WO2022208584A1 - 硬度算出装置、硬度測定装置及び硬度算出方法 - Google Patents

硬度算出装置、硬度測定装置及び硬度算出方法 Download PDF

Info

Publication number
WO2022208584A1
WO2022208584A1 PCT/JP2021/013213 JP2021013213W WO2022208584A1 WO 2022208584 A1 WO2022208584 A1 WO 2022208584A1 JP 2021013213 W JP2021013213 W JP 2021013213W WO 2022208584 A1 WO2022208584 A1 WO 2022208584A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardness
information
pressure
distance
measuring device
Prior art date
Application number
PCT/JP2021/013213
Other languages
English (en)
French (fr)
Inventor
明彦 山口
徹 中澤
靖久 根本
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to DE112021007409.1T priority Critical patent/DE112021007409T5/de
Priority to JP2023509899A priority patent/JPWO2022208584A1/ja
Priority to KR1020237030535A priority patent/KR20230138029A/ko
Priority to PCT/JP2021/013213 priority patent/WO2022208584A1/ja
Priority to US18/551,979 priority patent/US20240164639A1/en
Publication of WO2022208584A1 publication Critical patent/WO2022208584A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0053Detecting, measuring or recording by applying mechanical forces or stimuli by applying pressure, e.g. compression, indentation, palpation, grasping, gauging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/442Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6844Monitoring or controlling distance between sensor and tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0257Proximity sensors

Definitions

  • the present invention relates to a hardness calculation device, a hardness measurement device, and a hardness calculation method.
  • doctors may be able to quantitatively measure the modulus of elasticity by wearing the palpation device.
  • it may not be sufficient to measure the elastic modulus quantitatively, and periodic measurement may be required.
  • the patient has to go to the hospital, and there is a problem that the palpation by the doctor imposes a burden on the patient.
  • the present invention has been made in view of such circumstances, and aims to provide a hardness calculation device, a hardness measurement device, and a hardness calculation method that can easily calculate the hardness of a part of the body.
  • a hardness calculation device comprises: a distance measurement information acquisition unit that acquires distance measurement information indicating a distance to a reference position that is a part of an animal's body; , a pressure information acquisition unit that acquires pressure information indicating pressure when the contact portion is pressed against a target position that is a position different from the reference position; and the distance measurement information acquired by the distance measurement information acquisition unit. and the pressure information acquired by the pressure information acquisition unit, a calculation unit that calculates hardness information, which is information about the hardness of tissue present in the body of the animal at the target position, by the calculation unit and an output unit for outputting the calculated hardness information.
  • the distance measurement information acquisition unit acquires a plurality of the distance measurement information acquired at different instants
  • the pressure information acquisition unit acquires the distance measurement information acquires a plurality of the pressure information acquired at a moment corresponding to the moment at which is acquired
  • the calculating unit calculates the hardness information based on the acquired plurality of the distance measurement information and the plurality of the pressure information Calculate
  • the calculation unit sets the first hardness when the distance to the reference position is the first distance, and the distance to the reference position is the second distance. A second hardness in the case, which is different from the first hardness, is calculated.
  • the part of the animal body is a human eyelid
  • the first hardness is the hardness of the eyelid
  • the second hardness is It is the hardness of the eyeball.
  • a hardness measuring device includes the hardness calculating device described above, a ranging sensor that measures a distance to the reference position and outputs the ranging information as the ranging information to the ranging information acquisition unit; A pressure sensor that measures pressure when the contact portion is pressed against the target position and outputs the pressure information to the pressure information acquisition portion.
  • the pressure sensor includes a contact surface including the contact portion, and a deformation portion that deforms according to pressure when the contact surface contacts the target position. , a marker provided on the back side of the contact surface; and an imaging unit that captures an image of the marker from the back side of the contact surface.
  • the deformation section is made of a transparent material
  • the imaging section is configured to capture an image of the marker and an object existing on the contact surface side of the deformation section. Both are captured, and the output unit outputs both the hardness information and the captured image.
  • the distance measuring sensor measures the distance to the reference position in a non-contact manner.
  • the hardness measuring device further includes an orientation sensor that detects at least an inclination, and the output unit indicates the hardness information and the inclination detected when the hardness information is calculated. Output both information and
  • the calculation unit further includes a correction unit that corrects the hardness indicated by the calculated hardness information according to the information indicating the inclination.
  • a hardness measuring device includes: a diagnostic information acquiring unit that acquires diagnostic information that is information acquired according to the result of outputting the hardness information from the output unit; and a treatment device for performing the included treatment.
  • a hardness calculation method includes: a ranging information acquisition step of acquiring ranging information indicating a distance to a reference position which is a part of an animal's body; a contacting step of contacting a target position that is a position different from the reference position; a pressure information obtaining step of obtaining pressure information indicating a pressure applied to the target position by the contacting step; Hardness, which is information about the hardness of tissue present in the animal body at the target position, based on the distance measurement information acquired by the distance information acquisition step and the pressure information acquired by the pressure information acquisition step.
  • the hardness calculation method includes a calculating step of calculating information and an outputting step of outputting the hardness information calculated by the calculating step.
  • a hardness calculation device includes a distance measurement information acquisition unit that acquires distance measurement information indicating a distance to a reference position of an inspection object, and a part of the inspection object, the a pressure information acquisition unit that acquires pressure information indicating the pressure when the contact portion is pressed against a target position that is a position different from the reference position; the distance measurement information acquired by the distance measurement information acquisition unit; a calculation unit for calculating hardness information, which is information about the hardness of tissue present in the body of the animal at the target position, based on the pressure information acquired by the pressure information acquisition unit; and an output unit for outputting the hardness information.
  • the present invention it is possible to provide a hardness calculation device, a hardness measurement device, and a hardness calculation method that can easily calculate the hardness of a part of the body.
  • FIG. 5 is a diagram for explaining the relationship between the pressing amount and the force of the hardness calculation device according to the first embodiment; 4 is a flow chart showing a series of operations of the hardness calculation method according to the first embodiment; FIG. 10 is a diagram showing an example of a functional configuration of a tactile sensor according to a second embodiment; FIG.
  • FIG. 10 is a diagram for explaining markers included in a tactile sensor according to a second embodiment;
  • FIG. 10 is a diagram for explaining deformation of a marker when a contact portion of the tactile sensor according to the second embodiment contacts the eyelid;
  • FIG. 10 is a diagram for explaining a device for performing conceptual verification of the hardness measuring device according to the second embodiment;
  • FIG. 10 is a diagram for explaining a method for performing conceptual verification of the hardness measuring device according to the second embodiment;
  • FIG. 10 is a diagram for explaining an example of measurement results obtained by conceptual verification of the hardness measuring device according to the second embodiment;
  • FIG. 10 is a diagram for explaining markers included in a tactile sensor according to a second embodiment
  • FIG. 10 is a diagram for explaining deformation of a marker when a contact portion of the tactile sensor according to the second embodiment contacts the eyelid
  • FIG. 10 is a diagram for explaining a device for performing conceptual verification of the hardness measuring device according to the second embodiment
  • FIG. 10 is a diagram for explaining a method for
  • FIG. 13 is a diagram showing an example of a functional configuration of a hardness calculation device according to a third embodiment; FIG. It is a figure which shows an example of the functional structure of the hardness calculation apparatus which concerns on 4th Embodiment. It is a figure which shows an example of a functional structure of the hardness calculation apparatus which concerns on 5th Embodiment. It is a figure which shows an example of the diagnostic system which concerns on 6th Embodiment.
  • FIG. 13 is a diagram showing an example of a functional configuration of a hardness calculation device according to a sixth embodiment; FIG.
  • FIG. 1 is a diagram showing an outline of a hardness measuring device according to a first embodiment. An outline of the hardness measuring device 1 according to the first embodiment will be described with reference to the figure.
  • a hardness measuring device 1 measures the hardness of a part of an animal's body.
  • the part of the animal body broadly includes the hardness of the skin and internal tissues covered with the skin.
  • the animal's body part is a human eyelid or eyeball.
  • the same reference numerals are used for those having the same functions, and the description may be omitted.
  • FIG. 1 shows an example when the subject S uses the hardness measuring device 1 to measure the intraocular pressure of the subject S.
  • the subject S measures his own intraocular pressure by operating the hardness measuring device 1 himself. That is, in the present embodiment, the affected area is measured by the patient alone without the intervention of a doctor.
  • the subject S presses the probe portion of the hardness measuring device 1 against the position to be measured (target position) P2.
  • the force generated by a driving source such as a motor or a pump (not shown) may be used for the pressing.
  • the amount of pressing of the hardness measuring device 1 against the position P2 by the subject S should be sufficient to measure the intraocular pressure.
  • the hardness measuring device 1 measures the pressure when the probe is pressed against it. Further, the hardness measuring device 1 measures a distance L1 from a position P1 different from the position P2. The hardness measuring device 1 calculates the hardness at the position P2 from the relationship between the measured pressure and the distance L1.
  • the hardness at the position P2 may be the hardness of the skin surface (eg, eyelid) at the position P2, or the tissue existing inside the skin at the position P2 (eg, the eyeball). good.
  • FIG. 2 is a diagram showing an example of the functional configuration of the hardness measuring device according to the first embodiment. An example of the functional configuration of the hardness measuring device 1 will be described with reference to this figure.
  • the hardness measuring device 1 includes a housing portion 11 , a pressure sensor 12 , a distance measuring sensor 13 and a holding portion 14 .
  • the pressure sensor 12 has a contact surface (contact portion) 121 and measures the pressure (pressure) when the contact surface 121 is pressed against the target position to be measured.
  • the pressure sensor 12 may be, for example, a film-type pressure sensor that measures pressure from the contact area of electrodes, a gauge sensor that measures pressure from changes in gauge resistance on the diaphragm surface, or the like.
  • a distance sensor 13 measures the distance to the reference position.
  • the distance measuring sensor 13 is, for example, a non-contact sensor, and detects a light beam L2, which is a reflected light beam L1 emitted from a light emitting unit (not shown) and reflected by an object, to detect a distance to a reference position. Measure distance.
  • the ranging sensor 13 is a non-contact sensor, it may be, for example, an ultrasonic sensor or an infrared sensor.
  • the distance measurement sensor 13 is not limited to a non-contact type sensor, and may be a contact type sensor including a linear encoder or the like. By using a contact sensor, it may be possible to measure the distance with high accuracy.
  • the distance measuring sensor 13 may measure distances at a plurality of points.
  • the distance measuring sensor 13 may be able to measure the distance more accurately, for example, by averaging the distance information of a plurality of measured points.
  • the accommodation unit 11 accommodates the hardness calculation device 10 therein.
  • the hardness calculation device 10 calculates hardness based on the pressure measured by the pressure sensor 12 and the distance measured by the range sensor 13 .
  • the holding portion 14 is held by a user who uses the hardness calculation device 10 .
  • the user may be a person whose hardness of a part of the body is measured by the hardness calculation device 10, or a caregiver or a caregiver if the user is a person requiring care and does not have the measurement ability. It may be an assistant who assists the measurement.
  • FIG. 3 is a diagram illustrating an example of the functional configuration of the hardness calculation device according to the first embodiment; An example of the functional configuration of the hardness calculation device 10 will be described with reference to this figure.
  • the hardness calculation device 10 includes a distance information acquisition section (ranging information acquisition section) 110 , a pressure information acquisition section 120 , a calculation section 130 and an output section 140 .
  • the distance information acquisition unit 110 acquires the distance measurement information ID measured by the distance measurement sensor 13 .
  • the ranging information ID is information indicating the distance to a reference position, which is a part of the animal's body.
  • the distance measurement sensor 13 measures the distance to the reference position and outputs it as distance measurement information ID to the distance information acquisition section 110 . That is, the distance information acquisition unit 110 acquires distance measurement information indicating the distance to the reference position, which is a part of the animal's body.
  • the pressure information acquisition unit 120 acquires pressure information IP from the pressure sensor 12 .
  • the pressure information IP is information indicating pressure measured when the contact surface 121 of the probe is pressed against a target position that is different from the reference position.
  • the pressure sensor 12 measures the pressure when the contact portion is pressed against the target position, and outputs the pressure information IP to the pressure information acquisition unit 120 . That is, the pressure information acquiring unit 120 acquires pressure information IP indicating the pressure when the contact surface 121 is pressed against a target position which is a part of the body of the animal and is different from the reference position.
  • the calculation unit 130 calculates hardness information IR based on the distance measurement information ID acquired by the distance information acquisition unit 110 and the pressure information IP acquired by the pressure information acquisition unit 120 .
  • the hardness information IR is information about the hardness of tissue present in the animal body at the target position. That is, the calculation unit 130 calculates the hardness information IR, which is information about the hardness of tissue present in the body of the animal at the target position, based on the distance measurement information ID and the pressure information IP.
  • FIG. 4 is a diagram for explaining the relationship between the pressing amount and the force of the hardness calculation device according to the first embodiment.
  • An example of the hardness information IR calculated by the calculator 130 will be described with reference to FIG.
  • the horizontal axis represents “push amount” and the vertical axis represents “force”, showing the relationship between the amount of push and force.
  • the “push amount” indicates the distance by which the hardness measuring device 1 is pushed into the target position.
  • the “push amount” is derived based on the distance measurement information ID.
  • a “force” is the pressure at a target location.
  • “Force” is derived based on the pressure information IP.
  • the calculation unit 130 calculates a graph as shown in FIG. 4 by storing the relationship between the "pressing amount” and the "force” in association with each other, and calculates the slope of the graph as the hardness information IR.
  • the hardness calculation device 10 continuously acquires the distance measurement information ID and the pressure information IP in order to acquire the correspondence relationship between the "pressing amount" and the "force". That is, the distance information acquisition unit 110 acquires a plurality of distance measurement information IDs acquired at different instants, and the pressure information acquisition unit 120 acquires a plurality of distance measurement information IDs acquired at instants corresponding to the instants at which the distance measurement information IDs are acquired. A plurality of pieces of pressure information IP are acquired, and calculation unit 130 calculates hardness information IR based on the acquired plurality of distance measurement information IDs and the plurality of pieces of pressure information IP.
  • three different measurement results are indicated by lines g1, g2 and g3.
  • the hardness indicated by line g1 has a steeper slope than the hardness indicated by line g2. That is, the hardness indicated by line g1 is higher than the hardness indicated by line g2.
  • the hardness indicated by line g3 has a gentler slope than the hardness indicated by line g2. That is, the hardness indicated by line g3 is softer than the hardness indicated by line g2.
  • the output section 140 outputs the hardness information IR calculated by the calculation section 130 .
  • the output unit 140 may include a communication unit (not shown) and output the hardness information IR via a predetermined network such as the Internet or Wi-Fi network.
  • the hardness measuring device 1 may include a display section (not shown), and the output section 140 may output the hardness information IR to the display section.
  • the display unit may be, for example, a liquid crystal display, an organic EL (Electroluminescence) display, or the like.
  • FIG. 5 is a flow chart showing a series of operations of the hardness calculation method according to the first embodiment.
  • a series of operations of the hardness measuring device 1 will be described with reference to the figure.
  • the distance measuring sensor 13 measures the distance from a predetermined position on the hardness measuring device 1 to a reference position.
  • the distance measurement sensor 13 outputs the result of the measurement to the distance information acquisition section 110 as distance measurement information ID.
  • the distance information acquisition unit 110 acquires the distance measurement information ID from the distance measurement sensor 13 .
  • the pressure sensor 12 measures the pressure when the contact surface 121 is pressed against the target position to be measured.
  • the pressure sensor 12 outputs the measured result to the pressure information acquisition unit 120 as pressure information IP.
  • the pressure information acquisition unit 120 acquires pressure information IP from the pressure sensor 12 .
  • Step S ⁇ b>130 The calculation unit 130 acquires the distance measurement information ID from the distance information acquisition unit 110 and the pressure information IP from the pressure information acquisition unit 120 .
  • Calculation unit 130 calculates hardness information IR based on the obtained distance measurement information ID and pressure information IP.
  • the output unit 140 outputs the calculated hardness information IR.
  • the hardness calculation device 10 acquires the distance measurement information ID by including the distance information acquiring section 110 and acquires the pressure information IP by comprising the pressure information acquiring section 120 . Further, the hardness calculation device 10 includes the calculation unit 130 to calculate the hardness information IR based on the distance measurement information ID and the pressure information IP, and includes the output unit 140 to output the hardness information IR.
  • the distance measurement information ID and the pressure information IP are values obtained by the user pressing the hardness measuring device 1 against the target position. Therefore, according to the present embodiment, the hardness calculation device 10 can easily calculate the hardness of a part of the body without the patient being palpated by a doctor. Therefore, it is possible to save the patient the trouble of going to the hospital. In addition, since the patient can independently calculate the stiffness of a part of the body at home, it is easy to perform regular measurements.
  • the hardness calculation device 10 includes a plurality of distance measurement information IDs acquired at different instants and a plurality of distance measurement information IDs acquired at moments corresponding to the instants at which the distance measurement information IDs are acquired.
  • Hardness information IR is calculated based on the pressure information IR. That is, the hardness calculation device 10 calculates the hardness information IR based on the correspondence relationship between the "distance" and the "pressure” measured at a plurality of timings. Therefore, according to this embodiment, it is possible to calculate the hardness (inclination) according to the pressing position.
  • the hardness measuring device 1 acquires the distance measurement information ID by being equipped with the distance measurement sensor 13 and acquires the pressure information IP by being equipped with the pressure sensor 12 . Therefore, the hardness measuring device 1 does not require a large-sized configuration, and can be downsized. Therefore, since the user can obtain the hardness measuring device 1 at a low cost, the user can perform the measurement alone without going to the hospital.
  • FIG. 6 is a diagram illustrating an example of a functional configuration of a tactile sensor according to the second embodiment; A tactile sensor 12A according to the second embodiment will be described with reference to the same figure.
  • the tactile sensor 12A is an example of the pressure sensor 12.
  • the tactile sensor 12A includes an imaging unit 123, an image information acquisition unit 124, an image processing unit 125, a tactile information calculation unit 126, and a tactile information output unit 127.
  • the tactile sensor 12A detects tactile information when the contact surface 121 is pressed against a target position to be measured, and outputs the detected information to the pressure information acquisition unit 120 as pressure information IP.
  • the imaging unit 123 images the degree of deformation of the contact surface 121 when the contact surface 121 is pressed against the target position to be measured. Specifically, the degree of deformation of the contact surface 121 is captured by capturing an image of a marker attached to the non-contact surface 122 that is the back surface of the contact surface 121 .
  • the imaging unit 123 is provided inside the tactile sensor 12A, and may capture an image of the outside of the tactile sensor 12A through the contact surface 121 from the inside of the tactile sensor 12A at the same time as capturing an image of the marker.
  • the image information acquisition unit 124 acquires information about the image captured by the imaging unit 123 . Specifically, the image information acquisition unit 124 acquires image information captured by the imaging unit 123 .
  • the image processing unit 125 performs image processing on the image information acquired by the image information acquisition unit 124 . Specifically, the image processing unit 125 identifies the position of the marker attached to the non-contact surface 122 by image processing, and calculates the amount of displacement of the identified marker position.
  • the tactile information calculation unit 126 calculates tactile information based on the displacement amount of the marker position calculated by the image processing unit 125 .
  • the tactile information includes information about the pressure when the contact surface 121 is pressed against the target position to be measured, and also includes information such as the direction in which the pressure is applied. For example, if the measurement target is an eyeball, the tactile information may include information about which position of the spherical eyeball is being pressed.
  • the tactile information output unit 127 outputs the calculated tactile information as pressure information IP.
  • the pressure information IP may include information captured by the imaging unit 123 in addition to information on pressure.
  • FIG. 7 is a diagram showing an example of the functional configuration of a hardness measuring device according to the second embodiment.
  • the functional configuration of the tactile sensor 12A will be described with reference to this figure.
  • the posture of the hardness measuring device 1 may be indicated by a three-dimensional orthogonal coordinate system of x-, y-, and z-axes.
  • the tactile sensor 12A has a contact surface 121 and a non-contact surface 122 which is the back surface of the contact surface.
  • the tactile sensor 12A also includes a deformable portion 128 that deforms according to the pressure when the contact surface 121 contacts the target position.
  • the object side (that is, the outside) of the deformation section 128 is the contact surface 121
  • the imaging section side (that is, the inside) of the deformation section 128 is the non-contact surface 122 .
  • the deformable portion 128 is made of a soft and transparent material such as silicone. Also, the shape of the deformation portion 128 may be formed in accordance with the shape of the portion to be measured. For example, when the hardness measuring device 1 measures intraocular pressure, the deformable portion 128 may be formed in a shape that fits the shape of the eyelid. In the following description, the deformation section 128 is also described as a probe. Moreover, the deformable portion 128 may be configured to be replaceable. The user may replace the deformable portion 128 according to the object to be measured. In addition, the user may replace the deformation section 128 periodically to prevent measurement errors due to deterioration.
  • the deformation portion 128 has a non-contact surface 122 marker that is the back side of the contact surface 121 .
  • the tactile sensor 12A includes an imaging unit 123.
  • the imaging unit 123 images the marker from the back side of the contact surface 121 .
  • the imaging unit 123 images the non-contact surface 122 that is the back surface of the contact surface 121 .
  • FIG. 8 is a diagram for explaining markers included in the tactile sensor according to the second embodiment. An example of the marker MK will be described with reference to FIG. FIG. 8 shows an example of an image of the deformation section 128 captured by the imaging section 123 .
  • FIG. 8(A) is an example of a case where the deformable portion 128 is provided with five dot-shaped markers MK1 as an example of the markers MK.
  • the size of the marker MK1 changes. 7 when the contact surface 121 comes into contact with the target position, the deformable portion 128 is pushed in the negative direction in the x-axis direction, so the marker MK1 approaches the deformable portion 128. As shown in FIG. Therefore, in the image captured by the imaging unit 123, the size of the marker MK1 is large.
  • the tactile information calculator 126 may calculate the pressure based on the average value of the sizes of the five markers MK.
  • the positional relationship between the respective markers MK1 may change depending on the shape and hardness of the object with which the contact surface 121 contacts. be.
  • the tactile information calculator 126 calculates tactile information based on changes in the size and position of these markers MK1.
  • the tactile information calculation unit 126 identifies the shape of the contacting object, estimates the position where the contact surface 121 is likely to be pressed, and performs correction based on the estimated pressing position. good.
  • FIG. 8(B) is an example of a case where the deformable portion 128 is provided with a large number of dot-shaped markers MK2 as an example of the markers MK.
  • the number and arrangement of markers MK are not limited to the positions shown in FIG. 8(A), and a large number of markers MK2 may be provided as shown in FIG. 8(B). By providing a large number of markers MK2, the shape of the contacting object can be captured more accurately.
  • FIG. 8(C) is an example of a case where the deformable portion 128 is provided with a grid-shaped marker MK3 as an example of the marker MK.
  • the shape of the marker MK is not limited to the dot shape shown in FIG. 8(A) or FIG. 8(B), and may be, for example, a lattice shape. It is preferable to select a marker MK suitable for the shape and hardness of the object with which the contact surface 121 contacts.
  • FIG. 9 is a diagram for explaining deformation of the marker when the contact portion of the tactile sensor according to the second embodiment contacts the eyelid.
  • the displacement of the marker MK will be described with reference to FIG.
  • the position P2 between the eyebrows EB and the eyelashes EL that is, the eyelid
  • the displacement of MK will be explained.
  • the figure shows an image of the non-contact surface 122 captured by the imaging unit 123 .
  • the deformation section 128 has five markers, a marker MK1, a marker MK2, a marker MK3, a marker MK4, and a marker MK5.
  • each marker MK is displaced due to the contact surface 121 being pressed against the target position.
  • the tactile sensor 12A calculates tactile information based on this displacement.
  • the image pickup unit 123 picks up an image (for example, the opening and closing of the eyelid, the movement of the eyebrows EB or the eyelashes EL, etc.) near the position P2, and the imaged image is taken. Image-based corrections may be made.
  • FIG. 10 is a diagram for explaining a device for performing conceptual verification of the hardness measuring device according to the second embodiment.
  • Conceptual verification of the hardness measuring device 1 will be described with reference to FIG.
  • Conceptual verification of the hardness measuring device 1 was performed using the verification system 50 .
  • the verification system 50 includes an arm moving device 51 , an arm 52 , a precision electronic balance 53 , a probe 54 and an information processing device 55 .
  • the arm 52 fixes the human head.
  • the arm 52 is supported by the arm moving device 51 by the arm supporting portion 511 .
  • the arm moving device 51 vertically moves the human head in the direction of the arrow 56 by vertically moving the arm supporting portion 511 in the direction of the arrow 56 .
  • By vertically moving the person's head in the direction of arrow 56 the distance between the person's head and the top plate (weighing pan) of the precision electronic balance 53 is controlled.
  • the precision electronic balance 53 has a probe 54 on a top plate (weighing pan).
  • the probe 54 is brought into contact with and pressed against the eyelid, which is the target position of the subject S.
  • the information processing device 55 controls the amount (pushing amount) of the probe 54 pressed against the eyelid of the subject S by controlling the position of the arm 52 . Further, the precision electronic balance 53 measures the force when the probe 54 is pressed against the eyelid of the subject S, and outputs the force to the information processing device 55 .
  • the information processing device 55 stores the correspondence relationship between the pressing amount and the obtained force.
  • the information processing device may be, for example, a personal computer or the like.
  • FIG. 11 is a diagram for explaining a method for performing conceptual verification of the hardness measuring device according to the second embodiment. A method of concept verification will be described with reference to the figure.
  • the subject S has his head fixed to the arm 52 and is pressing the eyelid of his right eye against the probe 54 .
  • the arm 52 moves up and down in the direction of the arrow 56 to change the pushing amount, and the precision electronic balance 53 measures the force according to the pushing amount.
  • the information processing device 55 stores the correspondence relationship between the pressing amount and the obtained force.
  • FIG. 12 is a diagram for explaining an example of measurement results obtained by conceptual verification of the hardness measuring device according to the second embodiment. An example of the measurement result obtained by the concept verification will be described with reference to the figure.
  • the figure shows the measurement results of two different subjects S.
  • FIG. 12A shows the results of measurement of subject S1
  • FIG. 12B shows the results of measurement of subject S2.
  • the results of measuring subject S1 will be described with reference to FIG. 12(A). As shown in the figure, it was confirmed that there was a tendency to have two different inclinations depending on the amount of pushing. Specifically, it has a slope of mode MD1 in the range of pushing amount from 0 [mm (millimeters)] to 6 [mm], and a slope of mode MD2 in the range of pushing amount from 6 [mm] to 8 [mm]. It was confirmed to have It is presumed that the mode MD1 is the result obtained from the elastic modulus of the eyelid, and the mode MD2 is the result obtained from the elastic modulus of the eyeball.
  • a first elastic modulus was obtained according to the first pushing amount, and a second elastic modulus was obtained according to the second pushing amount.
  • the first elastic modulus is the elastic modulus of the eyelid
  • the second elastic modulus is the elastic modulus of the eyeball. That is, the first elastic modulus is the elastic modulus of the animal skin or the like, and the second elastic modulus is the elastic modulus of the tissue existing inside the animal skin or the like. Since the slope of mode MD2 is steeper than the slope of mode MD1, it can be seen that the eyeball is harder than the eyelid.
  • the pushing amount has a slope of mode MD1 in the range of 0 [mm] to 5.5 [mm], and that the pushing amount has a slope of mode MD2 in the range of 5.5 [mm] to 8 [mm]. confirmed.
  • the slope of mode MD2 was steeper than the slope of mode MD1.
  • the hardness measuring device 1 can measure the inclination of the mode MD1 by pressing the probe against the target position, and then measure the inclination of the mode MD2 by further pressing the probe against the target position. can. That is, it was found that the hardness of the tissue existing inside the skin of the animal can be measured from above the skin of the animal.
  • the calculation unit 130 provided in the hardness calculation device 10 calculates the first hardness when the distance to the reference position is the first distance, and the distance to the reference position is the first hardness.
  • a second hardness is calculated for two distances.
  • the calculator 130 calculates the hardness of the tissue inside the skin of the animal by calculating the first hardness and the second hardness.
  • the part of the animal's body is, for example, a human eyelid.
  • the hardness measuring device 1 measures a human eyelid
  • the first hardness is the hardness of the eyelid
  • the second hardness is the hardness of the eyeball.
  • the first hardness and the second hardness have hardnesses different from each other.
  • the hardness measuring device 1 measures the first hardness and the second hardness that are different from each other. Therefore, the hardness measuring device 1 can measure a part of the internal tissue covered by the skin. In addition, according to the present embodiment, since a part of the body tissue covered with the skin can be measured from above the skin, the patient does not feel uncomfortable and does not become a burden on the patient. It can be measured by such a method.
  • the first hardness is the hardness of the eyelid
  • the second hardness is the hardness of the eyeball
  • the intraocular pressure can be measured from above the eyelid.
  • a pneumatic tonometer and a Goldmann direct tonometer are known as tonometers based on conventional techniques.
  • a pneumatic tonometer is a device that measures the intraocular pressure from the distortion of the eyeball when air is applied to the eyeball.
  • the Goldmann direct tonometer is a device that measures the rebound by injecting a small probe into the eyeball after instilling eye drops.
  • the hardness measuring device 1 presses the probe not on the eyeball but on the eyelid while gradually applying force, and measures changes in the reaction force to measure the intraocular pressure and the eyeball itself (hardness). The hardness of the film) is measured. Further, according to the present embodiment, since the tactile sensor 12A is used as the pressure sensor 12, the measurement method is easy, and a compact and inexpensive tonometer can be provided.
  • the hardness measuring device 1 includes the tactile sensor 12A as the pressure sensor 12.
  • the tactile sensor 12A includes a deformation section 128 that deforms according to the pressure when the contact surface 121 contacts the target position, a marker MK provided in the deformation section 128, and an imaging section 123 that captures an image of the marker MK. Detects the tactile sensation when touching the target position.
  • the tactile sensor 12A can further reduce the size of the entire device by using a small camera as the imaging unit 123 .
  • the tactile sensor 12A can measure three-axis force information at multiple points (multiple points) by including a plurality of markers MK.
  • the tactile sensor 12A can easily design the shape of the probe according to the shape of the eyeball, eyelid, or other part of the body to be measured by setting the shape of the deformable portion 128 to an arbitrary shape. .
  • the hardness measuring device 1 can measure the hardness of the object to be measured with higher accuracy. Further, since the hardness measuring device 1 can use a probe that matches the shape of the object to be measured, the measurement can be performed safely without imposing a burden on the patient.
  • the hardness measuring device 1 includes the tactile sensor 12A as the pressure sensor 12, so that the cost of the hardness measuring device 1 itself can be reduced. Moreover, by using the probe as a consumable item, the cost can be further reduced. Moreover, by using the probe as a consumable item, even when a plurality of users share one hardness measuring device 1, it can be used safely without fear of infection. Further, according to the above-described embodiment, since the hardness measuring device 1 includes the tactile sensor 12A as the pressure sensor 12, the probe can be easily attached and detached. Since the probe can be easily attached to and detached from the hardness measuring device 1, the user can once remove the probe, clean and disinfect the probe with alcohol cotton or the like, and then reattach it to the hardness measuring device 1, thereby enabling repeated use. .
  • FIG. 13 is a diagram showing an example of the functional configuration of a hardness calculation device according to the third embodiment.
  • a hardness calculation device 10A according to the third embodiment will be described with reference to this figure.
  • the same components as those of the hardness calculation device 10 may be denoted by the same reference numerals, and the description thereof may be omitted.
  • the hardness calculation device 10A differs from the hardness calculation device 10 in that it includes an image information acquisition section 150 and a correction section 151 .
  • a hardness measuring device 1A includes a tactile sensor 12A as the pressure sensor 12.
  • the tactile sensor 12A has an imaging unit 123 .
  • the deformation portion 128 included in the tactile sensor 12A is made of a transparent material, and the imaging portion 123 captures both the marker MK and the image of the object existing on the contact surface 121 side of the deformation portion 128 .
  • the imaging unit 123 outputs the captured image to the image information acquisition unit 150 as image information II.
  • the image information acquisition unit 150 acquires image information II from the tactile sensor 12A.
  • the image information acquisition unit 150 provides the acquired image information II to the correction unit 151 .
  • the calculator 130 corrects the hardness information IR based on the obtained image information II.
  • the image information II includes an image of the condition of the eyelid.
  • the correction unit 151 corrects the hardness information IR according to the eyelid condition specified from the image information II.
  • the state of the eyelid is information such as whether the eyelid is tightly closed or half-closed, for example.
  • the output unit 140 may output both the hardness information IR calculated by the calculation unit 130 and the image information II including information about the captured image.
  • the hardness measuring device 1A acquires the information of the image captured by the imaging section 123.
  • the tactile sensor 12A acquires image information about the target position in addition to information about pressure. Therefore, according to this embodiment, more information can be obtained, and correction can be performed based on the obtained image information.
  • FIG. 14 is a diagram illustrating an example of the functional configuration of a hardness calculation device according to the fourth embodiment;
  • a hardness calculation device 10B according to the fourth embodiment will be described with reference to this figure.
  • the same components as those of the hardness calculation device 10 may be denoted by the same reference numerals and the description thereof may be omitted.
  • the hardness calculation device 10B differs from the hardness calculation device 10 in that it includes a detection section 161 and a notification section 162 .
  • the detection unit 161 detects that the hardness calculation device 10B has completed the measurement. For example, the detection unit 161 distinguishes and specifies the first hardness and the second hardness from the hardness calculated by the calculation unit 130, and notifies the notification unit 162 when the measurement of the second hardness is completed.
  • the notification unit 162 Upon receiving the notification from the detection unit 161, the notification unit 162 notifies that the measurement has ended.
  • the notification unit 162 has, for example, a buzzer, and notifies that the measurement has ended with a buzzer sound. Note that 162 may notify the end of the measurement by other means such as vibration.
  • the hardness calculation device 10B notifies the user that the measurement has ended.
  • the hardness calculation device 10B includes the detection unit 161 to distinguish and specify the first hardness and the second hardness, and notifies the notification unit 162 when the measurement of the second hardness is completed.
  • the hardness calculation device 10B is provided with the notification unit 162, and when the notification unit 162 receives the notification, the hardness calculation device 10B notifies the user by a buzzer sound or the like. Therefore, according to the present embodiment, the user using the hardness calculation device 10B can recognize that the measurement has ended, and can recognize how far the probe should be pushed into the target position.
  • the present embodiment it is possible to prevent the measurement from ending before the second hardness measurement. It can be deterred. Further, according to the present embodiment, even general users who are not skilled doctors can easily and safely measure the hardness using the hardness calculation device 10B.
  • FIG. 15 is a diagram illustrating an example of the functional configuration of a hardness calculation device according to the fifth embodiment;
  • a hardness calculation device 10C according to the fifth embodiment will be described with reference to this figure.
  • the same components as those of the hardness calculation device 10 may be denoted by the same reference numerals and the description thereof may be omitted.
  • the hardness calculation device 10 ⁇ /b>C differs from the hardness calculation device 10 in that it includes an acceleration information acquisition section 170 and a correction section 171 .
  • the hardness measuring device 1C according to the present embodiment differs from the hardness measuring device 1 in that an acceleration sensor 17 is further provided.
  • the acceleration sensor 17 detects triaxial acceleration.
  • the acceleration sensor 17 detects the tilt of the hardness measuring device 1C by detecting triaxial acceleration.
  • the acceleration sensor 17 is also described as a posture sensor.
  • the acceleration sensor 17 outputs the detected tilt as acceleration information IA to the acceleration information acquisition unit 170 .
  • the acceleration information acquisition unit 170 acquires acceleration information IA from the acceleration sensor 17 . Acceleration information acquisition section 170 outputs the acquired acceleration information IA to calculation section 130 .
  • the calculator 130 includes a corrector 171 .
  • the correction unit 171 corrects the hardness information IR according to the acquired acceleration information IA. That is, the correction unit 171 corrects the hardness indicated in the calculated hardness information IR according to the information indicating the inclination.
  • the output unit 140 outputs both the hardness information IR and information indicating the inclination detected when the hardness information IR was calculated.
  • the hardness calculation device 10C may associate and store the hardness information IR and the posture when the hardness information IR was measured.
  • the hardness calculation device 10C has the information of the hardness information IR for each posture, so that it becomes possible to perform correction according to the posture.
  • the hardness measuring device 1C further includes the acceleration sensor 17 to detect the inclination of the hardness measuring device 1C. Further, the hardness measurement device 1C outputs the hardness information IR in association with information indicating the inclination detected when the hardness information IR is calculated. Therefore, according to the hardness measuring device 1C, it is possible to measure the difference in the measured value due to the difference in posture.
  • the hardness measurement device 1C includes a correction unit 171 to perform correction according to the posture. Therefore, according to the hardness measuring device 1C, it is possible to correct the difference in the measured value due to the difference in posture.
  • the difference in posture may be, for example, a sleeping state, a sitting state, or the like.
  • the tactile sensor 12A is used as the pressure sensor 12, the device itself is not affected by gravitational acceleration, so measurement can be performed in any posture.
  • FIG. 16 is a diagram showing an example of a diagnostic system according to the sixth embodiment.
  • the diagnostic system 80 will be described with reference to the figure.
  • a diagnostic system 80 includes a diagnostic device 81 and a plurality of hardness measuring devices 1 . . . , and hardness measuring device 1-n (n is a natural number) as an example of a plurality of hardness measuring devices 1.
  • FIG. 1 is a diagram showing an example of a diagnostic system according to the sixth embodiment.
  • the diagnostic system 80 will be described with reference to the figure.
  • a diagnostic system 80 includes a diagnostic device 81 and a plurality of hardness measuring devices 1 . . . , and hardness measuring device 1-n (n is a natural number) as an example of a plurality of hardness measuring devices 1.
  • the hardness measuring device 1 is owned by each user.
  • the hardness measuring device 1 measures the user's intraocular pressure and outputs measurement information IM, which is the measurement result, via a predetermined network NW.
  • the hardness measuring device 1-1 outputs measurement information IM-1
  • the hardness measuring device 1-n outputs measurement information IM-n.
  • the diagnostic device 81 acquires measurement information IM from each of the plurality of hardness measuring devices 1 .
  • the diagnostic device 81 makes a diagnosis according to the intraocular pressure of the user who owns the hardness measuring device 1, based on the acquired measurement information IM.
  • the diagnostic device 81 may perform diagnosis by a doctor confirming the measurement information IM, or may perform diagnosis based on pre-stored statistical information.
  • the diagnostic device 81 outputs diagnostic information IDD, which is the result of the diagnosis.
  • the diagnosis information IDD may include the name of the disease obtained as a result of the diagnosis, the condition of the disease, information on the required medicine, or information on the treatment required by the user.
  • the hardness measuring device 1 acquires diagnostic information IDD from the diagnostic device 81 via a predetermined network NW.
  • the hardness measuring device 1-1 acquires diagnostic information IDD-1
  • the hardness measuring device 1-n acquires diagnostic information IDD-n.
  • the hardness measuring device 1 operates according to the acquired diagnostic information IDD. For example, if the diagnosis information IDD includes the name of a disease obtained as a result of diagnosis, the condition of the disease, information on necessary medicines, etc., the results are output to a display unit (not shown) or the like. Further, when the diagnostic information IDD includes a treatment required by the user, the hardness measuring device 1 performs a treatment according to the information included in the diagnostic information IDD.
  • FIG. 17 is a diagram showing an example of the functional configuration of a hardness calculation device according to the sixth embodiment.
  • a hardness calculation device 10D according to the sixth embodiment will be described with reference to this figure.
  • the same components as those of the hardness calculation device 10 may be denoted by the same reference numerals and the description thereof may be omitted.
  • the hardness calculation device 10 ⁇ /b>D differs from the hardness calculation device 10 in that it includes a diagnostic information acquisition unit 181 and a treatment device 182 .
  • the diagnostic information acquisition unit 181 acquires diagnostic information IDD from the diagnostic device 81 via a predetermined network NW.
  • the diagnosis information IDD is information including the result of diagnosis by the diagnosis device 81 according to the result of the hardness information IR output by the output unit 140 . That is, the diagnostic information acquisition unit 181 acquires the diagnostic information IDD, which is information acquired according to the result of the output unit 140 outputting the hardness information IR.
  • the treatment device 182 performs a predetermined treatment included in the diagnostic information IDD acquired by the diagnostic information acquisition unit 181.
  • the predetermined treatment broadly includes treatment, treatment, and the like performed by giving stimulation such as massage, electric signals, wind pressure, etc. to the user.
  • the hardness measurement device 1D includes a driving unit (not shown), and massages the eyelid or the like by driving the driving unit. Information such as the force and time used for massage, and the position where massage is performed may be included in the diagnostic information IDD.
  • the hardness measurement device 1 may prompt the user to press the treatment device 182 against a predetermined position by voice.
  • the hardness measuring device 1D acquires the diagnostic information IDD by providing the diagnostic information acquiring unit 181, and by providing the treatment device 182, the hardness measuring device 1D acquires the diagnostic information IDD indicated in the diagnostic information IDD. Take prescribed action. Therefore, according to this embodiment, it is possible to perform a treatment according to the result of measurement by the hardness measuring device 1 . Therefore, the user can undergo an examination without going to the hospital and can easily receive appropriate treatment.
  • the diagnostic device 81 can acquire the hardness information IR, and the hardness measurement device 1D can acquire the diagnostic information IDD.
  • the diagnostic device 81 can acquire the hardness information IR, and the hardness measurement device 1D can acquire the diagnostic information IDD.
  • the doctor can remotely obtain information on the operation, and can give instructions according to the obtained information. That is, according to this embodiment, telemedicine can be easily realized.
  • the hardness measuring device 1 is for medical use.
  • the hardness measuring device 1 is not limited to medical use, and may be used for cosmetic purposes, for example.
  • the hardness measuring device 1 may measure or estimate the firmness of the skin, the amount of fat, the amount of muscle, and the like.
  • the hardness measuring device 1A according to the present embodiment can perform more sophisticated measurements by taking an image of the skin condition at the same time as measuring the firmness of the skin, the amount of fat, and the like.
  • the hardness measuring device 1D may perform massage, electric stimulation, or the like according to the measured skin condition.
  • the hardness measuring device 1 may measure the hardness of inspection objects such as foods and materials.
  • the hardness measuring device 1 detects the hardness of manju as an example of food
  • the hardness measuring device 1 measures the hardness of the skin as the first hardness
  • Hardness can be measured.
  • the hardness measuring device 1 detects the hardness of an elastic member as an example of a material, it is possible to detect the degree of deterioration and the like by distinguishing between external hardness and internal hardness.
  • the inspection object is a soft object
  • the hardness of the inspection object which is a soft object, can be measured.
  • All or part of the functions of each part provided in the hardness measuring apparatus 1 in the above-described embodiment can be obtained by recording a program for realizing these functions in a computer-readable recording medium. It may be realized by causing a computer system to read and execute a program recorded on a medium. It should be noted that the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • “computer-readable recording media” refers to portable media such as magneto-optical discs, ROMs and CD-ROMs, and storage units such as hard disks built into computer systems.
  • “computer-readable recording medium” refers to a medium that dynamically stores a program for a short period of time, such as a communication line for transmitting a program via a network such as the Internet. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client.
  • the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. .
  • Tactile information calculation unit 127 Tactile information output unit 50 Verification system 51 Arm movement device 511 Arm support unit 52 Arm 53 Precision electronic balance 54 Probe 55 Information processing device 56 Arrow 80 Diagnosis System, 81... Diagnosis device, S... Subject, ID... Distance information, IP... Pressure information, II... Image information, IM... Measurement information, IA... Acceleration information, IDD... Diagnosis information

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Dermatology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

硬度算出装置は、動物の体の一部である基準位置までの距離を示す測距情報を取得する測距情報取得部と、前記動物の体の一部であって、前記基準位置とは異なる位置である対象位置に、接触部が押し当てられる際の圧力を示す圧力情報を取得する圧力情報取得部と、前記測距情報取得部により取得された前記測距情報と、前記圧力情報取得部により取得された前記圧力情報とに基づき、前記対象位置における前記動物の体内に存在する組織の硬さに関する情報である硬度情報を算出する算出部と、前記算出部により算出された前記硬度情報を出力する出力部とを備える。

Description

硬度算出装置、硬度測定装置及び硬度算出方法
 本発明は、硬度算出装置、硬度測定装置及び硬度算出方法に関する。
 従来、疾病の疑いを有する患者が医師による診断を受ける場合、患者は病院に出向き、医師が患者の患部を触診することにより診断が行われている。熟練した医師によらずとも同様の診断結果を得るための試みとして、患部の弾性係数を測定する触診装置に関する技術があった(例えば、特許文献1を参照)。
特開平10-211172号公報
 このような触診装置によれば、医師は触診装置を装着することにより弾性係数を定量的に測定することができるかもしれない。しかしながら、患部や疾病によっては、弾性係数を定量的に測定しただけでは足りず、定期的な測定を要する場合があった。このような場合、患者は病院に通院しなければならず、医師による触診を受けるには、患者の負担になるという問題があった。
 本発明は、このような状況に鑑みてなされたものであり、容易に身体の一部の硬さを算出できる硬度算出装置、硬度測定装置及び硬度算出方法を提供することを目的とする。
 本発明の一態様に係る硬度算出装置は、動物の体の一部である基準位置までの距離を示す測距情報を取得する測距情報取得部と、前記動物の体の一部であって、前記基準位置とは異なる位置である対象位置に、接触部が押し当てられる際の圧力を示す圧力情報を取得する圧力情報取得部と、前記測距情報取得部により取得された前記測距情報と、前記圧力情報取得部により取得された前記圧力情報とに基づき、前記対象位置における前記動物の体内に存在する組織の硬さに関する情報である硬度情報を算出する算出部と、前記算出部により算出された前記硬度情報を出力する出力部とを備える。
 また、本発明の一態様に係る硬度算出装置において、前記測距情報取得部は、互いに異なる瞬間に取得された複数の前記測距情報を取得し、前記圧力情報取得部は、前記測距情報が取得された瞬間に対応する瞬間に取得された複数の前記圧力情報を取得し、前記算出部は、取得された複数の前記測距情報と、複数の前記圧力情報とに基づき、前記硬度情報を算出する。
 また、本発明の一態様に係る硬度算出装置において、前記算出部は、前記基準位置までの距離が第1距離である場合における第1硬度と、前記基準位置までの距離が第2距離である場合における第2硬度であって、前記第1硬度とは異なる硬度を有する前記第2硬度とを算出する。
 また、本発明の一態様に係る硬度算出装置において、前記動物の体の一部とは、ヒトの眼瞼であり、前記第1硬度とは、眼瞼の硬度であり、前記第2硬度とは、眼球の硬度である。
 また、本発明の一態様に係る硬度測定装置は、上述した硬度算出装置と、前記基準位置までの距離を測定し、前記測距情報として前記測距情報取得部に出力する測距センサと、前記接触部が前記対象位置に押し当てられる際の圧力を測定し、前記圧力情報として前記圧力情報取得部に出力する圧力センサとを備える。
 また、本発明の一態様に係る硬度測定装置において、前記圧力センサは、前記接触部を含む接触面を備え、前記接触面が前記対象位置に接触する際の圧力に応じて変形する変形部と、前記接触面の裏側に備えられるマーカと、前記接触面の裏側から前記マーカを撮像する撮像部とを備える。
 また、本発明の一態様に係る硬度測定装置において、前記変形部は、透過する材質により構成され、前記撮像部は、前記マーカと、前記変形部の接触面側に存在する物体の像との両方を撮像し、前記出力部は、前記硬度情報と、撮像された前記像との両方を出力する。
 また、本発明の一態様に係る硬度測定装置において、前記測距センサは、前記基準位置までの距離を非接触により測定する。
 また、本発明の一態様に係る硬度測定装置は、少なくとも傾きを検出する姿勢センサを更に備え、前記出力部は、前記硬度情報と、前記硬度情報が算出された際に検出された傾きを示す情報との両方を出力する。
 また、本発明の一態様に係る硬度測定装置において、前記算出部は、前記傾きを示す情報に応じて、算出された前記硬度情報に示される硬度を補正する補正部を更に備える。
 また、本発明の一態様に係る硬度測定装置は、前記出力部により前記硬度情報が出力された結果に応じて取得される情報である診断情報を取得する診断情報取得部と、前記診断情報に含まれる処置を行う処置装置とを更に備える。
 また、本発明の一態様に係る硬度算出方法は、動物の体の一部である基準位置までの距離を示す測距情報を取得する測距情報取得工程と、前記動物の体の一部であって、前記基準位置とは異なる位置である対象位置に接触する接触工程と、前記接触工程により前記対象位置に押し当てられる際の圧力を示す圧力情報を取得する圧力情報取得工程と、前記測距情報取得工程により取得された前記測距情報と、前記圧力情報取得工程により取得された前記圧力情報とに基づき、前記対象位置における前記動物の体内に存在する組織の硬さに関する情報である硬度情報を算出する算出工程と、前記算出工程により算出された前記硬度情報を出力する出力工程とを有する硬度算出方法である。
 また、本発明の一態様に係る硬度算出装置は、検査対象物の基準位置までの距離を示す測距情報を取得する測距情報取得部と、前記検査対象物の一部であって、前記基準位置とは異なる位置である対象位置に、接触部が押し当てられる際の圧力を示す圧力情報を取得する圧力情報取得部と、前記測距情報取得部により取得された前記測距情報と、前記圧力情報取得部により取得された前記圧力情報とに基づき、前記対象位置における前記動物の体内に存在する組織の硬さに関する情報である硬度情報を算出する算出部と、前記算出部により算出された前記硬度情報を出力する出力部とを備える。
 本発明によれば、容易に身体の一部の硬さを算出できる硬度算出装置、硬度測定装置及び硬度算出方法を提供できる。
第1の実施形態に係る硬度測定装置の概要を示す図である。 第1の実施形態に係る硬度測定装置の機能構成の一例を示す図である。 第1の実施形態に係る硬度算出装置の機能構成の一例を示す図である。 第1の実施形態に係る硬度算出装置の押し込み量と力との関係について説明するための図である。 第1の実施形態に係る硬度算出方法の一連の動作を示すフローチャートである。 第2の実施形態に係る触覚センサの機能構成の一例を示す図である。 第2の実施形態に係る硬度測定装置の機能構成の一例を示す図である。 第2の実施形態に係る触覚センサが有するマーカについて説明するための図である。 第2の実施形態に係る触覚センサが有する接触部が眼瞼に接触した際のマーカの変形について説明するための図である。 第2の実施形態に係る硬度測定装置の概念検証を行う装置について説明するための図である。 第2の実施形態に係る硬度測定装置の概念検証を行う方法について説明するための図である。 第2の実施形態に係る硬度測定装置の概念検証により測定された計測結果の一例について説明するための図である。 第3の実施形態に係る硬度算出装置の機能構成の一例を示す図である。 第4の実施形態に係る硬度算出装置の機能構成の一例を示す図である。 第5の実施形態に係る硬度算出装置の機能構成の一例を示す図である。 第6の実施形態に係る診断システムの一例を示す図である。 第6の実施形態に係る硬度算出装置の機能構成の一例を示す図である。
[第1の実施形態]
 以下、本発明の実施形態について、図面を参照しながら説明する。
 図1は、第1の実施形態に係る硬度測定装置の概要を示す図である。同図を参照しながら、第1の実施形態に係る硬度測定装置1の概要について説明する。硬度測定装置1は、動物の体の一部の硬さを測定する。本実施形態において、動物の体の一部とは、皮膚の硬さと、皮膚に覆われた体内の組織とを広く含む。以降の説明においては、一例として、動物の体の一部とはヒトの眼瞼又は眼球である場合の一例について説明する。
 なお、以下の説明において、同一の機能を有するものは同一の符号を用い、説明を省略する場合がある。
 図1には、被験者Sが硬度測定装置1を用いて、被験者Sの眼圧を測定する際の一例が示されている。被験者Sは、自身が硬度測定装置1を操作することにより、自身の眼圧を測定する。すなわち、本実施形態においては、医師が介在せずに、患者自身が単独で、患部の測定を行う。
 被験者Sは、具体的には、硬度測定装置1のプローブ部分を測定の対象となる位置(対象位置)P2に押し当てる。
 ここで、被験者Sが硬度測定装置1を位置P2に押し当てる際は、不図示のモータやポンプ等の駆動源から発生する動力を用いて押し当ててもよい。また、被験者Sが硬度測定装置1を位置P2に押し当てる量は、眼圧を測定するのに十分な量であればよい。
 硬度測定装置1は、プローブが押し当てられた際の圧力を計測する。また、硬度測定装置1は、位置P2とは異なる位置P1との距離L1を測定する。硬度測定装置1は測定した圧力と距離L1との関係から、位置P2における硬度を算出する。
 ここで、位置P2における硬度とは、位置P2における皮膚表面(例えば、眼瞼)の硬度であってもよいし、位置P2における皮膚の内側に存在する組織(例えば、眼球)の硬度であってもよい。
 図2は、第1の実施形態に係る硬度測定装置の機能構成の一例を示す図である。同図を参照しながら、硬度測定装置1の機能構成の一例について説明する。
 硬度測定装置1は、収容部11と、圧力センサ12と、測距センサ13と、保持部14とを備える。
 圧力センサ12は、接触面(接触部)121を備え、接触面121が測定の対象となる対象位置に押し当てられた際の圧力(押圧)を測定する。圧力センサ12は、例えば、電極の接触面積から圧力を測定するフィルム型圧力センサ、ダイヤフラム表面のゲージ抵抗の変化により圧力を測定するゲージセンサ等であってもよい。
 測距センサ13は、基準位置までの距離を測定する。測距センサ13は、例えば非接触型のセンサであり、不図示の発光部から照射された光線L1が対象物に反射した後の反射光である光線L2を検出することにより、基準位置までの距離を測定する。測距センサ13が非接触型のセンサである場合、例えば、超音波センサや赤外線センサであってもよい。
 なお、測距センサ13は、非接触型のセンサである場合の一例に限定されず、リニアエンコーダ等を備えた接触型のセンサであってもよい。接触型のセンサを用いることにより、精度よく距離を測定できる場合がある。
 なお、測距センサ13は、複数点における距離を測定してもよい。測距センサ13は、例えば、測定した複数点の距離情報の平均をとることにより、より精度よく距離を測定できる場合がある。
 収容部11は、硬度算出装置10を内部に収容する。
 硬度算出装置10は、圧力センサ12が測定した圧力と、測距センサ13が測定した距離に基づき、硬度を算出する。
 保持部14は、硬度算出装置10を使用するユーザにより保持される。ユーザとは、硬度算出装置10により体の一部の硬度を測定される者であってもよいし、ユーザが要介護者等であって測定能力がない場合には介護者又は介助者であってもよいし、測定を補助する補助者であってもよい。
 図3は、第1の実施形態に係る硬度算出装置の機能構成の一例を示す図である。同図を参照しながら、硬度算出装置10の機能構成の一例について説明する。
 硬度算出装置10は、距離情報取得部(測距情報取得部)110と、圧力情報取得部120と、算出部130と、出力部140とを備える。
 距離情報取得部110は、測距センサ13により測定された測距情報IDを取得する。測距情報IDとは、動物の体の一部である基準位置までの距離を示す情報である。測距センサ13は、基準位置までの距離を測定し、測距情報IDとして距離情報取得部110に出力する。すなわち、距離情報取得部110は、動物の体の一部である基準位置までの距離を示す測距情報を取得する。
 圧力情報取得部120は、圧力センサ12から圧力情報IPを取得する。圧力情報IPとは、基準位置とは異なる位置である対象位置にプローブの接触面121が押し当てられる際に測定される圧力を示す情報である。圧力センサ12は、接触部が対象位置に押し当てられる際の圧力を測定し、圧力情報IPとして圧力情報取得部120に出力する。すなわち、圧力情報取得部120は、動物の体の一部であって、基準位置とは異なる位置である対象位置に、接触面121が押し当てられる際の圧力を示す圧力情報IPを取得する。
 算出部130は、距離情報取得部110により取得された測距情報IDと、圧力情報取得部120により取得された圧力情報IPとに基づき、硬度情報IRを算出する。硬度情報IRとは、対象位置における動物の体内に存在する組織の硬さに関する情報である。すなわち、算出部130は、測距情報IDと圧力情報IPとに基づき、対象位置における動物の体内に存在する組織の硬さに関する情報である硬度情報IRを算出する。
 図4は、第1の実施形態に係る硬度算出装置の押し込み量と力との関係について説明するための図である。同図を参照しながら、算出部130の算出する硬度情報IRの一例について説明する。同図には、横軸を“押し込み量”、縦軸を“力”として、押し込み量と力との対応関係を示す。“押し込み量”とは、硬度測定装置1が、対象位置に押し込まれた距離を示す。“押し込み量”は、測距情報IDに基づき導き出される。“力”とは、対象位置における圧力である。“力”は、圧力情報IPに基づき導き出される。
 算出部130は、“押し込み量”と、“力”との関係を、対応付けて記憶することにより、図4に示すようなグラフを算出し、その傾きを硬度情報IRとして算出する。硬度算出装置10は、“押し込み量”と“力”との対応関係を取得するため、測距情報IDと圧力情報IPとを連続的に取得する。すなわち、距離情報取得部110は、互いに異なる瞬間に取得された複数の測距情報IDを取得し、圧力情報取得部120は、測距情報IDが取得された瞬間に対応する瞬間に取得された複数の圧力情報IPを取得し、算出部130は、取得された複数の測距情報IDと、複数の圧力情報IPとに基づき、硬度情報IRを算出する。
 図4には、異なる3つの測定結果を、線g1、線g2及び線g3により示している。例えば、線g1に示される硬度は、線g2に示される硬度よりも傾きが急峻である。すなわち、線g1に示される硬度は、線g2に示される硬度よりも硬い。また、線g3に示される硬度は、線g2に示される硬度よりも傾きが緩やかである。すなわち、線g3に示される硬度は、線g2に示される硬度よりも柔らかい。
 図3に戻り、出力部140は、算出部130により算出された硬度情報IRを出力する。例えば、出力部140は、不図示の通信部を備えており、インターネットやWi-Fi網等の所定のネットワークを介して、硬度情報IRを出力してもよい。
 なお、硬度測定装置1は、不図示の表示部を備えており、出力部140は、表示部に硬度情報IRを出力してもよい。表示部とは、例えば、液晶ディスプレイ、有機EL(Electroluminescence)ディスプレイ等であってもよい。
 図5は、第1の実施形態に係る硬度算出方法の一連の動作を示すフローチャートである。同図を参照しながら、硬度測定装置1の一連の動作について説明する。
(ステップS110)測距センサ13は、硬度測定装置1における所定の位置から、基準位置までの距離を測定する。測距センサ13は、測定した結果を測距情報IDとして距離情報取得部110に出力する。距離情報取得部110は、測距センサ13から測距情報IDを取得する。
(ステップS120)圧力センサ12は、接触面121が測定の対象となる対象位置に押し当てられた際の圧力を測定する。圧力センサ12は、測定した結果を圧力情報IPとして圧力情報取得部120に出力する。圧力情報取得部120は、圧力センサ12から圧力情報IPを取得する。
(ステップS130)算出部130は、距離情報取得部110から測距情報IDを、圧力情報取得部120から圧力情報IPを取得する。算出部130は、取得した測距情報IDと圧力情報IPとに基づき、硬度情報IRを算出する。
(ステップS140)出力部140は、算出された硬度情報IRを出力する。
[第1の実施形態のまとめ]
 以上説明した実施形態によれば、硬度算出装置10は、距離情報取得部110を備えることにより測距情報IDを取得し、圧力情報取得部120を備えることにより圧力情報IPを取得する。また、硬度算出装置10は、算出部130を備えることにより、測距情報IDと圧力情報IPとに基づき硬度情報IRを算出し、出力部140を備えることにより硬度情報IRを出力する。測距情報IDと、圧力情報IPとは、ユーザが硬度測定装置1を対象位置に押し当てることにより得られた値である。したがって、本実施形態によれば硬度算出装置10は、患者が医師の触診を受けることなく、容易に身体の一部の硬さを算出することができる。したがって、患者が病院に通院するという手間を省くことができる。また、患者が単独で、自宅で、身体の一部の硬さを算出することができるため、定期的な測定をすることも容易となる。
 また、上述した実施形態によれば、硬度算出装置10は、互いに異なる瞬間に取得された複数の測距情報IDと、測距情報IDが取得された瞬間に対応する瞬間に取得された複数の圧力情報IRとに基づき、硬度情報IRを算出する。すなわち、硬度算出装置10は、複数のタイミングにおいて計測された「距離」と「圧力」との対応関係に基づき、硬度情報IRを算出する。したがって、本実施形態によれば、押し込み位置に応じた硬度(傾き)を算出することができる。
 また、上述した実施形態によれば、硬度測定装置1は、測距センサ13を備えることにより測距情報IDを取得し、圧力センサ12を備えることにより圧力情報IPを取得する。したがって、硬度測定装置1は、大型の構成を要せず、装置を小型化することができる。したがって、ユーザは安価に硬度測定装置1を入手することができるため、通院することを要せずに、単独で測定を行うことができる。
[第2の実施形態]
 図6は、第2の実施形態に係る触覚センサの機能構成の一例を示す図である。同図を参照しながら、第2の実施形態に係る触覚センサ12Aについて説明する。触覚センサ12Aは、圧力センサ12の一例である。第2の実施形態についての説明において、第1の実施形態において既に説明した構成については、同様の符号を付すことにより説明を省略する場合がある。
 触覚センサ12Aは、撮像部123と、画像情報取得部124と、画像処理部125と、触覚情報算出部126と、触覚情報出力部127とを備える。触覚センサ12Aは、接触面121が測定の対象となる対象位置に押し当てられた際の触覚情報を検出し、検出した情報を圧力情報IPとして圧力情報取得部120に出力する。
 撮像部123は、接触面121が測定の対象となる対象位置に押し当てられた際に、接触面121が変形する度合いを撮像する。具体的には、接触面121の裏面である非接触面122に付されたマーカを撮像することにより、接触面121が変形する度合いを撮像する。撮像部123は触覚センサ12Aの内部に備えられ、マーカを撮像すると同時に、触覚センサ12Aの内側から接触面121を介した触覚センサ12Aの外部の像を撮像してもよい。
 画像情報取得部124は、撮像部123により撮像された像に関する情報を取得する。具体的には、画像情報取得部124は、撮像部123により撮像された画像情報を取得する。
 画像処理部125は、画像情報取得部124により取得された画像情報を、画像処理する。具体的には、画像処理部125は、画像処理により非接触面122に付されたマーカの位置を特定し、特定されたマーカの位置の変位量を算出する。
 触覚情報算出部126は、画像処理部125により算出されたマーカの位置の変位量に基づき、触覚情報を算出する。触覚情報とは、接触面121が測定の対象となる対象位置に押し当てられた際の圧力に関する情報を含み、その他に、圧力がかかる方向等の情報を含む。例えば測定の対象が眼球である場合、触覚情報は、球状である眼球の、どの位置を押しているのかの情報を含んでいてもよい。
 触覚情報出力部127は、算出した触覚情報を、圧力情報IPとして出力する。圧力情報IPは、圧力に関する情報の他、撮像部123により撮像された情報を含んでいてもよい。
 図7は、第2の実施形態に係る硬度測定装置の機能構成の一例を示す図である。同図を参照しながら、触覚センサ12Aの機能構成について説明する。同図の説明において、x軸、y軸及びz軸の三次元直交座標系によって硬度測定装置1の姿勢を示す場合がある。
 触覚センサ12Aは、接触面121と、接触面の裏面である非接触面122とを備える。また、触覚センサ12Aは、接触面121が対象位置に接触する際の圧力に応じて変形する変形部128を備える。換言すれば、変形部128の対象物側(すなわち、外側)が接触面121であり、変形部128の撮像部側(すなわち、内側)が非接触面122である。
 変形部128は、例えばシリコーン等の柔らかく透明な材質により構成されている。また、変形部128の形状は、測定する対象となる部分の形状に合わせて形成されていてもよい。例えば、硬度測定装置1が眼圧を測定する場合、変形部128は、眼瞼の形状にフィットするような形状に形成されていてもよい。以降の説明において、変形部128をプローブとも記載する。
 また、変形部128は、取り換え可能に構成されていてもよい。ユーザは、測定する対象に応じて変形部128を交換してもよい。また、ユーザは、劣化による測定誤差が生じることを抑止するために定期的に変形部128を交換してもよい。
 変形部128は、接触面121の裏側である非接触面122マーカを備える。
 触覚センサ12Aは、撮像部123を備える。撮像部123は、接触面121の裏側からマーカを撮像する。また、撮像部123は、接触面121の裏面である非接触面122を撮像する。
 図8は、第2の実施形態に係る触覚センサが有するマーカについて説明するための図である。同図を参照しながら、マーカMKの一例について説明する。図8には、撮像部123が変形部128を撮像した画像の一例を示す。
 図8(A)は、マーカMKの一例として、変形部128に5つのドット状のマーカMK1を備える場合の一例である。接触面121が対象位置に接触することにより変形部128が変形すると、マーカMK1のサイズが変わる。図7を参照しながら詳細に説明すると、接触面121が対象位置に接触することにより、変形部128はx軸方向において負の方向に押されるため、マーカMK1は変形部128に近づく。したがって、撮像部123により撮像される像では、マーカMK1の大きさは大きくなる。触覚情報算出部126は、5つのマーカMKの大きさの平均値に基づき、圧力を算出してもよい。
 また、図8(A)の一例では、5つのドット状のマーカMK1を備えるため、接触面121が接触する対象物の形状や硬度によっては、それぞれのマーカMK1の位置関係が変わってくる場合がある。触覚情報算出部126は、これらのマーカMK1の大きさ及び位置の変化に基づき、触覚情報を算出する。触覚情報算出部126は、接触している対象物の形状を特定し、接触面121が押し当てられているであろう位置を推定し、推定された押し当て位置に基づいた補正をしてもよい。
 図8(B)は、マーカMKの一例として、変形部128に多数のドット状のマーカMK2を備える場合の一例である。マーカMKの数や配置は、図8(A)の位置に限定されず、図8(B)のように多数のマーカMK2を備えていてもよい。多数のマーカMK2を備えることにより、接触している対象物の形状をより正確に捉えることができる。
 図8(C)は、マーカMKの一例として、変形部128に格子状のマーカMK3を備える場合の一例である。マーカMKの形状は、図8(A)又は図8(B)のようなドット形状に限定されず、例えば、格子状であってもよい。接触面121が接触する対象の形状や硬度に適したマーカMKを選択することが好適である。
 図9は、第2の実施形態に係る触覚センサが有する接触部が眼瞼に接触した際のマーカの変形について説明するための図である。同図を参照しながらマーカMKの変位について説明する。
 同図に示す一例では、眉毛EBと、睫毛ELの間の位置P2(すなわち、眼瞼)を対象位置として、対象位置に接触面121を押し当てた際の、非接触面122に備えられたマーカMKの変位について説明する。同図は、撮像部123が非接触面122を撮像した像である。同図に示す一例において、変形部128は、マーカMK1と、マーカMK2と、マーカMK3と、マーカMK4と、マーカMK5との5つのマーカを有する。それぞれのマーカMKは、接触面121が対象位置に押し当てられていることにより位置が変位している。触覚センサ12Aは、この変位に基づき、触覚情報を算出する。
 なお、変形部128は透明な材質により構成されているため、撮像部123は、位置P2付近における像(例えば、眼瞼の開閉具合、眉毛EB又は睫毛ELの動き等)を撮像し、撮像された像に基づいた補正を行ってもよい。
[概念検証]
 図10は、第2の実施形態に係る硬度測定装置の概念検証を行う装置について説明するための図である。同図を参照しながら硬度測定装置1の概念検証について説明する。硬度測定装置1の概念検証を、検証システム50を用いて行った。
 検証システム50は、アーム移動装置51と、アーム52と、精密電子天秤53と、プローブ54と、情報処理装置55とを備える。
 アーム52は、ヒトの頭部を固定する。アーム52は、アーム支持部511によりアーム移動装置51に支持される。アーム移動装置51は、アーム支持部511を矢印56の方向に上下移動することにより、ヒトの頭部を矢印56の方向に上下移動させる。ヒトの頭部が矢印56の方向に上下移動することにより、ヒトの頭部と、精密電子天秤53の天板(計量皿)との距離が制御される。
 精密電子天秤53は、天板(計量皿)上にプローブ54を備える。プローブ54は、被験者Sの対象位置である眼瞼に接触し、押し当てられる。情報処理装置55は、アーム52の位置を制御することにより、プローブ54が被験者Sの眼瞼に押し当てられる量(押し込み量)を制御する。また、精密電子天秤53は、被験者Sの眼瞼にプローブ54が押し当てられた際の力を測定し、情報処理装置55に出力する。情報処理装置55は、押し込み量と、得られた力との対応関係を記憶する。
 情報処理装置とは、例えばパーソナルコンピューター等であってもよい。
 図11は、第2の実施形態に係る硬度測定装置の概念検証を行う方法について説明するための図である。同図を参照しながら、概念検証の方法について説明する。同図において、被験者Sは、頭部をアーム52に固定し、右目の眼瞼をプローブ54に押し当てている。アーム52は、矢印56の方向に上下することにより、押し込み量を変化させ、精密電子天秤53は、押し込み量に応じた力を測定する。情報処理装置55は、押し込み量と、得られた力との対応関係を記憶する。
 図12は、第2の実施形態に係る硬度測定装置の概念検証により測定された計測結果の一例について説明するための図である。同図を参照しながら、概念検証により測定された計測結果の一例について説明する。同図には2人の異なる被験者Sの測定結果が示される。同図は、横軸を押し込み量、縦軸を力として、その対応関係を示す。図12(A)は、被験者S1を測定した結果であり、図12(B)は、被験者S2を測定した結果である。
 まず、図12(A)を参照しながら、被験者S1を測定した結果について説明する。同図に示されるように、押し込み量に応じて、2つの異なる傾きを有する傾向があることが確認された。具体的には、押し込み量が0[mm(ミリメートル)]から6[mm]の範囲においてモードMD1の傾きを有し、押し込み量が6[mm]から8[mm]の範囲においてモードMD2の傾きを有することが確認された。モードMD1は眼瞼の有する弾性係数から得られた結果であり、モードMD2は眼球の有する弾性係数から得られた結果であると推認される。
 すなわち、本概念検証において、第1の押し込み量に応じて第1の弾性係数が得られ、第2の押し込み量に応じて第2の弾性係数が得られた。第1の弾性係数とは、眼瞼が有する弾性係数であり、第2の弾性係数とは、眼球が有する弾性係数である。すなわち、第1の弾性係数とは、動物の皮膚等が有する弾性係数であり、第2の弾性係数とは、動物の皮膚等の内部に存在する組織が有する弾性係数である。モードMD1の傾きに比べ、モードMD2の傾きは急峻であることから、眼瞼よりも眼球の方が硬いことが分かる。
 次に、図12(B)を参照しながら、被験者S2を測定した結果について説明する。押し込み量が0[mm]から5.5[mm]の範囲においてモードMD1の傾きを有し、押し込み量が5.5[mm]から8[mm]の範囲においてモードMD2の傾きを有することが確認された。被験者S2においても、被験者S1の場合と同様に、モードMD1の傾きに比べ、モードMD2の傾きは急峻である結果が得られた。
 本概念検証から、硬度測定装置1は、プローブを対象位置に押し当てることによりモードMD1の傾きを測定した後、プローブを更に強く対象位置に押し当てることにより、モードMD2の傾きを測定することができる。すなわち、動物の皮膚等の上から、動物の皮膚等の内部に存在する組織の硬度を測定することができることが分かった。
 概念検証における結果を、本実施形態に適用すると、硬度算出装置10に備えられる算出部130は、基準位置までの距離が第1距離である場合における第1硬度と、基準位置までの距離が第2距離である場合における第2硬度を算出する。算出部130は、第1硬度と第2硬度とを算出することにより、動物の皮膚の内部の組織の硬度を算出する。
 本実施形態において、動物の体の一部とは、例えばヒトの眼瞼である。硬度測定装置1がヒトの眼瞼を測定する場合、第1硬度とは眼瞼の硬度であり、第2硬度とは眼球の硬度である。第1硬度と第2硬度とは、互いに異なる硬度を有する。
[第2の実施形態のまとめ]
 以上説明した実施形態によれば、硬度測定装置1は、硬度が互いに異なる第1硬度と第2硬度とを測定する。したがって、硬度測定装置1は、皮膚に覆われている体内の組織の一部を測定することができる。また、本実施形態によれば、皮膚の上から、皮膚に覆われている体内の組織の一部を測定することができるため、患者に不快感を与えることなく、また、患者の負担にならないような方法で測定することができる。
 また、上述した実施形態によれば、第1硬度とは眼瞼の硬度であり、第2硬度とは眼球の硬度であるため、眼瞼の上から眼圧を測定することができる。
 ここで、従来手法による眼圧計として、空気眼圧計と、ゴールドマン直接型眼圧計とが知られている。空気眼圧計は、空気を眼球に当てた際の眼球の歪みから眼圧を計測する装置であり、大型のため移動が困難であり、装置が高額であるといった問題があった。ゴールドマン直接型眼圧計は、点眼薬をさした後、小さなプローブを眼球に射出し、その反動を計測する装置である。ゴールドマン直接型眼圧計には、携帯型の装置も存在するが、実際は装置の使用に習熟が必要なことや、プローブを都度交換しなければならないため、手間がかかるといった問題があった。本実施形態によれば、硬度測定装置1は、眼球ではなく眼瞼の上からプローブを徐々に力を加えながら押し当てて、その反力の変化を計測することにより、眼圧と眼球自体(硬膜)の硬度を計測する。また、本実施形態によれば、圧力センサ12として触覚センサ12Aを用いるため、測定方法が容易であり、小型かつ安価な眼圧計を提供することができる。
 また、上述した実施形態によれば、硬度測定装置1は、圧力センサ12として触覚センサ12Aを備える。触覚センサ12Aは、接触面121が対象位置に接触する際の圧力に応じて変形する変形部128と、変形部128に備えられたマーカMKと、マーカMKを撮像する撮像部123とを備えることにより、対象位置に接触する際の触覚を検知する。本実施形態によれば、触覚センサ12Aは、撮像部123として小型カメラを用いることにより、装置全体を更に小型化することができる。
 また、触覚センサ12Aは、複数のマーカMKを備えることにより、多点(複数個所)の3軸力情報を計測することができる。
 また、触覚センサ12Aは、変形部128の形状を任意の形状とすることにより、眼球や眼瞼、その他測定対象となる身体の一部の形状に合わせたプローブの形状を容易に設計することができる。測定対象の形状に合わせたプローブを用いることにより、硬度測定装置1は、より高精度に測定対象の硬度を測定することができる。また、硬度測定装置1は、測定対象の形状に合わせたプローブを用いることができるため、患者に負担を与えることなく、安全に測定することができる。
 また、上述した実施形態によれば、硬度測定装置1は、圧力センサ12として触覚センサ12Aを備えるため、硬度測定装置1自体を安価にすることができる。また、プローブを消耗品とすることで、更に安価にすることができる。また、プローブを消耗品とすることにより、複数人のユーザが1台の硬度測定装置1を共有で使用する場合であっても、感染症等の心配がなく、安全に使用することができる。
 また、上述した実施形態によれば、硬度測定装置1は、圧力センサ12として触覚センサ12Aを備えるため、プローブを容易に着脱することができる。硬度測定装置1は、プローブを容易に着脱できるため、ユーザはプローブをいったん取り外し、酒精綿等で清拭して消毒した後、再度硬度測定装置1に装着することにより、繰り返し使用することができる。
[第3の実施形態]
 図13は、第3の実施形態に係る硬度算出装置の機能構成の一例を示す図である。同図を参照しながら、第3の実施形態に係る硬度算出装置10Aについて説明する。硬度算出装置10Aの説明において、硬度算出装置10と同様の構成については、同様の符号を付すことにより説明を省略する場合がある。硬度算出装置10Aは、画像情報取得部150及び補正部151を備える点において、硬度算出装置10とは異なる。
 第3の実施形態に係る硬度測定装置1Aは、圧力センサ12として触覚センサ12Aを備える。触覚センサ12Aは、撮像部123を備える。触覚センサ12Aが備える変形部128は、透過する材質により構成され、撮像部123は、マーカMKと、変形部128の接触面121側に存在する物体の像との両方を撮像する。撮像部123は、撮像した像を、画像情報IIとして画像情報取得部150に出力する。
 画像情報取得部150は、触覚センサ12Aから画像情報IIを取得する。画像情報取得部150は、取得した画像情報IIを補正部151に提供する。算出部130は、取得した画像情報IIに基づき、硬度情報IRを補正する。
 例えば、画像情報IIには、眼瞼の状態が撮像された像を含む。補正部151は、画像情報IIから特定された眼瞼の状態に応じて、硬度情報IRを補正する。眼瞼の状態とは、例えば、眼瞼が強く閉じられた状態であるか、半目状態であるか等の情報である。
 出力部140は、算出部130により算出された硬度情報IRと、撮像された像についての情報が含まれる画像情報IIとの両方を出力してもよい。
[第3の実施形態のまとめ]
 以上説明したように、本実施形態によれば、硬度測定装置1Aは、撮像部123により撮像された像の情報を取得する。すなわち、本実施形態によれば、触覚センサ12Aは、圧力に関する情報に加え、対象位置についての画像情報も取得する。したがって、本実施形態によれば、より多くの情報を得ることができ、取得した画像情報に基づいた補正をすることができる。
[第4の実施形態]
 図14は、第4の実施形態に係る硬度算出装置の機能構成の一例を示す図である。同図を参照しながら、第4の実施形態に係る硬度算出装置10Bについて説明する。硬度算出装置10Bの説明において、硬度算出装置10と同様の構成については、同様の符号を付すことにより説明を省略する場合がある。硬度算出装置10Bは、検出部161及び報知部162を備える点において、硬度算出装置10とは異なる。
 検出部161は、硬度算出装置10Bによる測定が終了したことを検出する。検出部161は、例えば、算出部130が算出する硬度から、第1硬度と第2硬度とを区別して特定し、第2硬度の測定が終了すると、報知部162に通知する。
 報知部162は、検出部161から通知を受け取ると、測定が終了したことを報知する。報知部162は、例えば、ブザーを備え、ブザー音により測定が終了したことを報知する。
 なお、162は、振動等の他の手段により報、測定が終了したことを報知してもよい。
[第4の実施形態のまとめ]
 以上説明したように、本実施形態によれば、硬度算出装置10Bは、測定が終了したことをユーザに報知する。具体的には、硬度算出装置10Bは、検出部161を備えることにより、第1硬度と、第2硬度とを区別して特定し、第2硬度の測定が終了すると報知部162に通知する。硬度算出装置10Bは、報知部162を備えることにより、報知部162が通知を受け取ると、ユーザにブザー音等により通知を行う。したがって、本実施形態によれば、硬度算出装置10Bを使うユーザは、測定が終了したことを認識することができ、プローブを対象位置にどの程度押し込めばよいのか、認識することができる。よって、本実施形態によれば、第2硬度測定前に測定が終了してしまうことを抑止することができ、ユーザがプローブを押し込みすぎることにより、プローブ又は対象位置である患部に損傷を与えてしまうことを抑止することができる。また、本実施形態によれば、熟練した医師でない一般ユーザであっても、硬度算出装置10Bを用いて容易に、安全に測定することができる。
[第5の実施形態]
 図15は、第5の実施形態に係る硬度算出装置の機能構成の一例を示す図である。同図を参照しながら、第5の実施形態に係る硬度算出装置10Cについて説明する。硬度算出装置10Cの説明において、硬度算出装置10と同様の構成については、同様の符号を付すことにより説明を省略する場合がある。硬度算出装置10Cは、加速度情報取得部170及び補正部171を備える点において、硬度算出装置10とは異なる。また、本実施形態に係る硬度測定装置1Cは、加速度センサ17を更に備える点において、硬度測定装置1とは異なる。
 加速度センサ17は、3軸加速度を検出する。加速度センサ17は、3軸加速度を検出することにより、硬度測定装置1Cの傾きを検出する。加速度センサ17を、姿勢センサとも記載する。加速度センサ17は、検出した傾きを加速度情報IAとして加速度情報取得部170に出力する。
 加速度情報取得部170は、加速度センサ17から加速度情報IAを取得する。加速度情報取得部170は、取得した加速度情報IAを算出部130に出力する。
 算出部130は、補正部171を備える。補正部171は、取得した加速度情報IAに応じて硬度情報IRを補正する。すなわち、補正部171は、傾きを示す情報に応じて、算出された硬度情報IRに示される硬度を補正する。
 出力部140は、硬度情報IRと、硬度情報IRが算出された際に検出された傾きを示す情報との両方を出力する。
 なお、硬度算出装置10Cは、硬度情報IRと、当該硬度情報IRを測定した際の姿勢とを対応づけて記憶してもよい。硬度算出装置10Cは、姿勢ごとの硬度情報IRの情報を有することにより、姿勢に応じた補正をすることができるようになる。
[第5の実施形態のまとめ]
 以上説明したように、硬度測定装置1Cは、加速度センサ17を更に備え、硬度測定装置1Cの傾きを検出する。また、硬度測定装置1Cは、硬度情報IRをと、硬度情報IRが算出された際に検出された傾きを示す情報とを対応付けて出力する。したがって、硬度測定装置1Cによれば、姿勢の違いによる測定値の違いを計測することができる。
 また、硬度測定装置1Cは、補正部171を備えることにより、姿勢に応じた補正を行う。したがって、硬度測定装置1Cによれば、姿勢の違いによる測定値の違いを補正することができる。なお、姿勢の違いとは、例えば、寝た状態、座った状態等の違いであってもよい。
 また、上述した実施形態において、圧力センサ12として触覚センサ12Aを用いれば、装置自体は重力加速度の影響を受けないため、どんな姿勢においても測定することができる。
[第6の実施形態]
 図16は、第6の実施形態に係る診断システムの一例を示す図である。同図を参照しながら、診断システム80について説明する。診断システム80は、診断装置81と、複数の硬度測定装置1とを備える。同図には、複数の硬度測定装置1の一例として、硬度測定装置1-1、…、硬度測定装置1-n(nは自然数)を示す。
 硬度測定装置1は、それぞれユーザにより所持される。硬度測定装置1は、ユーザの眼圧を測定し、所定のネットワークNWを介し、測定結果である測定情報IMを出力する。例えば、硬度測定装置1-1は、測定情報IM-1を出力し、硬度測定装置1-nは、測定情報IM-nを出力する。
 診断装置81は、複数の硬度測定装置1から、それぞれ測定情報IMを取得する。診断装置81は、取得した測定情報IMに基づき、硬度測定装置1を所持するユーザの眼圧に応じた診断を行う。例えば、診断装置81は、医師が測定情報IMを確認することにより診断を行ってもよいし、予め記憶された統計情報により診断を行ってもよい。診断装置81は、診断した結果である診断情報IDDを出力する。なお、診断情報IDDには、診断した結果得られた病名や、病状の他、必要とする薬の情報、又はユーザが必要とする処置に関する情報が含まれていてもよい。
 硬度測定装置1は、診断装置81から、所定のネットワークNWを介して診断情報IDDを取得する。例えば、硬度測定装置1-1は、診断情報IDD-1を取得し、硬度測定装置1-nは、診断情報IDD-nを取得する。硬度測定装置1は、取得した診断情報IDDに応じた動作を行う。例えば、診断情報IDDに、診断した結果得られた病名や、病状の他、必要とする薬の情報等が含まれる場合には、それらの結果を不図示の表示部等に出力する。また、診断情報IDDにユーザが必要とする処置が含まれる場合、硬度測定装置1は、診断情報IDDに含まれる情報に応じた処置を行う。
 図17は、第6の実施形態に係る硬度算出装置の機能構成の一例を示す図である。同図を参照しながら、第6の実施形態に係る硬度算出装置10Dについて説明する。硬度算出装置10Dの説明において、硬度算出装置10と同様の構成については、同様の符号を付すことにより説明を省略する場合がある。硬度算出装置10Dは、診断情報取得部181及び処置装置182を備える点において、硬度算出装置10とは異なる。
 診断情報取得部181は、診断装置81から所定のネットワークNWを介して診断情報IDDを取得する。診断情報IDDとは、出力部140により硬度情報IRが出力された結果に応じて、診断装置81により診断された結果が含まれる情報である。すなわち、診断情報取得部181は、出力部140により硬度情報IRが出力された結果に応じて取得される情報である診断情報IDDを取得する。
 処置装置182は、診断情報取得部181により取得された診断情報IDDに含まれる所定の処置を行う。ここで、所定の処置とは、マッサージや電気信号、風圧等の刺激をユーザに与えることにより行う治療や処置等を広く含む。例えば、処置装置182がマッサージを行う場合、硬度測定装置1Dは、不図示の駆動部を備え、駆動部が駆動することにより眼瞼等のマッサージを行う。マッサージに用いられる力や時間、マッサージを行う位置等の情報は、診断情報IDDに含まれていてもよい。硬度測定装置1は、音声により、ユーザに所定の位置に処置装置182を押し当てることを促してもよい。
[第6の実施形態のまとめ]
 以上説明したように、本実施形態によれば、硬度測定装置1Dは、診断情報取得部181を備えることにより診断情報IDDを取得し、処置装置182を備えることにより、診断情報IDDに示された所定の処置を行う。したがって、本実施形態によれば、硬度測定装置1が測定した結果に応じた処置を行うことができる。よって、ユーザは通院しなくとも、検査を受けることができ、かつ適切な処置を容易に受けることができる。
 また、本実施形態によれば、診断装置81は硬度情報IRを取得し、硬度測定装置1Dは診断情報IDDを取得することができるため、医師は、診断装置81を介して複数のユーザによる測定の結果を見るとこができ、複数のユーザに対して測定の結果に応じた指示を行うことができる。したがって、医師は、作動の情報を遠隔で取得することができ、取得した情報に応じた指示をすることができる。すなわち、本実施形態によれば、容易に遠隔医療を実現できる。
[その他の実施形態]
 以上説明した実施形態においては、硬度測定装置1が医療用である場合の一例について説明した。しかしながら本実施形態に係る硬度測定装置1は、医療用に限定されず、例えば美容の用途に用いられてもよい。硬度測定装置1が美容の用途に用いられる場合、硬度測定装置1は、肌のハリや、脂肪の量、筋肉の量等を計測又は推定してもよい。さらに、本実施形態に係る硬度測定装置1Aは、肌のハリや、脂肪の量等を計測すると同時に、皮膚の状態を撮像することにより、より高度な測定をすることができる。さらに、硬度測定装置1Dは、測定された皮膚の状態等に応じて、マッサージや電気刺激等を行ってもよい。
 以上説明した実施形態においては、硬度測定装置1が動物の体の一部の硬度を測定する場合の一例について説明した。しかしながら、硬度測定装置1は、食品や材料等の検査対象物の硬度を測定してもよい。例えば、食品の一例として硬度測定装置1がお饅頭の硬度を検出する場合、硬度測定装置1は、第1硬度として皮の硬度を測定し、第2硬度として皮の内部に存在する餡子の硬度を測定することができる。例えば、材料の一例として硬度測定装置1が弾性部材の硬度を検出する場合、外部の硬度と内部の硬度とを区別して測定することにより、劣化度等を検出することができる。
 例えば、検査対象物が軟質物である場合には、検査対象物の硬度に応じて変形部128の素材に柔らかい物質を用いることにより、軟質物である検査対象物の硬度を測定することができる。
 なお、上述した実施形態における硬度測定装置1が備える各部の機能の全体あるいはその機能の一部は、これらの機能を実現するためのプログラムをコンピュータにより読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータにより読み取り可能な記録媒体」とは、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶部のことをいう。さらに、「コンピュータにより読み取り可能な記録媒体」とは、インターネット等のネットワークを介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
1…硬度測定装置、10…硬度算出装置、11…収容部、12…圧力センサ、12A…触覚センサ、13…測距センサ、14…保持部、17…加速度センサ、110…距離情報取得部、120…圧力情報取得部、130…算出部、140…出力部、150…画像情報取得部、151…補正部、161…検出部、162…報知部、170…加速度情報取得部、171…補正部、181…診断情報取得部、182…処置装置、121…接触面、122…非接触面、123…撮像部、124…画像情報取得部、125…画像処理部、126…触覚情報算出部、127…触覚情報出力部、50…検証システム、51…アーム移動装置、511…アーム支持部、52…アーム、53…精密電子天秤、54…プローブ、55…情報処理装置、56…矢印、80…診断システム、81…診断装置、S…被験者、ID…距離情報、IP…圧力情報、II…画像情報、IM…測定情報、IA…加速度情報、IDD…診断情報

Claims (13)

  1.  動物の体の一部である基準位置までの距離を示す測距情報を取得する測距情報取得部と、
     前記動物の体の一部であって、前記基準位置とは異なる位置である対象位置に、接触部が押し当てられる際の圧力を示す圧力情報を取得する圧力情報取得部と、
     前記測距情報取得部により取得された前記測距情報と、前記圧力情報取得部により取得された前記圧力情報とに基づき、前記対象位置における前記動物の体内に存在する組織の硬さに関する情報である硬度情報を算出する算出部と、
     前記算出部により算出された前記硬度情報を出力する出力部と
     を備える硬度算出装置。
  2.  前記測距情報取得部は、互いに異なる瞬間に取得された複数の前記測距情報を取得し、
     前記圧力情報取得部は、前記測距情報が取得された瞬間に対応する瞬間に取得された複数の前記圧力情報を取得し、
     前記算出部は、取得された複数の前記測距情報と、複数の前記圧力情報とに基づき、前記硬度情報を算出する
     請求項1に記載の硬度算出装置。
  3.  前記算出部は、
     前記基準位置までの距離が第1距離である場合における第1硬度と、前記基準位置までの距離が第2距離である場合における第2硬度であって、前記第1硬度とは異なる硬度を有する前記第2硬度とを算出する
     請求項2に記載の硬度算出装置。
  4.  前記動物の体の一部とは、ヒトの眼瞼であり、
     前記第1硬度とは、眼瞼の硬度であり、
     前記第2硬度とは、眼球の硬度である
     請求項3に記載の硬度算出装置。
  5.  請求項1から請求項4のいずれか一項に記載の硬度算出装置と、
     前記基準位置までの距離を測定し、前記測距情報として前記測距情報取得部に出力する測距センサと、
     前記接触部が前記対象位置に押し当てられる際の圧力を測定し、前記圧力情報として前記圧力情報取得部に出力する圧力センサと
     を備える硬度測定装置。
  6.  前記圧力センサは、
     前記接触部を含む接触面を備え、前記接触面が前記対象位置に接触する際の圧力に応じて変形する変形部と、
     前記接触面の裏側に備えられるマーカと、
     前記接触面の裏側から前記マーカを撮像する撮像部と
     を備える
     請求項5に記載の硬度測定装置。
  7.  前記変形部は、透過する材質により構成され、
     前記撮像部は、前記マーカと、前記変形部の接触面側に存在する物体の像との両方を撮像し、
     前記出力部は、前記硬度情報と、撮像された前記像との両方を出力する
     請求項6に記載の硬度測定装置。
  8.  前記測距センサは、前記基準位置までの距離を非接触により測定する
     請求項5から請求項7のいずれか一項に記載の硬度測定装置。
  9.  少なくとも傾きを検出する姿勢センサを更に備え、
     前記出力部は、前記硬度情報と、前記硬度情報が算出された際に検出された傾きを示す情報との両方を出力する
     請求項5から請求項8のいずれか一項に記載の硬度測定装置。
  10.  前記算出部は、前記傾きを示す情報に応じて、算出された前記硬度情報に示される硬度を補正する補正部
     を更に備える請求項9に記載の硬度測定装置。
  11.  前記出力部により前記硬度情報が出力された結果に応じて取得される情報である診断情報を取得する診断情報取得部と、
     前記診断情報に含まれる処置を行う処置装置と
     を更に備える請求項5から請求項10のいずれか一項に記載の硬度測定装置。
  12.  動物の体の一部である基準位置までの距離を示す測距情報を取得する測距情報取得工程と、
     前記動物の体の一部であって、前記基準位置とは異なる位置である対象位置に接触する接触工程と、
     前記接触工程により前記対象位置に押し当てられる際の圧力を示す圧力情報を取得する圧力情報取得工程と、
     前記測距情報取得工程により取得された前記測距情報と、前記圧力情報取得工程により取得された前記圧力情報とに基づき、前記対象位置における前記動物の体内に存在する組織の硬さに関する情報である硬度情報を算出する算出工程と、
     前記算出工程により算出された前記硬度情報を出力する出力工程と
     を有する硬度算出方法。
  13.  検査対象物の基準位置までの距離を示す測距情報を取得する測距情報取得部と、
     前記検査対象物の一部であって、前記基準位置とは異なる位置である対象位置に、接触部が押し当てられる際の圧力を示す圧力情報を取得する圧力情報取得部と、
     前記測距情報取得部により取得された前記測距情報と、前記圧力情報取得部により取得された前記圧力情報とに基づき、前記対象位置における前記動物の体内に存在する組織の硬さに関する情報である硬度情報を算出する算出部と、
     前記算出部により算出された前記硬度情報を出力する出力部と
     を備える硬度算出装置。
PCT/JP2021/013213 2021-03-29 2021-03-29 硬度算出装置、硬度測定装置及び硬度算出方法 WO2022208584A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112021007409.1T DE112021007409T5 (de) 2021-03-29 2021-03-29 Härteberechnungsvorrichtung, härtemessvorrichtung und härteberechnungsverfahren
JP2023509899A JPWO2022208584A1 (ja) 2021-03-29 2021-03-29
KR1020237030535A KR20230138029A (ko) 2021-03-29 2021-03-29 경도 산출 장치, 경도 측정 장치 및 경도 산출 방법
PCT/JP2021/013213 WO2022208584A1 (ja) 2021-03-29 2021-03-29 硬度算出装置、硬度測定装置及び硬度算出方法
US18/551,979 US20240164639A1 (en) 2021-03-29 2021-03-29 Hardness calculation device, hardness measurement device, and hardness calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013213 WO2022208584A1 (ja) 2021-03-29 2021-03-29 硬度算出装置、硬度測定装置及び硬度算出方法

Publications (1)

Publication Number Publication Date
WO2022208584A1 true WO2022208584A1 (ja) 2022-10-06

Family

ID=83458398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013213 WO2022208584A1 (ja) 2021-03-29 2021-03-29 硬度算出装置、硬度測定装置及び硬度算出方法

Country Status (5)

Country Link
US (1) US20240164639A1 (ja)
JP (1) JPWO2022208584A1 (ja)
KR (1) KR20230138029A (ja)
DE (1) DE112021007409T5 (ja)
WO (1) WO2022208584A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176169A (ja) * 1997-09-05 1999-03-23 Olympus Optical Co Ltd 触覚センサプローブ
JP2000287985A (ja) * 1999-04-07 2000-10-17 Olympus Optical Co Ltd 外科用切除器具
JP2005091265A (ja) * 2003-09-19 2005-04-07 Makoto Kaneko 表面硬さ分布測定方法及び装置
JP2012154819A (ja) * 2011-01-26 2012-08-16 National Univ Corp Shizuoka Univ ハンディ型硬さ測定装置
CN105662478A (zh) * 2015-12-23 2016-06-15 电子科技大学 一种用于机器人辅助微创手术的触诊器械及触诊方法
JP2016202649A (ja) * 2015-04-24 2016-12-08 国立大学法人旭川医科大学 組織硬度計測装置、計測情報処理装置、組織硬度計測方法、計測情報処理方法、およびプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3867331B2 (ja) 1997-01-28 2007-01-10 セイコーエプソン株式会社 弾性係数測定装置および触診装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176169A (ja) * 1997-09-05 1999-03-23 Olympus Optical Co Ltd 触覚センサプローブ
JP2000287985A (ja) * 1999-04-07 2000-10-17 Olympus Optical Co Ltd 外科用切除器具
JP2005091265A (ja) * 2003-09-19 2005-04-07 Makoto Kaneko 表面硬さ分布測定方法及び装置
JP2012154819A (ja) * 2011-01-26 2012-08-16 National Univ Corp Shizuoka Univ ハンディ型硬さ測定装置
JP2016202649A (ja) * 2015-04-24 2016-12-08 国立大学法人旭川医科大学 組織硬度計測装置、計測情報処理装置、組織硬度計測方法、計測情報処理方法、およびプログラム
CN105662478A (zh) * 2015-12-23 2016-06-15 电子科技大学 一种用于机器人辅助微创手术的触诊器械及触诊方法

Also Published As

Publication number Publication date
US20240164639A1 (en) 2024-05-23
DE112021007409T5 (de) 2024-01-18
JPWO2022208584A1 (ja) 2022-10-06
KR20230138029A (ko) 2023-10-05

Similar Documents

Publication Publication Date Title
JP7132853B2 (ja) 対象上のウェアラブル装置の位置及び向きの少なくとも一方を決定する方法及び装置
US11684274B2 (en) Method and apparatus for cuff-less blood pressure measurement in a mobile device
EP3422930B1 (en) Method and apparatus for cuff-less blood pressure measurement
CN107205681B (zh) 用于确定和/或监测受试者的呼吸努力的装置和方法
US6491647B1 (en) Physiological sensing device
CN107157512A (zh) 超声波诊断装置以及超声波诊断支援装置
US20130324848A1 (en) Biometric information measuring device and biometric information measuring system
JP2020517330A (ja) 断層撮影撮像用の圧力接触感知患者テーブル
TWI672120B (zh) 眼球的連續性量測方法及眼球的連續性量測裝置
US11564568B1 (en) Eye imaging system and fundus camera positioning device
WO2022208584A1 (ja) 硬度算出装置、硬度測定装置及び硬度算出方法
RU2706534C1 (ru) Сегментированный электрод
US20230181026A1 (en) Eye imaging system and fundus camera positioning device
KR102554695B1 (ko) 혈압 측정 디바이스 및 방법
JP5544651B2 (ja) 筋骨格系機構システム
KR101112622B1 (ko) 휴대용 어지럼 진단장치
AU2020101947A4 (en) Smart COVID Kit: Designing Automatic Hand Sanitizer Dispenser and Temperature Checker for use during Pandemics
CN114521126A (zh) 非侵入性、实时、逐搏、动态血压监测
Borghetti et al. Measuring inside your mouth! Measurement approaches, design considerations, and one example for tongue pressure monitoring
KR101781024B1 (ko) 쿠션, 영상, 센서를 이용한 생체신호 및 접촉상태 검출 장치 및 이에 의한 생체신호 및 접촉상태 검출 방법
CN204971239U (zh) 一种中医脉枕
Sprowls et al. Integrated Sensing Systems for Monitoring Interrelated Physiological Parameters in Young and Aged Adults: A Pilot Study
WO2023099936A1 (en) A wearable to assess knee joint integrity using non-contact acoustic sensors
WO2024102878A1 (en) Automated medical observation and diagnostic platform
WO2023237315A1 (en) Reliability assessment of cardiac parameter measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237030535

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030535

Country of ref document: KR

Ref document number: 2023509899

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18551979

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021007409

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934761

Country of ref document: EP

Kind code of ref document: A1