WO2022205999A1 - 滤网可用时长确定方法、装置、电子设备及存储介质 - Google Patents
滤网可用时长确定方法、装置、电子设备及存储介质 Download PDFInfo
- Publication number
- WO2022205999A1 WO2022205999A1 PCT/CN2021/135694 CN2021135694W WO2022205999A1 WO 2022205999 A1 WO2022205999 A1 WO 2022205999A1 CN 2021135694 W CN2021135694 W CN 2021135694W WO 2022205999 A1 WO2022205999 A1 WO 2022205999A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- air outlet
- output
- filter
- current total
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000004590 computer program Methods 0.000 claims abstract description 19
- 230000007423 decrease Effects 0.000 claims abstract description 14
- 238000009825 accumulation Methods 0.000 claims description 40
- 239000000428 dust Substances 0.000 claims description 40
- 238000012360 testing method Methods 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 13
- 230000009467 reduction Effects 0.000 claims description 10
- 239000011148 porous material Substances 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 230000002028 premature Effects 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000004378 air conditioning Methods 0.000 description 51
- 238000004891 communication Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000001914 filtration Methods 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/39—Monitoring filter performance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/28—Arrangement or mounting of filters
Definitions
- the present application relates to the technical field of smart home appliances, and in particular, to a method, device, electronic device and storage medium for determining the usable duration of a filter screen.
- the air filters in such equipment need to be replaced or cleaned after a period of time.
- the exchange device in the prior art, usually sends a prompt message to the user after detecting that the air filter of one of the air outlet units reaches the clogging threshold.
- the filter replacement prompt will be issued based on the clogging degree of one or several filters, which will lead to the early replacement of some filters. Waste the life of the filter screen and increase the user's cost of use.
- the purpose of the present application is to provide a method, device, electronic device and storage medium for determining the usable duration of a filter. It is used to solve the problem of wasting the service life of the filter screen and increasing the use cost of the user in the prior art.
- the present application discloses a method for determining the usable duration of a filter, including:
- determining the available duration according to the current total amount of air output includes: determining the redundancy of air output according to the difference between the current total amount of air output and a preset first air output threshold according to the preset dust accumulation coefficient, determine the available duration corresponding to the air outlet redundancy, wherein the dust accumulation coefficient is used to represent the reduction of the air outlet redundancy per unit time, and the dust The accumulation coefficient is determined by the filter screen information, and the filter screen information is used to characterize the pore size of the air filter screen.
- the method further includes: acquiring historical filter screen replacement data, where the filter screen replacement historical data represents the historical replacement cycle of each of the air filters; according to the preset second air outlet threshold and The difference between the first air outlet thresholds and the filter replacement history data is used to determine the dust accumulation coefficient, wherein the preset second air outlet threshold is when the electronic air filters are not blocked , the sum of the air volume of each of the air outlet units.
- determining the current total amount of air output according to the clogging information of each of the air filters includes: determining, according to the clogging information of each of the air filters, the Maximum air output; according to the sum of the maximum air output of each of the air output units, the current total air output is determined.
- acquiring the blockage information of each of the air filters includes: acquiring a preset stepped air volume sequence, where the stepped air volume sequence includes at least two different air volume values; Air volume sequence, control the air output of each of the air outlet units with different air volume values in turn, and detect the air volume of each of the air outlet units through the air volume detection unit arranged at the air outlet; based on each of the air outlet units The detected air volume when the air is discharged with different air volume values determines the blockage information of each of the air filters.
- the method before acquiring the preset stepped air volume sequence, the method further includes: responding to a detection instruction input by a user, entering a test state, wherein the air outlet unit of the electronic device in the test state does not emit air .
- the method further includes: outputting the available time period, and/or outputting clogging information of each of the air filters.
- the present application discloses a device for determining the usable duration of a filter.
- the device is applied to an electronic device, and the electronic device includes a plurality of air outlet units, each of which corresponds to an air filter.
- the device includes:
- an acquisition module configured to acquire blockage information of each of the air filters, the blockage information being used to characterize the degree of blockage of the air filter;
- the first determination module is used to determine the current total air output according to the blockage information of each of the air filters, wherein the current total air output is used to represent the current sum of the actual air output of each of the air output units , the current total air output decreases as the blockage degree of the air filter increases;
- the second determining module is configured to determine the available duration according to the current total amount of outlet air, wherein the available duration represents that the current total amount of outlet air is reduced to a preset value due to an increase in the clogging degree of the air filter. The time required for the first air outlet threshold.
- the second determining module is specifically configured to: determine the air output redundancy according to the difference between the current total air output and a preset first air output threshold; Set the dust accumulation coefficient to determine the available duration corresponding to the air outlet redundancy, wherein the dust accumulation coefficient is used to represent the reduction of the air outlet redundancy per unit time, and the dust accumulation coefficient is a
- the filter screen information is determined, and the filter screen information is used to represent the pore size of the air filter screen.
- the acquisition module is further configured to: acquire filter replacement history data, where the filter replacement history data represents the historical replacement cycle of each of the air filters; The difference between the wind threshold and the first air outlet threshold, and the filter replacement history data, to determine the dust accumulation coefficient, wherein the preset second air outlet threshold is each of the electronic air filters When not blocked, the sum of the air outlet volume of each of the air outlet units.
- the first determining module is specifically configured to: determine the maximum air volume of each corresponding air outlet unit according to the clogging information of each air filter; The sum of the maximum air output of the air unit determines the current total air output.
- the first determining module when acquiring the blockage information of each of the air filters, is specifically configured to: acquire a preset stepped air volume sequence, where the stepped air volume sequence includes at least two different air volume values; according to the step air volume sequence, control the air output of each of the air outlet units with different air volume values in turn, and detect the output of each of the air outlet units through the air volume detection unit arranged at the air outlet. Air volume; the blockage information of each of the air filters is determined based on the detected air volume when each of the air outlet units emits air with different air volume values.
- the acquisition module before acquiring the preset stepped air volume sequence, is further configured to: enter a test state in response to a detection instruction input by a user, wherein the output of the electronic device in the test state is The air unit is not ventilated.
- the apparatus further includes: an interaction module, configured to: output the available duration, and/or output the clogging information of each of the air filters.
- the present application discloses an electronic device, comprising: a processor, a memory and a transceiver;
- the processor is used to control the transceiver to send and receive signals; the memory is used to store a computer program; the processor is further used to call and run the computer program stored in the memory, so that the electronic device executes the method provided by any one of the implementation manners of the first aspect above.
- the present application discloses a computer-readable storage medium, including computer code, which, when executed on a computer, causes the computer to execute the method provided by any one of the implementations of the above first aspect.
- the present application discloses a computer program product, including program code, when the computer runs the computer program product, the program code executes the method provided by any one of the implementation manners of the above first aspect.
- the present application discloses a chip including a processor.
- the processor is configured to call and run the computer program stored in the memory, so as to perform the corresponding operations and/or processes performed in the imaging method of the embodiments of the present application.
- the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used for reading and executing the computer program in the memory.
- the chip further includes a communication interface, and the processor is connected to the communication interface.
- the communication interface is used to receive data and/or information to be processed, and the processor acquires the data and/or information from the communication interface and processes the data and/or information.
- the communication interface may be an input-output interface.
- the present application obtains the clogging information of each of the air filters, and the clogging information is used to characterize the clogging degree of the air filter;
- the current total air output is used to represent the sum of the current actual air output of each of the air output units, and the current total air output decreases with the increase of the clogging degree of the air filter; according to
- the current total amount of air output is determined as an available time period, wherein the available time period represents the time required for the current total amount of air output to be reduced to a preset first air output threshold due to an increase in the clogging degree of the air filter. duration.
- the attenuation of the air outlet volume caused by it can be supplemented by other air outlet units by increasing the air outlet volume, so that the total air outlet volume remains unchanged. Therefore, according to the blockage information of each air filter, the current total amount of air outlet is determined, and then the available time is determined according to the current total amount of air outlet.
- the replacement cycle can be shortened to avoid premature replacement of the air filter and reduce the user's cost of use.
- FIG. 1 is an application scenario diagram of a method for determining the available duration of a filter screen provided by an embodiment of the present application
- FIG. 2 is a flowchart of a method for determining the usable duration of a filter screen provided by an embodiment of the present application
- step S101 in the embodiment shown in FIG. 2;
- FIG. 4 is a schematic diagram of clogging information of an air conditioner filter screen provided by an embodiment of the present application.
- FIG. 5 is a flowchart of a method for determining the usable duration of a filter screen provided by another embodiment of the present application.
- FIG. 6 is a flowchart of a method for implementing step S205 in the embodiment shown in FIG. 5;
- FIG. 7 is a schematic structural diagram of a device for determining the usable duration of a filter screen provided by an embodiment of the present application.
- FIG. 8 is a schematic diagram of an electronic device according to an embodiment of the present application.
- connection and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of the two components.
- connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication of the two components.
- the specific meanings of the above terms in this application can be understood according to specific situations.
- Smart home appliances refer to home appliances formed by introducing microprocessors, sensor technology, and network communication technology into home appliances. They have the characteristics of intelligent control, intelligent perception and intelligent application. The operation process of intelligent home appliances often depends on the The application and processing of modern technologies such as networking, the Internet, and electronic chips, for example, smart home appliances can be connected to electronic devices to realize remote control and management of smart home appliances by users.
- Terminal equipment refers to the electronic equipment with wireless connection function.
- the terminal equipment can communicate with the above-mentioned smart household appliances by connecting to the Internet, or directly connect with the above-mentioned smart household appliances through Bluetooth, wifi, etc. Make a communication connection.
- the terminal device is, for example, a mobile device, a computer, an in-vehicle device built in a hover vehicle, or the like, or any combination thereof.
- Mobile devices may include, for example, mobile phones, smart home devices, wearable devices, smart mobile devices, virtual reality devices, etc., or any combination thereof, wherein the wearable devices include, for example, smart watches, smart bracelets, pedometers, and the like.
- Multiple refers to two or more, and other quantifiers are similar.
- And/or which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
- the character "/" generally indicates that the associated objects are an "or” relationship.
- Correspondence may refer to an association relationship or binding relationship, and the correspondence between A and B refers to an association relationship or binding relationship between A and B.
- the execution subject of the method can be an intelligent air conditioner , as shown in Figure 1, after the intelligent air conditioner receives the operation command from the terminal device or the cloud server, it starts the operation according to the operation command.
- the operation command includes temperature parameters and air volume parameters, which are respectively used to control the cooling/heating of the intelligent air conditioner.
- Temperature and air output wherein the intelligent air conditioner includes multiple air output units, and each air output unit can output air with different air volume parameters.
- each air outlet unit is provided with an air conditioner filter screen for filtering air
- the intelligent air conditioner monitors the air filter screen of each air outlet unit, and determines and outputs an air filter screen for the smart air conditioner according to the monitoring results. The time remaining for the overall replacement.
- the smart air conditioner can be a central smart air conditioner, a commercial smart air conditioner, etc. Since such smart air conditioners require professional maintenance personnel to perform maintenance work such as cleaning and replacing the air conditioner filters, users can follow the embodiments of the present application.
- the remaining duration output by the provided method for determining the available duration of the filter screen is used to carry out the warranty for the replacement of the overall filter screen of the smart air conditioner, or the smart air conditioner sends the remaining duration output by the method for determining the available duration of the filter screen provided according to the embodiment of the present application to
- the server of the after-sales maintenance party realizes the intelligent after-sales maintenance of the intelligent air conditioner.
- the air conditioner filter screen needs to be replaced or cleaned after a period of time.
- the intelligent air conditioner usually detects that the air filter screen of one of the air outlet units is blocked. After the threshold is reached, a prompt message is sent to the user.
- a filter replacement prompt will be issued based on the clogging degree of one or several filters. It will lead to the early replacement of some filters and waste the service life of the filters.
- the electronic device includes a plurality of air outlet units, and each air outlet unit corresponds to an air filter screen.
- the electronic device For example, it is an intelligent air conditioner.
- This embodiment takes an intelligent air conditioner as an example to describe the method for determining the usable duration of a filter provided by this embodiment.
- the execution subject of the method for determining the usable duration of a filter provided by this embodiment may be an intelligent air conditioner or an intelligent air conditioner.
- the air filter is an air conditioner filter. More specifically, the air conditioner filter may include a dust filter, and/or an air particle filter for filtering PM2.5 particles and PM10 particles, etc.
- the air outlet unit includes a fan, a corresponding air outlet channel and an air outlet.
- the air conditioning filter screen is set at the position of the air outlet or in the air outlet channel.
- the setting of the air conditioning filter screen follows the conventional setting method of the air conditioning filter screen in the field, which is not done here. Specially limited. As shown in FIG. 2 , the method for determining the usable duration of a filter provided by this embodiment includes the following steps:
- step S101 the clogging information of each air conditioner filter is acquired, and the clogging information is used to represent the clogging degree of the air conditioner filter.
- the clogging information may be information representing the clogging degree of the air conditioning filter obtained after the sensor detects the air conditioning filter. More specifically, the clogging degree of the air conditioning filter refers to the value that it hinders the passage of air and reduces the amount of air passing through. Among them, there are many ways to detect the air conditioner filter through the sensor.
- the smart air conditioner is provided with a light emitting unit for emitting a light signal, and a light receiving unit for receiving the light signal. The light emitting unit and the light receiving unit are opposite to each other.
- the process of acquiring the blockage information includes: controlling the light emitting unit to send light to the light receiving unit; and determining the blockage information according to the amount of light received by the light receiving unit.
- the light emitting unit may include an infrared transmitter, a laser transmitter, etc., and the light emitting unit is used as a light source to emit light to the air conditioning filter screen, and a light receiving unit is arranged on the other side of the air conditioning filter screen to receive the light passing through the filter screen. light.
- the light transmittance of the air-conditioning filter When the air-conditioning filter is blocked, the light transmittance of the air-conditioning filter will be affected, and the amount of light received by the light-receiving unit will change, thereby determining the degree of blockage of the air-conditioning filter.
- the amount of light received by the light receiving unit is directly related to the clogging degree of the air conditioning filter, and has a fixed mapping relationship. The specific mapping relationship can be obtained through tests and experiments, and will not be repeated here.
- the clogging information of each air-conditioning filter can be obtained by responding to a detection instruction input by the user, entering a testing state, and performing a clogging test of the air-conditioning filter in the testing state, wherein the exemplary Ground, the steps of obtaining the clogging information of each air-conditioning filter by performing the air-conditioning filter clogging test under the test state, as shown in Figure 3, include:
- Step S1011 acquiring a preset stepped air volume sequence, where the stepped air volume sequence includes at least two different air volume values.
- Step S1012 control the air output of each air outlet unit with different air volume values, and detect the air outlet volume of each air outlet unit through the air volume detection unit disposed at the air outlet.
- Step S1013 Determine the blockage information of each air-conditioning filter based on the detected air volume when each air outlet unit emits air with different air volume values.
- the stepped air volume sequence is a sequence consisting of at least two air volume values, wherein the air volume value may be a specific value representing the size of the air volume, such as 300 cubic meters per hour; it may also be a percentage value based on the maximum air volume, such as 90%, 50%. Further, due to the attenuation of the actual air volume by the air-conditioning filter set in the smart air conditioner, it is affected by many factors, such as the structure and size of the air-conditioning filter, and its blocking ability to the air outlet from the air outlet unit is not linear. When the air volume value of the air outlet unit is different, the corresponding air volume attenuation rate is also different.
- the air conditioner filter of some filter materials can increase the air volume.
- the permeability of the air outlet is small, so that the attenuation of the outlet air volume is small.
- the attenuation rate of the outlet air volume is 10%.
- the air outlet gear corresponding to the air outlet volume parameter is "low".
- the wind speed is small, the permeability of the air in the filter material will be reduced, and the attenuation of the air volume will be larger, for example, the attenuation rate of the air volume will be 30%. At this time, it is equivalent to a large degree of clogging of the air conditioning filter.
- FIG. 4 is a schematic diagram of clogging information of an air conditioning filter provided by an embodiment of the application. As shown in FIG.
- the clogging information of an air conditioning filter can be represented as a set of two-dimensional sequences, and different air volume values correspond to one Specifically, as shown in Figure 4, when the air volume value is 1, the corresponding blocking degree value is 50; when the air volume value is 2, the corresponding blocking degree value is 30; when the air volume value is 3, the corresponding The clogging degree value is 20, and the unit of the air volume value and the clogging degree value can be determined according to a specific algorithm.
- the air volume value 1 is the first gear wind speed of the air outlet unit; Block 50%.
- the blockage information of the air-conditioning filter can be determined by sequentially testing the air volume values in the stepped air volume sequence.
- each air volume in the ladder air volume sequence is determined according to the air volume corresponding to the specific air outlet position of the intelligent air conditioner.
- the ladder air volume sequence may be different.
- the air volume sequence may be data preset inside the smart air conditioner when the smart air conditioner leaves the factory.
- Step S102 according to the blockage information of each air-conditioning filter screen, determine the current total air output, wherein the current total air output is used to represent the sum of the current actual air output of each air outlet unit. The degree of clogging of the net increases and decreases.
- the air outlet volume of each air outlet unit is determined according to the blockage degree of the air conditioner filter screen represented by the blockage information.
- the air outlet volume of each air outlet unit may refer to the air outlet volume when each air outlet unit emits air at a maximum air volume value.
- the sum of the maximum air output of each air outlet unit preset according to the blockage information is determined as the current total air output.
- the current total air output is equivalent to the sum of the maximum air output that can be achieved by each air outlet unit based on the current blockage of each air conditioning filter.
- the current total air output also represents the maximum air exchange capacity currently provided by the smart air conditioner.
- Step S103 determining the available duration according to the current total air output, wherein the available time represents the time required for the current total air output to decrease to the preset first air outlet threshold due to the increased blockage of the air conditioning filter.
- the current total air output will gradually decrease.
- the current total air output decreases to a certain level, it will be difficult for the air output of the smart air conditioner to reach the air output set by the user. Therefore, the cooling/heating effect of the smart air conditioner or the air filtration effect is affected, and the normal effect of the smart air conditioner cannot be achieved.
- the reduction from the current total amount of air output to the critical air output volume of the smart air conditioner that just reaches the air output requirement set by the user is the first air output threshold.
- the first air outlet threshold value is a preset minimum air outlet volume that can ensure the normal efficacy of the air conditioner, for example, the air outlet volume corresponding to the minimum air volume value of a normally working smart air conditioner. That is to say, when the smart air conditioner adjusts all the air outlet units to the maximum air volume value, the total output air volume still cannot reach the total output air volume corresponding to the minimum air volume value of the smart air conditioner without filter clogging, then it is considered that the smart air conditioner cannot. To achieve the normal effect, the overall replacement of the air conditioning filter should be carried out. The time required for reducing the current total air output to the first air output threshold is the available time.
- the method for determining the available duration is, for example, to determine, according to a preset dust accumulation coefficient, that due to dust accumulation in the air conditioning filter, the total amount of air output from each air outlet unit is reduced from the current total amount of air output to the first air outlet threshold. required time.
- the dust accumulation coefficient is a numerical value representing the reduction of the air outlet volume caused by dust accumulation in a unit time.
- the dust accumulation coefficient can be determined by testing or simulation and pre-stored in the smart air conditioner, which will not be repeated here.
- the blockage information of each air conditioner filter screen is obtained, and the blockage information is used to represent the blockage degree of the air conditioner filter screen; according to the blockage information of each air conditioner filter screen, the current total amount of air outlet is determined, wherein the current total amount of air outlet The amount of air is used to represent the current sum of the actual air output of each air outlet unit, and the current total air output decreases with the increase of the blockage of the air conditioning filter; according to the current total air output, the available time is determined, where the available time represents the current The time required for the total air output to decrease to the preset first air output threshold due to the increased blockage of the air conditioning filter.
- the air conditioner filter screen of individual air outlet units Due to the equipment with multiple air outlet units, when the air conditioner filter screen of individual air outlet units is blocked, the attenuation of air outlet volume caused by it can be supplemented by other air outlet units by increasing the air outlet volume, so that the total air outlet volume remains unchanged. Therefore, according to the blockage information of each air-conditioning filter, the current total amount of air outlet is determined, and then the available time is determined according to the current total amount of air out. The replacement cycle can be shortened to avoid the premature replacement of the air conditioner filter and reduce the user's cost of use.
- FIG. 5 is a flowchart of a method for determining the available duration of a filter provided by another embodiment of the present application. As shown in FIG. 5 , the method for determining the available duration of a filter provided by this embodiment is available in the filter provided by the embodiment shown in FIG. 2 . On the basis of the method for determining the duration, steps S102-S103 are further refined, and the step of outputting the available duration is added, and the method for determining the available duration of the filter provided by this embodiment includes the following steps:
- step S201 the blockage information of each air conditioner filter is acquired, and the blockage information is used to represent the blockage degree of the air conditioner filter.
- Step S202 Determine the maximum air output volume of each corresponding air outlet unit according to the blockage information of each air conditioner filter screen.
- step S203 the current total amount of air output is determined according to the sum of the maximum air output volume of each air output unit.
- the clogging information can represent the clogging degree of the air conditioning filter at different air volume values. For example, when the air outlet unit emits air at the first air volume value, the air conditioner filter screen blocks 30% of the air volume due to clogging, and the air conditioner filter screen is at the first clogging degree; The air-conditioning filter screen is blocked by 50% of the air volume due to clogging, and the air-conditioning filter screen is in the second clogging degree. Therefore, according to the clogging information of each air-conditioning filter, when the air outlet unit discharges air at the maximum air volume value, the actual maximum output air volume from the air outlet can be determined. Furthermore, according to the sum of the maximum air output of each air outlet unit, the maximum total air output currently attainable by each air outlet unit is determined, that is, the current total air output.
- the maximum air volume of each corresponding air outlet unit is determined by the blockage information of each air-conditioning filter, because the degree of blockage of the air-conditioning filter by different air volume values (that is, the ventilation of the air-conditioning filter) is considered. Therefore, it is possible to quickly and accurately determine the current maximum air output capacity of the smart air conditioner (that is, the current total air output), improve the accuracy of the subsequent determination of the available time, and avoid the waste of the available time of the air conditioner filter, or Problems affecting the efficiency of intelligent air conditioning operations.
- Step S204 Determine the excess air output according to the difference between the current total air output and the preset first air output threshold.
- step S205 the dust accumulation coefficient is obtained, and according to the dust accumulation coefficient, the available time period corresponding to the air outlet redundancy is determined.
- the dust accumulation coefficient is used to represent the reduction of the air outlet redundancy per unit time, and the dust accumulation coefficient is determined by the filter screen information, and the filter screen information is used to represent the pore size of the air conditioner filter screen.
- the dust accumulation coefficient is information representing the reduction speed of the air outlet redundancy. For example, the larger the dust accumulation coefficient, the faster the reduction speed of the air outlet redundancy. More specifically, for example, the dust accumulation coefficient is 2 cubic meters per day, that is, the air outlet redundancy is reduced by 2 cubic meters per day.
- the air outlet redundancy is 0, the current total air output reaches the level where the smart air conditioner can work normally. critical point. After that, since the air output of the smart air conditioner is bound to be less than the first air output threshold, the operation efficiency of the smart air conditioner cannot reach the normal level, and the air conditioner filter needs to be replaced.
- the implementation method for obtaining the dust accumulation coefficient in step S205 includes two steps of S2051 and S2052:
- Step S2051 obtaining historical data of filter screen replacement, where the historical filter screen replacement data represents the historical replacement cycle of each air conditioner filter screen.
- Step S2052 according to the difference between the preset second air outlet threshold and the preset first air outlet threshold, and the filter replacement history data, determine the dust accumulation coefficient, wherein the preset second air outlet threshold is each air conditioner of the intelligent air conditioner. When the filter screen is not blocked, the sum of the air volume of each air outlet unit.
- the filter replacement history data refers to the history record data of the overall replacement of all filters in the air conditioner.
- the overall filter replacement cycle can be determined, for example, 100 days.
- the cycle may be determined by the average value of the overall replacement cycles of multiple filter screens, or may be determined according to the latest overall replacement cycle of the filter screen, which is not specifically limited here.
- the variation range of the air output is determined according to the difference between the second air outlet threshold and the preset first air outlet threshold, wherein the first air outlet threshold is that the intelligent air conditioner can ensure normal operation.
- the second air outlet threshold is the maximum air outlet volume that the smart air conditioner can achieve when none of the air conditioner filters of the smart air conditioner are blocked; wherein, exemplarily, the first air outlet threshold and the second air outlet threshold are Refers to the minimum air volume and the maximum air volume under the same air volume value.
- the air volume Dust accumulation factor at value. For example, under the first gear air volume value, the dust accumulation coefficient is a; under the second gear air volume value, the dust accumulation coefficient is b. Furthermore, in the subsequent processing steps, according to the dust accumulation coefficient, the available time period corresponding to the air outlet redundancy is determined.
- Step S206 output the available duration.
- the smart air conditioner is provided with a display unit, such as a display screen, the blockage information is displayed on the display screen, so as to inform the user of the available time of the air conditioner filter of each air outlet unit, for example, the display screen displays "the available time is 300 hours. ". This enables users to understand the overall blockage of the filter screen of the smart air conditioner and the remaining service life. Or send the available time to the terminal device bound by the user to remind the user to replace the filter.
- the steps of this embodiment further include: outputting clogging information of each air conditioner filter screen.
- the blockage information is displayed on the display screen to inform the user of the blockage degree of the air conditioner filter screen of each air outlet unit.
- the specific implementation process of outputting the blockage information is similar to the implementation method of outputting the available duration, and will not be repeated here.
- step S201 is the same as the implementation of step S101 in the embodiment shown in FIG. 2 of the present application, and details are not repeated here.
- FIG. 7 is a schematic structural diagram of a device for determining the usable duration of a filter according to an embodiment of the present application, which is applied to an electronic device.
- the electronic device includes a plurality of air outlet units, and each air outlet unit corresponds to an air filter, as shown in FIG. 7 .
- the device 3 for determining the usable duration of the filter provided by this embodiment includes:
- the obtaining module 31 is used to obtain the clogging information of each air filter, and the clogging information is used to characterize the clogging degree of the air filter;
- the first determination module 32 is used to determine the current total air output according to the blockage information of each air filter, wherein the current total air output is used to represent the sum of the current actual air output of each air output unit, and the current total air output is The amount decreases as the degree of blockage of the air filter increases;
- the second determination module 33 is configured to determine the available duration according to the current total amount of air outlet, wherein the available duration represents the time required for the current total amount of outlet air to be reduced to the preset first air outlet threshold due to the increase in the blockage of the air filter. length of time.
- the second determining module 33 is specifically configured to: determine the redundant air output according to the difference between the current total air output and the preset first air output threshold;
- the accumulation coefficient determines the available time corresponding to the air outlet redundancy.
- the dust accumulation coefficient is used to represent the reduction of the air outlet redundancy per unit time.
- the dust accumulation coefficient is determined by the filter information, and the filter information is used for Characterize the pore size of the air filter.
- the acquisition module 31 is further configured to: acquire historical data of filter replacement, where the historical data of filter replacement represents the historical replacement cycle of each air filter; according to the preset second air outlet threshold and preset The difference between the first air outlet threshold and the filter replacement history data determines the dust accumulation coefficient, where the preset second air outlet threshold is the difference between the air outlet volume of each air outlet unit when each air filter of the smart air conditioner is not blocked. and.
- the first determination module 32 is specifically configured to: determine the maximum air volume of each corresponding air outlet unit according to the clogging information of each air filter; The sum of the air volume determines the current total air output.
- the first determining module 32 when acquiring the clogging information of each air filter, is specifically configured to: acquire a preset stepped air volume sequence, where the stepped air volume sequence includes at least two different air volume values ; According to the stepped air volume sequence, control the air output of each air outlet unit with different air volume values in turn, and detect the air outlet volume of each air outlet unit through the air volume detection unit arranged at the air outlet; Air volume value The air volume detected when the air is released determines the blockage information of each air filter.
- the acquiring module 31 is further configured to: enter a test state in response to a detection instruction input by a user, wherein the air outlet unit of the electronic device in the test state is not out of the wind.
- the device 3 for determining the available duration of the filter further includes: an interaction module 34, configured to: output the available duration, and/or output the clogging information of each air filter.
- the acquisition module 31 , the first determination module 32 , the first determination module 33 , and the interaction module 34 are connected in sequence.
- the apparatus 3 for determining the usable duration of the filter provided in this embodiment can implement the technical solutions of the method embodiments shown in FIG. 2 to FIG. 6 , and the implementation principles and technical effects thereof are similar, and will not be repeated here.
- FIG. 8 is a schematic diagram of an electronic device provided by an embodiment of the present application.
- the electronic device 4 provided by this embodiment includes: a memory 41 , a processor 42 and a computer program.
- the computer program is stored in the memory 41 and is configured to be executed by the processor 42 to implement the method for determining the usable duration of the filter provided by any one of the embodiments corresponding to FIG. 2 to FIG. 6 of the present application.
- the memory 41 and the processor 42 are connected through a bus 43 .
- An embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the filter screen provided by any one of the embodiments corresponding to FIG. 2 to FIG. 6 of the present application Method for determining the available time.
- the computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
- An embodiment of the present application provides a computer program product, including a computer program.
- the computer program is executed by a processor as the method for determining the usable duration of a filter provided by any one of the embodiments corresponding to FIG. 2 to FIG. 6 of the present application.
- the disclosed apparatus and method may be implemented in other manners.
- the device embodiments described above are only illustrative.
- the division of modules is only a logical function division.
- there may be other division methods for example, multiple modules or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
- the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Fluid Mechanics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种滤网可用时长确定方法,应用于电子设备,电子设备包括多个出风单元,每一出风单元对应一个空气滤网,方法包括:获取每一空气滤网的堵塞信息,堵塞信息用于表征空气滤网的堵塞程度;根据各空气滤网的堵塞信息,确定当前出风总量,其中,当前出风总量用于表征各出风单元当前的实际出风量之和,当前出风总量随着空气滤网的堵塞程度增加而降低;根据当前出风总量,确定可用时长,其中,可用时长表征当前出风总量由于空气滤网的堵塞程度增加而降低至预设的第一出风阈值所需的时长。还提供了一种滤网可用时长确定装置、电子设备、存储介质、计算机程序产品及芯片。由于根据每一空气滤网的堵塞信息确定当前出风总量,进而根据当前出风总量确定可用时长,可以更准确的判断电子设备中空气滤网的真实可用时长,避免空气滤网的过早更换。
Description
本申请要求于2021年3月30日提交中国专利局、申请号为202110342450.9、申请名称为“滤网可用时长确定方法、装置、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及智能家电技术领域,尤其涉及一种滤网可用时长确定方法、装置、电子设备及存储介质。
为了保证空调、空气净化器等空气交换设备的换热效果、空气过滤效果,此类设备中的空气滤网,在每过一段时间后,需要进行更换或清洗,对于具有多出风单元的空气交换设备,现有技术中,通常是检测到其中一个出风单元的空气滤网达到堵塞阈值后,就会向用户发出提示信息。
然而,在实际使用过程中,由于多出风单元对应的空气滤网的灰尘积累速度不同,基于其中一个或几个滤网的堵塞程度发出滤网更换提示,会导致部分滤网的提前更换,浪费滤网使用寿命,增加用户的使用成本。
相应地,本领域需要一种新的滤网可用时长确定方法、装置、电子设备及存储介质来解决上述问题。
发明内容
本申请的目的在于提供一种滤网可用时长确定方法、装置、电子设备及存储介质。用于解决现有技术中浪费滤网使用寿命,增加用户的使用成本的问题。
第一方面,本申请公开了一种滤网可用时长确定方法,包括:
获取每一所述空气滤网的堵塞信息,所述堵塞信息用于表征空气滤网的堵塞程度;根据各所述空气滤网的堵塞信息,确定当前出风总量,其中,所述当前出风总量用于表征各所述出风单元当前的实际出风量之和,所述当前出风总量随着所述空气滤网的堵塞程度增加而降低;根据所述当前出风总量,确定可用时长,其中,所述可用时长表征所述当前出风总量由于所述空气滤网的堵塞程度增加而降低至预设的第一出风阈值所需的时长。
在一种可能的实现方式中,根据所述当前出风总量,确定可用时长,包括:根据所述当前出风总量与预设的第一出风阈值的差值,确定出风冗余量;根据预设的灰尘积累系数,确定所述出风冗余量对应的可用时长,其中,所述灰尘积累系数用于表征单位时间内所述出风冗余量的减少量,所述灰尘积累系数是通过滤网信息确定的,所述滤网信息用于表征所述空气滤网的孔径尺寸。
在一种可能的实现方式中,所述方法还包括:获取滤网更换历史数据,所述滤网更换历史数据表征各所述空气滤网的历史更换周期;根据预设第二出风阈值与所述第一出风阈 值的差值,以及所述滤网更换历史数据,确定所述灰尘积累系数,其中,所述预设第二出风阈值为所述电子的各空气滤网不堵塞时,各所述出风单元的出风量之和。
在一种可能的实现方式中,根据各所述空气滤网的堵塞信息,确定当前出风总量,包括:根据每一所述空气滤网的堵塞信息,确定每一对应的出风单元的最大出风量;根据各所述出风单元的最大出风量之和,确定当前出风总量。
在一种可能的实现方式中,获取每一所述空气滤网的堵塞信息,包括:获取预设的阶梯风量序列,所述阶梯风量序列中包括至少两个不同的风量值;根据所述阶梯风量序列,依次以不同的风量值控制每一所述出风单元出风,并通过设置在出风口的风量检测单元检测每一所述出风单元的出风量;基于每一所述出风单元以不同的风量值出风时检测到的出风量,确定每一所述空气滤网的堵塞信息。
在一种可能的实现方式中,在获取预设的阶梯风量序列之前,还包括:响应用户输入的检测指令,进入测试状态,其中,处于测试状态的所述电子设备的出风单元不出风。
在一种可能的实现方式中,所述方法还包括:输出所述可用时长,和/或,输出每一所述空气滤网的堵塞信息。
第二方面,本申请公开了一种滤网可用时长确定装置,所述装置应用于电子设备,所述电子设备包括多个出风单元,每一所述出风单元对应一个空气滤网,所述装置包括:
获取模块,用于获取每一所述空气滤网的堵塞信息,所述堵塞信息用于表征空气滤网的堵塞程度;
第一确定模块,用于根据各所述空气滤网的堵塞信息,确定当前出风总量,其中,所述当前出风总量用于表征各所述出风单元当前的实际出风量之和,所述当前出风总量随着所述空气滤网的堵塞程度增加而降低;
第二确定模块,用于根据所述当前出风总量,确定可用时长,其中,所述可用时长表征所述当前出风总量由于所述空气滤网的堵塞程度增加而降低至预设的第一出风阈值所需的时长。
在一种可能的实现方式中,所述第二确定模块,具体用于:根据所述当前出风总量与预设的第一出风阈值的差值,确定出风冗余量;根据预设的灰尘积累系数,确定所述出风冗余量对应的可用时长,其中,所述灰尘积累系数用于表征单位时间内所述出风冗余量的减少量,所述灰尘积累系数是通过滤网信息确定的,所述滤网信息用于表征所述空气滤网的孔径尺寸。
在一种可能的实现方式中,所述获取模块,还用于:获取滤网更换历史数据,所述滤网更换历史数据表征各所述空气滤网的历史更换周期;根据预设第二出风阈值与所述第一出风阈值的差值,以及所述滤网更换历史数据,确定所述灰尘积累系数,其中,所述预设第二出风阈值为所述电子的各空气滤网不堵塞时,各所述出风单元的出风量之和。
在一种可能的实现方式中,所述第一确定模块,具体用于:根据每一所述空气滤网的堵塞信息,确定每一对应的出风单元的最大出风量;根据各所述出风单元的最大出风量之和,确定当前出风总量。
在一种可能的实现方式中,所述第一确定模块在获取每一所述空气滤网的堵塞信息时,具体用于:获取预设的阶梯风量序列,所述阶梯风量序列中包括至少两个不同的风量值;根据所述阶梯风量序列,依次以不同的风量值控制每一所述出风单元出风,并通过设置在 出风口的风量检测单元检测每一所述出风单元的出风量;基于每一所述出风单元以不同的风量值出风时检测到的出风量,确定每一所述空气滤网的堵塞信息。
在一种可能的实现方式中,所述获取模块在获取预设的阶梯风量序列之前,还用于:响应用户输入的检测指令,进入测试状态,其中,处于测试状态的所述电子设备的出风单元不出风。
在一种可能的实现方式中,所述装置还包括:交互模块,用于:输出所述可用时长,和/或,输出每一所述空气滤网的堵塞信息。
第三方面,本申请公开了一种电子设备,包括:处理器、存储器和收发器;
处理器用于控制收发器收发信号;存储器用于存储计算机程序;处理器还用于调用并运行存储器中存储的计算机程序,使得该电子设备执行以上第一方面的任一实现方式提供的方法。
第四方面,本申请公开了一种计算机可读存储介质,包括计算机代码,当其在计算机上运行时,使得计算机执行以上第一方面的任一实现方式提供的方法。
第五方面,本申请公开了一种计算机程序产品,包括程序代码,当计算机运行计算机程序产品时,该程序代码执行以上第一方面的任一实现方式提供的方法。
第六方面,本申请公开了一种芯片,包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,以执行本申请实施例的成像方法中执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
结合上述技术方案,本申请通过获取每一所述空气滤网的堵塞信息,所述堵塞信息用于表征空气滤网的堵塞程度;根据各所述空气滤网的堵塞信息,确定当前出风总量,其中,所述当前出风总量用于表征各所述出风单元当前的实际出风量之和,所述当前出风总量随着所述空气滤网的堵塞程度增加而降低;根据所述当前出风总量,确定可用时长,其中,所述可用时长表征所述当前出风总量由于所述空气滤网的堵塞程度增加而降低至预设的第一出风阈值所需的时长。由于多出风单元的设备,当出现个别出风单元的空气滤网堵塞后,其所导致的出风量衰减可以由其他出风单元通过增大出风量而补充,从而使总的出风量不变,因此根据每一空气滤网的堵塞信息确定当前出风总量,进而根据当前出风总量确定可用时长,可以更准确的判断电子设备中空气滤网的真实可用时长,从而提高空气滤网的更换周期,避免空气滤网的过早更换,降低用户的使用成本。
图1为本申请实施例提供的滤网可用时长确定方法的一种应用场景图;
图2为本申请一个实施例提供的滤网可用时长确定方法的流程图;
图3为图2所示实施例中步骤S101的一种实现方法的流程图;
图4为本申请实施例提供的一种空调滤网的堵塞信息的示意图;
图5为本申请另一个实施例提供的滤网可用时长确定方法的流程图;
图6为图5所示实施例中步骤S205的一种实现方法的流程图;
图7为本申请一个实施例提供的滤网可用时长确定装置的结构示意图;
图8为本申请一个实施例提供的电子设备的示意图。
首先,本领域技术人员应当理解的是,这些实施方式仅仅用于解释本申请的技术原理,并非旨在限制本申请的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。例如,虽然本申请的滤网可用时长确定方法是结合智能空调来描述的,但是这并不是限定的,其他具有确定滤网可用时长需求的设备均可配置本申请的滤网可用时长确定,如空气净化器设备。
此外,还需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个构件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本申请中的具体含义。
首先对本申请所涉及的名词进行解释:
1)智能家电设备,是指将微处理器、传感器技术、网络通信技术引入家电设备后形成的家电产品,具有智能控制、智能感知及智能应用的特征,智能家电设备的运作过程往往依赖于物联网、互联网以及电子芯片等现代技术的应用和处理,例如智能家电设备可以通过连接电子设备,实现用户对智能家电设备的远程控制和管理。
2)终端设备,指具有无线连接功能的电子设备,终端设备可以通过连接互联网,与如上所述的智能家电设备进行通信连接,也可以直接通过蓝牙、wifi等方式与如上所述的智能家电设备进行通信连接。在一些实施例中,终端设备例如为移动设备、电脑、或悬浮车中内置的车载设备等,或其任意组合。移动设备例如可以包括手机、智能家居设备、可穿戴设备、智能移动设备、虚拟现实设备等,或其任意组合,其中,可穿戴设备例如包括:智能手表、智能手环、计步器等。
3)“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
4)“对应”可以指的是一种关联关系或绑定关系,A与B相对应指的是A与B之间是一种关联关系或绑定关系。
下面对本申请实施例的应用场景进行解释:
图1为本申请实施例提供的滤网可用时长确定方法的一种应用场景图,本实施例提供的方法可以应用在智能家居的应用场景下,具体地,本方法的执行主体可以为智能空调,如图1所示,智能空调接收来自终端设备或者云服务器的运行指令后,按照运行指令启动运行,其中,运行指令中包括温度参数和风量参数,分别用于控制智能空调的制冷/制热温度和出风量,其中,智能空调包括多个出风单元,各出风单元能够以不同的风量参数出风。示例性地,各出风单元内对应设置有用于过滤空气的空调滤网,智能空调对各出风单元的空滤滤网进行监测,根据监测结果,确定并输出一个对智能空调的空气滤网进行整体更换的剩余时长。
更具体地,该智能空调可以为中央智能空调、商用智能空调等,此类智能空调由于需要专业的维护人员对其进行清理和空调滤网更换等维护工作,因此,用户可以根据本申请实施例提供的滤网可用时长确定方法所输出的剩余时长,进行智能空调整体滤网更换的保修,或者,智能空调通过将根据本申请实施例提供的滤网可用时长确定方法所输出的剩余时长发送至售后维护方的服务器,实现智能空调的智能售后维护。
现有技术中,为了保证空调的换热效果和空气过滤效果,空调滤网在每过一段时间后,需要进行更换或清洗,智能空调通常是检测到其中一个出风单元的空气滤网达到堵塞阈值后,就会向用户发出提示信息。然而,在实际使用过程中,对于多出风单元的空调设备,由于多出风单元内的空气滤网的灰尘积累速度不同,基于其中一个或几个滤网的堵塞程度发出滤网更换提示,会导致部分滤网的提前更换,浪费滤网使用寿命。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图2为本申请一个实施例提供的滤网可用时长确定方法的流程图,应用于电子设备,电子设备包括多个出风单元,每一出风单元对应一个空气滤网,具体地,电子设备例如为智能空调,本实施例以智能空调为例对本实施例提供的滤网可用时长确定方法进行说明,其中,本实施例提供的滤网可用时长确定方法的执行主体可以为智能空调或者智能空调的控制器,空气滤网在本实施例中为空调滤网,更具体地,空调滤网可以包括滤尘网,和/或,用于过滤PM2.5颗粒、PM10颗粒的空气颗粒物过滤网等。出风单元包括风机、对应出风通道和出风口,空调滤网设置在出风口位置或者出风通道内,空调滤网的设置遵循本领域常规的空调滤网的设置方式的,此处不做特别限定。如图2所示,本实施例提供的滤网可用时长确定方法包括以下几个步骤:
步骤S101,获取每一空调滤网的堵塞信息,堵塞信息用于表征空调滤网的堵塞程度。
示例性地,堵塞信息可以是通过传感器对空调滤网进行检测后,获得的表征空调滤网堵塞程度的信息。更具体地,空调滤网的堵塞程度,是指其阻碍空气穿过、降低空气穿过量的数值。其中,通过传感器对空调滤网进行检测的方式有多种,例如,智能空调内设置有用于发射光信号的光发射单元,以及用于接收光信号的光接收单元,光发射单元和光接收单元相对设置于空调滤网两侧,获取堵塞信息的过程包括:控制光发射单元向光接收单元发送光线;根据光接收单元接收到的光量,确定堵塞信息。其中,具体地,光发射单元可以包括红外线发射器、激光发射器等,通过光发射单元作为光源向空调滤网发射光线,在空调滤网的另一侧设置光接收单元,接收穿过滤网的光线。当空调滤网被堵塞后,会影响空调滤网的透光率,进而使光接收单元接收到的光量发生变化,从而确定空调滤网的堵塞程度。其中,光接收单元接收到的光量与空调滤网的堵塞程度直接,具有固定的映射关系,该具体的映射关系可以通过测试和实验获得,此处不进行赘述。
在另一种可能的实现方式中,每一空调滤网的堵塞信息,可以通过响应用户输入的检测指令,进入测试状态,并在测试状态下进行空调滤网堵塞测试而获得,其中,示例性地,通过在测试状态下进行空调滤网堵塞测试,而获取每一空调滤网的堵塞信息的步骤,如图3所示,包括:
步骤S1011,获取预设的阶梯风量序列,阶梯风量序列中包括至少两个不同的风量值。
步骤S1012,根据阶梯风量序列,以不同的风量值控制每一出风单元出风,并通过设置在出风口的风量检测单元检测每一出风单元的出风量。
步骤S1013,基于每一出风单元以不同的风量值出风时检测到的出风量,确定每一空调滤网的堵塞信息。
示例性地,阶梯风量序列是由至少两个风量值组成的序列,其中,风量值可以是具体的表征风量大小的数值,例如300立方米/小时;也可以是基于最大风量的百分比值,例如90%、50%。进一步地,由于智能空调内设置的空调滤网对实际出风量的衰减,受多个因素的影响,例如空调滤网的结构、尺寸等,其对出风单元出风的阻挡能力,并不是线性的,在出风单元的风量值不同时,其对应的出风量衰减率也是不同的,例如,在风量值为10时,由于风速大,对于某些滤网材料的空调滤网,可以增加空气的穿透性,使出风量的衰减较小,例如出风量衰减率为10%,此时,相当于空调滤网的堵塞程度较小;而在出风量参数对应的出风档位为“低风量”时,由于风速小,会降低空气在该种滤网材料中的穿透性,使出风量的衰减较大,例如出风量衰减率为30%。此时,相当于空调滤网的堵塞程度较大。因此,出风单元以不同的风量值出风时,根据风量检测单元检测到的实际出风量,所评估出来的空调滤网的堵塞信息也不同。示例性,图4为本申请实施例提供的一种空调滤网的堵塞信息的示意图,如图4所示,空调滤网的堵塞信息可以表征为一组二维序列,不同风量值,对应一个堵塞程度值,具体地,例如图4中所示,当风量值为1时,对应堵塞程度值为50;当风量值为2时,对应堵塞程度值为30;当风量值为3时,对应堵塞程度值为20,其中,风量值和堵塞程度值的单位,可以根据具体算法确定,例如,风量值1为出风单元的1档风速;堵塞程度值50表征滤网对穿过其的空气阻挡50%。其中,该空调滤网的堵塞信息,可以通过阶梯风量序列中的风量值,依次进行测试而确定。
其中,进一步地,阶梯风量序列中的各出风量,是根据智能空调的具体出风档位所对应的出风量所确定的,对于不同型号、参数的智能空调,阶梯风量序列可以不同,该阶梯风量序列可以是在智能空调出厂时预设在智能空调内部的数据。
本实施例中,通过根据阶梯风量序列中的各出风量,确定能够表征在不同风量值时空调滤网的堵塞程度的堵塞信息,从而使堵塞信息与出风量相匹配,提高堵塞信息的精确度,进而提高后续出风总量的预测精度以及可用时长的预测精度。
步骤S102,根据各空调滤网的堵塞信息,确定当前出风总量,其中,当前出风总量用于表征各出风单元当前的实际出风量之和,当前出风总量随着空调滤网的堵塞程度增加而降低。
示例性地,当堵塞信息不相同时,空调滤网对应的对出风量的阻挡能力也不同,即,出风单元由于各自的空滤滤网的堵塞,出风量不相同。在确定各出风单元的空调滤网的堵塞信息后,根据堵塞信息所表征的空调滤网的堵塞程度,进而确定各出风单元的出风量。示例性地,各出风单元的出风量,可以是指各出风单元以最大风量值出风时的出风量。当各出风单元的空调滤网中的部分空调滤网发生堵塞后,通过适应性的调节未发生堵塞,或者堵塞程度较小的空调滤网对应的出风单元的风量值,实现对由于滤网堵塞造成的出风量的补偿。例如,空调滤网A和空调滤网B发生堵塞,使出风单元A和出风单元B的实际出风量降低,此时,通过提高出风单元C的风量值,使出风单元C的实际出风量提高,补偿由于空调滤网A和空调滤网B发生堵塞而造成的风量降低,从而使各出风单元的总的实 际出风量不变。
进一步地,将根据堵塞信息预设的各出风单元的最大出风量之和,确定为当前出风总量。其中,当前出风总量相当于是基于当前各空调滤网的堵塞程度,各出风单元所能达到的最大出风量之和。该当前出风总量,也表征智能空调当前所能提供的最大空气交换能力。
步骤S103,根据当前出风总量,确定可用时长,其中,可用时长表征当前出风总量由于空调滤网的堵塞程度增加而降低至预设的第一出风阈值所需的时长。
具体地,随着空调滤网堵塞程度的增加,该当前出风总量会逐渐降低,当该当前出风总量降低至一定水平后,会使智能空调的出风量难以达到用户设置的出风要求,进而使智能空调的制冷/制热效果,或者空气过滤效果受到影响,无法达到智能空调的正常功效。而由当前出风总量降低至该智能空调的出风量恰达到用户设置的出风要求的临界出风量,即为第一出风阈值。示例性地,该第一出风阈值为预设的能够保证空调正常功效的最低出风量,例如,正常工作的智能空调的最小风量值对应的出风量。也即,当智能空调将所有出风单元调节至最大风量值时,其出风总量仍无法达到未发生滤网堵塞的智能空调的最小风量值对应的出风总量,则认为智能空调无法达到正常功效,应进行空调滤网的整体更换。而由当前出风总量降低至第一出风阈值所需的时长,即为可用时长。
进一步地,确定可用时长的方法,例如为,根据预设的灰尘积累系数,确定空调滤网由于灰尘积累,各出风单元的出风总量由当前出风总量降低至第一出风阈值所需的时长。其中,灰尘积累系数是表征单位时间内由于灰尘积累造成出风量的降低量的数值。该灰尘积累系数可以通过测试或模拟的方式确定并预存在智能空调内,此处不再赘述。
本实施例中,通过获取每一空调滤网的堵塞信息,堵塞信息用于表征空调滤网的堵塞程度;根据各空调滤网的堵塞信息,确定当前出风总量,其中,当前出风总量用于表征各出风单元当前的实际出风量之和,当前出风总量随着空调滤网的堵塞程度增加而降低;根据当前出风总量,确定可用时长,其中,可用时长表征当前出风总量由于空调滤网的堵塞程度增加而降低至预设的第一出风阈值所需的时长。由于多出风单元的设备,当出现个别出风单元的空调滤网堵塞后,其所导致的出风量衰减可以由其他出风单元通过增大出风量而补充,从而使总的出风量不变,因此根据每一空调滤网的堵塞信息确定当前出风总量,进而根据当前出风总量确定可用时长,可以更准确的判断电子设备中空调滤网的真实可用时长,从而提高空调滤网的更换周期,避免空调滤网的过早更换,降低用户的使用成本。
图5为本申请另一个实施例提供的滤网可用时长确定方法的流程图,如图5所示,本实施例提供的滤网可用时长确定方法在图2所示实施例提供的滤网可用时长确定方法的基础上,对步骤S102-S103进一步细化,并增加了输出可用时长的步骤,则本实施例提供的滤网可用时长确定方法包括以下几个步骤:
步骤S201,获取每一空调滤网的堵塞信息,堵塞信息用于表征空调滤网的堵塞程度。
步骤S202,根据每一空调滤网的堵塞信息,确定每一对应的出风单元的最大出风量。
步骤S203,根据各出风单元的最大出风量之和,确定当前出风总量。
具体地,在一种可能的实现方式中,堵塞信息能够表征在不同风量值时空调滤网的堵塞程度。例如,出风单元在以第一档风量值出风时,空调滤网由于堵塞阻挡30%的风量,空调滤网处于第一堵塞程度;出风单元在以第二档风量值出风时,空调滤网由于堵塞阻挡50%的风量,空调滤网处于第二堵塞程度。因此,根据每一空调滤网的堵塞信息,可以确 定出风单元在以最大风量值出风时,其实际从出风口输出的最大出风量。进而,根据各出风单元最大出风量之和,确定各出风单元当前能够达到的最大出风总量,即当前出风总量。
本实施例中,通过每一空调滤网的堵塞信息,确定出每一对应的出风单元的最大出风量,由于考虑了不同的风量值对空调滤网的堵塞程度(即空调滤网的透风能力)的影响,因此,能够快速、准确的判断出智能空调当前的最大出风能力(即当前出风总量),提高后续确定可用时长的精确性,避免空调滤网可用时长的浪费,或者影响智能空调作业功效的问题。
步骤S204,根据当前出风总量与预设的第一出风阈值的差值,确定出风冗余量。
步骤S205,获取灰尘积累系数,并根据灰尘积累系数,确定出风冗余量对应的可用时长。
其中,灰尘积累系数用于表征单位时间内出风冗余量的减少量,灰尘积累系数是通过滤网信息确定的,滤网信息用于表征空调滤网的孔径尺寸。示例性地,灰尘积累系数是表征出风冗余量减少速度的信息,例如,灰尘积累系数越大,则出风冗余量减少速度越快。更具体地,例如,灰尘积累系数为2立方米/日,即出风冗余量每天减少2立方米,当出风冗余量为0时,当前出风总量到达智能空调能够正常工作的临界点。之后,智能空调由于出风量必然小于第一出风阈值,则智能空调的作业功效无法达到正常水平,需要进行空调滤网更换。
可选地,如图6所示,步骤S205中获取灰尘积累系数的实现方法包括S2051和S2052两个步骤:
步骤S2051,获取滤网更换历史数据,滤网更换历史数据表征各空调滤网的历史更换周期。
步骤S2052,根据预设第二出风阈值与预设第一出风阈值的差值,以及滤网更换历史数据,确定灰尘积累系数,其中,预设第二出风阈值为智能空调的各空调滤网不堵塞时,各出风单元的出风量之和。
具体地,滤网更换历史数据是指对空调中的全部滤网进行整体更换的历史记录数据,根据滤网更换历史记录,可以确定滤网整体更换的周期,例如100天。该周期可以是通过多个滤网整体更换周期的平均值确定的,也可以是根据最近的一个滤网整体更换周期确定的,此处不进行具体限定。进一步地,在确定滤网更换历史数据后,根据第二出风阈值与预设第一出风阈值的差值,确定出风量变化范围,其中,第一出风阈值是智能空调能够保证正常工作的最小出风量;第二出风阈值是智能空调的各空调滤网均不堵塞时,智能空调能达到的最大出风量;其中,示例性地,第一出风阈值和第二出风阈值是指在相同风量值下的最小出风量和最大出风量,根据第一出风阈值和第二出风阈值,以及滤网更换历史数据所表征的各空调滤网的历史更换周期,确定在不风量值下的灰尘积累系数。例如,在第一档风量值下,灰尘积累系数为a;在第二档风量值下,灰尘积累系数为b。进而,在后续的处理步骤中,根据灰尘积累系数,确定出风冗余量对应的可用时长。
步骤S206,输出可用时长。
示例性地,智能空调设置有显示单元,例如显示屏,通过显示屏显示该堵塞信息,以告知用户各出风单元的空调滤网的可用时长,例如,通过显示屏显示“可用时长为300小时”。从而使用户了解智能空调的滤网整体堵塞情况以及剩余使用寿命。或者将可用时长 发送至用户绑定的终端设备,以提醒用户进行滤网更换。
可选地,本实施例步骤还包括:输出每一空调滤网的堵塞信息。具体地,通过显示屏显示该堵塞信息,以告知用户各出风单元的空调滤网的堵塞程度,其中,输出堵塞信息的具体实现过程与输出可用时长的实现方式类似,此处不再赘述。
本实施例中,步骤S201的实现方式与本申请图2所示实施例中的步骤S101的实现方式相同,在此不再一一赘述。
图7为本申请一个实施例提供的滤网可用时长确定装置的结构示意图,应用于电子设备,电子设备包括多个出风单元,每一出风单元对应一个空气滤网,如图7所示,本实施例提供的滤网可用时长确定装置3包括:
获取模块31,用于获取每一空气滤网的堵塞信息,堵塞信息用于表征空气滤网的堵塞程度;
第一确定模块32,用于根据各空气滤网的堵塞信息,确定当前出风总量,其中,当前出风总量用于表征各出风单元当前的实际出风量之和,当前出风总量随着空气滤网的堵塞程度增加而降低;
第二确定模块33,用于根据当前出风总量,确定可用时长,其中,可用时长表征当前出风总量由于空气滤网的堵塞程度增加而降低至预设的第一出风阈值所需的时长。
在一种可能的实现方式中,第二确定模块33,具体用于:根据当前出风总量与预设的第一出风阈值的差值,确定出风冗余量;根据预设的灰尘积累系数,确定出风冗余量对应的可用时长,其中,灰尘积累系数用于表征单位时间内出风冗余量的减少量,灰尘积累系数是通过滤网信息确定的,滤网信息用于表征空气滤网的孔径尺寸。
在一种可能的实现方式中,获取模块31,还用于:获取滤网更换历史数据,滤网更换历史数据表征各空气滤网的历史更换周期;根据预设第二出风阈值与预设第一出风阈值的差值,以及滤网更换历史数据,确定灰尘积累系数,其中,预设第二出风阈值为智能空调的各空气滤网不堵塞时,各出风单元的出风量之和。
在一种可能的实现方式中,第一确定模块32,具体用于:根据每一空气滤网的堵塞信息,确定每一对应的出风单元的最大出风量;根据各出风单元的最大出风量之和,确定当前出风总量。
在一种可能的实现方式中,第一确定模块32在获取每一空气滤网的堵塞信息时,具体用于:获取预设的阶梯风量序列,阶梯风量序列中包括至少两个不同的风量值;根据阶梯风量序列,依次以不同的风量值控制每一出风单元出风,并通过设置在出风口的风量检测单元检测每一出风单元的出风量;基于每一出风单元以不同的风量值出风时检测到的出风量,确定每一空气滤网的堵塞信息。
在一种可能的实现方式中,获取模块31在获取预设的阶梯风量序列之前,还用于:响应用户输入的检测指令,进入测试状态,其中,处于测试状态的电子设备的出风单元不出风。
在一种可能的实现方式中,滤网可用时长确定装置3还包括:交互模块34,用于:输出可用时长,和/或,输出每一空气滤网的堵塞信息。
其中,获取模块31、第一确定模块32、第一确定模块33、交互模块34依次连接。本实施例提供的滤网可用时长确定装置3可以执行如图2-图6所示的方法实施例的技术方案, 其实现原理和技术效果类似,此处不再赘述。
图8为本申请一个实施例提供的电子设备的示意图,如图8所示,本实施例提供的电子设备4包括:存储器41,处理器42以及计算机程序。
其中,计算机程序存储在存储器41中,并被配置为由处理器42执行以实现本申请图2-图6所对应的实施例中任一实施例提供的滤网可用时长确定方法。
其中,存储器41和处理器42通过总线43连接。
相关说明可以对应参见图2-图6所对应的实施例中的步骤所对应的相关描述和效果进行理解,此处不做过多赘述。
本申请一个实施例提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行以实现本申请图2-图6所对应的实施例中任一实施例提供的滤网可用时长确定方法。
其中,计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本申请一个实施例提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行如本申请图2-图6所对应的实施例中任一实施例提供的滤网可用时长确定方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。
至此,已经结合附图所示的优选实施方式描述了本申请的技术方案,但是,本领域技术人员容易理解的是,本申请的保护范围显然不局限于这些具体实施方式。在不偏离本申请的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本申请的保护范围之内。
Claims (18)
- 一种滤网可用时长确定方法,其特征在于,所述方法应用于电子设备,所述电子设备包括多个出风单元,每一所述出风单元对应一个空气滤网,所述方法包括:获取每一所述空气滤网的堵塞信息,所述堵塞信息用于表征空气滤网的堵塞程度;根据各所述空气滤网的堵塞信息,确定当前出风总量,其中,所述当前出风总量用于表征各所述出风单元当前的实际出风量之和,所述当前出风总量随着所述空气滤网的堵塞程度增加而降低;根据所述当前出风总量,确定可用时长,其中,所述可用时长表征所述当前出风总量由于所述空气滤网的堵塞程度增加而降低至预设的第一出风阈值所需的时长。
- 根据权利要求1所述的方法,其特征在于,根据所述当前出风总量,确定可用时长,包括:根据所述当前出风总量与预设的第一出风阈值的差值,确定出风冗余量;根据预设的灰尘积累系数,确定所述出风冗余量对应的可用时长,其中,所述灰尘积累系数用于表征单位时间内所述出风冗余量的减少量,所述灰尘积累系数是通过滤网信息确定的,所述滤网信息用于表征所述空气滤网的孔径尺寸。
- 根据权利要求2所述的方法,其特征在于,所述方法还包括:获取滤网更换历史数据,所述滤网更换历史数据表征各所述空气滤网的历史更换周期;根据预设第二出风阈值与所述第一出风阈值的差值,以及所述滤网更换历史数据,确定所述灰尘积累系数,其中,所述预设第二出风阈值为所述电子的各空气滤网不堵塞时,各所述出风单元的出风量之和。
- 根据权利要求1所述的方法,其特征在于,根据各所述空气滤网的堵塞信息,确定当前出风总量,包括:根据每一所述空气滤网的堵塞信息,确定每一对应的出风单元的最大出风量;根据各所述出风单元的最大出风量之和,确定当前出风总量。
- 根据权利要求1所述的方法,其特征在于,获取每一所述空气滤网的堵塞信息,包括:获取预设的阶梯风量序列,所述阶梯风量序列中包括至少两个不同的风量值;根据所述阶梯风量序列,以不同的风量值控制每一所述出风单元出风,并通过设置在出风口的风量检测单元检测每一所述出风单元的出风量;基于每一所述出风单元以不同的风量值出风时检测到的出风量,确定每一所述空气滤网的堵塞信息。
- 根据权利要求5所述的方法,其特征在于,在获取预设的阶梯风量序列之前,还包括:响应用户输入的检测指令,进入测试状态,其中,处于测试状态的所述电子设备的出风单元不出风。
- 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:输出所述可用时长,和/或,输出每一所述空气滤网的堵塞信息。
- 一种滤网可用时长确定装置,其特征在于,所述装置应用于电子设备,所述电子 设备包括多个出风单元,每一所述出风单元对应一个空气滤网,所述装置包括:获取模块,用于获取每一所述空气滤网的堵塞信息,所述堵塞信息用于表征空气滤网的堵塞程度;第一确定模块,用于根据各所述空气滤网的堵塞信息,确定当前出风总量,其中,所述当前出风总量用于表征各所述出风单元当前的实际出风量之和,所述当前出风总量随着所述空气滤网的堵塞程度增加而降低;第二确定模块,用于根据所述当前出风总量,确定可用时长,其中,所述可用时长表征所述当前出风总量由于所述空气滤网的堵塞程度增加而降低至预设的第一出风阈值所需的时长。
- 根据权利要求8所述的装置,其特征在于,所述第二确定模块,具体用于:根据所述当前出风总量与预设的第一出风阈值的差值,确定出风冗余量;根据预设的灰尘积累系数,确定所述出风冗余量对应的可用时长,其中,所述灰尘积累系数用于表征单位时间内所述出风冗余量的减少量,所述灰尘积累系数是通过滤网信息确定的,所述滤网信息用于表征所述空气滤网的孔径尺寸。
- 根据权利要求9所述的装置,其特征在于,所述获取模块,还用于:获取滤网更换历史数据,所述滤网更换历史数据表征各所述空气滤网的历史更换周期;根据预设第二出风阈值与所述第一出风阈值的差值,以及所述滤网更换历史数据,确定所述灰尘积累系数,其中,所述预设第二出风阈值为所述电子的各空气滤网不堵塞时,各所述出风单元的出风量之和。
- 根据权利要求8所述的装置,其特征在于,所述第一确定模块,具体用于:根据每一所述空气滤网的堵塞信息,确定每一对应的出风单元的最大出风量;根据各所述出风单元的最大出风量之和,确定当前出风总量。
- 根据权利要求8所述的装置,其特征在于,所述第一确定模块在获取每一所述空气滤网的堵塞信息时,具体用于:获取预设的阶梯风量序列,所述阶梯风量序列中包括至少两个不同的风量值;根据所述阶梯风量序列,以不同的风量值控制每一所述出风单元出风,并通过设置在出风口的风量检测单元检测每一所述出风单元的出风量;基于每一所述出风单元以不同的风量值出风时检测到的出风量,确定每一所述空气滤网的堵塞信息。
- 根据权利要求12所述的装置,其特征在于,所述获取模块在获取预设的阶梯风量序列之前,还用于:响应用户输入的检测指令,进入测试状态,其中,处于测试状态的所述电子设备的出风单元不出风。
- 根据权利要求8-13任一项所述的装置,其特征在于,所述装置还包括:交互模块,用于输出所述可用时长,和/或,输出每一所述空气滤网的堵塞信息。
- 一种电子设备,其特征在于,包括:存储器,处理器以及计算机程序;其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行以实现如权利要求1至7中任一项所述的滤网可用时长确定方法。
- 一种计算机可读存储介质,其特征在于,包括计算机代码,当其在计算机上运行 时,使得计算机执行以如权利要求1至7任一项所述的滤网可用时长确定方法。
- 一种计算机程序产品,其特征在于,包括程序代码,当计算机运行所述计算机程序产品时,所述程序代码执行所述权利要求1至7中任一项所述的方法。
- 一种芯片,其特征在于,包括处理器,所述处理器用于调用并运行存储器中存储的计算机程序,以执行所述权利要求1至7中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110342450.9 | 2021-03-30 | ||
CN202110342450.9A CN113091286B (zh) | 2021-03-30 | 2021-03-30 | 滤网可用时长确定方法、装置、电子设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022205999A1 true WO2022205999A1 (zh) | 2022-10-06 |
Family
ID=76671446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/135694 WO2022205999A1 (zh) | 2021-03-30 | 2021-12-06 | 滤网可用时长确定方法、装置、电子设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113091286B (zh) |
WO (1) | WO2022205999A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113091286B (zh) * | 2021-03-30 | 2022-08-19 | 青岛海尔空调器有限总公司 | 滤网可用时长确定方法、装置、电子设备及存储介质 |
CN114543252A (zh) * | 2022-01-28 | 2022-05-27 | 青岛海尔空调器有限总公司 | 空调滤网自清洁的方法、装置和智能空调 |
CN114607631B (zh) * | 2022-03-16 | 2024-11-08 | 江苏永成环保机械有限公司 | 一种空气悬浮离心风机远程控制系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008136911A (ja) * | 2006-11-30 | 2008-06-19 | Mitsubishi Materials Corp | フィルタ目詰まり検知装置及びフィルタ目詰まり検知方法 |
CN107860695A (zh) * | 2017-10-16 | 2018-03-30 | 广东美的制冷设备有限公司 | 空气净化设备及其中滤网寿命的检测方法、装置 |
CN108105941A (zh) * | 2017-12-19 | 2018-06-01 | 广东美的制冷设备有限公司 | 空气净化设备及其滤网寿命估算方法、装置 |
CN111482024A (zh) * | 2020-06-08 | 2020-08-04 | 深圳市鼎信科技有限公司 | 空气净化装置的控制方法、装置及存储介质 |
CN111516457A (zh) * | 2020-04-30 | 2020-08-11 | 三一重机有限公司 | 一种堵塞检测方法、装置及工程机械 |
CN113091286A (zh) * | 2021-03-30 | 2021-07-09 | 青岛海尔空调器有限总公司 | 滤网可用时长确定方法、装置、电子设备及存储介质 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3773767B2 (ja) * | 2000-08-28 | 2006-05-10 | シャープ株式会社 | イオン発生装置を備えた空気清浄機並びに空気調和機 |
CN105444340B (zh) * | 2014-08-30 | 2018-08-24 | 中山大洋电机股份有限公司 | 一种带滤网堵塞检测功能的电器设备 |
CN110068100A (zh) * | 2019-04-28 | 2019-07-30 | 广东美的制冷设备有限公司 | 空调滤网清洁度检测方法、装置、电子设备和存储介质 |
CN111288609B (zh) * | 2020-03-11 | 2021-08-27 | 宁波奥克斯电气股份有限公司 | 一种空调过滤网脏堵检测方法、装置、空调器及存储介质 |
-
2021
- 2021-03-30 CN CN202110342450.9A patent/CN113091286B/zh active Active
- 2021-12-06 WO PCT/CN2021/135694 patent/WO2022205999A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008136911A (ja) * | 2006-11-30 | 2008-06-19 | Mitsubishi Materials Corp | フィルタ目詰まり検知装置及びフィルタ目詰まり検知方法 |
CN107860695A (zh) * | 2017-10-16 | 2018-03-30 | 广东美的制冷设备有限公司 | 空气净化设备及其中滤网寿命的检测方法、装置 |
CN108105941A (zh) * | 2017-12-19 | 2018-06-01 | 广东美的制冷设备有限公司 | 空气净化设备及其滤网寿命估算方法、装置 |
CN111516457A (zh) * | 2020-04-30 | 2020-08-11 | 三一重机有限公司 | 一种堵塞检测方法、装置及工程机械 |
CN111482024A (zh) * | 2020-06-08 | 2020-08-04 | 深圳市鼎信科技有限公司 | 空气净化装置的控制方法、装置及存储介质 |
CN113091286A (zh) * | 2021-03-30 | 2021-07-09 | 青岛海尔空调器有限总公司 | 滤网可用时长确定方法、装置、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113091286A (zh) | 2021-07-09 |
CN113091286B (zh) | 2022-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022205999A1 (zh) | 滤网可用时长确定方法、装置、电子设备及存储介质 | |
US20160217674A1 (en) | Remote monitoring of an hvac system for fault detection and diagnostics | |
CN109074066B (zh) | 优化过滤器寿命周期的方法和监测通风系统的系统 | |
US9077657B1 (en) | Intelligent cellular communications gateway device, system, and method | |
TWI541752B (zh) | 環境控制方法、環境控制裝置以及電力管理系統 | |
JP2018085589A (ja) | 診断方法、診断装置及び表示装置 | |
CN108426343A (zh) | 空调器净化模块清洗提醒方法、空调器以及可读存储介质 | |
CN111482024A (zh) | 空气净化装置的控制方法、装置及存储介质 | |
US20190163154A1 (en) | Device recommendation system and method | |
CN108334530A (zh) | 用户行为信息分析方法、设备及存储介质 | |
CN113091209A (zh) | 空调出风控制方法、装置、电子设备及存储介质 | |
CN107388526B (zh) | 一种空气净化器自动提醒更换滤芯系统 | |
WO2022213637A1 (zh) | 滤网安装状态检测方法、装置、电子设备及存储介质 | |
CN105352122A (zh) | 一种可远程监测空调及其远程监测方法 | |
CN111885892A (zh) | 电源适配器的散热控制方法、系统、设备及可读存储介质 | |
CN106524434A (zh) | 基于空调器的空气质量监测方法、系统及其设备 | |
WO2022222486A1 (zh) | 送风设备共振控制方法、装置、电子设备及存储介质 | |
CN109885116B (zh) | 一种基于云计算的物联网平台监测系统及其方法 | |
CN113486953A (zh) | 变频器滤网更换时间的预测方法、装置及计算机可读介质 | |
US11874008B2 (en) | HVAC system discomfort index and display | |
CN113091208A (zh) | 空调出风控制方法、装置、电子设备及存储介质 | |
WO2021019806A1 (ja) | 通知管理サーバ、および、通知管理方法 | |
CN107806689A (zh) | 一种滤网寿命监测方法、装置、存储介质及出风设备 | |
US20210372096A1 (en) | Smart and connected backflow preventer assembly | |
CN114151903B (zh) | 空气净化器的控制方法、装置、计算机设备和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21934635 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21934635 Country of ref document: EP Kind code of ref document: A1 |