置于滤网两侧的光发射单元和光接收单元,其中,示例性地,智能设备例如为智能空调,本实施例提供的方法的执行主体可以为智能空调或智能空调中的控制器,如图2所示,本实施例提供的滤网安装状态检测方法,包括以下几个步骤:
步骤S101,获取透光量信息,透光量信息中包括多个光量值,光量值表征光接收单元接收到的由光发射单元发射并穿过滤网的光束的能量水平。
示例性地,图3为本申请实施例提供的一种光发射单元和光接收单元的示意图,如图3所示,光发射单元31和光接收单元32的相对设置,其中,光发射单元31可以发射红外线、激光等光束,光发射单元31和光接收单元32设置在空调滤网33的两侧,更具体地,光发射单元31和光接收单元32设置在用于安装空调滤网的固定结构34上,当空调滤网33被安装在固定结构34上时,光发射单元31发射的光束穿过空调滤网33,被光接收单元32接收,由于空调滤网33会阻挡一部分光束,因此,此时由光接收单元32接收的光束的能量水平较低;而当空调滤网33被取出时,光发射单元31发射的光束不会受到空调滤网33的阻挡,因此光接收单元32接收到的光束的能量水平较高,表征该光接收单元32接收到的光束的能量水平的值,即为光量值,该光量值由光接收单元32接收到光束后,根据光束的能量强度,转化为对应的数字信号而产生,此处不再对此不过赘述。
进一步地,透光量信息可以是一组有多个光量值组成的序列,更具体地,例如,透光 量信息为[a,0,b,…]。其中,a、0、b为光量值,光量值表征光束的能量水平,因此光量值大于或等于零。
步骤S102,根据透光量信息中各光量值之间的变化关系,确定光量变化特征。
示例性地,在获取透光量信息中各光量值后,由于各光量值所表征的光束的能量强度,与该光束由光发射单元发出后是否被阻挡从而发生衰减有关,因此,当透光量信息中各光量值之间发生变化时,说明安装在光发射单元和光接收单元之间的空调滤网的状态也发生了变化,而各光量值之间的变化关系,根据空调滤网被安装和拆卸的过程,表现出一定的规律性特征,即光量变化特征。
更具体地,例如透光量信息A为[a,0,b,…],根据该透光量信息A中的光量值之间的变化关系,确定对应的光量变化特征为第一光量变化特征;透光量信息B为[b,0,a,…],根据该透光量信息B中的光量值之间的变化关系,确定对应的光量变化特征为第二光量变化特征,其中,a、0、b为光量值,光量值大于或等于零。
步骤S103,根据光量变化特征,确定滤网的安装状态。
示例性地,光量变化特征表征空调滤网不同的动态过程,例如,光量变化特征表征空调滤网的安装过程或拆卸过程。更加具体地,例如,光量变化特征包括第一光量特征和第二光量特征,第一光量特征为安装滤网过程中光接收单元接收的光束的光量变化特征,第二光量特征为拆卸滤网过程中光接收单元接收的光束的光量变化特征。根据光量变化特征,即可确定滤网的安装状态。例如,光量变化特征仅包括第一光量特征,确认滤网处于已被拆卸的未安装状态;光量变化特征包括第二光量特征,则确认滤网处于已安装状态。图4为本申请实施例提供的一种光量变化特征与空调滤网的拆卸过程的对照示意图,如图4所示,空调滤网包括滤网区域41和边框区域42,当空调滤网拆卸的过程中,空调滤网的滤网区域41和边框区域42先后经过并遮挡光束43,具体地,在空调滤网的滤网区域41遮挡光束43时,对应的光量值为a;在空调滤网的边框区域42遮挡光束43时,对应的光量值为0,在空调滤网的边框区域42离开光束43时,对应的光量值为b。进而,上述光量值之间的变化关系形成第一光量特征。类似的,在空调滤网被装回时,生成的光量值对应形成第二光量特征,此处不做进行赘述。
在一个具体地应用场景中,空调滤网包括多个可独立拆装的独立滤网,则光量变化特征还可以包括第三光量特征、第四光量特征等特征,分别表征不同的独立滤网的安装过程、拆卸过程的组合,从而确定当前每一独立滤网的安装状态。
相关技术中,为了确定空调滤网的安装状态,通过设置于空调滤网两侧的光发射单元和光接收单元测试静态透光率,从而确定空调滤网处于已安装状态或未安装状态(即若透光率为100%,则滤网处于未安装状态,若透光率小于100%,则滤网处于已安装状态)。然而,当在空调滤网包括多个可独立拆装的独立滤网的应用场景下,当其中的一个或多个独立滤网被拆卸后,光接收单元测试静态透光率,仅能确定透光率(即光束的能量水平)有所上升,然而,由于空调滤网同时存在堵塞而增加光束衰减,而导致透光率下降的问题,因此,无法仅通过静态的透光率测试而确定当前滤网确切的安装状态。
而本申请实施例中,通过获取透光量信息,透光量信息中包括多个光量值,光量值表征光接收单元接收到的由光发射单元发射并穿过滤网的光束的能量水平;根据透光量信息中各光量值之间的变化关系,确定光量变化特征;根据光量变化特征,确定滤网的安装状 态,由于在用户对设备内的滤网进行更换时,会引发设备内设置的光接收单元的被遮挡状态发生变化,进而使其接收到的光束的能量水平发生变化,通过表征该光束的能量水平变化过程的透光量信息确定光量变化特征,该光量变化特征能够表现滤网的安装、拆卸过程,进而通过表现滤网的安装、拆卸过程的光量变化特征确定滤网的安装状态,实现了对滤网安装状态的精确检测,避免多个独立滤网情况下,无法准确判断各滤网的安装状态的问题。
同时,由于透光量信息可以通过设置在智能空调内的用于检测空调滤网堵塞程度的光发射单元和光接收单元而获得,因此,无需额外设置机械触发结构进行安装状态判断,降低智能空调室内机的设计加工复杂的,降低加工成本。
图5为本申请另一个实施例提供的滤网安装状态检测方法的流程图,如图5所示,本实施例提供的滤网安装状态检测方法在图2所示实施例提供的滤网安装状态检测方法的基础上,对步骤S102进一步细化,并增加输出提示信息的步骤,则本实施例提供的滤网安装状态检测方法包括以下几个步骤:
步骤S201,获取透光量信息,透光量信息中包括多个光量值和对应的时序信息。
其中,示例性地,透光量信息中包括多个光量值,光量值表征光接收单元接收到的由光发射单元发射并穿过滤网的光束的能量水平。透光量信息中还包括时序信息,时序信息用于表征光接收单元接收到各光量值对应的光束的接收时间点。具体地,时序信息中包括多个接收时间点,每一接收时间点分别与一个光量值对应。接收时间点表征光接收单元接收到各光量值对应的光束的时间。
步骤S202,根据时序信息,确定在每一接收时间点接收到的光束的光量值。
步骤S203,根据每一接收时间点对应的光量值之间的差值,确定突变时间点。
具体地,时序信息例如为一组包含多个接收时间点的序列,各接收时间点之间的间隔为采样间隔,采样间隔例如为1秒钟,即每间隔1秒钟,生成一个接收时间点,并进行一次光量值的获取。进一步地,在空调滤网处于静止状态时,各光量值之间是基本不变化的,然而,当空调滤网处于移动状态时,例如用户拆卸滤网进行滤网清洗更换的过程中,由于滤网的移动,则该光量值会相应发生改变,在光量值发生突变时所对应的时间点,即为突变时间点。
其中,示例性地,突变时间点为表征光量变化值大于第一阈值的接收时间点,光量变化值为当前接收时间点对应的光量值较前一接收时间点对应的光量值的变化量。
可选地,如图6所示,步骤S203包括步骤S2031、S2032、S2033三个具体的实现步骤:
S2031,根据每一接收时间点对应的光量值和预设的有效取值区间,确定有效光量值;其中,有效光量值为位于有效取值区间的光量值。
S2032,将有效光量值对应的接收时间点,确定有效接收时间点。
S2033,根据每一接收时间点对应的有效光量值之间的差值,确定突变时间点。
示例性地,有效取值区间可以通过预设的配置信息获得,例如,假设光量值为归一化数值,则有效取值区间为{[0],[0.4-0.5],[0.95-1]},即有效光量值为位于0、最大光量值的40%-50%和最大光量值的95%-100%范围内的光量值。其中,有效光量值为0,对应光束被空调滤网的边框区域遮挡;有效光量值为0.4-0.5,对应光束被空调滤网的滤网区域遮挡;有效光量值为0.95-1,对应光束未被遮挡。该有效值区间可以是用户根据经验设置, 也可以是智能空调根据采集的光量值的历史数据进行处理后确定的,此处不展开赘述。
由于空调滤网一般是通过用户手工拆卸和安装的,在该过程中,光束会被空调滤网从不同角度、位置,以不同程度遮挡,同时还可以存着光束的反射、折射等复杂现象,因此,会导致光接收单元接收到的光束的光量值也会产生一定的波动,该过程中,光接收单元接收到的光束并不是稳定的数值,由于本实施例是通过光量值之间的变化关系确定光量变化特征,因此,光量值的波动会对突变时间点的确定产生干扰,进而影响对光量变化特征的准确判断。本实施例中,通过有效取值区间,确定有效光量值,只选取处于有效取值区间的稳定的光量值进行突变时间点的确定,进而避免了由于光量值波动造成的突变时间点不准确的问题,提高判断光量变化特征的准确性。
步骤S204,根据多个突变时间点之间的时序特征,确定光量变化特征。
示例性地,突变时间点包括第一类时间点和第二类时间点,第一类时间点为当前接收时间点对应的光量值较前一接收时间点对应的光量值变化第一预设值的接收时间点;第二类时间点为当前接收时间点对应的光量值较前一接收时间点对应的光量值变化第二预设值的接收时间点,其中,第一预设值小于第二预设值。
在一种可能的实现方式中,根据多个突变时间点之间的时序特征,确定光量变化特征,包括:
在预设时长内,若第一类时间点在第二类时间点之前,则确定光量变化特征为第一光量特征,第一光量特征表征滤网的拆卸过程;若第一类时间点在第二类时间点之后,则确定光量变化特征为第二光量特征,第二光量特征表征滤网的安装过程。其中,示例性地,第二类时间点对应的光量值为0。
图7为本申请实施例提供的一种单层空调滤网装卸过程的光量变化特征示意图,如图7所示,突变时间点A为第一类时间点,对应光量值由70变为0的时刻,即从空调滤网的滤网区域遮挡光束变为边框区域遮挡光束的时刻,突变时间点B为第二类时间点,对应光量值由0变为100,即从空调滤网的边框区域遮挡光束变为不遮挡光束的时刻,此时,第一类时间点在第二类时间点之前,光量变化特征为第一光量特征,即表征拆卸空调滤网的过程;相应的,突变时间点C为第二类时间点,突变时间点D为第一类时间点,第一类时间点在第二类时间点之后,光量变化特征为第二光量特征,即表征安装空调滤网的过程。
图8为本申请实施例提供的一种多层独立空调滤网装卸过程的光量变化特征示意图,如图8所示,突变时间点A1为第一类时间点,对应光量值由40变为0的时刻,即从空调滤网a的滤网区域遮挡光束变为边框区域遮挡光束的时刻,突变时间点B1为第二类时间点,对应光量值由0变为70,即从空调滤网a的边框区域遮挡光束变为不遮挡光束的时刻,此时,第一类时间点在第二类时间点之前,光量变化特征为第一光量特征,即表征拆卸空调滤网a的过程,之后,突变时间点A2为第一类时间点,对应光量值由70变为0的时刻,即从空调滤网b的滤网区域遮挡光束变为边框区域遮挡光束的时刻,突变时间点B2为第二类时间点,对应光量值由0变为100,即从空调滤网b的边框区域遮挡光束变为不遮挡光束的时刻,此时,第一类时间点在第二类时间点之前,光量变化特征为第一光量特征,即表征拆卸空调滤网b的过程。
依次类推,根据各突变时间点,还可以确定空调滤网c对应的第一光量特征,即表征拆卸空调滤网c的过程。类似的,通过确定空调滤网a对应的第二光量特征、空调滤网b 对应的第二光量特征、空调滤网c的第二光量特征,可以确定各自的安装过程,此处不再进行赘述。
本实施例中,通过确定空调滤网的第一光量特征和第二光量特征,确定空调滤网的拆卸过程和安装过程,从而确定滤网的安装状态。在多独立滤网的应用场景下,可以实现对各独立滤网的安装状态跟踪,实现对每一独立空调滤网的检测,避免在多滤网情况下,漏安装的问题。提高滤网检测精准性。
步骤S205,根据光量变化特征,确定滤网的安装状态。
步骤S206,输出与滤网的安装状态对应的提示信息。
示例性地,智能空调设置有显示单元,例如显示屏,通过显示屏显示安装状态对应的提示信息,以告知用户空调滤网已正确安装或未正确安装。例如,通过显示屏显示“滤网1已正确安装,滤网2未安装”。从而使用户了解智能空调的滤网安装情况。或者将提示信息发送至用户绑定的终端设备,以提醒用户进行滤网安装。
图9为本申请一个实施例提供的滤网安装状态检测装置的结构示意图,应用于智能设备,智能设备包括滤网、设置于滤网两侧的光发射单元和光接收单元,如图9所示,本实施例提供的滤网安装状态检测装置3包括:
获取模块31,用于获取透光量信息,透光量信息中包括多个光量值,光量值表征光接收单元接收到的由光发射单元发射并穿过滤网的光束的能量水平;
确定模块32,用于根据透光量信息中各光量值之间的变化关系,确定光量变化特征,并根据光量变化特征,确定滤网的安装状态。
在一种可能的实现方式中,透光量信息中包括时序信息,时序信息用于表征光接收单元接收到各光量值对应的光束的接收时间点;确定模块32在根据透光量信息中各光量值之间的变化关系,确定光量变化特征时,具体用于:根据时序信息,确定在每一接收时间点接收到的光束的光量值;根据每一接收时间点对应的光量值之间的差值,确定突变时间点,其中,突变时间点为表征光量变化值大于第一阈值的接收时间点,光量变化值为当前接收时间点对应的光量值较前一接收时间点对应的光量值的变化量;根据多个突变时间点之间的时序特征,确定光量变化特征。
在一种可能的实现方式中,确定模块32在根据每一接收时间点对应的光量值之间的差值,确定突变时间点时,具体用于:根据每一接收时间点对应的光量值和预设的有效取值区间,确定有效光量值;其中,有效光量值为位于有效取值区间的光量值;将有效光量值对应的接收时间点,确定有效接收时间点;根据每一接收时间点对应的有效光量值之间的差值,确定突变时间点。
在一种可能的实现方式中,突变时间点包括第一类时间点和第二类时间点,第一类时间点为当前接收时间点对应的光量值较前一接收时间点对应的光量值变化第一预设值的接收时间点;第二类时间点为当前接收时间点对应的光量值较前一接收时间点对应的光量值变化第二预设值的接收时间点,其中,第一预设值小于第二预设值;确定模块32在根据多个突变时间点之间的时序特征,确定光量变化特征时,具体用于:在预设时长内,若第一类时间点在第二类时间点之前,则确定光量变化特征为第一光量特征,第一光量特征表征滤网的拆卸过程;若第一类时间点在第二类时间点之后,则确定光量变化特征为第二光量特征,第二光量特征表征滤网的安装过程。
在一种可能的实现方式中,第二类时间点对应的光量值为0。
在一种可能的实现方式中,光量变化特征包括第一光量特征和第二光量特征,第一光量特征为安装滤网过程中光接收单元接收的光束的光量变化特征,第二光量特征为拆卸滤网过程中光接收单元接收的光束的光量变化特征。
在一种可能的实现方式中,确定模块32还用于:输出与滤网的安装状态对应的提示信息。
其中,获取模块31和确定模块32依次连接。本实施例提供的滤网安装状态检测装置3可以执行如图2-8任一项所示的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图10为本申请一个实施例提供的电子设备的示意图,如图10所示,本实施例提供的电子设备4包括:存储器41,处理器42以及计算机程序。
其中,计算机程序存储在存储器41中,并被配置为由处理器42执行以实现本申请图2-图8所对应的实施例中任一实施例提供的滤网安装状态检测方法。
其中,存储器41和处理器42通过总线43连接。
相关说明可以对应参见图2-图8所对应的实施例中的步骤所对应的相关描述和效果进行理解,此处不做过多赘述。
本申请一个实施例提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行以实现本申请图2-图8所对应的实施例中任一实施例提供的滤网安装状态检测方法。
其中,计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本申请一个实施例提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行如本申请图2-图8所对应的实施例中任一实施例提供的滤网安装状态检测方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。
至此,已经结合附图所示的优选实施方式描述了本申请的技术方案,但是,本领域技术人员容易理解的是,本申请的保护范围显然不局限于这些具体实施方式。在不偏离本申请的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更 改或替换之后的技术方案都将落入本申请的保护范围之内。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。

Claims (18)

  1. 一种滤网安装状态检测方法,其特征在于,应用于智能设备,所述智能设备包括滤网、设置于所述滤网两侧的光发射单元和光接收单元,所述方法包括:
    获取透光量信息,所述透光量信息中包括多个光量值,所述光量值表征所述光接收单元接收到的由所述光发射单元发射并穿过所述滤网的光束的能量水平;
    根据所述透光量信息中各所述光量值之间的变化关系,确定光量变化特征;
    根据所述光量变化特征,确定所述滤网的安装状态。
  2. 根据权利要求1所述的方法,其特征在于,所述透光量信息中包括时序信息,所述时序信息用于表征所述光接收单元接收到各所述光量值对应的光束的接收时间点;根据所述透光量信息中各所述光量值之间的变化关系,确定光量变化特征,包括:
    根据所述时序信息,确定在每一所述接收时间点接收到的光束的光量值;
    根据每一所述接收时间点对应的光量值之间的差值,确定突变时间点,其中,所述突变时间点为表征光量变化值大于第一阈值的接收时间点,所述光量变化值为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值的变化量;
    根据多个所述突变时间点之间的时序特征,确定所述光量变化特征。
  3. 根据权利要求2所述的方法,其特征在于,根据每一所述接收时间点对应的光量值之间的差值,确定突变时间点,包括:
    根据每一所述接收时间点对应的光量值和预设的有效取值区间,确定有效光量值,其中,所述有效光量值为位于所述有效取值区间的所述光量值;
    将所述有效光量值对应的接收时间点,确定有效接收时间点;
    根据每一所述接收时间点对应的有效光量值之间的差值,确定突变时间点。
  4. 根据权利要求2所述的方法,其特征在于,所述突变时间点包括第一类时间点和第二类时间点,所述第一类时间点为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值变化第一预设值的接收时间点;所述第二类时间点为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值变化第二预设值的接收时间点,其中,所述第一预设值小于第二预设值;根据多个所述突变时间点之间的时序特征,确定所述光量变化特征,包括:
    在预设时长内,若所述第一类时间点在所述第二类时间点之前,则确定所述光量变化特征为第一光量特征,所述第一光量特征表征所述滤网的拆卸过程;若所述第一类时间点在所述第二类时间点之后,则确定所述光量变化特征为第二光量特征,所述第二光量特征表征所述滤网的安装过程。
  5. 根据权利要求4所述的方法,其特征在于,所述第二类时间点对应的光量值为0。
  6. 根据权利要求1所述的方法,其特征在于,所述光量变化特征包括第一光量特征和第二光量特征,所述第一光量特征为安装所述滤网过程中所述光接收单元接收的光束的光量变化特征,所述第二光量特征为拆卸所述滤网过程中所述光接收单元接收的光束的光量变化特征。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    输出与所述滤网的安装状态对应的提示信息。
  8. 一种滤网安装状态检测装置,其特征在于,应用于智能设备,所述智能设备包括 滤网、设置于所述滤网两侧的光发射单元和光接收单元,所述装置包括:
    获取模块,用于获取透光量信息,所述透光量信息中包括多个光量值,所述光量值表征所述光接收单元接收到的由所述光发射单元发射并穿过所述滤网的光束的能量水平;
    确定模块,用于根据所述透光量信息中各所述光量值之间的变化关系,确定光量变化特征,并根据所述光量变化特征,确定所述滤网的安装状态。
  9. 根据权利要求8所述的装置,其特征在于,所述透光量信息中包括时序信息,所述时序信息用于表征所述光接收单元接收到各所述光量值对应的光束的接收时间点;
    所述确定模块在根据所述透光量信息中各所述光量值之间的变化关系,确定光量变化特征时,具体用于:
    根据所述时序信息,确定在每一所述接收时间点接收到的光束的光量值;
    根据每一所述接收时间点对应的光量值之间的差值,确定突变时间点,其中,所述突变时间点为表征光量变化值大于第一阈值的接收时间点,所述光量变化值为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值的变化量;
    根据多个所述突变时间点之间的时序特征,确定所述光量变化特征。
  10. 根据权利要求9所述的装置,其特征在于,所述确定模块在根据每一所述接收时间点对应的光量值之间的差值,确定突变时间点时,具体用于:
    根据每一所述接收时间点对应的光量值和预设的有效取值区间,确定有效光量值,其中,所述有效光量值为位于所述有效取值区间的所述光量值;
    将所述有效光量值对应的接收时间点,确定有效接收时间点;
    根据每一所述接收时间点对应的有效光量值之间的差值,确定突变时间点。
  11. 根据权利要求9所述的装置,其特征在于,所述突变时间点包括第一类时间点和第二类时间点,所述第一类时间点为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值变化第一预设值的接收时间点;所述第二类时间点为当前所述接收时间点对应的光量值较前一所述接收时间点对应的光量值变化第二预设值的接收时间点,其中,所述第一预设值小于第二预设值;
    所述确定模块在根据多个所述突变时间点之间的时序特征,确定所述光量变化特征时,具体用于:
    在预设时长内,若所述第一类时间点在所述第二类时间点之前,则确定所述光量变化特征为第一光量特征,所述第一光量特征表征所述滤网的拆卸过程;
    若所述第一类时间点在所述第二类时间点之后,则确定所述光量变化特征为第二光量特征,所述第二光量特征表征所述滤网的安装过程。
  12. 根据权利要求11所述的装置,其特征在于,所述第二类时间点对应的光量值为0。
  13. 根据权利要求8所述的装置,其特征在于,所述光量变化特征包括第一光量特征和第二光量特征,所述第一光量特征为安装所述滤网过程中所述光接收单元接收的光束的光量变化特征,所述第二光量特征为拆卸所述滤网过程中所述光接收单元接收的光束的光量变化特征。
  14. 根据权利要求8-13任一项所述的装置,其特征在于,所述确定模块还用于:输出与所述滤网的安装状态对应的提示信息。
  15. 一种电子设备,其特征在于,包括:存储器,处理器以及计算机程序;
    其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行以实现如权利要求1至7中任一项所述的滤网安装状态检测方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如权利要求1至7任一项所述的滤网安装状态检测方法。
  17. 一种计算机程序产品,其特征在于,包括程序代码,当计算机运行所述计算机程序产品时,所述程序代码执行所述权利要求1至7中任一项所述的方法。
  18. 一种芯片,其特征在于,包括处理器,所述处理器用于调用并运行存储器中存储的计算机程序,以执行所述权利要求1至7中任一项所述的方法。
PCT/CN2021/135849 2021-04-08 2021-12-06 滤网安装状态检测方法、装置、电子设备及存储介质 WO2022213637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110379754.2 2021-04-08
CN202110379754.2A CN113093300B (zh) 2021-04-08 2021-04-08 滤网安装状态检测方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022213637A1 true WO2022213637A1 (zh) 2022-10-13

Family

ID=76675335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135849 WO2022213637A1 (zh) 2021-04-08 2021-12-06 滤网安装状态检测方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN113093300B (zh)
WO (1) WO2022213637A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093300B (zh) * 2021-04-08 2022-11-18 青岛海尔空调器有限总公司 滤网安装状态检测方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088800A (zh) * 2017-12-04 2018-05-29 广东美的制冷设备有限公司 传感器检验方法、传感器和空气处理设备
CN108344718A (zh) * 2018-02-08 2018-07-31 芜湖美智空调设备有限公司 滤网洁净度检测方法及传感器、空气处理设备
CN110779162A (zh) * 2019-11-29 2020-02-11 宁波奥克斯电气股份有限公司 一种滤网积尘检测装置、方法及空调器
US10864471B1 (en) * 2020-05-23 2020-12-15 Sid Chaudhuri IoT enabled smart filter device
CN113093300A (zh) * 2021-04-08 2021-07-09 青岛海尔空调器有限总公司 滤网安装状态检测方法、装置、电子设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205245353U (zh) * 2015-11-30 2016-05-18 美的集团武汉制冷设备有限公司 空调室内机和空调器
CN105913535B (zh) * 2016-06-10 2018-07-03 南京交通职业技术学院 一种复合检测型乘客计数装置
US10429303B2 (en) * 2017-03-24 2019-10-01 International Business Machines Corporation Portable and autonomous, IoT enabled, optical measurement system
CN108333149B (zh) * 2018-02-08 2020-08-14 芜湖美智空调设备有限公司 滤网洁净度检测方法及滤网洁净度传感器、空气处理设备
CN108278697A (zh) * 2018-03-16 2018-07-13 青岛海尔空调器有限总公司 双流式新风净化装置
CN110701736B (zh) * 2019-11-14 2021-05-14 宁波奥克斯电气股份有限公司 空调控制方法、装置和空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088800A (zh) * 2017-12-04 2018-05-29 广东美的制冷设备有限公司 传感器检验方法、传感器和空气处理设备
CN108344718A (zh) * 2018-02-08 2018-07-31 芜湖美智空调设备有限公司 滤网洁净度检测方法及传感器、空气处理设备
CN110779162A (zh) * 2019-11-29 2020-02-11 宁波奥克斯电气股份有限公司 一种滤网积尘检测装置、方法及空调器
US10864471B1 (en) * 2020-05-23 2020-12-15 Sid Chaudhuri IoT enabled smart filter device
CN113093300A (zh) * 2021-04-08 2021-07-09 青岛海尔空调器有限总公司 滤网安装状态检测方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113093300A (zh) 2021-07-09
CN113093300B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
JP5054120B2 (ja) マップ上に通信事象の表示を供給および提供する装置ならびに方法
WO2022205999A1 (zh) 滤网可用时长确定方法、装置、电子设备及存储介质
EP2523112A1 (en) Sensor interface, and methods and apparatus pertaining to same
WO2022213637A1 (zh) 滤网安装状态检测方法、装置、电子设备及存储介质
CN114422412B (zh) 一种设备检测方法、装置和通信设备
CN111402883B (zh) 一种复杂环境下分布式语音交互系统中就近响应系统和方法
CN111966081A (zh) 基于车载显示的故障诊断方法、系统、介质、设备及车辆
CN110513827B (zh) 一种滤网脏堵的检测方法及装置
CN114710173B (zh) 一种干扰信号过滤方法、装置、电子设备和存储介质
US9407297B1 (en) Techniques for dynamically tuning mobile device antennas
CN110530769A (zh) 一种滤网脏堵的检测方法及装置
KR20190050485A (ko) Ui 관리 서버 및 ui 관리 서버의 제어 방법
CN113547879A (zh) 轮胎漏气的检测方法、装置、车辆及计算机存储介质
CN110227268B (zh) 一种检测违规游戏帐号的方法及装置
CN116360853B (zh) 寄存器映射方法、装置、设备及介质
WO2019000468A1 (zh) 用户位置识别方法、装置、存储介质及电子设备
CN115163266B (zh) 一种颗粒捕集器灰分负荷确定方法、装置、设备和介质
CN116303456A (zh) 工业数据处理方法、系统、装置及计算机可读存储介质
CN115543893A (zh) 一种服务器及其接口扩展方法、装置、系统及存储介质
WO2022213593A1 (zh) 滤尘网清洁度的确定方法、装置、空调及存储介质
CN111506468A (zh) 硬盘状态监控系统及方法
CN116418615A (zh) 车辆数据处理系统和方法、电子设备及可读存储介质
CN202508029U (zh) 一种基于can总线amt综合信息显示系统
CN111770472A (zh) 车辆定位方法、装置、车辆、存储介质以及终端
CN115357813B (zh) 采样方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935854

Country of ref document: EP

Kind code of ref document: A1