WO2022209229A1 - 研磨用組成物及び研磨方法 - Google Patents

研磨用組成物及び研磨方法 Download PDF

Info

Publication number
WO2022209229A1
WO2022209229A1 PCT/JP2022/002881 JP2022002881W WO2022209229A1 WO 2022209229 A1 WO2022209229 A1 WO 2022209229A1 JP 2022002881 W JP2022002881 W JP 2022002881W WO 2022209229 A1 WO2022209229 A1 WO 2022209229A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
acid
polishing composition
polished
less
Prior art date
Application number
PCT/JP2022/002881
Other languages
English (en)
French (fr)
Inventor
博之 石田
均 森永
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to US18/284,689 priority Critical patent/US20240084170A1/en
Publication of WO2022209229A1 publication Critical patent/WO2022209229A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention relates to a polishing composition and a polishing method.
  • the polishing composition used for polishing the surface of a resin-made object to be polished has the ability to quickly polish the object to be polished (that is, a high polishing rate) and the ability to flatten and smooth the surface of the object to be polished. It requires the ability to polish to
  • Patent Document 1 discloses a polishing composition that satisfies the above requirements.
  • the polishing composition used for polishing the surface of a resin-made object to be polished has the ability to rapidly polish the object to be polished and the ability to polish the surface of the object to be polished flat and smooth. Improvement was desired.
  • INDUSTRIAL APPLICABILITY The present invention is a polishing composition and a polishing method capable of polishing a resin-made object to be polished at a high polishing rate and polishing the surface of the resin-made object to be polished flat and smooth. The task is to provide
  • a polishing composition according to one aspect of the present invention is a polishing composition used for polishing a resin-made object to be polished, and contains abrasive grains, a surfactant, and water, and the surfactant is , containing an acetylene compound of the following chemical formula (1) having a carbon-carbon triple bond, wherein R 1 , R 2 , R 3 and R 4 in the following chemical formula (1) are each independently a hydrogen atom or a carbon number of 1 represents a substituted or unsubstituted alkyl group of 20 or less, each of R 5 and R 6 independently represents a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, m is an integer of 1 or more, The gist is that n is an integer of 0 or more and m+n is 50 or less.
  • the gist of a polishing method according to another aspect of the present invention is to have a polishing step of polishing a resin-made object to be polished using the polishing composition according to the above aspect.
  • the present invention it is possible to polish a resin-made object to be polished at a high polishing rate, and to polish the surface of the resin-made object to be polished flat and smooth.
  • the polishing composition according to this embodiment is a polishing composition used for polishing a resin-made object to be polished, and contains abrasive grains, a surfactant, and water.
  • This surfactant contains an acetylenic compound with a carbon-carbon triple bond.
  • This acetylene compound is a compound represented by the following chemical formula (1), wherein R 1 , R 2 , R 3 and R 4 in the following chemical formula (1) are each independently a hydrogen atom or have 1 or more 20 carbon atoms.
  • the following substituted or unsubstituted alkyl groups are represented, and R 5 and R 6 each independently represent a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms.
  • m is an integer of 1 or more
  • n is an integer of 0 or more
  • m+n is 50 or less.
  • the polishing method according to the present embodiment is a polishing method having a polishing step of polishing a resin-made object to be polished using the polishing composition according to the present embodiment.
  • the polishing composition according to the present embodiment has an excellent ability to quickly polish a resin-made object to be polished, and an excellent ability to flatten and smoothen the surface of a resin-made object to be polished. Therefore, by polishing a resin-made polishing object using the polishing composition according to the present embodiment, it is possible to polish the resin-made polishing object at a high polishing rate, and at the same time, the resin-made polishing object can be polished. It is possible to polish the surface of an object flat and smooth. Therefore, it is possible to efficiently manufacture a resin product having a finished flat and smooth surface (for example, a small surface roughness Ra and few defects such as scratches).
  • the polishing composition and polishing method according to this embodiment will be described in detail below.
  • Object to be Polished The type of object to be polished to which the polishing composition and polishing method according to the present embodiment are applied is not particularly limited as long as it is made of resin. It may be a member made of resin, or a member partly made of resin. An example of a member partly made of resin is a member in which the surface of a base material is coated with a resin film.
  • thermoplastic resins examples include fluorine resins, acrylic resins (e.g., polymethyl acrylate, polymethyl methacrylate), polycarbonates, polyimides, polyamides, polyamideimides, polystyrene, polyvinyl chloride, polyethylene, polypropylene, acrylonitrile-butadiene-styrene co- Polymer, acrylonitrile-styrene copolymer, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyphenyl ether, polysulfone, polyether sulfone, polyphenyl sulfide, polyarylate, polyetherimide, polyether ether Ketone, liquid crystal polymer, ultra-high molecular weight polyethylene, and urethane resin can be mentioned.
  • thermoplastic resins include fluorine resins, acrylic resins (e.g., polymethyl acrylate, polymethyl methacrylate),
  • fluororesins include fully fluorinated resins such as polytetrafluoroethylene (PTFE), and partially fluorinated resins such as polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF). , perfluoroalkoxy fluororesin (PFA), ethylene tetrafluoride/propylene hexafluoride copolymer (FEP), ethylene/tetrafluoroethylene copolymer (ETFE), ethylene/chlorotrifluoroethylene copolymer (ECTFE ) and other fluorinated resin copolymers.
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • PFA perfluoroalkoxy fluororesin
  • FEP ethylene tetrafluoride/propy
  • thermosetting resins examples include phenolic resins, urea resins, melamine resins, unsaturated polyesters, epoxy resins, silicone resins, and polyurethanes.
  • the polishing composition and polishing method according to the present embodiment are particularly suitable for use in polishing fluororesins, acrylic resins, and polycarbonates.
  • the polishing composition according to the present embodiment contains a surfactant, and this surfactant contains an acetylene compound represented by the above chemical formula (1).
  • the action of the acetylene compound represented by the chemical formula (1) makes the surface of the resin hydrophilic and reduces the contact angle.
  • the amount of the polishing composition attached to the surface of the resin-made polishing object and the polishing pad is improved, so that it becomes possible to polish the polishing object at a high polishing rate, and in addition, Since the polishing composition uniformly adheres to the surface of the object to be polished, the surface of the object to be polished can be uniformly polished, and the surface of the object to be polished can be polished flat and smooth.
  • Such an effect is due to the fact that the acetylene compound acts as a binder between the abrasive grains, the resin-made polishing object, and the polishing pad by being adsorbed to the abrasive grains, the resin-made polishing object, and the polishing pad. It is thought that it will be played in In addition, the above expression mechanism of this action and effect is speculation. Moreover, the present invention is not limited to the expression mechanism described above.
  • a highly water-repellent resin having a contact angle of 90° or more can be polished by the action of the acetylene compound represented by the chemical formula (1).
  • the surface of the resin becomes hydrophilic and the contact angle becomes less than 90°. Therefore, the object to be polished made of highly water-repellent resin can be polished at a high polishing rate, and the surface of the object to be polished made of highly water-repellent resin can be polished flat and smooth.
  • highly water-repellent resins include the aforementioned fluororesins.
  • the polishing composition according to the present embodiment can also be applied to a low-water-repellent resin having a contact angle of less than 90°, and it is possible to polish an object made of a low-water-repellent resin at a high polishing rate.
  • the surface of the object to be polished made of low water-repellent resin can be polished flat and smooth.
  • the acetylene compound represented by the chemical formula (1) preferably reduces the contact angle of the resin by 10° or more and 55° or less, and preferably reduces the contact angle of the resin by 10° or more and 45° or less. more preferred.
  • the object to be polished is a highly water-repellent resin, it is more preferable that the acetylene compound represented by the chemical formula (1) reduces the contact angle of the resin by 20° or more and 45° or less.
  • the polishing composition according to the present embodiment can also be applied to a low-hardness and high-elasticity resin, that is, a resin having softness and toughness. It is possible to polish the object at a high speed, and to flatten and smooth the surface of the object to be polished made of resin with low hardness and high elasticity.
  • the low-hardness resin means a resin having a Rockwell hardness of HRM65 or less as defined in JIS K7202-2.
  • HR of “HRM” indicates Rockwell hardness
  • M indicates hardness scale.
  • a highly elastic resin means a resin having a tensile modulus of 2.8 GPa or less.
  • resins with low hardness and high elasticity include polycarbonate (HRM56, tensile modulus 2.1 GPa), epoxy resin (HRM45, tensile modulus 2.2 GPa), polytetrafluoroethylene (HRM19, tensile modulus 0.1 GPa). 6 GPa).
  • the HLB value of the acetylene compound represented by the chemical formula (1) is preferably 4 or more and 19 or less, more preferably 7 or more and 18 or less, and even more preferably 10 or more and 18 or less. If the HLB value is within this range, a high polishing rate can be obtained, and the surface of the object to be polished after polishing becomes flatter and smoother.
  • the HLB value is 4 or more, the acetylene compound is easily dispersed in water, and when the HLB value is 10 or more, the acetylene compound is easily dissolved in water.
  • the HLB value of the acetylene compound represented by the chemical formula (1) is 10 or more and 15 or less. If the HLB value is within this range, a high polishing rate can be obtained, the surface of the object to be polished after polishing becomes flatter and smoother, and bubbling of the polishing composition can be suppressed. Handling of the polishing composition is also facilitated.
  • the acetylene compound represented by the chemical formula (1) is an acetylene glycol type compound having one acetylene group in one molecule and an alkylene oxide added thereto.
  • a nonionic compound is more preferable from the viewpoint of flat and smooth polishing of the surface of the object to be polished.
  • the acetylene compound represented by the chemical formula (1) may be used singly or in combination of two or more.
  • R 1 , R 2 , R 3 , and R 4 in chemical formula (1) are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and the number of carbon atoms in the alkyl group is , 1 or more, 2 or more, 3 or more, 20 or less, 18 or less, 16 or less, 15 or less, 12 or less, 10 or less, 8 or less good.
  • alkyl groups include methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, iso-pentyl, neo- pentyl group, tert-pentyl group, hexyl group, octyl group, nonyl group, decyl group, lauryl group, myristyl group, palmityl group, stearyl group and the like.
  • R 1 , R 2 , R 3 and R 4 may all be the same, some may be the same and others may be different, or all may be different.
  • R 5 and R 6 in chemical formula (1) are each independently a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, but the number of carbon atoms in the alkylene group may be 1 or more, or 2 or more. It may be 3 or more, 4 or less, or 3 or less. Specific examples of the alkylene group include ethylene group, propylene group, butylene group, pentylene group and the like. R5 and R6 may be the same or different.
  • m is an integer of 1 or more
  • n is an integer of 0 or more
  • m+n is 50 or less
  • m+n may be 1 or more, 3 or more, or 5 or more, 10 or more, 15 or more, 20 or more, 50 or less, 30 or less, 22 or less, 16 or less, 12 or less, 8 or less, 4 or less (for example, 3 or less).
  • m and n may be the same or different.
  • the acetylene compound represented by the chemical formula ( 1 ) has m R 5 in one molecule.
  • R 5 may be an ethylene group and a propylene group, in which case the sum of the number of ethylene groups and the number of propylene groups in R 5 is m.
  • the acetylene compound represented by the chemical formula (1) has n R 6 in one molecule, and all of the n R 6 may be the same kind of alkylene group, or a plurality of kinds of alkylene groups. may have
  • R 6 may be an ethylene group and a propylene group, in which case the sum of the number of ethylene groups and the number of propylene groups in R 6 is n.
  • the polishing composition according to this embodiment may contain a plurality of acetylene compounds represented by the chemical formula (1).
  • the polishing composition according to the present embodiment may contain an acetylene compound in which m and n are both 0 in the chemical formula (1).
  • the average value (average number of added moles) of m+n in the chemical formula (1) may be 1 or more, 3 or more, 5 or more, 10 or more, 15 or more, or 20 or more. , may be 50 or less, 30 or less, 22 or less, 16 or less, 12 or less, 8 or less, or 4 or less (for example, 3 or less).
  • a particularly preferred example of the acetylene compound represented by the chemical formula (1) is an acetylene compound represented by the following chemical formula (2).
  • the acetylene compound represented by the chemical formula (2) is a compound in which R 1 and R 4 in the chemical formula (1) are isobutyl groups, R 2 and R 3 are methyl groups, and R 5 and R 6 are ethylene groups.
  • p in chemical formula (2) is the same as m in chemical formula (1)
  • q in chemical formula (2) is the same as n in chemical formula (1).
  • the molecular weight of the acetylene compound represented by the chemical formula (1) is not particularly limited, it is preferably a molecular weight that sufficiently exhibits its action in the polishing composition.
  • the molecular weight of the acetylene compound represented by the chemical formula (1) may be, for example, 250 or more, 300 or more, 400 or more, 500 or more, 700 or more, or 1200 or more. and may be 1500 or more. Further, the molecular weight of the acetylene compound represented by the chemical formula (1) may be, for example, 3000 or less, 2000 or less, 1400 or less, 1000 or less, or 600 or less.
  • the molecular weight calculated from the chemical formula is employed as the molecular weight of the acetylene compound represented by chemical formula (1).
  • the content of the acetylene compound represented by the chemical formula (1) in the polishing composition according to the present embodiment is 0.001% by mass or more from the viewpoint of expressing the effect of adding the acetylene compound represented by the chemical formula (1). It is preferably 0.005% by mass or more, more preferably 0.01% by mass or more.
  • the content of the acetylene compound represented by the chemical formula (1) in the polishing composition according to the present embodiment is 0.2% by mass from the viewpoint of the detergency of the acetylene compound represented by the chemical formula (1). It is preferably 0.15% by mass or less, more preferably 0.1% by mass or less, and particularly preferably 0.09% by mass or less.
  • the content of the acetylene compound represented by the chemical formula (1) in the polishing composition according to the present embodiment is preferably 0.001% by mass or more and 0.2% by mass or less, and 0.005% by mass. It is more preferably 0.15% by mass or less, further preferably 0.01% by mass or more and 0.1% by mass or less, and particularly 0.01% by mass or more and 0.09% by mass or less. preferable.
  • the content of the acetylene compound represented by the chemical formula (1) in the polishing composition according to the present embodiment can be preferably applied to, for example, the content in the polishing liquid (working slurry) supplied to the object to be polished.
  • the surfactant contained in the polishing composition according to the present embodiment may be composed only of the acetylene compound represented by the chemical formula (1). It may also be composed of surfactants. Other types of surfactants that can be used include anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants.
  • anionic surfactants include polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl sulfate, alkyl sulfate, polyoxyethylene alkyl sulfate, alkyl sulfate, alkylbenzene sulfonate, alkyl phosphate, polyoxy Ethylene alkyl phosphate, polyoxyethylene sulfosuccinic acid, alkyl sulfosuccinic acid, alkyl naphthalene sulfonic acid, alkyl diphenyl ether disulfonic acid, or salts thereof.
  • cationic surfactants include alkyltrimethylammonium salts, alkyldimethylammonium salts, alkylbenzyldimethylammonium salts and alkylamine salts. Further, specific examples of amphoteric surfactants include alkylbetaines and alkylamine oxides.
  • nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyalkylene alkyl ethers, sorbitan fatty acid esters, glycerin fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene alkylamines, and alkylalkanolamides. can give.
  • abrasive grains contained in the polishing composition according to the present embodiment is not particularly limited. 2 ), zirconia (ZrO2), titania ( TiO2 ), iron oxide ( FeO , Fe3O4 , Fe2O3 ), manganese oxide ( MnO, Mn3O4 , Mn2O3 , MnO2 ), etc. can be used.
  • zirconia ZrO2
  • titania TiO2
  • FeO , Fe3O4 , Fe2O3 iron oxide
  • MnO, Mn3O4 , Mn2O3 , MnO2 manganese oxide
  • MnO, Mn3O4 , Mn2O3 , MnO2 manganese oxide
  • the type of alumina is not particularly limited, and examples thereof include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and amorphous alumina.
  • the ⁇ -conversion rate when using ⁇ -alumina is not particularly limited, but is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more.
  • the ⁇ conversion rate is 100% or less, preferably 99% or less, more preferably 97% or less. Within this range, a high polishing rate can be obtained while maintaining a good surface shape.
  • the ⁇ conversion rate can be obtained from the integrated intensity ratio of the (113) plane diffraction line by X-ray diffraction measurement, for example.
  • silica is not particularly limited, but examples include colloidal silica, fumed silica, sol-gel silica, precipitation silica, and the like. These abrasive grains may be used individually by 1 type, and may use 2 or more types together.
  • the particle size of the abrasive grains contained in the polishing composition according to the present embodiment is not particularly limited, it is preferably as follows.
  • the 50% particle size in the volume-based cumulative particle size distribution of abrasive grains (the secondary particle size at which the cumulative frequency from the small particle size side is 50%, hereinafter sometimes referred to as "D50") is particularly
  • D50 is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and even more preferably 0.15 ⁇ m or more.
  • the D50 of the abrasive grains is preferably 5 ⁇ m or less from the viewpoint of the surface properties (that is, surface flatness and smoothness) of the object to be polished after polishing. It may be 4 ⁇ m or less, 3 ⁇ m or less, or 1.5 ⁇ m or less, more preferably 1 ⁇ m or less, further preferably 0.5 ⁇ m or less, and 0.3 ⁇ m or less. is particularly preferred.
  • D50 is preferably 1 ⁇ m or less, may be 0.5 ⁇ m or less, more preferably 0.3 ⁇ m or less, and is 0.25 ⁇ m or less. is more preferable, and 0.2 ⁇ m or less is particularly preferable.
  • the volume-based integrated particle size distribution is measured by a laser diffraction scattering particle size distribution analyzer.
  • the 10% particle size in the volume-based cumulative particle size distribution of abrasive grains is particularly Although not limited, when the abrasive grains are alumina, it is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and even more preferably 0.15 or more. Further, when the abrasive grains are alumina, D10 is preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less, further preferably 0.5 ⁇ m or less, and 0.3 ⁇ m or less. 0.25 ⁇ m or less is particularly preferable, and 0.2 ⁇ m or less is most preferable. If the D10 of the abrasive grains is within this range, the surface of the object to be polished after polishing will be flatter and smoother.
  • the 90% particle size in the volume-based cumulative particle size distribution of abrasive grains (the secondary particle size at which the cumulative frequency from the small particle size side is 90%, hereinafter sometimes referred to as "D90") is particularly Although not limited, when the abrasive grains are alumina, it is preferably 0.15 ⁇ m or more, more preferably 0.2 ⁇ m or more, further preferably 0.25 or more, and 0 0.3 ⁇ m or more is particularly preferred. If the D90 of the abrasive grains is within this range, a high polishing rate can be obtained.
  • D90 is preferably 8 ⁇ m or less, more preferably 3 ⁇ m or less, even more preferably 2 ⁇ m or less, even more preferably 1 ⁇ m or less, and 0 0.6 ⁇ m or less is even more preferable, 0.5 ⁇ m or less is particularly preferable, and 0.4 ⁇ m or less is most preferable. If the D90 of the abrasive grains is within this range, the surface of the object to be polished after polishing will be flatter and smoother.
  • the ratio of D90 to D50 of the abrasive grains is preferably 1.1 or more, more preferably 1.2 or more. If D90/D50 is within this range, a high polishing rate can be obtained.
  • D90/D50 is preferably 2.5 or less, more preferably 1.7 or less, and even more preferably 1.5 or less. If D90/D50 is within this range, the surface of the object to be polished after polishing will be flatter and smoother.
  • the ratio of D90 to D10 of the abrasive grains is preferably 1.2 or more, more preferably 1.3 or more, and 1.5 or more. 1.7 or more is particularly preferable. If D90/D10 is within this range, a high polishing rate can be obtained. Further, when the abrasive grains are alumina, D90/D10 is preferably 6.5 or less, more preferably 3.0 or less, further preferably 2.5 or less. 1 or less is particularly preferable. If D90/D10 is within this range, the surface of the object to be polished after polishing will be flatter and smoother.
  • the ratio of D50 to D10 of the abrasive grains is preferably 1.1 or more, more preferably 1.2 or more. If D50/D10 is within this range, a high polishing rate can be obtained.
  • D50/D10 is preferably 2.0 or less, more preferably 1.8 or less, and even more preferably 1.6 or less. If D50/D10 is within this range, the surface of the object to be polished after polishing will be flatter and smoother.
  • the BET specific surface area of the abrasive grains is not particularly limited, but when the abrasive grains are alumina, it is preferably 5 m 2 /g or more, more preferably 10 m 2 /g or more. , 15 m 2 /g or more.
  • the BET specific surface area of the abrasive grains is preferably 250 m 2 /g or less, more preferably 90 m 2 /g or less, even more preferably 50 m 2 /g or less, and 25 m 2 /g or less. is particularly preferred. If the BET specific surface area of the abrasive grains is within this range, a high polishing rate can be obtained, and the surface of the object to be polished after polishing becomes flatter and smoother.
  • the BET specific surface area of abrasive grains can be measured using, for example, FlowSorb II 2300 manufactured by Micromeritex. Nitrogen gas (N 2 ), argon (Ar), krypton (Kr), or the like can be used as the gas to be adsorbed by the abrasive grains.
  • the content of abrasive grains in the polishing composition according to the present embodiment is not particularly limited, but when the abrasive grains are alumina, it is preferably 0.1% by mass or more. It is more preferably at least 3% by mass, and even more preferably at least 3% by mass.
  • the abrasive grains are silica, the content is preferably 0.1% by mass or more, more preferably 1% by mass or more, and even more preferably 3% by mass or more. If the content of abrasive grains is within this range, a high polishing rate can be obtained.
  • the content of abrasive grains in the polishing composition according to the present embodiment is preferably 40% by mass or less, more preferably 20% by mass or less, It is more preferably 15% by mass or less.
  • the content is preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less. If the abrasive grain content is within this range, scratches on the object to be polished after polishing can be reduced. Also, the cost of the polishing composition can be suppressed.
  • the pH of the polishing composition of the present embodiment is not particularly limited, but is preferably 13 or less, more preferably 12 or less. Further, the pH of the polishing composition of the present embodiment is preferably 2 or higher, more preferably 3 or higher. A high polishing rate can be obtained if the pH is within the above range. Moreover, since the polishing composition having a pH within the above range is relatively safe, it can be handled more safely.
  • the pH of the polishing composition according to the present embodiment is preferably 7 or less, more preferably less than 7 (that is, more preferably acidic).
  • the zeta potential of the abrasive grains becomes a positive value. is easily adsorbed, and the polishing speed is improved.
  • the zeta potential of the abrasive grains is a positive value, the abrasive grains repel each other and are less likely to agglomerate, thereby improving the dispersibility of the abrasive grains.
  • the pH of the polishing composition according to this embodiment may be adjusted using a pH adjuster that is an additive. The pH adjuster will be detailed later.
  • the polishing composition according to the present embodiment is a slurry containing abrasive grains, a surfactant, and water.
  • Water functions as a dispersion medium or solvent for dispersing or dissolving each component (abrasive grains, surfactant, additive, etc.) of the polishing composition.
  • This water may be mixed with one or more organic solvents.
  • the content of water in the polishing composition is not particularly limited, it may be 40% by mass or more, more preferably 50% by mass or more, and still more preferably 60% by mass or more (e.g., 70% by mass). above).
  • the ratio of water and the solvent other than water may be 100:0 to 50:50, 99:1 to It may be 60:40.
  • the polishing composition according to the present embodiment may further contain additives other than surfactants, if necessary, in order to improve its performance.
  • additives known additives contained in general polishing compositions can be used.
  • various additives such as pH adjusters, oxidizing agents, polishing accelerators, water-soluble polymers, chelating agents, dispersing aids, preservatives and antifungal agents may be added.
  • a pH adjusting agent may be added to the polishing composition according to the present embodiment as necessary in order to adjust the pH to a desired value.
  • the pH adjusters may be used singly or in combination of two or more. Known acids, bases, or salts thereof can be used as pH adjusters.
  • acids that can be used as pH adjusters include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, and phosphoric acid, formic acid, acetic acid, and propionate.
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, and phosphoric acid, formic acid, acetic acid, and propionate.
  • an inorganic acid When using an inorganic acid as a pH adjuster, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, etc. are preferred from the viewpoint of improving the polishing rate.
  • an organic acid When using an organic acid as a pH adjuster, glycolic acid, succinic acid, and maleic acid are preferred. , citric acid, tartaric acid, malic acid, gluconic acid, and itaconic acid are preferred.
  • Bases that can be used as pH adjusters include amines such as aliphatic amines and aromatic amines, organic bases such as quaternary ammonium hydroxide, alkali metal hydroxides such as potassium hydroxide, and alkaline earth metal hydroxides. substances, ammonia, and the like. Among these bases, potassium hydroxide and ammonia are preferred in terms of availability.
  • a salt such as an ammonium salt or an alkali metal salt of the acid may be used as a pH adjuster.
  • a salt of a weak acid and a strong base, a salt of a strong acid and a weak base, or a salt of a weak acid and a weak base can be expected to have a pH buffering effect.
  • the amount of the pH adjuster to be added is not particularly limited, and may be appropriately adjusted so that the polishing composition has a desired pH.
  • the polishing composition according to the present embodiment may optionally contain an oxidizing agent to oxidize the surface of the object to be polished.
  • the oxidizing agent has the effect of oxidizing the surface of the object to be polished, and when the oxidizing agent is added to the polishing composition, the polishing composition has the effect of improving the polishing rate.
  • Oxidizing agents that can be used include, for example, peroxides, nitric acid, and potassium permanganate. Specific examples of peroxides include hydrogen peroxide, peracetic acid, percarbonates, urea peroxide, perchlorates, persulfates (eg, sodium persulfate, potassium persulfate, ammonium persulfate).
  • polishing accelerator may be added to the polishing composition.
  • the polishing accelerator plays a role of chemically polishing the object to be polished, and can significantly improve processing efficiency by acting on the surface of the object to be polished.
  • Polishing accelerators may be used alone or in combination of two or more.
  • an aluminum salt of a monovalent acid is preferable, and has a function as a polishing accelerator and a function of improving the surface quality of the polished surface of the object to be polished.
  • aluminum salts of monovalent acids include aluminum nitrate (Al(NO 3 ) 3 ) and aluminum chloride (AlCl 3 ).
  • the content of the aluminum salt of monovalent acid in the polishing composition is preferably 0.01% by mass or more from the viewpoint of more reliably improving the polishing ability of the polishing composition. It is more preferably 2% by mass or more, further preferably 4% by mass or more, particularly preferably more than 4% by mass, and most preferably 5% by mass or more.
  • the aluminum salt content of is preferably 15% by mass or less. These contents are contents excluding water of hydration when the aluminum salt of monovalent acid has water of hydration.
  • the polishing composition according to this embodiment may contain a polishing accelerator other than aluminum nitrate and aluminum chloride.
  • Polishing accelerators other than aluminum nitrate and aluminum chloride include inorganic acids, organic acids, and salts of these acids. Specific examples of inorganic acids include phosphoric acid, nitric acid, sulfuric acid, hydrochloric acid, hypophosphorous acid, phosphonic acid, boric acid, sulfamic acid and the like.
  • organic acids include citric acid, maleic acid, malic acid, glycolic acid, succinic acid, itaconic acid, malonic acid, iminodiacetic acid, gluconic acid, lactic acid, mandelic acid, tartaric acid, crotonic acid, nicotinic acid, and acetic acid.
  • adipic acid formic acid, oxalic acid, propionic acid, valeric acid, caproic acid, caprylic acid, capric acid, cyclohexanecarboxylic acid, phenylacetic acid, benzoic acid, crotonic acid, methacrylic acid, glutaric acid, fumaric acid, phthalic acid, isophthalic acid Acid, terephthalic acid, glycolic acid, tartronic acid, glyceric acid, hydroxybutyric acid, hydroxyacetic acid, hydroxybenzoic acid, salicylic acid, isocitric acid, methylenesuccinic acid, gallic acid, ascorbic acid, nitroacetic acid, oxaloacetic acid, glycine, alanine, glutamic acid , aspartic acid, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, phenylalanine, tryptophan, t
  • salts of these acids include metal salts (e.g., alkali metal salts such as lithium salt, sodium salt, potassium salt) and ammonium salts (e.g., tetramethylammonium salt, tetraethyl quaternary ammonium salts such as ammonium salts), alkanolamine salts (eg, monoethanolamine salts, diethanolamine salts, triethanolamine salts), and the like.
  • metal salts e.g., alkali metal salts such as lithium salt, sodium salt, potassium salt
  • ammonium salts e.g., tetramethylammonium salt, tetraethyl quaternary ammonium salts such as ammonium salts
  • alkanolamine salts eg, monoethanolamine salts, diethanolamine salts, triethanolamine salts
  • salts include alkali metal phosphates such as tripotassium phosphate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, trisodium phosphate, disodium hydrogen phosphate, and sodium dihydrogen phosphate, and alkali metal A hydrogen phosphate is mentioned.
  • specific examples of the salt include the alkali metal salts of the organic acids exemplified above, the alkali metal salts of glutamic diacetic acid, the alkali metal salts of diethylenetriaminepentaacetic acid, the alkali metal salts of hydroxyethylethylenediaminetriacetic acid, and triethylenetetramine.
  • Alkali metal salts of hexaacetic acid are mentioned. Alkali metals in these alkali metal salts are, for example, lithium, sodium, potassium and the like.
  • a water-soluble polymer may be added to the polishing composition according to the present embodiment.
  • the type of water-soluble polymer is not particularly limited, and examples include polyalkylene oxide alkyl ether, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, and the like. Examples thereof include glycols, pyrrolidone compounds having a 2-pyrrolidone group (eg, poly-N-vinylpyrrolidone), and caprolactam compounds.
  • water-soluble polymers examples include cellulose derivatives, starch derivatives, polyacrylic acid (or salts thereof), polyacrylamide, polyvinyl alcohol, polyethyleneimine, polyalkylene oxide and the like.
  • a pyrrolidone compound having a 2-pyrrolidone group and a caprolactam compound are more preferred.
  • the weight average molecular weight of the water-soluble polymer is preferably 3,000 or more, more preferably 5,000 or more, even more preferably 10,000 or more, and particularly preferably 30,000 or more.
  • a water-soluble polymer having such a weight average molecular weight has a technical effect of improving the dispersibility of the slurry.
  • the weight average molecular weight of the water-soluble polymer is preferably 500,000 or less, more preferably 300,000 or less, and even more preferably 100,000 or less.
  • a water-soluble polymer having such a weight average molecular weight has a technical effect of improving stability.
  • a pyrrolidone compound having a 2-pyrrolidone group works effectively to accelerate the polishing of the resin by being contained in the polishing composition together with the aluminum salt of the monovalent acid.
  • the types of pyrrolidone compounds having a 2-pyrrolidone group are not particularly limited, but examples include N-octyl-2-pyrrolidone, N-dodecyl-2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl- 2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-hydroxyethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, N-hexyl-2-pyrrolidone, N-decyl-2-pyrrolidone, N-octadecyl-2 -pyrrolidone, N-hexadecyl-2-pyrrolidone, poly-N-vinylpyrrolidone,
  • poly-N-vinylpyrrolidone As the pyrrolidone compound having a 2-pyrrolidone group, poly-N-vinylpyrrolidone (hereinafter sometimes referred to as "PVP") is preferable.
  • the weight average molecular weight of PVP is preferably 3000 or more, more preferably 10000 or more. Also, the weight average molecular weight of PVP is preferably 60,000 or less, more preferably 50,000 or less. PVP having weight average molecular weights within these ranges are readily available from various chemical suppliers.
  • the content of the pyrrolidone compound in the polishing composition according to the present embodiment is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 0.1% by mass or more. is more preferable. Further, the content of the pyrrolidone compound in the polishing composition according to the present embodiment is preferably 5% by mass or less, more preferably 2% by mass or less, and 1% by mass or less. More preferred.
  • a caprolactam compound is a nitrogen-containing organic compound called ⁇ -caprolactam, and can be used as a substitute for the pyrrolidone compound.
  • the content of the caprolactam compound in the polishing composition according to the present embodiment is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 0.1% by mass or more. It is even more preferable to have
  • the content of the caprolactam compound in the polishing composition according to the present embodiment is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less. preferable.
  • the polishing composition according to the present embodiment contains, if necessary, a chelating agent in order to suppress metal contamination of the object to be polished by trapping metal impurity components in the polishing system to form a complex.
  • a chelating agent may also be added.
  • Specific examples of chelating agents include carboxylic acids, amines, organic phosphonic acids, amino acids and the like.
  • 6-6 Dispersing Aid A dispersing aid may be added to the polishing composition according to the present embodiment, if necessary, in order to facilitate redispersion of the abrasive grain aggregates.
  • Specific examples of the dispersing aid include condensed phosphates such as pyrophosphates and hexametaphosphates.
  • Antiseptic agents and antifungal agents may be added to the polishing composition according to the present embodiment, if necessary.
  • antiseptics and antifungal agents include isothiazoline preservatives such as 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, and paraoxybenzoic acid esters. and phenoxyethanol.
  • the method for producing the polishing composition according to the present embodiment is not particularly limited. It can be produced by mixing.
  • the temperature at which each component is mixed is not particularly limited, but is preferably 10° C. or higher and 40° C. or lower, and may be heated in order to improve the dissolution rate.
  • the mixing time is not particularly limited.
  • the polishing composition according to the present embodiment may be a one-part type, or a two-part or more multi-part type in which some or all of the components of the polishing composition are mixed at an arbitrary ratio. good too.
  • the polishing composition according to the present embodiment may be prepared by diluting the undiluted solution of the polishing composition with water, for example, 10-fold or more.
  • the order of mixing and diluting the two raw material compositions that are the raw materials of the polishing composition is arbitrary. For example, one raw material composition may be diluted with water and then mixed with the other raw material composition, or both raw material compositions may be mixed and diluted with water at the same time, or both After mixing the raw material composition, it may be diluted with water.
  • polishing Apparatus and Polishing Method The method and conditions for polishing a resin object to be polished using the polishing composition according to the present embodiment are not particularly limited, and are within the scope of general polishing methods and conditions. , the polishing may be performed by appropriately selecting a method and conditions suitable for polishing the object to be polished. Moreover, as a polishing device, a general single-sided polishing device or a double-sided polishing device can be used. When polishing is performed using a single-sided polishing apparatus, a holder called a carrier is used to hold the object to be polished, and the polishing composition is interposed between the object to be polished and the polishing pad, and the polishing pad is attached. The polished surface plate is pressed against one side of the object to be polished, and the surface plate is rotated to polish one side of the object to be polished.
  • a surface plate to which a polishing pad is adhered with a polishing composition interposed between the polishing object and the polishing pad while holding the polishing object using a carrier. are pressed against both sides of the object to be polished, and the polishing pad and the object to be polished are rotated in opposite directions to polish both surfaces of the object to be polished.
  • the physical action of friction between the polishing pad and the polishing composition and the object to be polished, and the chemical action of the polishing composition on the object to be polished cause is polished.
  • the type of polishing pad is not particularly limited, and those having various physical properties such as material, thickness and hardness can be used.
  • Examples of the material of the polishing pad include polyurethane, epoxy resin, nonwoven fabric, and suede. Further, the polishing pad may be formed with grooves in which the polishing composition is accumulated.
  • Example 1 After mixing the abrasive grains, the nonionic surfactant, and water, the pH was adjusted to 3.2 by adding a pH adjuster (nitric acid or potassium hydroxide aqueous solution), and the polishing composition of Example 1 was prepared. manufactured things. Alumina having a D50 of 0.7 ⁇ m was used as abrasive grains. The content of abrasive grains in the polishing composition is 15% by mass. An acetylene compound represented by the chemical formula (2) was used as the surfactant. The HLB value of this acetylene compound is 8. The HLB value can be adjusted by the numerical values of p and q in chemical formula (2). The content of the surfactant in the polishing composition is 0.05% by mass.
  • a pH adjuster nitric acid or potassium hydroxide aqueous solution
  • polishing composition was used to polish the surface of a resin-made object to be polished.
  • the object to be polished is a plate-shaped member made of polytetrafluoroethylene (PTFE). Polishing conditions are as follows. Polishing device: Engis single-side polishing device EJ-380IN (surface plate diameter 380 mm) Polishing pad: Suede polishing pad (N17 (HD) NX_202U manufactured by Fujibo Ehime Co., Ltd.) Polishing load: 9.8 kPa (100 gf/cm 2 ) Surface plate rotation speed: 80 min -1 Polishing speed (linear speed): 95.5 m/min Polishing time: 5min Supply rate of polishing composition: 15 mL/min
  • the surface roughness Ra and the static contact angle of the polished surface of the polished object were measured.
  • the surface roughness Ra of the surface to be polished of the object to be polished after polishing was measured using a measuring device LaserMicroscope VK-X200 manufactured by Keyence Corporation under the condition of a viewing angle of 284 ⁇ 213 ⁇ m.
  • the static contact angle of the polished surface of the object to be polished after polishing was measured using a portable contact angle meter PG-X+ manufactured by Matsubo Co., Ltd. (dropping amount of water: 40 ⁇ L).
  • the thickness of the object to be polished was measured before and after polishing, and the polishing rate was calculated by dividing the thickness difference by the polishing time. Table 1 shows the results.
  • Example 2 A polishing composition was produced in the same manner as in Example 1, except that the type of nonionic surfactant used was different, and an object to be polished was polished in the same manner as in Example 1.
  • the surfactant used was an acetylene compound represented by the chemical formula (2), but the numerical values of p and q in the chemical formula (2) were different from those used in Example 1. Therefore, the HLB values are different. Table 1 shows the results.
  • Example 1 A polishing composition was produced in the same manner as in Example 1 except that no surfactant was used, and an object to be polished was polished in the same manner as in Example 1. Table 1 shows the results.
  • Comparative Example 2-4 A polishing composition was produced in the same manner as in Example 1, except that the type of nonionic surfactant used was different, and an object to be polished was polished in the same manner as in Example 1.
  • the surfactant used was polyoxyethylene alkyl ether in Comparative Example 2, and polyoxyalkylene alkyl ether in Comparative Examples 3 and 4. Comparative Examples 3 and 4 differ in the HLB value of the surfactant. Table 1 shows the results.
  • Example 4 Abrasive grains, nonionic surfactant, aluminum nitrate nonahydrate (Al ( NO3 ) 3.9H2O ), PVP, and water are mixed, and then a pH adjuster (nitric acid or potassium hydroxide aqueous solution) is added. was added to adjust the pH to 3.2 to produce the polishing composition of Example 4.
  • abrasive grains the same alumina as in Example 1 was used.
  • the content of abrasive grains in the polishing composition is 15% by mass.
  • As the surfactant the same acetylene compound as in Example 1 was used.
  • the content of the surfactant in the polishing composition is 0.05% by mass.
  • the content of aluminum nitrate nonahydrate in the polishing composition was 10% by mass.
  • the content of PVP in the polishing composition is 0.05% by mass.
  • Example 4 the polishing composition of Example 4 was used to polish the surface of the resin-made object to be polished.
  • the object to be polished is a plate-like member made of polytetrafluoroethylene.
  • the polishing conditions are the same as in Example 1.
  • the surface roughness Ra and the static contact angle of the polished surface of the polished object were measured in the same manner as in Example 1, and the polishing rate was calculated. Table 1 shows the results.
  • Example 5 A polishing composition was produced in the same manner as in Example 4, except that the type of nonionic surfactant used was different, and an object to be polished was polished in the same manner as in Example 4.
  • the surfactant used is the same acetylenic compound as in Example 3. Table 1 shows the results.
  • Comparative Example 5 A polishing composition was produced in the same manner as in Example 4 except that no surfactant was used, and an object to be polished was polished in the same manner as in Example 4. Table 1 shows the results.
  • Comparative Examples 6 and 7 A polishing composition was produced in the same manner as in Example 4, except that the type of nonionic surfactant used was different, and an object to be polished was polished in the same manner as in Example 4.
  • the surfactant used in Comparative Example 6 is the same as in Comparative Example 2, and in Comparative Example 7 is the same as in Comparative Example 4. Table 1 shows the results.
  • Example 6 A polishing composition was produced in the same manner as in Example 4, and the object to be polished was polished in the same manner as in Example 4 except that the object to be polished was a plate-shaped member made of polymethyl methacrylate (PMMA). rice field. Table 1 shows the results.
  • Comparative Example 8 A polishing composition was produced in the same manner as in Comparative Example 5, and the object to be polished was polished in the same manner as in Example 4, except that the object to be polished was a plate-like member made of PMMA. Table 1 shows the results.
  • Comparative Example 9 A polishing composition was produced in the same manner as in Comparative Example 6, and the object to be polished was polished in the same manner as in Example 4, except that the object to be polished was a plate-like member made of PMMA. Table 1 shows the results.
  • Example 7 A polishing composition was produced in the same manner as in Example 4, and the object to be polished was polished in the same manner as in Example 4, except that the object to be polished was a plate-like member made of polycarbonate (PC). Table 1 shows the results.
  • Comparative Example 10 A polishing composition was produced in the same manner as in Comparative Example 5, and the object to be polished was polished in the same manner as in Example 4, except that the object to be polished was a plate-like member made of PC. Table 1 shows the results.
  • Comparative Example 11 A polishing composition was produced in the same manner as in Comparative Example 6, and the object to be polished was polished in the same manner as in Example 4, except that the object to be polished was a plate-like member made of PC. Table 1 shows the results.
  • Examples 8 and 9 A polishing composition was produced in the same manner as in Example 4, except that the surfactant content was different, and an object to be polished was polished in the same manner as in Example 4. Table 1 shows the results.
  • Examples 1-9 had a high polishing rate. Further, the surface roughness Ra of the polished surface of the object to be polished after polishing was small, and the surface of the object to be polished made of resin could be polished flat and smooth. On the other hand, in Comparative Examples 1-11, the polishing rate was low and the surface roughness Ra of the surface to be polished was small compared to the corresponding Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂製の研磨対象物を高い研磨速度で研磨することが可能であるとともに、樹脂製の研磨対象物の表面を平坦、平滑に研磨することが可能な研磨用組成物を提供する。研磨用組成物は、砥粒と界面活性剤と水とを含有し、界面活性剤は、炭素-炭素三重結合を有する下記化学式(1)のアセチレン化合物を含有する。下記化学式(1)中のR1、R2、R3、及びR4はそれぞれ独立して水素原子又は炭素数1以上20以下の置換若しくは無置換のアルキル基を示し、R5及びR6はそれぞれ独立して炭素数1以上5以下の置換若しくは無置換のアルキレン基を示し、mは1以上の整数であり、nは0以上の整数であり、m+nは50以下である。この研磨用組成物は、樹脂製の研磨対象物の研磨に使用される。

Description

研磨用組成物及び研磨方法
 本発明は研磨用組成物及び研磨方法に関する。
 樹脂製の研磨対象物の表面を研磨する際に使用される研磨用組成物には、研磨対象物を迅速に研磨する能力(すなわち、高い研磨速度)と、研磨対象物の表面を平坦、平滑に研磨する能力が要求される。
国際公開第2020/122191号
 例えば特許文献1には、上記要求を満たす研磨用組成物が開示されている。しかしながら、樹脂製の研磨対象物の表面を研磨する際に使用される研磨用組成物には、研磨対象物を迅速に研磨する能力と研磨対象物の表面を平坦、平滑に研磨する能力のさらなる向上が望まれていた。
 本発明は、樹脂製の研磨対象物を高い研磨速度で研磨することが可能であるとともに、樹脂製の研磨対象物の表面を平坦、平滑に研磨することが可能な研磨用組成物及び研磨方法を提供することを課題とする。
 本発明の一態様に係る研磨用組成物は、樹脂製の研磨対象物の研磨に使用される研磨用組成物であって、砥粒と界面活性剤と水とを含有し、界面活性剤は、炭素-炭素三重結合を有する下記化学式(1)のアセチレン化合物を含有し、下記化学式(1)中のR1、R2、R3、及びR4はそれぞれ独立して水素原子又は炭素数1以上20以下の置換若しくは無置換のアルキル基を示し、R5及びR6はそれぞれ独立して炭素数1以上5以下の置換若しくは無置換のアルキレン基を示し、mは1以上の整数であり、nは0以上の整数であり、m+nは50以下であることを要旨とする。
Figure JPOXMLDOC01-appb-C000002
 また、本発明の他の態様に係る研磨方法は、上記一態様に係る研磨用組成物を用いて樹脂製の研磨対象物を研磨する研磨工程を有することを要旨とする。
 本発明によれば、樹脂製の研磨対象物を高い研磨速度で研磨することが可能であるとともに、樹脂製の研磨対象物の表面を平坦、平滑に研磨することが可能である。
 本発明の一実施形態について詳細に説明する。なお、以下の実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、以下の実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本実施形態に係る研磨用組成物は、樹脂製の研磨対象物の研磨に使用される研磨用組成物であって、砥粒と界面活性剤と水とを含有する。この界面活性剤は、炭素-炭素三重結合を有するアセチレン化合物を含有する。このアセチレン化合物は、下記化学式(1)で表される化合物であり、下記化学式(1)中のR1、R2、R3、及びR4はそれぞれ独立して水素原子又は炭素数1以上20以下の置換若しくは無置換のアルキル基を示し、R5及びR6はそれぞれ独立して炭素数1以上5以下の置換若しくは無置換のアルキレン基を示す。また、mは1以上の整数であり、nは0以上の整数であり、m+nは50以下である。
Figure JPOXMLDOC01-appb-C000003
 本実施形態に係る研磨方法は、上記本実施形態に係る研磨用組成物を用いて樹脂製の研磨対象物を研磨する研磨工程を有する研磨方法である。
 本実施形態に係る研磨用組成物は、樹脂製の研磨対象物を迅速に研磨する能力が優れているとともに、樹脂製の研磨対象物の表面を平坦、平滑に研磨する能力が優れている。そのため、本実施形態に係る研磨用組成物を用いて樹脂製の研磨対象物を研磨すれば、樹脂製の研磨対象物を高い研磨速度で研磨することが可能であるとともに、樹脂製の研磨対象物の表面を平坦、平滑に研磨することが可能である。よって、表面が平坦、平滑(例えば、表面粗さRaが小さい、スクラッチ等の欠陥が少ない)に仕上げられた樹脂製の製品を効率よく製造することができる。
 以下に、本実施形態に係る研磨用組成物及び研磨方法について詳細に説明する。
1.研磨対象物について
 本実施形態に係る研磨用組成物及び研磨方法が適用される研磨対象物の種類は、樹脂製であれば特に限定されるものではなく、全体が樹脂で形成された部材(樹脂製部材)でもよいし、一部分が樹脂で形成された部材でもよい。一部分が樹脂で形成された部材の例としては、基材の表面に樹脂皮膜が被覆されてなる部材が挙げられる。
 また、樹脂の種類は特に限定されるものではなく、例えば、熱可塑性樹脂、熱硬化性樹脂が挙げられる。熱可塑性樹脂の例としては、フッ素樹脂、アクリル樹脂(例えば、ポリメチルアクリレート、ポリメチルメタクリレート)、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド、ポリスチレン、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、アクリロニトリル・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン共重合体、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアセタール、ポリフェニルエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニルサルファイド、ポリアリレート、ポリエーテルイミド、ポリエーテルエーテルケトン、液晶ポリマー、超高分子量ポリエチレン、ウレタン樹脂が挙げられる。
 フッ素樹脂の例としては、ポリテトラフルオロエチレン(PTFE)などの完全フッ素化樹脂や、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)などの部分フッ素化樹脂や、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)などのフッ素化樹脂共重合体が挙げられる。
 熱硬化性樹脂の例としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、エポキシ樹脂、シリコン樹脂、ポリウレタンが挙げられる。
 これらの樹脂の中でも、フッ素樹脂、アクリル樹脂、ポリカーボネートを研磨する用途に対して、本実施形態に係る研磨用組成物及び研磨方法は特に好適である。
2.界面活性剤について
 本実施形態に係る研磨用組成物は界面活性剤を含有し、この界面活性剤は、上記化学式(1)で表されるアセチレン化合物を含有する。化学式(1)で表されるアセチレン化合物の作用によって樹脂の表面が親水化され、接触角が小さくなる。その結果、樹脂製の研磨対象物の表面及び研磨パッドに対する研磨用組成物の付着量が向上するため、研磨対象物を高い研磨速度で研磨することが可能となることに加えて、樹脂製の研磨対象物の表面に対して研磨用組成物が均一に付着するため、研磨対象物の表面が均一に研磨されやすくなり、研磨対象物の表面を平坦、平滑に研磨することが可能となる。
 このような作用効果は、アセチレン化合物が、砥粒、樹脂製の研磨対象物、及び研磨パッドに吸着することにより、砥粒、樹脂製の研磨対象物、及び研磨パッドの間のバインダーとして働くために奏されると考えられる。なお、この作用効果の上記発現メカニズムは推測である。また、本発明は上記発現メカニズムに限定されるものではない。
 よって、本実施形態に係る研磨用組成物を用いて研磨を行えば、接触角が90°以上である高撥水性の樹脂であっても、化学式(1)で表されるアセチレン化合物の作用によって樹脂の表面が親水化され、接触角が90°未満となる。そのため、高撥水性樹脂製の研磨対象物を高い研磨速度で研磨することが可能であるとともに、高撥水性樹脂製の研磨対象物の表面を平坦、平滑に研磨することが可能である。高撥水性の樹脂の例としては、前述したフッ素樹脂が挙げられる。
 もちろん、接触角が90°未満である低撥水性の樹脂にも、本実施形態に係る研磨用組成物を適用可能であり、低撥水性樹脂製の研磨対象物を高い研磨速度で研磨することが可能であるとともに、低撥水性樹脂製の研磨対象物の表面を平坦、平滑に研磨することが可能である。
 化学式(1)で表されるアセチレン化合物は、樹脂の接触角を10°以上55°以下小さくするものであることが好ましく、樹脂の接触角を10°以上45°以下小さくするものであることがより好ましい。研磨対象物が高撥水性樹脂である場合、化学式(1)で表されるアセチレン化合物は、樹脂の接触角を20°以上45°以下小さくするものであることがより好ましい。
 さらに、低硬度且つ高弾性の樹脂、つまり軟らかさと靱性を有する樹脂にも、本実施形態に係る研磨用組成物を適用可能であり、低硬度且つ高弾性の樹脂製の研磨対象物を高い研磨速度で研磨することが可能であるとともに、低硬度且つ高弾性の樹脂製の研磨対象物の表面を平坦、平滑に研磨することが可能である。
 ここで低硬度の樹脂とは、JIS K7202-2に規定されたロックウェル硬さがHRM65以下である樹脂を意味する。なお、「HRM」の「HR」はロックウェル硬さを示し、「M」は硬さスケールを示す。また、高弾性の樹脂とは、引張弾性率が2.8GPa以下である樹脂を意味する。
 低硬度且つ高弾性の樹脂の具体例としては、ポリカーボネート(HRM56、引張弾性率2.1GPa)、エポキシ樹脂(HRM45、引張弾性率2.2GPa)、ポリテトラフルオロエチレン(HRM19、引張弾性率0.6GPa)が挙げられる。
 化学式(1)で表されるアセチレン化合物のHLB値は、4以上19以下であることが好ましく、7以上18以下であることがより好ましく、10以上18以下であることがさらに好ましい。HLB値がこの範囲内であれば、高い研磨速度を得ることができるとともに、研磨後の研磨対象物の表面がより平坦、平滑となる。なお、HLB値が4以上であれば、アセチレン化合物が水に分散しやすく、HLB値が10以上であれば、アセチレン化合物が水に溶解しやすい。
 また、化学式(1)で表されるアセチレン化合物のHLB値は、10以上15以下であることが特に好ましい。HLB値がこの範囲内であれば、高い研磨速度を得ることができるとともに、研磨後の研磨対象物の表面がより平坦、平滑となることに加えて、研磨用組成物の泡立ちを抑制でき、研磨用組成物の取り扱いも容易となる。
 化学式(1)で表されるアセチレン化合物は、化学式(1)から分かるように、一分子中に1個のアセチレン基を有し且つアルキレンオキサイドが付加されたアセチレングリコール型の化合物である。化学式(1)で表されるアセチレン化合物としては、研磨対象物の表面を平坦、平滑に研磨する観点から、ノニオン性の化合物がより好ましい。化学式(1)で表されるアセチレン化合物は、一種を単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 化学式(1)中のR1、R2、R3、及びR4はそれぞれ独立して水素原子又は炭素数1以上20以下の置換若しくは無置換のアルキル基であるが、アルキル基の炭素数は、1以上でもよく、2以上でもよく、3以上でもよく、また20以下でもよく、18以下でもよく、16以下でもよく、15以下でもよく、12以下でもよく、10以下でもよく、8以下でもよい。
 アルキル基の具体例としては、メチル基、エチル基、プロピル基、iso-プロピル基、ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、iso-ペンチル基、neo-ペンチル基、tert-ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ラウリル基、ミリスチル基、パルミチル基、ステアリル基等が挙げられる。R1、R2、R3、及びR4は、全て同一であってもよいし、一部が同一で他部が異なっていてもよいし、全て異なっていてもよい。
 化学式(1)中のR5及びR6は、それぞれ独立して炭素数1以上5以下の置換若しくは無置換のアルキレン基であるが、アルキレン基の炭素数は、1以上でもよく、2以上でもよく、3以上でもよく、また4以下でもよく、3以下でもよい。アルキレン基の具体例としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基等が挙げられる。R5及びR6は、同一であってもよいし、異なっていてもよい。
 化学式(1)中のmは1以上の整数であり、nは0以上の整数であり、m+nは50以下であるが、m+nは、1以上でもよく、3以上でもよく、5以上でもよく、10以上でもよく、15以上でもよく、20以上でもよく、また50以下でもよく、30以下でもよく、22以下でもよく、16以下でもよく、12以下でもよく、8以下でもよく、4以下(例えば3以下)でもよい。mとnは、同一であってもよいし、異なっていてもよい。
 化学式(1)で表されるアセチレン化合物は、一分子中にm個のR5を有するが、m個のR5は全て同種のアルキレン基であってもよいし、複数種のアルキレン基を有していてもよい。例えば、R5がエチレン基とプロピレン基であってもよく、その場合は、R5におけるエチレン基の個数とプロピレン基の個数の和がm個となる。
 R6についても同様である。すなわち、化学式(1)で表されるアセチレン化合物は、一分子中にn個のR6を有するが、n個のR6は全て同種のアルキレン基であってもよいし、複数種のアルキレン基を有していてもよい。例えば、R6がエチレン基とプロピレン基であってもよく、その場合は、R6におけるエチレン基の個数とプロピレン基の個数の和がn個となる。
 なお、化学式(1)で表されるアセチレン化合物を製造する際においては、m及びnを完全に制御することは難しい。そのため、化学式(1)で表されるアセチレン化合物を製造すると、通常は、m+nの数値が異なる複数種のアセチレン化合物の混合物が得られる。よって、本実施形態に係る研磨用組成物は、化学式(1)で表されるアセチレン化合物のうち複数種を含有していてもよい。
 また、本実施形態に係る研磨用組成物は、化学式(1)においてm及びnがいずれも0であるアセチレン化合物を含有していてもよい。
 さらに、化学式(1)におけるm+nの数値の平均値(平均付加モル数)は、1以上でもよく、3以上でもよく、5以上でもよく、10以上でもよく、15以上でもよく、20以上でもよく、また50以下でもよく、30以下でもよく、22以下でもよく、16以下でもよく、12以下でもよく、8以下でもよく、4以下(例えば3以下)でもよい。
 化学式(1)で表されるアセチレン化合物の中でも特に好ましい例として、下記化学式(2)で表されるアセチレン化合物が挙げられる。化学式(2)で表されるアセチレン化合物は、化学式(1)中のR1及びR4がイソブチル基で、R2及びR3がメチル基で、R5及びR6がエチレン基である化合物である。化学式(2)中のpは、化学式(1)中のmと同様であり、化学式(2)中のqは、化学式(1)中のnと同様である。
Figure JPOXMLDOC01-appb-C000004
 化学式(1)で表されるアセチレン化合物の分子量は特に限定されるものではないが、研磨用組成物中でその作用を十分に発揮する分子量であることが好ましい。化学式(1)で表されるアセチレン化合物の分子量は、例えば、250以上でもよいし、300以上でもよいし、400以上でもよいし、500以上でもよいし、700以上でもよいし、1200以上でもよいし、1500以上でもよい。また、化学式(1)で表されるアセチレン化合物の分子量は、例えば、3000以下でもよいし、2000以下でもよいし、1400以下でもよいし、1000以下でもよいし、600以下でもよい。化学式(1)で表されるアセチレン化合物の分子量としては、化学式から算出される分子量が採用される。
 本実施形態に係る研磨用組成物における化学式(1)で表されるアセチレン化合物の含有率は、化学式(1)で表されるアセチレン化合物の添加効果を発現させる観点から、0.001質量%以上とすることが好ましく、0.005質量%以上とすることがより好ましく、0.01質量%以上とすることがさらに好ましい。
 また、本実施形態に係る研磨用組成物における化学式(1)で表されるアセチレン化合物の含有率は、化学式(1)で表されるアセチレン化合物の洗浄性等の観点から、0.2質量%以下とすることが好ましく、0.15質量%以下とすることがより好ましく、0.1質量%以下とすることがさらに好ましく、0.09質量%以下とすることが特に好ましい。
 よって、本実施形態に係る研磨用組成物における化学式(1)で表されるアセチレン化合物の含有率は、0.001質量%以上0.2質量%以下であることが好ましく、0.005質量%以上0.15質量%以下であることがより好ましく、0.01質量%以上0.1質量%以下であることがさらに好ましく、0.01質量%以上0.09質量%以下であることが特に好ましい。
 本実施形態に係る研磨用組成物における化学式(1)で表されるアセチレン化合物の上記含有率は、例えば、研磨対象物に供給される研磨液(ワーキングスラリー)における含有率に好ましく適用され得る。
 本実施形態に係る研磨用組成物に含有される界面活性剤は、化学式(1)で表されるアセチレン化合物のみで構成されていてもよいが、化学式(1)で表されるアセチレン化合物と他種の界面活性剤とで構成されていてもよい。他種の界面活性剤としては、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、及び非イオン性界面活性剤のいずれも使用することができる。
 陰イオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル酢酸、ポリオキシエチレンアルキル硫酸エステル、アルキル硫酸エステル、ポリオキシエチレンアルキル硫酸、アルキル硫酸、アルキルベンゼンスルホン酸、アルキルリン酸エステル、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンスルホコハク酸、アルキルスルホコハク酸、アルキルナフタレンスルホン酸、アルキルジフェニルエーテルジスルホン酸、又はこれらの塩があげられる。
 また、陽イオン性界面活性剤の具体例としては、アルキルトリメチルアンモニウム塩、アルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルアミン塩があげられる。
 さらに、両性界面活性剤の具体例としては、アルキルベタイン、アルキルアミンオキシドがあげられる。
 さらに、非イオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミドがあげられる。
3.砥粒について
 本実施形態に係る研磨用組成物に含有される砥粒の種類は特に限定されるものではないが、例えば、アルミナ(Al23)、シリカ(SiO2)、酸化セリウム(CeO2)、ジルコニア(ZrO2)、チタニア(TiO2)、酸化鉄(FeO、Fe34、Fe23)、酸化マンガン(MnO、Mn34、Mn23、MnO2)等の金属酸化物からなる粒子を使用することができる。これらの砥粒の中では、アルミナ及びシリカが好ましく、アルミナがより好ましい。
 アルミナの種類は特に限定されるものではなく、例えば、α-アルミナ、δ-アルミナ、θ-アルミナ、κ-アルミナ、及び非晶質アルミナが挙げられる。α-アルミナを用いる場合のα化率は特に限定されるものではないが、30%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましい。α-アルミナを用いる場合のα化率は、100%以下であり、99%以下が好ましく、97%以下がより好ましい。この範囲であれば、良好な表面形状を保ちながら高い研磨速度を得ることができる。なお、α化率は、例えばX線回折測定による(113)面回折線の積分強度比から求めることができる。
 シリカの種類は特に限定されるものではないが、例えば、コロイダルシリカ、フュームドシリカ、ゾルゲル法シリカ、沈降法シリカ等があげられる。
 これらの砥粒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態に係る研磨用組成物に含有される砥粒の粒子径は、特に限定されるものではないが、以下のとおりであることが好ましい。
 砥粒の体積基準の積算粒子径分布における50%粒子径(小粒径側からの積算度数が50%となる2次粒子径であり、以下「D50」と記すこともある。)は、特に限定されるものではないが、研磨速度の観点からは、砥粒がアルミナである場合は、0.1μm以上であることが好ましく、0.15μm以上であることがより好ましく、0.2μm以上であることがさらに好ましい。また、砥粒がシリカである場合は、D50は0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.15μm以上であることがさらに好ましい。
 さらに、砥粒のD50は、研磨後の研磨対象物の表面性状(すなわち、表面の平坦性、平滑性)の観点からは、砥粒がアルミナである場合は、5μm以下であることが好ましく、4μm以下であってもよく、3μm以下であってもよく、1.5μm以下であってもよく、1μm以下であることがより好ましく、0.5μm以下であることがさらに好ましく、0.3μm以下であることが特に好ましい。また、砥粒がシリカである場合は、D50は、1μm以下であることが好ましく、0.5μm以下であってもよく、0.3μm以下であることがより好ましく、0.25μm以下であることがさらに好ましく、0.2μm以下であることが特に好ましい。なお、本発明において体積基準の積算粒子径分布は、レーザー回折散乱式粒子径分布測定装置で測定したものである。
 砥粒の体積基準の積算粒子径分布における10%粒子径(小粒径側からの積算度数が10%となる2次粒子径であり、以下「D10」と記すこともある。)は、特に限定されるものではないが、砥粒がアルミナである場合は、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.15以上であることがさらに好ましい。また、砥粒がアルミナである場合は、D10は、1μm以下であることが好ましく、0.7μm以下であることがより好ましく、0.5μm以下であることがさらに好ましく、0.3μm以下であることがより一層好ましく、0.25μm以下であることが特に好ましく、0.2μm以下であることが最も好ましい。砥粒のD10がこの範囲内であれば、研磨後の研磨対象物の表面がより平坦、平滑となる。
 砥粒の体積基準の積算粒子径分布における90%粒子径(小粒径側からの積算度数が90%となる2次粒子径であり、以下「D90」と記すこともある。)は、特に限定されるものではないが、砥粒がアルミナである場合は、0.15μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.25以上であることがさらに好ましく、0.3μm以上であることが特に好ましい。砥粒のD90がこの範囲内であれば、高い研磨速度を得ることができる。
 また、砥粒がアルミナである場合は、D90は、8μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることがさらに好ましく、1μm以下であることが一層好ましく、0.6μm以下であることがより一層好ましく、0.5μm以下であることが特に好ましく、0.4μm以下であることが最も好ましい。砥粒のD90がこの範囲内であれば、研磨後の研磨対象物の表面がより平坦、平滑となる。
 砥粒のD50に対するD90の比率(D90/D50)は、砥粒がアルミナである場合は、1.1以上であることが好ましく、1.2以上であることがより好ましい。D90/D50がこの範囲内であれば、高い研磨速度を得ることができる。また、D90/D50は、砥粒がアルミナである場合は、2.5以下であることが好ましく、1.7以下であることがより好ましく、1.5以下であることがさらに好ましい。D90/D50がこの範囲内であれば、研磨後の研磨対象物の表面がより平坦、平滑となる。
 砥粒のD10に対するD90の比率(D90/D10)は、砥粒がアルミナである場合は、1.2以上であることが好ましく、1.3以上であることがより好ましく、1.5以上であることがさらに好ましく、1.7以上であることが特に好ましい。D90/D10がこの範囲内であれば、高い研磨速度を得ることができる。また、D90/D10は、砥粒がアルミナである場合は、6.5以下であることが好ましく、3.0以下であることがより好ましく、2.5以下であることがさらに好ましく、2.1以下であることが特に好ましい。D90/D10がこの範囲内であれば、研磨後の研磨対象物の表面がより平坦、平滑となる。
 砥粒のD10に対するD50の比率(D50/D10)は、砥粒がアルミナである場合は、1.1以上であることが好ましく、1.2以上であることがより好ましい。D50/D10がこの範囲内であれば、高い研磨速度を得ることができる。また、D50/D10は、砥粒がアルミナである場合は、2.0以下であることが好ましく、1.8以下であることがより好ましく、1.6以下であることがさらに好ましい。D50/D10がこの範囲内であれば、研磨後の研磨対象物の表面がより平坦、平滑となる。
 また、砥粒のBET比表面積については特に限定されるものではないが、砥粒がアルミナである場合は、5m2/g以上であることが好ましく、10m2/g以上であることがより好ましく、15m2/g以上であることがさらに好ましい。また、砥粒のBET比表面積は、250m2/g以下であることが好ましく、90m2/g以下であることがより好ましく、50m2/g以下であることがさらに好ましく、25m2/g以下であることが特に好ましい。砥粒のBET比表面積がこの範囲内であれば、高い研磨速度を得ることができるとともに、研磨後の研磨対象物の表面がより平坦、平滑となる。
 なお、砥粒のBET比表面積は、例えば、マイクロメリテックス社製のFlowSorb II 2300を用いて測定することができる。砥粒に吸着させるガスとしては、窒素ガス(N2)、アルゴン(Ar)、クリプトン(Kr)等を使用することができる。
 また、本実施形態に係る研磨用組成物中の砥粒の含有率は特に限定されるものではないが、砥粒がアルミナである場合は、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがさらに好ましい。また、砥粒がシリカである場合は、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがさらに好ましい。砥粒の含有率がこの範囲内であれば、高い研磨速度を得ることができる。
 また、本実施形態に係る研磨用組成物中の砥粒の含有率は、砥粒がアルミナである場合は、40質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。また、砥粒がシリカである場合は、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、25質量%以下であることがさらに好ましい。砥粒の含有率がこの範囲内であれば、研磨後の研磨対象物のスクラッチを低減することができる。また、研磨用組成物のコストを抑制することもできる。
4.研磨用組成物のpHについて
 本実施形態の研磨用組成物のpHは、特に限定されるものではないが、13以下であることが好ましく、12以下であることがより好ましい。また、本実施形態の研磨用組成物のpHは、2以上であることが好ましく、3以上であることがより好ましい。pHが上記の範囲内であれば、高い研磨速度を得ることができる。また、pHが上記範囲内である研磨用組成物は比較的安全性が高いため、より安全に取り扱うことができる。
 また、本実施形態に係る研磨用組成物のpHは、7以下であることが好ましく、7未満であることがより好ましい(すなわち、酸性であることがより好ましい。)。
 砥粒がアルミナである場合に研磨用組成物のpHが7未満であると、砥粒のゼータ電位が正の値となるため、ゼータ電位が負の値である研磨対象物の表面に砥粒が吸着し易くなり、研磨速度が向上する。また、砥粒のゼータ電位が正の値となるため、砥粒同士が反発して凝集し難くなり、砥粒の分散性が良好となる。
 本実施形態に係る研磨用組成物のpHの調整は、添加剤であるpH調整剤によって行ってもよい。pH調整剤については後に詳述する。
5.水について
 本実施形態に係る研磨用組成物は、砥粒、界面活性剤、及び水を含有するスラリーである。水は、研磨用組成物の各成分(砥粒、界面活性剤、添加剤等)を分散又は溶解するための分散媒又は溶媒として機能する。この水には、1種又は2種以上の有機溶剤を混合してもよい。
 本実施形態に係る研磨用組成物を構成する各成分の作用を阻害することを防止するという観点から、不純物をできる限り含有しない水を用いることが好ましい。具体的には、イオン交換樹脂にて不純物イオンを除去した後にフィルタを通して異物を除去した純水や超純水、あるいは蒸留水が好ましい。
 研磨用組成物中の水の含有率は特に限定されるものではないが、40質量%以上であってもよく、より好ましくは50質量%以上、さらに好ましくは60質量%以上(例えば70質量%以上)である。また、分散媒又は溶媒として、水と水以外の溶剤の混合溶剤を用いた場合は、水と水以外の溶剤の割合は、100:0~50:50であってもよく、99:1~60:40であってもよい。
6.添加剤について
 本実施形態に係る研磨用組成物は、その性能を向上させるために、必要に応じて、界面活性剤以外の添加剤をさらに含有していてもよい。添加剤としては、一般的な研磨用組成物に含有される公知の添加剤を使用することができる。例えば、pH調整剤、酸化剤、研磨促進剤、水溶性高分子、キレート剤、分散助剤、防腐剤、防カビ剤等の各種添加剤を添加してもよい。
6-1 pH調整剤について
 本実施形態に係る研磨用組成物には、pHを所望の値に調整するために、必要に応じてpH調整剤を添加してもよい。pH調整剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。pH調整剤としては、公知の酸、塩基、又はそれらの塩を使用することができる。
 pH調整剤として使用できる酸の具体例としては、塩酸、硫酸、硝酸、フッ酸、ホウ酸、炭酸、次亜リン酸、亜リン酸、及びリン酸等の無機酸や、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、ジグリコール酸、2-フランカルボン酸、2,5-フランジカルボン酸、3-フランカルボン酸、2-テトラヒドロフランカルボン酸、メトキシ酢酸、メトキシフェニル酢酸、及びフェノキシ酢酸等の有機酸が挙げられる。
 pH調整剤として無機酸を使用する場合は、硫酸、硝酸、塩酸、リン酸等が研磨速度向上の観点から好ましく、pH調整剤として有機酸を使用する場合は、グリコール酸、コハク酸、マレイン酸、クエン酸、酒石酸、リンゴ酸、グルコン酸、及びイタコン酸等が好ましい。
 pH調整剤として使用できる塩基としては、脂肪族アミン、芳香族アミン等のアミン、水酸化第四アンモニウム等の有機塩基、水酸化カリウム等のアルカリ金属の水酸化物、アルカリ土類金属の水酸化物、及びアンモニア等が挙げられる。これらの塩基の中でも、入手容易性から水酸化カリウム、アンモニアが好ましい。
 また、前記の酸の代わりに、又は前記の酸と組み合わせて、前記酸のアンモニウム塩やアルカリ金属塩等の塩をpH調整剤として用いてもよい。特に、弱酸と強塩基の塩、強酸と弱塩基の塩、又は弱酸と弱塩基の塩の場合には、pHの緩衝作用を期待することができ、さらに強酸と強塩基の塩の場合には、少量で、pHだけでなく電気伝導率の調整が可能である。
 pH調整剤の添加量は特に限定されるものではなく、研磨用組成物が所望のpHとなるように適宜調整すればよい。
6-2 酸化剤について
 本実施形態に係る研磨用組成物には、研磨対象物の表面を酸化するために、必要に応じて酸化剤を添加してもよい。酸化剤は研磨対象物の表面を酸化する作用を有し、研磨用組成物中に酸化剤を加えた場合は、研磨用組成物による研磨速度の向上効果がある。
 使用可能な酸化剤としては、例えば、過酸化物、硝酸、過マンガン酸カリウムが挙げられる。過酸化物の具体例としては、過酸化水素、過酢酸、過炭酸塩、過酸化尿素、過塩素酸塩、過硫酸塩(例えば過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム)が挙げられる。
6-3 研磨促進剤について
 研磨用組成物には研磨促進剤を添加してもよい。研磨促進剤は研磨対象物を化学的に研磨する役割を担い、研磨対象物の表面に作用することで著しく加工効率を高めることができる。研磨促進剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 研磨促進剤の中では、価数が1価の酸のアルミニウム塩が好ましく、研磨促進剤としての機能、及び、研磨対象物の被研磨面の面品質を向上する機能を有する。価数が1価の酸のアルミニウム塩の好ましい例としては、硝酸アルミニウム(Al(NO33)、塩化アルミニウム(AlCl3)が挙げられる。
 研磨用組成物中の価数が1価の酸のアルミニウム塩の含有率は、研磨用組成物の研磨能力をより確実に向上させるという観点から、0.01質量%以上であることが好ましく、2質量%以上であることがより好ましく、4質量%以上であることがさらに好ましく、4質量%超であることが特に好ましく、5質量%以上であることが最も好ましい。
 一方、価数が1価の酸のアルミニウム塩を大量に含有しても性能の大幅な向上は得られずコストの面で不利となるため、研磨用組成物中の価数が1価の酸のアルミニウム塩の含有率は、15質量%以下であることが好ましい。これらの含有率は、価数が1価の酸のアルミニウム塩が水和水を有する場合は、水和水を除いた含有率である。
 本実施形態に係る研磨用組成物は、硝酸アルミニウム、塩化アルミニウム以外の研磨促進剤を含有していてもよい。硝酸アルミニウム、塩化アルミニウム以外の研磨促進剤としては、無機酸、有機酸、及びこれらの酸の塩が挙げられる。
 無機酸の具体例としては、リン酸、硝酸、硫酸、塩酸、次亜リン酸、ホスホン酸、ホウ酸、スルファミン酸等が挙げられる。
 有機酸の具体例としては、クエン酸、マレイン酸、リンゴ酸、グリコール酸、コハク酸、イタコン酸、マロン酸、イミノ二酢酸、グルコン酸、乳酸、マンデル酸、酒石酸、クロトン酸、ニコチン酸、酢酸、アジピン酸、ギ酸、シュウ酸、プロピオン酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、シクロヘキサンカルボン酸、フェニル酢酸、安息香酸、クロトン酸、メタクリル酸、グルタル酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、グリコール酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ヒドロキシ酢酸、ヒドロキシ安息香酸、サリチル酸、イソクエン酸、メチレンコハク酸、没食子酸、アスコルビン酸、ニトロ酢酸、オキサロ酢酸、グリシン、アラニン、グルタミン酸、アスパラギン酸、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、フェニルアラニン、トリプトファン、チロシン、プロリン、シスチン、グルタミン、アスパラギン、リシン、アルギニン、ニコチン酸、ピコリン酸、メチルアシッドホスフェート、エチルアシッドホスフェート、エチルグリコールアシッドホスフェート、イソプロピルアシッドホスフェート、フィチン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、エタン-1-ヒドロキシ-1,1-ジホスホン酸、エタンヒドロキシ-1,1,2-トリホスホン酸、エタン-1,2-ジカルボキシ-1,2-ジホスホン酸、メタンヒドロキシホスホン酸、2-ホスホノブタン-1,2-ジカルボン酸、1-ホスホノブタン-2,3,4-トリカルボン酸、α-メチルホスホノコハク酸、アミノポリ(メチレンホスホン酸)、メタンスルホン酸、エタンスルホン酸、アミノエタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、2-ナフタレンスルホン酸等が挙げられる。
 これらの酸の塩の例としては、上記した無機酸や有機酸の、金属塩(例えば、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩)、アンモニウム塩(例えば、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩等の第四級アンモニウム塩)、アルカノールアミン塩(例えば、モノエタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩)等が挙げられる。
 塩の具体例としては、リン酸三カリウム、リン酸水素二カリウム、リン酸二水素カリウム、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム等のアルカリ金属リン酸塩及びアルカリ金属リン酸水素塩が挙げられる。また、塩の具体例としては、上記で例示した有機酸のアルカリ金属塩や、グルタミン酸二酢酸のアルカリ金属塩、ジエチレントリアミン五酢酸のアルカリ金属塩、ヒドロキシエチルエチレンジアミン三酢酸のアルカリ金属塩、トリエチレンテトラミン六酢酸のアルカリ金属塩が挙げられる。これらのアルカリ金属塩におけるアルカリ金属は、例えば、リチウム、ナトリウム、カリウム等である。
6-4 水溶性高分子について
 本実施形態に係る研磨用組成物には、水溶性高分子を添加してもよい。水溶性高分子の種類は特に限定されるものではなく、例えば、ポリアルキレンオキサイドアルキルエーテル、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール等のグリコール類や、2-ピロリドン基を有するピロリドン化合物(例えばポリ-N-ビニルピロリドン)や、カプロラクタム化合物が挙げられる。また、水溶性高分子としては、セルロース誘導体、デンプン誘導体、ポリアクリル酸(又はその塩)、ポリアクリルアミド、ポリビニルアルコール、ポリエチレンイミン、ポリアルキレンオキサイド等も挙げられる。これらの水溶性高分子の中では2-ピロリドン基を有するピロリドン化合物とカプロラクタム化合物がより好ましい。
 水溶性高分子の重量平均分子量は、好ましくは3000以上であり、より好ましくは5000以上であり、さらに好ましくは10000以上であり、特に好ましくは30000以上である。このような重量平均分子量を有する水溶性高分子は、スラリーの分散性を向上させる技術的効果を有する。また、水溶性高分子の重量平均分子量は、好ましくは50万以下、より好ましくは30万以下、さらに好ましくは10万以下である。このような重量平均分子量を有する水溶性高分子は、安定性が向上する技術的効果を有する。
 2-ピロリドン基を有するピロリドン化合物は、価数が1価の酸のアルミニウム塩と共に研磨用組成物に含有されることにより、樹脂の研磨促進に有効に働く。2-ピロリドン基を有するピロリドン化合物の種類は特に限定されるものではないが、例えば、N-オクチル-2-ピロリドン、N-ドデシル-2-ピロリドン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N-ヒドロキシエチル-2-ピロリドン、N-ブチル-2-ピロリドン、N-ヘキシル-2-ピロリドン、N-デシル-2-ピロリドン、N-オクタデシル-2-ピロリドン、N-ヘキサデシル-2-ピロリドン、ポリ-N-ビニルピロリドン、ポリ-N-ビニルピロリドンのコポリマーが挙げられる。これらの2-ピロリドン基を有するピロリドン化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 2-ピロリドン基を有するピロリドン化合物としては、ポリ-N-ビニルピロリドン(以下、「PVP」と記すこともある。)が好ましい。PVPの重量平均分子量は3000以上であることが好ましく、10000以上であることがより好ましい。また、PVPの重量平均分子量は60000以下であることが好ましく、50000以下であることがより好ましい。これらの範囲内の重量平均分子量を有するPVPは、様々な化学製品供給業者から容易に入手できる。
 本実施形態に係る研磨用組成物中の上記ピロリドン化合物の含有率は、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。また、本実施形態に係る研磨用組成物中の上記ピロリドン化合物の含有率は、5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
 カプロラクタム化合物は、ε-カプロラクタムと呼ばれる含窒素有機化合物であり、上記ピロリドン化合物の代替として使用することができる。本実施形態に係る研磨用組成物中のカプロラクタム化合物の含有率は、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることがさらに好ましい。また、本実施形態に係る研磨用組成物中のカプロラクタム化合物の含有率は、5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
6-5 キレート剤について
 本実施形態に係る研磨用組成物には、研磨系中の金属不純物成分を捕捉して錯体を形成することによって研磨対象物の金属汚染を抑制するために、必要に応じてキレート剤を添加してもよい。キレート剤の具体例としては、カルボン酸、アミン、有機ホスホン酸、アミノ酸等があげられる。
6-6 分散助剤について
 本実施形態に係る研磨用組成物には、砥粒の凝集体の再分散を容易にするために、必要に応じて分散助剤を添加してもよい。分散助剤の具体例としては、ピロリン酸塩やヘキサメタリン酸塩等の縮合リン酸塩等があげられる。
6-7 防腐剤、防カビ剤について
 本実施形態に係る研磨用組成物には、必要に応じて防腐剤や防カビ剤を添加してもよい。防腐剤、防カビ剤としては、例えば、2-メチル-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン等のイソチアゾリン系防腐剤や、パラオキシ安息香酸エステル類や、フェノキシエタノールがあげられる。
7.研磨用組成物の製造方法について
 本実施形態に係る研磨用組成物の製造方法は特に限定されるものではなく、砥粒と、上記アセチレン化合物と、所望により各種添加剤とを、水中で撹拌、混合することによって製造することができる。各成分を混合する際の温度は特に限定されるものではないが、10℃以上40℃以下が好ましく、溶解速度を向上させるために加熱してもよい。また、混合時間も特に限定されない。
 本実施形態に係る研磨用組成物は、一剤型であってもよいし、研磨用組成物の成分の一部又は全部を任意の比率で混合した二剤型以上の多剤型であってもよい。また、本実施形態に係る研磨用組成物は、研磨用組成物の原液を水で例えば10倍以上に希釈することにより調製されてもよい。研磨用組成物が二剤型である場合には、研磨用組成物の原料となる二つの原料組成物の混合と希釈の順序は任意である。例えば、一方の原料組成物を水で希釈した後、他方の原料組成物と混合してもよいし、両方の原料組成物の混合と水での希釈を同時に行ってもよいし、あるいは、両方の原料組成物を混合した後に水で希釈してもよい。
8.研磨装置及び研磨方法について
 本実施形態に係る研磨用組成物を用いて樹脂製の研磨対象物を研磨する方法や条件は特に限定されるものではなく、一般的な研磨の方法、条件の範囲内において研磨対象物の研磨に好適な方法、条件を適宜選択して研磨を行えばよい。また、研磨装置としては、一般的な片面研磨装置や両面研磨装置が使用可能である。
 片面研磨装置を用いて研磨する場合には、キャリアと呼ばれる保持具を用いて研磨対象物を保持し、研磨対象物と研磨パッドとの間に研磨用組成物を介在させて、研磨パッドが貼付された定盤を研磨対象物の片面に押しつけ、定盤を回転させることにより研磨対象物の片面を研磨する。
 両面研磨装置を用いて研磨する場合には、キャリアを用いて研磨対象物を保持し、研磨対象物と研磨パッドとの間に研磨用組成物を介在させて、研磨パッドが貼付された定盤を研磨対象物の両面に押しつけ、研磨パッドと研磨対象物を相反する方向に回転させることにより研磨対象物の両面を研磨する。
 いずれの研磨装置を用いた場合でも、研磨パッド及び研磨用組成物と研磨対象物との間の摩擦による物理的作用と、研磨用組成物が研磨対象物にもたらす化学的作用によって、研磨対象物は研磨される。
 研磨パッドの種類は特に限定されるものではなく、材質、厚さ、硬度等の物性が種々異なるものを用いることができる。研磨パッドの材質としては、例えば、ポリウレタン、エポキシ樹脂、不織布、スウェード等が挙げられる。また、研磨パッドには、研磨用組成物が溜まるような溝が形成されていてもよい。
〔実施例〕
 以下に実施例及び比較例を示し、本発明をさらに具体的に説明する。
(実施例1)
 砥粒、非イオン性界面活性剤、及び水を混合した後に、pH調整剤(硝酸又は水酸化カリウム水溶液)を添加することによりpHを3.2に調整して、実施例1の研磨用組成物を製造した。
 砥粒としては、D50が0.7μmであるアルミナを使用した。研磨用組成物中の砥粒の含有率は、15質量%である。界面活性剤としては、化学式(2)で表されるアセチレン化合物を使用した。このアセチレン化合物のHLB値は8である。HLB値は、化学式(2)中のp及びqの数値により調整することができる。研磨用組成物中の界面活性剤の含有率は、0.05質量%である。
 次に、上記の研磨用組成物を使用して、樹脂製の研磨対象物の表面の研磨を行った。研磨対象物は、ポリテトラフルオロエチレン(PTFE)製の板状部材である。研磨条件は以下の通りである。
  研磨装置:Engis社製片面研磨装置EJ-380IN(定盤径380mm)
  研磨パッド:スウェード製研磨パッド(フジボウ愛媛株式会社製のN17(HD)NX_202U)
  研磨荷重:9.8kPa(100gf/cm2
  定盤の回転速度:80min-1
  研磨速度(線速度):95.5m/min
  研磨時間:5min
  研磨用組成物の供給速度:15mL/min
 研磨が終了したら、研磨した研磨対象物の被研磨面の表面粗さRa及び静的接触角を測定した。研磨後の研磨対象物の被研磨面の表面粗さRaは、株式会社キーエンス製の測定装置LaserMicroscopeVK-X200を使用して視野角284×213μmの条件で測定した。また、研磨後の研磨対象物の被研磨面の静的接触角は、株式会社マツボー製の携帯式接触角計PG-X+(水の滴下量40μL)を使用して測定した。さらに、研磨前後の研磨対象物の厚さを測定し、厚さの差を研磨時間で除することにより、研磨速度を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
(実施例2、3)
 使用した非イオン性界面活性剤の種類が異なる点以外は実施例1と同様にして研磨用組成物を製造し、実施例1と同様にして研磨対象物の研磨を行った。使用した界面活性剤は、化学式(2)で表されるアセチレン化合物であるが、実施例1で使用したものとは化学式(2)中のp及びqの数値が異なる。そのため、HLB値が異なっている。結果を表1に示す。
(比較例1)
 界面活性剤を使用しない点以外は実施例1と同様にして研磨用組成物を製造し、実施例1と同様にして研磨対象物の研磨を行った。結果を表1に示す。
(比較例2-4)
 使用した非イオン性界面活性剤の種類が異なる点以外は実施例1と同様にして研磨用組成物を製造し、実施例1と同様にして研磨対象物の研磨を行った。使用した界面活性剤は、比較例2の場合はポリオキシエチレンアルキルエーテルであり、比較例3、4の場合はポリオキシアルキレンアルキルエーテルである。比較例3と比較例4とでは、界面活性剤のHLB値が異なる。結果を表1に示す。
(実施例4)
 砥粒、非イオン性界面活性剤、硝酸アルミニウム・9水和物(Al(NO33・9H2O)、PVP、及び水を混合した後に、pH調整剤(硝酸又は水酸化カリウム水溶液)を添加することによりpHを3.2に調整して、実施例4の研磨用組成物を製造した。
 砥粒としては、実施例1の場合と同一のアルミナを使用した。研磨用組成物中の砥粒の含有率は、15質量%である。界面活性剤としては、実施例1の場合と同一のアセチレン化合物を使用した。研磨用組成物中の界面活性剤の含有率は、0.05質量%である。研磨用組成物中の硝酸アルミニウム・9水和物の含有率は、10質量%である。研磨用組成物中のPVPの含有率は、0.05質量%である。
 次に、実施例4の研磨用組成物を使用して、樹脂製の研磨対象物の表面の研磨を行った。研磨対象物は、ポリテトラフルオロエチレン製の板状部材である。研磨条件は実施例1の場合と同一である。研磨が終了したら、実施例1の場合と同様にして、研磨した研磨対象物の被研磨面の表面粗さRa及び静的接触角を測定するとともに、研磨速度を算出した。結果を表1に示す。
(実施例5)
 使用した非イオン性界面活性剤の種類が異なる点以外は実施例4と同様にして研磨用組成物を製造し、実施例4と同様にして研磨対象物の研磨を行った。使用した界面活性剤は、実施例3の場合と同一のアセチレン化合物である。結果を表1に示す。
(比較例5)
 界面活性剤を使用しない点以外は実施例4と同様にして研磨用組成物を製造し、実施例4と同様にして研磨対象物の研磨を行った。結果を表1に示す。
(比較例6、7)
 使用した非イオン性界面活性剤の種類が異なる点以外は実施例4と同様にして研磨用組成物を製造し、実施例4と同様にして研磨対象物の研磨を行った。使用した界面活性剤は、比較例6は比較例2の場合と同一であり、比較例7は比較例4の場合と同一である。結果を表1に示す。
(実施例6)
 実施例4と同様にして研磨用組成物を製造し、研磨対象物がポリメタクリル酸メチル(PMMA)製の板状部材である点以外は実施例4と同様にして研磨対象物の研磨を行った。結果を表1に示す。
(比較例8)
 比較例5と同様にして研磨用組成物を製造し、研磨対象物がPMMA製の板状部材である点以外は実施例4と同様にして研磨対象物の研磨を行った。結果を表1に示す。
(比較例9)
 比較例6と同様にして研磨用組成物を製造し、研磨対象物がPMMA製の板状部材である点以外は実施例4と同様にして研磨対象物の研磨を行った。結果を表1に示す。
(実施例7)
 実施例4と同様にして研磨用組成物を製造し、研磨対象物がポリカーボネート(PC)製の板状部材である点以外は実施例4と同様にして研磨対象物の研磨を行った。結果を表1に示す。
(比較例10)
 比較例5と同様にして研磨用組成物を製造し、研磨対象物がPC製の板状部材である点以外は実施例4と同様にして研磨対象物の研磨を行った。結果を表1に示す。
(比較例11)
 比較例6と同様にして研磨用組成物を製造し、研磨対象物がPC製の板状部材である点以外は実施例4と同様にして研磨対象物の研磨を行った。結果を表1に示す。
(実施例8、9)
 界面活性剤の含有率が異なる点以外は実施例4と同様にして研磨用組成物を製造し、実施例4と同様にして研磨対象物の研磨を行った。結果を表1に示す。
 表1に示す結果から分かるように、実施例1-9は、研磨速度が高かった。また、研磨後の研磨対象物の被研磨面の表面粗さRaも小さく、樹脂製の研磨対象物の表面を平坦、平滑に研磨することができた。
 これに対して、比較例1-11は、対応する実施例と比べて、研磨速度が低く且つ被研磨面の表面粗さRaが小さかった。

Claims (9)

  1.  樹脂製の研磨対象物の研磨に使用される研磨用組成物であって、砥粒と界面活性剤と水とを含有し、前記界面活性剤は、炭素-炭素三重結合を有する下記化学式(1)のアセチレン化合物を含有し、下記化学式(1)中のR1、R2、R3、及びR4はそれぞれ独立して水素原子又は炭素数1以上20以下の置換若しくは無置換のアルキル基を示し、R5及びR6はそれぞれ独立して炭素数1以上5以下の置換若しくは無置換のアルキレン基を示し、mは1以上の整数であり、nは0以上の整数であり、m+nは50以下である研磨用組成物。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記砥粒がアルミナ及びシリカの少なくとも一方である請求項1に記載の研磨用組成物。
  3.  前記砥粒がアルミナである請求項1に記載の研磨用組成物。
  4.  前記アセチレン化合物のHLB値が10以上18以下である請求項1~3のいずれか一項に記載の研磨用組成物。
  5.  pHが7以下である請求項1~4のいずれか一項に記載の研磨用組成物。
  6.  価数が1価の酸のアルミニウム塩と、2-ピロリドン基を有するピロリドン化合物又はカプロラクタム化合物とをさらに含有する請求項1~5のいずれか一項に記載の研磨用組成物。
  7.  前記樹脂が、接触角が90°以上である高撥水性樹脂である請求項1~6のいずれか一項に記載の研磨用組成物。
  8.  前記樹脂が、ロックウェル硬さがHRM65以下で且つ引張弾性率が2.8GPa以下である低硬度且つ高弾性の樹脂である請求項1~6のいずれか一項に記載の研磨用組成物。
  9.  請求項1~8のいずれか一項に記載の研磨用組成物を用いて樹脂製の研磨対象物を研磨する研磨工程を有する研磨方法。
PCT/JP2022/002881 2021-03-30 2022-01-26 研磨用組成物及び研磨方法 WO2022209229A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/284,689 US20240084170A1 (en) 2021-03-30 2022-01-26 Polishing composition and polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021057427A JP2022154401A (ja) 2021-03-30 2021-03-30 研磨用組成物及び研磨方法
JP2021-057427 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209229A1 true WO2022209229A1 (ja) 2022-10-06

Family

ID=83458705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002881 WO2022209229A1 (ja) 2021-03-30 2022-01-26 研磨用組成物及び研磨方法

Country Status (4)

Country Link
US (1) US20240084170A1 (ja)
JP (1) JP2022154401A (ja)
TW (1) TW202300602A (ja)
WO (1) WO2022209229A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115886A (ja) * 2005-10-20 2007-05-10 Toshiba Corp Cu膜の研磨方法および半導体装置の製造方法
JP2015129217A (ja) * 2014-01-07 2015-07-16 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP2015203080A (ja) * 2014-04-15 2015-11-16 株式会社フジミインコーポレーテッド 研磨用組成物
JP2016183212A (ja) * 2015-03-25 2016-10-20 株式会社フジミインコーポレーテッド 研磨用組成物
WO2016208301A1 (ja) * 2015-06-26 2016-12-29 株式会社フジミインコーポレーテッド 研磨用組成物
WO2019167540A1 (ja) * 2018-02-28 2019-09-06 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法及び研磨方法
WO2020122191A1 (ja) * 2018-12-14 2020-06-18 株式会社フジミインコーポレーテッド 研磨用組成物及び合成樹脂研磨方法
JP6761554B1 (ja) * 2020-01-22 2020-09-23 日本酢ビ・ポバール株式会社 研磨用組成物
WO2020255602A1 (ja) * 2019-06-20 2020-12-24 富士フイルム株式会社 研磨液、及び、化学的機械的研磨方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115886A (ja) * 2005-10-20 2007-05-10 Toshiba Corp Cu膜の研磨方法および半導体装置の製造方法
JP2015129217A (ja) * 2014-01-07 2015-07-16 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP2015203080A (ja) * 2014-04-15 2015-11-16 株式会社フジミインコーポレーテッド 研磨用組成物
JP2016183212A (ja) * 2015-03-25 2016-10-20 株式会社フジミインコーポレーテッド 研磨用組成物
WO2016208301A1 (ja) * 2015-06-26 2016-12-29 株式会社フジミインコーポレーテッド 研磨用組成物
WO2019167540A1 (ja) * 2018-02-28 2019-09-06 株式会社フジミインコーポレーテッド 研磨用組成物、研磨用組成物の製造方法及び研磨方法
WO2020122191A1 (ja) * 2018-12-14 2020-06-18 株式会社フジミインコーポレーテッド 研磨用組成物及び合成樹脂研磨方法
WO2020255602A1 (ja) * 2019-06-20 2020-12-24 富士フイルム株式会社 研磨液、及び、化学的機械的研磨方法
JP6761554B1 (ja) * 2020-01-22 2020-09-23 日本酢ビ・ポバール株式会社 研磨用組成物

Also Published As

Publication number Publication date
US20240084170A1 (en) 2024-03-14
TW202300602A (zh) 2023-01-01
JP2022154401A (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
KR102702146B1 (ko) 연마용 조성물 및 실리콘 기판의 연마 방법
IL226558A (en) Composition and method for polysilicon polishing
JP6538368B2 (ja) 研磨用組成物及び研磨方法
JP6730859B2 (ja) 研磨用組成物および磁気ディスク基板製造方法
JP6864519B2 (ja) 研磨用組成物、磁気ディスク基板の製造方法および磁気ディスクの研磨方法
JP6564638B2 (ja) 研磨用組成物、磁気ディスク基板製造方法および磁気ディスク基板
EP2559060A2 (en) Composition and method for polishing bulk silicon
TWI837249B (zh) 研磨用組成物及合成樹脂研磨方法
JP6362385B2 (ja) 基板の製造方法および研磨用組成物
JP6637816B2 (ja) 研磨用組成物、基板の研磨方法および基板の製造方法
JP2018174010A (ja) 研磨用組成物および磁気ディスク基板の製造方法
JP6688129B2 (ja) 研磨用組成物、磁気ディスク基板の製造方法および磁気ディスク基板の研磨方法
WO2022209229A1 (ja) 研磨用組成物及び研磨方法
WO2017187689A1 (ja) 研磨材、研磨用組成物、及び研磨方法
JP2015209523A (ja) 有機膜研磨用組成物および研磨方法
JP7368997B2 (ja) 研磨用組成物
JP7058097B2 (ja) 研磨用組成物および磁気ディスク基板の製造方法
JP6637817B2 (ja) 磁気ディスク基板研磨用組成物、磁気ディスク基板の製造方法および研磨方法
JP2020055915A (ja) 研磨用組成物、基板の研磨方法および基板の製造方法
JP2019178302A (ja) 研磨用組成物、パッド表面調整用組成物およびその利用
JP7450439B2 (ja) 研磨用組成物および磁気ディスク基板の製造方法
JP6572082B2 (ja) 磁気ディスク基板用研磨組成物、磁気ディスク基板の製造方法および磁気ディスク基板
JP6656867B2 (ja) 磁気ディスク基板用研磨組成物、磁気ディスク基板の製造方法および磁気ディスク基板
JP6677558B2 (ja) 磁気ディスク基板研磨用組成物、磁気ディスク基板の製造方法および研磨方法
JP2020055914A (ja) 研磨用組成物、基板の研磨方法および基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779459

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18284689

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779459

Country of ref document: EP

Kind code of ref document: A1