CN111262494B - 永磁同步电机的控制方法、装置、存储介质以及处理器 - Google Patents

永磁同步电机的控制方法、装置、存储介质以及处理器 Download PDF

Info

Publication number
CN111262494B
CN111262494B CN202010172676.4A CN202010172676A CN111262494B CN 111262494 B CN111262494 B CN 111262494B CN 202010172676 A CN202010172676 A CN 202010172676A CN 111262494 B CN111262494 B CN 111262494B
Authority
CN
China
Prior art keywords
permanent magnet
magnet synchronous
synchronous motor
current
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010172676.4A
Other languages
English (en)
Other versions
CN111262494A (zh
Inventor
赵大伟
苏伟
薛振东
李二良
李金龙
胡景林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jinghuan Equipment Design And Research Institute Co ltd
Beijing Environment Sanitation Engineering Group Co., Ltd.
Original Assignee
Beijing Jinghuan Equipment Design And Research Institute Co ltd
Beijing Environment Sanitation Engineering Group Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jinghuan Equipment Design And Research Institute Co ltd, Beijing Environment Sanitation Engineering Group Co., Ltd. filed Critical Beijing Jinghuan Equipment Design And Research Institute Co ltd
Priority to CN202010172676.4A priority Critical patent/CN111262494B/zh
Publication of CN111262494A publication Critical patent/CN111262494A/zh
Application granted granted Critical
Publication of CN111262494B publication Critical patent/CN111262494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0007Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种永磁同步电机的控制方法、装置、存储介质以及处理器。其中,该方法包括:控制永磁同步电机进行转子预定位;在转子预定位之后,将永磁同步电机切换至最大转矩电流比控制模式,其中,最大转矩电流比控制模式的输入为恒流频比控制对应的电流;基于恒流频比控制调整永磁同步电机的转速;在永磁同步电机的转速达到预定转速阈值时,控制永磁同步电机进行角度切换和电流切换;在角度切换和电流切换之后,对永磁同步电机进行滑模控制和锁相环介入控制。本发明解决了相关技术中永磁同步电机的无位置控制存在误差、稳定性差的技术问题。

Description

永磁同步电机的控制方法、装置、存储介质以及处理器
技术领域
本发明涉及电力电子驱动控制领域,具体而言,涉及一种永磁同步电机的控制方法、装置、存储介质以及处理器。
背景技术
目前内置式永磁同步电机(Permanent Magnet Synchronous Motor,简称为PMSM)以其具有结构简单,体积小、重量轻、损耗小、效率高、功率因数高,且响应快速、调速范围宽等优点,广泛应用于工业各个领域。
为了对永磁同步电机进行快速、准确的控制,需要知道转子的位置信息和转速信息,因此需要在电机轴上安装位置传感器,安装位置传感器会增加系统的成本和复杂性,降低了系统的可靠性;并且在某些电磁环境比较复杂的工况,位置传感器的位置信号会受到干扰,影响电机驱动系统的整体控制水平。因此永磁同步电机无位置传感器控制成为研究热点和难点。
PMSM无位置控制的方法也很多,比如模型参考自适应观测器、滑模观测器、扩展卡尔曼滤波器等等。该类方法依赖于电机基波模型,主要是通过各种算法获取与转速有关物理量如电压、电流、磁链、反电动势等,再从这些物理量中提取转子速度及位置信号。这些方法在中、高速时具有一定的有效性和实用性,但是当电机运行在零速和低速时,物理量的信噪比很低,加上其他干扰因素,无法获得有用信息,因此基于基波模型的方法不适合零速和低速场合中。另外一类无位置算法比如,高频旋转电压注入法、高频旋转电流注入法和高频脉振电压注入法,利用电机本身具有凸极性,外部高频激励信号注入和高带宽的信号滤波器,可以提取电机零速和低速时转子速度及位置信息。但在高速区域,反电动势过大,使得激励模型本身存在误差,进而使转子速度及位置检测精度下降,系统稳定性变差。这种低速无位置算法会将谐波引入系统,因此在零速和低速时可以一般采用开环控制方法,起动简单,但是开环控制系统电流稳定性差。
总之,虽然PMSM无位置控制算法有很多,但是每种算法都具有其自身的局限性,很难应用于工程实践中。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种永磁同步电机的控制方法、装置、存储介质以及处理器,以至少解决相关技术中永磁同步电机的无位置控制存在误差、稳定性差的技术问题。
根据本发明实施例的一个方面,提供了一种永磁同步电机的控制方法,包括:控制所述永磁同步电机进行转子预定位;在所述转子预定位之后,将所述永磁同步电机切换至最大转矩电流比控制模式,其中,所述最大转矩电流比控制模式的输入为恒流频比控制对应的电流;基于所述恒流频比控制调整所述永磁同步电机的转速;在所述永磁同步电机的转速达到预定转速阈值时,控制所述永磁同步电机进行角度切换和电流切换;在所述角度切换和所述电流切换之后,对所述永磁同步电机进行滑模控制和锁相环介入控制。
可选地,控制所述永磁同步电机进行转子预定位包括:获取所述永磁同步电机的运行时间;在所述运行时间小于或者等于第一时间阈值时,则生成第一预定位参数;在所述运行时间大于所述第一时间阈值且小于第二时间阈值时,则生成第二预定位参数;其中,所述第二时间阈值大于所述第一时间阈值,所述第一预定位参数和所述第二预定位参数包括以下至少之一:电流、转子位置角。
可选地,在所述转子预定位之后,将所述永磁同步电机切换至最大转矩电流比控制模式包括:在所述运行时间大于或者等于所述第二时间阈值时,则所述永磁同步电机执行最大转矩电流比控制模式。
可选地,基于所述恒流频比控制调整所述永磁同步电机的转速包括:对所述永磁同步电机的转速进行初始化;基于预定转速加速度调整所述永磁同步电机的转速。
可选地,在所述永磁同步电机的转速达到预定转速阈值时,控制所述永磁同步电机进行角度切换和电流切换包括:获取预定转速阈值;在所述永磁同步电机的转速等于所述预定转速阈值时,输出切换后的电流和转子位置角。
可选地,在所述永磁同步电机的转速达到预定转速阈值时,控制所述永磁同步电机进行角度切换和电流切换,还包括:获取每个计算周期中所述永磁同步电机的转子位置角和电流;对所述转子位置角进行角度过渡和对所述电流进行电流滞环过渡。
可选地,在所述角度切换和所述电流切换之后,对所述永磁同步电机进行滑模控制和锁相环介入控制包括:基于第一坐标变换,计算得到第一电流和第二电流;在对所述第一电流和第二电流进行PI调节之后,基于第二坐标变换,计算得到第一电压和第二电压;基于所述第一电压和所述第二电压,利用滑膜观测器计算得到反电势;基于所述反电势,利用锁相环算法计算得到转子速度和转子位置角。
根据本发明实施例的另一方面,还提供了一种永磁同步电机的控制装置,包括:第一控制模块,用于控制所述永磁同步电机进行转子预定位;切换模块,用于在所述转子预定位之后,将所述永磁同步电机切换至最大转矩电流比控制模式,其中,所述最大转矩电流比控制模式的输入为恒流频比控制对应的电流;调整模块,用于基于所述恒流频比控制调整所述永磁同步电机的转速;第二控制模块,用于在所述永磁同步电机的转速达到预定转速阈值时,控制所述永磁同步电机进行角度切换和电流切换;第三控制模块,用于在所述角度切换和所述电流切换之后,对所述永磁同步电机进行滑模控制和锁相环介入控制。
根据本发明实施例的另一方面,还提供了一种存储介质,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行上述中任意一项所述的永磁同步电机的控制方法。
根据本发明实施例的另一方面,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述中任意一项所述的永磁同步电机的控制方法。
在本发明实施例中,采用控制所述永磁同步电机进行转子预定位;在所述转子预定位之后,将所述永磁同步电机切换至最大转矩电流比控制模式,其中,所述最大转矩电流比控制模式的输入为恒流频比控制对应的电流;基于所述恒流频比控制调整所述永磁同步电机的转速;在所述永磁同步电机的转速达到预定转速阈值时,控制所述永磁同步电机进行角度切换和电流切换;在所述角度切换和所述电流切换之后,对所述永磁同步电机进行滑模控制和锁相环介入控制的方式,通过永磁同步电机的转子预定位、恒流频比控制、角度切换和电流切换、滑模控制和锁相环介入控制,达到了摆脱机械位置传感器束缚的目的,从而实现了降低永磁同步电机的无位置控制的误差,有效提高无位置控制的稳定性的技术效果,进而解决了相关技术中永磁同步电机的无位置控制存在误差、稳定性差的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的永磁同步电机的控制方法的流程图;
图2是根据本发明可选实施例的永磁同步电机的控制框图;
图3是根据本发明可选实施例的转子预定位的流程图;
图4是根据本发明可选实施例的恒流频比控制的流程图;
图5是根据本发明可选实施例的算法切换的流程图;
图6是根据本发明可选实施例的滑模控制和锁相环介入控制的流程图;
图7是根据本发明实施例的永磁同步电机的控制装置的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
根据本发明实施例,提供了一种永磁同步电机的控制方法的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本发明实施例的永磁同步电机的控制方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102,控制永磁同步电机进行转子预定位;
上述转子预定位可以将永磁同步电机转子随机的初始位置定位到一个可知的转子位置上。
步骤S104,在转子预定位之后,将永磁同步电机切换至最大转矩电流比控制模式,其中,最大转矩电流比控制模式的输入为恒流频比控制对应的电流;
步骤S106,基于恒流频比控制调整永磁同步电机的转速;
上述恒流频比控制,又称为I/F控制,可以根据预定的电流和转子位置角对永磁同步电机进行电流闭环转速开环控制。
步骤S108,在永磁同步电机的转速达到预定转速阈值时,控制永磁同步电机进行角度切换和电流切换;
上述方式当永磁同步电机达到切换转速后,可以将I/F控制切换到滑模控制。
步骤S110,在角度切换和电流切换之后,对永磁同步电机进行滑模控制和锁相环介入控制。
上述滑模控制和锁相环介入控制可以基于测算出中、高速运行的永磁同步电机的观测器实现。
通过上述步骤,可以实现采用控制永磁同步电机进行转子预定位;在转子预定位之后,将永磁同步电机切换至最大转矩电流比控制模式,其中,最大转矩电流比控制模式的输入为恒流频比控制对应的电流;基于恒流频比控制调整永磁同步电机的转速;在永磁同步电机的转速达到预定转速阈值时,控制永磁同步电机进行角度切换和电流切换;在角度切换和电流切换之后,对永磁同步电机进行滑模控制和锁相环介入控制的方式,通过永磁同步电机的转子预定位、恒流频比控制、角度切换和电流切换、滑模控制和锁相环介入控制,达到了摆脱机械位置传感器束缚的目的,从而实现了降低永磁同步电机的无位置控制的误差,有效提高无位置控制的稳定性的技术效果,进而解决了相关技术中永磁同步电机的无位置控制存在误差、稳定性差的技术问题。
可选地,控制永磁同步电机进行转子预定位包括:获取永磁同步电机的运行时间;在运行时间小于或者等于第一时间阈值时,则生成第一预定位参数;在运行时间大于第一时间阈值且小于第二时间阈值时,则生成第二预定位参数;其中,第二时间阈值大于第一时间阈值,第一预定位参数和第二预定位参数包括以下至少之一:电流、转子位置角。
作为一种可选的实施例,上述第一时间阈值、第二时间阈值、第一预定位参数和第二预定位参数可以根据应用场景需要而设定。可选地,上述第一时间阈值为3秒,第二时间阈值为6秒。
上述第一预定位参数包括第一电流、第二电流和第一转子位置角,可选地,第一电流取值为0.3iN,第二电流取值为0,第一转子位置角取值为90°;
上述第二预定位参数包括第三电流、第四电流和第二转子位置角,可选地,第三电流取值为0.3iN,第四电流取值为0,第二转子位置角取值为0°。
可选地,在转子预定位之后,将永磁同步电机切换至最大转矩电流比控制模式包括:在运行时间大于或者等于第二时间阈值时,则永磁同步电机执行最大转矩电流比控制模式。
通过上述方式,在运行时间大于或者等于第二时间阈值时,也就是在转子预定位完成之后,可以将永磁同步电机切换至最大转矩电流比控制模式。
可选地,基于恒流频比控制调整永磁同步电机的转速包括:对永磁同步电机的转速进行初始化;基于预定转速加速度调整永磁同步电机的转速。
上述初始化可以将永磁同步电机的转速设置为零,进而按照预定转速加速度调整永磁同步电机的转速,从而实现永磁同步电机的恒流频比控制。
需要说明的是,在恒流频比控制阶段,永磁同步电机的两相电流可以分别为:0,0.3iN
通过上述方式可以实现永磁同步电机的转速从低速到高速的调整。
可选地,在永磁同步电机的转速达到预定转速阈值时,控制永磁同步电机进行角度切换和电流切换包括:获取预定转速阈值;在永磁同步电机的转速等于预定转速阈值时,输出切换后的电流和转子位置角。
上述预定转速阈值为永磁同步电机的转速在低速到高速之间的取值,属于中速。
在永磁同步电机的转速与预定转速阈值相同时,可以实现电流和转子位置角的任意切换。
可选地,在永磁同步电机的转速达到预定转速阈值时,控制永磁同步电机进行角度切换和电流切换,还包括:获取每个计算周期中永磁同步电机的转子位置角和电流;对转子位置角进行角度过渡和对电流进行电流滞环过渡。
作为一种可选的实施例,可以在对转子位置角进行角度过渡之后,再执行对电流进行电流滞环过渡。可选地,如果在角度过渡中的转子位置角等于锁相环估计出的转子角,则对电流进行电流滞环过渡。
通过上述方式,可以实现转子位置角和电流在一定的约束范围内逐渐进行调节,从而减小调整带来的波动。
可选地,在角度切换和电流切换之后,对永磁同步电机进行滑模控制和锁相环介入控制包括:基于第一坐标变换,计算得到第一电流和第二电流;在对第一电流和第二电流进行PI调节之后,基于第二坐标变换,计算得到第一电压和第二电压;基于第一电压和第二电压,利用滑膜观测器计算得到反电势;基于反电势,利用锁相环算法计算得到转子速度和转子位置角。
通过上述两次坐标变化,可以准确得到转子位置角以及转子速度。
下面对本发明一种可选的实施方式进行说明。
图2是根据本发明可选实施例的永磁同步电机的控制框图,如图2所示,第①部分,转子预定位;第②部分I/F控制;第③部分算法切换;第④滑模控制和锁相环介入控制;其余为矢量控制算法平台。具体控制流程如下:首先执行第①部分,对电机转子预定位,预定位完成切换到最大转矩电流比控制(Maximum Torque Per Ampere,简称为MTPA),其输入是第②部分I/F控制,当I/F控制使电机转速达到预设切换转速后,执行第③部分算法进行角度切换和电流切换;切换算法执行完后,第④部分滑模控制和锁相环介入控制,对永磁同步电机实现双闭环无位置控制。
图3是根据本发明可选实施例的转子预定位的流程图,如图3所示,当时间小于等于3秒时设置电流指令值
Figure BDA0002409736460000071
设置转子位置角θ=90°;当时间大于3秒小于6秒时,设置电流指令
Figure BDA0002409736460000072
设置转子位置角θ=0°。
图4是根据本发明可选实施例的恒流频比控制的流程图,如图4所示,设置切换转速为ωswitch,当进入该段程序时,电机转速为零,从按加速度a增加,即ω=at,而转子角度θ=∫ωdt,当ω=ωswitch后,设置ω=ωswitch;θ=∫ωswitchdt,即恒速运行。全过程电流可设置
Figure BDA0002409736460000073
图5是根据本发明可选实施例的算法切换的流程图,如图5所示,进入程序后,每个计算周期中令转子位置角θ=θ+Δθ,Δθ是一个固定小角度,当θ=θest后,角度过渡完成,θest是锁相环估计出的转子位置角。
图6是根据本发明可选实施例的滑模控制和锁相环介入控制的流程图,如图6所示,首先进行坐标变换αβ→dq计算id、iq,d、q轴电流进行PI计算,在进行坐标变换dq→αβ,求uα、uβ;uα、uβ作为滑模变结构的算法的输入计算得到电机的反电势;反电势作为锁相环的算法输入计算得到电机的转子速度和位置。
通过上述方式能够实现PMSM全速范围无位置传感器控制,使无位置控制算法能够应用到实际工程中。
实施例2
根据本发明实施例的另外一个方面,还提供了一种用于执行上述实施例1中的永磁同步电机的控制方法的装置实施例,图7是根据本发明实施例的永磁同步电机的控制装置的示意图,如图7所示,该永磁同步电机的控制装置包括:第一控制模块702,切换模块704,调整模块706、第二控制模块708以及第三控制模块710。下面对该永磁同步电机的控制装置进行详细说明。
第一控制模块702,用于控制永磁同步电机进行转子预定位;
切换模块704,连接至上述第一控制模块702,用于在转子预定位之后,将永磁同步电机切换至最大转矩电流比控制模式,其中,最大转矩电流比控制模式的输入为恒流频比控制对应的电流;
调整模块706,连接至上述切换模块704,用于基于恒流频比控制调整永磁同步电机的转速;
第二控制模块708,连接至上述调整模块706,用于在永磁同步电机的转速达到预定转速阈值时,控制永磁同步电机进行角度切换和电流切换;
第三控制模块710,连接至上述第二控制模块708,用于在角度切换和电流切换之后,对永磁同步电机进行滑模控制和锁相环介入控制。
此处需要说明的是,上述第一控制模块702,切换模块704,调整模块706、第二控制模块708以及第三控制模块710对应于实施例1中的步骤S102至S110,上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例1所公开的内容。需要说明的是,上述模块作为装置的一部分可以在诸如一组计算机可执行指令的计算机系统中执行。
由上可知,在本申请上述实施例中,可以利用第一控制模块702控制永磁同步电机进行转子预定位;切换模块704在转子预定位之后,将永磁同步电机切换至最大转矩电流比控制模式,其中,最大转矩电流比控制模式的输入为恒流频比控制对应的电流;调整模块706基于恒流频比控制调整永磁同步电机的转速;第二控制模块708在永磁同步电机的转速达到预定转速阈值时,控制永磁同步电机进行角度切换和电流切换;第三控制模块710在角度切换和电流切换之后,对永磁同步电机进行滑模控制和锁相环介入控制的方式,通过永磁同步电机的转子预定位、恒流频比控制、角度切换和电流切换、滑模控制和锁相环介入控制,达到了摆脱机械位置传感器束缚的目的,从而实现了降低永磁同步电机的无位置控制的误差,有效提高无位置控制的稳定性的技术效果,进而解决了相关技术中永磁同步电机的无位置控制存在误差、稳定性差的技术问题。
可选地,上述第一控制模块702包括:第一获取单元,用于获取永磁同步电机的运行时间;第一生成单元,用于在运行时间小于或者等于第一时间阈值时,则生成第一预定位参数;第二生成单元,用于在运行时间大于第一时间阈值且小于第二时间阈值时,则生成第二预定位参数;其中,第二时间阈值大于第一时间阈值,第一预定位参数和第二预定位参数包括以下至少之一:电流、转子位置角。
可选地,上述切换模块704包括:执行单元,用于在运行时间大于或者等于第二时间阈值时,则永磁同步电机执行最大转矩电流比控制模式。
可选地,上述调整模块706包括:初始化单元,用于对永磁同步电机的转速进行初始化;调整单元,用于基于预定转速加速度调整永磁同步电机的转速。
可选地,上述第二控制模块708包括:第二获取单元,用于获取预定转速阈值;输出单元,用于在永磁同步电机的转速等于预定转速阈值时,输出切换后的电流和转子位置角。
可选地,上述第二控制模块708还包括:第三获取单元,用于获取每个计算周期中永磁同步电机的转子位置角和电流;处理单元,用于对转子位置角进行角度过渡和对电流进行电流滞环过渡。
可选地,上述第三控制模块710包括:第一计算单元,用于基于第一坐标变换,计算得到第一电流和第二电流;第二计算单元,用于在对第一电流和第二电流进行PI调节之后,基于第二坐标变换,计算得到第一电压和第二电压;第三计算单元,用于基于第一电压和第二电压,利用滑膜观测器计算得到反电势;第四计算单元,用于基于反电势,利用锁相环算法计算得到转子速度和转子位置角。
实施例3
根据本发明实施例的另一方面,还提供了一种存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行上述中任意一项的永磁同步电机的控制方法。
实施例4
根据本发明实施例的另一方面,还提供了一种处理器,处理器用于运行程序,其中,程序运行时执行上述中任意一项的永磁同步电机的控制方法。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种永磁同步电机的控制方法,其特征在于,包括:
控制所述永磁同步电机进行转子预定位;
在所述转子预定位之后,将所述永磁同步电机切换至最大转矩电流比控制模式,其中,所述最大转矩电流比控制模式的输入为恒流频比控制对应的电流;
基于所述恒流频比控制调整所述永磁同步电机的转速;
在所述永磁同步电机的转速达到预定转速阈值时,控制所述永磁同步电机进行角度切换和电流切换;
在所述角度切换和所述电流切换之后,对所述永磁同步电机进行滑模控制和锁相环介入控制;
在所述永磁同步电机的转速达到预定转速阈值时,控制所述永磁同步电机进行角度切换和电流切换,还包括:获取每个计算周期中所述永磁同步电机的转子位置角和电流;对所述转子位置角进行角度过渡和对所述电流进行电流滞环过渡,控制所述永磁同步电机进行转子预定位包括:获取所述永磁同步电机的运行时间;在所述运行时间小于或者等于第一时间阈值时,则生成第一预定位参数,在所述运行时间大于所述第一时间阈值且小于第二时间阈值时,则生成第二预定位参数,其中,所述第二时间阈值大于所述第一时间阈值,所述第一预定位参数和所述第二预定位参数包括以下至少之一:电流、转子位置角,在对所述转子位置角进行所述角度过渡之后,再执行对所述电流进行所述电流滞环过渡,在所述角度过渡中的所述转子位置角等于所述锁相环估计出的所述转子位置角时,对所述电流进行所述电流滞环过渡。
2.根据权利要求1所述的方法,其特征在于,在所述转子预定位之后,将所述永磁同步电机切换至最大转矩电流比控制模式包括:
在所述运行时间大于或者等于所述第二时间阈值时,则所述永磁同步电机执行最大转矩电流比控制模式。
3.根据权利要求1所述的方法,其特征在于,基于所述恒流频比控制调整所述永磁同步电机的转速包括:
对所述永磁同步电机的转速进行初始化;
基于预定转速加速度调整所述永磁同步电机的转速。
4.根据权利要求1所述的方法,其特征在于,在所述永磁同步电机的转速达到预定转速阈值时,控制所述永磁同步电机进行角度切换和电流切换包括:
获取预定转速阈值;
在所述永磁同步电机的转速等于所述预定转速阈值时,输出切换后的电流和转子位置角。
5.根据权利要求1至4中任一项所述的方法,其特征在于,在所述角度切换和所述电流切换之后,对所述永磁同步电机进行滑模控制和锁相环介入控制包括:
基于第一坐标变换,计算得到第一电流和第二电流;
在对所述第一电流和第二电流进行PI调节之后,基于第二坐标变换,计算得到第一电压和第二电压;
基于所述第一电压和所述第二电压,利用滑膜观测器计算得到反电势;
基于所述反电势,利用锁相环算法计算得到转子速度和转子位置角。
6.一种永磁同步电机的控制装置,其特征在于,包括:
第一控制模块,用于控制所述永磁同步电机进行转子预定位;
切换模块,用于在所述转子预定位之后,将所述永磁同步电机切换至最大转矩电流比控制模式,其中,所述最大转矩电流比控制模式的输入为恒流频比控制对应的电流;
调整模块,用于基于所述恒流频比控制调整所述永磁同步电机的转速;
第二控制模块,用于在所述永磁同步电机的转速达到预定转速阈值时,控制所述永磁同步电机进行角度切换和电流切换;
第三控制模块,用于在所述角度切换和所述电流切换之后,对所述永磁同步电机进行滑模控制和锁相环介入控制;
所述第二控制模块还包括:第三获取单元,用于获取每个计算周期中永磁同步电机的转子位置角和电流;处理单元,用于对转子位置角进行角度过渡和对电流进行电流滞环过渡,第一控制模块包括:第一获取单元,用于获取所述永磁同步电机的运行时间;第二生成单元,用于在所述运行时间小于或者等于第一时间阈值时,生成第一预定位参数;第三生成单元,用于在所述运行时间大于所述第一时间阈值且小于第二时间阈值时,生成第二预定位参数,其中,所述第二时间阈值大于所述第一时间阈值,所述第一预定位参数和所述第二预定位参数包括以下至少之一:电流、转子位置角,所述处理单元还包括:第一处理模块,用于对所述转子位置角进行所述角度过渡,第二处理模块,用于在所述角度过渡中的所述转子位置角等于所述锁相环估计出的所述转子位置角时,对所述电流进行所述电流滞环过渡。
7.一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行权利要求1至5中任意一项所述的永磁同步电机的控制方法。
8.一种处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至5中任意一项所述的永磁同步电机的控制方法。
CN202010172676.4A 2020-03-12 2020-03-12 永磁同步电机的控制方法、装置、存储介质以及处理器 Active CN111262494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010172676.4A CN111262494B (zh) 2020-03-12 2020-03-12 永磁同步电机的控制方法、装置、存储介质以及处理器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010172676.4A CN111262494B (zh) 2020-03-12 2020-03-12 永磁同步电机的控制方法、装置、存储介质以及处理器

Publications (2)

Publication Number Publication Date
CN111262494A CN111262494A (zh) 2020-06-09
CN111262494B true CN111262494B (zh) 2022-04-01

Family

ID=70953175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010172676.4A Active CN111262494B (zh) 2020-03-12 2020-03-12 永磁同步电机的控制方法、装置、存储介质以及处理器

Country Status (1)

Country Link
CN (1) CN111262494B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865636A (zh) * 2021-01-15 2021-05-28 珠海格力电器股份有限公司 一种最大转矩电流比控制方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051806A (zh) * 2007-05-17 2007-10-10 同济大学 车用空调压缩机新型电驱动控制系统及方法
CN103580563A (zh) * 2013-10-30 2014-02-12 航天科工海鹰集团有限公司 无刷直流电机的控制方法
CN104242765A (zh) * 2014-08-28 2014-12-24 四川长虹电器股份有限公司 永磁同步电机的启动方法
CN105356812A (zh) * 2015-10-23 2016-02-24 杭州娃哈哈精密机械有限公司 永磁同步电机启动电路及启动方法
CN105703682A (zh) * 2015-12-18 2016-06-22 华南理工大学 一种无位置传感器的永磁同步电机起动方法
CN106208877A (zh) * 2016-08-15 2016-12-07 北京泓慧国际能源技术发展有限公司 一种磁悬浮储能飞轮无传感器充电控制方法
CN108063575A (zh) * 2017-11-16 2018-05-22 中冶南方(武汉)自动化有限公司 自启动永磁同步电机i/f启动方法及系统
CN108540016A (zh) * 2018-04-28 2018-09-14 四川虹美智能科技有限公司 一种电机的启动方法及装置
CN109921697A (zh) * 2019-01-23 2019-06-21 四川虹美智能科技有限公司 一种电机启动方法和装置
CN110048655A (zh) * 2019-04-08 2019-07-23 江苏大学 反电势基波提取的永磁同步电机无位置传感器控制系统
CN110504888A (zh) * 2019-09-17 2019-11-26 河南工业大学 一种基于自适应滑模观测器无位置传感器永磁同步电机控制方法
CN110649849A (zh) * 2019-11-01 2020-01-03 南京航空航天大学 一种基于新型滑模观测器的磁通切换型永磁直线电机无位置控制方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051806A (zh) * 2007-05-17 2007-10-10 同济大学 车用空调压缩机新型电驱动控制系统及方法
CN103580563A (zh) * 2013-10-30 2014-02-12 航天科工海鹰集团有限公司 无刷直流电机的控制方法
CN104242765A (zh) * 2014-08-28 2014-12-24 四川长虹电器股份有限公司 永磁同步电机的启动方法
CN105356812A (zh) * 2015-10-23 2016-02-24 杭州娃哈哈精密机械有限公司 永磁同步电机启动电路及启动方法
CN105703682A (zh) * 2015-12-18 2016-06-22 华南理工大学 一种无位置传感器的永磁同步电机起动方法
CN106208877A (zh) * 2016-08-15 2016-12-07 北京泓慧国际能源技术发展有限公司 一种磁悬浮储能飞轮无传感器充电控制方法
CN108063575A (zh) * 2017-11-16 2018-05-22 中冶南方(武汉)自动化有限公司 自启动永磁同步电机i/f启动方法及系统
CN108540016A (zh) * 2018-04-28 2018-09-14 四川虹美智能科技有限公司 一种电机的启动方法及装置
CN109921697A (zh) * 2019-01-23 2019-06-21 四川虹美智能科技有限公司 一种电机启动方法和装置
CN110048655A (zh) * 2019-04-08 2019-07-23 江苏大学 反电势基波提取的永磁同步电机无位置传感器控制系统
CN110504888A (zh) * 2019-09-17 2019-11-26 河南工业大学 一种基于自适应滑模观测器无位置传感器永磁同步电机控制方法
CN110649849A (zh) * 2019-11-01 2020-01-03 南京航空航天大学 一种基于新型滑模观测器的磁通切换型永磁直线电机无位置控制方法

Also Published As

Publication number Publication date
CN111262494A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
Song et al. A novel sensorless rotor position detection method for high-speed surface PM motors in a wide speed range
CN110350835A (zh) 一种永磁同步电机无位置传感器控制方法
Wang et al. Review of sensorless control techniques for PMSM drives
CN109713961B (zh) 永磁同步电机控制方法、装置及电子设备
JP7303849B2 (ja) 内部永久磁石同期モータ制御のためのロバストな始動システムおよび方法
CN103825525A (zh) 一种改进的无传感器永磁同步电机速度估测方法
CN114598206B (zh) 永磁同步电机宽速域转子位置观测器设计方法
CN103746619A (zh) 一种同步电机启动控制方法及系统
CN115173774B (zh) 一种永磁同步电机无位置传感器控制方法及系统
CN103117702B (zh) 一种高精度永磁同步电机的无速度传感器估计方法
Zhang et al. An improved sensorless control strategy of ship IPMSM at full speed range
CN113241985A (zh) 无位置传感器磁悬浮飞轮电流自校正控制装置及方法
Wen et al. Sensorless control of permanent magnet synchronous motor in full speed range
CN111262494B (zh) 永磁同步电机的控制方法、装置、存储介质以及处理器
CN113938077B (zh) 一种无位置传感器的永磁同步电机全速度范围控制方法
Liu et al. Full speed range position-sensorless compound control scheme for PMSMs
CN110943669B (zh) 永磁同步电机启动的方法及装置、智能设备
CN111800039B (zh) 转子位置信息确认方法、同步电机的矢量控制方法及装置
Adam et al. Adaptive steering‐based HDTC algorithm for PMSM
Salman et al. A Novel Sensorless Control Approach for IPMSM Using Extended Flux Based PI Observer for Washing Machine Applications
CN113517838A (zh) 一种基于永磁同步电机的转子位置角确定方法及装置
Abd Samat et al. Implementation of Sugeno FIS in model reference adaptive system adaptation scheme for speed sensorless control of PMSM
CN111756298A (zh) 一种电机启动方法及相关装置
Zhai et al. An Improved Position Observer for Sensorless FOC Algorithm
Sun et al. Rotor position estimation of PMSM with noise suppression using steady-state linear kalman filter and high frequency square wave injection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant