JP3920158B2 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP3920158B2
JP3920158B2 JP2002176604A JP2002176604A JP3920158B2 JP 3920158 B2 JP3920158 B2 JP 3920158B2 JP 2002176604 A JP2002176604 A JP 2002176604A JP 2002176604 A JP2002176604 A JP 2002176604A JP 3920158 B2 JP3920158 B2 JP 3920158B2
Authority
JP
Japan
Prior art keywords
water
improvement
ratio
soil
milk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002176604A
Other languages
Japanese (ja)
Other versions
JP2004019276A (en
Inventor
昌己 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kato Construction Co Ltd
Original Assignee
Kato Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kato Construction Co Ltd filed Critical Kato Construction Co Ltd
Priority to JP2002176604A priority Critical patent/JP3920158B2/en
Publication of JP2004019276A publication Critical patent/JP2004019276A/en
Application granted granted Critical
Publication of JP3920158B2 publication Critical patent/JP3920158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セメント等の地盤改良材そのものと水とを混合したミルク状改良材(スラリ状改良材)すなわちいわゆるセメントミルクを地中に噴射しながら原土と撹拌混合処理を施すことにより、その処理土の強度を向上させるようにした地盤改良工法に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
セメントミルクを地中に噴射しながら原土と撹拌混合する地盤改良工法においては、撹拌混合直後に処理土が流動化を呈するようになるために、基本的にはその後の二次処理として締め固め処理(上面からの転圧処理)を必要としない工法とされている。しかしながら、原土の土質性状によっては水分が不足気味となって処理土中に空隙が発生して強度不足となることがある。また、事前配合試験の際に上記のような現象が予測される場合には、流動化促進のために予め水分を多くしたセメントミルクを用いて施工を行うことになるが、流動性の判断に個人差によるばらつきがあり、目標強度を満足するのに必要以上にセメントを添加してしまって不経済となることがあるほか、処理品質にばらつきが生じやすいという不具合があった。
【0003】
本発明は以上のような課題に着目してなされたものであり、とりわけ撹拌混合直後の処理土の流動性を定量的に把握もしくは評価できるようにし、もって処理品質の安定化と向上とを図りながら経済性に優れた地盤改良工法を提供するものである。
【0004】
【課題を解決するための手段】
コンクリートの流動性を表す指標としてコンクリートのスランプ試験(JISA 1101−1975)がある。このスランプ試験は、「スランプコーンに詰めたコンクリートの上面をスランプコーンの上端に合わせてならした後、直ちにスランプコーンを静かに引き上げ、コンクリートの中央部において下がりを測り、これをスランプとする。」と定義される。そして、例えば無筋コンクリートで断面の大きな構造物の場合には標準値としてスランプ値を3〜8cmと定めて、運搬や打ち込み等の作業に適する範囲内でできるだけ小さい値を選ぶのが良いとされている。
【0005】
そこで、上記スランプ値をもって地盤改良工法における処理土の流動性の指標とし、砂質土や粘性土のほか礫や有機物含有土等の広範囲に及ぶ対象土についてその流動性を定量的に把握もしくは評価しようとするのが本発明である。
【0006】
すなわち、請求項1に記載の発明は、改良材(C)と水(W)とを混合したミルク状改良材を地中に噴射しながら原土と撹拌混合する地盤改良工法として、処理土が目標強度を満足し且つ撹拌混合処理直後に流動化を呈して二次処理としての締め固め処理を必要としないミルク状改良材の水/改良材比率(W/C)および改良材添加量を決定するにあたり、ミルク状改良材の水/改良材比率(W/C)と改良材添加量および処理土の流動性の指標であるスランプ値との相関関係を予め定めておき、これらの相関関係からスランプ値を指定したときのミルク状改良材の水/改良材比率(W/C)と改良材添加量をそれぞれ求め、この求めた水/改良材比率(W/C)と改良材添加量のもとでのミルク状改良材を地中に噴射しながら原土との撹拌混合処理を行うことを特徴とする。
【0007】
この場合、請求項2に記載のように、撹拌混合処理後の処理土を採取してコンクリートのスランプ試験に準拠したスランプ値を求め、この実測スランプ値が予め設定した設定スランプ値の範囲内のものとなるように地盤改良処理品質を管理することがより望ましい。
【0008】
設定スランプ値は、過去の配合試験の際に収集したデータのほか過去の施工実績のデータ等をもとにして、ある程度の幅を持たせて定めるものとする。
【0009】
また、地盤改良の基本工法は従来と同様であり、例えば上下方向に周回駆動されるエンドレスなチェーンに複数の撹拌翼を装着してなる撹拌混合ヘッドをバックホウ等のベースマシンに支持させ、この撹拌混合ヘッドを地中に貫入しながら同時に撹拌混合ヘッドの一部に設けた改良材吐出機構からセメントミルクを吐出もしくは噴射させるものとする。
【0010】
請求項3に記載の発明は、改良材(C)と水(W)とを混合したミルク状改良材を地中に噴射しながら原土と撹拌混合する地盤改良工法であって、地中に噴射すべきミルク状改良材における改良材(C)と水(W)との比率を水/改良材比率(W/C)としたとき、処理土が目標強度を満足し且つ撹拌混合処理直後に流動化を呈して二次処理としての締め固め処理を必要としないミルク状改良材の水/改良材比率(W/C)を決定するにあたり、原土の塑性指数(IP)とコンシステンシー指数(IC)のほかミルク状改良材の水/改良材比率(W/C)との相関関係を予め定めておき、これらの相関関係から原土の塑性指数(IP)とコンシステンシー指数(IC)とを指定したときのミルク状改良材の水/改良材比率(W/C)を求め、この求めた水/改良材比率(W/C)のミルク状改良材を地中に噴射しながら原土との撹拌混合処理を行い、撹拌混合処理後の処理土を採取してコンクリートのスランプ試験に準拠したスランプ値を求め、この実測スランプ値が予め設定した設定スランプ値の範囲内のものとなるように地盤改良処理品質を管理することを特徴とする。
【0011】
【発明の効果】
請求項1〜3に記載の発明によれば、地盤改良の処理品質をスランプ値をもって定量的に把握もしくは評価できることから、処理層内での空隙の発生や必要以上に改良材を添加してしまうことがなくなり、処理品質の安定化とその向上が図れることはもちろんのこと、コストダウンすなわち経済性の向上も併せて達成できるようになる。
【0012】
特に、請求項2,3に記載の発明によれば、目標強度を達成するのに必要な水/改良材比率(W/C)と改良材添加量の算出の際に予めスランプ値を考慮する一方で、施工後の処理品質も同じくスランプ値をもって管理することから、処理品質の安定化や品質向上効果のほか経済性改善効果も一段と顕著となる利点がある。
【0013】
【発明の実施の形態】
第1の実施の形態として、下記に示す土質性状の原土について地盤改良を施すにあたり、処理土の品質を流動性の指標であるスランプ値をもって評価,管理する場合の例を示す。
【0014】

Figure 0003920158
なお、上記のNPとは非塑性土の意味であるが、原土の液性限界WLおよび塑性限界WPの値が規定された方法による試験によって求められないことを示している。
【0015】
事前配合試験として、水/改良材比率である水セメント比W/Cが100%、130%、160%であって且つそれぞれのセメント添加量(改良材添加量)を50kg/m3、100kg/m3、150kg/m3としたミルク状改良材として複数種類のセメントミルクを用意し、上記原土試料に対して各セメントミルクを混合した直後(混練後10分以内のもの)のスランプ試験によるスランプ値を測定する。さらに、同じ原土試料とセメントミルクとを用いて強度試験用の供試体を作製するとともに、所定の養生日数を経た後に一軸圧縮強さをそれぞれに測定する。その時の試験結果を表1に示す。なお、スランプ試験は先に述べたようにコンクリートのスランプ試験(JIS A 1101−1975)に準拠して行う。
【0016】
そして、表1のデータをもとに、図1に示すように水セメント比別のセメント添加量と一軸圧縮強さとの相関特性図を作成する。
【0017】
【表1】
Figure 0003920158
【0018】
図1の相関特性図より目標強度quをqu=500kN/m2としたときの各水セメント比別のセメント添加量を読み取ると次のようになる。
【0019】
・水セメント比W/Cが100%のときのセメント添加量=55kg/m3
・水セメント比W/Cが130%のときのセメント添加量=75kg/m3
・水セメント比W/Cが160%のときのセメント添加量=112kg/m3
同様にして、表1のデータをもとに、図2に示すように水セメント比別のセメント添加量とスランプ値との相関特性図を作成する。さらに、先に求めた各水セメント比別のセメント添加量の点を図2のようにA,B,Cと定め、それらの点A,B,Cを結ぶ相関曲線(A−B−C曲線)を図2の相関特性図の上に描く。
【0020】
この実施の形態では、処理土の品質を流動性の指標であるスランプ値をもって評価,管理するものであるが、地盤改良の対象となる土質性状と構造目的とを考慮して管理値である設定スランプ値を経験的に例えば5cm以上と定めて施工を行うものとする。
【0021】
そこで、処理土の流動性の指標であるスランプ値が5cm以上となるのに必要な水セメント比とセメント添加量を図3の相関特性図から求める。すなわち、図3は基本的には図2と同じものであるが、同図に示すように設定スランプ値5cmの線とA−B−C曲線との交点Dにおける水セメント比とセメント添加量を求めると、水セメント比≒138%、セメント添加量≒83kg/m3の結果を得ることができる。
【0022】
ただし、上記水セメント比およびセメント添加量の決定に際しては、土質性状のばらつきや試験誤差等を考慮するべく先に求めた値に補正を加えるものとする。具体的には、図3に示すようにA−B−C曲線の基礎となっているW/C=130%時の特性線図とW/C=160%時の特性線図との間を10%単位で細区分することにより、W/C=140%時とW/C=150%時の特性線図をそれぞれ加えた上で、交点Dより上方側(スランプ値が5cm以上の領域)であって且ついずれかの特性線図とA−B−C曲線との交点のうち先の交点Dに最も近い交点Eを目標値として決定する。図3から明らかなように、この交点Eにおける水セメント比はW/C=140%、セメント添加量はα=88kg/m3であって、これらの値を実際の施工の際の条件とする。
【0023】
そして、実際の施工の際には、水セメント比が140%、セメント添加量が88kg/m3となるように予め調整したセメントミルクを常法により地中に噴射しながら撹拌混合処理を行う。その際に、処理土の流動性を評価するべく定期的に撹拌混合直後の処理土の試料を採取してスランプ試験を行い、そのスランプ値が常に5cm以上となるように施工管理を行う。ただし、撹拌混合後の処理土は時間の経過とともに改良材であるセメントの固化反応が進行するため、撹拌混合直後のもの(撹拌混合後10分以内のもの)をもって試験を行う。こうすることにより、処理土の流動性を定量的に評価,管理することができるようになる。
【0024】
ここで、上記の設定スランプ値=5cm以上とした施工条件の妥当性について検証してみる。
【0025】
先ず、先に例示した保有含水量W1=0.448t/m3の原土について、その原土に含まれる水重量に対し水セメント比W/Cが100%、130%、160%であって且つそれぞれのセメント添加量を50kg/m3、100kg/m3、150kg/m3としたセメントミルクに含まれる水重量を加えて、撹拌混合処理直後の処理土に含まれる総合的な水重量(含水量もしくは水分量)を表2にように求める。なお、表2に併記したスランプ値は表1の値をそのまま転記したものである。そして、表2のデータをもとに、処理土に含まれる水重量とスランプ値との相関として図4の相関特性図を作成する。そして、同図に示すように、水セメント比W/Cが100%、130%、160%の時のそれぞれの相関特性を合成して合成相関曲線Pを描く。
【0026】
【表2】
Figure 0003920158
【0027】
一方、先に決定した水セメント比W/C=140%、セメント添加量α=88kg/m3の条件で撹拌混合処理を行った場合の処理土に含まれる総合的な水重量を下記により求める。
【0028】
Figure 0003920158
そして、図4に示すように、同図上の合成相関曲線Pにつき先に求めた混合直後の水分量W3=0.571t/m3の時のスランプ値を読み取ると、その値はおよそ5.8cmとして読み取ることができる。この5.8cmというスランプ値は、先に決定した施工時の設定スランプ値として5cm以上という条件を満たしており、したがって地盤改良処理品質をスランプ値をもって評価,管理することに十分に妥当性があると推測できることになる。
【0029】
次に第2の実施の形態について説明する。
【0030】
第1の実施の形態の土質と類似土質で原土の含水比や湿潤密度等が異なる場合には、目標強度を満足させるのに必要なセメント添加量が異なってくることがある。しかしながら、その都度先に説明したような事前配合試験を実施していたのでは多大な時間と費用を要することとなって好ましくない。そこで、類似土質であることを前提に第1の実施の形態の事前配合試験で得られたデータを一部使用すれば、適正な水セメント比やセメント添加量を比較的容易に求めることが可能であり、以下その場合の例を説明する。
【0031】
図1の相関特性図をもとにして、目標強度をqu=500kN/m2とした時のセメントミルクに含まれる水重量(含水量)とセメント添加量αとの相関特性図を作成する。より詳しくは、図1に示すように水セメント比W/C=100%の時のセメント添加量αが55kg/m3、水セメント比W/C=130%の時のセメント添加量αが75kg/m3、水セメント比W/C=160%の時のセメント添加量αが112kg/m3であるから、それぞれのセメント添加量αのセメントミルクに含まれる水分量(含水量)を次式によって算出する。
【0032】
・水セメント比W/C=100%でセメント添加量が55kg/m3の時のセメントミルクの水分量
=(α/1000)×(W/C)
=(55/1000)×1.0
=0.055
・水セメント比W/C=130%でセメント添加量が75kg/m3の時のセメントミルクの水分量
=(α/1000)×(W/C)
=(75/1000)×1.3
=0.0975
・水セメント比W/C=160%でセメント添加量が112kg/m3の時のセメントミルクの水分量
=(α/1000)×(W/C)
=(112/1000)×1.6
=0.1792
そして、上記の各セメント添加量を横軸とし、算出したセメントミルクに含まれる各含水量を縦軸とした図5の相関特性図を作成する。さらに、同図の相関特性図に縦軸として水セメント比W/Cを書き加える。
【0033】
次いで、処理対象となる原土すなわち第1の実施の形態の土質と類似土質の原土についてその自然含水比Wnと湿潤密度ρtを測定し、例えば原土の自然含水比WnがWn=37.4%、湿潤密度ρtがρt=1.790t/m3を示す時、原土の乾燥密度ρDと原土の保有含水量W1を次式によって算出する。
【0034】
Figure 0003920158
一方、第1の実施の形態における土質の原土では、図3に基づいて先に求めたように、スランプ値が5cm以上で目標強度を満足する水セメント比W/Cとセメント添加量αは、それぞれW/C=138%、α≒83kg/m3であるから、この条件下での混合直後の処理土に含まれる総水分量を次式により求める。
【0035】
Figure 0003920158
以上のことから、第1の実施の形態の原土では、混合直後の処理土の含水量として0.563t/m3以上を確保すれば、スランプ値として5cm以上を確保できることがわかる。
【0036】
その一方、第1の実施の形態の土質と類似土質の原土では先に述べたようにその原土の保有含水量W1=0.487t/m3であるから、第1の実施の形態の原土での混合直後の総含水量W3(=0.563t/m3)から類似土質の原土自体の保有含水量W1(=0.487t/m3)を差し引いて、0.563−0.487=0.076t/m3分の水分を含むセメントミルクを原土に添加して混合すれば、スランプ値として5cm以上という条件を満たすことができるようになる。
【0037】
一方、図5の相関特性図において、目標強度qu(=500kN/m2)を満足し且つセメントミルクの含水量0.076t/m3を越える位置での水セメント比W/Cは100%と120%の間であって、おおよそ120%に近い位置となる。同時に水セメント比W/C=120%の時のセメント添加量αはα≒69kg/m3となる。
【0038】
そこで、水セメント比W/C=120%でセメント添加量α=69kg/m3の時のスランプ値を確認してみる。
【0039】
先に示したように、類似土質の原土の保有含水量W1はW1=0.487(t/m3)であるから、セメントミルクに含まれる水分量W2を次式によって求める。
【0040】
Figure 0003920158
混合直後の処理土の総含水(水分)量W3はW3=W1+W2であるから、W3=0.487+0.083=0.57t/m3となる。そして、先に示した図4において、この総含水(水分)量W3=0.57t/m3に対応するスランプ値を読み取ると、その値は先の場合と同様に5.8cm程度となる。
【0041】
これらの関係から明らかなように、特定の土質と類似した土質であるならば原土の自然含水比Wnと湿潤密度ρtのみを測定することによって、スランプ値で5cm以上という条件を満たしつつ、目標強度qu(=500kN/m2)を満足するのに必要な水セメント比W/C(=120%)とセメント添加量α(=69kg/m3)を容易に決定することが可能となる。
【0042】
次に第3の実施の形態として、下記に示す土質の原土について目標強度qu=600kN/m2としたときの適正な水セメント比W/Cとセメント添加量αを求めた上で、処理土の品質を流動性の指標であるスランプ値をもって評価,管理する場合の例を示す。
【0043】
Figure 0003920158
事前に行う配合試験として、上記の自然含水比のままの原土の試料(試料1)のほか、含水比が40%、50%、60%となるように予め水分調整した含水比調整土(試料2〜4)を用意し、水セメント比W/Cを標準的なW/C=100%とした上で、セメント添加量αを50kg/m3、100kg/m3、150kg/m3、200kg/m3としたセメントミルクと混合した供試体をそれぞれ作製し、所定の養生日数を経た後の各供試体(試料1〜4)の強度を一軸圧縮強さ(kN/m2)として測定する。なお、各試料1〜4の含水比Wnと湿潤密度ρtとの関係を表3に示し、各試料1〜4の一軸圧縮強さの値を表4に示す。
【0044】
【表3】
Figure 0003920158
【0045】
【表4】
Figure 0003920158
【0046】
そして、表4の値をもとに図6に示すようにセメント添加量αと一軸圧縮強さの相関特性図を作成し、目標強度qu=600kN/m2を満足するセメント添加量αを求める。すなわち、図6の相関特性図において一軸圧縮強さ600kN/m2を示す横の線と各相関特性曲線との交点の値を読み取る。各含水比別の試料1〜4のセメント添加量αは図6のほか表5に示すように、それぞれ91kg/m3、95kg/m3、122kg/m3、232kg/m3となる。
【0047】
【表5】
Figure 0003920158
【0048】
次に、水セメント比W/Cが例えば標準的な100%であることを前提として、各含水比別の試料1〜4に上記セメント添加量αのセメントミルクを混合したと想定したときの混合直後の含水比WNを求める。
【0049】
(a)試料1
Figure 0003920158
(b)試料2
Figure 0003920158
(c)試料3
Figure 0003920158
(d)試料4
Figure 0003920158
次に、上記(a)〜(d)で求めた混合直後の含水比WNとセメント添加量αをもとに両者の相関特性図を作成し、その相関特性図を図7に示す。
【0050】
ここで、原土の塑性指数IPの値とコンシステンシー指数ICの値、およびセメントミルクにおける水セメント比W/Cとの相関を図8の相関特性図をもって予め定めておき、これらの相関関係から原土の塑性指数IPの値とコンシステンシー指数ICの値を指定したときのセメントミルクにおける適正な水セメント比W/Cの値を上記相関特性図から直接読み取る。先に述べたように、地盤改良の対象となる原土の塑性指数IPの値は22.5、コンシステンシー指数ICの値は0.54であるから、これら原土の塑性指数IPの値とコンシステンシー指数ICの値の交点を図8上で求めると、セメントミルクの適正な水セメント比W/Cの値は140%となる。
【0051】
そして、適正な水セメント比W/C=140%としたときの混合直後の含水比WNを求める。ただし、ここでの改良材であるセメントの暫定添加量を95kg/m3とする。
【0052】
Figure 0003920158
次いで、図8から求めた適正な水セメント比W/C=140%の場合であって且つ上記の混合直後の含水比WN=46%のときのセメント添加量を図9から直接読み取る。すなわち、図9は図7と基本的に同じであるが、図9に示すように含水比WN=46%の仮想線と特性曲線との交点を求めると94kg/m3となる。これにより、実際の施工時の条件として水セメント比はW/C=140%、セメント添加量αは94kg/m3と決定する。
【0053】
そして、実際の施工の際には、過去の実績データ等を考慮しながら設定スランプ値を例えば4.0cm以上と定めた上で、水セメント比W/Cが140%、セメント添加量αが94kg/m3となるように予め調整したセメントミルクを常法により地中に噴射しながら撹拌混合処理を行う。その際に、先の実施の形態と同様に処理土の流動性を評価するべく定期的に撹拌混合直後の処理土の試料を採取してスランプ試験を行い、そのスランプ値が常に4.0cm以上となるように施工管理を行う。こうすることにより、処理土の流動性を定量的に評価,管理することができるようになる。
【0054】
本発明者による実験では、スランプ値の設定値(管理目標値)としては過去の実績データ等により4cm以上と定めていたが、上記のような施工管理を行うことにより定常的に4.5cm以上の結果が得られた。因みに、従来であれば多くの場合に標準的な水セメント比と言われているW/C=100%で施工を実施していたが、その場合には予備試験時等において測定されるスランプ値は2cm程度にすぎなかった。
【0055】
また、従来の水セメント比で施工したとするならば、地盤の撹拌混合のための必要羽根切り回数を満足するには30m3/H程度の作業量が限界であったが、本実施の形態のように適正な水セメント比(W/C=140%)とすることによって、45m3/H程度の作業量まで可能となり、経済的効果は大である。
【0056】
その上、品質的な面から見た場合、目標強度qu=600kN/m2、水セメント比W/C=140%としたときの強度ばらつきは550〜660kN/m2の範囲内に納まっており、従来の施工時のばらつき幅400〜700kN/m2に比べて非常に小さくなることが判明した。このように、地盤改良の処理品質をスランプ値をもって評価,管理することで、経済的で且つ処理土品質に優れた地盤改良工法を提供できるようになる。
【図面の簡単な説明】
【図1】セメント添加量と一軸圧縮強さとの相関を示す特性図。
【図2】セメント添加量とスランプ値との相関を示す特性図。
【図3】同じくセメント添加量とスランプ値との相関を示す特性図。
【図4】処理土に含まれる水分量とスランプ値との相関を示す特性図。
【図5】セメント添加量とセメントミルクの含水量との相関を示す特性図。
【図6】セメント添加量と一軸圧縮強さとの相関を示す特性図。
【図7】セメント添加量と混合直後の処理土の含水比との相関を示す特性図。
【図8】原土の塑性指数とコンシステンシー指数との相関を示す特性図。
【図9】セメント添加量と混合直後の処理土の含水比との相関を示す特性図。[0001]
BACKGROUND OF THE INVENTION
The present invention is a mixture of ground improvement material such as cement itself and water-like improvement material (slurry-like improvement material), that is, so-called cement milk, which is mixed with water and subjected to stirring and mixing treatment. The present invention relates to a ground improvement method for improving the strength of treated soil.
[0002]
[Prior art and problems to be solved by the invention]
In the ground improvement method in which cement milk is stirred and mixed with the raw soil while injecting the cement milk into the ground, the treated soil becomes fluidized immediately after stirring and mixing, so it is basically compacted as a subsequent secondary treatment. It is a construction method that does not require treatment (rolling treatment from the top surface). However, depending on the soil properties of the raw soil, moisture may be insufficient and voids may be generated in the treated soil, resulting in insufficient strength. In addition, if the above phenomenon is predicted during the pre-mixing test, construction will be performed using cement milk with a high amount of moisture in advance to promote fluidization. There are variations due to individual differences, and adding cement more than necessary to satisfy the target strength can be uneconomical, and processing quality tends to vary.
[0003]
The present invention has been made paying attention to the problems as described above. In particular, the fluidity of the treated soil immediately after stirring and mixing can be quantitatively grasped or evaluated, thereby stabilizing and improving the treatment quality. However, it provides a ground improvement method with excellent economic efficiency.
[0004]
[Means for Solving the Problems]
There is a concrete slump test (JISA 1101-1975) as an index representing the fluidity of concrete. This slump test is: “After smoothing the top surface of the concrete packed in the slump cone with the top end of the slump cone, immediately raise the slump cone gently and measure the fall at the center of the concrete, and use this as the slump.” Is defined. For example, in the case of a structure with unreinforced concrete and a large cross section, it is recommended to set the slump value as 3 to 8 cm as a standard value and select the smallest possible value within a range suitable for work such as transportation and driving. ing.
[0005]
Therefore, the slump value is used as an indicator of the fluidity of the treated soil in the ground improvement method, and the fluidity of the target soil that covers a wide range of soil such as gravel and organic matter as well as sandy and cohesive soil is quantitatively grasped or evaluated. It is the present invention that is intended.
[0006]
That is, the invention according to claim 1 is a ground improvement method in which treated soil is a ground improvement method in which a milk-like improvement material mixed with an improvement material (C) and water (W) is stirred and mixed with the raw soil. Determines the water / improvement ratio (W / C) and the amount of improvement material added to the milk-like improvement material that satisfies the target strength and exhibits fluidization immediately after the stirring and mixing treatment, and does not require a compaction treatment as a secondary treatment. In doing so, a correlation between the water / improvement material ratio (W / C) of the milk-like improving material and the slump value, which is an index of the improving material addition amount and the fluidity of the treated soil, is determined in advance. When the slump value is specified, the water / improvement material ratio (W / C) of the milk-like improvement material and the addition amount of the improvement material are obtained, respectively. Mixing with the original soil while injecting the original milky improvement material into the ground And performing focus processing.
[0007]
In this case, as described in claim 2, the treated soil after the stirring and mixing treatment is sampled to obtain a slump value based on a concrete slump test, and the measured slump value is within a preset slump value range. It is more desirable to manage the ground improvement processing quality so that it becomes a thing.
[0008]
The set slump value shall be determined with a certain range based on the data collected during past compounding tests and the past construction performance data.
[0009]
In addition, the basic method of ground improvement is the same as the conventional method. For example, a stirring / mixing head comprising a plurality of stirring blades mounted on an endless chain driven in the vertical direction is supported by a base machine such as a backhoe, and this stirring is performed. Cement milk shall be discharged or jetted from an improved material discharge mechanism provided at a part of the stirring and mixing head while penetrating the mixing head into the ground.
[0010]
The invention according to claim 3 is a ground improvement method in which a milky improvement material obtained by mixing the improvement material (C) and water (W) is stirred and mixed with the raw soil while being injected into the ground. When the ratio of the improved material (C) and water (W) in the milk-like improved material to be sprayed is the water / improved material ratio (W / C), the treated soil satisfies the target strength and immediately after the stirring and mixing process. in determining the water / modifying material ratio of milky modifying material which exhibits a fluidization does not require compaction process as a secondary processing (W / C), plasticity index of the original soil (I P) and consistency index In addition to (I C ), a correlation with the water / improvement ratio (W / C) of the milky improved material is determined in advance, and the plasticity index (I P ) and consistency index ( I C) and for water / modifying material ratio of milky improvement agent when specifying (W / C), and Slurry test of concrete by collecting the mixed soil with the raw soil while injecting the milk-like improved material with the water / improved material ratio (W / C) obtained by And the ground improvement processing quality is managed so that the actually measured slump value falls within a preset slump value range.
[0011]
【The invention's effect】
According to the first to third aspects of the invention, since the treatment quality of ground improvement can be quantitatively grasped or evaluated with the slump value, voids in the treatment layer are generated or an improvement material is added more than necessary. As a result, the processing quality can be stabilized and improved, as well as cost reduction, that is, economic improvement can be achieved.
[0012]
In particular, according to the inventions described in claims 2 and 3, the slump value is taken into consideration in the calculation of the water / improvement material ratio (W / C) and the amount of improvement material added necessary to achieve the target strength. On the other hand, since the processing quality after construction is also managed with the slump value, there is an advantage that the economic improvement effect becomes more remarkable in addition to the stabilization of the processing quality and the quality improvement effect.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
As a first embodiment, an example of evaluating and managing the quality of treated soil with a slump value, which is an index of fluidity, will be shown in performing ground improvement on a soil soil having the following soil properties.
[0014]
Figure 0003920158
Although the above NP is meant a non-plastic soil, shows that not required by the test according to how the value of the liquid limit W L and plastic limit W P of the original soil is defined.
[0015]
As a pre-mixing test, the water cement ratio W / C, which is the ratio of water / improving material, is 100%, 130%, 160%, and each cement addition amount (improvement material addition amount) is 50 kg / m 3 , 100 kg / m 3, to prepare a plurality kinds of cement milk as milky improved material was 150 kg / m 3, by the slump test immediately after mixing the cement milk to said original soil sample (within 10 minutes after kneading) Measure the slump value. Further, a specimen for strength test is prepared using the same raw soil sample and cement milk, and uniaxial compressive strength is measured for each after a predetermined curing period. The test results at that time are shown in Table 1. The slump test is performed according to the concrete slump test (JIS A 1101-1975) as described above.
[0016]
And based on the data of Table 1, as shown in FIG. 1, the correlation characteristic figure of the cement addition amount according to water cement ratio and uniaxial compressive strength is created.
[0017]
[Table 1]
Figure 0003920158
[0018]
The amount of cement added for each water cement ratio when the target strength qu is set to qu = 500 kN / m 2 from the correlation characteristic diagram of FIG. 1 is as follows.
[0019]
-Addition amount of cement when water / cement ratio W / C is 100% = 55 kg / m 3
-Addition amount of cement when water-to-cement ratio W / C is 130% = 75 kg / m 3
Cement addition amount when water / cement ratio W / C is 160% = 112 kg / m 3
Similarly, based on the data of Table 1, as shown in FIG. 2, a correlation characteristic diagram between the cement addition amount and the slump value for each water cement ratio is created. Further, the points of the amount of cement added for each water cement ratio obtained previously are defined as A, B, C as shown in FIG. 2, and a correlation curve (A-B-C curve) connecting these points A, B, C. ) Is drawn on the correlation characteristic diagram of FIG.
[0020]
In this embodiment, the quality of the treated soil is evaluated and managed by the slump value, which is an index of fluidity, but the setting is a management value in consideration of the soil properties and the structural purpose to be ground improvement. The slump value is empirically determined to be, for example, 5 cm or more.
[0021]
Accordingly, the water cement ratio and the amount of cement added necessary for the slump value, which is an index of the fluidity of the treated soil, to be 5 cm or more are obtained from the correlation characteristic diagram of FIG. That is, FIG. 3 is basically the same as FIG. 2, but the water cement ratio and the amount of cement added at the intersection D between the line with the set slump value of 5 cm and the ABC curve as shown in FIG. As a result, it is possible to obtain a result of a water cement ratio≈138% and a cement addition amount≈83 kg / m 3 .
[0022]
However, in determining the water cement ratio and the amount of cement added, the previously obtained values are corrected to take into account variations in soil properties and test errors. Specifically, as shown in FIG. 3, the gap between the characteristic diagram at W / C = 130% and the characteristic diagram at W / C = 160%, which are the basis of the ABC curve, is shown. By subdividing in units of 10%, after adding the characteristic diagrams at W / C = 140% and W / C = 150%, respectively, above the intersection D (area with a slump value of 5 cm or more) The intersection E closest to the previous intersection D among the intersections of any of the characteristic diagrams and the ABC curve is determined as a target value. As is clear from FIG. 3, the water cement ratio at the intersection E is W / C = 140%, and the cement addition amount is α = 88 kg / m 3 , and these values are used as the actual construction conditions. .
[0023]
In actual construction, stirring and mixing are performed while spraying cement milk that has been adjusted in advance so that the water-cement ratio is 140% and the cement addition amount is 88 kg / m 3 . At that time, in order to evaluate the fluidity of the treated soil, a sample of the treated soil immediately after stirring and mixing is periodically taken and a slump test is performed, and the construction management is performed so that the slump value is always 5 cm or more. However, since the solidification reaction of cement, which is an improving material, progresses over time with the treated soil after stirring and mixing, the test is performed with the immediately after stirring and mixing (within 10 minutes after stirring and mixing). By doing so, the fluidity of the treated soil can be quantitatively evaluated and managed.
[0024]
Here, the validity of the construction conditions with the above set slump value = 5 cm or more will be verified.
[0025]
First, regarding the raw soil having the retained water content W 1 = 0.448 t / m 3 exemplified above, the water cement ratio W / C is 100%, 130%, and 160% with respect to the water weight contained in the raw soil. And the total water weight contained in the treated soil immediately after the stirring and mixing treatment by adding the water weight contained in the cement milk with the respective cement addition amounts being 50 kg / m 3 , 100 kg / m 3 and 150 kg / m 3. (Water content or water content) is determined as shown in Table 2. In addition, the slump value written together in Table 2 is the value of Table 1 transferred as it is. Then, based on the data in Table 2, the correlation characteristic diagram of FIG. 4 is created as the correlation between the weight of water contained in the treated soil and the slump value. Then, as shown in the figure, the correlation characteristics when the water cement ratio W / C is 100%, 130%, and 160% are combined to draw a combined correlation curve P.
[0026]
[Table 2]
Figure 0003920158
[0027]
On the other hand, the total water weight contained in the treated soil in the case of performing the stirring and mixing process under the conditions of the water cement ratio W / C = 140% and the cement addition amount α = 88 kg / m 3 determined previously is obtained as follows. .
[0028]
Figure 0003920158
Then, as shown in FIG. 4, when the slump value at the time of the water content W 3 immediately after the mixing W 3 = 0.571 t / m 3 obtained for the composite correlation curve P in the same figure is read, the value is about 5 .8 cm can be read. This slump value of 5.8 cm satisfies the condition of 5 cm or more as the set slump value at the time of construction determined earlier, and therefore it is sufficiently valid to evaluate and manage the ground improvement treatment quality with the slump value. It can be guessed.
[0029]
Next, a second embodiment will be described.
[0030]
When the water content ratio and wet density of the raw soil are different between the soil according to the first embodiment and the similar soil, the amount of cement added to satisfy the target strength may be different. However, if a pre-blending test as described above is performed each time, it takes a lot of time and money, which is not preferable. Therefore, it is possible to determine an appropriate water cement ratio and cement addition amount relatively easily by using a part of the data obtained in the pre-mixing test of the first embodiment on the assumption that the soil is similar. An example in that case will be described below.
[0031]
Based on the correlation characteristic diagram of FIG. 1, a correlation characteristic diagram between the weight of water (water content) contained in the cement milk and the cement addition amount α when the target strength is qu = 500 kN / m 2 is created. More specifically, as shown in FIG. 1, when the water cement ratio W / C = 100%, the cement addition amount α is 55 kg / m 3 , and when the water cement ratio W / C = 130%, the cement addition amount α is 75 kg. / m 3, the following equation because the cement addition amount when the water-cement ratio W / C = 160% α is 112 kg / m 3, the amount of water contained in the cement milk of each cement amount alpha of (water content) Calculated by
[0032]
Water content of cement milk when water cement ratio W / C = 100% and cement addition amount is 55 kg / m 3 = (α / 1000) × (W / C)
= (55/1000) x 1.0
= 0.055
Water content of cement milk when water cement ratio W / C = 130% and cement addition amount is 75 kg / m 3 = (α / 1000) × (W / C)
= (75/1000) x 1.3
= 0.0975
Water content of cement milk when water cement ratio W / C = 160% and cement addition amount is 112 kg / m 3 = (α / 1000) × (W / C)
= (112/1000) x 1.6
= 0.1792
Then, the correlation characteristic diagram of FIG. 5 is created with each cement addition amount as the horizontal axis and each water content contained in the calculated cement milk as the vertical axis. Further, the water cement ratio W / C is added as a vertical axis to the correlation characteristic diagram of FIG.
[0033]
Next, the natural water content W n and the wet density ρ t of the raw soil to be treated, that is, the soil similar to that of the first embodiment, are measured. For example, the natural water content W n of the raw soil is W When n = 37.4% and the wet density ρ t indicates ρ t = 1.790 t / m 3 , the dry density ρ D of the raw soil and the retained water content W 1 of the raw soil are calculated by the following equations.
[0034]
Figure 0003920158
On the other hand, in the soil soil of the first embodiment, the water cement ratio W / C and the cement addition amount α satisfying the target strength when the slump value is 5 cm or more, as previously obtained based on FIG. Since W / C = 138% and α≈83 kg / m 3 , respectively, the total amount of water contained in the treated soil immediately after mixing under this condition is obtained by the following equation.
[0035]
Figure 0003920158
From the above, it can be seen that, in the raw soil of the first embodiment, if the water content of the treated soil immediately after mixing is secured to 0.563 t / m 3 or more, a slump value of 5 cm or more can be secured.
[0036]
On the other hand, since the retained water content W 1 = 0.487 t / m 3 of the soil of the soil similar to that of the first embodiment as described above, the first embodiment Subtracting the retained water content W 1 (= 0.487 t / m 3 ) of the raw soil of similar soil quality from the total water content W 3 (= 0.563 t / m 3 ) immediately after mixing in the original soil. If cement milk containing water of 563-0.487 = 0.076 t / m 3 minutes is added to the raw soil and mixed, the slump value of 5 cm or more can be satisfied.
[0037]
On the other hand, in the correlation characteristic diagram of FIG. 5, the water cement ratio W / C at a position satisfying the target strength qua (= 500 kN / m 2 ) and exceeding the water content of cement milk of 0.076 t / m 3 is 100%. The position is between 120% and approximately 120%. At the same time, the cement addition amount α when the water cement ratio W / C = 120% is α≈69 kg / m 3 .
[0038]
Accordingly, the slump value when the water cement ratio W / C = 120% and the cement addition amount α = 69 kg / m 3 is confirmed.
[0039]
As previously indicated, the retained water content W 1 of the raw soil of similar soil is W 1 = 0.487 (t / m 3 ), so the water content W 2 contained in the cement milk is obtained by the following equation.
[0040]
Figure 0003920158
Since the total water content (moisture) W 3 of the treated soil immediately after mixing is W 3 = W 1 + W 2 , W 3 = 0.487 + 0.083 = 0.57 t / m 3 . Then, in FIG. 4 shown above, when the slump value corresponding to the total water content (water content) W 3 = 0.57 t / m 3 is read, the value is about 5.8 cm as in the previous case. .
[0041]
As is clear from these relationships, if the soil is similar to a specific soil, only the natural water content W n and wet density ρ t of the raw soil are measured, while satisfying the slump value of 5 cm or more. It is possible to easily determine the water cement ratio W / C (= 120%) and the cement addition amount α (= 69 kg / m 3 ) necessary to satisfy the target strength qua (= 500 kN / m 2 ). Become.
[0042]
Next, as a third embodiment, after obtaining an appropriate water cement ratio W / C and a cement addition amount α when the target strength qu = 600 kN / m 2 for the soil soil shown below, the treatment is performed. An example of evaluating and managing soil quality with a slump value that is an indicator of fluidity is shown.
[0043]
Figure 0003920158
In addition to the natural soil sample (Sample 1) with the above natural moisture content, the water content adjusted soil (water content adjusted so that the moisture content is 40%, 50%, 60% in advance) Samples 2 to 4) were prepared, and the water cement ratio W / C was set to the standard W / C = 100%, and the cement addition amount α was 50 kg / m 3 , 100 kg / m 3 , 150 kg / m 3 , Specimens mixed with cement milk of 200 kg / m 3 were prepared, and the strength of each specimen (samples 1 to 4) after a predetermined curing period was measured as uniaxial compressive strength (kN / m 2 ). To do. Incidentally, the relation between the water content ratio W n and wet density [rho t of the samples 1-4 shown in Table 3, shows the values of uniaxial compressive strength of each sample 1-4 in Table 4.
[0044]
[Table 3]
Figure 0003920158
[0045]
[Table 4]
Figure 0003920158
[0046]
Then, based on the values in Table 4, a correlation characteristic diagram between the cement addition amount α and the uniaxial compressive strength is created as shown in FIG. 6, and the cement addition amount α satisfying the target strength qu = 600 kN / m 2 is obtained. . That is, in the correlation characteristic diagram of FIG. 6, the value of the intersection of the horizontal line indicating the uniaxial compression strength of 600 kN / m 2 and each correlation characteristic curve is read. As cement amount α of the water content of another sample 1-4 shown in addition to Table 5 of FIG. 6, the respective 91kg / m 3, 95kg / m 3, 122kg / m 3, 232kg / m 3.
[0047]
[Table 5]
Figure 0003920158
[0048]
Next, on the assumption that the water cement ratio W / C is, for example, standard 100%, mixing when it is assumed that the cement milk having the above cement addition amount α is mixed with the samples 1 to 4 for each water content ratio. Obtain the water content W N immediately after.
[0049]
(A) Sample 1
Figure 0003920158
(B) Sample 2
Figure 0003920158
(C) Sample 3
Figure 0003920158
(D) Sample 4
Figure 0003920158
Next, based on the water content ratio W N immediately after mixing determined in the above (a) to (d) and the cement addition amount α, a correlation characteristic diagram of both is created, and the correlation characteristic diagram is shown in FIG.
[0050]
Here, the correlation between the value of the plastic index I P of the raw soil, the value of the consistency index I C , and the water-cement ratio W / C in cement milk is determined in advance using the correlation characteristic diagram of FIG. From the relationship, the value of the appropriate water cement ratio W / C in the cement milk when the value of the plasticity index I P and the consistency index I C of the raw soil is designated is directly read from the above correlation characteristic diagram. As described above, since the value of the plasticity index I P of the raw soil subject to ground improvement is 22.5 and the value of the consistency index I C is 0.54, the plasticity index I P of these raw soils. When the intersection of the value of the value and the value of the consistency index I C is obtained in FIG. 8, the appropriate value of the water-cement ratio W / C of the cement milk is 140%.
[0051]
Then, the water content ratio W N immediately after mixing when the appropriate water cement ratio W / C = 140% is obtained. However, the provisional addition amount of cement as an improvement material here is 95 kg / m 3 .
[0052]
Figure 0003920158
Next, the amount of cement added when the appropriate water cement ratio W / C obtained from FIG. 8 is 140% and the water content ratio W N after mixing is 46% is directly read from FIG. That is, FIG. 9 is basically the same as FIG. 7, but the intersection of the imaginary line with the water content W N = 46% and the characteristic curve as shown in FIG. 9 is 94 kg / m 3 . Thereby, as conditions at the time of actual construction, the water cement ratio is determined as W / C = 140%, and the cement addition amount α is determined as 94 kg / m 3 .
[0053]
In actual construction, the set slump value is set to, for example, 4.0 cm or more in consideration of past performance data and the like, and the water cement ratio W / C is 140% and the cement addition amount α is 94 kg. The mixture is stirred and mixed while spraying cement milk that has been adjusted beforehand to / m 3 into the ground by a conventional method. At that time, similarly to the previous embodiment, in order to evaluate the fluidity of the treated soil, a sample of the treated soil immediately after stirring and mixing is periodically taken and a slump test is performed, and the slump value is always 4.0 cm or more. The construction is managed so that By doing so, the fluidity of the treated soil can be quantitatively evaluated and managed.
[0054]
In the experiment by the present inventor, the set value (management target value) of the slump value was determined to be 4 cm or more based on past performance data or the like, but it is regularly 4.5 cm or more by performing the construction management as described above. Results were obtained. Incidentally, in the past, construction was carried out at W / C = 100%, which is said to be the standard water cement ratio in many cases, but in this case, the slump value measured at the time of preliminary tests, etc. Was only about 2 cm.
[0055]
Further, if the construction is performed with the conventional water cement ratio, the work amount of about 30 m 3 / H is the limit to satisfy the necessary number of blade cutting operations for stirring and mixing the ground. By setting the water cement ratio as appropriate (W / C = 140%) as described above, a work amount of about 45 m 3 / H is possible, and the economic effect is great.
[0056]
In addition, when viewed from the quality aspect, the strength variation when the target strength qu = 600 kN / m 2 and the water cement ratio W / C = 140% is within the range of 550 to 660 kN / m 2. It has been found that the variation width during the conventional construction is very small as compared with 400 to 700 kN / m 2 . Thus, by evaluating and managing the processing quality of the ground improvement with the slump value, it is possible to provide a ground improvement method that is economical and excellent in the quality of the treated soil.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing the correlation between the amount of cement added and uniaxial compressive strength.
FIG. 2 is a characteristic diagram showing the correlation between the amount of cement added and the slump value.
FIG. 3 is a characteristic diagram showing the correlation between the cement addition amount and the slump value.
FIG. 4 is a characteristic diagram showing the correlation between the amount of water contained in the treated soil and the slump value.
FIG. 5 is a characteristic diagram showing the correlation between the amount of cement added and the water content of cement milk.
FIG. 6 is a characteristic diagram showing the correlation between the amount of cement added and uniaxial compressive strength.
FIG. 7 is a characteristic diagram showing the correlation between the amount of cement added and the water content of the treated soil immediately after mixing.
FIG. 8 is a characteristic diagram showing the correlation between the plasticity index and the consistency index of the raw soil.
FIG. 9 is a characteristic diagram showing the correlation between the amount of cement added and the water content of the treated soil immediately after mixing.

Claims (3)

改良材(C)と水(W)とを混合したミルク状改良材を地中に噴射しながら原土と撹拌混合する地盤改良工法であって、
処理土が目標強度を満足し且つ撹拌混合処理直後に流動化を呈して二次処理としての締め固め処理を必要としないミルク状改良材の水/改良材比率(W/C)および改良材添加量を決定するにあたり、
ミルク状改良材の水/改良材比率(W/C)と改良材添加量および処理土の流動性の指標であるスランプ値との相関関係を予め定めておき、
これらの相関関係からスランプ値を指定したときのミルク状改良材の水/改良材比率(W/C)と改良材添加量をそれぞれ求め、
この求めた水/改良材比率(W/C)と改良材添加量のもとでのミルク状改良材を地中に噴射しながら原土との撹拌混合処理を行うことを特徴とする地盤改良工法。
A ground improvement method in which a milk-like improvement material mixed with an improvement material (C) and water (W) is stirred and mixed with the raw soil while being injected into the ground,
Water / improvement ratio (W / C) of milk-like improvement material and improvement material addition that the treated soil satisfies the target strength and exhibits fluidization immediately after the stirring and mixing treatment and does not require a compaction treatment as a secondary treatment In determining the quantity,
Predetermining the correlation between the water / improvement material ratio (W / C) of the milky improver and the slump value, which is an indicator of the addition amount of the improver and the fluidity of the treated soil,
From these correlations, the water / improvement ratio (W / C) of the milk-like improving material when the slump value is specified and the amount of the improving material added are respectively determined.
A ground improvement characterized by performing agitation and mixing with the raw soil while injecting a milk-like improvement material into the ground under the water / improvement material ratio (W / C) thus obtained and the addition amount of the improvement material. Construction method.
撹拌混合処理後の処理土を採取してコンクリートのスランプ試験に準拠したスランプ値を求め、
この実測スランプ値が予め設定した設定スランプ値の範囲内のものとなるように地盤改良処理品質を管理することを特徴とする請求項1に記載の地盤改良工法。
Collect the treated soil after stirring and mixing treatment to obtain the slump value based on the concrete slump test,
The ground improvement method according to claim 1, wherein the ground improvement processing quality is managed so that the actually measured slump value falls within a preset slump value range.
改良材(C)と水(W)とを混合したミルク状改良材を地中に噴射しながら原土と撹拌混合する地盤改良工法であって、
地中に噴射すべきミルク状改良材における改良材(C)と水(W)との比率を水/改良材比率(W/C)としたとき、
処理土が目標強度を満足し且つ撹拌混合処理直後に流動化を呈して二次処理としての締め固め処理を必要としないミルク状改良材の水/改良材比率(W/C)を決定するにあたり、
原土の塑性指数(IP)とコンシステンシー指数(IC)のほかミルク状改良材の水/改良材比率(W/C)との相関関係を予め定めておき、
これらの相関関係から原土の塑性指数(IP)とコンシステンシー指数(IC)とを指定したときのミルク状改良材の水/改良材比率(W/C)を求め、
この求めた水/改良材比率(W/C)のミルク状改良材を地中に噴射しながら原土との撹拌混合処理を行い、
撹拌混合処理後の処理土を採取してコンクリートのスランプ試験に準拠したスランプ値を求め、
この実測スランプ値が予め設定した設定スランプ値の範囲内のものとなるように地盤改良処理品質を管理することを特徴とする地盤改良工法。
A ground improvement method in which a milk-like improvement material mixed with an improvement material (C) and water (W) is stirred and mixed with the raw soil while being injected into the ground,
When the ratio of the improved material (C) and water (W) in the milk-like improved material to be injected into the ground is the water / improved material ratio (W / C),
In determining the water / improvement ratio (W / C) of the milk-like improver that the treated soil satisfies the target strength and exhibits fluidization immediately after the stirring and mixing process and does not require a compaction process as a secondary process. ,
The correlation between the plasticity index (I P ) of the raw soil and the consistency index (I C ) as well as the water / improving material ratio (W / C) of the milk-like improving material is determined in advance.
From these correlations, the water / improvement ratio (W / C) of the milk-like improving material when the plasticity index (I P ) and the consistency index (I C ) of the raw soil are specified,
While stirring the milk-like improving material of this obtained water / improving material ratio (W / C) into the ground, stirring and mixing treatment with the raw soil,
Collect the treated soil after stirring and mixing treatment to obtain the slump value based on the concrete slump test,
A ground improvement construction method characterized by managing the ground improvement processing quality so that the actually measured slump value falls within a preset slump value range.
JP2002176604A 2002-06-18 2002-06-18 Ground improvement method Expired - Lifetime JP3920158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176604A JP3920158B2 (en) 2002-06-18 2002-06-18 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176604A JP3920158B2 (en) 2002-06-18 2002-06-18 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2004019276A JP2004019276A (en) 2004-01-22
JP3920158B2 true JP3920158B2 (en) 2007-05-30

Family

ID=31174860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176604A Expired - Lifetime JP3920158B2 (en) 2002-06-18 2002-06-18 Ground improvement method

Country Status (1)

Country Link
JP (1) JP3920158B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6496869B1 (en) * 2018-07-24 2019-04-10 五洋建設株式会社 W / C setting method and apparatus in deep mixed processing method
CN109344556B (en) * 2018-11-30 2023-02-28 中南大学 Earth pressure balance shield muck improvement parameter correction method based on field muck state
JP7202976B2 (en) * 2019-06-10 2023-01-12 株式会社不動テトラ Mixture setting method according to slurry injection rate in slurry agitation type deep mixing processing method
JP6683905B1 (en) * 2019-09-17 2020-04-22 株式会社加藤建設 Construction method for ground improvement work

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116766B2 (en) * 1995-03-03 2000-12-11 株式会社大林組 Fluidization method of fine particle aggregate
JP2901185B1 (en) * 1998-01-22 1999-06-07 利根地下技術株式会社 Stabilizer injection management method in deep mixing treatment method construction
JPH11256161A (en) * 1998-03-12 1999-09-21 Lion Corp Cement composition for improving ground and improvement of ground
JP4042010B2 (en) * 1998-08-28 2008-02-06 昌平 千田 Ground improvement body construction method and continuous wall construction method
JP2000073359A (en) * 1998-09-02 2000-03-07 Tenox Corp Method for improving saturated sand ground by agitating and mixing method
JP3389527B2 (en) * 1999-04-07 2003-03-24 不動建設株式会社 Ground mixing method
JP2002030651A (en) * 2000-07-18 2002-01-31 Onoda Chemico Co Ltd Construction method for foundation improvement

Also Published As

Publication number Publication date
JP2004019276A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
Hughes et al. The workability of steel-fibre-reinforced concrete
CN101255040A (en) Method for preparing regenerative road material by using waste building material and construction method thereof
CN104404850A (en) Method for improving bending tensile strength and durability of cement concrete for road
CN109987898A (en) A kind of Cement Stable Macadam Mixture and its preparation process
CN104876477B (en) Stable regeneration method of cement fly-ash gravel base reclaimed material cement based on mortar content control
Xiao et al. Assessment of strength development in cemented coastal silt admixed granite powder
CN110331633A (en) A kind of cement stabilized macadam construction Craft
CN110482945A (en) A kind of Machine-made Sand regeneration concrete and preparation method thereof for high speed base course
JP3920158B2 (en) Ground improvement method
CN110331641A (en) The steady construction method of road recycled water
CN109650820A (en) A kind of pump concrete and preparation method thereof
CN204594836U (en) A kind of porous cement concrete construction workability evaluating apparatus
Wong Use of short fibres in structural concrete to enhance mechanical properties
CN107778021A (en) A kind of pervious concrete
CN109020415A (en) A kind of preparation method of regenerated aggregate pervious concrete
KR101211905B1 (en) System for Delivery of Fibers into Concrete
Gaus et al. Experimental Study on the use of Pumice on the Rigid Pavement
JP2009002027A (en) Method of creating aerated lightweight soil
Kelley Use of recycled oyster shells as aggregate for pervious concrete
George Soil stabilization field trial: interim report I.
Idrus et al. The suitability of sand-rice husk ash (RHA) blends for subbase applications
Menger et al. Mechanical behavior of a fiber reinforced reclaimed asphalt pavement sand-cement blend
Adedokun et al. Effect of synthetic hair fibre additions on the strength characteristics of concrete
JP4510985B2 (en) Formulation determination method in CSG method
JP3593112B2 (en) Ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3920158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160223

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term