WO2022257405A1 - 最大转矩电流比控制方法、装置、终端设备及存储介质 - Google Patents

最大转矩电流比控制方法、装置、终端设备及存储介质 Download PDF

Info

Publication number
WO2022257405A1
WO2022257405A1 PCT/CN2021/138144 CN2021138144W WO2022257405A1 WO 2022257405 A1 WO2022257405 A1 WO 2022257405A1 CN 2021138144 W CN2021138144 W CN 2021138144W WO 2022257405 A1 WO2022257405 A1 WO 2022257405A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
current
target
lead angle
phase lead
Prior art date
Application number
PCT/CN2021/138144
Other languages
English (en)
French (fr)
Inventor
孙天夫
朱松龄
龙凌辉
冯伟
李慧云
吴新宇
梁嘉宁
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2022257405A1 publication Critical patent/WO2022257405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present application belongs to the technical field of motor control, and in particular relates to a maximum torque-to-current ratio control method, device, terminal equipment and storage medium.
  • MTPA Maximum Torque Per Ampere
  • Embodiments of the present application provide a maximum torque-to-current ratio control method, device, terminal equipment, and storage medium, so as to improve the dynamic response speed of MTPA control and quickly determine the MTPA operating point.
  • the embodiment of the present application provides a maximum torque current ratio control method
  • the maximum torque current ratio control method includes:
  • the first AC component refers to the frequency of the first electromagnetic power of the permanent magnet synchronous motor that is the same as that of the target signal AC component
  • the second AC component refers to the same-frequency AC component whose phase of the first AC component lags behind the target angle
  • the first electromagnetic power refers to the electromagnetic power injected into the target signal
  • the first current phase lead angle is adjusted so that the permanent magnet synchronous motor satisfies a maximum torque-to-current ratio.
  • the embodiment of the present application provides a maximum torque-to-current ratio control device, and the maximum torque-to-current ratio control device includes:
  • a signal acquisition module configured to acquire a target signal
  • a signal injection module configured to inject the target signal into the first current phase lead angle of the permanent magnet synchronous motor to obtain a second current phase lead angle
  • a component determination module configured to determine a first AC component and a second AC component according to the second current phase lead angle, the first AC component refers to the difference between the first electromagnetic power of the permanent magnet synchronous motor and the The AC component with the same frequency as the target signal, the second AC component refers to the same-frequency AC component whose phase of the first AC component lags behind the target angle, and the first electromagnetic power refers to the electromagnetic power injected into the target signal. power;
  • a lead angle adjustment module configured to adjust the first current phase lead angle according to the first AC component and the second AC component, so that the permanent magnet synchronous motor satisfies a maximum torque-to-current ratio.
  • an embodiment of the present application provides a terminal device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, The steps of the method for controlling the maximum torque-to-current ratio as described in the first aspect above are realized.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the maximum torque as described in the above-mentioned first aspect is realized. Steps of the current ratio control method.
  • the embodiment of the present application provides a computer program product.
  • the terminal device executes the maximum torque-to-current ratio control method as described in the first aspect above. A step of.
  • the second current phase lead angle can be obtained, and the injection target signal can be determined according to the second current phase lead angle
  • the AC component can adjust the first current phase lead angle so that the permanent magnet synchronous motor meets the maximum torque-to-current ratio, thereby determining the MTPA operating point.
  • FIG. 1 is a schematic diagram of the implementation flow of the maximum torque-to-current ratio control method provided in Embodiment 1 of the present application;
  • Fig. 2 is a schematic diagram of the implementation flow of the maximum torque-to-current ratio control method provided by Embodiment 2 of the present application;
  • Fig. 3 is a structural example diagram of a target observer
  • Fig. 4a is an example diagram of MTPA control based on the real signal injection method
  • Fig. 4b is an example diagram of MTPA control based on the virtual signal injection method
  • Fig. 5 is an example diagram of the current phase lead angle optimization control system based on the virtual signal injection method
  • Figure 6a is an example diagram of the current amplitude
  • Figure 6b is an example diagram of the response curve of the optimal current phase lead angle
  • Figure 7a is another example diagram of the current amplitude
  • Figure 7b is another example diagram of the response curve of the optimal current phase lead angle
  • Fig. 8 is a schematic structural diagram of a maximum torque-to-current ratio control device provided in Embodiment 3 of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided in Embodiment 4 of the present application.
  • Permanent magnet synchronous motor refers to a synchronous motor that contains permanent magnets in the excitation system. Its operation mode is the same as that of traditional electric excitation synchronous motor, but the excitation mode is different. In the part of the excitation system, the permanent magnet synchronous motor generates magnetic flux through the permanent magnet instead of the field winding excitation of the electric excitation synchronous motor, which simplifies the motor structure.
  • the permanent magnet synchronous motor in this application may specifically refer to a built-in permanent magnet synchronous motor.
  • the built-in permanent magnet synchronous motor is also called the built-in permanent magnet synchronous motor.
  • the permanent magnet of the built-in permanent magnet synchronous motor is located inside the rotor core, which has excellent characteristics such as small size, high efficiency, and high power factor.
  • the MTPA control method is to control the stator current according to the principle of the largest torque/current ratio, so that the stator current amplitude is the smallest under the condition that the electromagnetic torque meets the requirements.
  • the MTPA control method not only reduces the power consumption of the permanent magnet synchronous motor, improves the efficiency of the system, but also reduces the workload of the inverter.
  • the MTPA operating point refers to the operating point where the electromagnetic torque is constant and the stator current amplitude corresponding to a current phase lead angle is the smallest among all the different current vectors.
  • the MTPA operating point is also the operating point corresponding to the maximum electromagnetic torque when the stator current amplitude is constant.
  • the change rate of the electromagnetic torque to the current phase lead angle is zero.
  • the current phase lead angle also known as the current phase angle or the current angle, is the angle between the current vector and the q-axis in the d-q coordinate system.
  • the maximum torque-to-current ratio control method may include the following steps:
  • Step 101 acquiring a target signal.
  • the aforementioned target signal may be a high-frequency signal or a low-frequency signal, which is not limited here.
  • injecting the high-frequency signal into the first current phase lead angle of the permanent magnet synchronous motor can improve the tracking speed of the MTPA operating point and further improve the dynamic response speed of the MTPA control.
  • the above-mentioned first current phase lead angle refers to a current phase lead angle that does not inject the target signal.
  • the terminal device may obtain the above-mentioned target signal from its own memory, or may obtain the above-mentioned target signal from other devices, which is not limited herein.
  • the above-mentioned target signal is pre-stored in a memory of the terminal device, and the terminal device can acquire the above-mentioned target signal from its own memory.
  • the terminal device may also send a target signal acquisition instruction to other devices, and after receiving the target signal acquisition instruction, other devices acquire the target signal and send the target signal to the terminal device.
  • the above-mentioned target signal acquisition instruction is used to instruct other devices to acquire the above-mentioned target signal.
  • the foregoing other device may refer to any device except the foregoing terminal device.
  • Step 102 injecting the target signal into the first current phase lead angle of the permanent magnet synchronous motor to obtain the second current phase lead angle.
  • the second current phase lead angle refers to the current phase lead angle after injecting the target signal.
  • Injecting the target signal into the first current phase lead angle may refer to superimposing the target signal on the first current phase lead angle.
  • the injection method of the target signal can be divided into real signal injection method and virtual signal injection method injection method.
  • the terminal device transmits the first current phase lead angle to the permanent magnet synchronous motor, it is determined that the terminal device truly injects the target signal into the permanent magnet synchronous motor through the first current phase lead angle; if the terminal device transmits the first current phase lead angle If it is transmitted to the virtual controlled system based on the permanent magnet synchronous motor, it is determined that the terminal equipment does not actually inject the target signal into the permanent magnet synchronous motor through the first current phase lead angle, but injects the target signal into the virtual system through the first current phase lead angle. charged system.
  • the above virtual controlled system can be understood as the virtual image of the permanent magnet synchronous motor, which has the same function as the permanent magnet synchronous motor.
  • the real signal injection method refers to injecting the target signal into the permanent magnet synchronous motor through the first current phase lead angle, specifically, injecting the target signal into the stator winding of the permanent magnet synchronous motor.
  • the real signal injection method can calculate the electromagnetic power generated when the target signal is injected into the permanent magnet synchronous motor by injecting the target signal into the stator winding of the permanent magnet synchronous motor, and extract the MTPA criterion required for MTPA control from it.
  • the virtual signal injection method means that the target signal is not injected into the permanent magnet synchronous motor through the first current phase lead angle (that is, the target signal is not injected into the stator winding of the permanent magnet synchronous motor), but the target signal is injected into the permanent magnet synchronous motor based on The constructed virtual controlled system.
  • the virtual injection method can calculate the electromagnetic power generated by injecting the target signal into the permanent magnet synchronous motor by injecting the target signal into the virtual controlled system, and extract the MTPA criterion required for MTPA control from it.
  • the virtual signal injection method does not need to inject the target signal into the permanent magnet synchronous motor, the virtual signal injection method will not affect the running speed and current control of the permanent magnet synchronous motor, and there is no additional power loss. It is also robust to rotor flux and inductance variations. There is also no need for online estimation such as motor parameter estimation or prefabricated look-up tables, which effectively reduces the amount of calculation and improves the tracking speed of the MTPA operating point.
  • Step 103 Determine the first AC component and the second AC component according to the second current phase lead angle.
  • the first AC component refers to an AC component having the same frequency as the target signal in the first electromagnetic power of the permanent magnet synchronous motor.
  • the second AC component refers to the same-frequency AC component whose phase lags behind the target angle of the first AC component, that is, the frequency of the second AC component is the same as that of the first AC component, and the phase of the second AC component is compared to that of the first AC component.
  • the phase of the component lags the target angle.
  • the first electromagnetic power refers to the electromagnetic power injected into the target signal.
  • the above target angle may refer to
  • the first electromagnetic power of the permanent magnet synchronous motor will also generate the target signal, so there is a target signal in the first electromagnetic power
  • the AC component with the same frequency as , that is, the first AC component can be determined from the first electromagnetic power.
  • the second AC component can be obtained by lagging the phase of the first AC component by the target angle.
  • the present application injects the target signal into the permanent magnet synchronous motor by injecting the second current phase lead angle into the permanent magnet synchronous motor.
  • the present application injects the target signal into the virtual controlled system by injecting the second current phase lead angle into the virtual controlled system.
  • the first electromagnetic power in step 103 is the electromagnetic power of the permanent magnet synchronous motor after the second current phase lead angle is injected into the permanent magnet synchronous motor.
  • the first electromagnetic power in step 103 is the electromagnetic power of the virtual controlled system after the second current phase lead angle is injected into the virtual controlled system. Since the virtual controlled system is the virtual image of the permanent magnet synchronous motor, the electromagnetic power of the virtual controlled system can also be called the electromagnetic power of the permanent magnet synchronous motor.
  • Step 104 adjusting the first current phase lead angle according to the first AC component and the second AC component, so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio.
  • the first current phase leading angle corresponding to when the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio can be referred to as an optimal current phase leading angle.
  • Taylor expansion of the first electromagnetic power can be performed, and the third AC component can be obtained according to the expression after the Taylor expansion of the first electromagnetic power.
  • the third AC component is the AC component of the first electromagnetic power and includes the first The partial differential of the second electromagnetic power to the phase lead angle of the first current. Since the first AC component determined in step 103 and the third AC component obtained after Taylor expansion both represent the AC component of the first electromagnetic power, the first AC component and the third AC component can be understood as the AC component of the first electromagnetic power Different representations, then it can be determined that the first AC component is proportional to the third AC component.
  • the phase of the third AC component can be delayed by the target angle to obtain the fourth AC component. Since the first AC component is proportional to the third AC component, and the phase target angle of the second AC component lags behind the phase target angle of the first AC component, it can be determined that the second AC component is also proportional to the fourth AC component, and in the fourth AC component It also includes the partial differential of the second electromagnetic power with respect to the phase lead angle of the first current.
  • the first AC component is proportional to the third AC component
  • the second AC component is proportional to the fourth AC component
  • both the third AC component and the fourth AC component include the partial differential of the second electromagnetic power to the current phase lead angle
  • stator current of the permanent magnet synchronous motor can be controlled by controlling the current phase lead angle, when the stator current is constant, there is a current phase lead angle to maximize the output torque, so by adjusting the current phase lead angle, the permanent magnet synchronous motor can be made Satisfy the maximum torque current ratio.
  • the second current phase lead angle can be obtained, and according to the second current phase lead angle, the target signal after injection can be determined.
  • the first AC component with the same frequency as the target signal in the first electromagnetic power, and the same-frequency AC component (i.e. the second AC component) whose phase lags behind the target angle of the first AC component, according to the first AC component and the second AC component
  • the first current phase lead angle can be adjusted so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio, thereby determining the MTPA operating point.
  • the maximum torque-to-current ratio control method may include the following steps:
  • Step 201 acquiring a target signal.
  • step 101 is the same as step 101, for details, please refer to the relevant description of step 101, which will not be repeated here.
  • Step 202 injecting the target signal into the first current phase lead angle of the permanent magnet synchronous motor to obtain the second current phase lead angle.
  • step 102 is the same as step 102, for details, please refer to the relevant description of step 102, which will not be repeated here.
  • Step 203 Determine the first electromagnetic power of the permanent magnet synchronous motor according to the second current phase lead angle.
  • the terminal equipment can determine the stator current after injecting the target signal according to the second current phase lead angle, and according to the stator current after injecting the target signal, it can be The electromagnetic power after injecting the target signal (ie, the first electromagnetic power) is determined.
  • the terminal device can determine the target d-axis stator current and the target q-axis stator current of the permanent magnet synchronous motor in the d-q coordinate system according to the second current phase lead angle.
  • the target d-axis stator current refers to d after injecting the target signal Axis stator current
  • the target q-axis stator current refers to the q-axis stator current after injecting the target signal; according to the target d-axis stator current and the target q-axis stator current, the first electromagnetic power is determined.
  • the terminal device can first obtain the number of magnet pole pairs of the permanent magnet synchronous motor and the mechanical angular velocity of the rotor, and determine the torque after the injection signal according to the target d-axis stator current and the target q-axis stator current, and then calculate the injection
  • the product of the torque after the signal, the number of pole pairs of the permanent magnet and the mechanical angular velocity of the rotor is determined to be the first electromagnetic power.
  • the resolver decoding chip can be used to collect the rotor position signals of the two adjacent cycles of the permanent magnet synchronous motor, and the resolver decoding chip transmits the collected rotor position signals to the terminal device, and the terminal device can determine the mechanical position of the rotor according to the rotor position signal.
  • angular velocity For example, ⁇ m represents the mechanical angular velocity of the rotor, ⁇ 1 represents the rotor position signal of the first cycle, ⁇ 2 represents the rotor position signal of the second cycle, and ⁇ t represents the sampling cycle, which can be obtained by the formula Calculate the mechanical angular velocity of the rotor.
  • the terminal device may include a display screen, on which the input item of the number of magnet poles is displayed, and when the value input by the user in the input item of the number of magnet poles is detected, the value is determined to be the number of pole pairs of the magnet of the permanent magnet synchronous motor.
  • Step 204 input the first electromagnetic power to the target observer to obtain the first AC component and the second AC component.
  • the target observer includes a first transfer function and a second transfer function, the first transfer function refers to the transfer function between the first AC component and the first electromagnetic power, and the second transfer function refers to the transfer function between the second AC component and the first electromagnetic power transfer function between
  • d(s) represents the first transfer function
  • q(s) represents the second transfer function
  • represents the observation frequency of the target observer
  • represents the damping coefficient
  • s represents the differential operator.
  • the above-mentioned first transfer function can be considered as a second-order bandpass filter with a center frequency of ⁇ and a damping coefficient of ⁇ , that is, the above-mentioned first transfer function can realize a second-order bandpass filter
  • the function of the converter can extract the AC component of the frequency ⁇ in the first electromagnetic power (that is, the first AC component).
  • the above second transfer function can be considered as a second-order bandpass filter with a band
  • the phase-shifted all-pass filter is cascaded, so the second AC component is the phase lag of the first AC component The same frequency AC component.
  • the above target observer may further include a third transfer function, where the third transfer function is a transfer function between the DC component in the first electromagnetic power and the first electromagnetic power.
  • the third transfer function can be expressed as From the above expression of n(s), it can be seen that the above third transfer function can be considered as a cascade connection of a low-pass filter and a notch filter, which can reduce the harmonic components in the first electromagnetic power.
  • FIG. 3 is an example diagram of the structure of the target observer, Indicates the integrator, represents the DC component in the first electromagnetic power, denotes the first AC component, represents the second AC component.
  • the observation frequency of the target observer may be the same as the frequency of the target signal.
  • the target signal as a high-frequency sinusoidal signal as an example, after Taylor expansion of the first electromagnetic power, it can be expressed as follows:
  • P e ( ⁇ + ⁇ ) represent the first electromagnetic power
  • P e ( ⁇ ) represent the second electromagnetic power
  • the third AC component can be obtained from the above formula (1) as lagging the phase of the third ac component
  • the fourth AC component can be obtained as
  • the relationship between the second AC component and the fourth AC component can be expressed as follows:
  • Step 205 adjust the first current phase lead angle according to the first AC component and the second AC component, so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio.
  • step 104 is the same as step 104, for details, please refer to the related description of step 104, which will not be repeated here.
  • both the first AC component and the second AC component are proportional to the partial differential of the second electromagnetic power to the first current phase lead angle
  • the terminal device adjusts the first AC component and The second AC component can make the partial differential of the second electromagnetic power with respect to the first current phase lead angle be zero, so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio.
  • the terminal device may first extract the first coefficient from the target signal, the first coefficient refers to the coefficient that changes with time in the target signal; and then according to the first coefficient, the first AC component and The second AC component adjusts the phase lead angle of the first current so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio.
  • the target signal is Asin( ⁇ h t), then sin( ⁇ h t) in the target signal is the first coefficient.
  • the terminal device can remove the time-varying coefficient of the third AC component and the fourth AC component according to the first coefficient, the first AC component, and the second AC component, and reduce the time-varying coefficient of the third AC component and the fourth AC component.
  • the influence of the coefficient on the partial differential that is, the partial differential of the second electromagnetic power on the first current phase lead angle
  • adjusting the first current phase lead angle according to the first coefficient, the first AC component and the second AC component so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio includes:
  • the first current phase lead angle is adjusted so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio.
  • the first coefficient is sin( ⁇ h t)
  • the first AC component is The second AC component is Then the phase lag of sin( ⁇ h t)
  • the second coefficient can be obtained as The first product is y x x sin( ⁇ h t).
  • the second product is
  • the terminal device can remove the time-varying coefficients in the third AC component and the fourth AC component, and reduce the time-varying coefficients in the third AC component and the fourth AC component against the partial differential ( That is, the influence of the second electromagnetic power on the partial differential of the current phase lead angle) increases the adjustment speed of the first current phase lead angle, and quickly determines the MTPA operating point.
  • adjusting the first current phase lead angle according to the first product and the second product so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio includes:
  • the terminal device adds the first product and the second product to obtain the target DC component, and there is no time-varying coefficient in the target DC component, that is, the time-varying coefficient in the third AC component and the fourth AC component can be removed. coefficient, so that the partial differential of the second electromagnetic power with respect to the phase lead angle of the first current is extracted from the third AC component and the fourth AC component.
  • the target DC component is proportional to the partial differential of the second electromagnetic power to the first current phase lead angle, so when the target DC component is equal to zero, the partial differential of the second electromagnetic power to the current phase lead angle is also equal to zero, Then by controlling the target DC component to be equal to zero, the permanent magnet synchronous motor can be made to meet the maximum torque-current ratio, and the MTPA operating point can be obtained.
  • the target DC component can be input to the target controller, and the current phase lead angle can be adjusted by the target controller, so that the target DC component is equal to zero.
  • the aforementioned target controllers include but are not limited to integrators, proportional-integral controllers, neural network models, fuzzy controllers, and the like.
  • the terminal equipment inputs the target DC component to the target controller, and the current phase lead angle can be adjusted through the target controller until the target DC component is equal to zero, and the permanent magnet synchronous motor satisfies the maximum torque-current ratio when the target DC component is equal to zero.
  • Figure 4a is an example diagram of MTPA control based on the real signal injection method
  • Figure 4b is an example diagram of MTPA control based on the virtual signal injection method.
  • the motor model of the permanent magnet synchronous motor in the d-q coordinate system can be defined as follows:
  • T e k[ ⁇ m +(L d -L q )i d ]i q (6)
  • v d represents the d-axis stator voltage
  • id represents the d-axis stator current without the target signal injected
  • v q represents the q-axis stator voltage
  • i q represents the q-axis stator current without the target signal injected
  • L d represents the d -axis inductance
  • L q represents the q-axis inductance
  • R, p and ⁇ m represent the stator resistance, permanent magnet pole pairs and permanent magnet flux linkage respectively
  • I a and ⁇ represent the current amplitude and the first current phase lead angle respectively
  • ⁇ m represents The mechanical angular velocity of the rotor
  • k represents the torque coefficient.
  • the target signal is expressed as follows:
  • the second current phase lead angle can be expressed as ⁇ + ⁇
  • the target d-axis stator current and the target q-axis stator current can be expressed as follows:
  • the first electromagnetic power injected into the target signal can be calculated from the voltage v q , the mechanical angular velocity ⁇ m of the rotor, the nominal stator resistance R, and the nominal d-axis inductance L d through a look-up table.
  • the third AC component can be extracted from the above formula (1), and the third AC component is lagging the phase of the fourth ac component
  • the fourth AC component can be obtained, and the fourth AC component is
  • the relationship between the first AC component and the third AC component is as the above formula (2).
  • the first coefficient extracted from the target signal is sin( ⁇ h t), the phase of the first coefficient is delayed, and the second coefficient obtained is
  • Out represents the target DC component.
  • the partial differential of the second electromagnetic power to the first current phase lead angle is proportional to the target DC component, by controlling the target DC component to be equal to zero (that is, to control equal to zero), which can make the partial differential of the second electromagnetic power to the first current phase lead angle equal to zero, so that the MTPA operating point can be obtained.
  • FIG. 5 it is an example diagram of the current phase lead angle optimization control system based on the virtual signal injection method.
  • the reference d-axis stator current and the reference q-axis stator current can be calculated, and the reference d-axis stator current idref and the reference q-axis
  • the stator current i qref is input to the proportional-integral controller, after decoupling, the d-axis stator current i d and the q-axis stator current i q are obtained, which are transmitted to the inverter after coordinate transformation.
  • the aforementioned inverter may be a Space Vector Pulse Width Modulation (Space Vector Pulse Width Modulation, SVPWM) inverter.
  • SVPWM Space Vector Pulse Width Modulation
  • Figure 6a shows an example of the current amplitude
  • Figure 6b shows a response curve of the optimal current phase lead angle sample graph.
  • Figure 6a sets the constant current amplitude signal.
  • the response curves in Figure 6b are based on the current magnitudes shown in Figure 6a.
  • the time for the MTPA control method of the present application to search for the MTPA working point is about 0.52 seconds, and the time for the existing MTPA control method to search for the MTPA working point is about 10.2 seconds, and the MTPA control method of the present application can significantly improve Determine the speed of the optimal current phase lead angle.
  • FIG. 7a is another example diagram of the current amplitude
  • FIG. 7b is another example diagram of the response curve of the optimal current phase lead angle.
  • Figure 7a sets the jump current amplitude signal.
  • the response curves in Figure 7b are based on the current magnitudes shown in Figure 7a.
  • the existing MTPA control method in FIG. 6b and FIG. 7b refers to the MTPA control method using a band-pass filter and a low-pass filter.
  • the embodiment of the present application obtains the first AC component and the second AC component through the target observer, and the MTPA working point can be determined by changing the first AC component and the second AC component through a trigonometric function.
  • the amount of calculation in the MTPA control process is reduced, the dynamic response speed of MTPA control is improved, and the MTPA operating point can be determined quickly with high precision. Convergence and stability. Therefore, the present application can keep the motor drive system in a good working state and reduce energy loss under complex and changeable working conditions.
  • FIG. 8 it is a schematic structural diagram of the maximum torque-to-current ratio control device provided by the third embodiment of the present application. For convenience of description, only the parts related to the embodiment of the present application are shown.
  • the above-mentioned maximum torque current ratio control device includes:
  • a signal acquisition module 81 configured to acquire a target signal
  • the signal injection module 82 is used to inject the target signal into the first current phase lead angle of the permanent magnet synchronous motor to obtain the second current phase lead angle;
  • the component determination module 83 is used to determine the first AC component and the second AC component according to the second current phase lead angle, the first AC component refers to the frequency of the first electromagnetic power of the permanent magnet synchronous motor that is the same as that of the target signal.
  • the AC component, the second AC component refers to the same-frequency AC component whose phase lags behind the target angle of the first AC component, and the first electromagnetic power refers to the electromagnetic power injected into the target signal;
  • the lead angle adjustment module 84 is configured to adjust the lead angle of the first current phase according to the first AC component and the second AC component, so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio.
  • the above-mentioned component determination module 83 includes:
  • a power determination unit configured to determine the first electromagnetic power according to the second current phase lead angle
  • the power input unit is used to input the first electromagnetic power to the target observer to obtain the first AC component and the second AC component.
  • the target observer includes a first transfer function and a second transfer function.
  • the first transfer function refers to the first The transfer function between the AC component and the first electromagnetic power
  • the second transfer function refers to the transfer function between the second AC component and the first electromagnetic power;
  • d(s) represents the first transfer function
  • q(s) represents the second transfer function
  • represents the observation frequency of the target observer
  • represents the damping coefficient
  • s represents the differential operator.
  • the above-mentioned power determining unit is specifically used for:
  • the target d-axis stator current refers to the d-axis stator current after injecting the target signal.
  • the target q The axis stator current refers to the q-axis stator current after injecting the target signal;
  • the first electromagnetic power is determined according to the target d-axis stator current and the target q-axis stator current.
  • the target observer further includes a third transfer function, the third transfer function refers to the transfer function between the DC component in the first electromagnetic power and the first electromagnetic power;
  • n(s) represents the third transfer function.
  • the above-mentioned maximum torque current ratio control device further includes:
  • a coefficient determination module configured to determine a first coefficient from the target signal, where the first coefficient refers to a coefficient that changes with time in the target signal;
  • the above-mentioned lead angle adjustment module 84 is specifically used for:
  • the first current phase lead angle is adjusted so that the permanent magnet synchronous motor satisfies the maximum torque-to-current ratio.
  • the above-mentioned lead angle adjustment module 84 includes:
  • a coefficient processing unit configured to lag the phase of the first coefficient by a target angle to obtain a second coefficient
  • a first calculation unit configured to calculate the product of the first coefficient and the first AC component to obtain the first product
  • the second calculation unit is used to calculate the product of the second coefficient and the second AC component to obtain the second product
  • the lead angle adjustment unit is used to adjust the lead angle of the first current phase according to the first product and the second product, so that the permanent magnet synchronous motor satisfies the maximum torque-current ratio.
  • the lead angle adjustment unit includes:
  • the determination subunit is used to add the first product and the second product, and determine that the value obtained after the addition is a target DC component, and the target DC component is divided into the partial differential of the second electromagnetic power of the permanent magnet synchronous motor to the current phase lead angle Proportional, the second electromagnetic power refers to the electromagnetic power that is not injected into the target signal;
  • the adjustment subunit is used to adjust the first current phase lead angle, so that the current phase lead angle when the target DC component is equal to zero, and determine that the permanent magnet synchronous motor satisfies the maximum torque-current ratio when the target DC component is equal to zero.
  • the device for controlling the maximum torque-to-current ratio provided by the embodiment of the present application can be applied in the foregoing method embodiments 1 and 2.
  • FIG. 9 is a schematic structural diagram of a terminal device provided in Embodiment 4 of the present application.
  • the terminal device 9 of this embodiment includes: one or more processors 90 (only one is shown in the figure), a memory 91, and a computer program stored in the memory 91 and operable on the processor 90 92.
  • the processor 90 executes the computer program 92, the steps in the above embodiments of the maximum torque-to-current ratio control method are realized.
  • the terminal device 9 may be computing devices such as desktop computers, notebooks, palmtop computers, and cloud servers.
  • the terminal device may include, but not limited to, a processor 90 and a memory 91 .
  • FIG. 9 is only an example of the terminal device 9, and does not constitute a limitation to the terminal device 9. It may include more or less components than those shown in the figure, or combine certain components, or different components.
  • a terminal device may also include an input and output device, a network access device, a bus, and the like.
  • the so-called processor 90 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the storage 91 may be an internal storage unit of the terminal device 9 , such as a hard disk or memory of the terminal device 9 .
  • Memory 91 also can be the external storage device of terminal equipment 9, for example the plug-in hard disk equipped on terminal equipment 9, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card) and so on.
  • the memory 91 may also include both an internal storage unit of the terminal device 9 and an external storage device.
  • the memory 91 is used to store computer programs and other programs and data required by the terminal device.
  • the memory 91 can also be used to temporarily store data that has been output or will be output.
  • the disclosed apparatus/terminal device and method may be implemented in other ways.
  • the device/terminal device embodiments described above are only illustrative, for example, the division of modules or units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or components May be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • an integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above embodiments, and can also be completed by instructing related hardware through computer programs, and the computer programs can be stored in a computer-readable storage medium.
  • the computer program includes computer program code, and the computer program code can be in the form of source code, object code, executable file or some intermediate form, etc.
  • the computer-readable medium may include: any entity or device capable of carrying computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (Read-Only Memory, ROM), random access Memory (Random Access Memory, RAM), electrical carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained on computer readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, according to legislation and patent practice, computer readable media does not include Electrical carrier signals and telecommunication signals.
  • This application realizes all or part of the processes in the methods of the above-mentioned embodiments, and can also be completed by a computer program product.
  • the computer program product runs on the terminal device, the terminal device can realize the implementation of the above-mentioned various method embodiments when executed. A step of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本申请适用于电机控制技术领域,提供了一种最大转矩电流比控制方法、装置、终端设备及存储介质,所述最大转矩电流比控制方法包括:获取目标信号;将所述目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角;根据所述第二电流相位超前角,确定第一交流分量和第二交流分量;根据所述第一交流分量和所述第二交流分量,调节电流相位超前角,使得永磁同步电机满足最大转矩电流比。通过本申请可提高MTPA控制的动态响应速度,快速地确定MTPA工作点。

Description

最大转矩电流比控制方法、装置、终端设备及存储介质 技术领域
本申请属于电机控制技术领域,尤其涉及一种最大转矩电流比控制方法、装置、终端设备及存储介质。
背景技术
随着新材料、机电一体化、电力电子、计算机、控制理论等各种相关新技术的快速发展,永磁同步电机已经开拓了很广泛的应用领域,能够实现高速、高精度、高稳定度、快速响应、高效节能的运动控制。
为了实现对永磁同步电机的高效控制,常采用最大转矩电流比(Maximum Torque Per Ampere,MTPA)控制方法。实现对永磁同步电机的高精度、高稳定性、强鲁棒性的MTPA控制,有利于提高永磁同步电机的工作效率,实现节能减排。
现有的MTPA控制方法,通常需要使用较多的带通滤波器和低通滤波器,计算量较大,导致MTPA控制的动态响应速度较慢,无法快速地确定MTPA工作点。
发明内容
本申请实施例提供了一种最大转矩电流比控制方法、装置、终端设备及存储介质,以提高MTPA控制的动态响应速度,快速确定MTPA工作点。
第一方面,本申请实施例提供了一种最大转矩电流比控制方法,所述最大转矩电流比控制方法包括:
获取目标信号;
将所述目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角;
根据所述第二电流相位超前角,确定第一交流分量和第二交流分量,所述第一交流分量是指所述永磁同步电机的第一电磁功率中与所述目标信号的频率相同的交流分量,所述第二交流分量是指所述第一交流分量的相位滞后目标角度的同频交流分量,所述第一电磁功率是指注入所述目标信号后的电磁功率;
根据所述第一交流分量和所述第二交流分量,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比。
第二方面,本申请实施例提供了一种最大转矩电流比控制装置,所述最大转矩电流比控制装置包括:
信号获取模块,用于获取目标信号;
信号注入模块,用于将所述目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角;
分量确定模块,用于根据所述第二电流相位超前角,确定第一交流分量和第二交流分量,所述第一交流分量是指所述永磁同步电机的第一电磁功率中与所述目标信号的频率相同的交流分量,所述第二交流分量是指所述第一交流分量的相位滞后目标角度的同频交流分量,所述第一电磁功率是指注入所述目标信号后的电磁功率;
超前角调节模块,用于根据所述第一交流分量和所述第二交流分量,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比。
第三方面,本申请实施例提供了一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面所述最大转矩电流比控制方法的步骤。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质 存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述最大转矩电流比控制方法的步骤。
第五方面,本申请实施例提供了一种计算机程序产品,当所述计算机程序产品在终端设备上运行时,使得所述终端设备上执行如上述第一方面所述最大转矩电流比控制方法的步骤。
由上可见,本申请通过获取目标信号,并将目标信号注入永磁同步电机的第一电流相位超前角,可以得到第二电流相位超前角,根据第二电流相位超前角,可以确定注入目标信号后的第一电磁功率中与目标信号的频率相同的第一交流分量,以及第一交流分量的相位滞后目标角度的同频交流分量(即第二交流分量),根据第一交流分量和第二交流分量可以调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比,从而确定MTPA工作点。在此过程中,由于无需使用带通滤波器和低通滤波器,故减少了MTPA控制过程中的计算量,提高了MTPA控制的动态响应速度,能够快速确定MTPA工作点。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的最大转矩电流比控制方法的实现流程示意图;
图2是本申请实施例二提供的最大转矩电流比控制方法的实现流程示意图;
图3是目标观测器的结构示例图;
图4a是基于真实信号注入法的MTPA控制示例图;图4b是基于虚拟信号注入法的MTPA控制示例图;
图5是基于虚拟信号注入法的电流相位超前角优化控制系统的示例图;
图6a是电流幅值的一示例图,图6b是最优电流相位超前角的响应曲线的一示例图;
图7a是电流幅值的另一示例图,图7b是最优电流相位超前角的响应曲线的另一示例图;
图8是本申请实施例三提供的最大转矩电流比控制装置的结构示意图;
图9是本申请实施例四提供的终端设备的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在说明本申请方案之前,为了便于读者理解,先对本方案中所涉及的名词进行解释说明。
永磁同步电机是指励磁系统中含有永磁体的同步电动机。其运行方式与传统电励磁同步电动机相同,只是励磁方式不同。在励磁系统部分,永磁同步电机通过永磁体产生磁通替代了电励磁同步电动机的励磁绕组励磁,简化了电机结构。
本申请中的永磁同步电机具体可以是指内置式永磁同步电机。内置式永磁同步电机又称内嵌式永磁同步电机。内置式永磁同步电机的永磁体位于转子铁心内部,具有体积小、效率高、功率因数高等优良特性。
MTPA控制方法,是按照转矩/电流比最大的原则控制定子电流,使电磁转矩在满足要求的条件下定子电流幅值最小。MTPA控制方法不仅减小了永磁同步电机的功耗,提高了系统的效率,而且减轻了逆变器的工作负担。
MTPA工作点是指电磁转矩不变,在所有不同的电流矢量中有一个电流相位超前角对应的定子电流幅值最小的工作点。MTPA工作点也是在定子电流幅值一定时对应的最大电磁转矩的工作点。在MTPA工作点处电磁转矩对电流相位超前角的变化率为零。
电流相位超前角又称电流相位角或者电流角,是电流矢量与d-q坐标系中q轴之间的角度。
在本申请实施例中,为了解决现有的MTPA控制方法,通常需要使用较多的带通滤波器和低通滤波器,计算量较大,导致MTPA控制的动态响应速度较慢,无法快速地确定MTPA工作点的这一问题,提出了提取注入目标信号后的第一电磁功率中与目标信号的频率相同的第一交流分量,以及第一交流分量的相位滞后目标角度的同频交流分量(即第二交流分量),并根据第一交流分量和第二交流分量可以调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比,从而确定MTPA工作点。该过程无需使用带通滤波器和低通滤波器,减少了MTPA控制过程中的计算量,提高了MTPA控制的动态响应速度,能够快速地确定MTPA工作点。
应理解,本实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
参见图1,是本申请实施例一提供的最大转矩电流比控制方法的实现流程示意图,如图1所示,该最大转矩电流比控制方法可以包括以下步骤:
步骤101,获取目标信号。
上述目标信号可以是高频信号,也可以是低频信号,在此不做限定。在上述目标信号为高频信号时,将高频信号注入永磁同步电机的第一电流相位超前角,能够提高MTPA工作点的追踪速度,进一步提高MTPA控制的动态响应速度。其中,上述第一电流相位超前角是指未注入目标信号的电流相位超前角。
终端设备可以从自身的存储器中获取上述目标信号,也可以从其他设备中获取上述目标信号,在此不做限定。
例如,将上述目标信号预先存储在终端设备的存储器中,终端设备可以从自身的存储器中获取上述目标信号。
终端设备还可以向其他设备发送目标信号获取指令,其他设备在接收到目标信号获取指令后获取上述目标信号,并将上述目标信号发送给上述终端设备。上述目标信号获取指令用于指示其他设备获取上述目标信号。上述其他设备可以是指除上述终端设备之外的任一设备。
步骤102,将目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角。
其中,第二电流相位超前角是指注入目标信号后的电流相位超前角。
将目标信号注入第一电流相位超前角可以是指将目标信号叠加在第一电流相位超前角上。例如,目标信号为高频正弦信号,可以表示为Δβ=A sin(ω ht),ω h表示目标信号Δβ的频率,A表示目标信号Δβ的幅值,第一电流相位超前角表示为β,那么注入目标信号后的 第一电流相位超前角(即第二电流相位超前角)可以表示为β+Δβ=β+A sin(ω ht)。
终端设备在将目标信号注入第一电流相位超前角之后,根据是否通过第一电流相位超前角将目标信号真实注入永磁同步电机,可以将目标信号的注入方法分为真实信号注入法和虚拟信号注入法。其中,若终端设备将第一电流相位超前角传输给永磁同步电机,则确定终端设备通过第一电流相位超前角将目标信号真实注入永磁同步电机;若终端设备将第一电流相位超前角传输给基于永磁同步电机构建的虚拟被控系统,则确定终端设备未通过第一电流相位超前角将目标信号真实注入永磁同步电机,而是通过第一电流相位超前角将目标信号注入虚拟被控系统。上述虚拟被控系统可以理解为永磁同步电机的虚拟影像,它具有与永磁同步电机相同的功能。
真实信号注入法是指通过第一电流相位超前角将目标信号注入永磁同步电机,具体可以是向永磁同步电机的定子绕组中注入目标信号。
真实信号注入法通过向永磁同步电机的定子绕组中注入目标信号,可以计算目标信号注入永磁同步电机时所产生的电磁功率,并从中提取实现MTPA控制所需的MTPA判据。
虚拟信号注入法是指未通过第一电流相位超前角将目标信号注入永磁同步电机(即未向永磁同步电机的定子绕组中注入目标信号),而是将目标信号注入基于永磁同步电机构建的虚拟被控系统。
虚拟注入法通过向虚拟被控系统注入目标信号,可以计算假如有目标信号注入永磁同步电机所产生的电磁功率,并从中提取实现MTPA控制所需的MTPA判据。
由于虚拟信号注入法不需将目标信号注入永磁同步电机,虚拟信号注入法不会影响永磁同步电机的运转速度和电流控制,也不存在额外的功率损耗,对于由电流和温度变化引起的转子磁通和电感变化也是鲁棒的。也不需进行电机参数估计或预制查询表等在线估计,有效地减小了计算量,提高了MTPA工作点的追踪速度。
步骤103,根据第二电流相位超前角,确定第一交流分量和和第二交流分量。
其中,第一交流分量是指永磁同步电机的第一电磁功率中与目标信号的频率相同的交流分量。第二交流分量是指第一交流分量的相位滞后目标角度的同频交流分量,即第二交流分量的频率与第一交流分量的频率相同,且第二交流分量的相位相比于第一交流分量的相位滞后目标角度。第一电磁功率是指注入目标信号后的电磁功率。上述目标角度可以是指
Figure PCTCN2021138144-appb-000001
在本实施例中,在将目标信号注入永磁同步电机的电流相位超前角之后,永磁同步电机的第一电磁功率中也会随着产生目标信号,故第一电磁功率中存在与目标信号的频率相同的交流分量,即从第一电磁功率中可以确定第一交流分量。将第一交流分量的相位滞后目标角度即可得到第二交流分量。
需要说明的是,在真实信号注入法中,本申请通过将第二电流相位超前角注入永磁同步电机,实现将目标信号注入永磁同步电机。在虚拟信号注入法中,本申请通过将第二电流相位超前角注入虚拟被控系统,实现将目标信号注入虚拟被控系统。
若本申请采用真实信号注入法,则步骤103中的第一电磁功率是将第二电流相位超前角注入永磁同步电机后,永磁同步电机的电磁功率。
若本申请采用虚拟信号注入法,则步骤103中的第一电磁功率是将第二电流相位超前角注入虚拟被控系统后,虚拟被控系统的电磁功率。由于虚拟被控系统是永磁同步电机的虚拟影像,故虚拟被控系统的电磁功率也可以称之为永磁同步电机的电磁功率。
步骤104,根据第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。
其中,可以将永磁同步电机满足最大转矩电流比时对应的第一电流相位超前角称之为最优电流相位超前角。
在本实施例中,可以将第一电磁功率进行泰勒展开,根据第一电磁功率泰勒展开后的 表达式可以得到第三交流分量,第三交流分量是第一电磁功率的交流分量,且包含第二电磁功率对第一电流相位超前角的偏微分。由于步骤103确定的第一交流分量和泰勒展开后得到的第三交流分量均表示第一电磁功率的交流分量,故第一交流分量和第三交流分量可以理解为第一电磁功率的交流分量的不同表示方式,那么可以确定第一交流分量与第三交流分量成正比例。
可以将第三交流分量的相位滞后目标角度,得到第四交流分量。由于第一交流分量与第三交流分量成正比例,第二交流分量的相位滞后第一交流分量的相位目标角度,故可以确定第二交流分量与第四交流分量也成正比例,第四交流分量中也包含第二电磁功率对第一电流相位超前角的偏微分。
由于第一交流分量与第三交流分量成正比例,第二交流分量与第四交流分量成正比,且第三交流分量和第四交流分量均包含第二电磁功率对电流相位超前角的偏微分,故通过调节第一交流分量和第二交流分量,可以使得第二电磁功率对第一电流相位超前角的偏微分为零,该偏微分为零时的第一电流相位超前角即为最优电流相位超前角。
本实施例通过计算电磁功率代替计算或测量转矩,不需要使用高精度的速度传感器,降低了MTPA控制实现的成本和难度,可最大限度地减小由于注入目标信号引起的转矩振荡,使得MTPA控制系统在负载转矩变化和转速变化的情况下兼顾良好的动态和稳态性能,有效地提高了MTPA的控制精度。
由于通过控制电流相位超前角,可以控制永磁同步电机的定子电流,当定子电流一定时,存在一个电流相位超前角使输出转矩最大,故通过调节电流相位超前角,能够使得永磁同步电机满足最大转矩电流比。
本申请实施例通过获取目标信号,并将目标信号注入永磁同步电机的第一电流相位超前角,可以得到第二电流相位超前角,根据第二电流相位超前角,可以确定注入目标信号后的第一电磁功率中与目标信号的频率相同的第一交流分量,以及第一交流分量的相位滞后目标角度的同频交流分量(即第二交流分量),根据第一交流分量和第二交流分量可以调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比,从而确定MTPA工作点。在此过程中,由于无需使用带通滤波器和低通滤波器,故减少了MTPA控制过程中的计算量,提高了MTPA控制的动态响应速度,能够快速地确定MTPA工作点。
参见图2,是本申请实施例二提供的最大转矩电流比控制方法的实现流程示意图,如图2所示,该最大转矩电流比控制方法可以包括以下步骤:
步骤201,获取目标信号。
该步骤与步骤101相同,具体可参见步骤101的相关描述,在此不再赘述。
步骤202,将目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角。
该步骤与步骤102相同,具体可参见步骤102的相关描述,在此不再赘述。
步骤203,根据第二电流相位超前角,确定永磁同步电机的第一电磁功率。
由于通过控制电流相位超前角,可以控制永磁同步电机的定子电流,故终端设备根据第二电流相位超前角,可以确定注入目标信号后的定子电流,根据注入目标信号后的定子电流,即可确定注入目标信号后的电磁功率(即第一电磁功率)。
具体地,终端设备可以根据第二电流相位超前角,确定永磁同步电机在d-q坐标系下的目标d轴定子电流和目标q轴定子电流,目标d轴定子电流是指注入目标信号后的d轴定子电流,目标q轴定子电流是指注入目标信号后的q轴定子电流;根据目标d轴定子电流和目标q轴定子电流,确定第一电磁功率。
在一实施例中,终端设备可以先获取永磁同步电机的磁体极对数和转子的机械角速度,并根据目标d轴定子电流和目标q轴定子电流确定注入信号后的转矩,再计算注入信号后的转矩、永磁体极对数和转子的机械角速度的乘积,确定乘积后所得值为第一电磁功率。
其中,可以利用旋变解码芯片采集永磁同步电机相邻两个周期的转子位置信号,旋变解码芯片将所采集的转子位置信号传输给终端设备,终端设备根据转子位置信号可以确定转子的机械角速度。例如,ω m表示转子的机械角速度,θ 1表示第一周期的转子位置信号,θ 2表示第二周期的转子位置信号,Δt表示采样周期,可以通过公式
Figure PCTCN2021138144-appb-000002
计算转子的机械角速度。
终端设备可以包括显示屏,在该显示屏上显示磁体极对数输入项,在检测到用户在磁体极对数输入项输入的数值时,确定该数值为永磁同步电机的磁体极对数。
步骤204,将第一电磁功率输入至目标观测器,得到第一交流分量和第二交流分量。
目标观测器包括第一传递函数和第二传递函数,第一传递函数是指第一交流分量与第一电磁功率之间的传递函数,第二传递函数是指第二交流分量与第一电磁功率之间的传递函数;
其中,
Figure PCTCN2021138144-appb-000003
d(s)表示第一传递函数,q(s)表示第二传递函数,ω表示目标观测器的观测频率,ξ表示阻尼系数,s表示微分算子。
由上述d(s)的表达式可知,上述第一传递函数可以认为是一个中心频率为ω,阻尼系数为ξ的二阶带通滤波器,即上述第一传递函数能够实现二阶带通滤波器的功能,能够提取第一电磁功率中频率为ω的交流分量(即第一交流分量)。
由上述q(s)的表达式可知,上述第二传递函数可以认为是二阶带通滤波器与一个带
Figure PCTCN2021138144-appb-000004
相移的全通滤波器级联,故可以第二交流分量是第一交流分量相位滞后
Figure PCTCN2021138144-appb-000005
的同频交流分量。
在一实施例中,上述目标观测器还可以包括第三传递函数,第三传递函数是第一电磁功率中的直流分量与第一电磁功率之间的传递函数。第三传递函数可以表示为
Figure PCTCN2021138144-appb-000006
由上述n(s)的表达式可知,上述第三传递函数可以认为是一个低通滤波器与陷波滤波器的级联,能够降低第一电磁功率中的谐波分量。
如图3所示是目标观测器的结构示例图,
Figure PCTCN2021138144-appb-000007
表示积分器,
Figure PCTCN2021138144-appb-000008
表示第一电磁功率中的直流分量,
Figure PCTCN2021138144-appb-000009
表示第一交流分量,
Figure PCTCN2021138144-appb-000010
表示第二交流分量。
需要说明的是,为了从第一电磁功率中快速提取出第一交流分量和第二交流分量,目标观测器的观测频率可以与目标信号的频率相同。
以目标信号为高频正弦信号为例,将第一电磁功率进行泰勒展开后,可以表示如下:
Figure PCTCN2021138144-appb-000011
其中,
Figure PCTCN2021138144-appb-000012
和P e(β+Δβ)表示第一电磁功率,P e(β)表示第二电磁功率。
将第一电磁功率进行泰勒展开后,可以从上述公式(1)中得到第三交流分量为
Figure PCTCN2021138144-appb-000013
将第三交流分量的相位滞后
Figure PCTCN2021138144-appb-000014
可以得到第四交流分量为
Figure PCTCN2021138144-appb-000015
由于第一交流分量与第三交流分量均表示第一电磁功率的交流分量,故第一交流分量与第三交流分量之间的关系可以表示如下:
Figure PCTCN2021138144-appb-000016
第二交流分量与第四交流分量之间的关系可以表示如下:
Figure PCTCN2021138144-appb-000017
其中,
Figure PCTCN2021138144-appb-000018
表示第一交流分量,
Figure PCTCN2021138144-appb-000019
表示第二交流分量,K表示目标观测器在ω h处的增益。
步骤205,根据第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。
该步骤与步骤104相同,具体可参见步骤104的相关描述,在此不再赘述。
由上述公式(2)和(3)中可知,第一交流分量和第二交流分量均与第二电磁功率对第一电流相位超前角的偏微分正比例,那么终端设备通过调节第一交流分量和第二交流分量,可以使得第二电磁功率对第一电流相位超前角的偏微分为零,从而使得永磁同步电机满足最大转矩电流比。
在一实施例中,终端设备在执行步骤205之前,可以先从目标信号中提取第一系数,第一系数是指目标信号中随时间变化的系数;再根据第一系数、第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。
示例性的,目标信号为Asin(ω ht),那么目标信号中的sin(ω ht)即为第一系数。
终端设备根据第一系数、第一交流分量和第二交流分量能够去除第三交流分量和第四交流分量中随时间变化的系数,减小第三交流分量和第四交流分量中随时间变化的系数对偏微分(即第二电磁功率对第一电流相位超前角的偏微分)的影响,提高第一电流相位超前角的调节速度,快速地确定MTPA工作点。
在一实施例中,根据第一系数、第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比包括:
将第一系数的相位滞后目标角度,得到第二系数;
计算第一系数与第一交流分量的乘积,得到第一乘积;
计算第二系数与第二交流分量的乘积,得到第二乘积;
根据第一乘积和第二乘积,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。
示例性的,第一系数为sin(ω ht),第一交流分量为
Figure PCTCN2021138144-appb-000020
第二交流分量为
Figure PCTCN2021138144-appb-000021
那么将sin(ω ht)的相位滞后
Figure PCTCN2021138144-appb-000022
之后,可以得到第二系数为
Figure PCTCN2021138144-appb-000023
第一乘积为y x×sin(ω ht)。第二乘积为
Figure PCTCN2021138144-appb-000024
终端设备根据第一乘积和第二乘积,能够去除第三交流分量和第四交流分量中随时间变化的系数,减小第三交流分量和第四交流分量中随时间变化的系数对偏微分(即第二电磁功率对电流相位超前角的偏微分)的影响,提高第一电流相位超前角的调节速度,快速地确定MTPA工作点。
在一实施例中,根据第一乘积和第二乘积,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比包括:
将第一乘积和第二乘积相加,确定相加后所得值为目标直流分量,目标直流分量与永磁同步电机的第二电磁功率对第一电流相位超前角的偏微分成正比例;
调节第一电流相位超前角,使得目标直流分量等于零,并确定目标直流分量等于零时永磁同步电机满足最大转矩电流比
终端设备将第一乘积和第二乘积相加,可以得到目标直流分量,该目标直流分量中不存在随时间变化的系数,即能够去除第三交流分量和第四交流分量中的随时间变化的系数,从而从第三交流分量和第四交流分量中提取出第二电磁功率对第一电流相位超前角的偏微分。
在本实施例中,目标直流分量与第二电磁功率对第一电流相位超前角的偏微分成正比例,故在目标直流分量等于零时,第二电磁功率对电流相位超前角的偏微分也等于零,那么通过控制目标直流分量等于零,可以使得永磁同步电机满足最大转矩电流比,得到MTPA工作点。
在一实施例中,可以将目标直流分量输入至目标控制器,通过目标控制器可以调节电流相位超前角,使得目标直流分量等于零。
上述目标控制器包括但不限于积分器、比例积分控制器、神经网络模型、模糊控制器等。
终端设备将目标直流分量输入至目标控制器,可以通过目标控制器实现对电流相位超前角的调节,直至目标直流分量等于零,在目标直流分量等于零时永磁同步电机满足最大转矩电流比。
如图4a所示是基于真实信号注入法的MTPA控制示例图,如图4b所示是基于虚拟信号注入法的MTPA控制示例图。
以虚拟信号注入法的MTPA控制为例,对本申请获取最优电流相位超前角的过程进行说明:
永磁同步电机在d-q坐标系下的电机模型可以定义如下:
Figure PCTCN2021138144-appb-000025
Figure PCTCN2021138144-appb-000026
T e=k[ψ m+(L d-L q)i d]i q     (6)
i d=-I asinβ  i q=I acosβ       (7)
其中,v d表示d轴定子电压,i d表示未注入目标信号的d轴定子电流,v q表示q轴定子电压,i q表示未注入目标信号的q轴定子电流,L d表示d轴电感,L q表示q轴电感,R、p和ψ m分别表示定子电阻、永磁体极对数和永磁体磁链,I a和β分别表示电流幅值和第一电流相位超前角,ω m表示转子的机械角速度,k表示转矩系数。
当永磁同步电机在稳态运行时,公式(4)和(5)中的微分项为零,此时可以得到ψ m和L q,ψ m和L q分别表示如下:
Figure PCTCN2021138144-appb-000027
Figure PCTCN2021138144-appb-000028
将上述公式(8)和(9)代入公式(6),可以将永磁同步电机的第二电磁表示如下:
Figure PCTCN2021138144-appb-000029
目标信号表示如下:
Δβ=Asin(ω ht)     (11)
将目标信号注入第一电流相位超前角之后,第二电流相位超前角可以表示为β+Δβ,那么目标d轴定子电流和目标q轴定子电流可以表示如下:
Figure PCTCN2021138144-appb-000030
其中,
Figure PCTCN2021138144-appb-000031
表示目标d轴定子电流,
Figure PCTCN2021138144-appb-000032
表示目标q轴定子电流。
基于公式(12),第一电磁功率表示如下:
Figure PCTCN2021138144-appb-000033
由上述公式(11)至(13)可知,基于测量得到的未注入目标信号的d轴定子电流i d、未注入目标信号的q轴定子电流i q、d轴定子电压v d、q轴定子电压v q、转子的机械角速度ω m、标称的定子电阻R以及通过查表或标称的d轴电感L d,可以计算出注入目标信号的第一电磁功率。
将公式(13)的左侧部分(即
Figure PCTCN2021138144-appb-000034
)进行泰勒展开,可以表示为上述公式(1)。
从上述公式(1)中可以提取出第三交流分量,且第三交流分量为
Figure PCTCN2021138144-appb-000035
将第四交流分量的相位滞后
Figure PCTCN2021138144-appb-000036
可以得到第四交流分量,第四交流分量为
Figure PCTCN2021138144-appb-000037
使用图4b中的目标观测器,可以从公式(13)的右侧部分(即
Figure PCTCN2021138144-appb-000038
)中提取出第一交流分量和第二交流分量。
第一交流分量与第三交流分量之间的关系如上述公式(2)。
第二交流分量与第四交流分量之间的关系如上述公式(3)。
从目标信号中提取的第一系数为sin(ω ht),将第一系数的相位滞后,得到的第二系数为
Figure PCTCN2021138144-appb-000039
将第一系数与公式(2)的左侧部分(即
Figure PCTCN2021138144-appb-000040
)相乘,得到第一乘积;将第二系数与公式(3)的左侧部分(即
Figure PCTCN2021138144-appb-000041
)相乘,得到第二乘积;将第一乘积与第二乘积相加,相加后所得值(即目标直流分量)表示如下:
Figure PCTCN2021138144-appb-000042
其中,Out表示目标直流分量。
将第一系数与公式(2)的右侧部分(即
Figure PCTCN2021138144-appb-000043
)相乘,得到第三乘积;将第二系数与公式(3)的右侧部分(即
Figure PCTCN2021138144-appb-000044
)相乘,得到第四乘积;将第三乘积与第四乘积相加,相加后所得值可以表示为
Figure PCTCN2021138144-appb-000045
由公式(2)和(3)可知,目标直流分量Out与第二电磁功率对第一电流相位超相角的偏微分
Figure PCTCN2021138144-appb-000046
之间的关系可以表示如下:
Figure PCTCN2021138144-appb-000047
由公式(15)可知,第二电磁功率对第一电流相位超前角的偏微分与目标直流分量成正比例,通过控制目标直流分量等于零(即控制
Figure PCTCN2021138144-appb-000048
等于零),可以 使得第二电磁功率对第一电流相位超前角的偏微分等于零,从而可得到MTPA工作点。
如图5所示是基于虚拟信号注入法的电流相位超前角优化控制系统的示例图。如图5所示,基于本申请的目标控制器输出的参考电流相位超前角β ref,可以计算得到参考d轴定子电流和参考q轴定子电流,将参考d轴定子电流i dref和参考q轴定子电流i qref输入至比例积分控制器,解耦后得到d轴定子电流i d和q轴定子电流i q,经过坐标变换后,传输给逆变器。上述逆变器可以是空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM)逆变器。
以虚拟注入法和一台三相永磁同步电机的驱动系统为例,如图6a所示是电流幅值的一示例图,如图6b所示是最优电流相位超前角的响应曲线的一示例图。图6a设定的是恒定电流幅值信号。图6b中的响应曲线是基于图6a所示的电流幅值得到的。
由图6b可知,本申请的MTPA控制方法搜索到MTPA工作点的时间约为0.52秒,现有的MTPA控制方法搜索到MTPA工作点的时间约为10.2秒,本申请的MTPA控制方法能够显著提升确定最优电流相位超前角的速度。
以虚拟注入法为例,如图7a所示是电流幅值的另一示例图,如图7b所示是最优电流相位超前角的响应曲线的另一示例图。图7a设定的是跳变电流幅值信号。图7b中的响应曲线是基于图7a所示的电流幅值得到的。
由图7b可知,现有的MTPA控制方法的响应速度较慢,且存在明显的超调过冲,而本申请的MTPA控制方法的响应速度快,且超调明显较小。
需要说明的是,图6b和图7b中现有的MTPA控制方法是指使用带通滤波器和低通滤波器的MTPA控制方法。
本申请实施例在实施例一的基础上,通过目标观测器得到第一交流分量和第二交流分量,且将第一交流分量和第二交流分量经过三角函数变化即可确定MTPA工作点。在此过程中,由于无需使用带通滤波器和低通滤波器,故减少了MTPA控制过程中的计算量,提高了MTPA控制的动态响应速度,能够快速地确定MTPA工作点,且精度高,收敛稳定。因此本申请在复杂多变的工况下,能够使得电机驱动系统保持良好的工作状态,减小能量损耗。
参见图8,是本申请实施例三提供的最大转矩电流比控制装置的结构示意图,为了便于说明,仅示出了与本申请实施例相关的部分。
上述最大转矩电流比控制装置包括:
信号获取模块81,用于获取目标信号;
信号注入模块82,用于将目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角;
分量确定模块83,用于根据第二电流相位超前角,确定第一交流分量和和第二交流分量,第一交流分量是指永磁同步电机的第一电磁功率中与目标信号的频率相同的交流分量,第二交流分量是指第一交流分量的相位滞后目标角度的同频交流分量,第一电磁功率是指注入目标信号后的电磁功率;
超前角调节模块84,用于根据第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。
在一实施例中,上述分量确定模块83包括:
功率确定单元,用于根据第二电流相位超前角,确定第一电磁功率;
功率输入单元,用于将第一电磁功率输入至目标观测器,得到第一交流分量和第二交流分量,目标观测器包括第一传递函数和第二传递函数,第一传递函数是指第一交流分量与第一电磁功率之间的传递函数,第二传递函数是指第二交流分量与第一电磁功率之间的传递函数;
其中,
Figure PCTCN2021138144-appb-000049
d(s)表示第一传递函数,q(s)表示第二传递函数,ω表示目标观测器的观测频率,ξ表示阻尼系数,s表示微分算子。
在一实施例中,上述功率确定单元具体用于:
根据第二电流相位超前角,确定永磁同步电机在d-q坐标系下的目标d轴定子电流和目标q轴定子电流,目标d轴定子电流是指注入目标信号后的d轴定子电流,目标q轴定子电流是指注入目标信号后的q轴定子电流;
根据目标d轴定子电流和目标q轴定子电流,确定第一电磁功率。
在一实施例中,目标观测器还包括第三传递函数,第三传递函数是指第一电磁功率中的直流分量与第一电磁功率之间的传递函数;
其中,
Figure PCTCN2021138144-appb-000050
n(s)表示第三传递函数。
在一实施例中,上述最大转矩电流比控制装置还包括:
系数确定模块,用于从目标信号中确定第一系数,第一系数是指目标信号中随时间变化的系数;
上述超前角调节模块84具体用于:
根据第一系数、第一交流分量和第二交流分量,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。
在一实施例中,上述超前角调节模块84包括:
系数处理单元,用于将第一系数的相位滞后目标角度,得到第二系数;
第一计算单元,用于计算第一系数与第一交流分量的乘积,得到第一乘积;
第二计算单元,用于计算第二系数与第二交流分量的乘积,得到第二乘积;
超前角调节单元,用于根据第一乘积和第二乘积,调节第一电流相位超前角,使得永磁同步电机满足最大转矩电流比。
在一实施例中,超前角调节单元包括:
确定子单元,用于将第一乘积和第二乘积相加,确定相加后所得值为目标直流分量,目标直流分量与永磁同步电机的第二电磁功率对电流相位超前角的偏微分成正比例,第二电磁功率是指未注入目标信号的电磁功率;
调节子单元,用于调节第一电流相位超前角,使得目标直流分量等于零时的电流相位超前角,并确定目标直流分量等于零时永磁同步电机满足最大转矩电流比。
本申请实施例提供的最大转矩电流比控制装置可以应用在前述方法实施例一和实施例二中,详情参见上述方法实施例一和实施例二的描述,在此不再赘述。
图9是本申请实施例四提供的终端设备的结构示意图。如图9所示,该实施例的终端设备9包括:一个或多个处理器90(图中仅示出一个)、存储器91以及存储在存储器91中并可在处理器90上运行的计算机程序92。处理器90执行计算机程序92时实现上述各个最大转矩电流比控制方法实施例中的步骤。
终端设备9可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。终端设备可包括,但不仅限于,处理器90、存储器91。本领域技术人员可以理解,图9仅仅是 终端设备9的示例,并不构成对终端设备9的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如终端设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器90可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器91可以是终端设备9的内部存储单元,例如终端设备9的硬盘或内存。存储器91也可以是终端设备9的外部存储设备,例如终端设备9上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器91还可以既包括终端设备9的内部存储单元也包括外部存储设备。存储器91用于存储计算机程序以及终端设备所需的其他程序和数据。存储器91还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代 码形式、可执行文件或某些中间形式等。计算机可读介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质等。需要说明的是,计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
本申请实现上述实施例方法中的全部或部分流程,也可以通过一种计算机程序产品来完成,当计算机程序产品在终端设备上运行时,使得终端设备执行时实现可实现上述各个方法实施例中的步骤。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种最大转矩电流比控制方法,其特征在于,所述最大转矩电流比控制方法包括:
    获取目标信号;
    将所述目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角;
    根据所述第二电流相位超前角,确定第一交流分量和第二交流分量,所述第一交流分量是指所述永磁同步电机的第一电磁功率中与所述目标信号的频率相同的交流分量,所述第二交流分量是指所述第一交流分量的相位滞后目标角度的同频交流分量,所述第一电磁功率是指注入所述目标信号后的电磁功率;
    根据所述第一交流分量和所述第二交流分量,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比。
  2. 如权利要求1所述的最大转矩电流比控制方法,其特征在于,所述根据所述第二电流相位超前角,确定第一交流分量和第二交流分量包括:
    根据所述第二电流相位超前角,确定所述第一电磁功率;
    将所述第一电磁功率输入至目标观测器,得到所述第一交流分量和所述第二交流分量,所述目标观测器包括第一传递函数和第二传递函数,所述第一传递函数是指所述第一交流分量与所述第一电磁功率之间的传递函数,所述第二传递函数是指所述第二交流分量与所述第一电磁功率之间的传递函数;
    其中,
    Figure PCTCN2021138144-appb-100001
    d(s)表示所述第一传递函数,q(s)表示所述第二传递函数,ω表示所述目标观测器的观测频率,ξ表示阻尼系数,s表示微分算子。
  3. 如权利要求2所述的最大转矩电流比控制方法,其特征在于,所述根据所述第二电流相位超前角,确定所述第一电磁功率包括:
    根据所述第二电流相位超前角,确定所述永磁同步电机在d-q坐标系下的目标d轴定子电流和目标q轴定子电流,所述目标d轴定子电流是指注入所述目标信号后的d轴定子电流,所述目标q轴定子电流是指注入所述目标信号后的q轴定子电流;
    根据所述目标d轴定子电流和所述目标q轴定子电流,确定所述第一电磁功率。
  4. 如权利要求2所述的最大转矩电流比控制方法,其特征在于,所述目标观测器还包括第三传递函数,所述第三传递函数是指所述第一电磁功率中的直流分量与所述第一电磁功率之间的传递函数;
    其中,
    Figure PCTCN2021138144-appb-100002
    n(s)表示所述第三传递函数。
  5. 如权利要求1至4任一项所述的最大转矩电流比控制方法,其特征在于,在根据所述第一交流分量和所述第二交流分量,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比之前,还包括:
    从所述目标信号中确定第一系数,所述第一系数是指所述目标信号中随时间变化的系数;
    所述根据所述第一交流分量和所述第二交流分量,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比包括:
    根据所述第一系数、所述第一交流分量和所述第二交流分量,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比。
  6. 如权利要求5所述的最大转矩电流比控制方法,其特征在于,所述根据所述第一系数、所述第一交流分量和所述第二交流分量,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比包括:
    将所述第一系数的相位滞后所述目标角度,得到第二系数;
    计算所述第一系数与所述第一交流分量的乘积,得到第一乘积;
    计算所述第二系数与所述第二交流分量的乘积,得到第二乘积;
    根据所述第一乘积和所述第二乘积,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比。
  7. 如权利要求6所述的最大转矩电流比控制方法,其特征在于,所述根据所述第一乘积和所述第二乘积,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比包括:
    将所述第一乘积和所述第二乘积相加,确定相加后所得值为目标直流分量,所述目标直流分量与所述永磁同步电机的第二电磁功率对所述第一电流相位超前角的偏微分成正比例,所述第二电磁功率是指未注入所述目标信号的电磁功率;
    调节所述第一电流相位超前角,使得所述目标直流分量等于零,并确定所述目标直流分量等于零时所述永磁同步电机满足最大转矩电流比。
  8. 一种最大转矩电流比控制装置,其特征在于,所述最大转矩电流比控制装置包括:
    信号获取模块,用于获取目标信号;
    信号注入模块,用于将所述目标信号注入永磁同步电机的第一电流相位超前角,得到第二电流相位超前角;
    分量确定模块,用于根据所述第二电流相位超前角,确定第一交流分量和和第二交流分量,所述第一交流分量是指所述永磁同步电机的第一电磁功率中与所述目标信号的频率相同的交流分量,所述第二交流分量是指所述第一交流分量的相位滞后目标角度的同频交流分量,所述第一电磁功率是指注入所述目标信号后的电磁功率;
    超前角调节模块,用于根据所述第一交流分量和所述第二交流分量,调节所述第一电流相位超前角,使得所述永磁同步电机满足最大转矩电流比。
  9. 一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述最大转矩电流比控制方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述最大转矩电流比控制方法的步骤。
PCT/CN2021/138144 2021-06-11 2021-12-15 最大转矩电流比控制方法、装置、终端设备及存储介质 WO2022257405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110654558.1A CN113346813B (zh) 2021-06-11 2021-06-11 最大转矩电流比控制方法、装置、终端设备及存储介质
CN202110654558.1 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022257405A1 true WO2022257405A1 (zh) 2022-12-15

Family

ID=77477072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138144 WO2022257405A1 (zh) 2021-06-11 2021-12-15 最大转矩电流比控制方法、装置、终端设备及存储介质

Country Status (2)

Country Link
CN (1) CN113346813B (zh)
WO (1) WO2022257405A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117387813A (zh) * 2023-12-06 2024-01-12 浙江大学 大功率同步电机电磁转矩测试方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346813B (zh) * 2021-06-11 2022-05-27 中国科学院深圳先进技术研究院 最大转矩电流比控制方法、装置、终端设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107800344A (zh) * 2017-10-17 2018-03-13 浙江大学 基于虚拟信号注入的同步电机的最大转矩电流比控制方法
CN111371363A (zh) * 2020-04-01 2020-07-03 上海新时达电气股份有限公司 基于信号注入的电机最大转矩电流比控制方法及其装置
KR20200092171A (ko) * 2019-01-24 2020-08-03 강원대학교산학협력단 영구자석 동기기의 V/f 운전 시 MTPA 제어 장치 및 방법
CN113346813A (zh) * 2021-06-11 2021-09-03 中国科学院深圳先进技术研究院 最大转矩电流比控制方法、装置、终端设备及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644820B2 (ja) * 2012-08-17 2014-12-24 株式会社安川電機 モータ制御装置
KR101941976B1 (ko) * 2017-09-19 2019-01-24 서울대학교산학협력단 전동기 제어장치
CN110071674B (zh) * 2019-05-14 2021-01-22 天津大学 一种无位置传感器永磁同步电机最大转矩电流比控制方法
CN110890855A (zh) * 2019-11-11 2020-03-17 武汉理工大学 一种电动汽车永磁同步电机的参数辨识方法
CN111327234B (zh) * 2020-02-28 2021-07-23 北京航空航天大学 永磁容错电机系统低速段无位置传感器控制方法
CN111355411B (zh) * 2020-03-26 2022-07-12 同济大学 永磁同步电机的控制方法、装置、存储介质及终端
CN112054735B (zh) * 2020-08-25 2022-03-22 江苏大学 一种内嵌式永磁同步电机最大转矩电流比控制方法
CN112865636A (zh) * 2021-01-15 2021-05-28 珠海格力电器股份有限公司 一种最大转矩电流比控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107800344A (zh) * 2017-10-17 2018-03-13 浙江大学 基于虚拟信号注入的同步电机的最大转矩电流比控制方法
KR20200092171A (ko) * 2019-01-24 2020-08-03 강원대학교산학협력단 영구자석 동기기의 V/f 운전 시 MTPA 제어 장치 및 방법
CN111371363A (zh) * 2020-04-01 2020-07-03 上海新时达电气股份有限公司 基于信号注入的电机最大转矩电流比控制方法及其装置
CN113346813A (zh) * 2021-06-11 2021-09-03 中国科学院深圳先进技术研究院 最大转矩电流比控制方法、装置、终端设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, JUN ET AL.: "AN ACCURATE VIRTUAL SIGNAL INJECTION CONTROL OF MTPA FOR AN IPMSM WITH FAST DYNAMIC RESPONSE", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 33, no. 9, 30 September 2018 (2018-09-30), XP011686227, DOI: 10.1109/TPEL.2017.2764500 *
XU BINHAN; SHEN JIANXIN: "Review of Online Optimization Strategies of Maximum Torque Per Ampere Control for Inverter-fed Synchronous Motors", MICROMOTORS, vol. 53, no. 5, 31 May 2020 (2020-05-31), pages 105 - 108, XP009541946, ISSN: 1001-6848 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117387813A (zh) * 2023-12-06 2024-01-12 浙江大学 大功率同步电机电磁转矩测试方法及装置
CN117387813B (zh) * 2023-12-06 2024-02-13 浙江大学 大功率同步电机电磁转矩测试方法及装置

Also Published As

Publication number Publication date
CN113346813A (zh) 2021-09-03
CN113346813B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2022257405A1 (zh) 最大转矩电流比控制方法、装置、终端设备及存储介质
Xu et al. Very-low speed control of PMSM based on EKF estimation with closed loop optimized parameters
CN103967794A (zh) 一种单转子压缩机的振动补偿方法及控制器
CN112713834B (zh) 一种永磁同步电机无位置传感器控制方法及系统
CN109768753B (zh) 新型滑模观测器的无位置传感器永磁同步电机模型预测控制方法
CN106357182B (zh) 一种永磁直流电机的弱磁控制方法及装置
CN106533300B (zh) 一种基于速度环模糊控制和高频注入法的无传感器控制系统
CN113037170B (zh) 电机控制方法、装置及终端设备
CN112117943B (zh) 一种新型ipmsm高频方波注入无位置传感器控制
CN110995100A (zh) 一种永磁同步电机的无位置传感器控制方法及系统
CN110620533A (zh) 一种表贴式永磁同步电机无传感器控制方法
CN110994617A (zh) 一种虚拟同步机电流谐波抑制方法及虚拟同步机控制系统
CN116232154A (zh) 基于复矢量离散滤波器的电机参数估计及控制方法和系统
WO2020215588A1 (zh) 基于功能切换的直流调磁型记忆电机无位置控制方法及系统
Xu et al. Anti-disturbance position sensorless control of PMSM based on improved sliding mode observer with suppressed chattering and no phase delay
CN107395080A (zh) 基于级联非奇异终端滑模观测器的无速度传感器转矩控制系统及方法
WO2022257402A1 (zh) 一种电机控制方法、装置、终端及存储介质
WO2022257403A1 (zh) 一种电机控制方法、装置、终端及存储介质
CN114301361B (zh) 一种基于母线电流控制的无电解电容永磁同步电机驱动系统控制方法
Zhang et al. Torque ripple suppression for permanent-magnet synchronous motor based on enhanced LADRC strategy
CN116169921A (zh) 基于参数辨识的永磁辅助同步磁阻电机无差拍控制方法
WO2023024029A1 (zh) 永磁同步电机的控制方法、装置及永磁同步电机控制系统
Li et al. High-frequency response current direct demodulation method for sensorless control of interior permanent magnet synchronous motor drives
Zhang et al. Predictive power control of induction motor drives with improved efficiency
Deng et al. Sensorless control of printed permanent magnet synchronous motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE