WO2022206027A1 - 电机控制方法、装置及终端设备 - Google Patents

电机控制方法、装置及终端设备 Download PDF

Info

Publication number
WO2022206027A1
WO2022206027A1 PCT/CN2021/138122 CN2021138122W WO2022206027A1 WO 2022206027 A1 WO2022206027 A1 WO 2022206027A1 CN 2021138122 W CN2021138122 W CN 2021138122W WO 2022206027 A1 WO2022206027 A1 WO 2022206027A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
component
voltage
motor
estimated
Prior art date
Application number
PCT/CN2021/138122
Other languages
English (en)
French (fr)
Inventor
孙天夫
李可
冯伟
李慧云
吴新宇
梁嘉宁
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2022206027A1 publication Critical patent/WO2022206027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/04Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for very low speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present application belongs to the technical field of motor control, and in particular, relates to a motor control method, device and terminal equipment.
  • the sensorless control technology of the motor is the core technology in the field of motor control.
  • the commonly used method is to use the signal injection method to estimate the rotor speed at low speed, and to use the back EMF method or the model reference adaptive method to estimate the rotor position at high speed.
  • the back EMF method or the model reference adaptive method to estimate the rotor position at high speed.
  • the embodiments of the present application provide a motor control method, device and terminal device, which can solve the problem that the traditional position sensorless control technology cannot be applied to the high and low speed operation of the salient pole synchronous motor and the salient pole synchronous motor at the same time.
  • an embodiment of the present application provides a motor control method, including:
  • the first target voltage component is determined according to the preset voltage coefficient, the preset electrical angle frequency, the voltage compensation coefficient and the electrical angle compensation frequency; wherein the first target voltage component is used to control the rotation of the motor, thereby determining the second target voltage component. motor current;
  • the first voltage component is the first target voltage component determined in the previous control cycle
  • the first motor current is the second motor current in the previous control cycle.
  • the determining the electrical angle compensation frequency according to the first current component and the first voltage component includes:
  • the first motor power is obtained by calculating according to the first current component and the first voltage component;
  • the disturbance component is adjusted to obtain the electrical angle compensation frequency.
  • the determining a voltage compensation coefficient according to the first current component, the first voltage component and a preset disturbance signal includes:
  • the first angle is determined according to the first current component; wherein, the first angle is the angle between the current vector of the first motor current and the ⁇ axis in the two-phase static coordinate system ⁇ - ⁇ ;
  • the method based on the preset disturbance signal, the estimated current and the estimated The voltage determines the voltage compensation coefficient, including:
  • the estimated current angle is a current angle obtained after the preset disturbance signal is injected into the current angle
  • the voltage compensation coefficient is determined according to the second motor power.
  • the preset disturbance signal when the preset disturbance signal is injected into the D-axis current, the preset disturbance signal, the estimated current and the estimated Measuring the voltage to determine the voltage compensation coefficient, including:
  • the second motor power is obtained by calculating according to the fourth current component and the second voltage component;
  • the voltage compensation coefficient is determined according to the second motor power.
  • the determining the voltage compensation coefficient according to the second motor power includes:
  • the voltage compensation coefficient is determined according to the high frequency power component.
  • the determining the first target voltage component according to a preset voltage coefficient, a preset electrical angle frequency, the voltage compensation coefficient and the electrical angle compensation frequency includes:
  • the first target voltage component is determined according to the target electrical angle and the target voltage magnitude.
  • an embodiment of the present application provides a motor control device, including:
  • a rotational speed tracking module configured to determine the first current component of the first motor current in the two-phase static coordinate system ⁇ - ⁇ , and determine the electrical angle compensation frequency according to the first current component and the first voltage component;
  • a coordinate adjustment module configured to determine a voltage compensation coefficient according to the first current component, the first voltage component and a preset disturbance signal
  • a target voltage component determination module configured to determine a first target voltage component according to a preset voltage coefficient, a preset electrical angle frequency, the voltage compensation coefficient and the electrical angle compensation frequency; wherein the first target voltage component is used for controlling the rotation of the motor to determine the current of the second motor;
  • the first voltage component is the first target voltage component determined in the previous control cycle
  • the first motor current is the second motor current in the previous control cycle.
  • an embodiment of the present application provides a terminal device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program
  • a terminal device including a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements any one of the above-mentioned first aspect Methods.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a terminal device, causes the terminal device to execute the method described in any one of the above-mentioned first aspects.
  • the stability of the motor control system and the tracking of the motor speed can be achieved to prevent the motor control system from oscillating.
  • the amplitude of the first target voltage component (the driving voltage of the motor) is optimized, and the system is effectively improved on the premise of ensuring the stability of the motor control system. s efficiency.
  • the working efficiency of the motor is optimal, the estimated synchronous coordinate system of the motor rotor and the actual rotor synchronous coordinate system will be automatically aligned, so as to achieve an equivalent and accurate position sensorless control.
  • the motor control method provided in this embodiment has strong robustness to motor parameter changes, and can be applied to the high and low speed control of a salient-pole synchronous motor and a salient-pole synchronous motor at the same time.
  • FIG. 1 is a schematic flowchart of a motor control method provided by an embodiment of the present application.
  • Fig. 2 is a coordinate system vector relationship diagram provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a motor control method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a motor control device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the term “if” may be contextually interpreted as “when” or “once” or “in response to determining” or “in response to detecting.”
  • the phrases “if it is determined” or “if the [described condition or event] is detected” may be interpreted, depending on the context, to mean “once it is determined” or “in response to the determination” or “once the [described condition or event] is detected. ]” or “in response to detection of the [described condition or event]”.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • FIG. 1 shows a schematic flowchart of a motor control method provided by an embodiment of the present application.
  • the motor control method includes steps S101 to S103.
  • Step S101 Determine the first current component of the first motor current in the two-phase stationary coordinate system ⁇ - ⁇ , and determine the electrical angle compensation frequency according to the first current component and the first voltage component.
  • the first voltage component is the first target voltage component determined in the last control cycle
  • the first motor current is the second motor current in the last control cycle.
  • the first motor current is the current working current of the motor, which may be acquired by a current acquisition device in the motor control system. After the first motor current is obtained, Clark transform is performed on the first motor current to obtain the first current component of the first motor current in the two-phase stationary coordinate system ⁇ - ⁇ . The electrical angle compensation frequency is then determined based on the first current component and the first voltage component.
  • the method for determining the electrical angle compensation frequency includes steps S1011 to S1013.
  • Step S1011 calculating and obtaining the first motor power according to the first current component and the first voltage component.
  • the first motor current includes current i a and current i b
  • the first current component obtained after Clark transformation includes current i ⁇ and current i ⁇
  • the first voltage component is the first target voltage component determined in the last control cycle, and the first voltage component includes the voltage and voltage
  • the first motor power of the motor can be obtained as:
  • k is the coefficient
  • P is the first motor power of the motor
  • i ⁇ and i ⁇ are the first current components, and is the first voltage component.
  • Step S1012 filtering the power of the first motor to extract the disturbance component of the power of the first motor.
  • the third filter may be used to filter the first motor power to extract the disturbance component.
  • the third filter may be a band-pass filter, a low-pass filter, a high-pass filter, a notch filter, a neural network, a fuzzy controller, or the like.
  • step S1013 the disturbance component is adjusted to obtain the electrical angle compensation frequency.
  • the first regulator can be used to adjust the disturbance component to obtain the electrical angle compensation frequency, and then generate a damping torque component in the electromagnetic torque to offset the motor speed pulsation The purpose of stabilizing the motor control system.
  • the first regulator may be a proportional regulator, a proportional-integral regulator, a differential regulator, a proportional-differential regulator, or the like.
  • Step S102 determining a voltage compensation coefficient according to the first current component, the first voltage component and the preset disturbance signal.
  • the efficiency optimization operating point of the motor can be obtained, that is, the minimum current amplitude point at which the motor outputs the required torque. Therefore, the given amplitude of the constant voltage-frequency ratio control voltage can be optimized by injecting the preset disturbance signal, and the optimal voltage coefficient compensation coefficient can be obtained, so as to realize the efficiency optimization and coordinate modulation of the motor control system.
  • the preset disturbance signal in this application may be a real disturbance signal or a virtual disturbance signal.
  • step S102 may include steps S1021 to S1023.
  • Step S1021 determining the first angle according to the first current component.
  • the first angle is the included angle between the current vector of the first motor current and the ⁇ axis in the two-phase stationary coordinate system ⁇ - ⁇ .
  • Step S1022 transform the first current component and the first voltage component according to the first angle, and determine the estimated synchronous coordinate system D-Q, the estimated current of the first current component in the estimated synchronous coordinate system D-Q, and the estimated current of the first voltage component in the estimated synchronous coordinate system D-Q.
  • the estimated voltage is estimated in the synchronous coordinate system D-Q.
  • the Park transform is performed on the first current components i ⁇ and i ⁇ according to the first angle ⁇ i to obtain the estimated current in the estimated synchronous coordinate system DQ, and the estimated current includes the current i D and the current i Q .
  • the first voltage component Perform Park transformation according to the first angle ⁇ i to obtain the estimated voltage in the estimated synchronous coordinate system DQ, and the estimated voltage includes the voltage and voltage
  • the estimated synchronous coordinate system DQ is obtained by performing Park transformation in the two-phase stationary coordinate system ⁇ - ⁇ according to the first angle ⁇ i , wherein the D-axis in the estimated synchronous coordinate system DQ and the ⁇ -axis in the two-phase stationary coordinate system ⁇ - ⁇ are obtained.
  • the included angle is the first angle ⁇ i
  • the angle between the Q axis in the estimated synchronous coordinate system DQ and the ⁇ axis in the two-phase stationary coordinate system ⁇ - ⁇ is the first angle ⁇ i .
  • the determined included angle between the estimated synchronous coordinate system DQ and the two-phase stationary coordinate system ⁇ - ⁇ is the first angle ⁇ i .
  • the angle between the estimated synchronous coordinate system DQ and the actual synchronous coordinate system dq of the rotor is the first angle ⁇ i .
  • Step S1023 inject the preset disturbance signal into the current angle or the D-axis current, and determine the voltage compensation coefficient based on the preset disturbance signal, the estimated current and the estimated voltage; wherein, the current angle is the current vector and the estimated synchronous coordinate system
  • the included angle of the Q-axis in D-Q, the D-axis current is the component current of the D-axis of the current vector in the estimated synchronous coordinate system D-Q.
  • this step provides two methods for injecting the preset signal, respectively injecting the preset disturbance signal into the current angle or the D-axis current.
  • the calculated second motor power includes the disturbance power caused by the preset disturbance signal.
  • step S1023 a preset disturbance signal is injected into the current angle, and the method for determining the voltage compensation coefficient may include steps S10231 to S10235.
  • Step S10231 determining an estimated current angle, which is a current angle obtained after a preset disturbance signal is injected into the current angle.
  • the current vector I a of the synchronous motor and the MTPA current angle of the Q axis in the estimated synchronous coordinate system DQ are ⁇ .
  • the current angle ⁇ can be calculated according to the motor parameters through the MTPA formula.
  • the current angle ⁇ is zero.
  • the preset disturbance signal is injected into the current angle ⁇ to obtain the estimated current angle ⁇ h :
  • ⁇ h is the estimated current angle
  • is the current angle
  • A is the amplitude of the preset disturbance signal
  • ⁇ h is the frequency of the preset disturbance signal
  • Step S10232 Determine the second current component according to the current vector and the estimated current angle.
  • the estimated current angle ⁇ h is the angle between the current vector I a and the Q-axis in the estimated synchronous coordinate system DQ, then according to the estimated current angle ⁇ h and the current vector I a , it is possible to determine the second component containing the high-frequency disturbance current component, the second current component includes the current and current
  • Step S10233 Perform inverse Park transform on the second current component based on the first angle to determine the third current component.
  • the third current component includes the current and current
  • Step S10234 Calculate and obtain the second motor power according to the third current component and the estimated voltage.
  • the third current component is and estimated voltage Bring it into the power calculation formula to obtain the second motor power P inj .
  • k is the coefficient
  • p is the number of motor pole pairs
  • ⁇ m is the motor speed
  • L d is the motor d-axis inductance
  • R is the motor stator winding resistance
  • i Q and i D are the estimated current, and is the second current component.
  • Step S10235 Determine the voltage compensation coefficient according to the power of the second motor.
  • the second motor power P inj is expanded according to the Taylor series as:
  • the power signal output by the second filter is
  • the second filter may be a neural network or a band-pass filter or the like. Then multiply the power signal with sin ⁇ h t to get the power signal power signal It can be expressed as:
  • the first filter outputs the power signal
  • the first filter can be selected from a neural network, a fuzzy controller, or a low-pass filter.
  • power signal for a with proportional to the signal, the power signal After input to the third regulator, the voltage compensation coefficient ⁇ k v can be obtained, wherein the third regulator can be selected from neural network, integrator, PI regulator or proportional regulator. like is not equal to zero, the third regulator will continuously change the voltage compensation coefficient ⁇ k v until equal to zero.
  • the current angle ⁇ is obtained according to the MTPA calculation formula based on the motor parameters, it can be considered that the current angle ⁇ is approximately equal to the accurate MTPA current angle. and When it is equal to zero, the corresponding estimated current angle ⁇ h is also the MTPA current angle. Since there is only one MTPA current angle, the third regulator adjusts the voltage compensation coefficient ⁇ k v such that The process of being equal to zero is essentially the process of adjusting the estimated synchronization coordinate system DQ.
  • the current vector I a of the synchronous motor and the MTPA current angle of the Q axis in the estimated synchronous coordinate system DQ are the current vector I a and the actual synchronous coordinate of the rotor. is the MTPA current angle of the q-axis in dq.
  • the preset disturbance signal is injected into the D-axis current in step S1023, and the method for determining the voltage compensation coefficient may include steps S10236 to S10239.
  • Step S10236 Determine the high-frequency current component and the high-frequency voltage component of the preset disturbance signal in the estimated synchronous coordinate system D-Q.
  • the preset disturbance signal is injected into the D-axis current, and the high-frequency current components contained in the estimated currents i Q and i D are:
  • A is the amplitude of the preset disturbance signal
  • ⁇ h is the frequency of the preset disturbance signal
  • i Dh and i Qh are high-frequency current components.
  • u Dh and u Qh are high-frequency voltage components
  • i Dh and i Qh are high-frequency current components
  • L s is the motor phase inductance
  • ⁇ e is the electrical angle frequency
  • is the differential operator.
  • Step S10237 Determine the fourth current component according to the high-frequency current component and the estimated current, and determine the second voltage component according to the high-frequency voltage component and the estimated voltage.
  • a second voltage component is determined according to the high-frequency voltage component and the estimated voltage, and the second voltage component is for:
  • a fourth current component is determined from the high frequency current component and the estimated current, the fourth current component for:
  • Step S10238 Calculate and obtain the second motor power according to the fourth current component and the second voltage component.
  • the obtained virtual electric power of the motor is the second motor power.
  • the calculation formula of the second motor power P inj is:
  • k is the coefficient, is the fourth current component, is the second voltage component.
  • Step S10239 Determine the voltage compensation coefficient according to the power of the second motor.
  • the information contained in the second motor power P inj needs to be analyzed, and the analysis is performed in the actual rotor synchronous coordinate system dq.
  • the projections of the estimated currents i D , i Q in the actual rotor synchronous coordinate system dq of the d -axis and the q-axis are respectively id and i q :
  • the electrical power P of the motor can be expressed as:
  • k is the coefficient
  • R s is the motor stator resistance
  • ⁇ f is the permanent magnet flux linkage
  • L s is the motor phase inductance
  • ⁇ e is the electrical angular frequency.
  • the second filter can be used to extract the high-frequency power component of the second motor power P inj , then the extracted high-frequency power component for:
  • the second filter may be a neural network or a band-pass filter or the like.
  • the information contained in the related while Represents the phase difference between the estimated synchronous coordinate system DQ and the actual synchronous coordinate system dq of the rotor, that is, the phase difference between the current vector I a and the q-axis in the actual synchronous coordinate system dq of the rotor.
  • a third regulator is used to adjust the power Adjustment is performed, and finally the output of the third regulator is the voltage compensation coefficient ⁇ k v , wherein the third regulator can be selected from a neural network, a fuzzy controller, a PI controller, or the like.
  • the phase difference between the estimated synchronous coordinate system DQ and the actual rotor synchronous coordinate system dq is zero, that is, the estimated synchronous coordinate system DQ coincides with the actual rotor synchronous coordinate system dq.
  • the current vector I a is located on the q-axis, the d-axis current is zero, the given voltage amplitude is the optimal amplitude, and the motor runs at the maximum torque-current ratio, thereby reducing the motor stator current amplitude to achieve optimal motor control. purpose of efficiency.
  • Step S103 Determine the first target voltage component according to the preset voltage coefficient, voltage compensation coefficient, electrical angle compensation frequency and preset electrical angle frequency; wherein the first target voltage component is used to control the rotation of the motor to determine the second motor current.
  • step S103 may specifically include steps S1031 to S1034.
  • Step S1031 determining the target voltage coefficient according to the preset voltage coefficient and the voltage compensation coefficient.
  • the target voltage coefficient k v can be determined as:
  • the preset voltage coefficient k v0 can be set according to actual needs.
  • Step S1032 determining the target voltage amplitude according to the preset electrical angle frequency and the target voltage coefficient.
  • the target voltage amplitude is determined according to the target voltage coefficient k v and the preset electrical angular frequency ⁇ e0 for:
  • the preset electrical angular frequency ⁇ e0 can be set according to actual needs.
  • Step S1033 Determine the target electrical angle according to the electrical angle compensation frequency and the preset electrical angle frequency.
  • the target electrical angle ⁇ e is calculated as:
  • Step S1034 determining the first target voltage component according to the target electrical angle and the target voltage amplitude.
  • the target electrical angle ⁇ e is input into the second regulator to obtain the electrical angle ⁇ e , where a neural network, an integrator, a PI controller, a fuzzy controller and the like can be selected as the second regulator.
  • the stability of the motor control system and the tracking of the motor speed can be realized, and the oscillation of the motor control system can be prevented.
  • the amplitude of the first target voltage component (the driving voltage of the motor) is optimized, and the system is effectively improved on the premise of ensuring the stability of the motor control system. s efficiency.
  • the working efficiency of the motor is optimal, the estimated synchronous coordinate system of the motor rotor and the actual rotor synchronous coordinate system will be automatically aligned, so as to achieve an equivalent and accurate positionless control.
  • the motor control method provided in this embodiment has strong robustness to motor parameter changes, and can be applied to the high and low speed control of a salient-pole synchronous motor and a salient-pole synchronous motor at the same time.
  • the first motor currents i a , i b and the first voltage component are Clark transformed to obtain the first current components i ⁇ and i ⁇ .
  • the first motor power P is obtained by calculation, and then the pulse component ⁇ P in the first motor power P is extracted by the third filter, and the pulse component ⁇ P is adjusted by the first regulator to obtain the electrical angle compensation frequency ⁇ e .
  • the preset disturbance signal is injected by the preset disturbance signal injection module to obtain the second motor power P inj .
  • the second motor power P inj is filtered by the second filter to obtain a power signal the power signal Multiply with sin ⁇ h t to get the power signal Pass the first filter to the power signal Filter to get the power signal Finally using the third regulator to the power signal Adjustment is made to obtain the voltage compensation coefficient ⁇ k v .
  • the target voltage coefficient k v is obtained according to the voltage compensation coefficient ⁇ k v and the preset voltage coefficient k v0 .
  • the target electrical angle ⁇ e is calculated according to the electrical angle compensation frequency ⁇ e and the preset electrical angle frequency ⁇ e0 .
  • the target electrical angle ⁇ e is adjusted by the second regulator to obtain the electrical angle ⁇ e .
  • the first voltage component is the first target voltage component determined in the previous control period.
  • FIG. 4 shows a schematic structural diagram of a motor control apparatus provided by an embodiment of the present application.
  • the motor control apparatus includes a rotational speed tracking module 41 , a coordinate adjustment module 42 and a target voltage component determination module 43 .
  • the rotational speed tracking module 41 is used to determine the first current component of the first motor current in the two-phase static coordinate system ⁇ - ⁇ , and determine the electrical angle compensation frequency according to the first current component and the first voltage component;
  • a coordinate adjustment module 42 configured to determine a voltage compensation coefficient according to the first current component, the first voltage component and a preset disturbance signal
  • the target voltage component determination module 43 is configured to determine a first target voltage component according to a preset voltage coefficient, a preset electrical angle frequency, the voltage compensation coefficient and the electrical angle compensation frequency; wherein, the first target voltage component is determined by for controlling the rotation of the motor to determine the current of the second motor;
  • the first voltage component is the first target voltage component determined in the previous control cycle
  • the first motor current is the second motor current in the previous control cycle.
  • the rotational speed tracking module 41 includes a first motor power determination unit, a disturbance component determination unit, and an electrical angle compensation frequency determination unit.
  • a first motor power determination unit configured to calculate and obtain a first motor power according to the first current component and the first voltage component
  • a disturbance component determination unit configured to filter the first motor power to extract the disturbance component of the first motor power
  • the electrical angle compensation frequency determination unit is configured to adjust the disturbance component to obtain the electrical angle compensation frequency.
  • the coordinate adjustment module 42 includes a first angle determination unit, an estimation unit, and a voltage compensation coefficient determination unit.
  • a first angle determination unit configured to determine a first angle according to the first current component; wherein, the first angle is the current vector of the first motor current and the ⁇ axis in the two-phase static coordinate system ⁇ - ⁇ the included angle;
  • an estimation unit configured to transform the first current component and the first voltage component according to the first angle, and determine an estimated synchronization coordinate system D-Q, and the first current component is in the estimated synchronization coordinate the estimated current under the system D-Q, the estimated voltage of the first voltage component under the estimated synchronous coordinate system D-Q;
  • a voltage compensation coefficient determination unit configured to inject the preset disturbance signal into the current angle or D-axis current, and determine the voltage compensation based on the preset disturbance signal, the estimated current and the estimated voltage coefficient; wherein, the current angle is the angle between the current vector and the Q-axis in the estimated synchronous coordinate system D-Q, and the D-axis current is the component current of the current vector on the D-axis in the estimated synchronous coordinate system D-Q .
  • the voltage compensation coefficient determination unit when the preset disturbance signal is injected into the current angle, includes an estimated current angle determination unit, a second current component determination unit, and a third current component determination unit a unit, a second motor power determination unit, and a first voltage compensation coefficient determination subunit.
  • an estimated current angle determination unit configured to determine an estimated current angle, where the estimated current angle is a current angle obtained after the preset disturbance signal is injected into the current angle;
  • a second current component determining unit configured to determine a second current component according to the current vector and the estimated current angle
  • a third current component determining unit configured to perform an inverse Park transform on the second current component based on the first angle to determine a third current component
  • a second motor power determination unit configured to calculate and obtain the second motor power according to the third current component and the estimated voltage
  • the first voltage compensation coefficient determination subunit is configured to determine the voltage compensation coefficient according to the power of the second motor.
  • the voltage compensation coefficient determination unit when the preset disturbance signal is injected into the D-axis current, includes a high-frequency component determination unit, a second voltage component determination unit, and a second motor power determination unit a subunit and a second voltage compensation coefficient determination unit.
  • a high-frequency component determination unit configured to determine the high-frequency current component and the high-frequency voltage component of the preset disturbance signal in the estimated synchronous coordinate system D-Q;
  • a second voltage component determining unit configured to determine a fourth current component according to the high-frequency current component and the estimated current, and determine a second voltage component according to the high-frequency voltage component and the estimated voltage;
  • a second motor power determination subunit configured to calculate and obtain the second motor power according to the fourth current component and the second voltage component
  • a second voltage compensation coefficient determination unit configured to determine the voltage compensation coefficient according to the second motor power.
  • the target voltage component determination module 43 includes a target voltage coefficient determination unit, a target voltage amplitude determination unit, a target electrical angle determination unit, and a first target voltage component determination unit.
  • a target voltage coefficient determination unit configured to determine a target voltage coefficient according to the preset voltage coefficient and the voltage compensation coefficient
  • a target voltage amplitude determination unit configured to determine a target voltage amplitude according to the preset electrical angle frequency and the target voltage coefficient
  • a target electrical angle determination unit configured to determine a target electrical angle according to the electrical angle compensation frequency and the preset electrical angle frequency
  • a first target voltage component determination unit configured to determine the first target voltage component according to the target electrical angle and the target voltage amplitude.
  • the motor control device shown in FIG. 4 may be a software unit, a hardware unit, or a unit combining software and hardware built into the existing terminal equipment, or it may be integrated into the terminal equipment as an independent pendant, or it may be Exist as an independent terminal device.
  • FIG. 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 5 in this embodiment may include: at least one processor 51 (only one processor 51 is shown in FIG. 5 ), a memory 52 , and a memory 52 stored in the memory 52 and available in the at least one processor 51 .
  • a computer program 53 running on the processor 51 when the processor 51 executes the computer program 53, implements the steps in any of the foregoing method embodiments, for example, steps S101 to S103 in the embodiment shown in FIG. 1 .
  • the processor 51 executes the computer program 53, the functions of the modules/units in the above device embodiments are realized, for example, the functions of the modules 41 to 43 shown in FIG. 4 .
  • the computer program 53 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 52 and executed by the processor 51 to complete the this invention.
  • the one or more modules/units may be a series of computer program 53 instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 53 in the terminal device 5 .
  • the terminal device 5 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal device 5 may include, but is not limited to, a processor 51 and a memory 52 .
  • FIG. 5 is only an example of the terminal device 5, and does not constitute a limitation on the terminal device 5. It may include more or less components than the one shown, or combine some components, or different components , for example, may also include input and output devices, network access devices, and the like.
  • the so-called processor 51 may be a central processing unit (Central Processing Unit, CPU), and the processor 51 may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuits) , ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 52 may be an internal storage unit of the terminal device 5 in some embodiments, such as a hard disk or a memory of the terminal device 5 .
  • the memory 52 may also be an external storage device of the terminal device 5, such as a plug-in hard disk equipped on the terminal device 5, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc.
  • the memory 52 may also include both an internal storage unit of the terminal device 5 and an external storage device.
  • the memory 52 is used to store an operating system, an application program, a boot loader (Boot Loader), data, and other programs, such as program codes of the computer program 53, and the like.
  • the memory 52 can also be used to temporarily store data that has been output or is to be output.
  • This embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program 53, and when the computer program 53 is executed by the processor 51, implements the steps in the foregoing method embodiments. .
  • the embodiments of the present application provide a computer program product, when the computer program product runs on a mobile terminal, the steps in the foregoing method embodiments can be implemented when the mobile terminal executes the computer program product.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the method of the above embodiments can be implemented by the computer program 53 instructing the relevant hardware.
  • the computer program 53 can be stored in a computer-readable storage medium. When executed by the processor 51, the computer program 53 can implement the steps of the above-mentioned respective method embodiments.
  • the computer program 53 includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include at least: any entity or device capable of carrying the computer program code to the terminal device, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunication signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunication signals
  • software distribution media For example, U disk, mobile hard disk, disk or CD, etc.
  • computer readable media may not be electrical carrier signals and telecommunications signals.
  • the disclosed apparatus/network device and method may be implemented in other manners.
  • the apparatus/network device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Abstract

一种电机控制方法、装置及终端设备,该电机控制方法包括:确定第一电机电流在两相静止坐标系α-β下的第一电流分量,并根据第一电流分量和第一电压分量确定电角补偿频率(S101);根据第一电流分量、第一电压分量和预设扰动信号确定电压补偿系数(S102);根据预设电压系数、预设电角频率、电压补偿系数和电角补偿频率确定第一目标电压分量(S103)。通过注入预设扰动信号确定电压补偿系数,优化第一目标电压分量的幅值,改善系统的效率。该电机控制方法对电机参数变化有较强的鲁棒性,可以同时应用到凸极同步电机和隐极同步电机的高低速控制中。

Description

电机控制方法、装置及终端设备 技术领域
本申请属于电机控制技术领域,尤其涉及一种电机控制方法、装置及终端设备。
背景技术
电机的无位置传感控制技术是电机控制领域的核心技术。对于凸极电机,由于转子具有凸极性,因此常用的方法是低速时采用信号注入法估测转子速度,高速时采用反电动势法或者模型参考自适应法估测转子位置。而对于表贴式同步电机,由于转子不具有凸极性,因此很难在低速下实现无位置传感控制。
目前尚无一个可以同时对于凸极同步电机(如内嵌式同步电机)和隐极同步电机(如表贴式同步电机)的高低速运行通用的无位置传感控制技术。
发明内容
本申请实施例提供了一种电机控制方法、装置及终端设备,可以解决传统无位置传感控制技术无法同时适用于凸极同步电机和隐极同步电机高低速运行的问题。
第一方面,本申请实施例提供了一种电机控制方法,包括:
确定第一电机电流在两相静止坐标系α-β下的第一电流分量,并根据所述第一电流分量和第一电压分量确定电角补偿频率;
根据所述第一电流分量、所述第一电压分量和预设扰动信号确定电压补偿系数;
根据预设电压系数、预设电角频率、所述电压补偿系数和所述电角补偿频率确定第一目标电压分量;其中,所述第一目标电压分量用于控制电机转动, 从而确定第二电机电流;
所述第一电压分量为上一控制周期确定的第一目标电压分量,所述第一电机电流为上一控制周期的第二电机电流。
在第一方面的一种可能的实现方式中,所述根据所述第一电流分量和第一电压分量确定电角补偿频率,包括:
根据所述第一电流分量和所述第一电压分量计算得到第一电机功率;
对所述第一电机功率进行滤波,以提取所述第一电机功率的扰动分量;
对所述扰动分量进行调节,得到所述电角补偿频率。
在第一方面的一种可能的实现方式中,所述根据所述第一电流分量、所述第一电压分量和预设扰动信号确定电压补偿系数,包括:
根据所述第一电流分量确定第一角度;其中,所述第一角度为所述第一电机电流的电流矢量与两相静止坐标系α-β中的α轴的夹角;
将所述第一电流分量和所述第一电压分量按照所述第一角度进行变换,确定估测同步坐标系D-Q、所述第一电流分量在所述估测同步坐标系D-Q下的估测电流、所述第一电压分量在所述估测同步坐标系D-Q下估测电压;
将所述预设扰动信号注入到电流角或D轴电流中,并基于所述预设扰动信号、所述估测电流和所述估测电压确定所述电压补偿系数;其中,所述电流角为所述电流矢量与估测同步坐标系D-Q中Q轴的夹角,所述D轴电流为所述电流矢量在估测同步坐标系D-Q中D轴的分量电流。
在第一方面的一种可能的实现方式中,在将所述预设扰动信号注入到电流角中的情况下,所述基于所述预设扰动信号、所述估测电流和所述估测电压确定所述电压补偿系数,包括:
确定估测电流角,所述估测电流角为所述预设扰动信号注入到电流角后得到的电流角;
根据所述电流矢量和所述估测电流角确定第二电流分量;
基于所述第一角度对所述第二电流分量进行Park反变换,确定第三电流分 量;
根据所述第三电流分量和所述估测电压计算得到所述第二电机功率;
根据所述第二电机功率确定所述电压补偿系数。
在第一方面的一种可能的实现方式中,在将所述预设扰动信号注入到D轴电流中的情况下,所述基于所述预设扰动信号、所述估测电流和所述估测电压确定所述电压补偿系数,包括:
确定预设扰动信号在估测同步坐标系D-Q中的高频电流分量和高频电压分量;
根据所述高频电流分量和所述估测电流确定第四电流分量,根据所述高频电压分量和所述估测电压确定第二电压分量;
根据所述第四电流分量和所述第二电压分量计算得到所述第二电机功率;
根据所述第二电机功率确定所述电压补偿系数。
在第一方面的一种可能的实现方式中,所述根据所述第二电机功率确定所述电压补偿系数,包括:
提取所述第二电机功率中的高频功率分量;
根据所述高频功率分量确定所述电压补偿系数。
在第一方面的一种可能的实现方式中,所述根据预设电压系数、预设电角频率、所述电压补偿系数和所述电角补偿频率确定第一目标电压分量,包括:
根据所述预设电压系数和所述电压补偿系数确定目标电压系数;
根据所述预设电角频率和所述目标电压系数确定目标电压幅值;
根据所述电角补偿频率和所述预设电角频率确定目标电角度;
根据所述目标电角度和所述目标电压幅值确定所述第一目标电压分量。
第二方面,本申请实施例提供了一种电机控制装置,包括:
转速跟踪模块,用于确定第一电机电流在两相静止坐标系α-β下的第一电流分量,并根据所述第一电流分量和第一电压分量确定电角补偿频率;
坐标调节模块,用于根据所述第一电流分量、所述第一电压分量和预设扰 动信号确定电压补偿系数;
目标电压分量确定模块,用于根据预设电压系数、预设电角频率、所述电压补偿系数和所述电角补偿频率确定第一目标电压分量;其中,所述第一目标电压分量用于控制电机转动,从而确定第二电机电流;
所述第一电压分量为上一控制周期确定的第一目标电压分量,所述第一电机电流为上一控制周期的第二电机电流。
第三方面,本申请实施例提供了一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述第一方面中任一项所述的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面中任一项所述的方法。
第五方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备执行上述第一方面中任一项所述的方法。
可以理解的是,上述第二方面至第五方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
本申请实施例与现有技术相比存在的有益效果是:
通过计算电角补偿频率,可以实现电机控制系统的稳定性与电机转速的跟踪,防止电机控制系统振荡。通过注入预设扰动信号,并根据注入的预设扰动信号确定电压补偿系数,以优化第一目标电压分量(电机的驱动电压)的幅值,实现在保证电机控制系统稳定的前提下有效改善系统的效率。当电机的工作效率最优时,电机转子的估测同步坐标系与实际转子同步坐标系会自动对正,从而等效精确的无位置传感控制。本实施例提供的电机控制方法对电机参数变化有较强的鲁棒性,可以同时应用到凸极同步电机和隐极同步电机的高低速控制中。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的电机控制方法的流程示意图;
图2是本申请实施例提供的坐标系矢量关系图;
图3是本申请实施例提供的电机控制方法示意图;
图4是本申请实施例提供的电机控制装置的结构示意图;
图5是本申请实施例提供的终端设备的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当…时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以 依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1示出了本申请实施例提供的电机控制方法的流程示意图。参见图1所示,电机控制方法包括步骤S101至步骤S103。
步骤S101,确定第一电机电流在两相静止坐标系α-β下的第一电流分量,并根据第一电流分量和第一电压分量确定电角补偿频率。
其中,第一电压分量为上一控制周期确定的第一目标电压分量,第一电机电流为上一控制周期的第二电机电流。
具体地,第一电机电流为电机当前的工作电流,可以通过电机控制系统中的电流采集装置获取。当获取到第一电机电流后,对第一电机电流进行Clark变换得到第一电机电流在两相静止坐标系α-β下的第一电流分量。然后根据第一电流分量和第一电压分量确定电角补偿频率。
示例性的,电角补偿频率的确定方法包括步骤S1011至步骤S1013。
步骤S1011,根据第一电流分量和第一电压分量计算得到第一电机功率。
示例性的,第一电机电流包括电流i a和电流i b,经过Clark变换后得到的第一电流分量包括电流i α和电流i β。第一电压分量为上一控制周期确定的第一目标电压分量,第一电压分量包括电压
Figure PCTCN2021138122-appb-000001
和电压
Figure PCTCN2021138122-appb-000002
根据电机功率计算公式可以 得到电机的第一电机功率为:
Figure PCTCN2021138122-appb-000003
其中,k为系数,P为电机的第一电机功率,i α和i β为第一电流分量,
Figure PCTCN2021138122-appb-000004
Figure PCTCN2021138122-appb-000005
为第一电压分量。
步骤S1012,对第一电机功率进行滤波,以提取第一电机功率的扰动分量。
具体地,可以利用第三滤波器对第一电机功率进行滤波,提取扰动分量。
示例性的,第三滤波器可以选用带通滤波器、低通滤波器、高通滤波器、陷波滤波器、神经网络或模糊控制器等。
步骤S1013,对扰动分量进行调节,得到电角补偿频率。
具体地,由于扰动分量代表了电机转速的脉动,因此可以通过第一调节器对扰动分量进行调节,从而获得电角补偿频率,进而在电磁转矩中产生阻尼转矩分量,达到抵消电机转速脉动使电机控制系统稳定的目的。
示例性的,第一调节器可以选用比例调解器、比例积分调解器、微分调节器或比例微分调节器等。
步骤S102,根据第一电流分量、第一电压分量和预设扰动信号确定电压补偿系数。
具体地,通过注入预设扰动信号可以获得电机的效率优化工作点,即电机输出所需转矩的最小电流幅值点。因此,可以通过注入预设扰动信号优化恒压频比控制电压的给定幅值,获得最优的电压系数补系数,实现电机控制系统效率优化以及坐标调制。
需要说明的是,本申请中的预设扰动信号可以为真实的扰动信号,也可以为虚拟的扰动信号。
示例性的,步骤S102可以包括步骤S1021至步骤S1023。
步骤S1021,根据第一电流分量确定第一角度。
具体地,第一角度为第一电机电流的电流矢量与两相静止坐标系α-β中的α轴的夹角。
步骤S1022,将第一电流分量和第一电压分量按照第一角度进行变换,确定估测同步坐标系D-Q、第一电流分量在估测同步坐标系D-Q下的估测电流、第一电压分量在估测同步坐标系D-Q下估测电压。
具体地,将第一电流分量i α、i β按照第一角度θ i进行Park变换得到估测同步坐标系D-Q下的估测电流,估测电流包括电流i D和电流i Q。将第一电压分量
Figure PCTCN2021138122-appb-000006
按照第一角度θ i进行Park变换得到估测同步坐标系D-Q下的估测电压,估测电压包括电压
Figure PCTCN2021138122-appb-000007
和电压
Figure PCTCN2021138122-appb-000008
估测同步坐标系D-Q由两相静止坐标系α-β按照第一角度θ i进行Park变换得到,其中估测同步坐标系D-Q中的D轴与两相静止坐标系α-β中的α轴的夹角为第一角度θ i,估测同步坐标系D-Q中的Q轴与两相静止坐标系α-β中的β轴的夹角为第一角度θ i
如图2所示,确定的估测同步坐标系D-Q与两相静止坐标系α-β的夹角为第一角度θ i。估测同步坐标系D-Q与转子实际同步坐标系d-q的夹角为
Figure PCTCN2021138122-appb-000009
步骤S1023,将预设扰动信号注入到电流角或D轴电流中,并基于预设扰动信号、估测电流和估测电压确定电压补偿系数;其中,电流角为电流矢量与估测同步坐标系D-Q中Q轴的夹角,D轴电流为电流矢量在估测同步坐标系D-Q中D轴的分量电流。
具体地,本步骤提供两种预设信号的注入方法,分别为将预设扰动信号注入到电流角或D轴电流中。利用预设扰动信号的注入,计算得到的第二电机功率中包含预设扰动信号引起的扰动功率。
示例性的,步骤S1023中将预设扰动信号注入到电流角中,电压补偿系数的确定方法可以包括步骤S10231至步骤S10235。
步骤S10231,确定估测电流角,估测电流角为预设扰动信号注入到电流角后得到的电流角。
具体地,当电机转子的估测同步坐标系D-Q与转子实际同步坐标系d-q重合时,同步电机的电流矢量I a与估测同步坐标系D-Q中Q轴的MTPA电流角即为σ。电流角σ可以通过MTPA公式根据电机参数计算得到,当电机为隐极式 电机时,电流角σ为零。
将预设扰动信号注入到电流角σ中,得到估测电流角σ h
σ h=σ+A sin ω ht
其中,σ h为估测电流角,σ为电流角,A为预设扰动信号的幅值,ω h为预设扰动信号的频率。
步骤S10232,根据电流矢量和估测电流角确定第二电流分量。
具体地,估测电流角σ h为电流矢量I a与估测同步坐标系D-Q中Q轴的夹角,则根据估测电流角σ h和电流矢量I a可以确定包含高频扰动的第二电流分量,第二电流分量包括电流
Figure PCTCN2021138122-appb-000010
和电流
Figure PCTCN2021138122-appb-000011
Figure PCTCN2021138122-appb-000012
Figure PCTCN2021138122-appb-000013
步骤S10233,基于第一角度对第二电流分量进行Park反变换,确定第三电流分量。
具体地,基于第一角度θ i对第二电流分量
Figure PCTCN2021138122-appb-000014
进行Park反变换,得到包含预设扰动信号扰动的第三电流分量,第三电流分量包括电流
Figure PCTCN2021138122-appb-000015
和电流
Figure PCTCN2021138122-appb-000016
步骤S10234,根据第三电流分量和估测电压计算得到第二电机功率。
具体地,将第三电流分量
Figure PCTCN2021138122-appb-000017
和估测电压
Figure PCTCN2021138122-appb-000018
带入到功率计算公式,得到第二电机功率P inj
Figure PCTCN2021138122-appb-000019
其中,k为系数,p为电机极对数,ω m为电机转速,L d为电机d轴电感,R为电机定子绕组电阻,
Figure PCTCN2021138122-appb-000020
Figure PCTCN2021138122-appb-000021
为估测电压,i Q和i D为估测电流,
Figure PCTCN2021138122-appb-000022
Figure PCTCN2021138122-appb-000023
为第二电流分量。
步骤S10235,根据第二电机功率确定电压补偿系数。
具体地,将第二电机功率P inj根据泰勒级数展开为:
Figure PCTCN2021138122-appb-000024
通过将第二电机功率P inj输入到第二滤波器进行滤波,第二滤波器输出的功率信号为
Figure PCTCN2021138122-appb-000025
其中,第二滤波器可以选用神经网络或带通滤波器等。然后将功率信号与sin ω ht相乘,可以得到功率信号
Figure PCTCN2021138122-appb-000026
功率信号
Figure PCTCN2021138122-appb-000027
可以表示为:
Figure PCTCN2021138122-appb-000028
其中,K为系数。
将功率信号
Figure PCTCN2021138122-appb-000029
输入到第一滤波器中,第一滤波器输出功率信号
Figure PCTCN2021138122-appb-000030
其中,第一滤波器可以选用神经网络、模糊控制器或低通滤波器等。功率信号
Figure PCTCN2021138122-appb-000031
为一个与
Figure PCTCN2021138122-appb-000032
成正比的信号,将功率信号
Figure PCTCN2021138122-appb-000033
输入到第三调节器后,可以得到电压补偿系数Δk v,其中,第三调节器可以选用神经网络、积分器、PI调节器或比例调节器等。若
Figure PCTCN2021138122-appb-000034
不等于零,则第三调节器会不断改变电压补偿系数Δk v,直到
Figure PCTCN2021138122-appb-000035
等于零为止。
由于电流角σ是基于电机参数根据MTPA计算公式获得,因此可以认为电流角σ近似于等于准确的MTPA电流角。而
Figure PCTCN2021138122-appb-000036
等于零时所对应的估测电流角σ h也是MTPA电流角,由于MTPA电流角只有一个,因此第三调节器调节电压补偿系数Δk v使得
Figure PCTCN2021138122-appb-000037
等于零的过程本质上是调节估测同步坐标系D-Q的过程。当估测同步坐标系D-Q与转子实际同步坐标系d-q重合时,此时同步电机的电流矢量I a与估测同步坐标系D-Q中Q轴的MTPA电流角为电流矢量I a与转子实际同步坐标系d-q中q轴的MTPA电流角。
在另外一个实施例中,步骤S1023中将预设扰动信号注入到D轴电流中,电压补偿系数的确定方法可以包括步骤S10236至步骤S10239。
步骤S10236,确定预设扰动信号在估测同步坐标系D-Q中的高频电流分量和高频电压分量。
具体地,将预设扰动信号注入到D轴电流中,则估测电流i Q、i D中包含的 高频电流分量为:
Figure PCTCN2021138122-appb-000038
其中,A为预设扰动信号的幅值,ω h为预设扰动信号的频率,i Dh和i Qh为高频电流分量。
对于隐极电机,在估测同步坐标系D-Q下忽略电机电阻压降,则高频电压分量的计算方程为:
Figure PCTCN2021138122-appb-000039
其中,u Dh和u Qh为高频电压分量,i Dh和i Qh为高频电流分量,L s为电机相电感,ω e为电角频率,ρ为微分算子。
将高频电流分量代入到上式中,如果对估测电流i Q、i D进行虚拟信号的注入,则高频电压分量u Dh、u Qh为:
Figure PCTCN2021138122-appb-000040
步骤S10237,根据高频电流分量和估测电流确定第四电流分量,根据高频电压分量和估测电压确定第二电压分量。
具体地,根据高频电压分量和估测电压确定第二电压分量,第二电压分量
Figure PCTCN2021138122-appb-000041
为:
Figure PCTCN2021138122-appb-000042
根据高频电流分量和估测电流确定第四电流分量,第四电流分量
Figure PCTCN2021138122-appb-000043
为:
Figure PCTCN2021138122-appb-000044
步骤S10238,根据第四电流分量和第二电压分量计算得到第二电机功率。
具体地,预设扰动信号注入后,得到的为电机的虚拟电功率,即为第二电 机功率。第二电机功率P inj的计算公式为:
Figure PCTCN2021138122-appb-000045
其中,k为系数,
Figure PCTCN2021138122-appb-000046
为第四电流分量,
Figure PCTCN2021138122-appb-000047
为第二电压分量。
将上述求得的第四电流分量和第二电压分量代入到第二电机功率P inj的计算公式中,可以得到:
Figure PCTCN2021138122-appb-000048
步骤S10239,根据第二电机功率确定电压补偿系数。
具体地,当求得第二电机功率P inj(电机的虚拟电功率)后,需要分析第二电机功率P inj中所包含的信息,该分析在转子实际同步坐标系d-q下进行。在预设扰动信号注入后,估测电流i D、i Q在转子实际同步坐标系d-q中d轴和q轴的投影分别为i d、i q
Figure PCTCN2021138122-appb-000049
在转子实际同步坐标系d-q下,电机电功率P可以用电机参数及电流i d、i q表示为:
Figure PCTCN2021138122-appb-000050
其中,k为系数,R s为电机定子电阻,Ψ f为永磁体磁链,L s为电机相电感,ω e为电角频率。
结合上述公式,可以推导出注入预设扰动信号后的第二电机功率P inj具体包含的信息为:
Figure PCTCN2021138122-appb-000051
为了提取第二电机功率P inj所包含的高频功率分量
Figure PCTCN2021138122-appb-000052
可以利用第二滤波器对第二电机功率P inj进行高频功率分量的提取,则提取到的高频功率分量
Figure PCTCN2021138122-appb-000053
为:
Figure PCTCN2021138122-appb-000054
其中,第二滤波器可以选用神经网络或带通滤波器等。
再将高频功率分量
Figure PCTCN2021138122-appb-000055
与sinω ht相乘,可得功率
Figure PCTCN2021138122-appb-000056
为:
Figure PCTCN2021138122-appb-000057
再将功率
Figure PCTCN2021138122-appb-000058
输入至第一滤波器中,得到功率
Figure PCTCN2021138122-appb-000059
为:
Figure PCTCN2021138122-appb-000060
由功率
Figure PCTCN2021138122-appb-000061
可以看出,其所包含的信息与
Figure PCTCN2021138122-appb-000062
相关,而
Figure PCTCN2021138122-appb-000063
代表估测同步坐标系D-Q与转子实际同步坐标系d-q的相位差,即电流矢量I a与转子实际同步坐标系d-q中q轴的相位差。为了消除该相位差,利用第三调节器对功率
Figure PCTCN2021138122-appb-000064
进行调节,最终第三调节器输出为电压补偿系数Δk v,其中,第三调节器可以选用神经网络、模糊控制器、PI控制器等。
当功率
Figure PCTCN2021138122-appb-000065
为零时,估测同步坐标系D-Q与转子实际同步坐标系d-q的相位差为零,即估测同步坐标系D-Q与转子实际同步坐标系d-q重合。此时,电流矢量I a位于q轴上,d轴电流为零,给定电压幅值为最优幅值,电机以最大转矩电流比运行,进而降低电机定子电流幅值,达到优化电机控制效率的目的。
步骤S103,根据预设电压系数、电压补偿系数、电角补偿频率和预设电角频率确定第一目标电压分量;其中,第一目标电压分量用于控制电机转动,从而确定第二电机电流。
示例性的,步骤S103具体可以包括步骤S1031至步骤S1034。
步骤S1031,根据预设电压系数和电压补偿系数确定目标电压系数。
具体地,根据电压补偿系数Δk v和预设电压系数k v0可以确定目标电压系数k v为:
k v=k v0+Δk v
其中,预设电压系数k v0可以根据实际需要进行设定。
步骤S1032,根据预设电角频率和目标电压系数确定目标电压幅值。
具体地,根据目标电压系数k v和预设电角频率ω e0确定目标电压幅值
Figure PCTCN2021138122-appb-000066
为:
Figure PCTCN2021138122-appb-000067
其中,预设电角频率ω e0可以根据实际需要进行设定。
步骤S1033,根据电角补偿频率和预设电角频率确定目标电角度。
具体地,根据电角补偿频率Δω e和预设电角频率ω e0计算得到目标电角度ω e为:
ω e=ω e0-Δω e
步骤S1034,根据目标电角度和目标电压幅值确定第一目标电压分量。
具体地,将目标电角度ω e输入到第二调节器中,得到电角度θ e,其中,第二调节器可以选用神经网络、积分器、PI控制器、模糊控制器等。
将电角度θ e与目标电压幅值
Figure PCTCN2021138122-appb-000068
进行极坐标变换,得到第一目标电压分量
Figure PCTCN2021138122-appb-000069
然后根据第一目标电压分量
Figure PCTCN2021138122-appb-000070
执行SVPWM算法输出三相逆变器各开关管占空比,实现对电机的控制。
本申请实施例提供的电机控制方法,通过计算电角补偿频率,可以实现电机控制系统的稳定性与电机转速的跟踪,防止电机控制系统振荡。通过注入预设扰动信号,并根据注入的预设扰动信号确定电压补偿系数,以优化第一目标电压分量(电机的驱动电压)的幅值,实现在保证电机控制系统稳定的前提下有效改善系统的效率。当电机的工作效率最优时,电机转子的估测同步坐标系与实际转子同步坐标系会自动对正,从而等效精确的无位置传感控制。本实施例提供的电机控制方法对电机参数变化有较强的鲁棒性,可以同时应用到凸极同步电机和隐极同步电机的高低速控制中。
为了更加清楚说明本申请实施例提供电机控制方法的工作流程,下面以一个具体的实施例进行说明,如图3所示。
采集第一电机电流i a、i b和第一电压分量
Figure PCTCN2021138122-appb-000071
将第一电机电流i a、i b进行Clark变换得到第一电流分量i α和i β。根据第一电机电流i a、i b和第一电压分 量
Figure PCTCN2021138122-appb-000072
计算得到第一电机功率P,然后利用第三滤波器提取第一电机功率P中的脉冲分量ΔP,在通过第一调节器对脉冲分量ΔP进行调节,得到电角补偿频率Δω e
通过预设扰动信号注入模块注入预设扰动信号,得到第二电机功率P inj。通过第二滤波器对第二电机功率P inj进行滤波,得到功率信号
Figure PCTCN2021138122-appb-000073
将功率信号
Figure PCTCN2021138122-appb-000074
与sin ω ht相乘,得到功率信号
Figure PCTCN2021138122-appb-000075
通过第一滤波器对功率信号
Figure PCTCN2021138122-appb-000076
进行滤波,得到功率信号
Figure PCTCN2021138122-appb-000077
最终利用第三调节器对功率信号
Figure PCTCN2021138122-appb-000078
进行调节,获得电压补偿系数Δk v
根据电压补偿系数Δk v和预设电压系数k v0得到目标电压系数k v。根据目标电压系数k v和预设电角频率ω e0得到目标电压幅值
Figure PCTCN2021138122-appb-000079
根据电角补偿频率Δω e和预设电角频率ω e0计算得到目标电角度ω e。利用第二调节器对目标电角度ω e进行调节得到电角度θ e。将电角度θ e与目标电压幅值
Figure PCTCN2021138122-appb-000080
进行极坐标变换,得到第一目标电压分量
Figure PCTCN2021138122-appb-000081
然后根据第一目标电压分量
Figure PCTCN2021138122-appb-000082
执行SVPWM算法输出三相逆变器各开关管占空比,实现对电机的控制。第一电压分量为上一控制周期确定的第一目标电压分量。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图4示出了本申请实施例提供的电机控制装置的结构示意图,电机控制装置包括转速跟踪模块41、坐标调节模块42和目标电压分量确定模块43。
转速跟踪模块41,用于确定第一电机电流在两相静止坐标系α-β下的第一电流分量,并根据所述第一电流分量和第一电压分量确定电角补偿频率;
坐标调节模块42,用于根据所述第一电流分量、所述第一电压分量和预设扰动信号确定电压补偿系数;
目标电压分量确定模块43,用于根据预设电压系数、预设电角频率、所述电压补偿系数和所述电角补偿频率确定第一目标电压分量;其中,所述第一目 标电压分量用于控制电机转动,从而确定第二电机电流;
所述第一电压分量为上一控制周期确定的第一目标电压分量,所述第一电机电流为上一控制周期的第二电机电流。
本申请的一个实施例中,转速跟踪模块41包括第一电机功率确定单元、扰动分量确定单元和电角补偿频率确定单元。
第一电机功率确定单元,用于根据所述第一电流分量和所述第一电压分量计算得到第一电机功率;
扰动分量确定单元,用于对所述第一电机功率进行滤波,以提取所述第一电机功率的扰动分量;
电角补偿频率确定单元,用于对所述扰动分量进行调节,得到所述电角补偿频率。
本申请的一个实施例中,坐标调节模块42包括第一角度确定单元、估测单元和电压补偿系数确定单元。
第一角度确定单元,用于根据所述第一电流分量确定第一角度;其中,所述第一角度为所述第一电机电流的电流矢量与两相静止坐标系α-β中的α轴的夹角;
估测单元,用于将所述第一电流分量和所述第一电压分量按照所述第一角度进行变换,确定估测同步坐标系D-Q、所述第一电流分量在所述估测同步坐标系D-Q下的估测电流、所述第一电压分量在所述估测同步坐标系D-Q下估测电压;
电压补偿系数确定单元,用于将所述预设扰动信号注入到电流角或D轴电流中,并基于所述预设扰动信号、所述估测电流和所述估测电压确定所述电压补偿系数;其中,所述电流角为所述电流矢量与估测同步坐标系D-Q中Q轴的夹角,所述D轴电流为所述电流矢量在估测同步坐标系D-Q中D轴的分量电流。
本申请的一个实施例中,在将所述预设扰动信号注入到电流角中的情况下, 电压补偿系数确定单元包括估测电流角确定单元、第二电流分量确定单元、第三电流分量确定单元、第二电机功率确定单元和第一电压补偿系数确定子单元。
估测电流角确定单元,用于确定估测电流角,所述估测电流角为所述预设扰动信号注入到电流角后得到的电流角;
第二电流分量确定单元,用于根据所述电流矢量和所述估测电流角确定第二电流分量;
第三电流分量确定单元,用于基于所述第一角度对所述第二电流分量进行Park反变换,确定第三电流分量;
第二电机功率确定单元,用于根据所述第三电流分量和所述估测电压计算得到所述第二电机功率;
第一电压补偿系数确定子单元,用于根据所述第二电机功率确定所述电压补偿系数。
本申请的一个实施例中,在将所述预设扰动信号注入到D轴电流中的情况下,电压补偿系数确定单元包括高频分量确定单元、第二电压分量确定单元、第二电机功率确定子单元和第二电压补偿系数确定单元。
高频分量确定单元,用于确定预设扰动信号在估测同步坐标系D-Q中的高频电流分量和高频电压分量;
第二电压分量确定单元,用于根据所述高频电流分量和所述估测电流确定第四电流分量,根据所述高频电压分量和所述估测电压确定第二电压分量;
第二电机功率确定子单元,用于根据所述第四电流分量和所述第二电压分量计算得到所述第二电机功率;
第二电压补偿系数确定单元,用于根据所述第二电机功率确定所述电压补偿系数。
本申请的一个实施例中,目标电压分量确定模块43包括目标电压系数确定单元、目标电压幅值确定单元、目标电角度确定单元和第一目标电压分量确定单元。
目标电压系数确定单元,用于根据所述预设电压系数和所述电压补偿系数确定目标电压系数;
目标电压幅值确定单元,用于根据所述预设电角频率和所述目标电压系数确定目标电压幅值;
目标电角度确定单元,用于根据所述电角补偿频率和所述预设电角频率确定目标电角度;
第一目标电压分量确定单元,用于根据所述目标电角度和所述目标电压幅值确定所述第一目标电压分量。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
另外,图4所示的电机控制装置可以是内置于现有的终端设备内的软件单元、硬件单元、或软硬结合的单元,也可以作为独立的挂件集成到所述终端设备中,还可以作为独立的终端设备存在。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图5为本申请实施例提供的终端设备的结构示意图。如图5所示,该实施例的终端设备5可以包括:至少一个处理器51(图5中仅示出一个处理器51)、 存储器52以及存储在所述存储器52中并可在所述至少一个处理器51上运行的计算机程序53,所述处理器51执行所述计算机程序53时实现上述任意各个方法实施例中的步骤,例如图1所示实施例中的步骤S101至步骤S103。处理器51执行所述计算机程序53时实现上述各装置实施例中各模块/单元的功能,例如图4所示模块41至43的功能。
示例性的,所述计算机程序53可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器52中,并由所述处理器51执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序53指令段,该指令段用于描述所述计算机程序53在所述终端设备5中的执行过程。
所述终端设备5可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。该终端设备5可包括,但不仅限于,处理器51、存储器52。本领域技术人员可以理解,图5仅仅是终端设备5的举例,并不构成对终端设备5的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器51可以是中央处理单元(Central Processing Unit,CPU),该处理器51还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器52在一些实施例中可以是所述终端设备5的内部存储单元,例如终端设备5的硬盘或内存。所述存储器52在另一些实施例中也可以是所述终端设备5的外部存储设备,例如所述终端设备5上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器52还可以既包括所述终端设备5的 内部存储单元也包括外部存储设备。所述存储器52用于存储操作系统、应用程序、引导装载程序(Boot Loader)、数据以及其他程序等,例如所述计算机程序53的程序代码等。所述存储器52还可以用于暂时地存储已经输出或者将要输出的数据。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序53,所述计算机程序53被处理器51执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述各个方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序53来指令相关的硬件来完成,所述的计算机程序53可存储于一计算机可读存储介质中,该计算机程序53在被处理器51执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序53包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用 和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种电机控制方法,其特征在于,包括:
    确定第一电机电流在两相静止坐标系α-β下的第一电流分量,并根据所述第一电流分量和第一电压分量确定电角补偿频率;
    根据所述第一电流分量、所述第一电压分量和预设扰动信号确定电压补偿系数;
    根据预设电压系数、预设电角频率、所述电压补偿系数和所述电角补偿频率确定第一目标电压分量;其中,所述第一目标电压分量用于控制电机转动,从而确定第二电机电流;
    所述第一电压分量为上一控制周期确定的第一目标电压分量,所述第一电机电流为上一控制周期的第二电机电流。
  2. 根据权利要求1所述的电机控制方法,其特征在于,所述根据所述第一电流分量和第一电压分量确定电角补偿频率,包括:
    根据所述第一电流分量和所述第一电压分量计算得到第一电机功率;
    对所述第一电机功率进行滤波,以提取所述第一电机功率的扰动分量;
    对所述扰动分量进行调节,得到所述电角补偿频率。
  3. 根据权利要求1所述的电机控制方法,其特征在于,所述根据所述第一电流分量、所述第一电压分量和预设扰动信号确定电压补偿系数,包括:
    根据所述第一电流分量确定第一角度;其中,所述第一角度为所述第一电机电流的电流矢量与两相静止坐标系α-β中的α轴的夹角;
    将所述第一电流分量和所述第一电压分量按照所述第一角度进行变换,确定估测同步坐标系D-Q、所述第一电流分量在所述估测同步坐标系D-Q下的估测电流、所述第一电压分量在所述估测同步坐标系D-Q下估测电压;
    将所述预设扰动信号注入到电流角或D轴电流中,并基于所述预设扰动信号、所述估测电流和所述估测电压确定所述电压补偿系数;其中,所述电流角 为所述电流矢量与估测同步坐标系D-Q中Q轴的夹角,所述D轴电流为所述电流矢量在估测同步坐标系D-Q中D轴的分量电流。
  4. 根据权利要求3所述的电机控制方法,其特征在于,在将所述预设扰动信号注入到电流角中的情况下,所述基于所述预设扰动信号、所述估测电流和所述估测电压确定所述电压补偿系数,包括:
    确定估测电流角,所述估测电流角为所述预设扰动信号注入到电流角后得到的电流角;
    根据所述电流矢量和所述估测电流角确定第二电流分量;
    基于所述第一角度对所述第二电流分量进行Park反变换,确定第三电流分量;
    根据所述第三电流分量和所述估测电压计算得到所述第二电机功率;
    根据所述第二电机功率确定所述电压补偿系数。
  5. 根据权利要求3所述的电机控制方法,其特征在于,在将所述预设扰动信号注入到D轴电流中的情况下,所述基于所述预设扰动信号、所述估测电流和所述估测电压确定所述电压补偿系数,包括:
    确定预设扰动信号在估测同步坐标系D-Q中的高频电流分量和高频电压分量;
    根据所述高频电流分量和所述估测电流确定第四电流分量,根据所述高频电压分量和所述估测电压确定第二电压分量;
    根据所述第四电流分量和所述第二电压分量计算得到所述第二电机功率;
    根据所述第二电机功率确定所述电压补偿系数。
  6. 根据权利要求4或5所述的电机控制方法,其特征在于,所述根据所述第二电机功率确定所述电压补偿系数,包括:
    提取所述第二电机功率中的高频功率分量;
    根据所述高频功率分量确定所述电压补偿系数。
  7. 根据权利要求1所述的电机控制方法,其特征在于,所述根据预设电压 系数、预设电角频率、所述电压补偿系数和所述电角补偿频率确定第一目标电压分量,包括:
    根据所述预设电压系数和所述电压补偿系数确定目标电压系数;
    根据所述预设电角频率和所述目标电压系数确定目标电压幅值;
    根据所述电角补偿频率和所述预设电角频率确定目标电角度;
    根据所述目标电角度和所述目标电压幅值确定所述第一目标电压分量。
  8. 一种电机控制装置,其特征在于,包括:
    转速跟踪模块,用于确定第一电机电流在两相静止坐标系α-β下的第一电流分量,并根据所述第一电流分量和第一电压分量确定电角补偿频率;
    坐标调节模块,用于根据所述第一电流分量、所述第一电压分量和预设扰动信号确定电压补偿系数;
    目标电压分量确定模块,用于根据预设电压系数、预设电角频率、所述电压补偿系数和所述电角补偿频率确定第一目标电压分量;其中,所述第一目标电压分量用于控制电机转动,从而确定第二电机电流;
    所述第一电压分量为上一控制周期确定的第一目标电压分量,所述第一电机电流为上一控制周期的第二电机电流。
  9. 一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述的方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的方法。
PCT/CN2021/138122 2021-03-30 2021-12-14 电机控制方法、装置及终端设备 WO2022206027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110337972.X 2021-03-30
CN202110337972.XA CN113037170B (zh) 2021-03-30 2021-03-30 电机控制方法、装置及终端设备

Publications (1)

Publication Number Publication Date
WO2022206027A1 true WO2022206027A1 (zh) 2022-10-06

Family

ID=76452809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138122 WO2022206027A1 (zh) 2021-03-30 2021-12-14 电机控制方法、装置及终端设备

Country Status (2)

Country Link
CN (1) CN113037170B (zh)
WO (1) WO2022206027A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037170B (zh) * 2021-03-30 2022-10-14 中国科学院深圳先进技术研究院 电机控制方法、装置及终端设备
CN114915224B (zh) * 2022-03-10 2023-01-24 四川大学 基于自适应的虚拟直流信号注入法的mtpa控制方法
CN115996007B (zh) * 2023-02-03 2023-08-22 北京中科昊芯科技有限公司 一种电机定子电阻在线辨识的方法、装置及电机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197799A1 (en) * 2007-02-15 2008-08-21 Sanyo Electric Co., Ltd. Motor control device
CN103236816A (zh) * 2013-04-26 2013-08-07 武汉港迪电气有限公司 变频器在v/f控制下稳定运行的方法
CN107863915A (zh) * 2017-11-24 2018-03-30 浙江理工大学 基于功率补偿的同步磁阻电机无传感器直接转矩控制系统
CN107919832A (zh) * 2017-11-24 2018-04-17 浙江理工大学 基于功率补偿的同步磁阻电机无传感器控制系统及方法
CN108336937A (zh) * 2018-02-27 2018-07-27 武汉理工大学 一种基于高频信号注入法的永磁同步电机转子位置误差补偿方法
WO2019050276A1 (ko) * 2017-09-05 2019-03-14 두산로보틱스 주식회사 전류 센서의 스케일 및 옵셋 오차 보상 방법 및 장치
CN110492820A (zh) * 2019-08-13 2019-11-22 华中科技大学 一种永磁同步电机无传感器控制方法及系统
CN111510042A (zh) * 2019-01-30 2020-08-07 广东美的白色家电技术创新中心有限公司 电机的转子位置估算方法、装置和电机控制系统
CN113037170A (zh) * 2021-03-30 2021-06-25 中国科学院深圳先进技术研究院 电机控制方法、装置及终端设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221307B2 (ja) * 2004-01-07 2009-02-12 日立アプライアンス株式会社 同期電動機の制御装置,電気機器およびモジュール
KR100877599B1 (ko) * 2007-05-30 2009-01-09 영남대학교 산학협력단 위치 및 속도 센서가 없는 교류전동기의 영전류클램핑 보상방법
CN105790660B (zh) * 2016-03-03 2019-02-22 南京理工大学 超高速永磁同步电机转速自适应鲁棒控制系统及方法
CN105811825B (zh) * 2016-03-22 2018-06-26 西安交通大学 基于电流补偿的虚拟同步发电机功率解耦方法
US9948224B1 (en) * 2016-10-17 2018-04-17 General Electric Company System and method for sensorless control of electric machines using magnetic alignment signatures
CN106911280B (zh) * 2017-03-13 2019-04-02 江苏大学 基于新型扰动观测器的永磁直线电机无位置传感器控制方法
CN107134964B (zh) * 2017-04-26 2020-08-28 江苏大学 基于扩张状态观测器的五相容错永磁电机无位置传感器控制方法
CN109495047B (zh) * 2018-12-28 2021-06-04 东北大学 一种基于高频信号注入的永磁同步电机无传感器控制方法
CN111711398B (zh) * 2020-07-13 2022-02-18 华中科技大学 永磁同步电机无位置传感器控制系统的动态性能改善方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080197799A1 (en) * 2007-02-15 2008-08-21 Sanyo Electric Co., Ltd. Motor control device
CN103236816A (zh) * 2013-04-26 2013-08-07 武汉港迪电气有限公司 变频器在v/f控制下稳定运行的方法
WO2019050276A1 (ko) * 2017-09-05 2019-03-14 두산로보틱스 주식회사 전류 센서의 스케일 및 옵셋 오차 보상 방법 및 장치
CN107863915A (zh) * 2017-11-24 2018-03-30 浙江理工大学 基于功率补偿的同步磁阻电机无传感器直接转矩控制系统
CN107919832A (zh) * 2017-11-24 2018-04-17 浙江理工大学 基于功率补偿的同步磁阻电机无传感器控制系统及方法
CN108336937A (zh) * 2018-02-27 2018-07-27 武汉理工大学 一种基于高频信号注入法的永磁同步电机转子位置误差补偿方法
CN111510042A (zh) * 2019-01-30 2020-08-07 广东美的白色家电技术创新中心有限公司 电机的转子位置估算方法、装置和电机控制系统
CN110492820A (zh) * 2019-08-13 2019-11-22 华中科技大学 一种永磁同步电机无传感器控制方法及系统
CN113037170A (zh) * 2021-03-30 2021-06-25 中国科学院深圳先进技术研究院 电机控制方法、装置及终端设备

Also Published As

Publication number Publication date
CN113037170A (zh) 2021-06-25
CN113037170B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
WO2022206027A1 (zh) 电机控制方法、装置及终端设备
CN112713834B (zh) 一种永磁同步电机无位置传感器控制方法及系统
CN104935232A (zh) 永磁同步电机的直接转矩控制方法、控制系统
CN103825525A (zh) 一种改进的无传感器永磁同步电机速度估测方法
WO2021109861A1 (zh) 一种电机控制方法、装置、终端设备及存储介质
CN110518852A (zh) 基于谐波注入的永磁同步电机电流谐波抑制方法
CN113241986B (zh) 一种电机的控制方法、控制系统和存储介质
WO2022257405A1 (zh) 最大转矩电流比控制方法、装置、终端设备及存储介质
CN109150052B (zh) 一种考虑数字控制延迟的随机正弦注入永磁电机转子位置观测器的高频噪音抑制方法
CN109873589A (zh) 一种永磁同步电机转子零位检测方法
CN113364380A (zh) 一种电机参数确定方法及装置
CN112054734A (zh) 永磁同步电机的低速无速度传感器mtpa控制方法及系统
WO2022257402A1 (zh) 一种电机控制方法、装置、终端及存储介质
CN107769655B (zh) 永磁同步电机转速估算方法、装置、计算设备及存储介质
CN111262494B (zh) 永磁同步电机的控制方法、装置、存储介质以及处理器
WO2021232615A1 (zh) 电机转子位置检测方法、装置以及电机控制器
CN111756298A (zh) 一种电机启动方法及相关装置
CN114257131B (zh) 氢气压缩机的电机转速控制方法、装置、设备及存储介质
CN114977948B (zh) 永磁同步电机的转子位置估算方法与装置
Li et al. Speed sensorless control employing adaptive sliding mode adjustable model MRAS for induction motors at low speed range
Liu et al. MTPA control for an IPMSM drive system using high frequency injection method
CN116961502A (zh) 电机的监控方法、设备、空调和存储介质
CN115001328A (zh) 基于滑模观测器的电机控制方法、设备及存储介质
CN108258966B (zh) 一种磁场定向控制的方法及装置
CN114448319A (zh) 一种永磁同步电机参数辨识方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934663

Country of ref document: EP

Kind code of ref document: A1