WO2022257402A1 - 一种电机控制方法、装置、终端及存储介质 - Google Patents

一种电机控制方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2022257402A1
WO2022257402A1 PCT/CN2021/137822 CN2021137822W WO2022257402A1 WO 2022257402 A1 WO2022257402 A1 WO 2022257402A1 CN 2021137822 W CN2021137822 W CN 2021137822W WO 2022257402 A1 WO2022257402 A1 WO 2022257402A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
signal
axis
current
vector angle
Prior art date
Application number
PCT/CN2021/137822
Other languages
English (en)
French (fr)
Inventor
孙天夫
李可
冯伟
梁嘉宁
李慧云
朱松龄
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2022257402A1 publication Critical patent/WO2022257402A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present application belongs to the technical field of motor control, and in particular relates to a motor control method, device, terminal and storage medium.
  • Electric energy is a kind of green energy.
  • how to optimize the control of the motor to ensure the efficient and stable operation of the motor is a crucial issue.
  • an important control principle is that the first-order partial derivative of motor torque T e with respect to current vector angle ⁇ is zero (ie ), it can be realized that when the current amplitude is given, the output torque of the motor is the maximum. Therefore, it is usually necessary to extract the first-order partial derivative of the motor torque T e with respect to the current vector angle ⁇ , so as to control the relevant parameters to approach zero and ensure that the motor is in the best power output state.
  • the first-order partial derivative information of torque to current vector angle is mainly extracted based on virtual high-frequency signal injection.
  • the overshoot is serious, which is not conducive to the accurate and stable estimation of the best control state of the motor, and it is difficult to achieve the ideal operating state of the motor.
  • the embodiment of the present application provides a motor control method, device, terminal and storage medium to solve the problem of complex structure of the motor control system in the prior art, slow dynamic response speed, serious overshoot and overshoot when the working condition changes suddenly, which is not conducive to the optimal operation of the motor. Accurate and stable estimation of the control state is difficult to achieve the ideal operating state of the motor.
  • the first aspect of the embodiments of the present application provides a motor control method, including:
  • the motor parameters include: d-axis voltage, q-axis voltage, d-axis current, q-axis current, d-axis inductance of the motor, mechanical angular velocity of the rotor in the motor, stator resistance of the motor, and the The number of permanent magnet pole pairs in the motor;
  • the first-order partial derivative signal of the motor torque to the current vector angle is calculated as an output signal
  • a target current vector angle of the motor is determined, and operation control of the motor is performed based on the target current vector angle.
  • the second aspect of the embodiments of the present application provides a motor control device, including:
  • a parameter acquisition module used to acquire motor parameters, the motor parameters include: motor d-axis voltage, q-axis voltage, d-axis current, q-axis current, d-axis inductance, mechanical angular velocity of the rotor in the motor, the motor The stator resistance and the number of permanent magnet pole pairs in the motor;
  • the signal processing module is used to calculate the first-order partial derivative signal of the motor torque to the current vector angle as an output signal according to the motor parameters;
  • a control module configured to determine a target current vector angle of the motor based on the output signal, and control the operation of the motor based on the target current vector angle.
  • the third aspect of the embodiments of the present application provides a terminal, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the The steps of the method as described in the first aspect.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a fifth aspect of the present application provides a computer program product, which, when running on a terminal, causes the terminal to execute the steps of the method described in the first aspect above.
  • FIG. 1 is a flow chart 1 of a motor control method provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of the input current provided by the embodiment of the present application.
  • Fig. 3 is a comparison diagram of the effect of the prior art provided by the embodiment of the present application and the motor control method in the present application;
  • Fig. 4 is a flowchart 2 of a motor control method provided by an embodiment of the present application.
  • Fig. 5 is a flow chart of determining the target current vector angle provided by the embodiment of the present application.
  • Fig. 6 is a structural diagram of a motor control device provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of a terminal provided by an embodiment of the present application.
  • the term “if” may be construed as “when” or “once” or “in response to determining” or “in response to detecting” depending on the context .
  • the phrase “if determined” or “if [the described condition or event] is detected” may be construed, depending on the context, to mean “once determined” or “in response to the determination” or “once detected [the described condition or event] ]” or “in response to detection of [described condition or event]”.
  • the terminals described in the embodiments of the present application include but are not limited to other portable devices such as mobile phones, laptop computers or tablet computers with touch-sensitive surfaces (eg, touch screen displays and/or touch pads). It should also be appreciated that in some embodiments, the device is not a portable communication device, but a desktop computer with a touch-sensitive surface (eg, a touchscreen display and/or a touchpad).
  • a terminal including a display and a touch-sensitive surface is described.
  • a terminal may include one or more other physical user interface devices such as a physical keyboard, mouse and/or joystick.
  • the terminal supports various applications such as one or more of the following: drawing application, presentation application, word processing application, website creation application, disk burning application, spreadsheet application, gaming application, telephony application programs, video conferencing applications, email applications, instant messaging applications, exercise support applications, photo management applications, digital camera applications, digital video camera applications, web browsing applications, digital music player applications, and and/or digital video player applications.
  • applications such as one or more of the following: drawing application, presentation application, word processing application, website creation application, disk burning application, spreadsheet application, gaming application, telephony application programs, video conferencing applications, email applications, instant messaging applications, exercise support applications, photo management applications, digital camera applications, digital video camera applications, web browsing applications, digital music player applications, and and/or digital video player applications.
  • Various applications that can be executed on the terminal can use at least one common physical user interface device, such as a touch-sensitive surface.
  • a touch-sensitive surface One or more functions of the touch-sensitive surface and corresponding information displayed on the terminal may be adjusted and/or changed between applications and/or within the respective applications.
  • the common physical architecture eg, touch-sensitive surface
  • the terminal can support various applications with a user interface that is intuitive and transparent to the user.
  • FIG. 1 is a flowchart 1 of a continuous learning method provided by an embodiment of the present application. As shown in Figure 1, a continuous learning method, the method includes the following steps:
  • Step 101 obtaining motor parameters.
  • Motor parameters include: motor d-axis voltage, q-axis voltage, d-axis current, q-axis current, d-axis inductance, mechanical angular velocity of the rotor in the motor, stator resistance of the motor and the number of permanent magnet pole pairs in the motor.
  • Step 102 calculate the first-order partial derivative signal of the motor torque with respect to the current vector angle as an output signal.
  • the first-order partial derivative signal of the torque to the current vector angle specifically corresponds to a signal value positively correlated with the first-order partial derivative of the torque to the current vector angle, more specifically, corresponds to a signal value that is positively correlated with the torque to the current vector angle
  • the first partial derivative of is proportional to the signal value.
  • the first-order partial derivative signal of the motor torque with respect to the current vector angle can be obtained through numerical calculation based on the obtained motor parameters, without using a filter.
  • the first-order partial derivative signal of the motor torque with respect to the current vector angle is calculated as the output signal:
  • model formula is obtained based on the model formula of the motor torque signal after injecting the virtual high-frequency signal into the current vector angle.
  • the virtual high-frequency signal may be a small-amplitude high-frequency signal component; superimposing the virtual high-frequency signal on the current vector angle is used to increase the offset of the current vector angle and play a role of signal disturbance.
  • model formula of the motor torque signal is defined in the rotor coordinate system of the motor as follows:
  • v d is the motor d-axis stator voltage
  • id is the motor d -axis stator current
  • v q is the motor q-axis stator voltage
  • i q is the motor q-axis stator current
  • L d is the d-axis inductance
  • L q is the q-axis Inductance
  • R is the stator resistance
  • p is the number of pole pairs of the permanent magnet of the motor
  • ⁇ m is the flux linkage of the permanent magnet
  • I a is the current amplitude
  • is the current vector angle
  • ⁇ m is the mechanical angular velocity of the rotor.
  • the aforementioned model formula of the motor torque signal after injecting a virtual high-frequency signal into the current vector angle can be obtained by injecting a virtual high-frequency signal into the current vector angle on the basis of the motor model in the rotor coordinate system of the above-mentioned motor .
  • A is the amplitude of the virtual high-frequency disturbance signal
  • ⁇ h is the frequency of the high-frequency disturbance signal.
  • the injected signal here is an offset ⁇ of the current vector angle ⁇ .
  • the calculated motor torque signal will then become a calculated torque signal with high frequency disturbance.
  • the model formula of the motor torque signal after injecting the virtual high-frequency signal into the current vector angle is:
  • the virtual high-frequency signal is, for example, a virtual high-frequency sinusoidal signal
  • the motor torque signal is a virtual motor torque signal
  • the aforementioned setting model formula is obtained based on the model formula of the motor torque signal, it may be based on the DC component term contained in the model formula, namely The proportional item of , extract the first-order partial derivative signal of the motor torque to the current vector angle, that is, Out Non .
  • model formulas other than the motor torque in the motor model can be substituted into the model formula of the motor torque signal after signal injection, and trigonometric functions, such as trigonometric function integral and difference formulas, etc., can be used to perform functionalization Jane, through the derivation of the motor model formula, it is deduced that signal (first partial derivative of torque with respect to current vector angle).
  • T e is the initial motor torque signal
  • v d is the d-axis voltage of the motor
  • L d is the d-axis inductance of the motor
  • v q is the motor q-axis voltage
  • I a is the current amplitude
  • is the current vector angle
  • L q is the q-axis inductance of the motor
  • R is the stator of the motor resistance
  • p is the number of permanent magnet pole pairs of the motor
  • ⁇ m is the mechanical angular velocity of the rotor in the motor
  • the model formula of the initial motor torque signal is the model formula of the motor torque signal before the virtual high-frequency signal is injected.
  • the coefficient of the sin( ⁇ h t) term is determined through the analogy principle of the coefficients of similar terms Equivalent to the coefficient m 2 +n 2 +n 3 , the formula of the set model is obtained:
  • the trigonometric functions include, for example, induction formulas, trigonometric sum formulas, integral and difference formulas, and the like.
  • analogy principle of the coefficients of similar items specifically refers to: the coefficients of similar items in different forms of expressions of the same parameter (in this embodiment, specifically, the first model formula and the second model formula) can be considered to be equivalent by analogy .
  • the d-axis current after signal injection and the q-axis current after signal injection are substituted into the model formula of the initial motor torque signal, combined with the trigonometric function formula, the first model formula of the motor torque signal after signal injection is obtained, including :
  • the expansion formula is obtained by using trigonometric functions on the model formula of the initial motor torque signal:
  • the motor can be an embedded permanent magnet synchronous motor or other motor types.
  • Step 103 based on the output signal, determine the target current vector angle of the motor, and control the operation of the motor based on the target current vector angle.
  • the first-order partial derivative signal of the calculated motor torque to the current vector angle can be obtained.
  • the motor output rotation According to the characteristics of the maximum torque, the target value of the current vector angle ⁇ is determined, and the operation control of the motor is implemented through the target value, so that the output torque of the motor is the maximum when the current amplitude is given.
  • the essence of this process is to derive the motor model formula to directly calculate the Signal (the first-order partial derivative of the torque to the current vector angle), make it 0, make the motor work in the best state, and achieve the maximum output torque of the motor when the current amplitude is given.
  • the above method realizes the direct calculation of Signal, and adjust the system controller to make the partial derivative term converge to zero, so as to realize the accurate estimation of the best operating point of the motor.
  • this scheme can effectively increase the estimated speed, reduce the amount of calculation and complexity, and can stably estimate the maximum speed under variable working conditions. Optimal operating point.
  • the motor parameters including several motor parameters can be directly calculated through these motor parameters to obtain the first-order partial derivative of the motor torque with respect to the current vector angle as an output signal. The whole process does not need to use a filter, and can be directly calculated.
  • the optimal torque-to-current ratio of the motor is determined, the dynamic response speed is improved, the overshoot and overshoot phenomenon is avoided when the working condition changes suddenly, and the state stability of the motor running at the optimal operating point is ensured.
  • Embodiments of the present application also provide different implementations of the motor control method.
  • FIG. 4 is a flowchart 2 of a motor control method provided by an embodiment of the present application. As shown in Figure 4, a motor control method, the method includes the following steps:
  • Step 401 obtain motor parameters.
  • the parameters of the motor include: d-axis voltage, q-axis voltage, d-axis current, q-axis current, d-axis inductance, mechanical angular velocity of the rotor in the motor, stator resistance of the motor and the number of permanent magnet pole pairs in the motor.
  • Step 402 calculate the first-order partial derivative signal of the motor torque with respect to the current vector angle as an output signal.
  • step 102 The implementation process of this step is the same as the implementation process of step 102 in the foregoing embodiments, and will not be repeated here.
  • Step 403 based on the output signal, determine the current phase lead angle corresponding to the time when the first-order partial derivative signal of the torque with respect to the current vector angle approaches zero, as the target current vector angle of the motor.
  • controller 3 when determining target current vector angle, can be based on each motor parameter, input in controller 3 by equation (34) calculation result Out Non (controller 3 can be neural network, fuzzy controller, PI controller, proportional-integral-derivative (PID) controller, integrator, etc.), use controller 3 to adjust the current vector angle until Out Non gradually approaches zero.
  • Out Non approaches zero (ie )
  • the output current vector angle at this time is the optimal current vector angle ⁇ ref (i.e. the target current vector angle)
  • the current vector angle at this time also corresponds to the best operating point of the motor, which can be ensured without using a filter
  • the motor runs stably at its best.
  • Step 404 based on the target current vector angle, calculate the d-axis current command and the q-axis current command of the motor.
  • the coordinate conversion calculation is performed to obtain the d-axis current command and the q-axis current command of the motor.
  • Step 405 inputting the d-axis current command and the q-axis current command to the PI controller for decoupling to generate a d-axis voltage command and a q-axis voltage command.
  • PI controller proportional integral controller
  • PI controller is a linear controller, which forms a control deviation based on a given value and an actual output value, and uses a linear combination of the proportion and integral of the deviation to form a control variable to control the controlled object.
  • the PI controller decouples the d-axis current command and the q-axis current command to generate a d-axis voltage command and a q-axis voltage command.
  • Step 406 based on the d-axis voltage command and the q-axis voltage command, generate a voltage pulse signal and output it to the inverter for driving and controlling the motor.
  • the pulse signal after voltage coordinate conversion is obtained and input to the inverter.
  • the inverter converts stable direct current into alternating current with adjustable frequency and voltage, so as to drive the motor in the desired state.
  • the first-order partial derivative of the motor torque to the current vector angle is directly calculated through these motor parameters as the output signal. The whole process does not need to use a filter and can be directly calculated.
  • the optimal torque-current ratio of the motor is determined, the dynamic response speed is improved, the overshoot and overshoot phenomenon is avoided when the working condition changes suddenly, and the state stability of the motor running at the optimal operating point is ensured.
  • FIG. 6 is a structural diagram of a motor control device provided by an embodiment of the present application. For ease of description, only parts related to the embodiment of the present application are shown.
  • the motor control device 600 includes:
  • the parameter acquisition module 601 is used to acquire motor parameters, and the motor parameters include: d-axis voltage, q-axis voltage, d-axis current, q-axis current, d-axis inductance of the motor, mechanical angular velocity of the rotor in the motor, the The stator resistance of the motor and the number of pole pairs of permanent magnets in said motor;
  • the signal processing module 602 is used to calculate the first-order partial derivative signal of the motor torque to the current vector angle as an output signal according to the motor parameters;
  • the control module 603 is configured to determine a target current vector angle of the motor based on the output signal, and perform operation control on the motor based on the target current vector angle.
  • the signal processing module is specifically used for:
  • the first-order partial derivative signal of the motor torque to the current vector angle is calculated as the output signal by setting the model formula as follows:
  • a formula determination module which is used for:
  • T e is the initial motor torque signal
  • v d is the d-axis voltage of the motor
  • L d is the motor's d-axis inductance
  • v q is the q-axis voltage of the motor
  • I a is the current amplitude
  • is the current vector angle
  • Lq is the q -axis inductance of the motor
  • R is the stator resistance of the motor
  • p is the number of permanent magnet pole pairs of the motor
  • ⁇ m is the mechanical angular velocity of the rotor in the motor;
  • the coefficient of the sin ( ⁇ h t) term is determined through the analogy principle of the coefficients of similar terms Equivalent to the coefficient m 2 +n 2 +n 3 , the formula of the set model is obtained:
  • the formula determines the module and is also used specifically for:
  • the model formula of the initial motor torque signal is expanded using trigonometric functions formula:
  • control module is specifically used for:
  • the current phase leading angle corresponding to when the first-order partial derivative signal of the torque with respect to the current vector angle approaches zero is determined as the target current vector angle of the motor.
  • control module is also specifically used for:
  • a voltage pulse signal is generated and output to an inverter for driving and controlling the motor.
  • the motor control device provided in the embodiment of the present application can realize the various processes of the above motor control method embodiment, and can achieve the same technical effect, and to avoid repetition, details are not repeated here.
  • FIG. 7 is a structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 7 of this embodiment includes: at least one processor 70 (only one is shown in FIG. A running computer program 72, when the processor 70 executes the computer program 72, implements the steps in any of the above method embodiments.
  • the terminal 7 may be a computing device such as a desktop computer, a notebook, a palmtop computer, or a cloud server.
  • the terminal 7 may include, but not limited to, a processor 70 and a memory 71 .
  • FIG. 7 is only an example of the terminal 7 and does not constitute a limitation to the terminal 7. It may include more or less components than those shown in the illustration, or combine certain components, or different components, such as
  • the terminal may also include an input and output device, a network access device, a bus, and the like.
  • the processor 70 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory 71 may be an internal storage unit of the terminal 7 , such as a hard disk or memory of the terminal 7 .
  • the memory 71 can also be an external storage device of the terminal 7, such as a plug-in hard disk equipped on the terminal 7, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, Flash card (Flash Card), etc.
  • the memory 71 may also include both an internal storage unit of the terminal 7 and an external storage device.
  • the memory 71 is used to store the computer program and other programs and data required by the terminal.
  • the memory 71 can also be used to temporarily store data that has been output or will be output.
  • the disclosed device/terminal and method may be implemented in other ways.
  • the device/terminal embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the methods of the above embodiments in the present application can also be completed by instructing related hardware through computer programs.
  • the computer programs can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps in the above-mentioned various method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunication signal and software distribution medium, etc.
  • This application implements all or part of the processes in the methods of the above-mentioned embodiments, and may also be realized by a computer program product.
  • the steps in the above-mentioned method embodiments can be realized when the terminal is executed. .

Abstract

一种电机控制方法、装置、终端及存储介质,适用于电机控制技术领域,该方法包括:获取包括电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、电机中转子的机械角速度、电机的定子电阻及电机中的永磁体极对数在内的电机参数;根据电机参数,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号;基于该输出信号,确定电机的目标电流矢量角,并基于目标电流矢量角对所述电机进行运转控制。该方法能够确保电机在最佳状态运行点运转的状态稳定性。

Description

一种电机控制方法、装置、终端及存储介质 技术领域
本申请属于电机控制技术领域,尤其涉及一种电机控制方法、装置、终端及存储介质。
背景技术
电能作为一种绿色能源,在新能源产业日益发达的今天,如何对电机进行优化控制,确保电机能够高效稳定运行是至关重要的一个问题。
在常见的电机优化控制中,一个重要的控制原理是,电机转矩T e对电流矢量角β的一阶偏导数为零(即
Figure PCTCN2021137822-appb-000001
)时,可实现在给定电流幅值时,电机输出的转矩为最大。因此,通常需要对电机转矩T e对电流矢量角β的一阶偏导数进行提取,以控制相关参数使其趋近于零,确保电机处于最佳的动力输出状态。
现有的电机控制方法中,主要是基于虚拟高频信号注入的方式提取转矩对电流矢量角的一阶偏导项信息
Figure PCTCN2021137822-appb-000002
在提取该一阶偏导项信息时,通常需要使用级联的多个滤波器(带通和低通)进行信号处理,导致电机控制系统结构复杂,动态响应速度慢,工况突变时超调过冲严重,不利于电机最佳控制状态的准确稳定估测,难以达到电机的理想运行状态。
发明内容
本申请实施例提供了一种电机控制方法、装置、终端及存储介质,以解决现有技术电机控制系统结构复杂,动态响应速度慢,工况突变时超调过冲严重,不利于电机最佳控制状态的准确稳定估测,难以达到电机的理想运行状态的问题。
本申请实施例的第一方面提供了一种电机控制方法,包括:
获取电机参数,所述电机参数包括:电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、所述电机中转子的机械角速度、所述电机的定子电阻及所述电机中的永磁体极对数;
根据所述电机参数,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号;
基于所述输出信号,确定所述电机的目标电流矢量角,并基于所述目标电流矢量角对所述电机进行运转控制。
本申请实施例的第二方面提供了一种电机控制装置,包括:
参数获取模块,用于获取电机参数,所述电机参数包括:电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、所述电机中转子的机械角速度、所述电机的定子电阻及所述电机中的永磁体极对数;
信号处理模块,用于根据所述电机参数,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号;
控制模块,用于基于所述输出信号,确定所述电机的目标电流矢量角,并基于所述目标电流矢量角对所述电机进行运转控制。
本申请实施例的第三方面提供了一种终端,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所 述方法的步骤。
本申请实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤。
本申请的第五方面提供了一种计算机程序产品,当所述计算机程序产品在终端上运行时,使得所述终端执行上述第一方面所述方法的步骤。
由上可见,本申请实施例中,通过获取包含电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、电机中转子的机械角速度、电机的定子电阻及电机中的永磁体极对数在内的电机参数,通过该些电机参数直接计算得到电机转矩对电流矢量角的一阶偏导数作为输出信号,整个过程无需使用滤波器,直接进行计算即可,能够在简单的电机控制系统结构下,确定出电机的最优转矩电流比,提升动态响应速度,避免工况突变时的超调过冲现象,确保电机在最佳状态运转的稳定性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电机控制方法的流程图一;
图2是本申请实施例提供的输入电流示意图;
图3是本申请实施例提供的现有技术与本申请中电机控制方法的效果对比图;
图4是本申请实施例提供的一种电机控制方法的流程图二;
图5是本申请实施例提供的确定出目标电流矢量角的流程图;
图6是本申请实施例提供的一种电机控制装置的结构图;
图7是本申请实施例提供的一种终端的结构图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操 作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
具体实现中,本申请实施例中描述的终端包括但不限于诸如具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的移动电话、膝上型计算机或平板计算机之类的其它便携式设备。还应当理解的是,在某些实施例中,所述设备并非便携式通信设备,而是具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的台式计算机。
在接下来的讨论中,描述了包括显示器和触摸敏感表面的终端。然而,应当理解的是,终端可以包括诸如物理键盘、鼠标和/或控制杆的一个或多个其它物理用户接口设备。
终端支持各种应用程序,例如以下中的一个或多个:绘图应用程序、演示应用程序、文字处理应用程序、网站创建应用程序、盘刻录应用程序、电子表格应用程序、游戏应用程序、电话应用程序、视频会议应用程序、电子邮件应用程序、即时消息收发应用程序、锻炼支持应用程序、照片管理应用程序、数码相机应用程序、数字摄影机应用程序、web浏览应用程序、数字音乐播放器应用程序和/或数字视频播放器应用程序。
可以在终端上执行的各种应用程序可以使用诸如触摸敏感表面的至少一个公共物理用户接口设备。可以在应用程序之间和/或相应应用程序内调整和/或改变触摸敏感表面的一个或多个功能以及终端上显示的相应信息。这样,终端的公共物理架构(例如,触摸敏感表面)可以支持具有对用户而言直观且透明的用户界面的各种应用程序。
应理解,本实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
参见图1,图1是本申请实施例提供的一种持续学习方法的流程图一。如图1所示,一种 持续学习方法,该方法包括以下步骤:
步骤101,获取电机参数。
电机参数包括:电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、电机中转子的机械角速度、电机的定子电阻及电机中的永磁体极对数。
步骤102,根据该电机参数,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号。
其中,该转矩对电流矢量角的一阶偏导数信号,具体对应一个与转矩对电流矢量角的一阶偏导数正相关的信号值,更具体地,对应一个与转矩对电流矢量角的一阶偏导数成正比的信号值。
该步骤中,通过获取到的电机参数,通过数值计算的方式可以得到电机转矩对电流矢量角的一阶偏导数信号,不需要使用滤波器。在一个具体的实现方式中,例如通过如下设定模型公式,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号:
Figure PCTCN2021137822-appb-000003
其中,Out Non为电机转矩对电流矢量角的一阶偏导数信号;v d为d轴电压;v q为q轴电压;i d为d轴电流;i q为q轴电流;L d为d轴电感;ω m为转子的机械角速度;R为定子电阻;p为永磁体极对数;其中,i d=-I asinβ,i q=I acosβ,I a为电流幅值,β为电流矢量角。
其中,该模型公式为基于向电流矢量角中注入虚拟高频信号后的电机转矩信号的模型公式得到。
该虚拟高频信号具体可以是一个小幅高频信号分量;在电流矢量角上叠加虚拟高频信号用于增加电流矢量角的偏移量,起到信号扰动作用。
其中,电机转矩信号的模型公式在电机的转子坐标系下定义如下:
Figure PCTCN2021137822-appb-000004
Figure PCTCN2021137822-appb-000005
Figure PCTCN2021137822-appb-000006
i d=-I asinβ;i q=I acosβ;   (11)
其中,v d为电机d轴定子电压,i d为电机d轴定子电流、v q为电机q轴定子电压、i q为电 机q轴定子电流,L d为d轴电感,L q为q轴电感,R为定子电阻,p为电机永磁体极对数,ψ m为永磁体磁链,I a为电流幅值,β为电流矢量角,ω m为转子的机械角速度。
前述的向电流矢量角中注入虚拟高频信号后的电机转矩信号的模型公式,可以是在上述电机的转子坐标系下的电机模型基础上,向电流矢量角中注入虚拟高频信号后得到。
其中,当电机在稳态运行时,(8)和(9)中的微分项为零,将其余项代入(10)中,可得:
Figure PCTCN2021137822-appb-000007
向电机转矩公式(10)注入一个虚拟高频信号,虚拟高频信号表示为:
Δβ=A sin(ω ht);   (13)
其中A为虚拟高频扰动信号的幅值,ω h为高频扰动信号的频率。这里注入的信号是一个电流矢量角β的偏移量Δβ。附加该信号后,(11)可以表达为:
Figure PCTCN2021137822-appb-000008
计算出的电机转矩信号也会随之变成一个带有高频扰动的计算转矩信号。向电流矢量角中注入虚拟高频信号后的电机转矩信号的模型公式为:
Figure PCTCN2021137822-appb-000009
其中,该虚拟高频信号例如是虚拟高频正弦信号,该电机转矩信号为虚拟电机转矩信号。
同样地,当将方程(15)左侧部分进行泰勒展开时,模型公式表达如下:
Figure PCTCN2021137822-appb-000010
而在基于该电机转矩信号的模型公式,得到前述的设定模型公式时,具体可以是基于模型公式中包含的直流分量项,即
Figure PCTCN2021137822-appb-000011
的比例项,提取得到电机转矩对电流矢量角的一阶偏导数信号,即Out Non
或者,具体可以是将电机模型中电机转矩之外的其他模型公式代入至信号注入后的电机转矩信号的模型公式中,利用三角函数,例如三角函数积化和差公式等,进行函数化简,通过电机模型公式进行推导,推算出
Figure PCTCN2021137822-appb-000012
信号(转矩对电流矢量角的一阶偏导数)。在推导过程中,还可以同时结合上述泰勒展开后的公式(16),由于公式(16)中存在系数为
Figure PCTCN2021137822-appb-000013
的直流分量项,即
Figure PCTCN2021137822-appb-000014
的比例项,
Figure PCTCN2021137822-appb-000015
可以通过对公式(15)进行化简推导等处理,提 取该直流分量项sin(ω ht)的同类项,将其系数认为等同于
Figure PCTCN2021137822-appb-000016
得到电机转矩对电流矢量角的一阶偏导数信号,即Out Non
对应地,作为一可选的实施方式,在根据电机参数,通过设定模型公式,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号之前,具体通过下面的步骤得到设定模型公式:
在电流矢量角中注入虚拟高频信号,得到信号注入后的d轴电流及信号注入后的q轴电流:
Figure PCTCN2021137822-appb-000017
其中,
Figure PCTCN2021137822-appb-000018
为信号注入后的d轴电流,
Figure PCTCN2021137822-appb-000019
为信号注入后的q轴电流,I a为电流幅值,β为电流矢量角,Δβ为注入的虚拟高频信号,Δβ=A sin(ω ht),A为虚拟高频信号的幅值,ω h为虚拟高频信号的频率,t为时间;
获取电机在电机转子坐标系下的初始电机转矩信号的模型公式:
Figure PCTCN2021137822-appb-000020
其中,T e为初始电机转矩信号;v d为电机的d轴电压;i d为电机的d轴电流,i d=-I asinβ;L d为电机的d轴电感;v q为电机的q轴电压;i q为电机的q轴电流,i q=I acosβ;其中,I a为电流幅值,β为电流矢量角;L q为电机的q轴电感;R为电机的定子电阻;p为电机的永磁体极对数;ω m为电机中转子的机械角速度;其中,该初始电机转矩信号的模型公式为虚拟高频信号未注入前的电机转矩信号的模型公式。
将信号注入后的d轴电流、信号注入后的q轴电流代入初始电机转矩信号的模型公式中,结合三角函数公式,得到信号注入后的电机转矩信号的第一模型公式:
Figure PCTCN2021137822-appb-000021
其中,
Figure PCTCN2021137822-appb-000022
Figure PCTCN2021137822-appb-000023
取cos Δβ=1,cos 2Δβ=1,sin Δβ=Δβ;
将第一模型公式的左侧进行泰勒展开,得到第二模型公式:
Figure PCTCN2021137822-appb-000024
基于第一模型公式及第二模型公式,通过同类项的系数类比原则,确定sin(ω ht)项的系数
Figure PCTCN2021137822-appb-000025
与系数m 2+n 2+n 3等同,得到设定模型公式:
Figure PCTCN2021137822-appb-000026
其中,三角函数例如包括:诱导公式、三角和公式、积化和差公式等。
同类项的系数类比原则具体是指:相同参数的不同形式的表达式中(本实施例中具体为第一模型公式及第二模型公式中)同类项的系数可以以类比的方式认为两者等同。
其中,将信号注入后的d轴电流、信号注入后的q轴电流代入初始电机转矩信号的模型公式中,结合三角函数公式,得到信号注入后的电机转矩信号的第一模型公式,包括:
将信号注入后的d轴电流、信号注入后的q轴电流代入初始电机转矩信号的模型公式中后,利用三角函数对初始电机转矩信号的模型公式得到展开公式:
Figure PCTCN2021137822-appb-000027
Figure PCTCN2021137822-appb-000028
赋值为m 1、将
Figure PCTCN2021137822-appb-000029
赋值为m 2、将
Figure PCTCN2021137822-appb-000030
赋值为n 1、将
Figure PCTCN2021137822-appb-000031
赋值为n 2、将
Figure PCTCN2021137822-appb-000032
赋值为n 3,并将m 1、m 2、n 1、n 2、n 3代入该展开公式中,得到化简后公式:
Figure PCTCN2021137822-appb-000033
将cos Δβ取值为1,将cos 2Δβ取值为1,将sin Δβ取值为Δβ后,由化简后公式得到信号注入后的电机转矩信号的第一模型公式:
Figure PCTCN2021137822-appb-000034
在具体实现过程中,具体是将(14)代入(15)中,利用三角函数公式展开,可以表示为:
Figure PCTCN2021137822-appb-000035
为简化计算,结合(11)和(25),设:
Figure PCTCN2021137822-appb-000036
Figure PCTCN2021137822-appb-000037
Figure PCTCN2021137822-appb-000038
Figure PCTCN2021137822-appb-000039
Figure PCTCN2021137822-appb-000040
把(26)-(30)代入(25)化简可得:
Figure PCTCN2021137822-appb-000041
由于(13)中的注入信号Δβ的幅值A非常小,可以近似认为:
cos Δβ≈1 cos 2Δβ≈1 sin Δβ≈Δβ;   (32)
结合(13)、(31)和(32),有:
Figure PCTCN2021137822-appb-000042
将(5)和(33)进行对比,显然,虚拟转矩信号
Figure PCTCN2021137822-appb-000043
对电流矢量角β的一阶偏导项就是m 2+n 2+n 3,即:
Figure PCTCN2021137822-appb-000044
该过程给出了通过公式(34)直接计算出与
Figure PCTCN2021137822-appb-000045
成比例的Out Non的方法,在公式(25)展示了利用三角函数变换分解
Figure PCTCN2021137822-appb-000046
的方法,在公式(32)给出了一种近似化简方法,实现了由公式(25)-(34)的推导过程,得到最终的设定模型公式。
该电机可以是内嵌式永磁同步电机或其他电机种类。
步骤103,基于该输出信号,确定电机的目标电流矢量角,并基于目标电流矢量角对电机进行运转控制。
基于输出信号,能够获取到计算出的电机转矩对电流矢量角的一阶偏导数信号,此时,利用电机在转矩T e对电流矢量角β的一阶偏导数为零时电机输出转矩最大的特点,确定出电流矢量角β的目标值,通过该目标值对电机实施运转控制,实现在给定电流幅值时,电机输出的转矩为最大。
该过程,本质是通过电机模型公式进行推导,以基于电机参数直接计算出
Figure PCTCN2021137822-appb-000047
信号(转 矩对电流矢量角的一阶偏导数),使其为0,使电机工作在最佳状态,实现在给定电流幅值时,电机输出的转矩为最大。
该过程,针对现有电机控制方法所存在的问题,提出了基于快速正弦虚拟信号注入的电机控制方法,实现对电机节能控制,改善现有方案所存在的结构复杂、响应速度慢、工况突变超调过冲严重的问题,具有结构设计简单、响应速度快、超调过冲小等优点。
如图2、图3所示,在输入电流幅值相同的情况下,现有的使用级联的多个滤波器使电机工作在最佳状态运行点的电机控制方法在应用过程中响应速度较慢,且存在明显的超调过冲,而本申请中的电机控制方法响应速度快,且超调非常小。
上述方法通过分析现有基于虚拟高频扰动注入的电机控制方法,结合电机模型方程以及三角函数公式,实现了直接计算出
Figure PCTCN2021137822-appb-000048
信号,并通过调节系统控制器使得该偏导项收敛于零,进而实现对电机最佳状态运行点的准确估测。该方案相较于现有基于带通滤波器和低通滤波器的电机控制方式,可以有效提升估测的速度,并减少计算量和复杂程度,能够在多变的工况下稳定估测最佳状态运行点。
本申请实施例中,通过获取包含电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、电机中转子的机械角速度、电机的定子电阻及电机中的永磁体极对数在内的电机参数,通过该些电机参数直接计算得到电机转矩对电流矢量角的一阶偏导数作为输出信号,整个过程无需使用滤波器,直接进行计算即可,能够在简单的电机控制系统结构下,确定出电机的最优转矩电流比,提升动态响应速度,避免工况突变时的超调过冲现象,确保电机在最佳状态运行点进行运转的状态稳定性。
本申请实施例中还提供了电机控制方法的不同实施方式。
参见图4,图4是本申请实施例提供的一种电机控制方法的流程图二。如图4所示,一种电机控制方法,该方法包括以下步骤:
步骤401,获取电机参数。
该电机参数包括:电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、电机中转子的机械角速度、电机的定子电阻及电机中的永磁体极对数。
该步骤的实现过程与前述实施方式中的步骤101的实现过程相同,此处不再赘述。
步骤402,根据电机参数,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号。
该步骤的实现过程与前述实施方式中的步骤102的实现过程相同,此处不再赘述。
步骤403,基于该输出信号,将转矩对电流矢量角的一阶偏导数信号趋近于零时对应的电流相位超前角,确定为电机的目标电流矢量角。
结合图5所示,在确定目标电流矢量角时,可以是将基于各个电机参数,通过方程(34)计算结果Out Non输入至控制器3中(控制器3可为神经网络、模糊控制器、PI控制器、比例-积分-微分(PID)控制器、积分器等),利用控制器3调节电流矢量角,直至Out Non逐渐趋近于零。当Out Non趋近于零时(即
Figure PCTCN2021137822-appb-000049
),此时输出的电流矢量角就是最优电流矢量角β ref(即目标电流矢量角),此时的电流矢量角也就对应电机的最佳状态运行点,不需要使用滤波器即可确保电机稳定地运行在最佳状态。
步骤404,基于目标电流矢量角,计算电机的d轴电流命令及q轴电流命令。
基于目标电流矢量角,进行坐标转换计算得到,电机的d轴电流命令及q轴电流命令。
步骤405,将d轴电流命令及q轴电流命令,输入至PI控制器解耦生成d轴电压命令及q轴电压命令。
PI控制器(proportional integral controller)是一种线性控制器,它根据给定值与实际输出值构成控制偏差,将偏差的比例和积分通过线性组合构成控制量,对被控对象进行控制。通过该PI控制器将d轴电流命令及q轴电流命令解耦生成d轴电压命令及q轴电压命令。
步骤406,基于d轴电压命令及q轴电压命令,生成电压脉冲信号输出至用于对电机进行驱动控制的逆变器。
基于d轴电压命令及q轴电压命令,生成电压脉冲信号时,具体需要将d轴电压命令及q轴电压命令经过数据坐标转换,具体为将两相旋转坐标系d-q坐标系转换为三相静止坐标系A-B-C坐标系,得到电压坐标转换后的脉冲信号,输入至逆变器。
逆变器是把稳定的直流电转化为频率电压可调的交流电,从而用想要的状态去驱动电机。
本实施例中,通过获取包含电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、电机中转子的机械角速度、电机的定子电阻及电机中的永磁体极对数在内的电机参数,通过该些电机参数直接计算得到电机转矩对电流矢量角的一阶偏导数作为输出信号,整个过程无需使用滤波器,直接进行计算即可,能够在简单的电机控制系统结构下,确定出电机的最优转矩电流比,提升动态响应速度,避免工况突变时的超调过冲现象,确保电机在最佳状态运行点进行运转的状态稳定性。
参见图6,图6是本申请实施例提供的一种电机控制装置的结构图,为了便于说明,仅示出了与本申请实施例相关的部分。
所述电机控制装置600包括:
参数获取模块601,用于获取电机参数,所述电机参数包括:电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、所述电机中转子的机械角速度、所述电机的定子电阻及所述电机中的永磁体极对数;
信号处理模块602,用于根据所述电机参数,计算得到电机转矩对电流矢量角的一阶偏 导数信号作为输出信号;
控制模块603,用于基于所述输出信号,确定所述电机的目标电流矢量角,并基于所述目标电流矢量角对所述电机进行运转控制。
其中,信号处理模块,具体用于:
根据所述电机参数,通过如下设定模型公式,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号:
Figure PCTCN2021137822-appb-000050
其中,Out Non为所述电机转矩对电流矢量角的一阶偏导数信号;v d为所述d轴电压;v q为所述q轴电压;i d为所述d轴电流;i q为所述q轴电流;L d为所述d轴电感;ω m为所述转子的机械角速度;R为所述定子电阻;p为所述永磁体极对数;其中,i d=-I asinβ,i q=I acosβ,I a为电流幅值,β为所述电流矢量角;所述设定模型公式为基于向电流矢量角中注入虚拟高频信号后的电机转矩信号的模型公式得到。
其中,还包括:公式确定模块,用于:
在所述电流矢量角中注入虚拟高频信号,得到信号注入后的d轴电流及信号注入后的q轴电流:
Figure PCTCN2021137822-appb-000051
其中,
Figure PCTCN2021137822-appb-000052
为所述信号注入后的d轴电流,
Figure PCTCN2021137822-appb-000053
为所述信号注入后的q轴电流,I a为电流幅值,β为所述电流矢量角,Δβ为注入的所述虚拟高频信号,Δβ=A sin(ω ht),A为所述虚拟高频信号的幅值,ω h为所述虚拟高频信号的频率,t为时间;
获取所述电机在电机转子坐标系下的初始电机转矩信号的模型公式:
Figure PCTCN2021137822-appb-000054
其中,T e为所述初始电机转矩信号;v d为所述电机的d轴电压;i d为所述电机的d轴电流,i d=-I asinβ;L d为所述电机的d轴电感;v q为所述电机的q轴电压;i q为所述电机的q轴电流,i q=I acosβ;其中,I a为电流幅值,β为所述电流矢量角;L q为所述电机的q轴电感;R为所述电机的定子电阻;p为所述电机的永磁体极对数;ω m为所述电机中转子的机械角速度;
将所述信号注入后的d轴电流、所述信号注入后的q轴电流代入所述初始电机转矩信号 的模型公式中,结合三角函数公式,得到信号注入后的电机转矩信号的第一模型公式:
Figure PCTCN2021137822-appb-000055
其中,
Figure PCTCN2021137822-appb-000056
Figure PCTCN2021137822-appb-000057
取cos Δβ=1,cos 2Δβ=1,sin Δβ=Δβ;
将所述第一模型公式的左侧进行泰勒展开,得到第二模型公式:
Figure PCTCN2021137822-appb-000058
基于所述第一模型公式及所述第二模型公式,通过同类项的系数类比原则,确定sin(ω ht)项的系数
Figure PCTCN2021137822-appb-000059
与系数m 2+n 2+n 3等同,得到所述设定模型公式:
Figure PCTCN2021137822-appb-000060
该公式确定模块,还具体用于:
将所述信号注入后的d轴电流、所述信号注入后的q轴电流代入所述初始电机转矩信号的模型公式中后,利用三角函数对所述初始电机转矩信号的模型公式得到展开公式:
Figure PCTCN2021137822-appb-000061
Figure PCTCN2021137822-appb-000062
赋值为m 1、将
Figure PCTCN2021137822-appb-000063
赋值为m 2、将
Figure PCTCN2021137822-appb-000064
赋值为n 1、将
Figure PCTCN2021137822-appb-000065
赋值为n 2、将
Figure PCTCN2021137822-appb-000066
赋值为n 3,并将所述m 1、m 2、n 1、n 2、n 3代入所述展开公式中,得到化简后公式:
Figure PCTCN2021137822-appb-000067
将cos Δβ取值为1,将cos 2Δβ取值为1,将sin Δβ取值为Δβ后,由所述化简后公式得到信号注入后的电机转矩信号的第一模型公式:
Figure PCTCN2021137822-appb-000068
其中,控制模块,具体用于:
基于所述输出信号,将所述转矩对电流矢量角的一阶偏导数信号趋近于零时对应的电流相位超前角,确定为所述电机的目标电流矢量角。
其中,控制模块,还具体用于:
基于所述目标电流矢量角,计算所述电机的d轴电流命令及q轴电流命令;
将所述d轴电流命令及所述q轴电流命令,输入至PI控制器解耦生成d轴电压命令及q轴电压命令;
基于所述d轴电压命令及所述q轴电压命令,生成电压脉冲信号输出至用于对所述电机进行驱动控制的逆变器。
本申请实施例提供的电机控制装置能够实现上述电机控制方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图7是本申请实施例提供的一种终端的结构图。如该图所示,该实施例的终端7包括:至少一个处理器70(图7中仅示出一个)、存储器71以及存储在所述存储器71中并可在所述至少一个处理器70上运行的计算机程序72,所述处理器70执行所述计算机程序72时实现上述任意各个方法实施例中的步骤。
所述终端7可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端7可包括,但不仅限于,处理器70、存储器71。本领域技术人员可以理解,图7仅仅是终端7的示例,并不构成对终端7的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端还可以包括输入输出设备、网络接入设备、总线等。
所述处理器70可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器71可以是所述终端7的内部存储单元,例如终端7的硬盘或内存。所述存储器71也可以是所述终端7的外部存储设备,例如所述终端7上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。可选地,所述存储器71还可以既包括所述终端7的内部存储单元也包括外部存储设备。所述存储器71用于存储所述计算机程序以及所述终端所需的其他程序和数据。所述存储器71还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只 是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序产品来实现,当计算机程序产品在终端上运行时,使得所述终端执行时实现可实现上述各个方法实施例中的步骤。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应 技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种电机控制方法,其特征在于,包括:
    获取电机参数,所述电机参数包括:电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、所述电机中转子的机械角速度、所述电机的定子电阻及所述电机中的永磁体极对数;
    根据所述电机参数,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号;
    基于所述输出信号,确定所述电机的目标电流矢量角,并基于所述目标电流矢量角对所述电机进行运转控制。
  2. 根据权利要求1所述的电机控制方法,其特征在于,所述根据所述电机参数,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号,包括:
    根据所述电机参数,通过如下设定模型公式,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号:
    Figure PCTCN2021137822-appb-100001
    其中,Out Non为所述电机转矩对电流矢量角的一阶偏导数信号;v d为所述d轴电压;v q为所述q轴电压;i d为所述d轴电流;i q为所述q轴电流;L d为所述d轴电感;ω m为所述转子的机械角速度;R为所述定子电阻;p为所述永磁体极对数;其中,i d=-I asinβ,i q=I acosβ,I a为电流幅值,β为所述电流矢量角;所述设定模型公式为基于向电流矢量角中注入虚拟高频信号后的电机转矩信号的模型公式得到。
  3. 根据权利要求2所述的电机控制方法,其特征在于,所述根据所述电机参数,通过如下设定模型公式,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号之前,还包括:
    在所述电流矢量角中注入虚拟高频信号,得到信号注入后的d轴电流及信号注入后的q轴电流:
    Figure PCTCN2021137822-appb-100002
    其中,
    Figure PCTCN2021137822-appb-100003
    为所述信号注入后的d轴电流,
    Figure PCTCN2021137822-appb-100004
    为所述信号注入后的q轴电流,I a为电流幅值,β为所述电流矢量角,Δβ为注入的所述虚拟高频信号,Δβ=A sin(ω ht),A为所述虚拟高频信号的幅值,ω h为所述虚拟高频信号的频率,t为时间;
    获取所述电机在电机转子坐标系下的初始电机转矩信号的模型公式:
    Figure PCTCN2021137822-appb-100005
    其中,T e为所述初始电机转矩信号;v d为所述电机的d轴电压;i d为所述电机的d轴电流,i d=-I asinβ;L d为所述电机的d轴电感;v q为所述电机的q轴电压;i q为所述电机的q轴电流,i q=I acosβ;其中,I a为电流幅值,β为所述电流矢量角;L q为所述电机的q轴电感;R为所述电机的定子电阻;p为所述电机的永磁体极对数;ω m为所述电机中转子的机械角速度;
    将所述信号注入后的d轴电流、所述信号注入后的q轴电流代入所述初始电机转矩信号的模型公式中,结合三角函数公式,得到信号注入后的电机转矩信号的第一模型公式:
    Figure PCTCN2021137822-appb-100006
    其中,
    Figure PCTCN2021137822-appb-100007
    Figure PCTCN2021137822-appb-100008
    取cosΔβ=1,cos 2Δβ=1,sinΔβ=Δβ;
    将所述第一模型公式的左侧进行泰勒展开,得到第二模型公式:
    Figure PCTCN2021137822-appb-100009
    基于所述第一模型公式及所述第二模型公式,通过同类项的系数类比原则,确定sin(ω ht)项的系数
    Figure PCTCN2021137822-appb-100010
    与系数m 2+n 2+n 3等同,得到所述设定模型公式:
    Figure PCTCN2021137822-appb-100011
  4. 根据权利要求3所述的电机控制方法,其特征在于,所述将所述信号注入后的d轴电流、所述信号注入后的q轴电流代入所述初始电机转矩信号的模型公式中,结合三角函数公式,得到信号注入后的电机转矩信号的第一模型公式,包括:
    将所述信号注入后的d轴电流、所述信号注入后的q轴电流代入所述初始电机转矩信号的模型公式中后,利用三角函数对所述初始电机转矩信号的模型公式得到展开公式:
    Figure PCTCN2021137822-appb-100012
    Figure PCTCN2021137822-appb-100013
    赋值为m 1、将
    Figure PCTCN2021137822-appb-100014
    赋值为m 2、将
    Figure PCTCN2021137822-appb-100015
    赋值为n 1、将
    Figure PCTCN2021137822-appb-100016
    赋值为n 2、将
    Figure PCTCN2021137822-appb-100017
    赋值为n 3,并将所述m 1、m 2、n 1、n 2、n 3代入所述展开公式中,得到化简后公式:
    Figure PCTCN2021137822-appb-100018
    将cosΔβ取值为1,将cos 2Δβ取值为1,将sinΔβ取值为Δβ后,由所述化简后公式得到信号注入后的电机转矩信号的第一模型公式:
    Figure PCTCN2021137822-appb-100019
  5. 根据权利要求1所述的电机控制方法,其特征在于,所述基于所述输出信号,确定所述电机的目标电流矢量角,包括:
    基于所述输出信号,将所述转矩对电流矢量角的一阶偏导数信号趋近于零时对应的电流相位超前角,确定为所述电机的目标电流矢量角。
  6. 根据权利要求1所述的电机控制方法,其特征在于,所述基于所述目标电流矢量角对所述电机进行运转控制,包括:
    基于所述目标电流矢量角,计算所述电机的d轴电流命令及q轴电流命令;
    将所述d轴电流命令及所述q轴电流命令,输入至PI控制器解耦生成d轴电压命令及q轴电压命令;
    基于所述d轴电压命令及所述q轴电压命令,生成电压脉冲信号输出至用于对所述电机进行驱动控制的逆变器。
  7. 一种电机控制装置,其特征在于,包括:
    参数获取模块,用于获取电机参数,所述电机参数包括:电机的d轴电压、q轴电压、d轴电流、q轴电流、d轴电感、所述电机中转子的机械角速度、所述电机的定子电阻及所述电机中的永磁体极对数;
    信号处理模块,用于根据所述电机参数,计算得到电机转矩对电流矢量角的一阶偏导数信号作为输出信号;
    控制模块,用于基于所述输出信号,确定所述电机的目标电流矢量角,并基于所述目标电流矢量角对所述电机进行运转控制。
  8. 根据权利要求7所述的电机控制装置,其特征在于,所述信号处理模块,具体用于:
    根据所述电机参数,通过如下设定模型公式,计算得到电机转矩对电流矢量角的一阶偏 导数信号作为输出信号:
    Figure PCTCN2021137822-appb-100020
    其中,Out Non为所述电机转矩对电流矢量角的一阶偏导数信号;v d为所述d轴电压;v q为所述q轴电压;i d为所述d轴电流;i q为所述q轴电流;L d为所述d轴电感;ω m为所述转子的机械角速度;R为所述定子电阻;p为所述永磁体极对数;其中,i d=-I asinβ,i q=I acosβ,I a为电流幅值,β为所述电流矢量角;所述设定模型公式为基于向电流矢量角中注入虚拟高频信号后的电机转矩信号的模型公式得到。
  9. 一种终端,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至6任一项所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述方法的步骤。
PCT/CN2021/137822 2021-06-11 2021-12-14 一种电机控制方法、装置、终端及存储介质 WO2022257402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110655150.6A CN113346815B (zh) 2021-06-11 2021-06-11 一种电机控制方法、装置、终端及存储介质
CN202110655150.6 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022257402A1 true WO2022257402A1 (zh) 2022-12-15

Family

ID=77477105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137822 WO2022257402A1 (zh) 2021-06-11 2021-12-14 一种电机控制方法、装置、终端及存储介质

Country Status (2)

Country Link
CN (1) CN113346815B (zh)
WO (1) WO2022257402A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346815B (zh) * 2021-06-11 2022-04-12 中国科学院深圳先进技术研究院 一种电机控制方法、装置、终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107800344A (zh) * 2017-10-17 2018-03-13 浙江大学 基于虚拟信号注入的同步电机的最大转矩电流比控制方法
US10186999B1 (en) * 2018-02-06 2019-01-22 Rockwell Automation Technologies, Inc. Voltage angle control for a permanent magnet machine
CN111404433A (zh) * 2020-03-23 2020-07-10 天津大学 一种内置式永磁同步电机最大转矩电流比控制方法
CN113346815A (zh) * 2021-06-11 2021-09-03 中国科学院深圳先进技术研究院 一种电机控制方法、装置、终端及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040100221A1 (en) * 2002-11-25 2004-05-27 Zhenxing Fu Field weakening with full range torque control for synchronous machines
CN108988726A (zh) * 2018-08-31 2018-12-11 中科芯集成电路股份有限公司 一种永磁同步电机的mtpa控制方法
CN110071674B (zh) * 2019-05-14 2021-01-22 天津大学 一种无位置传感器永磁同步电机最大转矩电流比控制方法
CN112054735B (zh) * 2020-08-25 2022-03-22 江苏大学 一种内嵌式永磁同步电机最大转矩电流比控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107800344A (zh) * 2017-10-17 2018-03-13 浙江大学 基于虚拟信号注入的同步电机的最大转矩电流比控制方法
US10186999B1 (en) * 2018-02-06 2019-01-22 Rockwell Automation Technologies, Inc. Voltage angle control for a permanent magnet machine
CN111404433A (zh) * 2020-03-23 2020-07-10 天津大学 一种内置式永磁同步电机最大转矩电流比控制方法
CN113346815A (zh) * 2021-06-11 2021-09-03 中国科学院深圳先进技术研究院 一种电机控制方法、装置、终端及存储介质

Also Published As

Publication number Publication date
CN113346815A (zh) 2021-09-03
CN113346815B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
Ren et al. Sensorless PMSM control with sliding mode observer based on sigmoid function
WO2019218389A1 (zh) 基于虚拟电压注入的感应电机无速度传感器驱动控制方法
WO2022206027A1 (zh) 电机控制方法、装置及终端设备
CN105827160B (zh) 一种基于自抗扰和锁相环技术的永磁同步电机系统无传感器速度控制方法
CN109787525B (zh) 永磁同步电机磁链估测方法、装置和计算机设备
WO2022257402A1 (zh) 一种电机控制方法、装置、终端及存储介质
WO2021109861A1 (zh) 一种电机控制方法、装置、终端设备及存储介质
WO2022257405A1 (zh) 最大转矩电流比控制方法、装置、终端设备及存储介质
Wang et al. A new speed adaptive estimation method based on an improved flux sliding-mode observer for the sensorless control of PMSM drives
WO2022257403A1 (zh) 一种电机控制方法、装置、终端及存储介质
CN115459659A (zh) 一种无位置传感器控制参数整定方法及装置
Che et al. Speed sensorless sliding mode control of induction motor based on genetic algorithm optimization
Wen et al. Sensorless control of permanent magnet synchronous motor in full speed range
Xu et al. Anti-disturbance position sensorless control of PMSM based on improved sliding mode observer with suppressed chattering and no phase delay
CN111262494B (zh) 永磁同步电机的控制方法、装置、存储介质以及处理器
CN114826069A (zh) 永磁同步电机的控制方法、装置、永磁同步电机和空调
CN204539029U (zh) 永磁同步电机控制装置
Zhang et al. Design and implementation of an adaptive sliding-mode observer for sensorless vector controlled induction machine drives
Chen et al. Adaptive quasi-proportional resonant control with parameter estimation for PMSM sensorless control
Fan et al. Research on sensorless control of HSPMSM based on a discrete full-order sliding mode observer
Liu et al. Low-speed sensorless control method of SPMSM for oil pump based on improved pulsating high-frequency voltage injection
Wang et al. Fuzzy adaptive super‐twisting algorithm based sliding‐mode observer for sensorless control of permanent magnet synchronous motor
Ding et al. Initial rotor position estimation of SPMSM based on voltage vector injection method
Zhu et al. Discrete-time position observer design for sensorless IPMSM drives
Liu et al. Sensorless model predictive control based on I‐f integrated sliding mode observer for surface permanent magnet synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE