WO2022206066A1 - 回收废旧锂离子电池有价金属的方法 - Google Patents

回收废旧锂离子电池有价金属的方法 Download PDF

Info

Publication number
WO2022206066A1
WO2022206066A1 PCT/CN2021/142284 CN2021142284W WO2022206066A1 WO 2022206066 A1 WO2022206066 A1 WO 2022206066A1 CN 2021142284 W CN2021142284 W CN 2021142284W WO 2022206066 A1 WO2022206066 A1 WO 2022206066A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
leaching
water
graphite slag
carry out
Prior art date
Application number
PCT/CN2021/142284
Other languages
English (en)
French (fr)
Chinese (zh)
Inventor
何然
黎亮
李长东
陈鑫根
吕东忍
季滨春
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to HU2200277A priority Critical patent/HUP2200277A1/hu
Publication of WO2022206066A1 publication Critical patent/WO2022206066A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/215Purification; Recovery or purification of graphite formed in iron making, e.g. kish graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of resource recovery of waste and used lithium ion batteries, and particularly relates to a method for recovering valuable metals of waste and used lithium ion batteries.
  • scrap lithium-ion batteries After a lithium-ion battery undergoes a certain number of cycles of charge and discharge, the structure of the active material will fail due to changes. It is expected that the scrapped and scrapped amount of vehicle power batteries will reach 101GWh in 2030, about 1.16 million tons. Scrap lithium-ion batteries contain a variety of harmful substances, such as heavy metals, organic and inorganic harmful compounds, etc. If they are not disposed of in time, they will easily pollute the environment. At the same time, lithium-ion batteries contain a large amount of nickel, cobalt, manganese, and lithium valuable metals. If they are not recycled in time, it will inevitably lead to waste of resources and pollution to the environment.
  • the recovery process of valuable metals in waste lithium batteries is roughly divided into two categories: pyro process and wet process.
  • the recovery process based on hydrometallurgy is relatively mature and widely used in the industry.
  • the valuable metal liquid is obtained by acid leaching of battery powder, removing copper from iron powder, and removing iron and aluminum.
  • the battery powder contains a large amount of organic matter to coat the active material.
  • the coating of a large amount of organic matter will reduce the probability of the positive electrode material contacting sulfuric acid and reduce the reaction rate.
  • a large amount of organic matter will cause the solution
  • the surface tension in the leaching process increases, resulting in a large number of bubbles in the gas released during the leaching process, causing risks such as troughing.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. Therefore, the present invention proposes a method for recovering valuable metals of waste lithium ion batteries, which can simplify the recovery process of valuable metals in waste lithium batteries, reduce production costs, and at the same time avoid the risk of bubbling caused by bubbling of valuable metals in the leaching process of waste lithium batteries. slot problem.
  • the pH of the solution after the water immersion reaction is 4.5 or more.
  • the pretreatment steps include discharge, crushing and screening.
  • step S1 in step S1, the molar ratio of the concentrated sulfuric acid to the positive electrode material in the battery powder is (1-1.5):1, and the mass concentration of the concentrated sulfuric acid is more than 70%.
  • step S1 the mass concentration of the concentrated sulfuric acid is 70-80%.
  • step S1 the time of the aging reaction is 0.5-5 h.
  • step S1 the time of the aging reaction is 0.5-3 hours.
  • step S1 the aging reaction process adopts mechanical slow stirring.
  • step S2 the mass of the added water is 3-10 times the mass of the battery powder in step S1.
  • step S2 the mass of the added water is 3 to 5 times the mass of the battery powder in step S1.
  • step S2 the water immersion time is 0.5-10 h, and the temperature is 40-90°C.
  • step S2 the water immersion time is 2-4 hours, and the temperature is 50-70°C.
  • step S3 the specific process of the acid leaching reaction is to add water to the first graphite slag to make pulp, and then add acid solution to adjust pH to carry out the acid leaching reaction, the first graphite slag
  • the solid-liquid ratio with water is 1:(3-10) g/ml, and the pH is adjusted to 0.5-1.5.
  • step S3 the temperature of the acid leaching reaction is 40-90° C., and the reaction time is 0.5-10 h.
  • the reducing agent is one or more of sodium sulfite, sodium thiosulfate or hydrogen peroxide; the reducing agent and the valuable metal in the first graphite slag
  • the molar ratio is (1 ⁇ 1.5):1.
  • step S3 the reaction temperature of the redox leaching is 70-80° C., and the reaction time is 4-6 h.
  • step S3 the reaction temperature of the redox leaching is 40-90° C., and the reaction time is 0.5-10 h.
  • the lye is one or more of sodium hydroxide, sodium carbonate, sodium bicarbonate, ammonia water, calcium carbonate, calcium bicarbonate, nickel carbonate, and manganese carbonate;
  • the pH is adjusted to 4.5-5.
  • step S4 the reaction time after adding alkali solution to adjust pH is 1-2h.
  • the present invention utilizes the carbonization of concentrated sulfuric acid to carbonize and decompose the organic matter in the battery powder, so as to solve the problems such as foaming and troughing caused by the organic matter in the process of organic matter coating the battery powder active material and water immersion and acid leaching;
  • the reaction of sulfuric acid releases a lot of heat during the aging process, and increasing the temperature is conducive to the decomposition of organic substances, providing a heat source for subsequent water immersion, reducing the input of heat source and reducing production costs.
  • Water immersion can disperse the active material of battery powder, improve the probability of contact reaction between sulfuric acid and active material, and increase the reaction rate. Moreover, after the water immersion reaction, the pH of the solution is above 4.5, which can precipitate most of the impurity substances in the solution, which can reduce the concentration of the solution in the solution.
  • the process flow in the purification process reduces production costs and improves work efficiency.
  • Acid leaching can dissolve the positive electrode material in the first graphite slag, and provide an acid leaching environment for redox leaching, improve the recovery rate of valuable metals, reduce the content of valuable metals in graphite slag, and reduce the pollution of graphite slag to the environment .
  • the leaching and impurity removal of the present invention are carried out simultaneously, which simplifies the recovery process of the valuable metal of the waste lithium battery and reduces the production cost.
  • FIG. 1 is a process flow diagram of Embodiment 1 of the present invention.
  • the present embodiment reclaims the valuable metals in the waste lithium-ion battery, and the specific process is as follows:
  • first graphite slag as 42 g, make the first graphite slag with 126 ml of water slurry, raise the temperature to 70 °C, add concentrated sulfuric acid dropwise to pH 0.5, add sodium sulfite with 1 times the molar amount of the valuable metal in the graphite slag, react for 4 h, dropwise Add an appropriate amount of sodium hydroxide, adjust the pH of the solution to 4.5, react for 1 h, and filter to obtain the second valuable metal liquid and the second graphite slag.
  • the present embodiment reclaims the valuable metals in the waste lithium-ion battery, and the specific process is as follows:
  • first graphite slag as 45g, make the first graphite slag with 135ml of water slurry, heat up to 70°C, add concentrated sulfuric acid dropwise to pH 0.5, add sodium sulfite with 1.2 times the molar amount of the valuable metal in the graphite slag, react for 3h, dropwise Add an appropriate amount of sodium hydroxide, adjust the pH of the solution to 4.5, react for 1 h, and filter to obtain the second valuable metal liquid and the second graphite slag.
  • the present embodiment reclaims the valuable metals in the waste lithium-ion battery, and the specific process is as follows:
  • first graphite slag as 45g, make the first graphite slag with 135ml of water slurry, heat up to 70°C, add concentrated sulfuric acid dropwise to pH 0.5, add sodium sulfite with 1.3 times the molar amount of the valuable metal in the graphite slag, react for 3h, dropwise Add an appropriate amount of sodium hydroxide, adjust the pH of the solution to 4.5, react for 1 h, and filter to obtain the second valuable metal liquid and the second graphite slag.
  • the present embodiment reclaims the valuable metals in the waste lithium-ion battery, and the specific process is as follows:
  • first graphite slag as 46g, make the first graphite slag with 138ml of water slurry, raise the temperature to 70°C, add concentrated sulfuric acid dropwise to pH 1.0, add sodium sulfite with 1.5 times the molar amount of the valuable metal in the graphite slag, react for 4h, dropwise Add an appropriate amount of sodium hydroxide, adjust the pH of the solution to 4.5, react for 1 h, and filter to obtain the second valuable metal liquid and the second graphite slag.
  • the present embodiment reclaims the valuable metals in the waste lithium-ion battery, and the specific process is as follows:
  • first graphite slag as 40g, make the first graphite slag with 120ml of water, heat up at 70°C, add concentrated sulfuric acid dropwise to pH 1.0, add sodium sulfite with 1.5 times the molar amount of the valuable metal in the graphite slag, react for 5h, dropwise Add an appropriate amount of sodium hydroxide, adjust the pH of the solution to 4.5, react for 1 h, and filter to obtain the second valuable metal liquid and the second graphite slag.
  • Table 1 shows the content of valuable metals in the battery powder used in Examples 1-5.
  • Table 3 shows the recovery rate of valuable metals in Examples 1-5.
  • Example 1 99.8 97.6 99.3
  • Example 2 99.4 99.0 99.6
  • Example 3 99.2 99.5 99.1
  • Example 4 99.6 99.3 99.0
  • Example 5 99.2 99.1 99.7
  • the impurity content (Fe 2+ , Al, Cu) of the obtained valuable metal liquid is very low, and the recovery rate of the valuable metal is very high, indicating that the leaching and impurity removal of the present invention are carried out simultaneously.
  • the recovery method not only has a simple process and low cost, but also has a good recovery effect.
  • Fig. 1 is a process flow diagram of the present invention, the battery powder is added with concentrated sulfuric acid to carry out maturation leaching, then water is added to carry out water leaching, after solid-liquid separation, the first graphite slag is added to dilute sulfuric acid to carry out acid leaching, then a reducing agent is added to carry out reduction leaching, and then Add alkali to precipitate impurities, and finally obtain second graphite slag and second valuable metal liquid by solid-liquid separation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Secondary Cells (AREA)
PCT/CN2021/142284 2021-03-31 2021-12-29 回收废旧锂离子电池有价金属的方法 WO2022206066A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HU2200277A HUP2200277A1 (hu) 2021-03-31 2021-12-29 Értékes fémek kinyerési eljárása hulladék lítiumion-akkumulátorból

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110345404.4 2021-03-31
CN202110345404.4A CN113174486A (zh) 2021-03-31 2021-03-31 回收废旧锂离子电池有价金属的方法

Publications (1)

Publication Number Publication Date
WO2022206066A1 true WO2022206066A1 (zh) 2022-10-06

Family

ID=76922568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142284 WO2022206066A1 (zh) 2021-03-31 2021-12-29 回收废旧锂离子电池有价金属的方法

Country Status (3)

Country Link
CN (1) CN113174486A (hu)
HU (1) HUP2200277A1 (hu)
WO (1) WO2022206066A1 (hu)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986251A (zh) * 2023-01-09 2023-04-18 深圳市新昊青科技有限公司 一种去除锂离子电池粉中氟的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174486A (zh) * 2021-03-31 2021-07-27 广东邦普循环科技有限公司 回收废旧锂离子电池有价金属的方法
CN114317968A (zh) * 2021-11-24 2022-04-12 深圳供电局有限公司 废旧磷酸铁锂电池的回收利用方法及其应用
CN114689568A (zh) * 2022-03-30 2022-07-01 蜂巢能源科技股份有限公司 一种有机聚合物中金属异物的检测方法和应用
WO2023188489A1 (ja) * 2022-03-31 2023-10-05 Jx金属株式会社 金属浸出方法及び金属回収方法
CN115805001A (zh) * 2023-02-10 2023-03-17 湖南五创循环科技股份有限公司 一种废旧动力电池黑粉焙烧过程中有机废气的处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191382A (zh) * 2010-03-19 2011-09-21 上海健达化工有限公司 一种从废手机电池中分步回收钴、铝、铜的方法
CN109449523A (zh) * 2018-10-31 2019-03-08 天齐锂业资源循环技术研发(江苏)有限公司 一种废旧锂离子电池的综合回收方法
CN109576498A (zh) * 2019-01-30 2019-04-05 北京科技大学 一种锂电池石墨负极材料的回收方法
CN110828926A (zh) * 2019-09-26 2020-02-21 北京矿冶科技集团有限公司 废旧锂离子电池正负极材料协同回收金属及石墨的方法
CN110835682A (zh) * 2019-09-26 2020-02-25 北京矿冶科技集团有限公司 废旧锂离子电池正、负极活性材料协同处理的方法
CN111655875A (zh) * 2018-01-30 2020-09-11 杜森费尔德有限公司 用于回收锂电池的方法
CN113174486A (zh) * 2021-03-31 2021-07-27 广东邦普循环科技有限公司 回收废旧锂离子电池有价金属的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011296B (zh) * 2012-12-07 2014-12-10 中信大锰矿业有限责任公司 以软锰矿粉做原料还原法生产高纯硫酸锰的方法
CN109609761A (zh) * 2018-10-31 2019-04-12 天齐锂业资源循环技术研发(江苏)有限公司 一种废旧锂离子电池的回收方法
CN109868373A (zh) * 2019-02-02 2019-06-11 广东芳源环保股份有限公司 一种从镍、钴、锰混合物中分步浸出镍、钴的方法
CN109913637A (zh) * 2019-03-25 2019-06-21 江西理工大学 一种从废弃锂离子电池中资源化综合回收有价金属的方法
CN111254294B (zh) * 2020-03-11 2021-07-23 中南大学 一种废锂离子电池粉末选择性提锂及电解分离回收二氧化锰的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191382A (zh) * 2010-03-19 2011-09-21 上海健达化工有限公司 一种从废手机电池中分步回收钴、铝、铜的方法
CN111655875A (zh) * 2018-01-30 2020-09-11 杜森费尔德有限公司 用于回收锂电池的方法
CN109449523A (zh) * 2018-10-31 2019-03-08 天齐锂业资源循环技术研发(江苏)有限公司 一种废旧锂离子电池的综合回收方法
CN109576498A (zh) * 2019-01-30 2019-04-05 北京科技大学 一种锂电池石墨负极材料的回收方法
CN110828926A (zh) * 2019-09-26 2020-02-21 北京矿冶科技集团有限公司 废旧锂离子电池正负极材料协同回收金属及石墨的方法
CN110835682A (zh) * 2019-09-26 2020-02-25 北京矿冶科技集团有限公司 废旧锂离子电池正、负极活性材料协同处理的方法
CN113174486A (zh) * 2021-03-31 2021-07-27 广东邦普循环科技有限公司 回收废旧锂离子电池有价金属的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986251A (zh) * 2023-01-09 2023-04-18 深圳市新昊青科技有限公司 一种去除锂离子电池粉中氟的方法
CN115986251B (zh) * 2023-01-09 2023-10-31 深圳市新昊青科技有限公司 一种去除锂离子电池粉中氟的方法

Also Published As

Publication number Publication date
HUP2200277A1 (hu) 2022-12-28
CN113174486A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
WO2022206066A1 (zh) 回收废旧锂离子电池有价金属的方法
CN102618884B (zh) 一种湿法回收废铅酸蓄电池中铅膏的再生铅方法
CN108486376A (zh) 一种浸出废旧锂离子电池正极材料中金属的方法
CN111807421A (zh) 一种降低镍钴锰三元正极材料前驱体硫含量的方法
WO2023020039A1 (zh) 湿法回收锂电池中有价金属的方法
CN111082043A (zh) 一种废旧镍钴锰酸锂三元电池正极材料的回收利用方法
CN110835682A (zh) 废旧锂离子电池正、负极活性材料协同处理的方法
WO2022267419A1 (zh) 一种回收废旧锂离子电池粉中单质铜的方法和应用
CN109179359A (zh) 一种从磷酸铁锂废料中提取锂和磷酸铁的方法
CN110371943A (zh) 一种镍钴锰酸锂和磷酸铁锂混合废料的选择性回收工艺
CN108808147A (zh) 一种废旧锂离子电池中回收锰的方法
CN111987381A (zh) 从废旧锂离子电池中浸出有价金属同步脱氟的方法
WO2023029573A1 (zh) 一种从废旧锂电池中提取锂的方法
CN111540974B (zh) 一种锂离子电池正极材料回收再利用方法
CN111961857A (zh) 一种从废旧锂离子电池中浸出有价金属同步脱氟的方法
CN106229577A (zh) 一种废旧镍氢电池正负极物料混合浸出的方法
CN113667833A (zh) 一种用于锌湿法冶炼的净化除镉方法
CN111517340B (zh) 一种从废弃三元锂离子电池的ncm111正极材料中回收碳酸锂的方法
CN111304441A (zh) 一种废旧电池浸出液除杂的方法
CN112310499A (zh) 一种废旧磷酸铁锂材料的回收方法、及得到的回收液
Shengqiang et al. Review on comprehensive recovery of valuable metals from spent electrode materials of nickel-hydrogen batteries
CN112095008A (zh) 一种失效锂离子电池正极材料高效清洁浸出方法
CN105200241B (zh) 废铅蓄电池铅膏分离制备一氧化铅、硫酸铅、二氧化铅的方法
CN101792862B (zh) 用废氢镍电池净化烟气回收金属的方法
CN111326818B (zh) 一种锂电池生产废弃物的处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934702

Country of ref document: EP

Kind code of ref document: A1