WO2022210682A1 - Method for constructing concrete floor - Google Patents

Method for constructing concrete floor Download PDF

Info

Publication number
WO2022210682A1
WO2022210682A1 PCT/JP2022/015367 JP2022015367W WO2022210682A1 WO 2022210682 A1 WO2022210682 A1 WO 2022210682A1 JP 2022015367 W JP2022015367 W JP 2022015367W WO 2022210682 A1 WO2022210682 A1 WO 2022210682A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete floor
concrete
rotary
bleeding
level
Prior art date
Application number
PCT/JP2022/015367
Other languages
French (fr)
Japanese (ja)
Inventor
雄二 又吉
Original Assignee
株式会社フロアエージェント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フロアエージェント filed Critical 株式会社フロアエージェント
Publication of WO2022210682A1 publication Critical patent/WO2022210682A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/20Implements for finishing work on buildings for laying flooring
    • E04F21/24Implements for finishing work on buildings for laying flooring of masses made in situ, e.g. smoothing tools
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/06Solidifying concrete, e.g. by application of vacuum before hardening
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/10Devices for levelling, e.g. templates or boards

Definitions

  • the present invention relates to a construction method for concrete floors constructed in various civil engineering and construction works, particularly to a construction method for concrete floors of buildings such as warehouses.
  • ready-mixed concrete which is a mixture of cement, aggregate, water, and various admixtures in appropriate proportions, is hardened through construction such as pouring, compaction, surface finishing, and curing.
  • a floor surface finishing device such as Trowell to flatten it, and if necessary, a skilled plasterer Finishing is done manually with a trowel (plastering trowel), and the surface of the concrete is finished so that it has a glossy surface.
  • Patent Document 1 discloses a method for finishing a floor surface after pouring concrete. As a second step, after the concrete floor surface after tamping has completely hardened, the concrete floor surface is directly ground with a grinder to complete the floor finish.
  • the plastering work is performed by machines instead of the conventional manual work by plasterers, so that the difference in finishing level occurs depending on the skill level of the plasterers. In addition, it is possible to shorten the working time and reduce the cost.
  • the present invention is an improvement of the conventional concrete floor construction method, and aims to provide a concrete floor construction method that can achieve high level accuracy, crack suppression, and durability.
  • the present invention relates to a concrete floor construction method.
  • a concrete floor construction method includes a first step of placing concrete on the floor of a construction site, and a second step of leveling the concrete floor with a laser screed machine. and a fourth step of performing re-vibration compaction after a predetermined time has elapsed after confirming the level of the concrete floor, wherein the re-vibration compaction Hardening is the time when bleeding occurs when water lines begin to be formed, and the time when the depth dimension of accumulated water is 40 to 60% of the depth dimension of the holes formed in the concrete floor surface. It is characterized by performing with
  • the concrete floor construction method includes the following embodiments.
  • the laser screed machine has a vibrating blade and a mortar plate located in front of the vibrating blade, and the length dimension of the mortar plate is larger than the length dimension of the vibrating blade.
  • a land adjusting means is located, the length dimension of the unevenness adjusting means is larger than the length dimension of the pair of discs, and the unevenness adjusting means is brush-shaped.
  • the first and second rotary driving machines have a hand-held type and a riding type, and the surface processing by the riding-type first rotary driving machine has a measured value between 1N and 2.1N. , the surface finishing by the riding-type second rotary drive is carried out while the measured value is between 2.5 and 2.7N.
  • re-vibration compaction is performed at the time when bleeding occurs, thereby suppressing cracking and obtaining a concrete floor with excellent durability.
  • the drawings show specific embodiments of the concrete floor construction method according to the present disclosure, and include not only the essential components of the invention, but also optional and preferred embodiments.
  • the figure of the flowchart which shows the procedure of the construction method of the concrete floor which concerns on this invention.
  • (b) A diagram showing a state during work for confirming bleeding.
  • (a) A diagram showing a hand-type Trowel disc setting work in the fifth step.
  • FIG. 9 A diagram showing measurement results using a bleeding measurement device (ambient temperature 10°C).
  • FIG. 35°C A diagram showing measurement results using a bleeding measurement device (ambient temperature 35°C).
  • first step S1 reinforcing bars are installed at a location where a concrete floor surface 10 is to be constructed in a construction site such as a warehouse, and then ready-mixed concrete is poured by a concrete pump vehicle. Concrete pumped from the pipe of a pump car is roughly leveled using a scraper or the like. Before placing the fresh concrete, various tests such as a slump test, an air content test, and a chloride content test are conducted to confirm the properties of the fresh concrete.
  • the first step according to the present invention compaction work is performed by inserting the rod-shaped vibrator 20 into the fresh concrete.
  • the insertion interval of the rod-shaped vibrator 20 is 40 to 60 cm
  • the vibration time at one insertion point is 10 to 20 seconds.
  • the automatic leveling machine a commercially available one can be appropriately selected and adopted.
  • a laser screed machine (concrete leveling machine "Mini Screed C" manufactured by Somero, USA) 30 can be used.
  • the vibrating shaft is rotated at high speed to vibrate the vibrating blade 36 in plane, thereby filling and compacting the concrete.
  • the laser screed machine 30 has support rods 32 and 33 facing each other in the width direction, and laser receivers 32a and 33a are positioned at the tips of the support rods 32 and 33, respectively.
  • a laser emitter 34 having a laser irradiation part is arranged near the laser screed machine 30, and the level of the concrete floor surface 10 is leveled by automatic level adjustment means comprising the laser emitter 34 and laser receivers 32a and 33a. I am watching.
  • the laser screed machine 30 includes a screed plate (scrape bar) 35 for scraping the concrete floor 10, and a vibrating blade 36 positioned in front of the screed plate for applying plane vibration to the concrete floor 10 by a vibrator to level the surface. and Cracking of the concrete floor surface 10 can be suppressed by removing air bubbles and air in the concrete by vibration tamping with a vibrator and increasing the density of the concrete.
  • the screed plate 35 scrapes the concrete floor surface 10 and the vibrating blade 36 tamping due to plane vibration. That is, the laser screed machine 30 has a laser level measuring function by the automatic level adjusting means, a concrete scraping function by the screed plate 35 driven in conjunction with the automatic level adjusting means, and a tamping function in which the vibration is associated with the automatic level adjusting means. Prepare.
  • the laser screed machine 30 advances in the direction of travel while the automatic level adjustment means checks the horizontal level of the placing surface, so that the operator can always check the level and work while maintaining a stable level. can be done. Therefore, by performing automatic floor leveling with the laser screed machine 30 instead of the leveling work that has been done manually by the conventional plasterer, unevenness can be reduced, the level can be made uniform, and workability can be improved. A dense concrete can be achieved by the tamping effect of the vibration of the vibrating blade 36 .
  • the laser screed machine (mini screed C) 30 can perform rough leveling, leveling, tamping, and screed work with one machine, and has a function to prevent defects due to reflection of unnecessary light rays during level measurement, Equipped with an extremely high-performance laser level, such as a function that can accurately measure the water slope, an automatic level correction function, and a remote control level setting.
  • an extremely high-performance laser level such as a function that can accurately measure the water slope, an automatic level correction function, and a remote control level setting.
  • obstacles such as pillars
  • the laser screed machine 30 As a configuration not provided in conventional laser screed machines, the laser screed machine 30 according to this embodiment has a mortar board 37 on the concrete floor surface 10 attached in front of the vibrating blade 36 . Due to the position of the mortarboard 37, the unevenness formed on the surface of the concrete floor surface 10 after the raking and tamping operations can be finally erased by the mortarboard 37.
  • the length dimension W1 of the mortar plate 37 is larger than the length dimension W2 of the vibrating blade 36. Due to the correlation between the length dimensions W1 and W2, the unevenness of the concrete floor surface 10 can be reliably eliminated. In this way, by additionally providing the mortar plate 37 to the laser screed machine 30, in addition to the conventional laser level measurement function, concrete scraping function, and tamping function, a finishing trowel function is added, so that the concrete can be cut more completely. Leveling work can be performed.
  • the laser screed machine 30 since the laser screed machine 30 has been developed for traveling with reinforcing bars, it is designed so that no load is applied to the reinforcing bars, mesh, etc. during traveling. A wide tire width of 200 mm is secured to prevent damage to the reinforcing bars during construction, and the weight is distributed, so that the reinforcing bars are not distorted, bent, or disturbed. In addition, since it is designed with a load of about 220 kg, which is the lightest among similar automatic floor leveling machines, during construction, the load per point is distributed by three points including the tires of both wheels and the front part. is around 70kg to 90kg (two-point load during running), which enables stable automatic floor leveling work.
  • ⁇ Third step (floor surface level confirmation) S3> Referring to FIG. 4, in the third step S3, after automatic floor leveling by the laser screed machine 30, the auto level 40 is used to check the level of the concrete floor surface 10 at a pitch of 2000 mm. Further, in the vicinity of the outer edge of the concrete floor surface 10 and the portion where the pillars of the building are located, confirmation work is performed at intervals of 500 to 1500 mm in order to accurately confirm the level.
  • ⁇ Fourth step (re-vibration compaction) S4> Referring to FIGS. 5(a) and 5(b), in the fourth step S4, after the level of the concrete floor surface 10 has been confirmed and a predetermined time has elapsed, at the time when bleeding occurs, a floor compaction machine (flat tamper machine ) 50 performs re-vibratory compaction to remove air bubbles and voids. By performing re-vibration compaction, it is possible to expel the water that has accumulated under the reinforcing bars and aggregates due to bleeding, improve the adhesion of the concrete to the reinforcing bars and aggregates, and increase the strength of the concrete.
  • bleeding is performed by inserting a finger into the concrete floor surface 10 and pulling it out in the same manner as in the conventional art, and pouring water into a hole 52 formed in the concrete floor surface 10 where the finger is pulled out. This can be confirmed by the accumulation of 53.
  • the checking work is performed by inserting a finger into five places at intervals of 1 m.
  • the "time point when bleeding occurs” means the time point when it is confirmed that the formation of a water line has started. Specifically, in FIG. , when the depth dimension D2 of the pooled water 53 is 40 to 60%, preferably 45 to 55%.
  • the point at which bleeding occurs is the golden time that can be said to be the most suitable time for re-vibration between before and after setting of concrete, and cracks do not occur after construction. It can be said that this is one of the most important points for obtaining a strong concrete floor surface 10 . In other words, this timing is within a range in which quality uniformity can be obtained in terms of the compressive strength ratio and density ratio of the concrete floor surface, and can be said to be the optimal re-vibration compaction time for improving the quality of concrete.
  • the applicant further improved the construction method in order to improve the quality (performance) of the concrete floor.
  • a bleeding measurement device that measures the timing of occurrence of bleeding.
  • This bleeding measuring device is a measuring instrument for assessing the state of concrete by looking at the water volume based on the water content of the concrete.
  • the bleeding measuring device 70 includes a wireless communication unit 71 with a built-in power supply (not shown), a water surface detector (water surface detection sensor) 72 connected to the wireless communication unit 71, and a measuring unit. 73.
  • the power source of the wireless communication unit 71 is preferably a small power source such as a small lithium button battery, AAA dry battery, alkaline battery, AAA dry battery or alkaline battery. This is because a small and lightweight measuring device is suitable for measuring bleeding inside a concrete floor.
  • the wireless communication unit 71 can use Bluetooth (registered trademark), wifi, etc., which are capable of short-range wireless communication.
  • the measurement unit 73 is composed of a measurement container 74, a mesh filter 75 provided on the outer skin of the measurement container, and an insertion port 76 (cylindrical) into which the water surface detector 72 is inserted. Since the measurement unit 73 is used by directly inserting it into the cast fresh concrete, a plurality of slits and holes (or holes) are provided in the measurement container 74 so that the water seeping out from the inside of the fresh concrete is accumulated in the measurement container 74 . ing. Furthermore, the entire measuring container 74 is covered with a mesh filter 75 to prevent mud, gravel, etc. from entering the measuring container 74 . A transparent acrylic material or the like can be used for the measurement container 74 .
  • the mesh filter 75 is made of nylon and has a bag shape.
  • the water surface detector 72 is provided with a detachable flange, is inserted into the pipe of the measurement container 74 from the insertion port 76, and is positioned at a predetermined position within the pipe.
  • the flange 77 is a C-shaped resin material having a notch (opening) in part. When the water level detector 72 is inserted into the insertion port, the flange 77 is bent inward, applying a pressing force to the pipe wall and positioning the detector. be done.
  • the timing of using the bleeding measurement device is the time after the concrete is poured until it is re-vibrated, and the results so far have been around 20 minutes in the summer and around 40 minutes in the winter.
  • FIG. 11(a) shows the results of measurement using the bleeding measuring apparatus of FIG. 9(a) in an environment with an ambient temperature of 10° C. (assuming a winter environment).
  • FIG. 11(b) shows the results of measurement using the bleeding measuring apparatus of FIG. 9(a) in an environment with an ambient temperature of 35° C. (assuming a summer environment).
  • FIGS. 11(a) shows the results of measurement using the bleeding measuring apparatus of FIG. 9(a) in an environment with an ambient temperature of 35° C. (assuming a summer environment).
  • FIG. 10(a) and 10(b) show another example of the bleeding measuring device.
  • the example of FIG. 10(a) shows an example in which a hole 78 is provided in the bottom surface of the measurement container.
  • the example of FIG. 10B shows an example in which a hole 78 is provided in the bottom surface of the measurement container and a partial mesh filter 79 is provided without the mesh filter 75 .
  • a scale for positioning is further provided on the outside of the measurement container, a mark 81 for position adjustment is provided on the side surface of the flange 82, and an opening 83a is provided for a push-in portion 83 such as a syringe and a cable for the water surface detection sensor. It has a structure drawn from
  • trowel 61-64 used in this construction method, a known one can be used, but it is a hand-held type (hand type) that alternately rotates the rotary disc so as to adjust unevenness and even out unevenness.
  • hand type hand type
  • horse-riding trowels (disc holders) 61 and 62 hand-held trowels (blade holders) 63 having metal vane-shaped rotary trowels
  • horse-riding trowels 64 having metal vane-shaped rotary trowels in this order. .
  • hand-held trowels having a metal vane-shaped rotary trowel ( The blade presser) 63 is rotated alternately on the vertical axis and the horizontal axis, and the finishing work is carefully performed at a constant speed while adjusting unevenness and unevenness until the concrete floor surface 10 shines slightly.
  • the handle lever attached to the Trowel body is operated up and down to tilt the Trowel body and change the ground pressure on the rotating surface of the rotating trowel, using the thrust generated by the difference in ground resistance. can be done by In this way, when the trowels 61-64 are moved, the trowel body is tilted and uneven contact pressure is applied to the rotating surface of the rotating trowel. , Finally, a detailed metal trowel finish by a plasterer is required.
  • the surface is processed with a relatively lightweight hand-type trowel and trowel work is performed.
  • the hand-held trowel (disc hanger) 61 is used once to hang the discus
  • the discus hanger is carried out multiple times by the horse-riding trowel (disc hanger) 62.
  • holding down the hand-held trowel (wing hook) 63 is performed multiple times after a predetermined time interval. Striped trowel marks are less likely to be left, and the work load of iron trowel finishing can be reduced.
  • the hand-type rotary disc 61 and the riding-type rotary disc 62 have a configuration not included in conventional rotary discs.
  • Brush plates (unevenness adjusting means) 65 and 66 are arranged behind the pair of discs 61a and 62a.
  • the lengths W3, W5 of the brush plates 65, 66 located behind the pair of discs 61a, 62a of the hand-held or riding type trowells (disc hooks) 61, 62 are longer than the lengths W4, W6 of the pair of discs 61a, 62a. is larger. Since the length dimensions W3 to W6 have such a correlation, it is possible to reliably remove unevenness in the disc-covered portion.
  • the brush plates 65 and 66 are unevenness adjusting means, and the brush portions may be comb-shaped or flat-plate-shaped, but they are different in structure and function from the mortar plate for surface finishing. .
  • ⁇ Penetration test of concrete floor> A penetration test was performed on the concrete floor surface 10 during any one of the steps S1 to S8.
  • initial vibration, re-vibration and surface pressure due to compaction effect Process is considered important.
  • the purpose of this test is to quantitatively standardize the surface pressure timing of the hand-held trowels 61 and 63 and the riding trowels 62 and 64 in the surface processing (fifth and sixth steps S5 and S6). As such, it was carried out under the following conditions.
  • Test location Inside a domestic logistics warehouse with a site area of 20,000m2
  • Construction method This construction method (LCS construction method)
  • Example 1 A sample (sample 1) was taken from the placed concrete floor surface 10, and a concrete setting test in accordance with JISA1147 was performed. Specifically, the test was conducted in the following procedure.
  • Sample 1 was collected in accordance with JISA1138 or JISA115. Next, Sample 1 was screened through a mesh sieve of about 5.0 mm specified in JISZ8801-1 to obtain a mortar portion (Sample 2). The temperature of Sample 2 was measured according to JISA1156.
  • Sample 2 was kneaded with a hand shovel to make it sufficiently uniform, and placed in a container in one layer so that it was almost symmetrical with the axis of the container.
  • the upper surface of Sample 2 placed in a container was leveled with a poking rod, and the poking was performed once per about 1000 mm. However, if there was a risk of separation of the material when poked at such a rate, the number was reduced to the extent that separation did not occur.
  • the side of the container was lightly tapped to eliminate the piercing hole, and the upper surface was flattened so that it was about 10 mm lower than the upper end of the container.
  • the surface of the sample 2 is preferably flattened with a trowel so as to obtain a smooth surface with minimal work.
  • a penetration needle with an appropriate cross-sectional area was selected according to the hardening state of Sample 2, and attached to the penetration resistance test device.
  • the penetrating needle was carefully penetrated vertically downward into sample 2 by approximately 25 mm.
  • the depth of penetration was confirmed by markings on the penetration needle.
  • the time required for penetration was about 10 seconds.
  • the time when the penetration test was performed and the force (N) required for penetration were read from the device and recorded. During penetration, care was taken to avoid penetrating areas that were disturbed in the previous penetration test.
  • the net spacing of the needle traces of the penetrating needle was about twice the diameter of the penetrating needle used and 15 mm or more. Also, the net distance between the penetration needle and the side surface of the container was set to 25 mm or more.
  • Table 1 shows the results of the penetration test conducted based on the above test conditions and test method.
  • each step S1-S7 was performed at a predetermined timing.
  • the time of pouring water was set as the start time, and the hand-held trowell 61 was applied to the disk at 0.5 N, which is the time when the concrete floor surface 10 spontaneously set and the operator could climb up with slippers.
  • Three hours and five minutes had passed since the injection of water, and the work was carried out for about 40 minutes.
  • Discus hooking by a horse-riding Trowel 62 was performed four times between 1.0N and 2.1N. Three hours and 40 minutes had passed since the injection of water, and the work was carried out for 2 hours and 5 minutes.
  • Feather holding with a hand-held trowel 63 was performed between 2.2 and 2.4N. Five hours and 45 minutes had passed since the injection of water, and the work was carried out for 45 minutes.
  • the wing hold down of the mounted Trowel 64 was performed 5 times between 2.5 and 2.7N. 6 hours and 31 minutes have passed since the water injection, and the work was done for about 2 hours and 15 minutes. The work was completed when the concrete floor surface 10 reached 3.5 N, at which the solidification of the concrete floor surface 10 ended.
  • the surface pressure applied by the hand-held trowel 61 and the horse-riding trowel 62 falls within the range where vibrations and loads of 3.5 N or more should not be applied. Therefore, when using the riding type trowells 62, 64 or performing finishing work, there is a possibility that cracks may occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

The present invention provides a method for constructing a concrete floor that can achieve a high level accuracy, cracking reduction, and durability. This method for constructing a concrete floor includes: a first step S1 for placing concrete on a floor of a construction site; a second step S2 for leveling concrete floor 10 by a laser screed machine 30; a third step S3 for confirming the level of the concrete floor 10 leveled by the laser screed machine 30; and a fourth step S4 for performing re-vibration compaction when a predetermined time has passed after confirming the level of the concrete floor 10, the re-vibration compaction being performed on the basis of a bleeding measurement result by a bleeding measurement device.

Description

コンクリート床面の施工方法Concrete floor construction method
 本発明は、種々の土木建築工事で施工されるコンクリート床面の施工方法、特に、倉庫等の建物のコンクリート床面の施工方法に関する。 The present invention relates to a construction method for concrete floors constructed in various civil engineering and construction works, particularly to a construction method for concrete floors of buildings such as warehouses.
 従来、倉庫等の建物のコンクリート床面の施工方法は公知である。コンクリート床面を施工する場合、セメント、骨材、水、及び各種の混和材料などが適当な割合で混合された、生コンクリートが、打込み、締固め、表面仕上げ、養生などの施工を経て固められる。コンクリート表面を平滑にするための床均し作業が行われた後に、トロウエル等の床面仕上げ装置を用いて床面を万遍なく加圧して平面化され、必要に応じて、熟練の左官工が鏝(左官鏝)による手作業で仕上げ均しを行い、コンクリートの表面が光沢のある表面となるように仕上げられる。 Conventionally, construction methods for concrete floors of buildings such as warehouses are publicly known. When constructing a concrete floor, ready-mixed concrete, which is a mixture of cement, aggregate, water, and various admixtures in appropriate proportions, is hardened through construction such as pouring, compaction, surface finishing, and curing. . After leveling the concrete surface to make it smooth, the floor surface is evenly pressurized using a floor surface finishing device such as Trowell to flatten it, and if necessary, a skilled plasterer Finishing is done manually with a trowel (plastering trowel), and the surface of the concrete is finished so that it has a glossy surface.
 例えば、特許文献1には、コンクリート打設後の床面仕上げ工法について開示しており、第一工程として、コンクリート床面にコンクリートを打設した後、荒均しを行い、次いで荒均し面をタンピングすること、第2工程として、タンピング後のコンクリート床面の完全硬化後、コンクリート床面を研磨機で直接研磨することで床仕上げを完了する工程が開示されている。 For example, Patent Document 1 discloses a method for finishing a floor surface after pouring concrete. As a second step, after the concrete floor surface after tamping has completely hardened, the concrete floor surface is directly ground with a grinder to complete the floor finish.
特開平6-173453号公報JP-A-6-173453
 特許文献1に開示されているコンクリート床面の施工方法においては、従来の左官工による手作業に変えて機械により左官作業を行わせることによって、左官工の熟練度による仕上げレベルの差が生じるのを防ぐとともに、作業時間の短縮及びコストの低減を図ることができる。 In the concrete floor construction method disclosed in Patent Document 1, the plastering work is performed by machines instead of the conventional manual work by plasterers, so that the difference in finishing level occurs depending on the skill level of the plasterers. In addition, it is possible to shorten the working time and reduce the cost.
 しかしながら、クライアントの要求に応じて、コンクリート床面の高度なレベル精度、ひび割れ抑制、耐久性を実現(具体的には、スランプ値15以下の硬練コンクリートは必須であるといえる)するためには、コンクリート均し及び仕上げまでのすべての作業を機械化することに加えて、各工程においてコンクリート強度が所定の強度を有することが必要である。 However, in order to achieve high level accuracy, crack suppression, and durability of the concrete floor surface according to the client's request (specifically, it can be said that hard concrete with a slump value of 15 or less is essential) In addition to mechanizing all the work from leveling the concrete to finishing, it is necessary for the concrete to have a predetermined strength in each process.
 本発明は、従来のコンクリート床面の施工方法の改良であって、高度なレベル精度、ひび割れ抑制、耐久性を実現することのできるコンクリート床面の施工方法を提供することを目的とする。 The present invention is an improvement of the conventional concrete floor construction method, and aims to provide a concrete floor construction method that can achieve high level accuracy, crack suppression, and durability.
 前記課題を解決するため、本発明は、コンクリート床面の施工方法に関する。 In order to solve the above problems, the present invention relates to a concrete floor construction method.
 本発明に係るコンクリート床面の施工方法は、コンクリートを施工場所の床面に打設する第1工程と、レーザースクリード機によって前記コンクリート床面を均す第2工程とを含み、前記レーザースクリード機によって均された前記コンクリート床面のレベルを確認する第3工程と、前記コンクリート床面のレベルを確認した後所定時間経過に再振動締固めを行う第4工程とをさらに含み、前記再振動締固めは、水ミチが形成され始めたブリーディングの発生時点であって、前記コンクリート床面に形成された孔の深さ寸法に対して溜まった水の深さ寸法が40~60%になった時点で行うことを特徴する。 A concrete floor construction method according to the present invention includes a first step of placing concrete on the floor of a construction site, and a second step of leveling the concrete floor with a laser screed machine. and a fourth step of performing re-vibration compaction after a predetermined time has elapsed after confirming the level of the concrete floor, wherein the re-vibration compaction Hardening is the time when bleeding occurs when water lines begin to be formed, and the time when the depth dimension of accumulated water is 40 to 60% of the depth dimension of the holes formed in the concrete floor surface. It is characterized by performing with
 本発明に係るコンクリート床面の施工方法は、以下の実施態様を含む。
(1)前記レーザースクリード機は、振動ブレードと、前記振動ブレードの前方に位置する鏝板とを有し、前記鏝板の長さ寸法は、前記振動ブレードの長さ寸法よりも大きい。
(2)第1の回転駆動機の回転式円盤によって前記コンクリート床面を表面仕上げする第5工程をさらに含み、前記回転式円盤は、一対の円盤を含み、前記一対の円盤の後方には不陸調整手段が位置し、前記一対の円盤の長さ寸法よりも前記不陸調整手段の長さ寸法が大きく、前記不陸調整手段は刷毛状である。
(3)第2の回転駆動機の羽根形回転鏝によって前記コンクリート床面を表面仕上げする第6工程をさらに含み、前記第5及び第6工程における表面仕上げは、JISA1147に準拠した貫入試験による測定値が0.5N~2.7Nの間に行われる。
(4)前記第1及び第2の回転駆動機は手持式と騎乗式とを有し、前記騎乗式の前記第1の回転駆動機による表面加工は前記測定値が1N~2.1Nの間、前記騎乗式の前記第2の回転駆動機による表面仕上げは前記測定値が2.5~2.7Nの間に行われる。
The concrete floor construction method according to the present invention includes the following embodiments.
(1) The laser screed machine has a vibrating blade and a mortar plate located in front of the vibrating blade, and the length dimension of the mortar plate is larger than the length dimension of the vibrating blade.
(2) Further comprising a fifth step of surface finishing the concrete floor surface by means of rotary discs of a first rotary drive machine, wherein the rotary discs include a pair of discs, and behind the pair of discs there is no waste. A land adjusting means is located, the length dimension of the unevenness adjusting means is larger than the length dimension of the pair of discs, and the unevenness adjusting means is brush-shaped.
(3) Further includes a sixth step of finishing the concrete floor surface with a vane-shaped rotary trowel of the second rotary drive machine, and the surface finish in the fifth and sixth steps is measured by a penetration test in accordance with JISA1147. Values are performed between 0.5N and 2.7N.
(4) The first and second rotary driving machines have a hand-held type and a riding type, and the surface processing by the riding-type first rotary driving machine has a measured value between 1N and 2.1N. , the surface finishing by the riding-type second rotary drive is carried out while the measured value is between 2.5 and 2.7N.
 本発明に係るコンクリート床面の施工方法においては、再振動締固めは、ブリーディングの発生時点で行うことによって、ひび割れを抑制し、耐久性に優れたコンクリート床面を得ることができる。 In the concrete floor construction method according to the present invention, re-vibration compaction is performed at the time when bleeding occurs, thereby suppressing cracking and obtaining a concrete floor with excellent durability.
 図面は、本開示に係るコンクリート床面の施工方法の特定の実施の形態を示し、発明の不可欠な構成ばかりでなく、選択的及び好ましい実施の形態を含む。
本発明に係るコンクリート床面の施工方法の手順を示すフローチャートの図。 第1工程における、打設均し作業の様子を示す図。 第2工程における、レーザースクリート均しの様子を示す図。 第3工程における、床面のレベル確認の様子を示す図。 (a)第4工程における、再振動締め固め作業の様子を示す図。(b)ブリーディングの確認作業中の様子を示す図。 (a)第5工程における、ハンド式トロウエル円盤掛け作業の様子を示す図。(b)第5工程における、騎乗式トロウエル円盤掛け作業の様子を示す図。 (a)第6工程における、ハンド式トロウエル羽押え作業の様子を示す図。(b)第6工程における、騎乗式トロウエル羽根押え作業の様子を示す図。 コンクリート床内部のブリーディング計測を説明するための図。 (a)本実施形態におけるブリーディング計測装置の外観構成図。(b)複数のブリーディング計測装置を用いたコンクリート床内部ブリーディング測定を説明するための図。 (a)(b)図9(a)の変形例を示すブリーディング計測装置の外観構成図。 (a)ブリーディング計測装置を用いた測定結果を示す図(周囲温度10°C)。(b)ブリーディング計測装置を用いた測定結果を示す図(周囲温度35°C)。
The drawings show specific embodiments of the concrete floor construction method according to the present disclosure, and include not only the essential components of the invention, but also optional and preferred embodiments.
The figure of the flowchart which shows the procedure of the construction method of the concrete floor which concerns on this invention. The figure which shows the mode of the placement leveling work in a 1st process. The figure which shows the mode of a laser screed leveling in a 2nd process. The figure which shows the mode of level confirmation of a floor surface in a 3rd process. (a) The figure which shows the mode of the re-vibration compaction work in a 4th process. (b) A diagram showing a state during work for confirming bleeding. (a) A diagram showing a hand-type Trowel disc setting work in the fifth step. (b) A diagram showing a riding-type Trowel disc setting work in the fifth step. (a) A diagram showing a state of hand-type trowel feather pressing work in the sixth step. (b) A diagram showing a riding-type trowel blade pressing operation in the sixth step. The figure for demonstrating the bleeding measurement inside a concrete floor. (a) An external configuration diagram of a bleeding measuring device according to the present embodiment. (b) A diagram for explaining bleeding measurement inside a concrete floor using a plurality of bleeding measuring devices. (a) and (b) are external configuration diagrams of a bleeding measuring device showing a modification of FIG. 9(a). (a) A diagram showing measurement results using a bleeding measurement device (ambient temperature 10°C). (b) A diagram showing measurement results using a bleeding measurement device (ambient temperature 35°C).
 添付の図面を参照し、本発明に係るコンクリート床面10の施工方法の詳細を説明すると、以下のとおりである。また、以下の実施形態は、本発明の欠くことのできない要件を含む他に、選択的に採用することのできる要件及び適宜に組み合わせることのできる要件を含んでいる。 The details of the construction method for the concrete floor surface 10 according to the present invention are described below with reference to the attached drawings. In addition to the essential requirements of the present invention, the following embodiments also include requirements that can be selectively adopted and requirements that can be combined as appropriate.
<第1工程(打設均し作業)S1>
 図2を参照すると、第1工程S1では、倉庫等の施工場所のコンクリート床面10を構築する箇所に鉄筋組付けを行い、次いで、コンクリートポンプ車によって生コンクリートを打設する。ポンプ車の配管内から圧送されたコンクリートは、かき棒等を使って大体のレベルに均す荒均しが行われる。なお、生コンクリートの打設前には、生コンクリートの性状を確認するために、スランプ試験、空気量試験、塩化物含有試験等の各種試験が行われる。
<First step (concrete leveling work) S1>
Referring to FIG. 2, in the first step S1, reinforcing bars are installed at a location where a concrete floor surface 10 is to be constructed in a construction site such as a warehouse, and then ready-mixed concrete is poured by a concrete pump vehicle. Concrete pumped from the pipe of a pump car is roughly leveled using a scraper or the like. Before placing the fresh concrete, various tests such as a slump test, an air content test, and a chloride content test are conducted to confirm the properties of the fresh concrete.
 本発明に係る第1工程では、棒状バイブレータ20を生コンクリートの内部に挿入することによって、締固め作業を行う。また、コンクリートが十分に締固めされるためには、棒状バイブレータ20の挿入間隔及び1つの挿入箇所当たりの振動時間、棒状バイブレータ20の引き抜きのタイミングを適宜定めることが重要であって、第1工程においては、棒状バイブレータ20の挿入間隔が40~60cm、1つの挿入箇所の振動時間は10~20秒である。このように、棒状バイブレータ20の挿入間隔、振動時間及び引き抜きのタイミングを定めることによって、コンクリート床面10を十分に締固めすることができるとともに、棒状バイブレータ20を徐々に引き抜くときに、コンクリート床面10の引き抜かれた箇所に穴が残ることはない。 In the first step according to the present invention, compaction work is performed by inserting the rod-shaped vibrator 20 into the fresh concrete. In addition, in order to sufficiently compact the concrete, it is important to appropriately determine the insertion interval of the rod-shaped vibrator 20, the vibration time per insertion point, and the timing of pulling out the rod-shaped vibrator 20. , the insertion interval of the rod-shaped vibrator 20 is 40 to 60 cm, and the vibration time at one insertion point is 10 to 20 seconds. By thus determining the insertion interval, vibration time, and withdrawal timing of the rod-shaped vibrator 20, the concrete floor surface 10 can be sufficiently compacted, and when the rod-shaped vibrator 20 is gradually withdrawn, the concrete floor surface No holes are left at the point where 10 is withdrawn.
<第2工程(レーザースクリード均し)S2>
 図3に示すとおり、第2工程S2では、棒状バイブレータ20による荒均し後、自動均し機による打設面の自動床均しを行う。自動均し機には、市販のものを適宜選択して採用することができ、例えば、レーザースクリード機(米国ソメロ社製 コンクリート均し機「ミニスクリードC」)30を使用することができる。レーザースクリード機30では、起振軸を高速回転させて振動ブレード36を平面振動させて、コンクリートの充填、締固めを行う。
<Second step (laser screed leveling) S2>
As shown in FIG. 3, in the second step S2, after rough leveling by the rod-shaped vibrator 20, automatic floor leveling of the placing surface by an automatic leveling machine is performed. As the automatic leveling machine, a commercially available one can be appropriately selected and adopted. For example, a laser screed machine (concrete leveling machine "Mini Screed C" manufactured by Somero, USA) 30 can be used. In the laser screed machine 30, the vibrating shaft is rotated at high speed to vibrate the vibrating blade 36 in plane, thereby filling and compacting the concrete.
 レーザースクリード機30は、幅方向に対向する支持棒32,33を有し、支持棒32,33の先端にはそれぞれレーザー受光器32a,33aが位置している。レーザースクリード機30の近くには、レーザー照射部を有するレーザー発光器34が配置されていて、レーザー発光器34とレーザー受光器32a,33aとからなる自動レベル調整手段によってコンクリート床面10のレベルを監視している。また、レーザースクリード機30は、コンクリート床面10を掻くスクリード板(掻き棒)35と、その前方に位置する、バイブレータによってコンクリート床面10に対して平面振動を与えて均すための振動ブレード36とを備える。バイブレータによる振動タンピングによってコンクリート中の気泡や空気を除去し、密度を高めることで、コンクリート床面10のひび割れを抑制することができる。 The laser screed machine 30 has support rods 32 and 33 facing each other in the width direction, and laser receivers 32a and 33a are positioned at the tips of the support rods 32 and 33, respectively. A laser emitter 34 having a laser irradiation part is arranged near the laser screed machine 30, and the level of the concrete floor surface 10 is leveled by automatic level adjustment means comprising the laser emitter 34 and laser receivers 32a and 33a. I am watching. The laser screed machine 30 includes a screed plate (scrape bar) 35 for scraping the concrete floor 10, and a vibrating blade 36 positioned in front of the screed plate for applying plane vibration to the concrete floor 10 by a vibrator to level the surface. and Cracking of the concrete floor surface 10 can be suppressed by removing air bubbles and air in the concrete by vibration tamping with a vibrator and increasing the density of the concrete.
 自動レベル調整手段と連動して、スクリード板35によるコンクリート床面10の掻きと、振動ブレード36の平面振動によるタンピングとが行われる。すなわち、レーザースクリード機30は、自動レベル調整手段によるレーザーレベル測定機能、自動レベル調整手段に連動して駆動するスクリード板35によるコンクリート掻き機能、自動レベル調整手段に連動して振動するタンピング機能とを備える。 In conjunction with the automatic level adjustment means, the screed plate 35 scrapes the concrete floor surface 10 and the vibrating blade 36 tamping due to plane vibration. That is, the laser screed machine 30 has a laser level measuring function by the automatic level adjusting means, a concrete scraping function by the screed plate 35 driven in conjunction with the automatic level adjusting means, and a tamping function in which the vibration is associated with the automatic level adjusting means. Prepare.
 このように、自動レベル調整手段が打設面の水平レベルをチェックしながらレーザースクリード機30は進行方向へ進むので、操縦者は常にそのレベルを確認でき、安定したレベルを保ちながら作業を行うことができる。したがって、従来の左官工によって手作業で行われていた均し作業に代わって、レーザースクリード機30による自動床均しを行うことで、不陸の軽減やレベルの均一化、作業性の向上、振動ブレード36の振動によるタンピング効果によって密実なコンクリートを実現することができる。 In this way, the laser screed machine 30 advances in the direction of travel while the automatic level adjustment means checks the horizontal level of the placing surface, so that the operator can always check the level and work while maintaining a stable level. can be done. Therefore, by performing automatic floor leveling with the laser screed machine 30 instead of the leveling work that has been done manually by the conventional plasterer, unevenness can be reduced, the level can be made uniform, and workability can be improved. A dense concrete can be achieved by the tamping effect of the vibration of the vibrating blade 36 .
 また、レーザースクリード機(ミニスクリードC)30は、荒均し、レベル出し、タンピング、スクリード作業を1台で行うことができ、レベル測定時の不要な光線の反射による不具合を防止する機能や、水勾配を正確に測定できる機能、レベル自動修正機能、リモコンによるレベル設定可能、など極めて高性能レーザーレベルを備えている。レーザースクリード機30の使用には、作業現場での安全作業や打設面のレベル精度の安定を実現するために、専門のインストラクターによる指導を受けることが好ましい。なお、柱等の障害物のある場所では、レーザースクリード機30による作業に加えて、作業員による手作業も併用して行うことが好ましい。 In addition, the laser screed machine (mini screed C) 30 can perform rough leveling, leveling, tamping, and screed work with one machine, and has a function to prevent defects due to reflection of unnecessary light rays during level measurement, Equipped with an extremely high-performance laser level, such as a function that can accurately measure the water slope, an automatic level correction function, and a remote control level setting. When using the laser screed machine 30, it is preferable to receive guidance from a professional instructor in order to realize safe work at the work site and stable level accuracy of the placing surface. In addition, in a place where there are obstacles such as pillars, in addition to the work by the laser screed machine 30, it is preferable to use manual work by a worker.
 従来のレーザースクリード機に備わっていない構成として、本実施形態に係るレーザースクリード機30は、振動ブレード36の前方にコンクリート床面10の鏝板37が取り付けられている。鏝板37が位置することによって、掻き作業及びタンピング作業後のコンクリート床面10の表面に形成されたムラを最終的に鏝板37によって消すことができる。 As a configuration not provided in conventional laser screed machines, the laser screed machine 30 according to this embodiment has a mortar board 37 on the concrete floor surface 10 attached in front of the vibrating blade 36 . Due to the position of the mortarboard 37, the unevenness formed on the surface of the concrete floor surface 10 after the raking and tamping operations can be finally erased by the mortarboard 37.
 鏝板37の長さ寸法W1は、振動ブレード36の長さ寸法W2よりも大きくなっている。長さ寸法W1,W2がかかる相関関係にあることによって、コンクリート床面10のムラを確実に消失させることができる。このように、レーザースクリード機30が追加的に鏝板37を備えることによって、従来のレーザーレベル測定機能、コンクリート掻き機能、タンピング機能に加えて、仕上げ鏝機能が追加され、より完全な形でコンクリート均し作業を行うことができる。 The length dimension W1 of the mortar plate 37 is larger than the length dimension W2 of the vibrating blade 36. Due to the correlation between the length dimensions W1 and W2, the unevenness of the concrete floor surface 10 can be reliably eliminated. In this way, by additionally providing the mortar plate 37 to the laser screed machine 30, in addition to the conventional laser level measurement function, concrete scraping function, and tamping function, a finishing trowel function is added, so that the concrete can be cut more completely. Leveling work can be performed.
 また、レーザースクリード機30は、鉄筋走行用に開発されているため、走行時に鉄筋、メッシュなどに負荷のかからない設計になっている。施工時に鉄筋を痛めない幅広のタイヤ200mm幅を確保し、重量を分散しているため、鉄筋の歪み、曲がり、乱れなどが起こることはない。また、同種の自動床均し機において最軽量の約220kgの荷重で設計されているため、施工時は両輪のタイヤとフロント部分を含む3点荷重で分散されることにより、1点あたりの荷重が70kg~90kg前後(走行時は2点荷重)となり、自動床均し作業を安定して行うことができる。 In addition, since the laser screed machine 30 has been developed for traveling with reinforcing bars, it is designed so that no load is applied to the reinforcing bars, mesh, etc. during traveling. A wide tire width of 200 mm is secured to prevent damage to the reinforcing bars during construction, and the weight is distributed, so that the reinforcing bars are not distorted, bent, or disturbed. In addition, since it is designed with a load of about 220 kg, which is the lightest among similar automatic floor leveling machines, during construction, the load per point is distributed by three points including the tires of both wheels and the front part. is around 70kg to 90kg (two-point load during running), which enables stable automatic floor leveling work.
<第3工程(床面のレベル確認)S3>
 図4を参照すると、第3工程S3では、レーザースクリード機30による自動床均し後、オートレベル40を使用して、2000mmピッチでコンクリート床面10のレベルを確認する。また、コンクリート床面10の外周縁部や建物の柱が位置する部分の近傍では、正確にレベルを確認するために、500~1500mmピッチで確認作業を行う。
<Third step (floor surface level confirmation) S3>
Referring to FIG. 4, in the third step S3, after automatic floor leveling by the laser screed machine 30, the auto level 40 is used to check the level of the concrete floor surface 10 at a pitch of 2000 mm. Further, in the vicinity of the outer edge of the concrete floor surface 10 and the portion where the pillars of the building are located, confirmation work is performed at intervals of 500 to 1500 mm in order to accurately confirm the level.
<第4工程(再振動締め固め)S4>
 図5(a),(b)を参照すると、第4工程S4では、コンクリート床面10のレベルを確認して所定時間経過した後、ブリーディングの発生時点で、床面締固め機(平面タンパー機)50によって、再振動による締め固めを行って気泡や空隙を除去する。再振動締め固めを行うことで、ブリーディングにより鉄筋や骨材の下に溜まった水を追い出して、コンクリートと鉄筋、骨材との付着を良好にして、コンクリートの強度を高めることができる。
<Fourth step (re-vibration compaction) S4>
Referring to FIGS. 5(a) and 5(b), in the fourth step S4, after the level of the concrete floor surface 10 has been confirmed and a predetermined time has elapsed, at the time when bleeding occurs, a floor compaction machine (flat tamper machine ) 50 performs re-vibratory compaction to remove air bubbles and voids. By performing re-vibration compaction, it is possible to expel the water that has accumulated under the reinforcing bars and aggregates due to bleeding, improve the adhesion of the concrete to the reinforcing bars and aggregates, and increase the strength of the concrete.
 図5(b)を参照すると、ブリーディングは、従来と同様に、作業者が指をコンクリート床面10に挿し入れて抜き出し、コンクリート床面10に形成された指を抜いた跡の孔52に水53が溜まることによって確認することができる。本実施形態においては、ブリーディングを正確に確認するために、1m間隔毎に5か所において指を指し入れて確認作業を行う。 Referring to FIG. 5(b), bleeding is performed by inserting a finger into the concrete floor surface 10 and pulling it out in the same manner as in the conventional art, and pouring water into a hole 52 formed in the concrete floor surface 10 where the finger is pulled out. This can be confirmed by the accumulation of 53. In this embodiment, in order to accurately check the bleeding, the checking work is performed by inserting a finger into five places at intervals of 1 m.
 従来、ブリーディング前又はそれからしばらくした後に、トンボ掛けや棒状バイブレータによる振動等を行う程度で済ませて、ブリーディング確認直後に再振動締固めを行うことはなかった。しかしながら、ブリーディングが起きているということはコンクリート内部に水ミチが形成されていることは明らかであり、その前又は途中で次の工程へ移行しても最終的にひび割れの生じない強固なコンクリート床面を形成することはできなかった。また、完全にブリーディングが起きた後に再振動を加えると、水和反応によるコンクリートの凝結の邪魔をして、強固なコンクリート床面を形成することができなかった。  Conventionally, before bleeding or after a while, it was enough to just hang the dragonfly or vibrate with a rod-shaped vibrator, and did not re-vibrate and compact immediately after confirming the bleeding. However, if bleeding occurs, it is clear that water mites are formed inside the concrete. face could not be formed. Further, if vibration is applied again after bleeding has occurred completely, it interferes with the setting of the concrete due to the hydration reaction, making it impossible to form a strong concrete floor surface.
 本実施形態に係るコンクリート床面の施工方法においては、ブリーディングの発生時点に、しっかりと平面タンパー機によるタンピング振動を加えることで水ミチによる気泡や空隙を除去し、最終的にひび割れの生じない強固なコンクリート床面を形成することができる。ここで、「ブリーディングの発生時点」とは、水ミチが形成され始めたことを確認した時点を意味し、具体的には、図5(b)において、孔52の深さ寸法D1に対して、溜まった水53の深さ寸法D2が40~60%、好ましくは、45~55%の大きさになった時点を意味する。かかるタイミングで床面締固め機50による平面振動を加えることで、確実に水ミチによる気泡や空隙を除去することができる。 In the concrete floor construction method according to this embodiment, when bleeding occurs, tamping vibration is firmly applied using a flat tamper machine to remove air bubbles and voids caused by water mites, and finally a strong floor without cracks. A concrete floor surface can be formed. Here, the "time point when bleeding occurs" means the time point when it is confirmed that the formation of a water line has started. Specifically, in FIG. , when the depth dimension D2 of the pooled water 53 is 40 to 60%, preferably 45 to 55%. By applying plane vibration by the floor surface compactor 50 at such timing, it is possible to reliably remove air bubbles and voids caused by water dust.
 また、出願人の知見したところによれば、「ブリーディング発生時点」は、コンクリートの凝結前と凝結後との間における再振動に最も適したゴールデンタイムといえる時機であり、施工後にひび割れを生じない強固なコンクリート床面10得るために最も重要なポイントの1つであるといえる。すなわち、かかるタイミングが、コンクリート床面の圧縮強度比、密度比において品質の均一性が得られる範囲であって、コンクリートの品質向上に対して最適な再振動締固め時間であるといえる。 In addition, according to the applicant's knowledge, "the point at which bleeding occurs" is the golden time that can be said to be the most suitable time for re-vibration between before and after setting of concrete, and cracks do not occur after construction. It can be said that this is one of the most important points for obtaining a strong concrete floor surface 10 . In other words, this timing is within a range in which quality uniformity can be obtained in terms of the compressive strength ratio and density ratio of the concrete floor surface, and can be said to be the optimal re-vibration compaction time for improving the quality of concrete.
 本出願人は、コンクリート床面の品質(性能)を向上させるため、さらなる施工方法の改良を行った。具体的には、ブリーディングを正確に確認するため、ブリーディングの発生タイミングを計測するブリーディング計測装置を開発した。このブリーディング計測装置は、コンクリートの水分量による水嵩を見てコンクリート状態を見極める計測器である。 The applicant further improved the construction method in order to improve the quality (performance) of the concrete floor. Specifically, in order to accurately confirm bleeding, we developed a bleeding measurement device that measures the timing of occurrence of bleeding. This bleeding measuring device is a measuring instrument for assessing the state of concrete by looking at the water volume based on the water content of the concrete.
 ブリーディング計測装置70は、図9(a)に示すように、電源内蔵(図示省略)の無線通信部71と、無線通信部71に接続された水面検知器(水面検知センサ)72と、計測部73とから構成される。無線通信部71の電源は、小型のリチウムボタン電池や、単4乾電池やアルカリ電池、単5乾電池やアルカリ電池など、小型の電源が好ましい。コンクリート床内部のブリーディングを測定するためには、計測装置は小型軽量のものが適しているからである。無線通信部71は、近距離無線通信可能なブルートゥース(登録商標)、wifiなどを利用することができる。 As shown in FIG. 9A, the bleeding measuring device 70 includes a wireless communication unit 71 with a built-in power supply (not shown), a water surface detector (water surface detection sensor) 72 connected to the wireless communication unit 71, and a measuring unit. 73. The power source of the wireless communication unit 71 is preferably a small power source such as a small lithium button battery, AAA dry battery, alkaline battery, AAA dry battery or alkaline battery. This is because a small and lightweight measuring device is suitable for measuring bleeding inside a concrete floor. The wireless communication unit 71 can use Bluetooth (registered trademark), wifi, etc., which are capable of short-range wireless communication.
 計測部73は、計測容器74と、この計測容器の外皮に設けられたメッシュフィルタ75と、水面検知器72を挿入する挿入口76(円筒形)とから構成される。計測部73は、打設された生コンクリートへ直接差し込んで使用するため、計測容器74に生コンクリート内部から染み出した水が計測容器74にたまるようにスリットや穴(又は孔)が複数設けられている。さらに、計測容器74内に泥や砂利などが入り込まないようにメッシュフィルタ75で計測容器74全体が覆われている。計測容器74は透明アクリル製の材料などが使用できる。メッシュフィルタ75はナイロン製で袋状の形態をしている。計測容器74全体を覆って溶着されている。水面検知器72には、着脱自在のフランジが設けられ、挿入口76から計測容器74の管内に挿入し、管内の所定位置に位置決めされる。フランジ77は、一部に切り込み(開口)があるC型形状の樹脂製材料で、水面検知器72を挿入口に挿入すると、フランジ77が内部に曲げられ、管壁に押圧力を与え、位置決めされる。 The measurement unit 73 is composed of a measurement container 74, a mesh filter 75 provided on the outer skin of the measurement container, and an insertion port 76 (cylindrical) into which the water surface detector 72 is inserted. Since the measurement unit 73 is used by directly inserting it into the cast fresh concrete, a plurality of slits and holes (or holes) are provided in the measurement container 74 so that the water seeping out from the inside of the fresh concrete is accumulated in the measurement container 74 . ing. Furthermore, the entire measuring container 74 is covered with a mesh filter 75 to prevent mud, gravel, etc. from entering the measuring container 74 . A transparent acrylic material or the like can be used for the measurement container 74 . The mesh filter 75 is made of nylon and has a bag shape. It is welded so as to cover the entire measurement container 74 . The water surface detector 72 is provided with a detachable flange, is inserted into the pipe of the measurement container 74 from the insertion port 76, and is positioned at a predetermined position within the pipe. The flange 77 is a C-shaped resin material having a notch (opening) in part. When the water level detector 72 is inserted into the insertion port, the flange 77 is bent inward, applying a pressing force to the pipe wall and positioning the detector. be done.
 メッシュフィルタの選定実験を行った。#100~300のメッシュフィルタでは、セメントの濁りがあり、セメントが透過していると判断し、不適とした。また、#400、500のメッシュフィルタでは、セメントの濁りがなく、透過していないと判断し、適(使用可)とした。 We conducted a mesh filter selection experiment. The mesh filters of #100 to 300 were judged to be unsuitable because the cement was turbid and the cement was judged to be permeated. In addition, the #400 and #500 mesh filters were judged to be suitable (usable) because there was no turbidity in the cement and they did not permeate.
 計測容器の管穴位置と管サイズ確認試実験を行った。側面への穴は生コンクリートへの挿入した深さにより水位が異なり、計測器としては難しい。底面への穴で検討を進める。最低穴径を検討した結果、穴径は小さい方が侵入抵抗(表面張力)が働き、コンクリートの乾燥状態に近い計測が出来ると判断した。
穴径 3mm →  透過
穴径 1mm →  透過
何れも透過しているので、穴径は、1mm~3mmの範囲であれば、適(使用可)と判断した。水位データの確認は、計測容器の穴径1mmで行った。
A trial experiment was conducted to confirm the tube hole position and tube size of the measurement container. The water level of the hole in the side varies depending on the depth of insertion into the ready-mixed concrete, making it difficult to use as a measuring instrument. Consideration is advanced with a hole to the bottom. As a result of examining the minimum hole diameter, it was determined that the smaller the hole diameter, the better the penetration resistance (surface tension), and the closer the measurement to the dry state of concrete.
Hole diameter 3 mm → penetration hole diameter 1 mm → penetration Since both are permeable, it was judged that the hole diameter was suitable (usable) if it was in the range of 1 mm to 3 mm. Confirmation of the water level data was performed with a hole diameter of 1 mm in the measurement container.
 これらの実験結果から、ブリーディング計測装置としては、フィルター#500を使用し、計測容器の穴径1mm、
コンクリート水分 → セメント1:砂3 (体積比で水40%~45%)
計測容器の管100mm高さの物を90mm沈めて実験を行った。その実験結果を図8に示す。
From these experimental results, a #500 filter was used as the bleeding measuring device, and the hole diameter of the measuring container was 1 mm.
Concrete water content → cement 1: sand 3 (volume ratio of water 40% to 45%)
An experiment was conducted by submerging a 100 mm-high tube of a measurement container by 90 mm. The experimental results are shown in FIG.
 ブリーディング計測装置の使用タイミングは、コンクリート打ち込み後から再振動をするまでの時間となり、これまでの実績は、夏場20分前後、冬場40分前後が好ましい結果であった。 The timing of using the bleeding measurement device is the time after the concrete is poured until it is re-vibrated, and the results so far have been around 20 minutes in the summer and around 40 minutes in the winter.
 図8に示すように、打ち込みが終わってから、計測部73を生コン(生コンクリート)に90mm(D1)差し込み、内管の水位がXmm(D2)になったら再振動を行う。Xmmに関しては外気温度により目標値(X)は変更する。図11(a)に周囲温度が10°Cの環境下(冬場環境を想定)で図9(a)のブリーディング計測装置を用いた測定結果を示す。また、図11(b)に周囲温度が35°Cの環境下(夏場環境を想定)で図9(a)のブリーディング計測装置を用いた測定結果を示す。図11(a)(b)の例では、生コンクリートの打ち込み後(実験環境下)の経過時間を0~60分の時間で5分おきに計測した。水分量は40%、45%で計測した。図11(a)(b)の結果から、冬場では約45分以下の時間で水分量に合わせた水嵩に到達したら再振動をスタートすれば、良いと言える。また、夏場では約25分以下の時間で水分量に合わせた水嵩に到達したら再振動をスタートすれば、良いと言える。 As shown in FIG. 8, after the driving is finished, the measuring part 73 is inserted into the ready-mixed concrete (ready-mixed concrete) by 90 mm (D1), and when the water level in the inner pipe reaches X mm (D2), vibration is performed again. Regarding X mm, the target value (X) is changed according to the outside air temperature. FIG. 11(a) shows the results of measurement using the bleeding measuring apparatus of FIG. 9(a) in an environment with an ambient temperature of 10° C. (assuming a winter environment). Also, FIG. 11(b) shows the results of measurement using the bleeding measuring apparatus of FIG. 9(a) in an environment with an ambient temperature of 35° C. (assuming a summer environment). In the examples of FIGS. 11(a) and 11(b), the elapsed time after pouring ready-mixed concrete (in the experimental environment) was measured every 5 minutes from 0 to 60 minutes. Moisture content was measured at 40% and 45%. From the results of FIGS. 11(a) and 11(b), it can be said that in winter, it is sufficient to start the vibration again when the water level is reached in about 45 minutes or less. Also, in the summertime, it can be said that it is sufficient to start the vibration again when the water level corresponding to the water content is reached in about 25 minutes or less.
 図9(b)に示すように、コンクリート床面をエリア分割して複数台のブリーディング計測装置70a~70hを区画単位に設置し、無線通信によりブリーディングのタイミングを自動検知することもできる。これにより、コンクリート床ア面の全体の再振動を適切に行うことができる。 As shown in FIG. 9(b), it is also possible to divide the concrete floor surface into areas, install a plurality of bleeding measuring devices 70a to 70h for each section, and automatically detect the timing of bleeding through wireless communication. As a result, the entire concrete floor surface can be appropriately re-vibrated.
 図10(a)(b)にブリーディング計測装置の他の例を示す。図10(a)の例では、計測容器の底面に穴78を設けた例を示す。図10(b)の例では、計測容器の底面に穴78を設け、メッシュフィルタ75をしないで、部分メッシュフィルタ79を設けた例を示す。図10(b)では、さらに計測容器の外側に位置決め用の目盛りを設け、フランジ82の側面には位置調整用マーク81を設け、注射器のような押し込み部83と水面検出センサのケーブルを開口83aから引き出した構造をしている。  Figures 10(a) and 10(b) show another example of the bleeding measuring device. The example of FIG. 10(a) shows an example in which a hole 78 is provided in the bottom surface of the measurement container. The example of FIG. 10B shows an example in which a hole 78 is provided in the bottom surface of the measurement container and a partial mesh filter 79 is provided without the mesh filter 75 . In FIG. 10(b), a scale for positioning is further provided on the outside of the measurement container, a mark 81 for position adjustment is provided on the side surface of the flange 82, and an opening 83a is provided for a push-in portion 83 such as a syringe and a cable for the water surface detection sensor. It has a structure drawn from
 このような構成にすることにより、水面高さ調整が簡単化される。 By adopting such a configuration, the water surface height adjustment is simplified.
<第5工程(トロウエル円盤掛け)S5及び第6工程(トロウエル羽押え)S6>
 図6(a),(b)及び図7(a)及び(b)を参照すると、再振動によってコンクリート床面10を均した後、さらに、トロウエル(回転駆動機,表面仕上げ機)61-64によって、コンクリート床面10を万遍なく加圧して平面化する。トロウエル61-64は、操作者が歩行しながら操作するハンド式と、トロウエル本体に乗り込んで操作する騎乗式とがあり、回転式円盤(又は羽根形回転鏝)をモータまたはエンジンで回転させて硬化前にコンクリート床面10の仕上げを行う床面仕上げ機である。回転式円盤及び羽根形回転鏝には、SK材や高張力鋼等の硬質鋼板が好適に用いられる。
<Fifth Step (Trouwel Disc Hanging) S5 and Sixth Step (Trouwel Feather Retainer) S6>
Referring to FIGS. 6(a), (b) and FIGS. 7(a) and (b), after leveling the concrete floor surface 10 by re-vibration, the trowell (rotary driving machine, surfacing machine) 61-64 , the concrete floor surface 10 is evenly pressurized and flattened. Trowells 61-64 are available in two types: hand type operated by the operator while walking and riding type operated by riding on the main body of Trowel. It is a floor surface finishing machine that finishes the concrete floor surface 10 before. A hard steel plate such as SK material or high-strength steel is suitably used for the rotary disk and vane-shaped rotary iron.
 本施工方法で使用するトロウエル61-64には、公知のものを使用することができるが、不陸調整を行い均しムラがないように交互に回転式円盤を回転させる手持式(ハンド式)又は騎乗式トロウエル(円盤掛け)61,62、金属製の羽根形回転鏝を有する手持式トロウエル(羽根押え)63、金属製の羽根形回転鏝を有する騎乗式トロウエル64の順に使用することが好ましい。 For the trowel 61-64 used in this construction method, a known one can be used, but it is a hand-held type (hand type) that alternately rotates the rotary disc so as to adjust unevenness and even out unevenness. Alternatively, it is preferable to use horse-riding trowels (disc holders) 61 and 62, hand-held trowels (blade holders) 63 having metal vane-shaped rotary trowels, and horse-riding trowels 64 having metal vane-shaped rotary trowels in this order. .
 すなわち、手持式又は騎乗式トロウエル(円盤掛け)61,62の回転方向及び回転回数を調整しながらある程度までコンクリート床面10を平面化した後に、金属製の羽根形回転鏝を有する手持式トロウエル(羽根押え)63を縦軸及び横軸に運転して交互に回転させ、均しムラや不陸の調整をしながら一定のスピードでコンクリート床面10がうっすらと輝き出すまで丁寧に仕上げ作業を行う。 That is, after flattening the concrete floor surface 10 to some extent while adjusting the rotation direction and the number of rotations of hand-held or riding-type trowels (disc holders) 61 and 62, hand-held trowels having a metal vane-shaped rotary trowel ( The blade presser) 63 is rotated alternately on the vertical axis and the horizontal axis, and the finishing work is carefully performed at a constant speed while adjusting unevenness and unevenness until the concrete floor surface 10 shines slightly. .
 トロウエル61-64の移動は、トロウエル本体に取り付けられたハンドルレバーを上下操作してトロウエル本体を傾けて、回転鏝の回転面における接地圧を変化させることで、接地抵抗の差によって生じる推力を利用して行うことができる。このように、トロウエル61-64を移動する際には、トロウエル本体を傾けて回転鏝の回転面に不均等な接地圧がかかることから、コンクリート床面10に縞状の鏝跡が付いてしまい、最終的に左官工による綿密な金鏝仕上げが必要となる。 To move Trowel 61-64, the handle lever attached to the Trowel body is operated up and down to tilt the Trowel body and change the ground pressure on the rotating surface of the rotating trowel, using the thrust generated by the difference in ground resistance. can be done by In this way, when the trowels 61-64 are moved, the trowel body is tilted and uneven contact pressure is applied to the rotating surface of the rotating trowel. , Finally, a detailed metal trowel finish by a plasterer is required.
 通常、比較的に重量のある騎乗式トロウエルでコンクリート床面の表面を硬化した後に、比較的に軽量のハンド式トロウエルによって表面加工して金鏝作業を行う。本施工方法においては、後述するように、手持式トロウエル(円盤掛け)61の円盤掛けを1回行った後に、所定時間を空けて騎乗式トロウエル(円盤掛け)62の円盤掛けを複数回行い、さらに、手持式トロウエル(羽根掛け)63の羽押えを1回行った後に、所定時間を空けて騎乗式トロウエル(羽根掛け)64の羽押えを複数回行うことから、トロウエル61-64の移動に際して縞状の鏝跡が付き難く、金鏝仕上げの作業負担を軽減することができる。 Usually, after hardening the surface of the concrete floor with a relatively heavy horse-riding trowel, the surface is processed with a relatively lightweight hand-type trowel and trowel work is performed. In this construction method, as will be described later, after the hand-held trowel (disc hanger) 61 is used once to hang the discus, after a predetermined period of time, the discus hanger is carried out multiple times by the horse-riding trowel (disc hanger) 62. Furthermore, after holding down the hand-held trowel (wing hook) 63 once, holding down the riding-type trowel (wing hook) 64 is performed multiple times after a predetermined time interval. Striped trowel marks are less likely to be left, and the work load of iron trowel finishing can be reduced.
 図6(a),(b)を参照すると、従来の回転式円盤に備えられていない構成として、本実施形態に係るハンド式の回転式円盤61と騎乗式の回転式円盤62とには、一対の円盤61a,62aの後方に刷毛板(不陸調整手段)65,66が配置されている。 Referring to FIGS. 6(a) and 6(b), the hand-type rotary disc 61 and the riding-type rotary disc 62 according to the present embodiment have a configuration not included in conventional rotary discs. Brush plates (unevenness adjusting means) 65 and 66 are arranged behind the pair of discs 61a and 62a.
 このように、回転式円盤の円盤61a,62aによる円盤掛けの直後に刷毛板65,66によってコンクリート床面10のムラ取りを行って不陸調整することができる。また、手持式又は騎乗式トロウエル(円盤掛け)61,62の一対の円盤61a,62aの長さ寸法W4,W6よりもそれらの後方に位置する刷毛板65,66の長さ寸法W3,W5の方が大きくなっている。長さ寸法W3~W6がかかる相関関係にあることによって、円盤掛けされた部分のムラ取りを確実に行うことができる。なお、刷毛板65,66は、不陸調整手段であって、刷毛部分が櫛状や平板状であってもよいが、表面仕上げ用の鏝板とはその構成及び機能が相違するものである。 In this way, unevenness can be adjusted by removing unevenness on the concrete floor surface 10 with the brush plates 65 and 66 immediately after the disks 61a and 62a of the rotary disk are applied. Further, the lengths W3, W5 of the brush plates 65, 66 located behind the pair of discs 61a, 62a of the hand-held or riding type trowells (disc hooks) 61, 62 are longer than the lengths W4, W6 of the pair of discs 61a, 62a. is larger. Since the length dimensions W3 to W6 have such a correlation, it is possible to reliably remove unevenness in the disc-covered portion. The brush plates 65 and 66 are unevenness adjusting means, and the brush portions may be comb-shaped or flat-plate-shaped, but they are different in structure and function from the mortar plate for surface finishing. .
<第7工程(金鏝仕上げ)S7>
 トロウエルによる金鏝作業を行った後に、必要に応じて、左官工による金鏝仕上げを行う。
<Seventh step (finishing with iron trowel) S7>
After the trowel work is done by Trowel, if necessary, the trowel finish is done by the plasterer.
<第8工程(養生)S8>
 トロウエル61-64による表面加圧後、十分な水和反応の促進と乾燥による表面のひび割れを防止するために、コンクリート床面10に水分を供給することが重要である。そのために、日中の平均気温に応じた必要日数、水養生や湿潤養生を行う。本施工方法では、最低、7日間の水養生、湿潤養生を行うことが好ましい。また、金鏝仕上げから3日程度で養生を行うことで、空気が乾燥した状態であっても、コンクリート床面10の表面にひび割れが生じるのを抑制することができる。
<Eighth step (curing) S8>
After the surface pressurization by the Trowells 61-64, it is important to supply moisture to the concrete floor 10 in order to promote a sufficient hydration reaction and prevent surface cracks due to drying. For that purpose, water curing and moist curing are performed for the required number of days according to the average daytime temperature. In this construction method, it is preferable to perform water curing and wet curing for at least 7 days. In addition, by performing curing in about three days after finishing with a trowel, it is possible to suppress the occurrence of cracks on the surface of the concrete floor surface 10 even in a dry air state.
<コンクリート床面の貫入試験>
 各工程S1~S8のうち、任意の工程時のコンクリート床面10に対して貫入試験を行った。特に、物流倉庫用のコンクリート床面10の課題とされている耐衝撃性、耐摩耗性およびそれら耐久性の維持、向上のために、締固め効果による初期振動、再振動及び表面加圧3つの工程が重要であると考えられる。本試験では、そのうちの表面加工(第5及び第6工程S5,S6)において、手持式トロウエル61,63及び騎乗式トロウエル62,64の表面加圧のタイミングを定量的に基準化することを目的として、以下の条件下で行った。
<Penetration test of concrete floor>
A penetration test was performed on the concrete floor surface 10 during any one of the steps S1 to S8. In particular, in order to maintain and improve the impact resistance, wear resistance, and durability of concrete floors 10 for distribution warehouses, initial vibration, re-vibration and surface pressure due to compaction effect Process is considered important. The purpose of this test is to quantitatively standardize the surface pressure timing of the hand-held trowels 61 and 63 and the riding trowels 62 and 64 in the surface processing (fifth and sixth steps S5 and S6). As such, it was carried out under the following conditions.
 試験場所:敷地面積20,000mの国内物流倉庫内 Test location: Inside a domestic logistics warehouse with a site area of 20,000m2
 施工方法:本施工方法(LCS工法) Construction method: This construction method (LCS construction method)
 試験機:油圧式プロクター貫入試験器S06  Tester: Hydraulic Proctor Penetration Tester S06
 試験方法:JISA1147に準拠  Test method: conforms to JISA1147
 コンクリートスランプ値:8-15  Concrete slump value: 8-15
 混和剤:流動化剤 Admixture: Fluidizer
 倉庫内の気温:10.4°C
 倉庫内の湿度:55%
Warehouse temperature: 10.4°C
Humidity in warehouse: 55%
<試験方法>
 打設したコンクリート床面10から試料(試料1)を採取し、JISA1147に準拠したコンクリート凝結試験を実施した。具体的には、以下の手順で試験を行った。
<Test method>
A sample (sample 1) was taken from the placed concrete floor surface 10, and a concrete setting test in accordance with JISA1147 was performed. Specifically, the test was conducted in the following procedure.
 試料1は、JISA1138又はJISA115に準拠して採取した。次に、資料1をJISZ8801-1に規定する約5.0mmの網ふるいに通してスクリーニングをしてモルタル分(試料2)とした。なお、試料2の温度は、JISA1156によって測定した。 Sample 1 was collected in accordance with JISA1138 or JISA115. Next, Sample 1 was screened through a mesh sieve of about 5.0 mm specified in JISZ8801-1 to obtain a mortar portion (Sample 2). The temperature of Sample 2 was measured according to JISA1156.
 試料2は、ハンドスコップで練り直して十分に均一なものとし、容器の軸にほぼ対象となるように、一層で容器に入れた。容器に入れたサンプル2の上面を突き棒で均して、約1000mm当たりに1回の割合で突いた。ただし、かかる割合で突いたときに材料の分離を生じるおそれがある場合には、分離を生じない程度に付き数を減らした。突き終わった後に、容器の側面を軽く叩いて突き孔を無くして、上面を容器の上端よりも約10mm低くなるように均した。試料2の表面は、最小の作業で平滑な面となるように、鏝で均すことが好ましい。 Sample 2 was kneaded with a hand shovel to make it sufficiently uniform, and placed in a container in one layer so that it was almost symmetrical with the axis of the container. The upper surface of Sample 2 placed in a container was leveled with a poking rod, and the poking was performed once per about 1000 mm. However, if there was a risk of separation of the material when poked at such a rate, the number was reduced to the extent that separation did not occur. After piercing, the side of the container was lightly tapped to eliminate the piercing hole, and the upper surface was flattened so that it was about 10 mm lower than the upper end of the container. The surface of the sample 2 is preferably flattened with a trowel so as to obtain a smooth surface with minimal work.
 試料2を入れた容器を振動しないような水平な台又は床の上に置いて、容器から水分が蒸発しないような適切な蓋をした。試験中は、ブリーディング水を吸い取るとき、及び貫入試験を行うときを除き、常に蓋をした。ブリーディング水がある場合には、貫入試験を行う直前に、試料2の表面のブリーディング水をピペット、その他の適切な器具を用いて吸い取った。ブリーディング水を取り除く際には、貫入試験を行う約2分前に、厚さ約30mmのブロック等を容器の底部片側に挟んで容器を注意深く傾けて置いた。ブリーディング水を取り除いた後、振動を与えないように注意して容器を元の状態に戻した。 Place the container containing sample 2 on a horizontal table or floor that does not vibrate, and cover it with an appropriate lid to prevent moisture from evaporating from the container. The lid was kept on at all times during the test except when blotting the bleeding water and when performing the penetration test. If there was bleeding water, the bleeding water on the surface of Sample 2 was sucked up with a pipette or other suitable device just prior to conducting the penetration test. When removing the bleeding water, about 2 minutes before the penetration test, a block or the like having a thickness of about 30 mm was sandwiched on one side of the bottom of the container and the container was carefully tilted. After removing the bleeding water, the container was returned to its original state, being careful not to shake it.
 次に、試料2の硬化状態に応じて適切な断面積をもつ貫入針を選び、貫入抵抗試験装置に取り付けた。貫入針を試料2中に注意深く鉛直下方に約25mm貫入させた。貫入の深さは、貫入針に付けた刻印で確かめた。貫入に要する時間は、約10秒とした。 Next, a penetration needle with an appropriate cross-sectional area was selected according to the hardening state of Sample 2, and attached to the penetration resistance test device. The penetrating needle was carefully penetrated vertically downward into sample 2 by approximately 25 mm. The depth of penetration was confirmed by markings on the penetration needle. The time required for penetration was about 10 seconds.
 貫入試験を行った時刻及び貫入に要した力(N)を装置から読み取って、記録した。貫入に当たっては、前の貫入試験で乱された部分を避けて貫入させるように注意した。貫入針の針跡の純間隔は、用いる貫入針の直径の約2倍以上、かつ、15mm以上とした。また、貫入針と容器側面との純間隔は、25mm以上とした。 The time when the penetration test was performed and the force (N) required for penetration were read from the device and recorded. During penetration, care was taken to avoid penetrating areas that were disturbed in the previous penetration test. The net spacing of the needle traces of the penetrating needle was about twice the diameter of the penetrating needle used and 15 mm or more. Also, the net distance between the penetration needle and the side surface of the container was set to 25 mm or more.
 下記の表1は、上記の試験条件及び試験方法に基づいて行った貫入試験の結果である。 Table 1 below shows the results of the penetration test conducted based on the above test conditions and test method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1で示すように、各工程S1-S7は、所定のタイミングで行われた。注水時を開始時刻とし、手持式トロウエル61による円盤掛けは、コンクリート床面10の凝結の自発時であり、作業者がスリッパで上がることができる状態となる0.5Nで行った。注水より3時間5分経過しており、作業は約40分行われた。騎乗式トロウエル62による円盤掛けは1.0Nから2.1Nの間に4回行った。注水より3時間40分が経過しており、作業は2時間5分行われた。手持式トロウエル63による羽押えは、2.2~2.4Nの間に行われた。注水より5時間45分が経過しており、作業は45分行われた。 As shown in Table 1 above, each step S1-S7 was performed at a predetermined timing. The time of pouring water was set as the start time, and the hand-held trowell 61 was applied to the disk at 0.5 N, which is the time when the concrete floor surface 10 spontaneously set and the operator could climb up with slippers. Three hours and five minutes had passed since the injection of water, and the work was carried out for about 40 minutes. Discus hooking by a horse-riding Trowel 62 was performed four times between 1.0N and 2.1N. Three hours and 40 minutes had passed since the injection of water, and the work was carried out for 2 hours and 5 minutes. Feather holding with a hand-held trowel 63 was performed between 2.2 and 2.4N. Five hours and 45 minutes had passed since the injection of water, and the work was carried out for 45 minutes.
 騎乗式トロウエル64の羽押えは、2.5~2.7Nの間に5回行った。注水より6時間31分が経過しており、作業は約2時間15分行われた。コンクリート床面10の凝結が終結する3.5Nに到達した時点をもって作業終了とした。 The wing hold down of the mounted Trowel 64 was performed 5 times between 2.5 and 2.7N. 6 hours and 31 minutes have passed since the water injection, and the work was done for about 2 hours and 15 minutes. The work was completed when the concrete floor surface 10 reached 3.5 N, at which the solidification of the concrete floor surface 10 ended.
 出願人が知見したところによれば、手持式トロウエル61及び騎乗式トロウエル62による表面加圧において、3.5N以上は振動や負荷を与えてはいけない領域に入ると推察される。したがって、騎乗式トロウエル62,64の使用や仕上げ作業を行った場合、亀裂等が発生する可能性があることから、2.7Nでの作業終了が最適であると考える。 According to the findings of the applicant, it is speculated that the surface pressure applied by the hand-held trowel 61 and the horse-riding trowel 62 falls within the range where vibrations and loads of 3.5 N or more should not be applied. Therefore, when using the riding type trowells 62, 64 or performing finishing work, there is a possibility that cracks may occur.
 本試験の結果として、トロウエル61-64による表面加圧は0.5~2.7Nの凝結時間内において行われており、打設翌日~10日目までにコンクリート床面10の仕上がりに剥がれや亀裂などは見られなかった。よって、トロウエル61-64による表面加圧から仕上がりに至るまで、表面加圧によるコンクリート床面10の硬化組織を綿密に形成する一連の作業工程は良好と考えられ、ひび割れ抑制及び摩耗性や衝撃性にも有効と考えられる。 As a result of this test, the surface pressurization by Trowell 61-64 was performed within the setting time of 0.5 to 2.7 N, and the finish of the concrete floor surface 10 was peeled off from the day after placement to the 10th day. No cracks were found. Therefore, it is considered that a series of work processes for meticulously forming the hardening structure of the concrete floor surface 10 by surface pressure, from surface pressure by the trowels 61 to 64 to finish, is good, and crack suppression and abrasion resistance and impact resistance are considered to be good. It is also considered effective for
10 コンクリート床面
30 レーザースクリード機
61 第1の回転駆動機(手持式)
62 第1の回転駆動機(騎乗式)
63 第2の回転駆動機(手持式)
64 第2の回転駆動機(騎乗式)
70 ブリーディング計測装置
10 Concrete floor 30 Laser screed machine 61 First rotary drive machine (hand-held)
62 1st rotary drive machine (riding type)
63 Second rotary drive (hand-held)
64 Second rotary drive machine (riding type)
70 bleeding measuring device

Claims (5)

  1.  コンクリート床面の施工方法において、
     コンクリートを施工場所の床面に打設する第1工程と、
     レーザースクリード機によって前記コンクリート床面を均す第2工程とを含み、
     前記レーザースクリード機によって均された前記コンクリート床面のレベルを確認する第3工程と、前記コンクリート床面のレベルを確認した後所定時間経過に再振動締固めを行う第4工程とをさらに含み、前記再振動締固めは、水ミチが形成され始めたブリーディングの発生時点であって、
     前記コンクリート床面に形成された孔の深さ寸法に対して溜まった水の深さ寸法が40~60%になった時点で行うことを特徴するコンクリート床面の施工方法。
    In the construction method of the concrete floor,
    A first step of placing concrete on the floor surface of the construction site;
    a second step of leveling the concrete floor with a laser screed machine;
    Further comprising a third step of checking the level of the concrete floor leveled by the laser screed machine, and a fourth step of performing vibration compaction again after a predetermined time has elapsed after checking the level of the concrete floor, The re-vibration compaction is performed at the time of bleeding when water grooves begin to form,
    A method of constructing a concrete floor, wherein the concrete floor is constructed when the depth of accumulated water reaches 40 to 60% of the depth of the holes formed in the concrete floor.
  2.  前記レーザースクリード機は、振動ブレードと、前記振動ブレードの前方に位置する鏝板とを有し、前記鏝板の長さ寸法は、前記振動ブレードの長さ寸法よりも大きい請求項1に記載のコンクリート床面の施工方法。 2. The laser screed machine of claim 1, wherein the laser screed machine has a vibrating blade and a mortar plate located in front of the vibrating blade, the length dimension of the mortar plate being greater than the length dimension of the vibrating blade. Concrete floor construction method.
  3.  第1の回転駆動機の回転式円盤によって前記コンクリート床面を表面仕上げする第5工程をさらに含み、
     前記回転式円盤は、一対の円盤を含み、前記一対の円盤の後方には不陸調整手段が位置し、前記一対の円盤の長さ寸法よりも前記不陸調整手段の長さ寸法が大きく、前記不陸調整手段は刷毛状である請求項1又は2に記載のコンクリート床面の施工方法。
    further comprising a fifth step of surfacing the concrete floor with a rotary disk of a first rotary driver;
    The rotary disc includes a pair of discs, the unevenness adjusting means is positioned behind the pair of discs, and the length dimension of the unevenness adjusting means is greater than the length dimension of the pair of discs, 3. The method of constructing a concrete floor according to claim 1, wherein said unevenness adjusting means is brush-shaped.
  4.  第2の回転駆動機の羽根形回転鏝によって前記コンクリート床面を表面仕上げする第6工程をさらに含み、
     前記第5及び第6工程における表面仕上げは、JISA1147に準拠した貫入試験による測定値が0.5N~2.7Nの間に行われる請求項3に記載のコンクリート床面の施工方法。
    further comprising a sixth step of finishing the concrete floor with a vane-type rotary trowel of a second rotary drive;
    4. The method of constructing a concrete floor according to claim 3, wherein the surface finishing in the fifth and sixth steps is performed with a measured value of 0.5N to 2.7N by a penetration test conforming to JISA1147.
  5.  前記第1及び第2の回転駆動機は手持式と騎乗式とを有し、前記騎乗式の前記第1の回転駆動機による表面加工は前記測定値が1N~2.1Nの間、前記騎乗式の前記第2の回転駆動機による表面仕上げは前記測定値が2.5~2.7Nの間に行われる請求項4に記載のコンクリート床面の施工方法。 The first and second rotary driving machines have a hand-held type and a riding type, and the surface processing by the riding-type first rotary driving machine is performed when the measured value is between 1N and 2.1N. 5. The method of constructing a concrete floor according to claim 4, wherein the surface finishing by the second rotary driver of the formula is performed while the measured value is between 2.5 and 2.7N.
PCT/JP2022/015367 2020-03-27 2022-03-29 Method for constructing concrete floor WO2022210682A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2020057608 2020-03-27
JP2021-056293 2021-03-29
JP2021056293A JP2021156158A (en) 2020-03-27 2021-03-29 Method of constructing concrete floor surface
JP2021-197311 2021-12-03
JP2021197311A JP7072955B2 (en) 2020-03-27 2021-12-03 Construction method of concrete floor

Publications (1)

Publication Number Publication Date
WO2022210682A1 true WO2022210682A1 (en) 2022-10-06

Family

ID=77917541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015367 WO2022210682A1 (en) 2020-03-27 2022-03-29 Method for constructing concrete floor

Country Status (2)

Country Link
JP (2) JP2021156158A (en)
WO (1) WO2022210682A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116411602B (en) * 2023-04-12 2023-09-12 青海晟泰建筑工程有限公司 House building ground leveling device and construction method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238680A (en) * 1994-03-01 1995-09-12 Seirei Ind Co Ltd Concrete leveling device
JP2003328553A (en) * 2002-05-13 2003-11-19 Tomosada Kenki:Kk Smoothing disk device in trowel
JP2004225523A (en) * 2002-11-28 2004-08-12 Yasushi Nishimura Concrete floor surface finisher and press trowel used for the same
JP2013036162A (en) * 2011-08-03 2013-02-21 Seibu Construction Co Ltd Re-vibration period determination method for ready-mixed concrete and re-vibration period determination device for ready-mixed concrete
JP2013101070A (en) * 2011-11-09 2013-05-23 Ihi Infrastructure Systems Co Ltd Management method and management device for revibration of concrete
WO2015151351A1 (en) * 2014-04-01 2015-10-08 有限会社上成工業 Floor surface finishing device
JP2015200067A (en) * 2014-04-04 2015-11-12 株式会社Ihiインフラシステム Concrete vibration application timing determination device, concrete vibration application timing determination method, concrete vibration application device, and concrete vibration application method
JP2015203204A (en) * 2014-04-11 2015-11-16 清水建設株式会社 Method and device for estimating amount of time available for concrete leveling work
JP2018150792A (en) * 2018-02-28 2018-09-27 株式会社フロアーサポート Concrete finishing method
JP6653896B1 (en) * 2019-07-19 2020-02-26 株式会社力組 Engine type tamper and construction method using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238680A (en) * 1994-03-01 1995-09-12 Seirei Ind Co Ltd Concrete leveling device
JP2003328553A (en) * 2002-05-13 2003-11-19 Tomosada Kenki:Kk Smoothing disk device in trowel
JP2004225523A (en) * 2002-11-28 2004-08-12 Yasushi Nishimura Concrete floor surface finisher and press trowel used for the same
JP2013036162A (en) * 2011-08-03 2013-02-21 Seibu Construction Co Ltd Re-vibration period determination method for ready-mixed concrete and re-vibration period determination device for ready-mixed concrete
JP2013101070A (en) * 2011-11-09 2013-05-23 Ihi Infrastructure Systems Co Ltd Management method and management device for revibration of concrete
WO2015151351A1 (en) * 2014-04-01 2015-10-08 有限会社上成工業 Floor surface finishing device
JP2015200067A (en) * 2014-04-04 2015-11-12 株式会社Ihiインフラシステム Concrete vibration application timing determination device, concrete vibration application timing determination method, concrete vibration application device, and concrete vibration application method
JP2015203204A (en) * 2014-04-11 2015-11-16 清水建設株式会社 Method and device for estimating amount of time available for concrete leveling work
JP2018150792A (en) * 2018-02-28 2018-09-27 株式会社フロアーサポート Concrete finishing method
JP6653896B1 (en) * 2019-07-19 2020-02-26 株式会社力組 Engine type tamper and construction method using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "If it is a re-vibrating construction method, call for Floor Agent Co., Ltd. concrete re-vibration [timing].", FLOOR AGENT CO., LTD., 4 March 2014 (2014-03-04), XP055971867, Retrieved from the Internet <URL:https://www.fa-concrete.com/saishindo.html> [retrieved on 20221017] *

Also Published As

Publication number Publication date
JP7072955B2 (en) 2022-05-23
JP2021156158A (en) 2021-10-07
JP2022024180A (en) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2022210682A1 (en) Method for constructing concrete floor
CA1096646A (en) Method and apparatus for improving soft viscous ground
CN106759126B (en) Construction method of side slope support drainage channel
CN101936858A (en) Macroscopic and microscopic texture reconstruction indoor test method for cement concrete pavement
JP2017066608A (en) Laying-leveling plate and device using the same
CN107576781A (en) A kind of device and method for determining pervious concrete service behaviour
JP2017179821A (en) Automatic finishing device of concrete surface
CN106150032A (en) A kind of construction method of the type high-wear-resistant alloy terrace that paves
CN109633135A (en) A kind of concrete slump detection device and detection method
CN106223151B (en) Large area wing square stone material in severe cold area is mated formation prevention and cure of crack method
CN110195410A (en) The construction method of bridge deck pavement
CN103304250A (en) High water-storage concrete
CN207133290U (en) A kind of device for determining pervious concrete service behaviour
CN107137913B (en) The construction technology in tennis court and tennis court
CN112030665A (en) Construction method of vibration-compacted large-pore permeable concrete pavement
JP2023079931A (en) Automatic construction system of concrete floor surface
JPH0586729A (en) Concrete tamping and leveling robot
JP2018136207A (en) Estimation method of strength characteristics of soil cement, estimation device, quality management method of foot protection part when constructing pile, and quality management unit
CN113718582A (en) Airport cement concrete pavement surface texture treatment method
JP2021127647A (en) Selection method of sample preparation method, and sample preparation method
JP3920158B2 (en) Ground improvement method
JP7534173B2 (en) Concrete strength evaluation method
CN108532985A (en) Foundation beam board construction method
CN107060174A (en) A kind of floor whole casting layer construction method
CN214144778U (en) Concrete terrace levels vibrating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780893

Country of ref document: EP

Kind code of ref document: A1