WO2020215588A1 - 基于功能切换的直流调磁型记忆电机无位置控制方法及系统 - Google Patents

基于功能切换的直流调磁型记忆电机无位置控制方法及系统 Download PDF

Info

Publication number
WO2020215588A1
WO2020215588A1 PCT/CN2019/105176 CN2019105176W WO2020215588A1 WO 2020215588 A1 WO2020215588 A1 WO 2020215588A1 CN 2019105176 W CN2019105176 W CN 2019105176W WO 2020215588 A1 WO2020215588 A1 WO 2020215588A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
winding
value
angular velocity
current
Prior art date
Application number
PCT/CN2019/105176
Other languages
English (en)
French (fr)
Inventor
阳辉
李光旭
林鹤云
吕舒康
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2020215588A1 publication Critical patent/WO2020215588A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors

Definitions

  • the present invention relates to motor control technology, in particular to a DC magnetic modulation memory motor control method and system based on function switching.
  • Permanent Magnet Synchronous Machine has the advantages of high torque density and high efficiency, and is widely used in applications such as electric vehicles, wind power generation, high-speed machine tools, and flywheel energy storage.
  • PMSM Permanent Magnet Synchronous Machine
  • VFMM Variable Flux Memory Machine
  • armature windings or additional magnetization windings uses armature windings or additional magnetization windings to apply instantaneous Adjusting the magnetic current pulse to change the magnetization state of the low-coercivity permanent magnet overcomes the problem that the traditional air gap magnetic field cannot be adjusted.
  • the DC magnetization type memory motor generates magnetomotive force by applying a magnetization current through an additional DC magnetization winding, thereby changing the magnetization state of a low-coercivity permanent magnet, and has the advantages of simple and accurate magnetization. Since the magnetization winding of the DC magnetization memory motor only functions when the magnetization operation is required, and is in a redundant state during most of the running time, the use efficiency of the entire magnetization control system is low.
  • the present invention provides a positionless control method and system for a DC magnetizing memory motor based on function switching, and the magnetizing winding is used for the magnetizing function at the same time And position observation function, realize the position sensorless control.
  • the positionless control method of DC magnetization memory motor based on function switching includes the following steps:
  • Step 1 When the DC magnetization memory motor is running normally, collect the magnetization winding induced voltage u f , and extract the magnetization winding induced potential e f through the electromotive force observer;
  • Step 2 According to the magnetization winding induced electric potential e f , calculate the electric angle observation value through the position/speed observer And electrical angular velocity observations And based on the electrical angle observations And electrical angular velocity observations Carry out vector control on DC magnetic modulation memory motor to realize the position observation function of magnetic modulation winding;
  • Step 3 When it is necessary to adjust the permanent magnet magnetization state of the DC magnetization memory motor, use the magnetization state controller according to the observed value of electrical angular velocity A drive signal is generated to drive the magnetization power converter to generate magnetomotive force in the magnetization winding, and then adjust the magnetization state of the permanent magnet to realize the magnetization function of the magnetization winding.
  • step one the specific method for extracting the induced electric potential e f of the magnetization winding through the electromotive force observer in step one is:
  • step S1.2 Input the calculation result of step S1.1 into a low-pass filter to filter out transient items and higher harmonics to obtain the observed value of the magnetizing winding current
  • the electric angle observation value is calculated by the position/velocity observer in step 2 And electrical angular velocity observations
  • the specific method is:
  • step S2.1 The calculation results e f_ ⁇ and e f_ ⁇ of step S2.1 are calculated according to the formula Calculation error; where Observation of the phase angle of the magnetization winding from the feedback of the previous cycle;
  • step S2.3 Input the error obtained in step S2.2 into the proportional-integral regulator to obtain the electrical angular velocity observation value
  • phase difference of the magnetizing winding in the step S2.5 It is the electrical angle phase difference between the magnetization winding induced electric potential and the armature winding back EMF, which is measured by simulation analysis or offline experiment.
  • step 3 the magnetization state controller is used according to the observed value of electrical angular velocity
  • the specific method of generating the drive signal is:
  • step S3.4 The output signal obtained in step S3.4 is subjected to pulse width modulation to generate a driving signal S f .
  • the present invention also provides a positionless control system for DC magnetization type memory motor based on function switching, including:
  • the electromotive force observer is used to extract the magnetization winding induction potential e f according to the collected magnetization winding induction voltage u f when the DC magnetization memory motor is operating normally;
  • Position/speed observer used to calculate the electric angle observation value according to the induced electric potential of the magnetization winding And electrical angular velocity observations And then according to the electric angle observation value in vector control And electrical angular velocity observations Control the DC magnetization type memory motor to realize the position observation function of the magnetization winding;
  • the magnetization state controller is used to adjust the magnetization state of the permanent magnet of the DC magnetization memory motor according to the observed value of electrical angular velocity Generate drive signal for magnetic modulation power converter;
  • the magnetization power converter is used to generate the magnetomotive force in the magnetization winding according to the drive signal generated by the magnetization state controller, and then adjust the magnetization state of the permanent magnet to realize the magnetization function of the magnetization winding.
  • electromotive force observer specifically includes:
  • the adder is used to combine the magnetization winding induced voltage u f in the current cycle with the observed value of the magnetization winding induced potential calculated from the previous cycle Subtract
  • the divider is used to divide the result of the adder by the magnetizing winding resistance R f ;
  • Low-pass filter used to filter the output signal of the divider, filter out transient items and high-order harmonics, and obtain the observed value of the magnetizing winding current
  • Proportional-integral regulator used to adjust the current observation value of the magnetizing winding Compare with the actual value i f , and perform proportional-integral adjustment on the obtained error to obtain the magnetization winding induced potential e f ;
  • the delayer is used to delay the induced electric potential e f of the magnetization winding output by the proportional-integral regulator and input it to the adder.
  • passing position/speed observer specifically includes:
  • the quadrature signal generator is used to calculate the induced electric potentials e f_ ⁇ and e f_ ⁇ of the magnetic tuning windings in the stationary coordinate system according to the induced electric potential e f of the magnetic tuning windings;
  • Error calculator used to calculate the quadrature signal generator e f_ ⁇ and e f_ ⁇ according to the formula Calculation error; where Observation of the phase angle of the magnetization winding from the feedback of the previous cycle;
  • Proportional-integral regulator used for proportional-integral adjustment of the error obtained by the error calculator to obtain the observed value of electrical angular velocity
  • Integrator used to measure electrical angular velocity Obtain the observation value of the phase angle of the magnetizing winding through integration And feedback to participate in the next cycle calculation;
  • phase difference of the magnetizing winding It is the electrical angle phase difference between the magnetization winding induced electric potential and the armature winding back EMF, which is measured by simulation analysis or offline experiment.
  • the magnetization state controller specifically includes:
  • Magnetization state selection unit used to observe the value of electrical angular velocity Obtain the given value of magnetization state
  • Magnetizing current selection unit used to set a value according to the magnetization state Obtain the set value of magnetization current
  • Proportional-integral regulator used to perform proportional-integral adjustment on the output result of the adder
  • a pulse width modulation (PWM) device is used to generate a drive signal S f by applying pulse width modulation to the output signal of the proportional-integral regulator.
  • the magnetization winding is used for both the magnetization function and the position observation function, which improves the use efficiency of the magnetization winding.
  • the method of the present invention does not require a position sensor, which is beneficial to reduce system cost and improve system reliability.
  • the method of the present invention does not require interference signal injection, which is beneficial to the stability of memory motor speed regulation.
  • the magnetization winding used in the position observation method of the present invention is in an open circuit state during the normal operation of the motor, and is not easily affected by interference and noise, which is beneficial to improve the accuracy of position observation.
  • Figure 1 is a diagram of the control principle of the present invention. wherein the DC magnetic modulation memory motor is the control object, and the armature winding and the magnetic modulation winding are both internal windings of the motor;
  • Figure 2 is a flow chart of the specific method of step one of the present invention. where LPF is a low-pass filter and PI is a proportional-integral regulator;
  • FIG. 3 is a flow chart of the specific method of step 2 of the present invention.
  • Fig. 4 is a flow chart of the specific method of the magnetization state controller in step 3 of the present invention.
  • This embodiment provides a positionless control method for a DC magnetization memory motor based on function switching.
  • the control principle is shown in Fig. 1.
  • the DC magnetization memory motor is the control object and includes an armature winding and a magnetization winding;
  • the three-phase inverter is driven by space vector modulation technology (SVPWM).
  • SVPWM space vector modulation technology
  • the current of the output armature winding is sampled and AD conversion is used as the current feedback.
  • the current inner loop uses a PI regulator to adjust the magnitude and speed of the given voltage.
  • the outer loop uses a PI regulator to generate a given current, and the speed feedback is obtained by the position observation function of the magnetization winding; according to the principle of function switching, the magnetization winding is used for both the magnetization function and the position observation function, during the operation of the motor Collect the voltage of the magnetization winding, obtain the induction potential of the magnetization winding through the electromotive force observer proposed by the present invention, and then use the position/speed observer proposed by the present invention to obtain the observation values of electrical angle and electrical angular velocity, which are used for closed-loop control of the motor.
  • the speed value is input into the magnetization state controller, used to determine whether there is a need for magnetization, a switch signal is generated when magnetization is needed, and the magnetization power converter is driven to generate a magnetization current to adjust the magnetization state, thereby realizing the function of magnetization winding Switch. Specifically include the following steps:
  • Step 1 When the DC magnetization memory motor is operating normally, collect the magnetization winding induced voltage u f , and extract the magnetization winding induced potential e f through the electromotive force observer.
  • DC magnetization type memory motor refers to a type of memory motor that uses additional magnetization windings to adjust the magnetization state of permanent magnets.
  • the magnetization windings are installed inside the DC magnetization type memory motor; the voltage equation of the magnetization winding is
  • u f , i f , i d and e f are the magnetizing winding induced voltage, the magnetizing winding current, the d-axis current and the magnetizing winding induced potential respectively, and R f , L f and M sf are the magnetizing winding resistance, Self-inductance of the magnetizing winding and mutual inductance of the magnetizing winding to the stator;
  • an electromotive force observer as shown in Figure 2 can be designed.
  • the input variable is the induced voltage u f of the magnetic tuning winding
  • the output variable is the induced potential e f of the magnetic tuning winding.
  • LPF is a low-pass filter
  • PI is a proportional-integral regulator
  • R f is the resistance of the magnetic tuning winding, Measured through offline experiments
  • the specific method for extracting the induced electric potential e f of the magnetization winding through the electromotive force observer is:
  • step S1.2 Input the calculation result of step S1.1 into a low-pass filter to filter out transient items and higher harmonics to obtain the observed value of the magnetizing winding current
  • Step 2 According to the magnetization winding induced electric potential e f , calculate the electric angle observation value through the position/speed observer And electrical angular velocity observations And based on the electrical angle observations And electrical angular velocity observations Carry out vector control on DC magnetic modulation memory motor to realize the position observation function of magnetic modulation winding.
  • the induced electric potential of the magnetic modulation winding is passed through a quadrature signal generator to generate two orthogonal signals e f_ ⁇ and e f_ ⁇ , the expression is
  • E f and ⁇ f are the amplitude and phase angle of the induced electric potential of the magnetization winding.
  • the two sets of orthogonal signals in formula (3) are transformed as follows
  • equation (4) can be equivalently transformed as follows
  • the equivalent phase angle observation error based on the idea of phase-locked loop, the error can be obtained through the proportional-integral (PI) regulator to obtain the electrical angular velocity observation value That is, the frequency signal, and then through the integration link, the aforementioned phase angle observation value can be obtained
  • PI proportional-integral
  • This value participates in the calculation of equations (4) and (5) through the feedback path to form a phase feedback loop to achieve the purpose of phase angle extraction.
  • the observed value of the induced potential phase angle Electrical angle with the final motor There is a phase difference This value can be determined by simulation analysis or experiment.
  • step S2.1 The calculation results e f_ ⁇ and e f_ ⁇ of step S2.1 are calculated according to the formula Calculation error; where Observation of the phase angle of the magnetization winding from the feedback of the previous cycle;
  • step S2.3 Input the error obtained in step S2.2 into the proportional-integral regulator to obtain the electrical angular velocity observation value
  • the vector control of the DC magnetizing memory motor is shown in Figure 1.
  • the speed outer loop is controlled by a proportional-integral regulator, and the speed feedback Obtained from step 2, the error obtained by comparing with the given value is input to the proportional-integral regulator to produce the given value of q-axis current
  • the d-axis current adopts Control strategy;
  • the current inner loop uses two proportional-integral regulators to control in two rotating coordinate systems, collects and memorizes the stator three-phase current of the motor armature winding, and obtains the stator three-phase current through sampling and A/D conversion.
  • Step 3 When it is necessary to adjust the permanent magnet magnetization state of the DC magnetization memory motor, use the magnetization state controller according to the observed value of electrical angular velocity A drive signal is generated to drive the magnetization power converter to generate magnetomotive force, and then adjust the magnetization state of the permanent magnet to realize the magnetization function of the magnetization winding.
  • the magnetization state controller is used according to the observed value of electrical angular velocity
  • the specific steps for generating a driving signal include:
  • step S3.4 The output signal obtained in step S3.4 is subjected to pulse width modulation (PWM) to generate a switching signal S f .
  • PWM pulse width modulation
  • This embodiment also provides a positionless control system for DC magnetization memory motor based on function switching, including:
  • the electromotive force observer is used to extract the magnetization winding induction potential e f according to the collected magnetization winding induction voltage u f when the DC magnetization memory motor is operating normally;
  • Position/speed observer used to calculate the electric angle observation value according to the induced electric potential of the magnetization winding And electrical angular velocity observations And then according to the electric angle observation value in vector control And electrical angular velocity observations Control the DC magnetization type memory motor to realize the position observation function of the magnetization winding;
  • the magnetization state controller is used to adjust the magnetization state of the permanent magnet of the DC magnetization memory motor according to the observed value of electrical angular velocity Generate drive signal for magnetic modulation power converter;
  • the magnetization power converter is used to generate the magnetomotive force in the magnetization winding according to the drive signal generated by the magnetization state controller, and then adjust the magnetization state of the permanent magnet to realize the magnetization function of the magnetization winding.
  • the electromotive force observer specifically includes:
  • the adder is used to combine the magnetization winding induced voltage u f in the current cycle with the observed value of the magnetization winding induced potential calculated from the previous cycle Subtract
  • the divider is used to divide the result of the adder by the magnetizing winding resistance R f ;
  • Low-pass filter used to filter the output signal of the divider, filter out transient items and high-order harmonics, and obtain the observed value of the magnetizing winding current
  • Proportional-integral regulator used to adjust the current observation value of the magnetizing winding Compare with the actual value i f , and perform proportional-integral adjustment on the obtained error to obtain the magnetization winding induced potential e f ;
  • the delayer is used to delay the induced electric potential e f of the magnetization winding output by the proportional-integral regulator and input it to the adder.
  • the passing position/speed observer specifically includes:
  • the quadrature signal generator is used to calculate the induced electric potentials e f_ ⁇ and e f_ ⁇ of the magnetic tuning windings in the stationary coordinate system according to the induced electric potential e f of the magnetic tuning windings;
  • Error calculator used to calculate the quadrature signal generator e f_ ⁇ and e f_ ⁇ according to the formula Calculation error; where Observation of the phase angle of the magnetization winding from the feedback of the previous cycle;
  • Proportional-integral regulator used for proportional-integral adjustment of the error obtained by the error calculator to obtain the observed value of electrical angular velocity
  • Integrator used to measure electrical angular velocity Obtain the observation value of the phase angle of the magnetizing winding through integration And feedback to participate in the next cycle calculation;
  • phase difference of the magnetizing winding It is the electrical angle phase difference between the magnetization winding induced electric potential and the armature winding back EMF, which is measured by simulation analysis or offline experiment.
  • the magnetization state controller specifically includes:
  • Magnetization state selection unit used to observe the value of electrical angular velocity Obtain the given value of magnetization state
  • Magnetizing current selection unit used to set a value according to the magnetization state Obtain the set value of magnetization current
  • Proportional-integral regulator used to perform proportional-integral adjustment on the output result of the adder
  • a pulse width modulation (PWM) device is used to generate a drive signal S f by applying pulse width modulation to the output signal of the proportional-integral regulator.
  • This embodiment has a one-to-one correspondence with the above method.
  • the disclosed method can be implemented in other ways.
  • the division of modules and units is only a logical function division.
  • there may be other division methods for example, multiple units or components can be combined or integrated into another system, or some features can be ignored. Or not.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种基于功能切换的直流调磁型记忆电机无位置控制方法及系统,其中方法包括:步骤一:在直流调磁型记忆电机正常运行时,采集调磁绕组感应电压uf,通过电动势观测器提取调磁绕组感应电势ef;步骤二:根据调磁绕组感应电势ef,通过位置/速度观测器计算得到电角度观测值(a)和电角速度观测值(b),并根据电角度观测值(a)和电角速度观测值(b)对直流调磁型记忆电机进行矢量控制,实现调磁绕组的位置观测功能;步骤三:在需要调节直流调磁型记忆电机的永磁体磁化状态时,采用磁化状态控制器根据电角速度观测值(b)产生驱动信号,驱动调磁绕组产生调磁磁动势,进而调节永磁体磁化状态,实现调磁绕组的调磁功能。上述方案可以提高调磁绕组的使用效率。

Description

基于功能切换的直流调磁型记忆电机无位置控制方法及系统 技术领域
本发明涉及电机控制技术,尤其涉及一种基于功能切换的直流调磁型记忆电机控制方法及系统。
背景技术
永磁同步电机(Permanent Magnet Synchronous Machine,PMSM)具有高转矩密度和高效率的优点,被广泛应用于电动汽车、风力发电、高速机床及飞轮储能等应用领域。然而,使用稀土永磁体也导致了电机的气隙磁密难以调节,因而限制了电机的恒功率调速性能。可变磁通记忆电机(Variable Flux Memory Machine,VFMM)是一种通过改变永磁体磁化水平来实现拓宽调速范围的永磁电机,该类电机通过电枢绕组或者附加的调磁绕组施加瞬时的调磁电流脉冲来改变低矫顽力永磁体的磁化状态,克服了传统气隙磁场无法调节的问题。
直流调磁型记忆电机通过附加的直流调磁绕组施加调磁电流产生磁动势,从而改变低矫顽力永磁体的磁化状态,具有调磁简单、准确的优点。由于直流调磁型记忆电机的调磁绕组仅仅在需要调磁操作时发挥作用,而在绝大多数的运行时间里处于冗余状态,使得整个调磁控制系统使用效率较低。
发明内容
发明目的:本发明针对现有技术中调磁绕组使用效率较低的问题,提供一种基于功能切换的直流调磁型记忆电机无位置控制方法及系统,将调磁绕组同时用于调磁功能和位置观测功能,实现无位置传感器控制。
技术方案:本发明所述的基于功能切换的直流调磁型记忆电机无位置控制方法包括以下步骤:
步骤一:在直流调磁型记忆电机正常运行时,采集调磁绕组感应电压u f,通过电动势观测器提取调磁绕组感应电势e f
步骤二:根据调磁绕组感应电势e f,通过位置/速度观测器计算得到电角度观测值
Figure PCTCN2019105176-appb-000001
和电角速度观测值
Figure PCTCN2019105176-appb-000002
并根据电角度观测值
Figure PCTCN2019105176-appb-000003
和电角速度观测值
Figure PCTCN2019105176-appb-000004
对直流调磁型记忆电机进行矢量控制,实现调磁绕组的位置观测功能;
步骤三:在需要调节直流调磁型记忆电机的永磁体磁化状态时,采用磁化状态控制 器根据电角速度观测值
Figure PCTCN2019105176-appb-000005
产生驱动信号,驱动调磁功率变换器在调磁绕组中产生调磁磁动势,进而调节永磁体磁化状态,实现调磁绕组的调磁功能。
进一步的,步骤一中所述通过电动势观测器提取调磁绕组感应电势e f的具体方法为:
S1.1、将当前周期的调磁绕组感应电压u f与上一周期计算得到的调磁绕组感应电势观测值
Figure PCTCN2019105176-appb-000006
相减后除以调磁绕组电阻R f
S1.2、将步骤S1.1的计算结果输入低通滤波器,滤除瞬态项与高次谐波,得到调磁绕组电流观测值
Figure PCTCN2019105176-appb-000007
S1.3、将调磁绕组电流观测值
Figure PCTCN2019105176-appb-000008
与实际值i f比较,并将得到的误差输入比例-积分调节器,得到调磁绕组感应电势e f
进一步的,步骤二中所述通过位置/速度观测器计算得到电角度观测值
Figure PCTCN2019105176-appb-000009
和电角速度观测值
Figure PCTCN2019105176-appb-000010
的具体方法为:
S2.1、将调磁绕组感应电势e f输入正交信号发生器,得到静止坐标系上的调磁绕组感应电势e f_α和e f_β
S2.2、将步骤S2.1的计算结果e f_α和e f_β按照公式
Figure PCTCN2019105176-appb-000011
计算误差;式中
Figure PCTCN2019105176-appb-000012
来自于上一周期反馈的调磁绕组相角观测值;
S2.3、将步骤S2.2所得误差输入比例-积分调节器,得到电角速度观测值
Figure PCTCN2019105176-appb-000013
S2.4、将电角速度观测值
Figure PCTCN2019105176-appb-000014
通过积分,得到调磁绕组相角观测值
Figure PCTCN2019105176-appb-000015
并反馈参与下一周期计算;
S2.5、将调磁绕组相角观测值
Figure PCTCN2019105176-appb-000016
减去调磁绕组相位差
Figure PCTCN2019105176-appb-000017
得到电角度观测值
Figure PCTCN2019105176-appb-000018
进一步的,所述步骤S2.5中的调磁绕组相位差
Figure PCTCN2019105176-appb-000019
为调磁绕组感应电势与电枢绕组反电势的电角度相位差,具体通过仿真分析或离线实验测得。
进一步的,步骤三中所述采用磁化状态控制器根据电角速度观测值
Figure PCTCN2019105176-appb-000020
产生驱动信号的具体方法为:
S3.1、将电角速度观测值
Figure PCTCN2019105176-appb-000021
输入到磁化状态选择单元,获得磁化状态给定值
Figure PCTCN2019105176-appb-000022
S3.2、根据磁化状态给定值
Figure PCTCN2019105176-appb-000023
在调磁电流选择单元中获得调磁电流给定值
Figure PCTCN2019105176-appb-000024
S3.3、采集调磁绕组电流i f并与给定值
Figure PCTCN2019105176-appb-000025
比较,将误差输入比例--积分调节器;
S3.4、将步骤S3.4得到的输出信号经过脉宽调制的方式产生驱动信号S f
本发明还提供了一种基于功能切换的直流调磁型记忆电机无位置控制系统,包括:
电动势观测器,用于在直流调磁型记忆电机正常运行时,根据采集的调磁绕组感应电压u f提取调磁绕组感应电势e f
位置/速度观测器,用于根据调磁绕组感应电势计算得到电角度观测值
Figure PCTCN2019105176-appb-000026
和电角速度观测值
Figure PCTCN2019105176-appb-000027
进而在矢量控制时根据电角度观测值
Figure PCTCN2019105176-appb-000028
和电角速度观测值
Figure PCTCN2019105176-appb-000029
对直流调磁型记忆电机进行控制,实现调磁绕组的位置观测功能;
磁化状态控制器,用于在需要调节直流调磁型记忆电机的永磁体磁化状态时,根据电角速度观测值
Figure PCTCN2019105176-appb-000030
产生调磁功率变换器驱动信号;
调磁功率变换器,用于根据磁化状态控制器产生的驱动信号在调磁绕组中产生调磁磁动势,进而调节永磁体磁化状态,实现调磁绕组的调磁功能。
进一步的,所述电动势观测器具体包括:
加法器,用于将当前周期的调磁绕组感应电压u f与上一周期计算得到的调磁绕组感应电势观测值
Figure PCTCN2019105176-appb-000031
相减;
除法器,用于将加法器的结果除以调磁绕组电阻R f
低通滤波器,用于对除法器输出信号进行过滤,滤除瞬态项与高次谐波,得到调磁绕组电流观测值
Figure PCTCN2019105176-appb-000032
比例-积分调节器,用于将调磁绕组电流观测值
Figure PCTCN2019105176-appb-000033
与实际值i f比较,并将得到的误差进行比例-积分调节,得到调磁绕组感应电势e f
延时器,用于将比例-积分调节器输出的调磁绕组感应电势e f延时后输入到加法器。
进一步的,所述通过位置/速度观测器具体包括:
正交信号发生器,用于根据调磁绕组感应电势e f计算得到静止坐标系上的调磁绕组感应电势e f_α和e f_β
误差计算器,用于将正交信号发生器的计算结果e f_α和e f_β按照公式
Figure PCTCN2019105176-appb-000034
计算误差;式中
Figure PCTCN2019105176-appb-000035
来自于上一周期反馈的调磁绕组相角观测值;
比例-积分调节器,用于将误差计算器所得误差进行比例-积分调节,得到电角速度观测值
Figure PCTCN2019105176-appb-000036
积分器,用于将电角速度观测值
Figure PCTCN2019105176-appb-000037
通过积分得到调磁绕组相角观测值
Figure PCTCN2019105176-appb-000038
并反馈参与下一周期计算;
加法器,用于将调磁绕组相角观测值
Figure PCTCN2019105176-appb-000039
减去调磁绕组相位差
Figure PCTCN2019105176-appb-000040
得到电角度观测值
Figure PCTCN2019105176-appb-000041
进一步的,所述调磁绕组相位差
Figure PCTCN2019105176-appb-000042
为调磁绕组感应电势与电枢绕组反电势的电角度相位差,具体通过仿真分析或离线实验测得。
进一步的,所述磁化状态控制器具体包括:
磁化状态选择单元,用于根据电角速度观测值
Figure PCTCN2019105176-appb-000043
获得磁化状态给定值
Figure PCTCN2019105176-appb-000044
调磁电流选择单元,用于根据磁化状态给定值
Figure PCTCN2019105176-appb-000045
获得调磁电流给定值
Figure PCTCN2019105176-appb-000046
加法器,用于获取采集的调磁绕组电流i f与给定值
Figure PCTCN2019105176-appb-000047
的误差;
比例--积分调节器,用于将加法器输出结果进行比例--积分调节;
脉宽调制(PWM)器,用于将比例--积分调节器的输出信号经过脉宽调制的方式产生驱动信号S f
有益效果:本发明与现有技术相比,其显著优点是:
1、基于功能切换的原理,将调磁绕组同时用于调磁功能和位置观测功能,提高了调磁绕组的使用效率。
2、相比于传统的记忆电机驱动系统,本发明方法无需位置传感器,有利于降低系统成本,提高系统的可靠性。
3、相比于现有的无位置传感器控制方法,本发明方法无需干扰信号注入,有利于记忆电机调速的稳定性。
4、本发明所述的位置观测方法所使用的调磁绕组在电机正常运行期间处于开路状态,不易受到干扰和噪声的影响,有利于提高位置观测的准确性。
附图说明
图1为本发明的控制原理图;其中直流调磁型记忆电机为控制对象,电枢绕组和调磁绕组均为电机内部绕组;
图2为本发明步骤一的具体方法流程图;其中LPF为低通滤波器,PI为比例-积分调节器;
图3为本发明步骤二的具体方法流程图;
图4为本发明步骤三中磁化状态控制器的具体方法流程图。
具体实施方式
本实施例提供了一种基于功能切换的直流调磁型记忆电机无位置控制方法,控制原理如图1所示,直流调磁型记忆电机为控制对象,包含电枢绕组和调磁绕组;其中三相逆变器采用空间矢量调制技术(SVPWM)驱动,其输出电枢绕组的电流经过采样和AD转换等环节作为电流反馈量,电流内环采用PI调节器用以调节给定电压的大小,速度外环采用PI调节器产生给定电流的大小,速度反馈由调磁绕组的位置观测功能获得;根据功能切换的原理,调磁绕组同时用于调磁功能和位置观测功能,在电机运行过程中采集调磁绕组电压,通过本发明提出的电动势观测器获得调磁绕组感应电势,再利用本发明提出的位置/速度观测器得到电角度和电角速度的观测值,用于电机的闭环控制,同时,该速度值被输入磁化状态控制器,用于判断是否有调磁需求,在需要调磁时产生开关信号,驱动调磁功率变换器产生调磁电流调节磁化状态,从而实现调磁绕组的功能切换。具体包括以下步骤:
步骤一:在直流调磁型记忆电机正常运行时,采集调磁绕组感应电压u f,通过电动势观测器提取调磁绕组感应电势e f
其中,直流调磁型记忆电机指利用附加调磁绕组来调节永磁体磁化状态的一类记忆电机,调磁绕组安装于直流调磁型记忆电机内部;调磁绕组的电压方程为
Figure PCTCN2019105176-appb-000048
其中u f、i f、i d和e f分别为调磁绕组感应电压、调磁绕组电流、d轴电流和调磁绕组感应电势,R f、L f和M sf分别为调磁绕组电阻、调磁绕组自感和调磁绕组对定子的互感;
由于记忆电机矢量控制中采用i d=0控制策略,所以,公式(1)等号右边第三项可忽略并改写为
Figure PCTCN2019105176-appb-000049
其中τ为时间常数,t为时间,式中瞬态项可利用低通滤波器(LPF)将其滤除;根据公式(2)计算得到的观测值
Figure PCTCN2019105176-appb-000050
与实际值i f误差为0时,由于PI调节器的作用,调磁绕组感应电势观测值
Figure PCTCN2019105176-appb-000051
也会跟随其实际值,由此实现闭环结构的电动势观测器。
因此,可设计如图2所示的电动势观测器。其输入变量为调磁绕组感应电压u f,输出变量为调磁绕组感应电势e f,图中LPF为低通滤波器,PI为比例-积分调节器;图中R f为调磁绕组电阻,通过离线实验测得;通过电动势观测器提取调磁绕组感应电势e f的具体方法为:
S1.1、将当前周期的调磁绕组感应电压u f与上一周期计算得到的调磁绕组感应电势观测值
Figure PCTCN2019105176-appb-000052
相减后除以调磁绕组电阻R f
S1.2、将步骤S1.1的计算结果输入低通滤波器,滤除瞬态项与高次谐波,得到调磁绕组电流观测值
Figure PCTCN2019105176-appb-000053
S1.3、将调磁绕组电流观测值
Figure PCTCN2019105176-appb-000054
与实际值i f比较,并将得到的误差输入比例-积分调节器,得到调磁绕组感应电势e f
步骤二:根据调磁绕组感应电势e f,通过位置/速度观测器计算得到电角度观测值
Figure PCTCN2019105176-appb-000055
和电角速度观测值
Figure PCTCN2019105176-appb-000056
并根据电角度观测值
Figure PCTCN2019105176-appb-000057
和电角速度观测值
Figure PCTCN2019105176-appb-000058
对直流调磁型记忆电机进行矢量控制,实现调磁绕组的位置观测功能。
将调磁绕组感应电势经过正交信号发生器,产生相互正交的两路信号e f_α和e f_β,其表达式为
Figure PCTCN2019105176-appb-000059
其中E f和θ f为调磁绕组感应电势的幅值和相角,将式(3)中两组正交信号做如下变换
Figure PCTCN2019105176-appb-000060
其中
Figure PCTCN2019105176-appb-000061
为调磁绕组感应电势相角的观测值,在误差
Figure PCTCN2019105176-appb-000062
很小时,根据极限理论,式(4)可做如下等价变换
Figure PCTCN2019105176-appb-000063
即等价的相角观测误差,基于锁相环的思想,该误差通过比例-积分(PI)调节器即可得到电角速度观测值
Figure PCTCN2019105176-appb-000064
即频率信号,再通过积分环节即可得到前述相角观测值
Figure PCTCN2019105176-appb-000065
该值通过反馈通路参与式(4)和(5)的计算,形成相位反馈环路,达到相角提取的目的。其中,由于调磁绕组与电枢绕组的空间分布影响,感应电势相角观测值
Figure PCTCN2019105176-appb-000066
与最终所求的电机的电角度
Figure PCTCN2019105176-appb-000067
存在相位差
Figure PCTCN2019105176-appb-000068
该值可通过仿真分析或实验测定。
因此,如图3所示,所述通过位置/速度观测器计算得到电角度观测值
Figure PCTCN2019105176-appb-000069
和电角速度观测值
Figure PCTCN2019105176-appb-000070
的具体方法为:
S2.1、将调磁绕组感应电势e f输入正交信号发生器,得到静止坐标系上的调磁绕组感应电势e f_α和e f_β
S2.2、将步骤S2.1的计算结果e f_α和e f_β按照公式
Figure PCTCN2019105176-appb-000071
计算误差;式中
Figure PCTCN2019105176-appb-000072
来自于上一周期反馈的调磁绕组相角观测值;
S2.3、将步骤S2.2所得误差输入比例-积分调节器,得到电角速度观测值
Figure PCTCN2019105176-appb-000073
S2.4、将电角速度观测值
Figure PCTCN2019105176-appb-000074
通过积分,得到调磁绕组相角观测值
Figure PCTCN2019105176-appb-000075
并反馈参与下一周期计算;
S2.5、将调磁绕组相角观测值
Figure PCTCN2019105176-appb-000076
减去调磁绕组相位差
Figure PCTCN2019105176-appb-000077
得到电角度观测值
Figure PCTCN2019105176-appb-000078
根据电角度观测值
Figure PCTCN2019105176-appb-000079
和电角速度观测值
Figure PCTCN2019105176-appb-000080
对直流调磁型记忆电机进行矢量控制如图1所示,速度外环采用比例-积分调节器进行控制,速度反馈
Figure PCTCN2019105176-appb-000081
由步骤二获得,与给定值比较得到的误差输入比例-积分调节器产生q轴电流给定值
Figure PCTCN2019105176-appb-000082
同时d轴电流采用
Figure PCTCN2019105176-appb-000083
控制策略;电流内环在两项旋转坐标系下使用两路比例-积分调节器进行控制,采集记忆电机电枢绕组的定子三相电流,经过采样和A/D转换等环节得到定子三相电流i a、i b和i c,并按照以下公式
Figure PCTCN2019105176-appb-000084
进行abc-dq坐标变换,其中θ为电角度,由步骤二获得的电角度观测值
Figure PCTCN2019105176-appb-000085
充当,计算结果i d和i q为d-q轴电流作为电流反馈量与给定值
Figure PCTCN2019105176-appb-000086
Figure PCTCN2019105176-appb-000087
进行比较,所产生的的误差输入两路比例-积分调节器,输出值
Figure PCTCN2019105176-appb-000088
Figure PCTCN2019105176-appb-000089
为d-q轴电压给定值,按照以下公式
Figure PCTCN2019105176-appb-000090
进行dq-αβ坐标变换,其中θ为电角度,由步骤二获得的电角度观测值
Figure PCTCN2019105176-appb-000091
充当,计算结果
Figure PCTCN2019105176-appb-000092
Figure PCTCN2019105176-appb-000093
为两相静止坐标系电压给定,并经过空间矢量脉宽调制(SVPWM)方式产生开关信号,控制三相逆变器驱动直流调磁型记忆电机,实现矢量控制。
步骤三:在需要调节直流调磁型记忆电机的永磁体磁化状态时,采用磁化状态控制器根据电角速度观测值
Figure PCTCN2019105176-appb-000094
产生驱动信号,驱动调磁功率变换器产生调磁磁动势,进而调节永磁体磁化状态,实现调磁绕组的调磁功能。
如图4所示,采用磁化状态控制器根据电角速度观测值
Figure PCTCN2019105176-appb-000095
产生驱动信号的具体步骤包括:
S3.1、将电角速度观测值
Figure PCTCN2019105176-appb-000096
输入到磁化状态选择单元,获得磁化状态给定值
Figure PCTCN2019105176-appb-000097
S3.2、根据磁化状态给定值
Figure PCTCN2019105176-appb-000098
在调磁电流选择单元中获得调磁电流给定值
Figure PCTCN2019105176-appb-000099
S3.3、采集调磁绕组电流i f并与给定值
Figure PCTCN2019105176-appb-000100
比较,将误差输入比例--积分(PI)调节 器;
S3.4、将步骤S3.4得到的输出信号经过脉宽调制(PWM)的方式产生开关信号S f
本实施例还提供了一种基于功能切换的直流调磁型记忆电机无位置控制系统,包括:
电动势观测器,用于在直流调磁型记忆电机正常运行时,根据采集的调磁绕组感应电压u f提取调磁绕组感应电势e f
位置/速度观测器,用于根据调磁绕组感应电势计算得到电角度观测值
Figure PCTCN2019105176-appb-000101
和电角速度观测值
Figure PCTCN2019105176-appb-000102
进而在矢量控制时根据电角度观测值
Figure PCTCN2019105176-appb-000103
和电角速度观测值
Figure PCTCN2019105176-appb-000104
对直流调磁型记忆电机进行控制,实现调磁绕组的位置观测功能;
磁化状态控制器,用于在需要调节直流调磁型记忆电机的永磁体磁化状态时,根据电角速度观测值
Figure PCTCN2019105176-appb-000105
产生调磁功率变换器驱动信号;
调磁功率变换器,用于根据磁化状态控制器产生的驱动信号在调磁绕组中产生调磁磁动势,进而调节永磁体磁化状态,实现调磁绕组的调磁功能。
其中,所述电动势观测器具体包括:
加法器,用于将当前周期的调磁绕组感应电压u f与上一周期计算得到的调磁绕组感应电势观测值
Figure PCTCN2019105176-appb-000106
相减;
除法器,用于将加法器的结果除以调磁绕组电阻R f
低通滤波器,用于对除法器输出信号进行过滤,滤除瞬态项与高次谐波,得到调磁绕组电流观测值
Figure PCTCN2019105176-appb-000107
比例-积分调节器,用于将调磁绕组电流观测值
Figure PCTCN2019105176-appb-000108
与实际值i f比较,并将得到的误差进行比例-积分调节,得到调磁绕组感应电势e f
延时器,用于将比例-积分调节器输出的调磁绕组感应电势e f延时后输入到加法器。
其中,所述通过位置/速度观测器具体包括:
正交信号发生器,用于根据调磁绕组感应电势e f计算得到静止坐标系上的调磁绕组感应电势e f_α和e f_β
误差计算器,用于将正交信号发生器的计算结果e f_α和e f_β按照公式
Figure PCTCN2019105176-appb-000109
计算误差;式中
Figure PCTCN2019105176-appb-000110
来自于上一周期反馈的调磁绕组相角观测值;
比例-积分调节器,用于将误差计算器所得误差进行比例-积分调节,得到电角速度观测值
Figure PCTCN2019105176-appb-000111
积分器,用于将电角速度观测值
Figure PCTCN2019105176-appb-000112
通过积分得到调磁绕组相角观测值
Figure PCTCN2019105176-appb-000113
并反馈参与下一周期计算;
加法器,用于将调磁绕组相角观测值
Figure PCTCN2019105176-appb-000114
减去调磁绕组相位差
Figure PCTCN2019105176-appb-000115
得到电角度观测值
Figure PCTCN2019105176-appb-000116
所述调磁绕组相位差
Figure PCTCN2019105176-appb-000117
为调磁绕组感应电势与电枢绕组反电势的电角度相位差,具体通过仿真分析或离线实验测得。
其中,所述磁化状态控制器具体包括:
磁化状态选择单元,用于根据电角速度观测值
Figure PCTCN2019105176-appb-000118
获得磁化状态给定值
Figure PCTCN2019105176-appb-000119
调磁电流选择单元,用于根据磁化状态给定值
Figure PCTCN2019105176-appb-000120
获得调磁电流给定值
Figure PCTCN2019105176-appb-000121
加法器,用于获取采集的调磁绕组电流i f与给定值
Figure PCTCN2019105176-appb-000122
的误差;
比例--积分调节器,用于将加法器输出结果进行比例--积分调节;
脉宽调制(PWM)器,用于将比例--积分调节器的输出信号经过脉宽调制的方式产生驱动信号S f
本实施例与上述方法一一对应,未详尽之处请参考方法中的描述,这里不再赘述。
在本申请实施例中,应该理解到,所揭露的方法可以通过其它的方式实现。例如,所述模块和单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、 寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种基于功能切换的直流调磁型记忆电机无位置控制方法,其特征在于:包括以下步骤:
    步骤一:在直流调磁型记忆电机正常运行时,采集调磁绕组感应电压u f,通过电动势观测器提取调磁绕组感应电势e f
    步骤二:根据调磁绕组感应电势e f,通过位置/速度观测器计算得到电角度观测值
    Figure PCTCN2019105176-appb-100001
    和电角速度观测值
    Figure PCTCN2019105176-appb-100002
    并根据电角度观测值
    Figure PCTCN2019105176-appb-100003
    和电角速度观测值
    Figure PCTCN2019105176-appb-100004
    对直流调磁型记忆电机进行矢量控制,实现调磁绕组的位置观测功能;
    步骤三:在需要调节直流调磁型记忆电机的永磁体磁化状态时,采用磁化状态控制器根据电角速度观测值
    Figure PCTCN2019105176-appb-100005
    产生驱动信号,驱动调磁功率变换器在调磁绕组中产生调磁磁动势,进而调节永磁体磁化状态,实现调磁绕组的调磁功能。
  2. 根据权利要求1所述的控制方法,其特征在于:步骤一中所述通过电动势观测器提取调磁绕组感应电势e f的具体方法为:
    S1.1、将当前周期的调磁绕组感应电压u f与上一周期计算得到的调磁绕组感应电势观测值
    Figure PCTCN2019105176-appb-100006
    相减后除以调磁绕组电阻R f
    S1.2、将步骤S1.1的计算结果输入低通滤波器,滤除瞬态项与高次谐波,得到调磁绕组电流观测值
    Figure PCTCN2019105176-appb-100007
    S1.3、将调磁绕组电流观测值
    Figure PCTCN2019105176-appb-100008
    与实际值i f比较,并将得到的误差输入比例-积分调节器,得到调磁绕组感应电势e f
  3. 根据权利要求1所述的控制方法,其特征在于:步骤二中所述通过位置/速度观测器计算得到电角度观测值
    Figure PCTCN2019105176-appb-100009
    和电角速度观测值
    Figure PCTCN2019105176-appb-100010
    的具体方法为:
    S2.1、将调磁绕组感应电势e f输入正交信号发生器,得到静止坐标系上的调磁绕组感应电势e f_α和e f_β
    S2.2、将步骤S2.1的计算结果e f_α和e f_β按照公式
    Figure PCTCN2019105176-appb-100011
    计算误差;式中
    Figure PCTCN2019105176-appb-100012
    来自于上一周期反馈的调磁绕组相角观测值;
    S2.3、将步骤S2.2所得误差输入比例-积分调节器,得到电角速度观测值
    Figure PCTCN2019105176-appb-100013
    S2.4、将电角速度观测值
    Figure PCTCN2019105176-appb-100014
    通过积分器,得到调磁绕组相角观测值
    Figure PCTCN2019105176-appb-100015
    并反馈参与下一周期计算;
    S2.5、将调磁绕组相角观测值
    Figure PCTCN2019105176-appb-100016
    减去调磁绕组相位差
    Figure PCTCN2019105176-appb-100017
    得到电角度观测值
    Figure PCTCN2019105176-appb-100018
  4. 根据权利要求3所述的控制方法,其特征在于:所述步骤S2.5中的调磁绕组相位差
    Figure PCTCN2019105176-appb-100019
    为调磁绕组感应电势与电枢绕组反电势的电角度相位差,具体通过仿真分析或离线实验测得。
  5. 根据权利要求1所述的控制方法,其特征在于:步骤三中所述采用磁化状态控制器根据电角速度观测值
    Figure PCTCN2019105176-appb-100020
    产生驱动信号的具体方法为:
    S3.1、将电角速度观测值
    Figure PCTCN2019105176-appb-100021
    输入到磁化状态选择单元,获得磁化状态给定值
    Figure PCTCN2019105176-appb-100022
    S3.2、根据磁化状态给定值
    Figure PCTCN2019105176-appb-100023
    在调磁电流选择单元中获得调磁电流给定值
    Figure PCTCN2019105176-appb-100024
    S3.3、采集调磁绕组电流i f并与给定值
    Figure PCTCN2019105176-appb-100025
    比较,将误差输入比例--积分调节器;
    S3.4、将步骤S3.4得到的输出信号经过脉宽调制的方式产生驱动信号S f
  6. 一种基于功能切换的直流调磁型记忆电机无位置控制系统,其特征在于包括:
    电动势观测器,用于在直流调磁型记忆电机正常运行时,根据采集的调磁绕组感应电压u f提取调磁绕组感应电势e f
    位置/速度观测器,用于根据调磁绕组感应电势计算得到电角度观测值
    Figure PCTCN2019105176-appb-100026
    和电角速度观测值
    Figure PCTCN2019105176-appb-100027
    进而在矢量控制时根据电角度观测值
    Figure PCTCN2019105176-appb-100028
    和电角速度观测值
    Figure PCTCN2019105176-appb-100029
    对直流调磁型记忆电机进行控制,实现调磁绕组的位置观测功能;
    磁化状态控制器,用于在需要调节直流调磁型记忆电机的永磁体磁化状态时,根据电角速度观测值
    Figure PCTCN2019105176-appb-100030
    产生调磁功率变换器驱动信号;
    调磁功率变换器,用于根据磁化状态控制器产生的驱动信号在调磁绕组中产生调磁磁动势,进而调节永磁体磁化状态,实现调磁绕组的调磁功能。
  7. 根据权利要求5所述的控制系统,其特征在于:所述电动势观测器具体包括:
    加法器,用于将当前周期的调磁绕组感应电压u f与上一周期计算得到的调磁绕组感 应电势观测值
    Figure PCTCN2019105176-appb-100031
    相减;
    除法器,用于将加法器的结果除以调磁绕组电阻R f
    低通滤波器,用于对除法器输出信号进行过滤,滤除瞬态项与高次谐波,得到调磁绕组电流观测值
    Figure PCTCN2019105176-appb-100032
    比例-积分调节器,用于将调磁绕组电流观测值
    Figure PCTCN2019105176-appb-100033
    与实际值i f比较,并将得到的误差进行比例-积分调节,得到调磁绕组感应电势e f
    延时器,用于将比例-积分调节器输出的调磁绕组感应电势e f延时后输入到加法器。
  8. 根据权利要求6所述的控制系统,其特征在于:所述通过位置/速度观测器具体包括:
    正交信号发生器,用于根据调磁绕组感应电势e f计算得到静止坐标系上的调磁绕组感应电势e f_α和e f_β
    误差计算器,用于将正交信号发生器的计算结果e f_α和e f_β按照公式
    Figure PCTCN2019105176-appb-100034
    计算误差;式中
    Figure PCTCN2019105176-appb-100035
    来自于上一周期反馈的调磁绕组相角观测值;
    比例-积分调节器,用于将误差计算器所得误差进行比例-积分调节,得到电角速度观测值
    Figure PCTCN2019105176-appb-100036
    积分器,用于将电角速度观测值
    Figure PCTCN2019105176-appb-100037
    通过积分得到调磁绕组相角观测值
    Figure PCTCN2019105176-appb-100038
    并反馈参与下一周期计算;
    加法器,用于将调磁绕组相角观测值
    Figure PCTCN2019105176-appb-100039
    减去调磁绕组相位差
    Figure PCTCN2019105176-appb-100040
    得到电角度观测值
    Figure PCTCN2019105176-appb-100041
  9. 根据权利要求8所述的控制系统,其特征在于:所述调磁绕组相位差
    Figure PCTCN2019105176-appb-100042
    为调磁绕组感应电势与电枢绕组反电势的电角度相位差,具体通过仿真分析或离线实验测得。
  10. 根据权利要求6所述的控制方法,其特征在于:所述磁化状态控制器具体包括:
    磁化状态选择单元,用于根据电角速度观测值
    Figure PCTCN2019105176-appb-100043
    获得磁化状态给定值
    Figure PCTCN2019105176-appb-100044
    调磁电流选择单元,用于根据磁化状态给定值
    Figure PCTCN2019105176-appb-100045
    获得调磁电流给定值
    Figure PCTCN2019105176-appb-100046
    加法器,用于获取采集的调磁绕组电流i f与给定值
    Figure PCTCN2019105176-appb-100047
    的误差;
    比例--积分调节器,用于将加法器输出结果进行比例--积分调节;
    脉宽调制器,用于将比例--积分调节器的输出信号经过脉宽调制的方式产生驱动信号S f
PCT/CN2019/105176 2019-04-26 2019-09-10 基于功能切换的直流调磁型记忆电机无位置控制方法及系统 WO2020215588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910343607.2A CN110098772B (zh) 2019-04-26 2019-04-26 基于功能切换的直流调磁型记忆电机无位置控制方法及系统
CN201910343607.2 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020215588A1 true WO2020215588A1 (zh) 2020-10-29

Family

ID=67445902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105176 WO2020215588A1 (zh) 2019-04-26 2019-09-10 基于功能切换的直流调磁型记忆电机无位置控制方法及系统

Country Status (2)

Country Link
CN (1) CN110098772B (zh)
WO (1) WO2020215588A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098772B (zh) * 2019-04-26 2020-08-25 东南大学 基于功能切换的直流调磁型记忆电机无位置控制方法及系统
CN110995085B (zh) * 2019-10-31 2021-06-22 东南大学 考虑不可控发电故障的变磁通记忆电机多步调磁控制方法
CN111697899B (zh) * 2020-06-11 2021-12-03 华中科技大学 一种变磁通永磁电机充磁状态闭环控制方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787583B2 (ja) * 2011-04-12 2015-09-30 株式会社東芝 モータドライブ装置
JP5787584B2 (ja) * 2011-04-12 2015-09-30 株式会社東芝 モータドライブ装置
CN107154765A (zh) * 2017-05-11 2017-09-12 东南大学 一种磁通切换型记忆电机高功率因数控制方法
CN108288933A (zh) * 2018-01-17 2018-07-17 东南大学 一种交流调磁型记忆电机分段调磁控制方法
CN108900131A (zh) * 2018-07-11 2018-11-27 山东大学 表贴式永磁同步电机低速无位置传感器矢量控制系统与方法
CN110098772A (zh) * 2019-04-26 2019-08-06 东南大学 基于功能切换的直流调磁型记忆电机无位置控制方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026815B (zh) * 2016-07-29 2018-06-12 东南大学 一种轴向磁场磁通切换型混合永磁体记忆电机弱磁控制方法
CN107017818B (zh) * 2017-05-17 2019-05-28 东南大学 一种定子永磁型记忆电机直接转矩控制方法
CN107248830B (zh) * 2017-07-24 2019-04-30 东南大学 一种记忆电机磁化状态选择与弱磁控制协同控制方法
US10574161B2 (en) * 2017-09-22 2020-02-25 Nidec Motor Corporation System and computer-implemented method for reducing angle error in electric motors
CN109150022A (zh) * 2018-08-21 2019-01-04 东南大学 一种基于电流解耦的记忆电机调磁转矩脉动的抑制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5787583B2 (ja) * 2011-04-12 2015-09-30 株式会社東芝 モータドライブ装置
JP5787584B2 (ja) * 2011-04-12 2015-09-30 株式会社東芝 モータドライブ装置
CN107154765A (zh) * 2017-05-11 2017-09-12 东南大学 一种磁通切换型记忆电机高功率因数控制方法
CN108288933A (zh) * 2018-01-17 2018-07-17 东南大学 一种交流调磁型记忆电机分段调磁控制方法
CN108900131A (zh) * 2018-07-11 2018-11-27 山东大学 表贴式永磁同步电机低速无位置传感器矢量控制系统与方法
CN110098772A (zh) * 2019-04-26 2019-08-06 东南大学 基于功能切换的直流调磁型记忆电机无位置控制方法及系统

Also Published As

Publication number Publication date
CN110098772B (zh) 2020-08-25
CN110098772A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
Xie et al. Minimum-voltage vector injection method for sensorless control of PMSM for low-speed operations
JP5396876B2 (ja) 交流電動機の制御装置
CN110022106B (zh) 一种基于高频信号注入的永磁同步电机无位置传感器控制方法
US11522481B2 (en) Memory motor winding multiplexing control method and system for flux linkage observation
WO2020215588A1 (zh) 基于功能切换的直流调磁型记忆电机无位置控制方法及系统
CN103872951A (zh) 基于滑模磁链观测器的永磁同步电机转矩控制方法
Xu et al. A robust observer and nonorthogonal PLL-based sensorless control for fault-tolerant permanent magnet motor with guaranteed postfault performance
CN107508521B (zh) 一种永磁同步电机的无速度传感器控制方法和系统
CN106788041B (zh) 一种定子永磁型记忆电机高效率和宽调速控制方法
Wang et al. Improved fast method of initial rotor position estimation for interior permanent magnet synchronous motor by symmetric pulse voltage injection
CN112117943B (zh) 一种新型ipmsm高频方波注入无位置传感器控制
CN110429891A (zh) 一种无位置传感器永磁电机直驱发电控制方法
CN110620533A (zh) 一种表贴式永磁同步电机无传感器控制方法
Yepes et al. Torque ripple minimization in surface-mounted PM drives by means of PI+ multi-resonant controller in synchronous reference frame
KR20190143630A (ko) 영구자석 동기 전동기의 센서리스 제어 시스템 및 방법
JP2012050215A (ja) 単相信号入力装置及び系統連系装置
Comanescu Implementation of time-varying observers used in direct field orientation of motor drives by trapezoidal integration
Chen et al. Harmonic current suppression for high-speed permanent magnet synchronous motor with sensorless control
Kakodia et al. A comparative study of DFOC and IFOC for IM drive
Xu et al. Hardware-in-loop simulation of linear synchronous motor based on three-level converter
Korlinchak et al. Discrete time integration of observers with continuous feedback based on Tustin's method with variable prewarping
Ton et al. A Simple Model-Based Deadbeat Direct-Current and Flux Linkage Control Scheme for Sensorless SPMSM Drive
Zhang et al. Sensorless Control of Permanent Magnet Synchronous Motor with Optimized Performance at Low Speed
Dong et al. Space Vector Flux Weakening Control of PMSM Drivers
CN113489412B (zh) 一种电机系统平滑切换控制方法及电机控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925916

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19925916

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19925916

Country of ref document: EP

Kind code of ref document: A1