WO2022257403A1 - 一种电机控制方法、装置、终端及存储介质 - Google Patents

一种电机控制方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2022257403A1
WO2022257403A1 PCT/CN2021/137933 CN2021137933W WO2022257403A1 WO 2022257403 A1 WO2022257403 A1 WO 2022257403A1 CN 2021137933 W CN2021137933 W CN 2021137933W WO 2022257403 A1 WO2022257403 A1 WO 2022257403A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
motor
motor torque
component
vector angle
Prior art date
Application number
PCT/CN2021/137933
Other languages
English (en)
French (fr)
Inventor
孙天夫
李可
冯伟
梁嘉宁
李慧云
朱松龄
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2022257403A1 publication Critical patent/WO2022257403A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application belongs to the technical field of motor control, and in particular relates to a motor control method, device, terminal and storage medium.
  • Electric energy is a kind of green energy.
  • how to optimize the control of the motor to ensure the efficient and stable operation of the motor is a crucial issue.
  • an important control principle is that the first-order partial derivative of motor torque T e with respect to current vector angle ⁇ is zero (ie ), it can be realized that when the current amplitude is given, the output torque of the motor is the maximum. Therefore, it is usually necessary to extract the first-order partial derivative of the motor torque T e with respect to the current vector angle ⁇ , so as to control the relevant parameters to approach zero and ensure that the motor is in the best power output state.
  • the first-order partial derivative information of torque to current vector angle is mainly extracted based on virtual high-frequency signal injection.
  • the overshoot is serious, which is not conducive to the accurate and stable estimation of the best control state of the motor, and it is difficult to achieve the ideal operating state of the motor.
  • the embodiment of the present application provides a motor control method, device, terminal and storage medium to solve the problem of complex structure of the motor control system in the prior art, slow dynamic response speed, serious overshoot and overshoot when the working condition changes suddenly, which is not conducive to the optimal operation of the motor. Accurate and stable estimation of the control state is difficult to achieve the ideal operating state of the motor.
  • the first aspect of the embodiments of the present application provides a motor control method, including:
  • the first A reference signal is obtained by adjusting the phase of the virtual high-frequency signal to be the same as that of the torque signal
  • the second reference signal is obtained by adjusting the phase of the virtual high-frequency signal to be the same as that of the cancellation signal obtained after the same phase
  • a target current vector angle of the motor is determined, and operation control of the motor is performed based on the target current vector angle.
  • the second aspect of the embodiments of the present application provides a motor control device, including:
  • a signal processing module configured to inject a virtual high-frequency signal into the current vector angle of the motor to obtain a motor torque signal after injecting the virtual high-frequency signal, and input the motor torque signal to a filter for filtering processing, obtaining a first-order AC component signal of the motor torque signal;
  • a phase-shifting module configured to input the first-order AC component signal to a phase shifter for phase-shifting processing to obtain a cancellation signal of a set value of the phase shift;
  • a calculation module configured to sum the product of the first-order AC component signal and the first reference signal and the product of the cancellation signal and the second reference signal to obtain a first-order partial derivative signal of the torque versus the current vector angle as an output signal, the first reference signal is obtained by adjusting the phase of the virtual high-frequency signal to be the same as the phase of the torque signal, and the second reference signal is obtained by adjusting the phase of the virtual high-frequency signal to Obtained after having the same phase as the cancellation signal;
  • a control module configured to determine a target current vector angle of the motor based on the output signal, and control the operation of the motor based on the target current vector angle.
  • the third aspect of the embodiments of the present application provides a terminal, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the The steps of the method as described in the first aspect.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a fifth aspect of the present application provides a computer program product, which, when running on a terminal, causes the terminal to execute the steps of the method described in the first aspect above.
  • the filter process is carried out by the motor torque signal, and the DC component and high frequency item in the motor torque signal are eliminated to obtain the first-order AC component signal of the motor torque signal, and then the phase-adjusted virtual high
  • the frequency signal is used as a reference signal, combined with the first-order AC component signal itself and the first-order AC component signal shifted by the phase shifter for data cancellation, and finally the first-order partial derivative signal of the torque to the current vector angle is extracted as the output signal
  • the optimal torque-current ratio of the motor can be determined, the dynamic response speed can be improved, the overshoot and overshoot phenomenon can be avoided when the working conditions change suddenly, and the stability of the motor can be ensured in the best state.
  • FIG. 1 is a flow chart 1 of a motor control method provided in an embodiment of the present application
  • FIG. 2 is a data flow diagram for signal processing under the low-pass filter provided by the embodiment of the present application
  • FIG. 3 is a data flow diagram for signal processing under the high-pass filter provided by the embodiment of the present application.
  • Fig. 4 is a flowchart 2 of a motor control method provided by an embodiment of the present application.
  • Fig. 5 is a structural diagram of a motor control device provided in an embodiment of the present application.
  • FIG. 6 is a structural diagram of a terminal provided by an embodiment of the present application.
  • the term “if” may be construed as “when” or “once” or “in response to determining” or “in response to detecting” depending on the context .
  • the phrase “if determined” or “if [the described condition or event] is detected” may be construed, depending on the context, to mean “once determined” or “in response to the determination” or “once detected [the described condition or event] ]” or “in response to detection of [described condition or event]”.
  • the terminals described in the embodiments of the present application include but are not limited to other portable devices such as mobile phones, laptop computers or tablet computers with touch-sensitive surfaces (eg, touch screen displays and/or touch pads). It should also be appreciated that in some embodiments, the device is not a portable communication device, but a desktop computer with a touch-sensitive surface (eg, a touchscreen display and/or a touchpad).
  • a terminal including a display and a touch-sensitive surface is described.
  • a terminal may include one or more other physical user interface devices such as a physical keyboard, mouse and/or joystick.
  • the terminal supports various applications such as one or more of the following: drawing application, presentation application, word processing application, website creation application, disk burning application, spreadsheet application, gaming application, telephony application programs, video conferencing applications, email applications, instant messaging applications, exercise support applications, photo management applications, digital camera applications, digital video camera applications, web browsing applications, digital music player applications, and and/or digital video player applications.
  • applications such as one or more of the following: drawing application, presentation application, word processing application, website creation application, disk burning application, spreadsheet application, gaming application, telephony application programs, video conferencing applications, email applications, instant messaging applications, exercise support applications, photo management applications, digital camera applications, digital video camera applications, web browsing applications, digital music player applications, and and/or digital video player applications.
  • Various applications that can be executed on the terminal can use at least one common physical user interface device, such as a touch-sensitive surface.
  • a touch-sensitive surface One or more functions of the touch-sensitive surface and corresponding information displayed on the terminal may be adjusted and/or changed between applications and/or within the respective applications.
  • the common physical architecture eg, touch-sensitive surface
  • the terminal can support various applications with a user interface that is intuitive and transparent to the user.
  • FIG. 1 is a flowchart 1 of a motor control method provided by an embodiment of the present application. As shown in Figure 1, a motor control method, the method includes the following steps:
  • Step 101 Inject a virtual high-frequency signal into the current vector angle of the motor to obtain a motor torque signal after injecting the virtual high-frequency signal, input the motor torque signal to a filter for filtering processing, and obtain a first-order AC of the motor torque signal component signal.
  • the virtual high-frequency signal may be a small-amplitude high-frequency signal component; superimposing the virtual high-frequency signal on the current vector angle is used to increase the offset of the current vector angle and play a role of signal disturbance.
  • the motor is, for example, an embedded permanent magnet synchronous motor, or other types of motors.
  • the motor torque signal after injecting the virtual high-frequency signal can be obtained based on the current vector angle after adding the offset.
  • the first-order AC component signal is affected by the gain of the filter, and specifically corresponds to a signal value positively correlated with the first-order AC component of the motor torque signal, and more specifically, corresponds to a first-order AC component of the motor torque signal.
  • the AC component is proportional to the signal value.
  • a virtual high-frequency signal is injected into the current vector angle of the motor to obtain a motor torque signal after the virtual high-frequency signal is injected, including:
  • T e is the initial motor torque signal
  • v d is the d-axis voltage of the motor
  • L d is the d-axis inductance of the motor
  • v q is the motor q-axis voltage
  • I a is the current amplitude
  • is the current vector angle
  • L q is the q-axis inductance of the motor
  • R is the stator of the motor Resistance
  • p is the number of permanent magnet pole pairs of the motor
  • ⁇ m is the mechanical angular velocity of the rotor in the motor.
  • a virtual high-frequency signal is injected into the current vector angle to obtain the d-axis current and q-axis current after injecting the virtual high-frequency signal;
  • the amplitude of the high-frequency signal, ⁇ h is the frequency of the virtual high-frequency signal; is the d-axis current after injecting the virtual high-frequency signal, is the q-axis current after injecting the virtual high-frequency signal,
  • the motor torque signal after injecting the virtual high-frequency signal is obtained:
  • the initial motor torque signal model formula may be an existing model formula, or derived from an existing motor model.
  • the derivation process can be as follows: first define the motor model of the motor in the rotor coordinate system, as follows:
  • v d is the motor d-axis stator voltage
  • id is the motor d -axis stator current
  • v q is the motor q-axis stator voltage
  • i q is the motor q-axis stator current
  • L d is the d-axis inductance
  • L q is the q-axis Inductance
  • R is the stator resistance
  • p is the number of pole pairs of the permanent magnet of the motor
  • ⁇ m is the flux linkage of the permanent magnet
  • I a is the current amplitude
  • is the current vector angle
  • ⁇ m is the mechanical angular velocity of the rotor.
  • A is the amplitude of the virtual high-frequency signal
  • ⁇ h is the frequency of the virtual high-frequency signal.
  • the injected signal here is an offset ⁇ of the current vector angle ⁇ .
  • the motor torque signal after injecting the virtual high-frequency signal can be expressed as:
  • the virtual high-frequency signal is, for example, a virtual high-frequency sinusoidal signal
  • the motor torque signal is a virtual motor torque signal
  • the motor torque signal is input to the filter for filtering processing, and when the first-order AC component signal of the motor torque signal is obtained, it is only necessary to set the filter once Processing is sufficient, and there is no need to set multiple cascaded filters for signal processing.
  • the aforementioned filter is specifically a high-pass filter for filtering out DC components, or a low-pass filter for filtering out high-frequency AC components in the motor torque signal.
  • a high-pass filter for filtering out DC components
  • a low-pass filter for filtering out high-frequency AC components in the motor torque signal.
  • the motor torque signal is input to a filter for filtering processing to obtain a first-order AC component signal of the motor torque signal, including:
  • the low-pass filter can be a first-order low-pass filter, and signal processing can be realized only by using the first-order filter, avoiding the use of a high-order band-pass filter in the traditional solution.
  • the motor torque signal after injecting the virtual high-frequency signal Subtract the calculated torque signal when the injection signal is not considered, that is, T e ( ⁇ ) calculated by the initial motor torque signal model formula (12), so that the signals are cancelled, so that The T e ( ⁇ ) item in is eliminated, that is, the DC component in the motor torque signal that has been injected into the virtual high-frequency signal is removed. Then input the subtracted signal into the low-pass filter, set the cut-off frequency ⁇ of the low-pass filter to be consistent with the frequency ⁇ h of the injected virtual high-frequency signal, and filter out the high-frequency AC component, that is, the high-frequency items.
  • the signal output by the low-pass filter in Figure 2 (that is, the first-order AC component signal in the motor torque signal injected into the virtual high-frequency signal) can be expressed as follows:
  • K L is the gain of the low-pass filter
  • ⁇ h is the phase shift generated when the signal with frequency ⁇ h passes through the low-pass filter
  • the motor torque signal is input to a filter for filtering processing to obtain a first-order AC component signal of the motor torque signal, including:
  • the cut-off frequency ⁇ of the high-pass filter can be set to be consistent with the frequency ⁇ h of the injected virtual high-frequency signal, the high-pass filter will filter out the DC component in equation (21), because the amplitude of the injected signal A is very small, the second-order and above harmonics can be ignored, and the high-frequency AC component in the motor torque signal that filters out the DC component is discarded, and the first-order AC component signal of the motor torque signal is obtained.
  • the signal output by the high-pass filter can be expressed as follows:
  • K h is the gain of the high-pass filter
  • ⁇ h is the phase delay generated when the signal with frequency ⁇ h passes through the high-pass filter, that is, the phase offset.
  • the high-pass filter may specifically adopt a first-order high-pass filter.
  • the process enables signal processing using only first-order filters, avoiding the use of higher-order bandpass filters in traditional approaches.
  • Step 102 inputting the first-order AC component signal to a phase shifter for phase shift processing to obtain a cancellation signal of a set phase shift value.
  • the setting value of the phase offset is specifically the value that shifts the phase of the sinusoidal waveform into a cosine waveform, for example, shifting to the right the phase or move left the phase To be able to get the offset signal.
  • the cancellation signal is specifically a signal with the same amplitude as the first-order AC component signal but an opposite phase, so as to implement signal cancellation with the first-order AC component signal in subsequent operations.
  • the first-order AC component signal of the motor torque signal injected into the virtual high-frequency signal is input into a first-order all-pass phase shifter, and the transfer function of the all-pass phase shifter p(s) is expressed as follows:
  • the phase-shifting operating frequency ⁇ in p(s) is set equal to the frequency ⁇ h of the injected virtual high-frequency signal.
  • the gain of the phase shifter is always 1, that is, the amplitude of the signal will not be changed, but it will make
  • the input signal produces a phase shift of ⁇ /2, and the output cancels the signal.
  • Step 103 summing the product of the first-order AC component signal and the first reference signal and the product of the cancellation signal and the second reference signal to obtain the first-order partial derivative signal of the torque with respect to the current vector angle as an output signal.
  • the first reference signal is specifically used as a reference signal of the first-order AC component signal of the motor torque signal injected with the virtual high-frequency signal, and the second reference signal is used as a reference signal of the canceling signal.
  • the first reference signal is obtained after adjusting the phase of the virtual high-frequency signal to be the same as the phase of the torque signal;
  • the second reference signal is obtained after adjusting the phase of the virtual high-frequency signal to be the same as the phase of the canceling signal, so that Enables the offset operation between expression items when performing the product operation and the final sum operation.
  • the first-order partial derivative signal of the torque to the current vector angle specifically corresponds to a signal value positively correlated with the first-order partial derivative of the torque to the current vector angle, more specifically, corresponds to a signal value that is positively correlated with the torque to the current vector angle
  • the first partial derivative of is proportional to the signal value.
  • the injected virtual high-frequency signal has the expression item of the same phase lag (that is, the first reference signal) Multiplied with the first-order AC component signal of the motor torque signal, the phase lag signal of the injected virtual high-frequency signal (that is, the second reference signal) Multiply with the offset signal, and then add the results to obtain the first-order partial derivative signal of the torque with respect to the current vector angle.
  • the data can be multiplied and added together to get:
  • the Out LFP is the first-order partial derivative signal of torque versus current vector angle.
  • the Out LFP is the first-order partial derivative signal of torque versus current vector angle.
  • the above-mentioned process of extracting the first-order partial derivative signal of the torque versus the current vector angle can only use one filter, avoiding the cascade structure of multiple filters.
  • Step 104 based on the output signal, determine the target current vector angle of the motor, and control the operation of the motor based on the target current vector angle.
  • the first-order partial derivative signal of the calculated motor torque to the current vector angle can be obtained.
  • the first-order partial derivative of the motor torque T e to the current vector angle ⁇ is zero (ie ) when the output torque of the motor is the largest, determine the target value of the current vector angle ⁇ , and implement operation control on the motor through the target value, so that the output torque of the motor is the maximum when the current amplitude is given.
  • the above method can obtain Signal, and adjust the system controller to make the partial derivative term converge to zero, so as to realize the accurate estimation of the best operating point of the motor.
  • this scheme can effectively increase the speed of estimation, reduce the amount of calculation and complexity, and can estimate stably under variable working conditions. Optimum operating point.
  • the offset of the current vector angle is increased to obtain the corresponding motor torque signal, and the motor torque signal is input to the filter for filtering processing , the motor torque signal is processed through a filter to eliminate the DC component and high-frequency items in the motor torque signal, and the first-order AC component signal of the motor torque signal is obtained, and then the phase-adjusted virtual high-frequency signal is used as a reference
  • the signal is combined with the first-order AC component signal itself and the first-order AC component signal after phase shifting by the phase shifter for data cancellation, and finally the first-order partial derivative signal of the torque to the current vector angle is extracted as the output signal, which can be obtained in a simple
  • the optimal torque-current ratio of the motor is determined, the dynamic response speed is improved, the overshoot and overshoot phenomenon when the working condition changes suddenly, and the stability of the motor running in the best state is ensured.
  • Embodiments of the present application also provide different implementations of the motor control method.
  • FIG. 4 is a flowchart 2 of a motor control method provided by an embodiment of the present application. As shown in Figure 2, a motor control method, the method includes the following steps:
  • Step 401 Inject a virtual high-frequency signal into the current vector angle of the motor to obtain a motor torque signal after injecting the virtual high-frequency signal, input the motor torque signal to a filter for filtering processing, and obtain a first-order AC of the motor torque signal component signal.
  • step 402 the first-order AC component signal is input to a phase shifter for phase shift processing to obtain a cancellation signal of a set phase shift value.
  • step 102 The implementation process of this step is the same as the implementation process of step 102 in the foregoing embodiments, and will not be repeated here.
  • Step 403 sum the product of the first-order AC component signal and the first reference signal and the product of the cancellation signal and the second reference signal to obtain the first-order partial derivative signal of the torque with respect to the current vector angle as an output signal.
  • the first reference signal is obtained by adjusting the phase of the virtual high-frequency signal to be the same as that of the torque signal
  • the second reference signal is obtained by adjusting the phase of the virtual high-frequency signal to be the same as that of the cancellation signal.
  • step 103 The implementation process of this step is the same as the implementation process of step 103 in the foregoing embodiments, and will not be repeated here.
  • Step 404 Based on the output signal, the current phase lead angle corresponding to the time when the first-order partial derivative signal of the torque with respect to the current vector angle approaches zero is determined as the target current vector angle of the motor.
  • the output signal (Out LFP or Out HPF ) is specifically input into the controller (the controller can be a neural network, a fuzzy controller, a PI controller, Proportional-integral-derivative (PID) controller, integrator, etc.), based on the controller to adjust the current vector angle until the first-order partial derivative signal of the torque with respect to the current vector angle gradually approaches zero.
  • the current vector angle output at this time is the optimal current vector angle ⁇ ref (i.e. the target current vector angle), and the current vector angle at this time corresponds to the best operating point of the motor, and only one filter can be used to ensure The motor runs stably at its best.
  • Step 405 based on the target current vector angle, calculate the d-axis current command and the q-axis current command of the motor;
  • the coordinate conversion calculation is performed to obtain the d-axis current command and the q-axis current command of the motor.
  • Step 406 inputting the d-axis current command and the q-axis current command to the PI controller for decoupling to generate a d-axis voltage command and a q-axis voltage command.
  • PI controller proportional integral controller
  • PI controller is a linear controller, which forms a control deviation based on a given value and an actual output value, and uses a linear combination of the proportion and integral of the deviation to form a control variable to control the controlled object.
  • the PI controller decouples the d-axis current command and the q-axis current command to generate a d-axis voltage command and a q-axis voltage command.
  • Step 407 based on the d-axis voltage command and the q-axis voltage command, generate a voltage pulse signal and output it to the inverter for driving and controlling the motor.
  • the pulse signal after voltage coordinate conversion is obtained and input to the inverter.
  • the inverter converts stable direct current into alternating current with adjustable frequency and voltage, so as to drive the motor in the desired state.
  • the offset of the current vector angle is increased to obtain the corresponding motor torque signal, and the motor torque signal is input to the filter for filtering processing , the motor torque signal is processed through a filter to eliminate the DC component and high-frequency items in the motor torque signal, and the first-order AC component signal of the motor torque signal is obtained, and then the phase-adjusted virtual high-frequency signal is used as a reference
  • the signal is combined with the first-order AC component signal itself and the first-order AC component signal after phase shifting by the phase shifter for data cancellation, and finally the first-order partial derivative signal of the torque to the current vector angle is extracted as the output signal, which can be obtained in a simple
  • the optimal torque-current ratio of the motor is determined, the dynamic response speed is improved, the overshoot and overshoot phenomenon is avoided when the working condition changes suddenly, and the state stability of the motor running at the optimal operating point is ensured.
  • FIG. 5 is a structural diagram of a motor control device provided by an embodiment of the present application. For convenience of description, only parts related to the embodiment of the present application are shown.
  • the motor control device 500 includes:
  • the signal processing module 501 is configured to inject a virtual high-frequency signal into the current vector angle of the motor to obtain a motor torque signal after injecting the virtual high-frequency signal, and input the motor torque signal to a filter for filtering processing , to obtain the first-order AC component signal of the motor torque signal;
  • a phase shifting module 502 configured to input the first-order AC component signal to a phase shifter for phase shifting processing, to obtain a cancellation signal of a phase shift set value;
  • Calculation module 503 for summing the product of the first-order AC component signal and the first reference signal and the product of the cancellation signal and the second reference signal to obtain the first-order partial derivative signal of the torque to the current vector angle as output signal, the first reference signal is obtained by adjusting the phase of the virtual high-frequency signal to be the same as the phase of the torque signal, and the second reference signal is obtained by adjusting the phase of the virtual high-frequency signal Obtained after being in the same phase as the cancellation signal;
  • the control module 504 is configured to determine a target current vector angle of the motor based on the output signal, and perform operation control on the motor based on the target current vector angle.
  • the signal processing module is specifically used for:
  • the motor torque signal from which the DC component has been removed is input into a low-pass filter, and the high-frequency AC component in the motor torque signal is filtered out to obtain a first-order AC component signal of the motor torque signal.
  • the signal processing module is specifically used for:
  • a high-frequency AC component in the motor torque signal from which the DC component has been filtered is discarded to obtain a first-order AC component signal of the motor torque signal.
  • control module is specifically used for:
  • the current phase lead angle corresponding to when the first-order partial derivative signal of the torque with respect to the current vector angle approaches zero is determined as the target current vector angle of the motor.
  • control module is also specifically used for:
  • a voltage pulse signal is generated and output to an inverter for driving and controlling the motor.
  • the signal processing module is also specifically used for:
  • T e is the initial motor torque signal
  • v d is the d-axis voltage of the motor
  • L d is the motor's d-axis inductance
  • v q is the q-axis voltage of the motor
  • I a is the current amplitude
  • is the current vector angle
  • Lq is the q -axis inductance of the motor
  • R is the stator resistance of the motor
  • p is the number of permanent magnet pole pairs of the motor
  • ⁇ m is the mechanical angular velocity of the rotor in the motor;
  • the motor control device provided in the embodiment of the present application can realize the various processes of the above motor control method embodiment, and can achieve the same technical effect, and to avoid repetition, details are not repeated here.
  • FIG. 6 is a structural diagram of a terminal provided by an embodiment of the present application. As shown in this figure, the terminal 6 of this embodiment includes: at least one processor 60 (only one is shown in FIG. A running computer program 62, when the processor 60 executes the computer program 62, implements the steps in any of the above method embodiments.
  • the terminal 6 may be a computing device such as a desktop computer, a notebook, a palmtop computer, or a cloud server.
  • the terminal 6 may include, but not limited to, a processor 60 and a memory 61 .
  • FIG. 6 is only an example of the terminal 6, and does not constitute a limitation on the terminal 6. It may include more or less components than those shown in the figure, or combine some components, or different components, such as
  • the terminal may also include an input and output device, a network access device, a bus, and the like.
  • the processor 60 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory 61 may be an internal storage unit of the terminal 6 , such as a hard disk or memory of the terminal 6 .
  • the memory 61 can also be an external storage device of the terminal 6, such as a plug-in hard disk equipped on the terminal 6, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, Flash card (Flash Card), etc.
  • the memory 61 may also include both an internal storage unit of the terminal 6 and an external storage device.
  • the memory 61 is used to store the computer program and other programs and data required by the terminal.
  • the memory 61 can also be used to temporarily store data that has been output or will be output.
  • the disclosed device/terminal and method may be implemented in other ways.
  • the device/terminal embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated module/unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the methods of the above embodiments in the present application can also be completed by instructing related hardware through computer programs.
  • the computer programs can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps in the above-mentioned various method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal and software distribution medium, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signal telecommunication signal and software distribution medium, etc.
  • This application implements all or part of the processes in the methods of the above-mentioned embodiments, and may also be realized by a computer program product.
  • the steps in the above-mentioned method embodiments can be realized when the terminal is executed. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电机控制方法、装置、终端及存储介质,适用于电机控制技术领域,其中方法包括:向电机的电流矢量角注入虚拟高频信号,得到注入虚拟高频信号后的电机转矩信号,将电机转矩信号输入至滤波器进行滤波处理,得到电机转矩信号的一阶交流分量信号(101);将一阶交流分量信号输入至移相器进行移相处理,得到相位偏移设定值的抵消信号(102);将一阶交流分量信号与第一参考信号的乘积与抵消信号与第二参考信号的乘积求和,得到转矩对电流矢量角的一阶偏导数信号作为输出信号(103);基于输出信号,确定电机的目标电流矢量角,并基于目标电流矢量角对电机进行运转控制(104)。能够确保电机在在最佳状态进行运转的稳定性。

Description

一种电机控制方法、装置、终端及存储介质 技术领域
本申请属于电机控制技术领域,尤其涉及一种电机控制方法、装置、终端及存储介质。
背景技术
电能作为一种绿色能源,在新能源产业日益发达的今天,如何对电机进行优化控制,确保电机能够高效稳定运行是至关重要的一个问题。
在常见的电机优化控制中,一个重要的控制原理是,电机转矩T e对电流矢量角β的一阶偏导数为零(即
Figure PCTCN2021137933-appb-000001
)时,可实现在给定电流幅值时,电机输出的转矩为最大。因此,通常需要对电机转矩T e对电流矢量角β的一阶偏导数进行提取,以控制相关参数使其趋近于零,确保电机处于最佳的动力输出状态。
现有的电机控制方法中,主要是基于虚拟高频信号注入的方式提取转矩对电流矢量角的一阶偏导项信息
Figure PCTCN2021137933-appb-000002
在提取该一阶偏导项信息时,通常需要使用级联的多个滤波器(带通和低通)进行信号处理,导致电机控制系统结构复杂,动态响应速度慢,工况突变时超调过冲严重,不利于电机最佳控制状态的准确稳定估测,难以达到电机的理想运行状态。
发明内容
本申请实施例提供了一种电机控制方法、装置、终端及存储介质,以解决现有技术电机控制系统结构复杂,动态响应速度慢,工况突变时超调过冲严重,不利于电机最佳控制状态的准确稳定估测,难以达到电机的理想运行状态的问题。
本申请实施例的第一方面提供了一种电机控制方法,包括:
向所述电机的电流矢量角注入虚拟高频信号,得到注入所述虚拟高频信号后的电机转矩信号,将所述电机转矩信号输入至滤波器进行滤波处理,得到所述电机转矩信号的一阶交流分量信号;
将所述一阶交流分量信号输入至移相器进行移相处理,得到相位偏移设定值的抵消信号;
将所述一阶交流分量信号与第一参考信号的乘积与所述抵消信号与第二参考信号的乘积求和,得到转矩对电流矢量角的一阶偏导数信号作为输出信号,所述第一参考信号为将所述虚 拟高频信号的相位调整至与所述转矩信号的相位相同后得到,所述第二参考信号为将所述虚拟高频信号的相位调整至与所述抵消信号的相位相同后得到;
基于所述输出信号,确定所述电机的目标电流矢量角,并基于所述目标电流矢量角对所述电机进行运转控制。
本申请实施例的第二方面提供了一种电机控制装置,包括:
信号处理模块,用于向所述电机的电流矢量角注入虚拟高频信号,得到注入所述虚拟高频信号后的电机转矩信号,将所述电机转矩信号输入至滤波器进行滤波处理,得到所述电机转矩信号的一阶交流分量信号;
移相模块,用于将所述一阶交流分量信号输入至移相器进行移相处理,得到相位偏移设定值的抵消信号;
计算模块,用于将所述一阶交流分量信号与第一参考信号的乘积与所述抵消信号与第二参考信号的乘积求和,得到转矩对电流矢量角的一阶偏导数信号作为输出信号,所述第一参考信号为将所述虚拟高频信号的相位调整至与所述转矩信号的相位相同后得到,所述第二参考信号为将所述虚拟高频信号的相位调整至与所述抵消信号的相位相同后得到;
控制模块,用于基于所述输出信号,确定所述电机的目标电流矢量角,并基于所述目标电流矢量角对所述电机进行运转控制。
本申请实施例的第三方面提供了一种终端,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述方法的步骤。
本申请实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤。
本申请的第五方面提供了一种计算机程序产品,当所述计算机程序产品在终端上运行时,使得所述终端执行上述第一方面所述方法的步骤。
由上可见,本申请实施例中,通过向电机的电流矢量角注入虚拟高频信号,增加电流矢量角的偏移量,得到与之对应的电机转矩信号,将电机转矩信号输入至滤波器进行滤波处理,将电机转矩信号通过一次滤波处理,消除掉电机转矩信号中的直流分量及高频项,得到电机转矩信号的一阶交流分量信号,之后将相位调整过的虚拟高频信号作为参考信号,分别结合一阶交流分量信号本身及移相器移相后的该一阶交流分量信号进行数据抵消,最终提取出转矩对电流矢量角的一阶偏导数信号作为输出信号,能够在简单的电机控制系统结构下,确定出电机的最 优转矩电流比,提升动态响应速度,避免工况突变时的超调过冲现象,确保电机在最佳状态运转的稳定性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种电机控制方法的流程图一;
图2是本申请实施例提供的低通滤波器下进行信号处理的数据流向图;
图3是本申请实施例提供的高通滤波器下进行信号处理的数据流向图;
图4是本申请实施例提供的一种电机控制方法的流程图二;
图5是本申请实施例提供的一种电机控制装置的结构图;
图6是本申请实施例提供的一种终端的结构图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为 “当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
具体实现中,本申请实施例中描述的终端包括但不限于诸如具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的移动电话、膝上型计算机或平板计算机之类的其它便携式设备。还应当理解的是,在某些实施例中,所述设备并非便携式通信设备,而是具有触摸敏感表面(例如,触摸屏显示器和/或触摸板)的台式计算机。
在接下来的讨论中,描述了包括显示器和触摸敏感表面的终端。然而,应当理解的是,终端可以包括诸如物理键盘、鼠标和/或控制杆的一个或多个其它物理用户接口设备。
终端支持各种应用程序,例如以下中的一个或多个:绘图应用程序、演示应用程序、文字处理应用程序、网站创建应用程序、盘刻录应用程序、电子表格应用程序、游戏应用程序、电话应用程序、视频会议应用程序、电子邮件应用程序、即时消息收发应用程序、锻炼支持应用程序、照片管理应用程序、数码相机应用程序、数字摄影机应用程序、web浏览应用程序、数字音乐播放器应用程序和/或数字视频播放器应用程序。
可以在终端上执行的各种应用程序可以使用诸如触摸敏感表面的至少一个公共物理用户接口设备。可以在应用程序之间和/或相应应用程序内调整和/或改变触摸敏感表面的一个或多个功能以及终端上显示的相应信息。这样,终端的公共物理架构(例如,触摸敏感表面)可以支持具有对用户而言直观且透明的用户界面的各种应用程序。
应理解,本实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
参见图1,图1是本申请实施例提供的一种电机控制方法的流程图一。如图1所示,一种电机控制方法,该方法包括以下步骤:
步骤101,向电机的电流矢量角注入虚拟高频信号,得到注入虚拟高频信号后的电机转矩信号,将电机转矩信号输入至滤波器进行滤波处理,得到电机转矩信号的一阶交流分量信号。
该虚拟高频信号具体可以是一个小幅高频信号分量;在电流矢量角上叠加虚拟高频信号用于增加电流矢量角的偏移量,起到信号扰动作用。
该电机例如为内嵌式永磁同步电机,或者其他类型的电机。
在向电机的电流矢量角注入虚拟高频信号后,可以基于增加偏移量后的该电流矢量角,得 到注入虚拟高频信号后的电机转矩信号。
其中,该一阶交流分量信号,受影响于滤波器的增益,具体对应一个与电机转矩信号的一阶交流分量正相关的信号值,更具体地,对应一个与电机转矩信号的一阶交流分量成正比的信号值。
具体地,作为一可选的实施方式,其中向电机的电流矢量角注入虚拟高频信号,得到注入虚拟高频信号后的电机转矩信号,包括:
获取电机在电机转子坐标系下的初始电机转矩信号模型:
Figure PCTCN2021137933-appb-000003
其中,T e为初始电机转矩信号;v d为电机的d轴电压;i d为电机的d轴电流,i d=-I asinβ;L d为电机的d轴电感;v q为电机的q轴电压;i q为电机的q轴电流,i q=I acosβ;其中,I a为电流幅值,β为电流矢量角;L q为电机的q轴电感;R为电机的定子电阻;p为电机的永磁体极对数;ω m为电机中转子的机械角速度。
之后,向电流矢量角注入虚拟高频信号,得到注入虚拟高频信号后的d轴电流及q轴电流;其中,Δβ为虚拟高频信号,Δβ=A sin(ω ht),A为虚拟高频信号的幅值,ω h为虚拟高频信号的频率;
Figure PCTCN2021137933-appb-000004
为注入虚拟高频信号后的d轴电流,
Figure PCTCN2021137933-appb-000005
为注入虚拟高频信号后的q轴电流,
Figure PCTCN2021137933-appb-000006
基于注入虚拟高频信号后的d轴电流及q轴电流,得到注入虚拟高频信号后的电机转矩信号:
Figure PCTCN2021137933-appb-000007
其中,该初始电机转矩信号模型公式可以是现有的模型公式,或者是通过现有的电机模型推导得到。该推导过程可以是,先对电机在转子坐标系下的电机模型进行定义,定义如下:
Figure PCTCN2021137933-appb-000008
Figure PCTCN2021137933-appb-000009
Figure PCTCN2021137933-appb-000010
i d=-I asinβ;i q=I acosβ;   (11)
其中,v d为电机d轴定子电压,i d为电机d轴定子电流、v q为电机q轴定子电压、i q为电机q轴定子电流,L d为d轴电感,L q为q轴电感,R为定子电阻,p为电机永磁体极对数,ψ m为 永磁体磁链,I a为电流幅值,β为电流矢量角,ω m为转子的机械角速度。
当电机在稳态运行时,(8)和(9)中的微分项为零,然后将其余项代入(10)中,得到没有注入虚拟高频信号时的电机转矩信号模型:
Figure PCTCN2021137933-appb-000011
向电流矢量角注入虚拟高频信号,得到注入虚拟高频信号后的d轴电流及q轴电流,在实现过程中,具体可以是:
向电机转矩公式(10)注入一个虚拟高频信号,虚拟高频信号表示为:
Δβ=A sin(ω ht);   (13)
其中A为虚拟高频信号的幅值,ω h为虚拟高频信号的频率。这里注入的信号是一个电流矢量角β的偏移量Δβ。附加该信号后,(11)可以表达为:
Figure PCTCN2021137933-appb-000012
即得到注入虚拟高频信号后的d轴电流
Figure PCTCN2021137933-appb-000013
及q轴电流
Figure PCTCN2021137933-appb-000014
因此,即可得到,注入虚拟高频信号后的电机转矩信号可以表示为:
Figure PCTCN2021137933-appb-000015
其中,该虚拟高频信号例如是虚拟高频正弦信号,该电机转矩信号为虚拟电机转矩信号。
进一步地,在得到注入虚拟高频信号后的电机转矩信号后,将电机转矩信号输入至滤波器进行滤波处理,得到电机转矩信号的一阶交流分量信号时,仅需通过设置一次滤波处理即可,不需要设置级联的多个滤波器进行信号处理。
前述滤波器具体为用于滤除直流分量的高通滤波器,或者为用于滤除电机转矩信号中的高频交流分量的低通滤波器。由于为了得到电机转矩信号的一阶交流分量信号,需要将电机转矩信号中包括的直流分量及高频交流分量均滤除掉。因此在通过滤波器对信号进行滤波处理,得到电机转矩信号的一阶交流分量信号过程中,可同时在滤波器的滤波处理之前或之后借助于的信号辅助处理来实现。
对应地,作为一可选的实施方式,该将电机转矩信号输入至滤波器进行滤波处理,得到电机转矩信号的一阶交流分量信号,包括:
将电机转矩信号与未注入虚拟高频信号的初始电机转矩信号相减,得到去除直流分量的电机转矩信号;将去除直流分量的电机转矩信号输入至低通滤波器中,滤除电机转矩信号中的高频交流分量,得到电机转矩信号的一阶交流分量信号。
该低通滤波器具体可以采用一阶低通滤波器,仅使用一阶滤波器即可实现信号处理,避免传统方案使用高阶带通滤波器。
在具体实现过程中,根据泰勒级数展开,将注入虚拟高频信号后的电机转矩信号方程(15)左侧部分展开后表达如下:
Figure PCTCN2021137933-appb-000016
在对公式方程(16)中一阶偏导数项进行提取以得到一阶偏导数信号时,结合图2所示,将注入虚拟高频信号后的电机转矩信号
Figure PCTCN2021137933-appb-000017
减去计算得到的不考虑注入信号时的转矩信号,即由初始电机转矩信号模型公式(12)计算出的T e(β),由此使信号之间发生抵消,使
Figure PCTCN2021137933-appb-000018
中的T e(β)项消除掉,即去除已注入虚拟高频信号的电机转矩信号中的直流分量。然后将相减后的信号输入至低通滤波器中,设置该低通滤波器的截止频率ω与注入的虚拟高频信号的频率ω h一致,滤除高频交流分量,即交流分量中的高频项。
此时图2中低通滤波器输出的信号(即注入虚拟高频信号后的电机转矩信号中的一阶交流分量信号)可以表示如下:
Figure PCTCN2021137933-appb-000019
其中K L为低通滤波器的增益,
Figure PCTCN2021137933-appb-000020
为频率为ω h的信号在通过低通滤波器时产生的相位偏移。
不同地,作为另一可选的实施方式,该将电机转矩信号输入至滤波器进行滤波处理,得到电机转矩信号的一阶交流分量信号,包括:
将电机转矩信号输入至高通滤波器中,得到滤除直流分量的电机转矩信号;将滤除直流分量的电机转矩信号中的高频交流分量舍弃,得到电机转矩信号的一阶交流分量信号。
同样地,在具体实现过程中,根据泰勒级数展开,将注入虚拟高频信号后的电机转矩信号方程(15)左侧部分泰勒展开后表达如下:
Figure PCTCN2021137933-appb-000021
在对公式方程(21)中一阶偏导数项进行提取以得到一阶偏导数信号时,结合图3所示,将注入虚拟高频信号后的电机转矩信号
Figure PCTCN2021137933-appb-000022
输入到高通滤波器中,可设置高通滤波器的截止频率ω与注入虚拟高频信号的频率ω h一致,高通滤波器会滤掉方程(21)中的直流分量,由于 所注入信号的幅值A很小,可以忽略二阶及以上的谐波,实现将滤除直流分量的电机转矩信号中的高频交流分量舍弃,得到电机转矩信号的一阶交流分量信号,此时图3中高通滤波器输出的信号可以表示如下:
Figure PCTCN2021137933-appb-000023
其中K h为高通滤波器的增益,
Figure PCTCN2021137933-appb-000024
为频率为ω h的信号在通过高通滤波器时产生的相位延迟,也即相位偏移。
其中,该高通滤波器具体可以采用一阶高通滤波器。同样地,该过程仅使用一阶滤波器即可实现信号处理,避免传统方案使用高阶带通滤波器。
步骤102,将一阶交流分量信号输入至移相器进行移相处理,得到相位偏移设定值的抵消信号。
其中,相位偏移的设定值具体为使正弦波形移相后转变为余弦波形的数值,例如为右移
Figure PCTCN2021137933-appb-000025
即相位
Figure PCTCN2021137933-appb-000026
或者左移
Figure PCTCN2021137933-appb-000027
即相位
Figure PCTCN2021137933-appb-000028
以能够得到抵消信号。该抵消信号具体为与一阶交流分量信号这一信号幅值相同但相位相反的信号,以实现与一阶交流分量信号之间在后续运算中进行信号抵消。
在具体实施过程中可以是:
将注入虚拟高频信号后的电机转矩信号的一阶交流分量信号输入到一个一阶全通移相器中,该全通移相器p(s)的传递函数表示如下:
Figure PCTCN2021137933-appb-000029
其中p(s)中的移相工作频率ω设置为与注入的虚拟高频信号的频率ω h相等,此时该相移器增益恒为1,即不改变信号的幅值,但会将使输入的信号产生一个π/2的相位偏移,输出抵消信号。
当输入的信号为
Figure PCTCN2021137933-appb-000030
时,则输出抵消信号
Figure PCTCN2021137933-appb-000031
表示如下:
Figure PCTCN2021137933-appb-000032
当输入的信号为
Figure PCTCN2021137933-appb-000033
时,则输出抵消信号
Figure PCTCN2021137933-appb-000034
表示如下:
Figure PCTCN2021137933-appb-000035
步骤103,将一阶交流分量信号与第一参考信号的乘积与抵消信号与第二参考信号的乘积求和,得到转矩对电流矢量角的一阶偏导数信号作为输出信号。
该第一参考信号具体用于作为注入虚拟高频信号后的电机转矩信号的一阶交流分量信号的参考信号,第二参考信号则用于作为抵消信号的参考信号。
其中,第一参考信号为将虚拟高频信号的相位调整至与转矩信号的相位相同后得到;第二参考信号为将虚拟高频信号的相位调整至与抵消信号的相位相同后得到,以使进行乘积运算及最后的求和运算时能够进行表达项之间的抵消运算。
其中,该转矩对电流矢量角的一阶偏导数信号,具体对应一个与转矩对电流矢量角的一阶偏导数正相关的信号值,更具体地,对应一个与转矩对电流矢量角的一阶偏导数成正比的信号值。
在具体应用过程中,分别将注入的虚拟高频信号具有相同相位滞后的表达项(即第一参考信号的)
Figure PCTCN2021137933-appb-000036
与电机转矩信号的一阶交流分量信号相乘,将注入的虚拟高频信号的相位滞后信号(即第二参考信号)
Figure PCTCN2021137933-appb-000037
与抵消信号相乘,再将结果相加得到转矩对电流矢量角的一阶偏导数信号。
具体地,当电机转矩信号的一阶交流分量信号为
Figure PCTCN2021137933-appb-000038
抵消信号为
Figure PCTCN2021137933-appb-000039
时,数据相乘再相加之后可得:
Figure PCTCN2021137933-appb-000040
Figure PCTCN2021137933-appb-000041
该Out LFP即为转矩对电流矢量角的一阶偏导数信号。
当电机转矩信号的一阶交流分量信号为
Figure PCTCN2021137933-appb-000042
抵消信号为
Figure PCTCN2021137933-appb-000043
时,数据相乘再相加之后可得:
Figure PCTCN2021137933-appb-000044
该Out LFP即为转矩对电流矢量角的一阶偏导数信号。
因此,上述提取转矩对电流矢量角的一阶偏导数信号的过程仅使用一个滤波器即可,避免多个滤波器级联的结构出现。
步骤104,基于输出信号,确定电机的目标电流矢量角,并基于目标电流矢量角对电机进行运转控制。
基于输出信号,能够获取到计算出的电机转矩对电流矢量角的一阶偏导数信号,此时,利用电机在转矩T e对电流矢量角β的一阶偏导数为零(即
Figure PCTCN2021137933-appb-000045
)时电机输出转矩最大的特点,确定出电流矢量角β的目标值,通过该目标值对电机实施运转控制,实现在给定电流幅值时,电机输出的转矩为最大。
该过程,本质是通过电机模型公式推导,使用一个滤波器计算出
Figure PCTCN2021137933-appb-000046
信号(转矩对电流矢量角的一阶偏导数),使其为0,使电机工作在最佳状态,实现在给定电流幅值时,电机输出的转矩为最大。
该过程,针对现有电机控制方法所存在的问题,提出了基于快速正弦虚拟信号注入的电机控制方法,实现对电机节能控制,改善现有方案所存在的结构复杂、响应速度慢、工况突变超调过冲严重的问题,具有结构设计简单、响应速度快、超调过冲小等优点。
上述方法通过分析现有基于虚拟高频扰动注入的电机控制方法,仅使用一个滤波器即能够获取得到
Figure PCTCN2021137933-appb-000047
信号,并通过调节系统控制器使得该偏导项收敛于零,进而实现对电机最佳状态运行点的准确估测。该方案相较于现有基于带通滤波器和低通滤波器的电机控制方式,可以有效提升估测的速度,并减少计算量和复杂程度,能够在多变的工况下稳定地估测最佳状态运行点。
本申请实施例中,通过向电机的电流矢量角注入虚拟高频信号,增加电流矢量角的偏移量,得到与之对应的电机转矩信号,将电机转矩信号输入至滤波器进行滤波处理,将电机转矩信号通过一次滤波处理,消除掉电机转矩信号中的直流分量及高频项,得到电机转矩信号的一阶交流分量信号,之后将相位调整过的虚拟高频信号作为参考信号,分别结合一阶交流分量信号本身及移相器移相后的该一阶交流分量信号进行数据抵消,最终提取出转矩对电流矢量角的一阶偏导数信号作为输出信号,能够在简单的电机控制系统结构下,确定出电机的最优转矩电流比,提升动态响应速度,避免工况突变时的超调过冲现象,确保电机在最佳状态进行运转的稳定性。
本申请实施例中还提供了电机控制方法的不同实施方式。
参见图4,图4是本申请实施例提供的一种电机控制方法的流程图二。如图2所示,一种电机控制方法,该方法包括以下步骤:
步骤401,向电机的电流矢量角注入虚拟高频信号,得到注入虚拟高频信号后的电机转矩信号,将电机转矩信号输入至滤波器进行滤波处理,得到电机转矩信号的一阶交流分量信号。
该步骤的实现过程与前述实施方式中的步骤101的实现过程相同,此处不再赘述。
步骤402,将一阶交流分量信号输入至移相器进行移相处理,得到相位偏移设定值的抵消信号。
该步骤的实现过程与前述实施方式中的步骤102的实现过程相同,此处不再赘述。
步骤403,将一阶交流分量信号与第一参考信号的乘积与抵消信号与第二参考信号的乘积求和,得到转矩对电流矢量角的一阶偏导数信号作为输出信号。
其中,第一参考信号为将虚拟高频信号的相位调整至与转矩信号的相位相同后得到,第二参考信号为将虚拟高频信号的相位调整至与抵消信号的相位相同后得到。
该步骤的实现过程与前述实施方式中的步骤103的实现过程相同,此处不再赘述。
步骤404,基于该输出信号中,将转矩对电流矢量角的一阶偏导数信号趋近于零时对应的电流相位超前角,确定为电机的目标电流矢量角。
结合图2、图3所示,在确定目标电流矢量角时,具体是将输出信号(Out LFP或者Out HPF)输入至控制器中(控制器可为神经网络、模糊控制器、PI控制器、比例-积分-微分(PID)控制器、积分器等),基于控制器调节电流矢量角,直至转矩对电流矢量角的一阶偏导数信号逐渐趋近于零。当其趋近于零时(即
Figure PCTCN2021137933-appb-000048
),此时输出的电流矢量角就是最优电流矢量角β ref(即目标电流矢量角),此时的电流矢量角也就对应电机的最佳状态运行点,仅使用一个滤波器即可确保电机稳定地运行在最佳状态。
步骤405,基于目标电流矢量角,计算电机的d轴电流命令及q轴电流命令;
基于目标电流矢量角,进行坐标转换计算得到,电机的d轴电流命令及q轴电流命令。
步骤406,将d轴电流命令及q轴电流命令,输入至PI控制器解耦生成d轴电压命令及q轴电压命令。
PI控制器(proportional integral controller)是一种线性控制器,它根据给定值与实际输出值构成控制偏差,将偏差的比例和积分通过线性组合构成控制量,对被控对象进行控制。通过该PI控制器将d轴电流命令及q轴电流命令解耦生成d轴电压命令及q轴电压命令。
步骤407,基于d轴电压命令及q轴电压命令,生成电压脉冲信号输出至用于对电机进行驱动控制的逆变器。
基于d轴电压命令及q轴电压命令,生成电压脉冲信号时,具体需要将d轴电压命令及q轴电压命令经过数据坐标转换,具体为将两相旋转坐标系d-q坐标系转换为三相静止坐标系A-B-C坐标系,得到电压坐标转换后的脉冲信号,输入至逆变器。
逆变器是把稳定的直流电转化为频率电压可调的交流电,从而用想要的状态去驱动电机。
本申请实施例中,通过向电机的电流矢量角注入虚拟高频信号,增加电流矢量角的偏移量,得到与之对应的电机转矩信号,将电机转矩信号输入至滤波器进行滤波处理,将电机转矩信号通过一次滤波处理,消除掉电机转矩信号中的直流分量及高频项,得到电机转矩信号的一阶交流分量信号,之后将相位调整过的虚拟高频信号作为参考信号,分别结合一阶交流分量信号本身及移相器移相后的该一阶交流分量信号进行数据抵消,最终提取出转矩对电流矢量角的一阶偏导数信号作为输出信号,能够在简单的电机控制系统结构下,确定出电机的最优转矩电流比,提升动态响应速度,避免工况突变时的超调过冲现象,确保电机在最佳状态运行点进行运转的状态稳定性。
参见图5,图5是本申请实施例提供的一种电机控制装置的结构图,为了便于说明,仅示出了与本申请实施例相关的部分。
该电机控制装置500包括:
信号处理模块501,用于向所述电机的电流矢量角注入虚拟高频信号,得到注入所述虚拟高频信号后的电机转矩信号,将所述电机转矩信号输入至滤波器进行滤波处理,得到所述电机转矩信号的一阶交流分量信号;
移相模块502,用于将所述一阶交流分量信号输入至移相器进行移相处理,得到相位偏移设定值的抵消信号;
计算模块503,用于将所述一阶交流分量信号与第一参考信号的乘积与所述抵消信号与第二参考信号的乘积求和,得到转矩对电流矢量角的一阶偏导数信号作为输出信号,所述第一参考信号为将所述虚拟高频信号的相位调整至与所述转矩信号的相位相同后得到,所述第二参考信号为将所述虚拟高频信号的相位调整至与所述抵消信号的相位相同后得到;
控制模块504,用于基于所述输出信号,确定所述电机的目标电流矢量角,并基于所述目标电流矢量角对所述电机进行运转控制。
其中,信号处理模块具体用于:
将所述电机转矩信号与未注入所述虚拟高频信号的初始电机转矩信号相减,得到去除直流分量的所述电机转矩信号;
将去除直流分量的所述电机转矩信号输入至低通滤波器中,滤除所述电机转矩信号中的高频交流分量,得到所述电机转矩信号的一阶交流分量信号。
其中,信号处理模块,具体用于:
将所述电机转矩信号输入至高通滤波器中,得到滤除直流分量的所述电机转矩信号;
将滤除直流分量的所述电机转矩信号中的高频交流分量舍弃,得到所述电机转矩信号的一阶交流分量信号。
其中,控制模块,具体用于:
基于所述输出信号中,将所述转矩对电流矢量角的一阶偏导数信号趋近于零时对应的电流相位超前角,确定为所述电机的目标电流矢量角。
其中,控制模块,还具体用于:
基于所述目标电流矢量角,计算所述电机的d轴电流命令及q轴电流命令;
将所述d轴电流命令及所述q轴电流命令,输入至PI控制器解耦生成d轴电压命令及q轴电压命令;
基于所述d轴电压命令及所述q轴电压命令,生成电压脉冲信号输出至用于对所述电机进行驱动控制的逆变器。
其中,信号处理模块,还具体用于:
获取所述电机在电机转子坐标系下的初始电机转矩信号模型:
Figure PCTCN2021137933-appb-000049
其中,T e为所述初始电机转矩信号;v d为所述电机的d轴电压;i d为所述电机的d轴电流,i d=-I asinβ;L d为所述电机的d轴电感;v q为所述电机的q轴电压;i q为所述电机的q轴电流,i q=I acosβ;其中,I a为电流幅值,β为所述电流矢量角;L q为所述电机的q轴电感;R为所述电机的定子电阻;p为所述电机的永磁体极对数;ω m为所述电机中转子的机械角速度;
向所述电流矢量角注入所述虚拟高频信号,得到注入所述虚拟高频信号后的所述d轴电流及所述q轴电流;其中,Δβ为所述虚拟高频信号,Δβ=A sin(ω ht),A为所述虚拟高频信号的幅值,ω h为所述虚拟高频信号的频率;
Figure PCTCN2021137933-appb-000050
为注入所述虚拟高频信号后的所述d轴电流,
Figure PCTCN2021137933-appb-000051
为注入所述虚拟高频信号后的所述q轴电流,
Figure PCTCN2021137933-appb-000052
基于注入所述虚拟高频信号后的所述d轴电流及所述q轴电流,得到注入所述虚拟高频信号后的电机转矩信号
Figure PCTCN2021137933-appb-000053
本申请实施例提供的电机控制装置能够实现上述电机控制方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图6是本申请实施例提供的一种终端的结构图。如该图所示,该实施例的终端6包括:至 少一个处理器60(图6中仅示出一个)、存储器61以及存储在所述存储器61中并可在所述至少一个处理器60上运行的计算机程序62,所述处理器60执行所述计算机程序62时实现上述任意各个方法实施例中的步骤。
所述终端6可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端6可包括,但不仅限于,处理器60、存储器61。本领域技术人员可以理解,图6仅仅是终端6的示例,并不构成对终端6的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端还可以包括输入输出设备、网络接入设备、总线等。
所述处理器60可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器61可以是所述终端6的内部存储单元,例如终端6的硬盘或内存。所述存储器61也可以是所述终端6的外部存储设备,例如所述终端6上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。可选地,所述存储器61还可以既包括所述终端6的内部存储单元也包括外部存储设备。所述存储器61用于存储所述计算机程序以及所述终端所需的其他程序和数据。所述存储器61还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序产品来实现,当计算机程序产品在终端上运行时,使得所述终端执行时实现可实现上述各个方法实施例中的步骤。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种电机控制方法,其特征在于,包括:
    向所述电机的电流矢量角注入虚拟高频信号,得到注入所述虚拟高频信号后的电机转矩信号,将所述电机转矩信号输入至滤波器进行滤波处理,得到所述电机转矩信号的一阶交流分量信号;
    将所述一阶交流分量信号输入至移相器进行移相处理,得到相位偏移设定值的抵消信号;
    将所述一阶交流分量信号与第一参考信号的乘积与所述抵消信号与第二参考信号的乘积求和,得到转矩对电流矢量角的一阶偏导数信号作为输出信号,所述第一参考信号为将所述虚拟高频信号的相位调整至与所述转矩信号的相位相同后得到,所述第二参考信号为将所述虚拟高频信号的相位调整至与所述抵消信号的相位相同后得到;
    基于所述输出信号,确定所述电机的目标电流矢量角,并基于所述目标电流矢量角对所述电机进行运转控制。
  2. 根据权利要求1所述的电机控制方法,其特征在于,所述将所述电机转矩信号输入至滤波器进行滤波处理,得到所述电机转矩信号的一阶交流分量信号,包括:
    将所述电机转矩信号与未注入所述虚拟高频信号的初始电机转矩信号相减,得到去除直流分量的所述电机转矩信号;
    将去除直流分量的所述电机转矩信号输入至低通滤波器中,滤除所述电机转矩信号中的高频交流分量,得到所述电机转矩信号的一阶交流分量信号。
  3. 根据权利要求1所述的电机控制方法,其特征在于,所述将所述电机转矩信号输入至滤波器进行滤波处理,得到所述电机转矩信号的一阶交流分量信号,包括:
    将所述电机转矩信号输入至高通滤波器中,得到滤除直流分量的所述电机转矩信号;
    将滤除直流分量的所述电机转矩信号中的高频交流分量舍弃,得到所述电机转矩信号的一阶交流分量信号。
  4. 根据权利要求1所述的电机控制方法,其特征在于,所述基于所述输出信号,确定所述电机的目标电流矢量角,包括:
    基于所述输出信号中,将所述转矩对电流矢量角的一阶偏导数信号趋近于零时对应的电流相位超前角,确定为所述电机的目标电流矢量角。
  5. 根据权利要求1所述的电机控制方法,其特征在于,所述基于所述目标电流矢量角对 所述电机进行运转控制,包括:
    基于所述目标电流矢量角,计算所述电机的d轴电流命令及q轴电流命令;
    将所述d轴电流命令及所述q轴电流命令,输入至PI控制器解耦生成d轴电压命令及q轴电压命令;
    基于所述d轴电压命令及所述q轴电压命令,生成电压脉冲信号输出至用于对所述电机进行驱动控制的逆变器。
  6. 根据权利要求1所述的电机控制方法,其特征在于,所述向所述电机的电流矢量角注入虚拟高频信号,得到注入所述虚拟高频信号后的电机转矩信号,包括:
    获取所述电机在电机转子坐标系下的初始电机转矩信号模型:
    Figure PCTCN2021137933-appb-100001
    其中,T e为所述初始电机转矩信号;v d为所述电机的d轴电压;i d为所述电机的d轴电流,i d=-I asinβ;L d为所述电机的d轴电感;v q为所述电机的q轴电压;i q为所述电机的q轴电流,i q=I acosβ;其中,I a为电流幅值,β为所述电流矢量角;L q为所述电机的q轴电感;R为所述电机的定子电阻;p为所述电机的永磁体极对数;ω m为所述电机中转子的机械角速度;
    向所述电流矢量角注入所述虚拟高频信号,得到注入所述虚拟高频信号后的所述d轴电流及所述q轴电流;其中,Δβ为所述虚拟高频信号,Δβ=A sin(ω ht),A为所述虚拟高频信号的幅值,ω h为所述虚拟高频信号的频率;
    Figure PCTCN2021137933-appb-100002
    为注入所述虚拟高频信号后的所述d轴电流,
    Figure PCTCN2021137933-appb-100003
    为注入所述虚拟高频信号后的所述q轴电流,
    Figure PCTCN2021137933-appb-100004
    基于注入所述虚拟高频信号后的所述d轴电流及所述q轴电流,得到注入所述虚拟高频信号后的电机转矩信号
    Figure PCTCN2021137933-appb-100005
  7. 一种电机控制装置,其特征在于,包括:
    信号处理模块,用于向所述电机的电流矢量角注入虚拟高频信号,得到注入所述虚拟高频信号后的电机转矩信号,将所述电机转矩信号输入至滤波器进行滤波处理,得到所述电机转矩信号的一阶交流分量信号;
    移相模块,用于将所述一阶交流分量信号输入至移相器进行移相处理,得到相位偏移设定值的抵消信号;
    计算模块,用于将所述一阶交流分量信号与第一参考信号的乘积与所述抵消信号与第二 参考信号的乘积求和,得到转矩对电流矢量角的一阶偏导数信号作为输出信号,所述第一参考信号为将所述虚拟高频信号的相位调整至与所述转矩信号的相位相同后得到,所述第二参考信号为将所述虚拟高频信号的相位调整至与所述抵消信号的相位相同后得到;
    控制模块,用于基于所述输出信号,确定所述电机的目标电流矢量角,并基于所述目标电流矢量角对所述电机进行运转控制。
  8. 根据权利要求7所述的电机控制装置,其特征在于,所述信号处理模块具体用于:
    将所述电机转矩信号与未注入所述虚拟高频信号的初始电机转矩信号相减,得到去除直流分量的所述电机转矩信号;
    将去除直流分量的所述电机转矩信号输入至低通滤波器中,滤除所述电机转矩信号中的高频交流分量,得到所述电机转矩信号的一阶交流分量信号。
  9. 一种终端,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至6任一项所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述方法的步骤。
PCT/CN2021/137933 2021-06-11 2021-12-14 一种电机控制方法、装置、终端及存储介质 WO2022257403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110655134.7 2021-06-11
CN202110655134.7A CN113346814B (zh) 2021-06-11 2021-06-11 一种电机控制方法、装置、终端及存储介质

Publications (1)

Publication Number Publication Date
WO2022257403A1 true WO2022257403A1 (zh) 2022-12-15

Family

ID=77477101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137933 WO2022257403A1 (zh) 2021-06-11 2021-12-14 一种电机控制方法、装置、终端及存储介质

Country Status (2)

Country Link
CN (1) CN113346814B (zh)
WO (1) WO2022257403A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346814B (zh) * 2021-06-11 2022-09-02 中国科学院深圳先进技术研究院 一种电机控制方法、装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150372629A1 (en) * 2014-06-19 2015-12-24 System General Corp. System, method and apparatus of sensor-less field oriented control for permanent magnet motor
CN107800344A (zh) * 2017-10-17 2018-03-13 浙江大学 基于虚拟信号注入的同步电机的最大转矩电流比控制方法
CN109905063A (zh) * 2019-03-26 2019-06-18 西北工业大学 多级式起动/发电机虚拟信号注入的mtpa方法
CN110429889A (zh) * 2019-08-07 2019-11-08 北京航空航天大学 一种幅度可调的方波注入最大转矩电流比电机控制方法
CN113346814A (zh) * 2021-06-11 2021-09-03 中国科学院深圳先进技术研究院 一种电机控制方法、装置、终端及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119872B2 (ja) * 2013-10-28 2017-04-26 株式会社安川電機 モータ制御装置
CN107332486B (zh) * 2017-05-24 2020-03-31 江苏大学 一种计及磁阻转矩的五相永磁电机最大转矩电流比mtpa容错控制方法
CN107046389B (zh) * 2017-05-24 2019-05-31 江苏大学 一种基于cpwm的三相永磁电机最大转矩电流比容错控制方法
CN109921712A (zh) * 2019-02-26 2019-06-21 浙江大学 基于注入高频脉振电压的永磁同步电机双闭环i/f控制方法
CN110336504B (zh) * 2019-06-18 2020-11-27 浙江大学 基于虚拟信号注入和梯度下降法的永磁同步电机控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150372629A1 (en) * 2014-06-19 2015-12-24 System General Corp. System, method and apparatus of sensor-less field oriented control for permanent magnet motor
CN107800344A (zh) * 2017-10-17 2018-03-13 浙江大学 基于虚拟信号注入的同步电机的最大转矩电流比控制方法
CN109905063A (zh) * 2019-03-26 2019-06-18 西北工业大学 多级式起动/发电机虚拟信号注入的mtpa方法
CN110429889A (zh) * 2019-08-07 2019-11-08 北京航空航天大学 一种幅度可调的方波注入最大转矩电流比电机控制方法
CN113346814A (zh) * 2021-06-11 2021-09-03 中国科学院深圳先进技术研究院 一种电机控制方法、装置、终端及存储介质

Also Published As

Publication number Publication date
CN113346814B (zh) 2022-09-02
CN113346814A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
Ren et al. Sensorless PMSM control with sliding mode observer based on sigmoid function
CN103967794A (zh) 一种单转子压缩机的振动补偿方法及控制器
WO2022257403A1 (zh) 一种电机控制方法、装置、终端及存储介质
JP6401495B2 (ja) モータ制御装置
WO2022206027A1 (zh) 电机控制方法、装置及终端设备
WO2022257405A1 (zh) 最大转矩电流比控制方法、装置、终端设备及存储介质
WO2022257402A1 (zh) 一种电机控制方法、装置、终端及存储介质
WO2021109861A1 (zh) 一种电机控制方法、装置、终端设备及存储介质
CN102891615A (zh) 不平衡电压下pwm整流器输出功率稳定的无差拍控制方法
CN104467159B (zh) 确定相角补偿量的方法、装置、逆变器及并联ups系统
Wang et al. A new speed adaptive estimation method based on an improved flux sliding-mode observer for the sensorless control of PMSM drives
WO2023087607A1 (zh) 一种非线性自适应交流伺服电机角位置控制方法及系统
Xu et al. Anti-disturbance position sensorless control of PMSM based on improved sliding mode observer with suppressed chattering and no phase delay
WO2018068395A1 (zh) 无电解电容电机驱动系统及其电流控制方法和控制装置
CN110807168B (zh) 一种估算并网变换器次同步振荡模态的方法及装置
CN110378057B (zh) 一种内置式永磁同步电机抗干扰控制器及其设计方法
KR20090067570A (ko) 위상각 추정 방법 및 시스템
CN113311708B (zh) 跟踪高频噪声幅值增益调节控制策略参数的方法及系统
Fan et al. Research on sensorless control of HSPMSM based on a discrete full-order sliding mode observer
Liu et al. Low-speed sensorless control method of SPMSM for oil pump based on improved pulsating high-frequency voltage injection
Chen et al. Adaptive quasi-proportional resonant control with parameter estimation for PMSM sensorless control
CN111262494A (zh) 永磁同步电机的控制方法、装置、存储介质以及处理器
CN112039374B (zh) 考虑输入饱和的永磁同步电动机命令滤波离散控制方法
CN113312585B (zh) 高阶控制策略参数调节的高频噪声功率增益在线跟踪方法
CN117614020B (zh) 一种软件锁相环的方法、装置以及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE