WO2022210165A1 - 研磨パッド及び研磨パッドの製造方法 - Google Patents

研磨パッド及び研磨パッドの製造方法 Download PDF

Info

Publication number
WO2022210165A1
WO2022210165A1 PCT/JP2022/013510 JP2022013510W WO2022210165A1 WO 2022210165 A1 WO2022210165 A1 WO 2022210165A1 JP 2022013510 W JP2022013510 W JP 2022013510W WO 2022210165 A1 WO2022210165 A1 WO 2022210165A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
pores
layer
cross
polishing layer
Prior art date
Application number
PCT/JP2022/013510
Other languages
English (en)
French (fr)
Inventor
哲平 立野
浩 栗原
さつき 山口
大和 ▲高▼見沢
Original Assignee
富士紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士紡ホールディングス株式会社 filed Critical 富士紡ホールディングス株式会社
Priority to CN202280015018.1A priority Critical patent/CN116897097A/zh
Priority to US18/278,838 priority patent/US20240139903A1/en
Publication of WO2022210165A1 publication Critical patent/WO2022210165A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/22Lapping pads for working plane surfaces characterised by a multi-layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/22Rubbers synthetic or natural
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/32Resins or natural or synthetic macromolecular compounds for porous or cellular structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to polishing pads. Specifically, the present invention relates to a polishing pad that can be suitably used for polishing optical materials, semiconductor wafers, semiconductor devices, hard disk substrates, and the like.
  • CMP chemical mechanical polishing
  • a polishing apparatus 1 for performing the CMP method is provided with a polishing pad 3.
  • the polishing pad 3 is brought into contact with an object to be polished 8 held on a holding platen 16 and performs polishing. It includes an abrasive layer 4 which is a layer and a cushion layer 6 which supports the abrasive layer 4 .
  • the polishing pad 3 is rotationally driven while the object 8 to be polished is pressed, and polishes the object 8 to be polished.
  • a slurry 9 is supplied between the polishing pad 3 and the object 8 to be polished.
  • the slurry 9 is a mixture (dispersion liquid) of water, various chemical components, and fine hard abrasive grains. is to increase Slurry 9 is fed to and discharged from the polishing surface through grooves or holes.
  • a polishing pad used for polishing semiconductor devices usually has a polishing layer made of a synthetic resin such as polyurethane, and voids are formed inside the polishing layer. Since the voids are open on the surface of the polishing layer, the abrasive grains contained in the polishing slurry are retained during polishing, thereby advancing the polishing of the object to be polished.
  • a method for forming such voids a method of mixing hollow microspheres in a resin is conventionally known. In recent years, attempts have been made to reduce the diameter of hollow microspheres and make them uniform in order to achieve more precise polishing.
  • Patent Document 1 discloses a high-density polishing pad that contains unexpanded hollow microspheres with an average particle size of 20 ⁇ m or less and has an excellent polishing rate.
  • Patent Document 2 discloses a polishing pad that has a wide pore distribution and can adjust polishing performance by using a solid-phase foaming agent such as hollow microspheres and a gas-phase foaming agent such as an inert gas. .
  • polishing pads described in Patent Documents 1 and 2 have a large percentage of pores with a diameter of 25 ⁇ m or more in the distribution of pore diameters measured in the cross section of the polishing layer, and polishing debris and the like remain in these pores. In some cases, the defect performance was not sufficient.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a polishing pad capable of achieving both a good polishing rate and defect resistance.
  • a polishing pad comprising a polishing layer having a polishing surface for polishing an object to be polished, wherein the polishing layer comprises hollow microspheres forming hollow bodies within the polishing layer;
  • the cross section of the polishing layer has an average pore size of 10 to 14 ⁇ m, In the pore size histogram of the cross section of the polishing layer, in which the range of 1 ⁇ m is represented as one class, The total number of pores of 25 ⁇ m or more is 5% or less of the total number of pores in the cross section,
  • a polishing pad wherein the sum of the open area of each grade of 25 ⁇ m or more is 20% or less of the total open area of the cross section.
  • the total number of pores of each grade of 30 ⁇ m or more is 3% or less of the total number of pores of the polished surface, and the total area of pores of each grade of 30 ⁇ m or more is the total of the polished surface.
  • a method for manufacturing a polishing pad comprising a polishing layer having a polishing surface for polishing an object to be polished, comprising: wherein the polishing layer comprises hollow microspheres forming hollow bodies within the polishing layer;
  • the cross section of the polishing layer has an average pore size of 10 to 14 ⁇ m, In the pore size histogram of the cross section of the polishing layer, in which the range of 1 ⁇ m is represented as one class, The total number of pores of 25 ⁇ m or more is 5% or less of the total number of pores in the cross section, The total open area of each grade of 25 ⁇ m or more is 20% or less of the total open area of the cross section,
  • the manufacturing method wherein the polishing layer is formed by mixing and reacting a urethane bond-containing polyisocyanate compound, a curing agent, and unexpanded hollow microspheres having a median diameter (D50) of 6 ⁇ m or less.
  • a polishing method for polishing an object to be polished using a polishing pad and abrasive grains comprising:
  • the polishing pad comprises a polishing layer having a polishing surface for polishing an object to be polished, wherein the polishing layer comprises hollow microspheres forming hollow bodies within the polishing layer;
  • the cross section of the polishing layer has an average pore size of 10 to 14 ⁇ m, In the pore size histogram of the cross section of the polishing layer, in which the range of 1 ⁇ m is represented as one class, The total number of pores of 25 ⁇ m or more is 5% or less of the total number of pores in the cross section, The total open area of each grade of 25 ⁇ m or more is 20% or less of the total open area of the cross section,
  • the abrasive grains have a diameter of 0.01 to 0.2 ⁇ m, A polishing method, wherein the object to be
  • a polishing pad having a polishing layer containing predetermined hollow microspheres provides a good polishing rate and excellent defect resistance.
  • FIG. 1 is a perspective view of a polishing apparatus 1.
  • FIG. FIG. 2 is a cross-sectional view of a polishing pad.
  • FIG. 3 shows enlarged photographs of the polishing layers of the polishing pads of Example 1 and Comparative Example 1, and pore diameter histograms.
  • FIG. 4 shows enlarged photographs of the polishing layers of the polishing pads of Example 2 and Comparative Example 2, and pore diameter histograms.
  • FIG. 5a shows changes in polishing rate when polishing a metal copper film using the polishing pads of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. FIG. 5b shows the number of defects when polishing the metal copper film using Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 6a shows changes in polishing rate when polishing a silicon oxide film using the polishing pads of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 6b shows the number of defects when polishing silicon oxide films using Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 6a shows changes in polishing rate when polishing a silicon oxide film using the polishing pads of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 6b shows the number of defects when polishing silicon oxide films using Examples 1 and 2 and Comparative Examples 1 and 2.
  • the polishing pad of the present invention provides a good polishing rate and has excellent defect resistance.
  • the term “particles” refers to residual fine particles contained in the polishing slurry or the like attached to the surface of the object to be polished
  • the term “pad debris” refers to
  • the term “scratch” refers to scraps of the polishing layer attached to the surface of the object to be polished and generated by abrasion of the surface of the polishing layer of the polishing pad during the polishing process. means hurt.
  • "defect” is a general term for defects including the above-mentioned particles, pad debris, scratches, and the like.
  • the polishing pad 3 includes a polishing layer 4 and a cushion layer 6, as shown in FIG. 2(a).
  • the shape of the polishing pad 3 is preferably disk-shaped, it is not particularly limited. For example, the diameter can be about 10 cm to 2 m.
  • the polishing layer 4 is adhered to the cushion layer 6 via the adhesive layer 7, as shown in FIG. 2(a).
  • the polishing pad 3 is adhered to the polishing platen 10 of the polishing apparatus 1 with a double-sided tape or the like provided on the cushion layer 6 .
  • the polishing pad 3 is rotationally driven by the polishing apparatus 1 while pressing the object 8 to polish the object 8 (see FIG. 1).
  • the polishing pad 3 includes a polishing layer 4 for polishing an object 8 to be polished.
  • Polyurethane resins, polyurea resins, and polyurethane-polyurea resins can be suitably used as the material constituting the polishing layer 4, and polyurethane resins can be more preferably used.
  • the size (diameter) of the polishing layer 4 is the same as that of the polishing pad 3, and can be about 10 cm to 2 m in diameter, and the thickness of the polishing layer 4 can be usually about 1 to 5 mm.
  • the polishing layer 4 is rotated together with the polishing surface plate 10 of the polishing apparatus 1, and the chemical components and abrasive grains contained in the slurry 9 are caused to relatively move together with the object 8 to be polished while the slurry 9 is poured over the polishing layer 4. Thereby, the object 8 to be polished is polished.
  • Hollow microspheres 4A are dispersed in the polishing layer 4 . Since the hollow microspheres 4A are dispersed, when the polishing layer 4 is worn, the hollow microspheres 4A are exposed on the polishing surface and minute voids are generated on the polishing surface. The minute voids hold the slurry, thereby making it possible to further advance the polishing of the object 8 to be polished.
  • the polishing layer 4 is a urethane resin foam obtained by casting and curing a mixture of a urethane bond-containing polyisocyanate compound (prepolymer) containing hollow microspheres 4A described later and a curing agent (chain extender). formed by slicing. That is, the polishing layer 4 is dry-molded.
  • prepolymer polyisocyanate compound
  • chain extender chain extender
  • Hollow microspheres 4A contained in the polishing layer 4 in the polishing pad of the present invention can be confirmed as hollow bodies on the polishing surface of the polishing layer 4 or on the cross section of the polishing layer 4.
  • FIG. Hollow microspheres 4A contained in polishing layer 4 usually have a diameter (or opening diameter) of 2 to 200 ⁇ m.
  • the hollow microspheres 4A may have a spherical shape, an elliptical shape, or a shape close thereto. , 10-14 ⁇ m.
  • the average pore size is within this numerical range, the slurry (or the abrasive grains contained in the slurry) can be appropriately retained, and a good polishing rate can be achieved.
  • An average pore diameter of less than 10 ⁇ m is not realistic because it requires special hollow microspheres and is difficult to manufacture and handle, resulting in high cost. Also, if it is larger than 14 ⁇ m, it may cause defects.
  • the pores of the cross-section or polishing surface of the polishing layer 4 of the polishing pad of the present invention have a specific pore size distribution.
  • an pore size histogram is used herein in which one class is used for each range of 1 ⁇ m.
  • a class is defined as a range (for example, 20.0 ⁇ m or more and less than 21.0 ⁇ m, etc.) divided by 1 ⁇ m of the measured pore diameter.
  • the total number of pores of 25 ⁇ m or more is 5% or less of the total number of pores in the cross section of the polishing layer. If the total number of pores of 25 ⁇ m or more is 5% or less of the total number of pores in the cross section, there are few pores of 25 ⁇ m or more and there is no bias in the number of openings. Conceivable. Further, preferably, the total number of pores of each grade of 25 ⁇ m or more is 5% or less of the total number of pores in the cross section of the polishing layer.
  • the total number of pores of each grade of 25 ⁇ m or more in other words, the total number of pores of 25 ⁇ m or more and less than 26 ⁇ m is 5% or less of the total number of pores in the cross section of the polishing layer. As described above, the total number of pores of less than 27 ⁇ m is also 5% or less of the total number of pores in the cross section of the polishing layer. indicates that It is preferable that the sum of the number of pores of each grade of 30 ⁇ m or more is 3% or less of the total number of pores in the cross section.
  • the total open area of each class of 25 ⁇ m or more is 20% or less of the total open area of the cross section. If the sum of the pore areas of each grade of 25 ⁇ m or more is 20% or less of the total pore area of the cross section, the possibility of holding polishing debris etc. in the pores is low, which is also good. It is considered that the defect performance is affected. In addition, for pores of 30 ⁇ m or more, which are more likely to hold polishing dust, etc., the total area of pores of each class of 30 ⁇ m or more should be 10% or less of the total pore area of the cross section. is preferred.
  • a commercially available balloon can be used as the hollow microsphere 4A, and an expanded type and an unexpanded type can be used.
  • the unexpanded type is heat-expandable microspheres, which can be thermally expanded.
  • the urethane bond-containing polyisocyanate compound (prepolymer) forming the polishing layer 4 and the curing agent are mixed, it is preferable to mix unexpanded hollow microspheres together.
  • unexpanded hollow microspheres the diameter (opening diameter) of the hollow microspheres 4A can be reduced.
  • the reaction between the prepolymer and the curing agent is carried out after the inclusion of the unexpanded hollow microspheres, so the diameter of the prepolymer tends to be larger than in the unexpanded state due to the heat of reaction. Yes, and depending on the temperature, the diameter may be larger than expected.
  • reaction temperature it is preferable to control the reaction temperature so that it does not become too high, and not to exceed a predetermined temperature.
  • the reaction temperature depends on the gas components contained in the unexpanded hollow microspheres, it is preferably 140° C. or lower, more preferably 100° C. or lower.
  • the groove can be provided on the surface of the polishing layer 4 of the present invention on the side of the object 8 to be polished.
  • the groove is not particularly limited, and may be either a slurry discharge groove that communicates with the periphery of the polishing layer 4 or a slurry holding groove that does not communicate with the periphery of the polishing layer 4. You may have both slurry holding grooves. Examples of slurry discharge grooves include grid-like grooves and radial grooves, and examples of slurry retention grooves include concentric grooves, perforations (through holes), and the like. These grooves can also be combined.
  • the polishing pad 3 of the present invention has a cushion layer 6 . It is desirable that the cushion layer 6 makes contact of the polishing layer 4 with the object 8 to be polished more uniform.
  • the material of the cushion layer 6 may be an impregnated nonwoven fabric impregnated with resin, a flexible material such as synthetic resin or rubber, or a foam having a cell structure. Examples thereof include resins such as polyurethane, polyethylene, polybutadiene and silicone, and rubbers such as natural rubber, nitrile rubber and polyurethane rubber. From the viewpoint of adjusting the density and compression modulus, an impregnated nonwoven fabric is preferable, and it is preferable to use polyurethane as a material with which the nonwoven fabric is impregnated.
  • the cushion layer 6 is also preferably made of polyurethane resin having sponge-like fine cells.
  • the compression elastic modulus, density, and cells of the cushion layer 6 in the polishing pad 3 of the present invention are not particularly limited, and a cushion layer 6 having known characteristic values can be used.
  • the adhesive layer 7 is a layer for adhering the cushion layer 6 and the polishing layer 4, and is usually composed of a double-sided tape or an adhesive. Double-sided tapes or adhesives known in the art (for example, adhesive sheets) can be used.
  • the abrasive layer 4 and the cushion layer 6 are bonded together with an adhesive layer 7 .
  • the adhesive layer 7 can be made of, for example, at least one adhesive selected from acrylic, epoxy, and urethane. For example, an acrylic adhesive is used, and the thickness can be set to 0.1 mm.
  • polishing layer 4 is not particularly limited, polyurethane resin, polyurea resin, and polyurethane-polyurea resin are preferable as the main component, and polyurethane resin is more preferable.
  • Specific main component materials include, for example, materials obtained by reacting a urethane bond-containing polyisocyanate compound (prepolymer) with a curing agent.
  • a method of manufacturing the material of the polishing layer 4 will be described below using an example using a urethane bond-containing isocyanate compound and a curing agent.
  • a method for producing the polishing layer 4 using a urethane bond-containing polyisocyanate compound and a curing agent includes, for example, a material preparation step of preparing at least a urethane bond-containing polyisocyanate compound, an additive, and a curing agent; A mixing step of mixing an isocyanate compound, an additive and a curing agent to obtain a mixed solution for forming a molded body; and a curing step of forming a polishing layer from the mixed solution for forming a molded body.
  • a urethane bond-containing polyisocyanate compound and a curing agent are prepared as raw materials for the polyurethane resin molding (curing resin).
  • the urethane bond-containing polyisocyanate is a prepolymer (urethane prepolymer) for forming a polyurethane resin molding.
  • a suitable prepolymer is used.
  • a urethane bond-containing polyisocyanate compound (urethane prepolymer) is a compound obtained by reacting the following polyisocyanate compound and a polyol compound under commonly used conditions, and contains a urethane bond and an isocyanate group in the molecule. Further, other components may be contained in the urethane bond-containing polyisocyanate compound within a range that does not impair the effects of the present invention.
  • urethane bond-containing polyisocyanate compound a commercially available compound may be used, or a compound synthesized by reacting a polyisocyanate compound and a polyol compound may be used.
  • the reaction is not particularly limited, and an addition polymerization reaction may be carried out using a method and conditions known in the production of polyurethane resins. For example, to a polyol compound heated to 40° C., a polyisocyanate compound heated to 50° C. is added while stirring in a nitrogen atmosphere, and after 30 minutes the temperature is raised to 80° C. and further reacted at 80° C. for 60 minutes. It can be manufactured by a method such as
  • a polyisocyanate compound means a compound having two or more isocyanate groups in the molecule.
  • the polyisocyanate compound is not particularly limited as long as it has two or more isocyanate groups in its molecule.
  • diisocyanate compounds having two isocyanate groups in the molecule include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-tolylene diisocyanate (2,6-TDI), 2,4-tolylene diisocyanate (2 ,4-TDI), naphthalene-1,4-diisocyanate, diphenylmethane-4,4′-diisocyanate (MDI), 4,4′-methylene-bis(cyclohexyl isocyanate) (hydrogenated MDI), 3,3′- dimethoxy-4,4'-biphenyl diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, 4,4'-diphenylpropane diisocyanate, trimethylene diisocyanate, hexamethylene diisocyanate, Propylene-1,
  • the polyisocyanate compound preferably contains 2,4-TDI and/or 2,6-TDI.
  • a polyol compound means a compound having two or more hydroxyl groups (OH) in its molecule.
  • polyol compounds used for synthesizing urethane bond-containing polyisocyanate compounds as prepolymers include diol compounds such as ethylene glycol, diethylene glycol (DEG) and butylene glycol, triol compounds, and the like; poly(oxytetramethylene) glycol (or Polyether polyol compounds such as polytetramethylene ether glycol) (PTMG) may be mentioned. Among these, PTMG is preferred.
  • the number average molecular weight (Mn) of PTMG is preferably 500-2000, more preferably 600-1300, even more preferably 650-1000.
  • the number average molecular weight can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the above polyol compound may be used alone, or a plurality of polyol compounds may be used in combination.
  • an additive such as an oxidizing agent can be added as a material for the polishing layer 4, if necessary.
  • a curing agent (also referred to as a chain extender) is mixed with a urethane bond-containing polyisocyanate compound or the like in the mixing step.
  • a curing agent also referred to as a chain extender
  • the main chain end of the urethane bond-containing polyisocyanate compound bonds with the curing agent to form a polymer chain and cures in the subsequent molding step.
  • Curing agents include, for example, ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, 3,3'-dichloro-4,4'-diaminodiphenylmethane (MOCA), 4-methyl -2,6-bis(methylthio)-1,3-benzenediamine, 2-methyl-4,6-bis(methylthio)-1,3-benzenediamine, 2,2-bis(3-amino-4-hydroxy phenyl)propane, 2,2-bis[3-(isopropylamino)-4-hydroxyphenyl]propane, 2,2-bis[3-(1-methylpropylamino)-4-hydroxyphenyl]propane, 2,2 - bis[3-(1-methylpentylamino)-4-hydroxyphenyl]propane, 2,2-bis(3,5-diamino-4-hydroxyphenyl)propane
  • the polyvalent amine compound may have a hydroxyl group, and examples of such amine compounds include 2-hydroxyethylethylenediamine, 2-hydroxyethylpropylenediamine, di-2-hydroxyethylethylenediamine, di-2 -hydroxyethylpropylenediamine, 2-hydroxypropylethylenediamine, di-2-hydroxypropylethylenediamine and the like.
  • a diamine compound is preferable, and for example, 3,3′-dichloro-4,4′-diaminodiphenylmethane (methylenebis-o-chloroaniline) (hereinafter abbreviated as MOCA) is further used. preferable.
  • the polishing layer 4 includes hollow microspheres 4A having outer shells and hollow interiors. As described above, a commercially available material can be used as the material for the hollow microspheres 4A. Alternatively, one obtained by synthesizing by a conventional method may be used.
  • the material of the outer shell of the hollow microspheres 4A is not particularly limited, but examples include polyvinyl alcohol, polyvinylpyrrolidone, poly(meth)acrylic acid, polyacrylamide, polyethylene glycol, polyhydroxyether acrylate, maleic acid copolymer, Examples thereof include polyethylene oxide, polyurethane, poly(meth)acrylonitrile, polyvinylidene chloride, polyvinyl chloride, organic silicone resins, and copolymers obtained by combining two or more monomers constituting these resins.
  • Examples of commercially available hollow microspheres include, but are not limited to, the Expancel series (trade name, manufactured by Akzo Nobel) and Matsumoto Microspheres (trade name, manufactured by Matsumoto Yushi Co., Ltd.). be done.
  • the shape of the hollow microspheres 4A is not particularly limited, and may be spherical or substantially spherical, for example. As described above, it is preferable to use unexpanded hollow microspheres as the raw material.
  • the polishing layer 4 obtained by the reaction can be aligned with appropriate pores.
  • unexpanded hollow microspheres are preferable because they are smaller than expanded hollow microspheres.
  • the unexpanded hollow microspheres before use preferably have an average diameter of 2 to 20 ⁇ m, more preferably 5 to 10 ⁇ m. More preferably, the median diameter (D50) at which the cumulative distribution of hollow microspheres is 50% is 6 ⁇ m or less.
  • the average particle diameter and median diameter can be measured by a laser diffraction particle size distribution analyzer (eg Mastersizer-2000 manufactured by Spectris Co., Ltd.).
  • hollow microspheres having a uniform size within a desired range can be obtained by classifying the hollow microspheres.
  • the method of classification is not particularly limited in the present invention, but can be carried out by sieving, centrifugal air classification, dry air current classification, or the like.
  • the material of the hollow microspheres 4A is preferably 0.1 to 10 parts by mass, more preferably 1 to 7 parts by mass, and even more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the urethane prepolymer. Added.
  • a conventionally used foaming agent may be used in combination with the hollow microspheres 4A within a range that does not impair the effects of the present invention.
  • a reactive gas may be blown.
  • the foaming agent include water and foaming agents mainly composed of hydrocarbons having 5 or 6 carbon atoms.
  • the hydrocarbon include chain hydrocarbons such as n-pentane and n-hexane, and alicyclic hydrocarbons such as cyclopentane and cyclohexane.
  • urethane bond-containing polyisocyanate compound (urethane prepolymer), additive, curing agent, and hollow microspheres obtained in the preparation step are fed into a mixer and stirred and mixed.
  • the mixing step is carried out while the components are heated to a temperature that ensures the fluidity of the components. However, if the components are heated too much, the hollow microspheres will expand and will not have the desired pore size distribution. Therefore, caution is required.
  • the mixed liquid for molded body molding prepared in the mixing step is poured into a rod-shaped mold preheated to 30 to 100° C. for primary curing, and then cured at about 100 to 150° C. for 10 to 5 minutes.
  • the cured polyurethane resin (polyurethane resin molding) is molded by heating for about an hour for secondary curing.
  • the mixture is cured by reacting the urethane prepolymer and the curing agent to form a polyurethane resin. If the viscosity of the urethane prepolymer is too high, the fluidity of the urethane prepolymer deteriorates, making it difficult to mix substantially uniformly.
  • the prepolymer preferably has a viscosity of 500 to 4000 mPa ⁇ s at a temperature of 50 to 80°C. This means that the viscosity can be set, for example, by changing the molecular weight (degree of polymerization) of the prepolymer. The prepolymer is heated to about 50 to 80° C. to make it flowable.
  • the mixed liquid that is poured into the mold is reacted in the mold to form a foam.
  • the prepolymer is cross-linked and cured by the reaction between the prepolymer and the curing agent.
  • a common slicing machine can be used for slicing.
  • the lower layer portion of the compact is held, and sliced sequentially from the upper layer portion to a predetermined thickness.
  • the slicing thickness is set, for example, in the range of 1.3 to 2.5 mm.
  • For a foam molded in a mold with a thickness of 50 mm for example, about 10 mm of the upper and lower layers of the foam are not used due to scratches, etc., and 10 to 25 sheets of about 30 mm of the central part are polished.
  • a layer 4 is formed.
  • a foam in which the hollow microspheres 4A are substantially evenly formed is obtained in the curing and molding step.
  • the polishing surface of the resulting polishing layer 4 may be grooved if necessary.
  • the groove processing method and its shape are not particularly limited.
  • a double-sided tape is then attached to the surface of the polishing layer 4 opposite to the polishing surface of the polishing layer 4 thus obtained.
  • the double-sided tape is not particularly limited, and can be used by arbitrarily selecting from double-sided tapes known in the art.
  • the cushion layer 6 is preferably made of an impregnated nonwoven fabric impregnated with a resin.
  • a resin for the material of the impregnated non-woven fabric, preferably polyurethane-based such as polyurethane and polyurethane polyurea, acrylic-based such as polyacrylate and polyacrylonitrile, vinyl-based such as polyvinyl chloride, polyvinyl acetate and polyvinylidene fluoride, polysulfone and poly Examples include polysulfones such as ethersulfone, acylated celluloses such as acetylated cellulose and butyrylated cellulose, polyamides and polystyrenes.
  • the density of the nonwoven fabric is preferably 0.3 g/cm 3 or less, more preferably 0.1 to 0.2 g/cm 3 in the state (web state) before resin impregnation. Further, the density of the nonwoven fabric after resin impregnation is preferably 0.7 g/cm 3 or less, more preferably 0.25 to 0.5 g/cm 3 .
  • the density of the nonwoven fabric before resin impregnation and after resin impregnation is equal to or less than the above upper limit, processing accuracy is improved.
  • the density of the nonwoven fabric before and after resin impregnation is equal to or higher than the above lower limit, it is possible to reduce permeation of the polishing slurry into the base material layer.
  • the adhesion rate of the resin to the nonwoven fabric is expressed by the weight of the resin adhered to the weight of the nonwoven fabric, and is preferably 50% by weight or more, more preferably 75 to 200% by weight. Desired cushioning properties can be obtained when the adhesion rate of the resin to the nonwoven fabric is equal to or less than the above upper limit.
  • the formed abrasive layer 4 and cushion layer 6 are pasted together (joined) with the adhesive layer 7 .
  • the adhesive layer 7 for example, an acrylic adhesive is used, and the adhesive layer 7 is formed so as to have a thickness of 0.1 mm. That is, the surface of the polishing layer 4 opposite to the polishing surface is coated with an acrylic pressure-sensitive adhesive to a substantially uniform thickness.
  • the surface of the polishing layer 4 opposite to the polishing surface P and the surface of the cushion layer 6 are brought into pressure contact via the applied adhesive, and the polishing layer 4 and the cushion layer 6 are bonded together with the adhesive layer 7 .
  • the polishing pad 3 is completed by performing an inspection such as confirming that there is no adhesion of dirt or foreign matter.
  • a polishing pad having a polishing layer containing the above-described predetermined hollow microspheres provides a good polishing rate and excellent defect resistance.
  • Objects to be polished that can be used with the polishing pad of the present invention are not particularly limited, and can be used for various objects to be polished such as metals and oxides. Metallic copper and silicon oxide are preferred.
  • the settings of the polishing machine (polishing surface plate rotation speed, pressure, time, etc.) during polishing are not particularly limited, and can be appropriately changed according to the conditions of the object to be polished and other circumstances.
  • slurry is used for polishing, slurry containing abrasive grains may be used in the present invention.
  • the type of abrasive grains is not particularly limited, and includes cerium oxide, zirconium oxide, zirconium silicate, cubic boron nitride (CBN), ferric oxide, manganese oxide, chromium oxide, silicon dioxide, alumina, barium carbonate, oxide magnesium, calcium carbonate, barium carbonate, magnesium oxide, mica and the like. Further, since the polishing pad of the present invention has specific openings in its cross section (that is, specific openings in the polishing surface), the abrasive grains preferably have a diameter of 0.01 to 0.2 ⁇ m.
  • the NCO equivalent is "(mass (parts) of polyisocyanate compound + mass (parts) of polyol compound) / [(number of functional groups per molecule of polyisocyanate compound ⁇ mass of polyisocyanate compound (parts) / polyisocyanate Molecular weight of compound) - (number of functional groups per molecule of polyol compound ⁇ mass (parts) of polyol compound/molecular weight of polyol compound)]” is a numerical value indicating the molecular weight of the prepolymer (PP) per NCO group. be.
  • urethane molding was allowed to cool to 25° C., heated again in an oven at 120° C. for 5 hours, and sliced into 1.3 mm thick slices to obtain an abrasive layer A.
  • two types of polishing layers A were obtained using two types of hollow microspheres.
  • polishing layer B 100 parts of an isocyanate group-terminated urethane prepolymer (urethane bond-containing polyisocyanate compound) having an NCO equivalent of 420 was used as the mixed liquid of the first liquid used in the production of the polishing layer A, and the second liquid used in the production of the polishing layer A was MOCA28.
  • a polishing layer B was obtained in the same manner as the polishing layer A, except that the amount was 8 parts. Two types of polishing layers B were obtained because two types of hollow microspheres were used for comparison.
  • a nonwoven fabric made of polyester fibers was immersed in a urethane resin solution (manufactured by DIC, trade name "C1367"). After the immersion, the resin solution was squeezed out using a mangle roller capable of applying pressure between a pair of rollers, and the nonwoven fabric was substantially uniformly impregnated with the resin solution. Then, the impregnated resin was coagulated and regenerated by being immersed in a coagulating liquid consisting of water at room temperature to obtain a resin-impregnated nonwoven fabric.
  • a urethane resin solution manufactured by DIC, trade name "C1367”
  • the resin-impregnated nonwoven fabric was taken out from the coagulating liquid, further immersed in a washing liquid consisting of water to remove N,N-dimethylformamide (DMF) in the resin, and then dried. After drying, the surface skin layer was removed by buffing to prepare a cushion layer having a thickness of 1.3 mm.
  • a washing liquid consisting of water to remove N,N-dimethylformamide (DMF) in the resin.
  • Examples and Comparative Examples The polishing layers A and B and the cushion layer were bonded with a 0.1 mm-thick double-sided tape (both sides of a PET base material provided with adhesive layers made of an acrylic resin) to produce polishing pads of Examples and Comparative Examples. .
  • the polishing layer A was used in Example 1 and Comparative Example 1
  • the polishing layer B was used in Example 2 and Comparative Example 2, and the same cushion layer was used for both.
  • the hollow microspheres used had median diameters shown in Table 1 (hollow microspheres before mixing with resin; Examples 1 and 2 were classified by dry air classification; Comparative Examples 1 and 2 were classified ) was used as a polishing pad.
  • the density (g/cm 3 ) of the polishing layer was measured according to Japanese Industrial Standards (JIS K 6505).
  • the D hardness of the polishing layer was measured using a D-type hardness tester according to Japanese Industrial Standards (JIS-K-6253).
  • the measurement sample was obtained by stacking a plurality of polishing layers as necessary so as to have a total thickness of at least 4.5 mm.
  • Open hole evaluation Regarding the polishing layer obtained by slicing, the pore size, the pore size, and the number of pore openings in the cross section of the polishing layer were examined.
  • the hole diameter, hole ratio, and number of holes were measured by magnifying an approximately 0.6 mm square area (excluding grooves) on the surface of the polishing layer by 400 times using a laser microscope (VK-X1000, manufactured by KEYENCE).
  • the obtained image was binarized by image processing software (WinROOF2018 Ver4.0.2, manufactured by Mitani Shoji Co., Ltd.) to confirm the pores.
  • the equivalent circle diameter and its average value were calculated from the area of each pore. It was expressed using an pore size histogram expressed as one class (for example, 20.0 ⁇ m or more, less than 21.0 ⁇ m, etc.) for each range of 1 ⁇ m.
  • the cutoff value (lower limit) of the aperture diameter was set to 5 ⁇ m, and noise components were excluded.
  • the results are shown in Table 1, Figures 3 and 4.
  • the aperture diameter is the average diameter of the apertures visible in the laser microscope image
  • the aperture ratio is the ratio of the aperture area per unit area (0.6 mm square).
  • the numbers indicate the number of openings per 0.6 mm square.
  • the number and area ratio of 25 ⁇ m or more indicate the number ratio and area ratio of all pores of 25 ⁇ m or more, respectively. The same applies to the number and area ratio of 30 ⁇ m or more.
  • Example 1 and Comparative Example 1 and the combination of Example 2 and Comparative Example 2 which use polishing layers of the same constituent resin, have almost the same physical properties such as density and D hardness.
  • Example 1 and 2 using hollow microspheres having a small median diameter before mixing with the resin the average pore size of the polishing layer was smaller than in Comparative Examples 1 and 2 (comparative Examples are larger than 14 ⁇ m, Example 1: 12.7 ⁇ m, Example 2: 12.0 ⁇ m), and the number ratio of pores of 25 ⁇ m or more is 5% or less (even though all comparative examples are larger than 10%)
  • Example 1: 2.83%, Example 2: 2.60%) ⁇ The area ratio is 20% or less (all comparative examples are greater than 20%, whereas Example 1: 12.7%, Example 2: 14.2%), the ratio of the number of openings of 30 ⁇ m or more is 3% or less (all comparative examples are greater than 3%, whereas Example 1: 1.01%, Example 2: 1.0%
  • Example 1 6.01%
  • Example 2 7.70%
  • the comparative examples are all larger than 10%
  • the pores are smaller and have a uniform size.
  • Examples 1 and 2 have a small distribution of large pore diameters (the total number of pores of 25 ⁇ m or more is 5% of the total number of pores in the cross section of the polishing layer).
  • the total number of pores of each grade of 25 ⁇ m or more is 5% or less of the total number of pores in the cross section of the polishing layer, and the total number of pores of each grade of 30 ⁇ m or more is the total number of pores of the cross section of the polishing layer. 3% or less with respect to the total number of pores).
  • polishing rate The polishing pad was set at a predetermined position of the polishing apparatus via a double-faced tape having an acrylic adhesive, and polishing was performed under the above polishing conditions.
  • the polishing rate (unit: angstrom) of the 15th, 25th, and 26th substrates to be polished, and for the oxide film substrates, to the 10th and 15th substrates The polishing rate (unit: angstrom) of the 25th, 50th, 60th, 75th, 90th, and 100th substrates was measured.
  • the result of polishing the metal film substrate is shown in FIG. 5(a), and the result of polishing the oxide film substrate is shown in FIG. 6(a).
  • the number of polished substrates is 27, 28, and 50.
  • the number of polished substrates is 10, 25, 37, 50, and 60. Defects with a size of 90 nm or more (surface defect) was detected.
  • the SEM image taken using the review SEM is analyzed, and the number of each from each classification of "Particles", “Pad Debris", and "Scratch” was measured.
  • the result of polishing the metal film substrate is shown in FIG. 5(b), and the result of polishing the oxide film substrate is shown in FIG. 6(b). It can be said that the smaller the number of defects such as "particles", “pad debris” and “scratches", the less the defects and the better.
  • Example 1 and Comparative Example 1 are shown for the polishing results of oxide film substrates, Example 2 and Comparative Example 2 exhibited the same tendency.
  • the polishing pads of Examples 1 and 2 exhibit similar physical properties to those of Comparative Examples 1 and 2. While the polishing rate is equivalent to that of the polishing pad, the number of defects is smaller than that of the comparative example. In particular, it can be seen that the "scratches" of metal film polishing and oxide film polishing, and "particles" and “pad scraps” of oxide film substrates are greatly reduced compared to the comparative example.
  • the present invention contributes to the manufacture and sale of polishing pads, and thus has industrial applicability.
  • Polishing platen Reference Signs List 1 Polishing device 3 Polishing pad 4 Polishing layer 4A Hollow microspheres 6 Cushion layer 7 Adhesive layer 8 Object to be polished 9 Slurry 10 Polishing platen

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

被研磨物を研磨加工するための研磨面を有する研磨層を備える研磨パッドであって、前記研磨層は、前記研磨層内に中空体を形成する中空微小球体を含み、前記研磨層の断面は、10~14μmの平均開孔径を有し、1μmの範囲を1階級として表される、前記研磨層の断面の開孔径ヒストグラムにおいて、25μm以上の開孔数の総和は、前記断面の全開孔数に対して5%以下であり、25μm以上の各階級の開孔面積の総和は、前記断面の合計開孔面積に対して、20%以下である、研磨パッド。

Description

研磨パッド及び研磨パッドの製造方法
 本発明は研磨パッドに関する。詳細には、本発明は、光学材料、半導体ウエハ、半導体デバイス、ハードディスク用基板等の研磨に好適に用いることができる研磨パッドに関する。
 光学材料、半導体ウエハ、半導体デバイス、ハードディスク用基板の表面を平坦化するための研磨法として、化学機械研磨(chemical mechanical polishing,CMP)法が一般的に用いられている。
 CMP法について、図1を用いて説明する。図1のように、CMP法を実施する研磨装置1には、研磨パッド3が備えられ、当該研磨パッド3は、保持定盤16に保持された被研磨物8に当接するとともに、研磨を行う層である研磨層4と研磨層4を支持するクッション層6を含む。研磨パッド3は、被研磨物8が押圧された状態で回転駆動され、被研磨物8を研磨する。その際、研磨パッド3と被研磨物8との間には、スラリー9が供給される。スラリー9は、水と各種化学成分や硬質の微細な砥粒の混合物(分散液)であり、その中の化学成分や砥粒が流されながら、被研磨物8との相対運動により、研磨効果を増大させるものである。スラリー9は溝又は孔を介して研磨面に供給され、排出される。
 ところで、半導体デバイスの研磨に用いられる研磨パッドは、通常、ポリウレタン等の合成樹脂から形成された研磨層を有し、この研磨層の内部には空隙が形成されている。この空隙は研磨層の表面で開孔しているため、研磨スラリーに含まれる砥粒が研磨中に保持されることにより、研磨対象物の研磨が進行する。このような空隙の形成方法としては、樹脂中に中空微小球体を混在させる方法が従来公知である。近年、より精密な研磨を実現するために中空微小球体の小径化や均一化の検討がなされている。
 特許文献1には、平均粒径が20μm以下の未膨張タイプの中空微小球体を含む高密度で研磨レートに優れる研磨パッドが開示されている。
 また、特許文献2には、中空微小球体などの固相発泡剤及び不活性ガスなどの気相発泡剤を用いることで広い孔分布を有し研磨性能を調整可能な研磨パッドが開示されている。
特開2019-069497号公報 特開2019-069507号公報
 しかしながら、特許文献1及び特許文献2に記載の研磨パッドは、研磨層の断面で測定される開孔径の分布において25μm以上の開孔の割合が多く、この開孔に研磨屑等が滞留してしまいディフェクト性能が十分ではない場合があった。
 本発明は、上記の問題点に鑑みてなされたものであり、良好な研磨レート及びディフェクト性能を両立可能とする研磨パッドを提供することを目的とする。
 本発明者は、鋭意研究の結果、所定の中空微小球体を用いることにより、良好な研磨レート及びディフェクト性能を両立する研磨パッドを見出した。すなわち、本発明は以下を包含する。
[1] 被研磨物を研磨加工するための研磨面を有する研磨層を備える研磨パッドであって、
 前記研磨層は、前記研磨層内に中空体を形成する中空微小球体を含み、
 前記研磨層の断面は、10~14μmの平均開孔径を有し、
 1μmの範囲を1階級として表される、前記研磨層の断面の開孔径ヒストグラムにおいて、
 25μm以上の開孔数の総和は、前記断面の全開孔数に対して5%以下であり、
 25μm以上の各階級の開孔面積の総和は、前記断面の合計開孔面積に対して、20%以下である、研磨パッド。
[2] 30μm以上の各階級の開孔数の総和は、前記研磨面の全開孔数に対して3%以下であり、30μm以上の各階級の開孔面積の総和は、前記研磨面の合計開孔面積に対して、10%以下である、[1]に記載の研磨パッド。
[3] 前記中空微小球体は、6μm以下のメジアン径(D50)を有する未膨張中空微小球体由来のものである、[1]又は[2]に記載の研磨パッド。
[4] 被研磨物を研磨加工するための研磨面を有する研磨層を備える研磨パッドの製造方法であって、
 前記研磨層は、前記研磨層内に中空体を形成する中空微小球体を含み、
 前記研磨層の断面は、10~14μmの平均開孔径を有し、
 1μmの範囲を1階級として表される、前記研磨層の断面の開孔径ヒストグラムにおいて、
 25μm以上の開孔数の総和は、前記断面の全開孔数に対して5%以下であり、
 25μm以上の各階級の開孔面積の総和は、前記断面の合計開孔面積に対して、20%以下であり、
 前記研磨層は、ウレタン結合含有ポリイソシアネート化合物と、硬化剤と、6μm以下のメジアン径(D50)を有する未膨張中空微小球体とを混合し、反応させることにより形成する、製造方法。
[5] 前記反応は、140℃の温度を超えないように温度制御下で実施する、[4]に記載の製造方法。
[6] 研磨パッドと砥粒とを用いて、被研磨物を研磨する研磨方法であって、
 前記研磨パッドは、被研磨物を研磨加工するための研磨面を有する研磨層を備え、
 前記研磨層は、前記研磨層内に中空体を形成する中空微小球体を含み、
 前記研磨層の断面は、10~14μmの平均開孔径を有し、
 1μmの範囲を1階級として表される、前記研磨層の断面の開孔径ヒストグラムにおいて、
 25μm以上の開孔数の総和は、前記断面の全開孔数に対して5%以下であり、
 25μm以上の各階級の開孔面積の総和は、前記断面の合計開孔面積に対して、20%以下であり、
 前記砥粒は、0.01~0.2μmの直径を有し、
 前記砥粒の存在下で、前記研磨パッドの研磨面に前記被研磨物を接触させ、前記研磨パッド及び研磨被研磨物のいずれか一方又は両方を回転させることにより、研磨を実施する、研磨方法。
 所定の中空微小球体を含む研磨層を備える研磨パッドは、良好な研磨レートをもたらし、かつ、優れたディフェクト性能を有する。
図1は、研磨装置1の斜視図である。 図2は、研磨パッドの断面図である。 図3は、実施例1及び比較例1の研磨パッドの研磨層の拡大写真と、開孔径ヒストグラムである。 図4は、実施例2及び比較例2の研磨パッドの研磨層の拡大写真と、開孔径ヒストグラムである。 図5aは、実施例1、2及び比較例1、2の研磨パッドを用いて金属銅膜を研磨したときの研磨レートの変化を示す。 図5bは、実施例1、2及び比較例1、2を用いて金属銅膜を研磨したときのディフェクト数である。 図6aは、実施例1、2及び比較例1、2の研磨パッドを用いて酸化珪素膜を研磨したときの研磨レートの変化を示す。 図6bは、実施例1、2及び比較例1、2を用いて酸化珪素膜を研磨したときのディフェクト数である。
 以下、発明を実施するための形態について説明するが、本発明は、発明を実施するための形態に限定されるものではない。
<<研磨パッド>>
 本発明の研磨パッドは、良好な研磨レートをもたらし、かつ、優れたディフェクト性能を有する。本明細書において、「パーティクル(Particle)」とは、被研磨物の表面に付着した、研磨スラリー等に含まれる細かい粒子が残留したものを意味し、「パッド屑(Pad Debris)」とは、被研磨物の表面に付着した、研磨工程中に研磨パッドにおける研磨層の表面が摩耗して発生する研磨層の屑を意味し、「スクラッチ(Scratch)」とは、被研磨物の表面についた傷を意味する。本明細書において、「ディフェクト」とは、上述のパーティクル、パッド屑、スクラッチ等を含めた欠陥の総称のことをいう。
 研磨パッド3の構造について図2(a)を用いて説明する。研磨パッド3は、図2(a)のように、研磨層4と、クッション層6とを含む。研磨パッド3の形状は円盤状が好ましいが、特に限定されるものではなく、また、大きさ(径)も、研磨パッド3を備える研磨装置1のサイズ等に応じて適宜決定することができ、例えば、直径10cm~2m程度とすることができる。
 なお、本発明の研磨パッド3は、好ましくは図2(a)に示すように、研磨層4がクッション層6に接着層7を介して接着されている。
 研磨パッド3は、クッション層6に配設された両面テープ等によって研磨装置1の研磨定盤10に貼付される。研磨パッド3は、研磨装置1によって被研磨物8を押圧した状態で回転駆動され、被研磨物8を研磨する(図1参照)。
<研磨層>
(構成)
 研磨パッド3は、被研磨物8を研磨するための層である研磨層4を備える。研磨層4を構成する材料は、ポリウレタン樹脂、ポリウレア樹脂、及びポリウレタンポリウレア樹脂を好適に用いることができ、より好ましくはポリウレタン樹脂を用いることができる。
 研磨層4の大きさ(径)は、研磨パッド3と同様であり、直径10cm~2m程度とすることができ、研磨層4の厚みは、通常1~5mm程度とすることができる。
 研磨層4は、研磨装置1の研磨定盤10と共に回転され、その上にスラリー9を流しながら、スラリー9の中に含まれる化学成分や砥粒を、被研磨物8と一緒に相対運動させることにより、被研磨物8を研磨する。
 研磨層4は、中空微小球体4Aが分散されている。中空微小球体4Aが分散されていることにより、研磨層4が摩耗されると中空微小球体4Aが研磨面に露出され研磨面に微少な空隙が生じる。この微少な空隙がスラリーを保持することで被研磨物8の研磨をより進行させることができる。
 研磨層4は、後述する中空微小球体4Aを含むウレタン結合含有ポリイソシアネート化合物(プレポリマー)と、硬化剤(鎖伸長剤)とを混合した混合液を注型し硬化させたウレタン樹脂発泡体をスライスすることで形成されている。すなわち、研磨層4は、乾式成型されている。
(中空微小球体)
 本発明の研磨パッドにおける研磨層4に含有される中空微小球体4Aは、研磨層4の研磨面又は研磨層4の断面に中空体として確認できる。研磨層4に含有される中空微小球体4Aは、通常、2~200μmの直径(または開口径)を有する。中空微小球体4Aの形状は、球状、楕円状、及びこれらに近い形状のものが挙げられる
 本発明の研磨層4は、中空微小球体により形成される断面又は研磨面の開孔の平均開孔径は、10~14μmである。平均開孔径がこの数値範囲であることで、スラリー(又はスラリー中に含まれる砥粒)を適切に保持することができ、良好な研磨レートを達成することができる。平均開孔径を10μm未満とするのは、特殊な中空微小球体を用いたり、製造や取扱いが難しいという問題があり、コストがかかってしまい現実的ではない。また、14μmより大きい場合はディフェクトの原因となる可能性がある。
 さらに、本発明の研磨パッドの研磨層4の断面又は研磨面の開孔は、特定の開孔径分布を有する。
 開孔径分布を表すために、本明細書では、1μmの範囲ごとに1階級として表される開孔径ヒストグラムを用いる。本明細書において、測定された開孔径の1μmごとに区切った範囲(例示すると、20.0μm以上、21・0μm未満など)を階級とする。
 本発明では、25μm以上の開孔数の総和は、研磨層の断面の全開孔数に対して5%以下である。25μm以上の開孔数の総和は、断面の全開孔数に対して5%以下であれば、25μm以上の開孔が少ない上、開口数の偏りがないため、これが良好なディフェクト性能に影響すると考えられる。また、好ましくは、25μm以上の各階級の開孔数の総和は、研磨層の断面の全開孔数に対して5%以下である。25μm以上の各階級の開孔数の総和とは、言い換えると、25μm以上、26μm未満の開孔数の総和は、研磨層の断面の全開孔数に対して5%以下であり、また、26μm以上、27μm未満の開孔数の総和も、研磨層の断面の全開孔数に対して5%以下であることを示し、さらに27μm以上の各階級についても同様のことが言える開孔数であることを示す。なお、30μm以上の各階級の開孔数の総和は、断面の全開孔数に対して3%以下であることが好ましい。
 また、本発明では、25μm以上の各階級の開孔面積の総和は、断面の合計開孔面積に対して、20%以下である。25μm以上の各階級の開孔面積の総和は、断面の合計開孔面積に対して、20%以下であると、研磨屑等を開孔中に保持する可能性が低くなるため、これも良好なディフェクト性能に影響すると考えられる。なお、より研磨屑等を保持する可能性が高くなる30μm以上の開孔について、30μm以上の各階級の開孔面積の総和は、断面の合計開孔面積に対して、10%以下であることが好ましい。
 中空微小球体4Aは、市販のバルーンを用いることができ、既膨張タイプのもの、及び、未膨張タイプのものが使用可能である。未膨張タイプのものは、加熱膨張性微小球状体であり、熱により加熱膨張させることができる。
 本発明では、研磨層4を形成するウレタン結合含有ポリイソシアネート化合物(プレポリマー)及び硬化剤を混合させるときに、未膨張中空微小球体を一緒に混合させることが好ましい。未膨張中空微小球体を用いることにより、中空微小球体4Aの直径(開孔径)を小さくすることができる。
 なお、未膨張中空微小球体を用いる場合は、未膨張中空微小球体を含有させた後にプレポリマーと硬化剤との反応を実施するため、反応熱により、未膨張状態よりも直径が大きくなる傾向にあり、また、温度によっては想定より直径が大きくなる場合がある。それを抑制するために、反応温度を高くなりすぎないように制御し、所定の温度以上にならないようにすることが好ましい。反応温度は、未膨張中空微小球体に含まれるガス成分に依存するが、好ましくは、140℃以下であることが好ましく、100℃以下であることがさらに好ましい。
(溝加工)
 本発明の研磨層4の被研磨物8側の表面には、溝加工を設けることができる。溝は、特に限定されるものではなく、研磨層4の周囲に連通しているスラリー排出溝、及び研磨層4の周囲に連通していないスラリー保持溝のいずれでもよく、また、スラリー排出溝とスラリー保持溝の両方を有してもよい。スラリー排出溝としては、格子状溝、放射状溝などが挙げられ、スラリー保持溝としては、同心円状溝、パーフォレーション(貫通孔)などが挙げられ、これらを組み合わせることもできる。
<クッション層>
(構成)
 本発明の研磨パッド3は、クッション層6を有する。クッション層6は、研磨層4の被研磨物8への当接をより均一にすることが望ましい。クッション層6の材料としては、樹脂を含浸させた含浸不織布、合成樹脂やゴム等の可撓性を有する材料、気泡構造を有する発泡体等のいずれから構成されていてもよい。例えば、ポリウレタン、ポリエチレン、ポリブタジエン、シリコーン等の樹脂や天然ゴム、ニトリルゴム、ポリウレタンゴム等のゴムなどが挙げられる。密度及び圧縮弾性率の調整の観点で、含浸不織布が好ましく、不織布に含浸させる材料にポリウレタンを用いることが好ましい。
 また、クッション層6は、スポンジ状の微細気泡を有するポリウレタン樹脂製のものも好ましく用いられる。
 本発明の研磨パッド3におけるクッション層6の圧縮弾性率、密度、気泡は特に限定されるものではなく、公知の特性値を有するクッション層6を用いることができる。
<接着層>
 接着層7は、クッション層6と研磨層4を接着させるための層であり、通常、両面テープ又は接着剤から構成される。両面テープ又は接着剤は、当技術分野において公知のもの(例えば、接着シート)を使用することができる。
 研磨層4およびクッション層6は、接着層7で貼り合わされている。接着層7は、例えば、アクリル系、エポキシ系、ウレタン系から選択される少なくとも1種の粘着剤で形成することができる。例えば、アクリル系粘着剤が用いられ、厚みが0.1mmに設定することができる。
<<研磨パッドの製造方法>>
 本発明の研磨パッド3の製造方法について説明する。
<研磨層の材料>
 研磨層4の材料としては、特に限定されるものではないが、主成分としてはポリウレタン樹脂、ポリウレア樹脂、及びポリウレタンポリウレア樹脂が好ましく、ポリウレタン樹脂がより好ましい。具体的な主成分の材料としては、例えば、ウレタン結合含有ポリイソシアネート化合物(プレポリマー)と硬化剤とを反応させて得られる材料を挙げることができる。
 以下、研磨層4の材料の製造方法については、ウレタン結合含有イソシアネート化合物と硬化剤を用いた例を用いて説明する。
 ウレタン結合含有ポリイソシアネート化合物と硬化剤とを用いた研磨層4の製造方法としては、例えば、少なくともウレタン結合含有ポリイソシアネート化合物、添加剤、硬化剤を準備する材料準備工程;少なくとも、ウレタン結合含有ポリイソシアネート化合物、添加剤、硬化剤を混合して成形体成形用の混合液を得る混合工程;前記成形体成形用混合液から研磨層を成形する硬化工程、を含む製造方法が挙げられる。
 以下、材料準備工程、混合工程、成形工程に分けて、それぞれ説明する。
<材料準備工程>
 本発明の研磨層4の製造のために、ポリウレタン樹脂成形体(硬化樹脂)の原料として、ウレタン結合含有ポリイソシアネート化合物、硬化剤を準備する。ここで、ウレタン結合含有ポリイソシアネートは、ポリウレタン樹脂成形体を形成するための、プレポリマー(ウレタンプレポリマー)である。研磨層4をポリウレア樹脂成型体やポリウレタンポリウレア樹脂成形体にする場合は、それに応じたプレポリマーを用いる。
 以下、各成分について説明する。
(ウレタン結合含有ポリイソシアネート化合物)
 ウレタン結合含有ポリイソシアネート化合物(ウレタンプレポリマー)は、下記ポリイソシアネート化合物とポリオール化合物とを、通常用いられる条件で反応させることにより得られる化合物であり、ウレタン結合とイソシアネート基を分子内に含むものである。また、本発明の効果を損なわない範囲内で、他の成分がウレタン結合含有ポリイソシアネート化合物に含まれていてもよい。
 ウレタン結合含有ポリイソシアネート化合物としては、市販されているものを用いてもよく、ポリイソシアネート化合物とポリオール化合物とを反応させて合成したものを用いてもよい。前記反応に特に制限はなく、ポリウレタン樹脂の製造において公知の方法及び条件を用いて付加重合反応すればよい。例えば、40℃に加温したポリオール化合物に、窒素雰囲気にて撹拌しながら50℃に加温したポリイソシアネート化合物を添加し、30分後に80℃まで昇温させ更に80℃にて60分間反応させるといった方法で製造することができる。
(ポリイソシアネート化合物)
 本明細書において、ポリイソシアネート化合物とは、分子内に2つ以上のイソシアネート基を有する化合物を意味する。
 ポリイソシアネート化合物としては、分子内に2つ以上のイソシアネート基を有していれば特に制限されるものではない。例えば、分子内に2つのイソシアネート基を有するジイソシアネート化合物としては、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート(2,6-TDI)、2,4-トリレンジイソシアネート(2,4-TDI)、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネー卜(MDI)、4,4’-メチレン-ビス(シクロヘキシルイソシアネート)(水添MDI)、3,3’-ジメトキシ-4,4’-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1、4-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、p-フェニレンジイソチオシアネート、キシリレン-1,4-ジイソチオシアネート、エチリジンジイソチオシアネート等を挙げることができる。これらのポリイソシアネート化合物は、単独で用いてもよく、複数のポリイソシアネート化合物を組み合わせて用いてもよい。
 ポリイソシアネート化合物としては、2,4-TDI及び/又は2,6-TDIを含むことが好ましい。
(プレポリマーの原料としてのポリオール化合物)
 本明細書において、ポリオール化合物とは、分子内に2つ以上の水酸基(OH)を有する化合物を意味する。
 プレポリマーとしてのウレタン結合含有ポリイソシアネート化合物の合成に用いられるポリオール化合物としては、例えば、エチレングリコール、ジエチレングリコール(DEG)、ブチレングリコール等のジオール化合物、トリオール化合物等;ポリ(オキシテトラメチレン)グリコール(又はポリテトラメチレンエーテルグリコール)(PTMG)等のポリエーテルポリオール化合物を挙げることができる。これらの中でも、PTMGが好ましい。PTMGの数平均分子量(Mn)は、500~2000であることが好ましく、600~1300であることがより好ましく、650~1000であることがさらにより好ましい。
 数平均分子量は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)により測定することができる。なお、ポリウレタン樹脂からポリオール化合物の数平均分子量を測定する場合は、アミン分解等の常法により各成分を分解した後、GPCによって推定することもできる。
 上記ポリオール化合物は単独で用いてもよく、複数のポリオール化合物を組み合わせて用いてもよい。
(添加剤)
 上記したように、研磨層4の材料として、酸化剤等の添加剤を必要に応じて添加することができる。
(硬化剤)
 本発明の研磨層4の製造方法では、混合工程において硬化剤(鎖伸長剤ともいう)をウレタン結合含有ポリイソシアネート化合物などと混合させる。硬化剤を加えることにより、その後の成形体成形工程において、ウレタン結合含有ポリイソシアネート化合物の主鎖末端が硬化剤と結合してポリマー鎖を形成し、硬化する。
 硬化剤としては、例えば、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(MOCA)、4-メチル-2,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2-メチル-4,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス[3-(イソプロピルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス[3-(1-メチルプロピルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス[3-(1-メチルペンチルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス(3,5-ジアミノ-4-ヒドロキシフェニル)プロパン、2,6-ジアミノ-4-メチルフェノール、トリメチルエチレンビス-4-アミノベンゾネート、及びポリテトラメチレンオキサイド-di-p-アミノベンゾネート等の多価アミン化合物;エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、テトラエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,2-ブタンジオール、3-メチル-1,2-ブタンジオール、1,2-ペンタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、2,3-ジメチルトリメチレングリコール、テトラメチレングリコール、3-メチル-4,3-ペンタンジオール、3-メチル-4,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,4-ヘキサンジオール、2,5-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、トリメチロールエタン、トリメチロールメタン、ポリ(オキシテトラメチレン)グリコール、ポリエチレングリコール、及びポリプロピレングリコール等の多価アルコール化合物が挙げられる。また、多価アミン化合物が水酸基を有していてもよく、このようなアミン系化合物として、例えば、2-ヒドロキシエチルエチレンジアミン、2-ヒドロキシエチルプロピレンジアミン、ジ-2-ヒドロキシエチルエチレンジアミン、ジ-2-ヒドロキシエチルプロピレンジアミン、2-ヒドロキシプロピルエチレンジアミン、ジ-2-ヒドロキシプロピルエチレンジアミン等を挙げることができる。多価アミン化合物としては、ジアミン化合物が好ましく、例えば、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン(メチレンビス-o-クロロアニリン)(以下、MOCAと略記する。)を用いることがさらに好ましい。
 研磨層4は、外殻を有し、内部が中空状である中空微小球体4Aを含む。上記したように、中空微小球体4Aの材料としては、市販のものを使用することができる。あるいは、常法により合成することにより得られたものを使用してもよい。中空微小球体4Aの外殻の材質としては、特に制限されないが、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリル酸、ポリアクリルアミド、ポリエチレングリコール、ポリヒドロキシエーテルアクリライト、マレイン酸共重合体、ポリエチレンオキシド、ポリウレタン、ポリ(メタ)アクリロニトリル、ポリ塩化ビニリデン、ポリ塩化ビニル及び有機シリコーン系樹脂、並びにそれらの樹脂を構成する単量体を2種以上組み合わせた共重合体が挙げられる。また、市販品の中空微小球体としては、以下に限定されないが、例えば、エクスパンセルシリーズ(アクゾ・ノーベル社製商品名)、マツモトマイクロスフェア(松本油脂(株)社製商品名)などが挙げられる。
 中空微小球体4Aの形状は特に限定されず、例えば、球状及び略球状であってもよい。なお、上記したように、原料としては、未膨張中空微小球体を用いることが好ましい。
 樹脂に混合する前の中空微小球体の大きさによって、反応によって得られる研磨層4において、適切な開孔に揃えることができる。特に、未膨張タイプの中空微小球体は、既膨張タイプの中空微小球体に比べて小さいため好ましい。使用する前の未膨張タイプの中空微小球体は、平均径として、好ましくは2~20μm、より好ましくは5~10μmのものを用いることが好ましい。さらに好ましくは、中空微小球体の累積分布が50%となるメジアン径(D50)が6μm以下のものを用いることが好ましい。なお、平均粒径・メジアン径は、レーザー回折式粒度分布測定装置(例えばスペクトリス(株)製、マスターサイザ-2000)により測定することができる。
 また、具体的な市販の中空微小球体を用いる場合、当該中空微小球体を分級することによって、所望の範囲の大きさの揃った中空微小球体にすることができる。
 分級する方法としては、本発明は特に限定されるものではないが、篩、遠心分離風力分級、乾式気流分級などにより実施することができる。
 中空微小球体4Aの材料は、ウレタンプレポリマー100質量部に対して、好ましくは0.1~10質量部、より好ましくは1~7質量部、さらにより好ましくは1~5質量部となるように添加する。
 また、上記の成分以外に、本発明の効果を損なわない範囲において、従来使用されている発泡剤を、中空微小球体4Aと併用してもよく、下記混合工程中に前記各成分に対して非反応性の気体を吹き込んでもよい。該発泡剤としては、水の他、炭素数5又は6の炭化水素を主成分とする発泡剤が挙げられる。該炭化水素としては、例えば、n-ペンタン、n-ヘキサンなどの鎖状炭化水素や、シクロペンタン、シクロヘキサンなどの脂環式炭化水素が挙げられる。
<混合工程>
 混合工程では、前記準備工程で得られた、ウレタン結合含有ポリイソシアネート化合物(ウレタンプレポリマー)、添加剤、硬化剤、中空微小球体を混合機内に供給して攪拌・混合する。混合工程は、上記各成分の流動性を確保できる温度に加温した状態で行われるが、加熱しすぎると、中空微小球体が、膨張してしまい、所定の開孔分布を有さなくなってしまうため、注意が必要である。
<成形工程>
 成形体成形工程では、前記混合工程で調製された成形体成形用混合液を30~100℃に予熱した棒状の型枠内に流し込み一次硬化させた後、100~150℃程度で10分~5時間程度加熱して二次硬化させることにより硬化したポリウレタン樹脂(ポリウレタン樹脂成形体)を成形する。このとき、ウレタンプレポリマー、硬化剤が反応してポリウレタン樹脂を形成することにより該混合液は硬化する。
 ウレタンプレポリマーは、粘度が高すぎると、流動性が悪くなり混合時に略均一に混合することが難しくなる。温度を上昇させて粘度を低くするとポットライフが短くなり、却って混合斑が生じて得られる発泡体に含まれる中空微小球体の大きさにバラツキが生じる。特に、反応温度が高すぎると、未膨張タイプの中空微小球体を用いた場合、必要以上に膨張してしまい、所望の開孔を得られなくなる。反対に粘度が低すぎると混合液中で気泡が移動してしまい、中空微小球体が略均等に分散した発泡体を得ることが難しくなる。このため、プレポリマーは、温度50~80℃における粘度を500~4000mPa・sの範囲に設定することが好ましい。このことは、例えば、プレポリマーの分子量(重合度)を変えることで粘度を設定することができる。プレポリマーは、50~80℃程度に加熱され流動可能な状態とされる。
 成形工程では、必要により注型された混合液を型枠内で反応させ発泡体を形成させる。このとき、プレポリマーと硬化剤との反応によりプレポリマーが架橋硬化する。
 成形体を得た後、シート状にスライスして複数枚の研磨層4を形成する。スライスには、一般的なスライス機を使用することができる。スライス時には成形体の下層部分を保持し、上層部から順に所定厚さにスライスされる。スライスする厚さは、例えば、1.3~2.5mmの範囲に設定されている。厚さが50mmの型枠で成型した発泡体では、例えば、発泡体の上層部および下層部の約10mm分をキズ等の関係から使用せず、中央部の約30mm分から10~25枚の研磨層4が形成される。硬化成型ステップで内部に中空微小球体4Aが略均等に形成された発泡体が得られる。
 得られた研磨層4の研磨面に、必要により溝加工を施してもよい。本発明においては、溝加工の方法及びその形状は特に限定されない。
 このようにして得られた研磨層4は、その後、研磨層4の研磨面とは反対側の面に両面テープが貼り付けられる。両面テープに特に制限はなく、当技術分野において公知の両面テープの中から任意に選択して使用することが出来る。
<クッション層6の製造方法>
 クッション層6は、樹脂を含浸してなる含浸不織布で構成することが好ましい。含浸不織布の材料の樹脂としては、好ましくは、ポリウレタン及びポリウレタンポリウレア等のポリウレタン系、ポリアクリレート及びポリアクリロニトリル等のアクリル系、ポリ塩化ビニル、ポリ酢酸ビニル及びポリフッ化ビニリデン等のビニル系、ポリサルホン及びポリエーテルサルホン等のポリサルホン系、アセチル化セルロース及びブチリル化セルロース等のアシル化セルロース系、ポリアミド系並びにポリスチレン系などが挙げられる。不織布の密度は、樹脂含浸前の状態(ウェッブの状態)で、好ましくは0.3g/cm以下であり、より好ましくは0.1~0.2g/cmである。また、樹脂含浸後の不織布の密度は、好ましくは0.7g/cm以下であり、より好ましくは0.25~0.5g/cmである。樹脂含浸前及び樹脂含浸後の不織布の密度が上記上限以下であることにより、加工精度が向上する。また、樹脂含浸前及び樹脂含浸後の不織布の密度が上記下限以上であることにより、基材層に研磨スラリーが浸透することを低減することができる。不織布に対する樹脂の付着率は、不織布の重量に対する付着させた樹脂の重量で表され、好ましくは50重量%以上であり、より好ましくは75~200重量%である。不織布に対する樹脂の付着率が上記上限以下であることにより、所望のクッション性を有することができる。
<接合工程>
 接合工程では、形成された研磨層4およびクッション層6を接着層7で貼り合わせる(接合する)。接着層7には、例えば、アクリル系粘着剤を用い、厚さが0.1mmとなるように接着層7を形成する。すなわち、研磨層4の研磨面と反対側の面にアクリル系粘着剤を略均一の厚さに塗布する。研磨層4の研磨面Pと反対側の面と、クッション層6の表面と、を塗布された粘着剤を介して圧接させて、研磨層4およびクッション層6を接着層7で貼り合わせる。そして、円形等の所望の形状に裁断した後、汚れや異物等の付着が無いことを確認する等の検査を行い、研磨パッド3を完成させる。
<<研磨>>
 上記の所定の中空微小球体を含む研磨層を備える研磨パッドは、良好な研磨レートをもたらし、かつ、優れたディフェクト性能を有する。本発明の研磨パッドが利用可能な被研磨物は、特に限定されるものではなく、金属、酸化物など様々な被研磨物に利用できる。好ましくは、金属銅、珪素酸化物などが挙げられる。
 研磨をするときの研磨機の設定(研磨定盤回転数、圧力、時間等)は特に限定されるものではなく、被研磨物の状況やその他の環境等により適宜変更できるものである。
 また、研磨の際には、スラリーを用いるが、本発明では砥粒を含むものを用いてもよい。砥粒の種類は特に制限されるものではなく、酸化セリウム、酸化ジルコニウム、珪酸ジルコニウム、立方晶窒化ホウ素(CBN)、酸化第二鉄、酸化マンガン、酸化クロム、二酸化ケイ素、アルミナ、炭酸バリウム、酸化マグネシウム、炭酸カルシウム、炭酸バリウム、酸化マグネシウム、雲母などが挙げられる。また、本発明の研磨パッドは断面に特定の開孔(すなわち、研磨面に特定の開孔)を有しているため、砥粒は0.01~0.2μmの直径を有することが好ましい。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
 各実施例及び比較例において、特段の指定のない限り、「部」とは「質量部」を意味するものとする。
 また、NCO当量とは、“(ポリイソシアネート化合物の質量(部)+ポリオール化合物の質量(部))/[(ポリイソシアネート化合物1分子当たりの官能基数×ポリイソシアネート化合物の質量(部)/ポリイソシアネート化合物の分子量)-(ポリオール化合物1分子当たりの官能基数×ポリオール化合物の質量(部)/ポリオール化合物の分子量)]”で求められるNCO基1個当たりのプレポリマー(PP)の分子量を示す数値である。
(研磨層Aの製造)
 2,4-トリレンジイソシアネート(TDI)、ポリ(オキシテトラメチレン)グリコール(PTMG)及びジエチレングリコール(DEG)を反応させてなるNCO当量460のイソシアネート基末端ウレタンプレポリマー(ウレタン結合含有ポリイソシアネート化合物)100部に、殻部分がアクリロニトリル-塩化ビニリデン共重合体からなり、殻内にイソブタンガスが内包された未膨張タイプの中空微小球体4.5部を添加混合し、混合液を得た。得られた混合液を第1液タンクに仕込み、保温した。次に、第1液とは別途に、硬化剤としてMOCA26.1部を第2液タンクに仕込み、第2液タンク内で保温した。第1液タンク、第2液タンクの夫々の液体を、注入口を2つ具備した混合機に夫々の注入口からプレポリマー中の末端イソシアネート基に対する硬化剤に存在するアミノ基及び水酸基の当量比を表わすR値が0.90となるように注入した。注入した2液を混合攪拌しながら80℃に予熱した成形機の金型へ注入した後、型締めをし、30分間、加熱し一次硬化させた。一次硬化させた成形物を脱型後、オーブンにて120℃で4時間二次硬化し、ウレタン成形物を得た。得られたウレタン成形物を25℃まで放冷した後に、再度オーブンにて120℃で5時間加熱してから1.3mmの厚みにスライスし、研磨層Aを得た。なお、比較するため2種類の中空微小球体を用いて、2種類の研磨層Aを得た。
(研磨層Bの製造)
 研磨層Aの製造で用いた第1液の混合液をNCO当量420のイソシアネート基末端ウレタンプレポリマー(ウレタン結合含有ポリイソシアネート化合物)100部とし、研磨層Aの製造で用いた第2液をMOCA28.8部とした以外は、研磨層Aと同様の方法で作製し、研磨層Bを得た。なお、比較するため2種類の中空微小球体を用いたため、2種類の研磨層Bを得た。
(クッション層の製造)
 ポリエステル繊維からなる不織布をウレタン樹脂溶液(DIC社製、商品名「C1367」)に浸漬した。浸漬後、1対のローラ間を加圧可能なマングルローラを用いて樹脂溶液を絞り落として、不織布に樹脂溶液を略均一に含浸させた。次いで、室温の水からなる凝固液中に浸漬することにより、含浸樹脂を凝固再生させて樹脂含浸不織布を得た。その後、樹脂含浸不織布を凝固液から取り出し、さらに水からなる洗浄液に浸漬して、樹脂中のN,N-ジメチルホルムアミド(DMF)を除去した後、乾燥させた。乾燥後、バフィング処理により表面のスキン層を除去し厚み1.3mmのクッション層を作製した。
(実施例及び比較例)
 研磨層A、Bおよびクッション層を厚さ0.1mmの両面テープ(PET基材の両面にアクリル系樹脂からなる接着層を備えるもの)で接合し、実施例及び比較例の研磨パッドを製造した。実施例1及び比較例1は研磨層Aを、実施例2及び比較例2は研磨層Bを用い、クッション層はいずれも同一のクッション層を用いた。また、使用した中空微小球体はそれぞれ表1に示すメジアン径を示すもの(樹脂と混合する前の中空微小球体、実施例1及び2は乾式気流分級により分級したもの、比較例1及び2は分級していないもの)を用いて研磨パッドとした。
(密度)
 研磨層の密度(g/cm)は、日本工業規格(JIS K 6505)に準拠して測定した。
(D硬度)
 研磨層のD硬度は、日本工業規格(JIS-K-6253)に準拠して、D型硬度計を用いて測定した。ここで、測定試料は、少なくとも総厚さ4.5mm以上になるように、必要に応じて複数枚の研磨層を重ねることで得た。
(開孔評価)
 スライスして得られた研磨層について、研磨層断面の開孔の開孔径、開孔率、開孔数を調べた。開孔径、開孔率、開孔数については、レーザーマイクロスコープ(VK-X1000、KEYENCE製)で研磨層の表面の約0.6mm四方の範囲(溝の部分を除く)を400倍に拡大して観察し、得られた画像を画像処理ソフト(WinROOF2018 Ver4.0.2、三谷商事製)により二値化処理して開孔を確認した。また、各々の開孔の面積から円相当径及びその平均値(平均開孔径)を算出した。1μmの範囲ごとに1階級(例示すると、20.0μm以上、21・0μm未満など)として表される開孔径ヒストグラムを用いて表した。なお、開孔径のカットオフ値(下限)を5μmとし、ノイズ成分を除外した。結果を表1、図3及び図4に示す。なお、開孔径はレーザーマイクロスコープ画像における見える開孔の直径の平均値であり、開孔率は、単位面積(0.6ミリメートル四方)当たりの開孔している面積の割合であり、開孔数は、0.6ミリメートル四方あたりの開孔の個数を示す。また、25μm以上の個数・面積割合は、それぞれ25μm以上の開孔の全開孔における個数割合・開孔面積割合を示す。30μm以上の個数・面積割合についても同様である。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、同じ構成樹脂の研磨層を用いている実施例1、比較例1の組み合わせと、実施例2、比較例2の組み合わせは、それぞれ密度やD硬度などの物性はほぼ同一であるのに対し、樹脂混合前のメジアン径が小さい中空微小球体を用いた実施例1および実施例2は、比較例1および比較例2に対して、研磨層の平均開孔径が小さく(比較例が14μmより大きいのに対し、実施例1:12.7μm、実施例2:12.0μm)、25μm以上の開孔の個数割合が5%以下(比較例がいずれも10%より大きいのに対し、実施例1:2.83%、実施例2:2.60%)・面積割合が20%以下(比較例がいずれも20%より大きいのに対し、実施例1:12.7%、実施例2:14.2%)、30μ以上の開孔個数割合が3%以下(比較例がいずれも3%より大きいのに対し、実施例1:1.01%、実施例2:1.00%)・面積割合が10%以下(比較例がいずれも10%より大きいのに対し、実施例1:6.01%、実施例2:7.70%)と小さな値となっている。
 また、図3および図4の断面写真からも分かるように、実施例1および2は、比較例1および2に対して、開孔が小さく・均一な大きさとなっている。さらに図3および図4のヒストグラムからは、実施例1および実施例2は、大きな開孔径の分布が少ない(25μm以上の開孔数の総和は研磨層の断面の全開孔数に対して5%以下であり、かつ25μm以上の各階級の開孔数の総和は研磨層の断面の全開孔数に対して5%以下、かつ30μm以上の各階級の開孔数の総和は研磨層の断面の全開孔数に対して3%以下)ことが分かる。
(研磨性能評価)
 得られた実施例1、2及び比較例1、2の研磨パッドを用いて、下記研磨条件について、金属膜基板および酸化膜基板及の研磨を実施した。
(研磨条件)
使用研磨機:F-REX300X(荏原製作所社製)
Disk:B25(3M社製)およびA188(3M社製)
研磨剤温度:20℃
研磨定盤回転数:85rpm
研磨ヘッド回転数:86rpm
研磨圧力:3.5psi
研磨スラリー(金属膜):CSL-9044C(CSL-9044C原液:純水=重量比1:1の混合液を使用)(フジミコーポレーション製) 
研磨スラリー(酸化膜):PL6115(PL6115原液:純水=重量比1:1の混合液を使用)
研磨スラリー流量:200ml/min
研磨時間:60秒
被研磨物(金属膜):Cu膜基板
被研磨物(酸化膜):TEOS(Tetra Ethyl Ortho Silicate)付きシリコンウエハ
パッドブレーク:35N 10分
コンディショニング:Ex-situ、35N、4スキャン
(研磨レート)
 研磨パッドを、研磨装置の所定位置にアクリル系接着剤を有する両面テープを介して設置し、上記研磨条件にて研磨加工を施した。そして、金属膜基板については研磨処理枚数が15枚目・25枚目・26枚目の基板の研磨レート(単位:オングストローム)を、酸化膜基板については研磨処理枚数が10枚目・15枚目・25枚目・50枚目・60枚目・75枚目・90枚目・100枚目の基板の研磨レート(単位:オングストローム)をそれぞれ測定した。金属膜基板の研磨結果を図5(a)に、酸化膜基板の研磨結果を図6(a)にそれぞれ示す。
(ディフェクト)
 金属膜基板については研磨処理枚数が27枚目・28枚目・50枚目の基板を、酸化膜基板については研磨処理枚数が10枚目・25枚目・37枚目・50枚目・60枚目・75枚目・90枚目・100枚目の基板を、それぞれ表面検査装置(KLAテンコール社製、Surfscan SP2XP)の高感度測定モードを用いて、大きさが90nm以上となるディフェクト(表面欠陥)を検出した。検出された各ディフェクトについて、レビューSEMを用いて撮影したSEM画像の解析を行い、「パーティクル(Particles)」・「パッド屑(Pad Debris)」・「スクラッチ(Scratch)」の各分類からそれぞれの個数を計測した。金属膜基板の研磨結果を図5(b)に、酸化膜基板の研磨結果を図6(b)にそれぞれ示す。
 「パーティクル」・「パッド屑」・「スクラッチ」の各ディフェクトの数が少なければ少ない程、ディフェクトが少なく良好であるといえる。金属膜基板の研磨結果では、実施例・比較例間で「パーティクル」「パッド屑」に関しては差が見られなかったので、「スクラッチ」の個数を示している。また、酸化膜基板の研磨結果では、実施例1と比較例1の結果のみ示しているが、実施例2及び比較例2も同様の傾向であった。
 図5および図6に示す研磨結果から分かるように、金属膜研磨および酸化膜研磨のいずれにおいても、実施例1および実施例2の研磨パッドは同様の物性を示す比較例1および比較例2の研磨パッドと同等の研磨レートである一方、ディフェクトについては比較例に対して各ディフェクトの数が少ない。特に、金属膜研磨および酸化膜研磨の「スクラッチ」および酸化膜基板の「パーティクル」・「パッド屑」に関して比較例に対し大幅に減少していることが分かる。
 本発明は、研磨パッドの製造、販売に寄与するので、産業上の利用可能性を有する。
1 研磨装置
3 研磨パッド
4 研磨層
4A 中空微小球体
6 クッション層
7 接着層
8 被研磨物
9 スラリー
10 研磨定盤

Claims (6)

  1.  被研磨物を研磨加工するための研磨面を有する研磨層を備える研磨パッドであって、
     前記研磨層は、前記研磨層内に中空体を形成する中空微小球体を含み、
     前記研磨層の断面は、10~14μmの平均開孔径を有し、
     1μmの範囲を1階級として表される、前記研磨層の断面の開孔径ヒストグラムにおいて、
     25μm以上の開孔数の総和は、前記断面の全開孔数に対して5%以下であり、
     25μm以上の各階級の開孔面積の総和は、前記断面の合計開孔面積に対して、20%以下である、研磨パッド。
  2.  30μm以上の各階級の開孔数の総和は、前記研磨面の全開孔数に対して3%以下であり、30μm以上の各階級の開孔面積の総和は、前記研磨面の合計開孔面積に対して、10%以下である、請求項1に記載の研磨パッド。
  3.  前記中空微小球体は、6μm以下のメジアン径(D50)を有する未膨張中空微小球体由来のものである、請求項1又は2に記載の研磨パッド。
  4.  被研磨物を研磨加工するための研磨面を有する研磨層を備える研磨パッドの製造方法であって、
     前記研磨層は、前記研磨層内に中空体を形成する中空微小球体を含み、
     前記研磨層の断面は、10~14μmの平均開孔径を有し、
     1μmの範囲を1階級として表される、前記研磨層の断面の開孔径ヒストグラムにおいて、
     25μm以上の開孔数の総和は、前記断面の全開孔数に対して5%以下であり、
     25μm以上の各階級の開孔面積の総和は、前記断面の合計開孔面積に対して、20%以下であり、
     前記研磨層は、ウレタン結合含有ポリイソシアネート化合物と、硬化剤と、6μm以下のメジアン径(D50)を有する未膨張中空微小球体とを混合し、反応させることにより形成する、製造方法。
  5.  前記反応は、140℃の温度を超えないように温度制御下で実施する、請求項4に記載の製造方法。
  6.  研磨パッドと砥粒とを用いて、被研磨物を研磨する研磨方法であって、
     前記研磨パッドは、被研磨物を研磨加工するための研磨面を有する研磨層を備え、
     前記研磨層は、前記研磨層内に中空体を形成する中空微小球体を含み、
     前記研磨層の断面は、10~14μmの平均開孔径を有し、
     1μmの範囲を1階級として表される、前記研磨層の断面の開孔径ヒストグラムにおいて、
     25μm以上の開孔数の総和は、前記断面の全開孔数に対して5%以下であり、
     25μm以上の各階級の開孔面積の総和は、前記断面の合計開孔面積に対して、20%以下であり、
     前記砥粒は、0.01~0.2μmの直径を有し、
     前記砥粒の存在下で、前記研磨パッドの研磨面に前記被研磨物を接触させ、前記研磨パッド及び研磨被研磨物のいずれか一方又は両方を回転させることにより、研磨を実施する、研磨方法。
PCT/JP2022/013510 2021-03-30 2022-03-23 研磨パッド及び研磨パッドの製造方法 WO2022210165A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280015018.1A CN116897097A (zh) 2021-03-30 2022-03-23 研磨垫及研磨垫的制造方法
US18/278,838 US20240139903A1 (en) 2021-03-30 2022-03-23 Polishing pad and method for manufacturing polishing pad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056759 2021-03-30
JP2021056759A JP2022153965A (ja) 2021-03-30 2021-03-30 研磨パッド及び研磨パッドの製造方法

Publications (1)

Publication Number Publication Date
WO2022210165A1 true WO2022210165A1 (ja) 2022-10-06

Family

ID=83456757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013510 WO2022210165A1 (ja) 2021-03-30 2022-03-23 研磨パッド及び研磨パッドの製造方法

Country Status (5)

Country Link
US (1) US20240139903A1 (ja)
JP (1) JP2022153965A (ja)
CN (1) CN116897097A (ja)
TW (1) TW202327799A (ja)
WO (1) WO2022210165A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532176A (ja) * 2002-05-23 2005-10-27 キャボット マイクロエレクトロニクス コーポレイション 微小孔性研磨パッド
JP2019069498A (ja) * 2017-10-11 2019-05-09 富士紡ホールディングス株式会社 研磨パッド
JP2019069497A (ja) * 2017-10-11 2019-05-09 富士紡ホールディングス株式会社 研磨パッド及び研磨パッドの製造方法
JP2020049620A (ja) * 2018-09-28 2020-04-02 富士紡ホールディングス株式会社 研磨パッド
JP2022056422A (ja) * 2020-09-29 2022-04-08 エスケーシー ソルミックス カンパニー,リミテッド 研磨パッド、研磨パッドの製造方法およびこれを用いた半導体素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532176A (ja) * 2002-05-23 2005-10-27 キャボット マイクロエレクトロニクス コーポレイション 微小孔性研磨パッド
JP2019069498A (ja) * 2017-10-11 2019-05-09 富士紡ホールディングス株式会社 研磨パッド
JP2019069497A (ja) * 2017-10-11 2019-05-09 富士紡ホールディングス株式会社 研磨パッド及び研磨パッドの製造方法
JP2020049620A (ja) * 2018-09-28 2020-04-02 富士紡ホールディングス株式会社 研磨パッド
JP2022056422A (ja) * 2020-09-29 2022-04-08 エスケーシー ソルミックス カンパニー,リミテッド 研磨パッド、研磨パッドの製造方法およびこれを用いた半導体素子の製造方法

Also Published As

Publication number Publication date
CN116897097A (zh) 2023-10-17
US20240139903A1 (en) 2024-05-02
TW202327799A (zh) 2023-07-16
JP2022153965A (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
JP5347524B2 (ja) 化学機械研磨パッドの研磨層形成用組成物、化学機械研磨パッドおよび化学機械研磨方法
TW200534357A (en) Polishing pad and method for manufacture of semiconductor device using the same
TW201206643A (en) Polishing pad
JP2016215368A (ja) 研磨パッド及びその製造方法
JP7438658B2 (ja) 研磨パッド及び研磨加工物の製造方法
WO2022210037A1 (ja) 研磨パッド及び研磨パッドの製造方法
TWI822861B (zh) 研磨墊及其製造方法
JP7118840B2 (ja) 研磨パッド
JP4237800B2 (ja) 研磨パッド
WO2022210165A1 (ja) 研磨パッド及び研磨パッドの製造方法
TW202228917A (zh) 研磨墊、及研磨加工物之製造方法
JP2022153967A (ja) 研磨パッド及び研磨パッドの製造方法
WO2022210676A1 (ja) 研磨パッド及び研磨パッドの製造方法
WO2022071383A1 (ja) 研磨パッド
JP2023049879A (ja) 研磨パッド
JP2022150625A (ja) 研磨パッド及び研磨パッドの製造方法
JP2023049880A (ja) 研磨パッド
JP2024039241A (ja) 研磨パッド及び研磨パッドの製造方法
JP2023046624A (ja) 研磨パッド
WO2022201254A1 (ja) 研磨パッド及び研磨加工物の製造方法
JP7384608B2 (ja) 研磨パッド及び研磨加工物の製造方法
JP2024058603A (ja) 研磨パッド
JP3497156B1 (ja) 研磨シート用発泡体、その製造方法、研磨シート、及び研磨パッド
JP2024050520A (ja) 研磨パッド
JP2024050519A (ja) 研磨パッド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015018.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18278838

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780380

Country of ref document: EP

Kind code of ref document: A1