WO2021232615A1 - 电机转子位置检测方法、装置以及电机控制器 - Google Patents

电机转子位置检测方法、装置以及电机控制器 Download PDF

Info

Publication number
WO2021232615A1
WO2021232615A1 PCT/CN2020/112807 CN2020112807W WO2021232615A1 WO 2021232615 A1 WO2021232615 A1 WO 2021232615A1 CN 2020112807 W CN2020112807 W CN 2020112807W WO 2021232615 A1 WO2021232615 A1 WO 2021232615A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
frequency
motor
axis
motor rotor
Prior art date
Application number
PCT/CN2020/112807
Other languages
English (en)
French (fr)
Inventor
双波
诸自强
Original Assignee
广东威灵电机制造有限公司
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司, 美的威灵电机技术(上海)有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2021232615A1 publication Critical patent/WO2021232615A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • H02P25/026Synchronous motors controlled by supply frequency thereby detecting the rotor position

Definitions

  • This application relates to the field of motor technology, and in particular to a method and device for detecting the position of a motor rotor, and a motor controller.
  • Permanent magnet synchronous motors or synchronous reluctance motors have the advantages of high power density and high efficiency, and are widely used in household appliances and electric vehicles.
  • the rotor position detection method based on the saliency of the motor has been widely used. At present, when the rotor position is detected, usually due to the interaction of the direct axis and the quadrature axis in the motor, the detected rotor position will deviate from the actual value, and the detection accuracy is low.
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent.
  • the first purpose of this application is to propose a method for detecting the position of the motor rotor to determine the deviation angle of the motor rotor according to the injected interference signal and the feedback value of the motor drive current, and then to determine the rotor position of the motor by the deviation angle. Position can improve the accuracy of rotor position detection.
  • the second purpose of this application is to provide a device for detecting the position of a motor rotor.
  • the third purpose of this application is to propose a motor controller.
  • the fourth purpose of this application is to provide a readable storage medium.
  • an embodiment of the first aspect of the present application proposes a method for detecting the position of a motor rotor, which includes: obtaining a positive sequence of a current with a frequency of f in the driving current after injecting a first interference signal with a frequency of f into a motor drive circuit The component and the current negative sequence component with a frequency of f1, where f1 is less than f; obtain the current drive current feedback value; determine the current reference coefficient value according to the current drive current feedback value; according to the current reference coefficient value , The amplitude of the positive sequence component of the current with frequency f and the amplitude of the negative sequence component of the current with frequency f1 to determine the current deviation angle; and, according to the current deviation angle, determine the current position of the motor rotor .
  • the motor inductance detection method of the embodiment of the present application firstly, after the first interference signal with frequency f is injected into the motor drive circuit, the positive sequence component of current with frequency f and the negative sequence component of current with frequency f1 in the drive current are acquired, Then, obtain the current drive current feedback value; determine the current reference coefficient value according to the current drive current feedback value; according to the current reference coefficient value, the current positive sequence component with frequency f, and the current negative sequence component with frequency f1, Determine the current deviation angle; finally, according to the current deviation angle, determine the current position of the motor rotor. Therefore, the method determines the deviation angle of the motor rotor according to the injected interference signal and the motor drive current feedback value, and then determines the position of the motor rotor through the deviation angle, which can improve the accuracy of rotor position detection.
  • an embodiment of the second aspect of the present application proposes a motor rotor position detection device, which includes: a first acquisition module for acquiring a driving current after injecting a first interference signal with a frequency f into a motor drive loop The positive sequence component of the current with a frequency of f and the negative sequence component of the current with a frequency of f1, where f1 is less than f; the second obtaining module is used to obtain the current driving current feedback value; the first determining module is used to obtain the current feedback value according to the current The drive current feedback value of the drive current determines the current reference coefficient value; the second determining module is used to determine the current reference coefficient value according to the current reference coefficient value, the amplitude of the positive sequence component of the current with the frequency f, and the negative sequence component of the current with the frequency f1 The amplitude determines the current deviation angle; the third determining module is used to determine the current position of the motor rotor according to the current deviation angle.
  • the motor rotor position detection device of the embodiment of the present application after the first interference signal with frequency f is injected into the motor drive circuit through the first acquisition module, the positive sequence component of the current with frequency f and the current with frequency f1 in the drive current are acquired Negative sequence component; obtain the current drive current feedback value through the second acquisition module; determine the current reference coefficient value according to the current drive current feedback value through the first determination module; use the second determination module according to the current reference coefficient value and frequency The current positive sequence component amplitude of f and the current negative sequence component amplitude of frequency f1 determine the current deviation angle; the third determining module determines the current position of the motor rotor according to the current deviation angle. Therefore, the device determines the deviation angle of the motor rotor according to the injected interference signal and the motor drive current feedback value, and then determines the position of the motor rotor through the deviation angle, which can improve the accuracy of rotor position detection.
  • motor rotor position detection device may also have the following additional technical features:
  • the first obtaining module before the first obtaining module obtains the positive sequence component of the current with frequency f and the negative sequence component of the current with frequency f1 in the driving current, the first obtaining module is further configured to obtain: The current rotation frequency f2 of the motor rotor; the frequency f1 of the negative sequence component of the current is determined according to the current rotation frequency f2 of the motor rotor and the frequency f of the first interference signal.
  • an embodiment of the third aspect of the present application proposes a motor controller, including the motor rotor position detection device proposed in the embodiment of the second aspect of the present application.
  • the motor controller of the embodiment of the present application through the motor rotor position detection device of the embodiment of the present application, can determine the deviation angle of the motor rotor according to the injected interference signal and the motor drive current feedback value, and then determine the motor rotor through the deviation angle , Which can improve the accuracy of rotor position detection.
  • the embodiment of the fourth aspect of the present application proposes a readable storage medium on which a motor rotor position detection program is stored.
  • the program is executed by a processor, the implementation of the embodiment of the first aspect of the present application Motor rotor position detection method.
  • the motor rotor position detection program stored thereon when executed by the processor, it can determine the deviation angle of the motor rotor according to the injected interference signal and the motor drive current feedback value, and then through The deviation angle determines the position of the motor rotor, which can improve the accuracy of rotor position detection.
  • Fig. 1 is a flowchart of a method for detecting a rotor position of a motor according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of injecting a first interference signal according to an embodiment of the present application
  • Fig. 3 is a flowchart of calculating multiple reference coefficient values of a motor according to an embodiment of the present application
  • Fig. 4 is a schematic diagram of injecting a second interference signal and a third interference signal according to an embodiment of the present application
  • Fig. 5 is a schematic diagram of correcting high-frequency current according to an example of the present application.
  • Fig. 6 is a structural block diagram of a motor rotor position detection device according to an embodiment of the present application.
  • Fig. 7 is a structural block diagram of a first obtaining module according to an embodiment of the present application.
  • Fig. 8 is a structural block diagram of a second acquisition module according to an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a motor rotor position detection device according to an example of the present application.
  • Fig. 10 is a schematic structural diagram of a motor rotor position detection device according to another example of the present application.
  • Fig. 11 is a structural block diagram of a motor controller according to an embodiment of the present application.
  • a two-phase static coordinate system ⁇ - ⁇ can be defined, a two-phase rotating coordinate system dq is established on the motor rotor, and the coordinate system dq rotates synchronously with the rotor, and the d-axis (direct axis) ) Is the direction of the rotor magnetic field, and the q-axis (quadrature) is the direction perpendicular to the rotor magnetic field.
  • the motor rotor position detection method, device, and motor controller in this embodiment can be applied to permanent magnet synchronous motors and synchronous reluctance motors, where the motor has saliency, and the saliency is reflected in the structure of the motor with salient poles and When the motor is running, the inductance has a salient polarity due to the application of current.
  • Fig. 1 is a flowchart of a method for detecting a rotor position of a motor according to an embodiment of the present application.
  • the method includes the following steps:
  • the first interference signal with a frequency of f is injected into the drive circuit of the target motor, that is, the high-frequency rotating voltages u ⁇ h * and u ⁇ h * are superimposed on the voltages u ⁇ * and u ⁇ * , respectively.
  • the high-frequency rotating voltage u ⁇ h * and u ⁇ h * are sequentially modulated by space voltage vector and converted into PWM (Pulse Width Modulation) signals for driving the motor to drive the motor.
  • PWM Pulse Width Modulation
  • the drive current of the motor can reach stability, such as 3 disturbance signal periods long, or 5 disturbance signal periods long, or 6 disturbance signal periods long Wait, this application does not limit this.
  • the three-phase drive current feedback value of the motor is converted into the drive current feedback values i ⁇ and i ⁇ of the ⁇ and ⁇ axes by the Clark converter, and the drive current feedback values i ⁇ and i ⁇ are passed through the Parker converter. Converted to the drive current feedback values i d and i q of the d and q axes.
  • the memory may store a three-dimensional table that records the correspondence between the motor drive currents i d and i q and the reference coefficient value ⁇ , that is ( ⁇ , i d , i q ), so the current i d has been obtained in step S102
  • the corresponding reference coefficient value ⁇ can be obtained by querying the three-dimensional table in the memory.
  • S104 Determine the current deviation angle according to the current reference coefficient value, the amplitude of the positive sequence component of the current with the frequency f, and the amplitude of the negative sequence component of the current with the frequency f1.
  • the current rotor angle obtained by the rotor position estimator will have an error ⁇ , and the angle error will vary with the actual operating point of the motor.
  • the current deviation angle ⁇ m of the motor rotor is calculated according to the reference coefficient value ⁇ , the current positive sequence component amplitude I p with frequency f, and the current negative sequence component amplitude I n with frequency f1.
  • ⁇ m can eliminate the rotor angle error ⁇ .
  • the current angle deviation can be used to compensate the rotor angle output by the rotor position estimator to eliminate the angle error; or the current angle deviation can be used to correct the high-frequency current entering the rotor position estimator to make the rotor position
  • the estimator outputs a more accurate angle value.
  • the driving current feedback value i d After obtaining the current positive sequence component amplitude I p with frequency f and the current negative sequence component amplitude I n with frequency f1 in step S101 respectively, the driving current feedback value i d , After i q, after obtaining the current reference coefficient value ⁇ in step S103, and after obtaining the current deviation angle ⁇ m in step S104, the positive sequence component amplitude I p and the current negative sequence component amplitude I n can be driven
  • the current feedback values i d , i q , the current reference coefficient value ⁇ , and the current deviation angle ⁇ m are stored in the memory to be called when step S105 is implemented.
  • the method for detecting the position of the motor rotor of the embodiment of the present application can determine the deviation angle of the rotor of the motor according to the injected interference signal and the feedback value of the drive current of the motor, and then eliminate the deviation through the deviation angle.
  • the method determines the deviation angle of the motor rotor according to the injected interference signal and the motor drive current feedback value, and then determines the position of the motor rotor through the deviation angle, which can improve the accuracy of rotor position detection.
  • step S101 before acquiring the current positive sequence component with frequency f and the current negative sequence component with frequency f1 in the driving current, it further includes: acquiring the current rotation frequency f2 of the motor rotor ; According to the current rotation frequency f2 of the motor rotor and the frequency f of the first interference signal, the frequency f1 of the negative sequence component of the current is determined.
  • the first interference signal is transformed into a positive sequence component of the current with a frequency of f and a current with a frequency of f1 in the drive current of the motor after a certain transformation.
  • Negative sequence component the frequency f1 of the negative sequence component of the current is not equal to the frequency f due to the influence of the current frequency of the motor rotor. Therefore, before the negative sequence component of the current is obtained, the current rotation frequency f2 of the motor rotor is first obtained, and then according to the current rotation frequency of the motor rotor The rotation frequency f2 and the frequency f of the first interference signal determine the frequency f1 of the negative sequence component of the current. Specifically, according to the formula:
  • the current rotation frequency f2 of the motor rotor is much smaller than the frequency f of the first interference signal, so the frequency f1 of the negative sequence component of the current is approximately equal to the frequency f.
  • the positive sequence component of the current and the negative sequence of the current The acquisition of the component may not depend on the current rotation frequency of the motor rotor.
  • the direct-axis current regulator may be a PI (Proportional Integral) regulator.
  • the second interference signal may be a high frequency sinusoidal voltage signal.
  • the set direct axis current i d * and the quadrature axis current i q * can be applied to the direct axis and the quadrature axis respectively.
  • the direct-axis current i d * can be PI adjusted to output the direct-axis voltage u d *
  • the quadrature-axis current i q * can be PI-adjusted to output the quadrature-axis voltage u q *
  • the direct-axis voltage u d * and The quadrature axis voltage u q * is transformed by Parker inverse transformation to obtain the voltages u ⁇ * and u ⁇ * corresponding to the ⁇ and ⁇ axes respectively.
  • space vector modulation technology is used to control the target motor.
  • the second interference signal is injected into the output of the direct-axis current regulator, that is, the second high-frequency sinusoidal voltage u dh * is superimposed on the direct axis voltage u d * .
  • the high frequency sinusoidal voltage u dh * is converted into the driving voltage of the target motor after Parker inverse transformation and space voltage vector modulation to drive the target motor.
  • the sampled motor driving current can be analyzed and processed to determine
  • the amplitude of the high-frequency current signal is the first current amplitude.
  • S302 Inject a third interference signal into the quadrature axis current regulator of the motor to obtain a second current amplitude corresponding to the third interference signal.
  • the quadrature axis current regulator can also be a PI regulator.
  • the third interference signal is also a high-frequency sinusoidal voltage signal, and the amplitude and frequency of the second interference signal and the third interference level signal are the same.
  • the third interference signal is injected into the output terminal of the quadrature-axis current regulator, that is, the third high-frequency sinusoidal voltage u qh * is superimposed on the direct-axis voltage u q * .
  • the high frequency sinusoidal voltage u qh * is converted into the drive voltage of the target motor after Parker inverse transformation and space voltage vector modulation to drive the target motor.
  • the sampled motor drive current can be analyzed and processed to determine
  • the amplitude of the high-frequency current signal is the first current amplitude.
  • the second disturbance signal may be set to zero.
  • S303 Determine a reference coefficient value corresponding to the set direct-axis current and quadrature-axis current according to the first current amplitude and the second current amplitude.
  • determining the reference coefficient value corresponding to the set direct-axis current and quadrature-axis current includes:
  • formula (6) can be determined according to the known second high-frequency sinusoidal voltage u dh * and third high-frequency sinusoidal voltage u qh * with the same amplitude and frequency, and the derivation process is as follows:
  • the second high frequency sinusoidal voltage u dh * injected into the direct shaft is:
  • the third high frequency sinusoidal voltage u qh * injected into the quadrature axis is:
  • the set values i d * and i q * of the direct-axis current and the quadrature-axis current of the motor can be changed multiple times, and then the above steps S301, S302, and S303 can be repeated.
  • different working points of the motor correspond to different direct-axis currents and quadrature-axis currents.
  • each of the above steps is repeated a S301, S302 and S303, to obtain the value of [lambda] on a different reference frame according to equation (6), for example, i d1 * and i q1 * corresponding to ⁇ 1, i d2 * And i q2 * corresponding to ⁇ 2 , i d3 * and i q3 * corresponding to ⁇ 3 and so on.
  • i d1 * and i q1 * corresponding to ⁇ 1
  • i d2 * And i q2 * corresponding to ⁇ 2 , i d3 * and i q3 * corresponding to ⁇ 3 and so on.
  • multiple sets of ( ⁇ , i d * , i q * ) correspondence relationships can be obtained, and multiple sets The corresponding relationship is stored in the memory for subsequent recall.
  • determining the current reference coefficient value according to the current driving current feedback value includes: determining the current direct axis current setting value and the quadrature axis current setting value according to the current driving current feedback value; And, according to the corresponding relationship between the set direct-axis current and quadrature-axis current and the reference coefficient value, the current reference coefficient value corresponding to the current direct-axis current setting value and the quadrature-axis current setting value is determined.
  • the current direct-axis current and quadrature-axis current setting values i d * and i q * are determined according to the current drive current feedback values i d and i q , and the direct-axis current and quadrature-axis current setting values in the memory are determined.
  • the corresponding relationship between i d * , i q * and the reference coefficient value ⁇ is to determine the current reference coefficient value ⁇ corresponding to the current direct-axis current and quadrature-axis current setting values i d * , i q * .
  • step S301 before the direct-axis current and the quadrature-axis current of the motor both reach the set value, it may further include: fixing the motor rotor.
  • the interference signal injection and subsequent processing of the motor in the embodiment of the present application need to be performed when it is stationary, it is necessary to generate a driving torque (ie, i d * ⁇ 0, i q * ⁇ 0) on the target motor. , And i d * ⁇ i q * ), the shaft of the motor is fixed at any angle by a mechanical device, that is to say, the rotor of the motor must be Fixed, so that the motor will not rotate due to the change of the operating point, which is beneficial to the injection of interference signals and subsequent processing.
  • the current deviation angle is determined according to the current reference coefficient value, the amplitude of the positive sequence component of the current with frequency f, and the amplitude of the negative sequence component of the current with frequency f1, that is, the above step S104 includes:
  • ⁇ m is the current deviation angle
  • is the current reference coefficient value
  • I p is the amplitude of the positive sequence component of the current with frequency f
  • I n is the amplitude of the negative sequence component of the current with frequency f1.
  • the high-frequency sinusoidal rotating voltages u ⁇ h * and u ⁇ h * with known amplitude and frequency, the reference coefficient value ⁇ , the amplitude of the positive sequence component of the current with frequency f I p, and the negative sequence of the current with frequency f1 can be used.
  • the component amplitude I n determines the current deviation angle ⁇ m , and the derivation process is as follows:
  • the high-frequency sinusoidal rotating voltages u ⁇ h * and u ⁇ h * injected into the drive circuit are respectively:
  • the current deviation angle ⁇ m is related to the incremental inductance of the motor, and its formula is:
  • the sign of the interactive coupling incremental inductance L dqh in formula (20) is opposite to the sign of the set quadrature axis current i q * .
  • the interactive coupling incremental inductance L dqh is a positive number; when the set quadrature axis current i q * is a negative number, the interactive coupling incremental inductance L dqh is a negative number.
  • the sign of the deviation angle ⁇ m is opposite to the sign of the current quadrature axis current, that is: when the current quadrature axis current is a positive number, the current deviation angle ⁇ m is a positive number; when the current quadrature axis current is a negative number , The current deviation angle ⁇ m is a negative number.
  • the deviation angle of the rotor position estimator is calculated according to the high-frequency sinusoidal rotating voltage signal injected into the drive loop and the reference coefficient value, so as to subsequently compensate for the angular error caused by the cross-coupling effect.
  • the calculated deviation angle ⁇ m related to the incremental inductance can be used to compensate the rotor position estimator to eliminate the angular error ⁇ in the output rotor angle.
  • compensation can be achieved through two compensation methods, so as to realize the above step S105, which will be described in the following two examples:
  • determining the current position of the motor rotor according to the current deviation angle may include: obtaining a third current in the direction of the first coordinate axis with a frequency of f in the driving current, and a third current with a frequency of f
  • the fourth current in the direction of the second coordinate axis the third current and the fourth current are corrected according to the current deviation angle; and the current position of the motor rotor is determined according to the corrected third current and the corrected fourth current .
  • the first coordinate axis direction may be the ⁇ axis direction
  • the second coordinate axis direction may be the ⁇ coordinate axis direction.
  • correcting the third current and the fourth current according to the current deviation angle includes:
  • the three-phase drive current is converted into the drive currents i ⁇ and i ⁇ of the ⁇ and ⁇ axes by the Clark converter, and the drive currents i ⁇ and i ⁇ are filtered out by the first band-pass filter.
  • the current corrector After the low-frequency current (the current lower than the frequency f) is converted into the third current i ⁇ h of the ⁇ axis with the frequency f and the fourth current i ⁇ h of the ⁇ with the frequency f, the current corrector obtains the third current i ⁇ h And the fourth current i ⁇ h , and then the current corrector corrects the third current i ⁇ h and the fourth current i ⁇ h according to formula (22), and then combines the corrected third current i ⁇ hm and the corrected fourth current i ⁇ hm It is sent to the first rotor position estimator, and the first rotor position estimator outputs the estimated rotor angle according to the corrected third current and the fourth current.
  • the working principle of the first rotor position estimator is shown in FIG. 5. Specifically, calculate the cosine value of twice the estimated degree value respectively And sine Then calculate i ⁇ hm and Calculate the product of i ⁇ hm and Product of; calculation and After the difference value is low-pass filtered, it is input to the PI controller, and the PI controller performs PI adjustment and the output signal is integrated and adjusted to obtain the estimated value of the rotor angle
  • the rotor angle error is compensated, so that the first rotor position estimator outputs a more accurate rotor angle estimate, so as to determine a more accurate rotor based on the rotor angle estimate. Location.
  • determining the current position of the motor rotor according to the current deviation angle may include: obtaining a third current in the direction of the first coordinate axis with a frequency of f in the driving current, and a frequency of f The fourth current in the direction of the second coordinate axis; the current estimated angle of the motor rotor is determined according to the third current and the fourth current; and the current estimated angle of the motor rotor is corrected by the deviation angle to determine the current position of the motor rotor Location.
  • the first coordinate axis direction may be the ⁇ axis direction
  • the second coordinate axis direction may be the ⁇ coordinate axis direction.
  • using the deviation angle to correct the current estimated angle of the motor rotor to determine the current position of the motor rotor includes:
  • the three-phase drive current is converted into ⁇ and ⁇ axis drive currents i ⁇ and i ⁇ by Clark converter, and the drive currents i ⁇ and i ⁇ are filtered out by the second band pass filter.
  • the low-frequency current the current lower than the frequency f
  • it is converted into the third current i ⁇ h of the ⁇ axis with the frequency f and the fourth current i ⁇ h of the ⁇ with the frequency f.
  • the second rotor position estimator obtains the third The current i ⁇ h and the fourth current i ⁇ h , and the current estimated angle of the motor rotor is determined according to the third current i ⁇ h and the fourth current i ⁇ h And the estimated angle Send to the estimated angle corrector, and then the estimated angle corrector uses the current deviation angle ⁇ m to estimate the current angle of the motor rotor according to formula (23) Make corrections to output the corrected angle, and then determine the current position of the motor rotor based on the corrected angle.
  • the rotor angle error is compensated to obtain a more accurate rotor angle estimated value, so as to determine a more accurate rotor position according to the rotor angle estimated value.
  • the target motor is closed-loop controlled by the drive current. Specifically, the actual three-phase current of the drive current is detected and obtained, and the three-phase current is converted into The ⁇ -axis current component i ⁇ and the ⁇ -axis current component i ⁇ , the ⁇ -axis current component i ⁇ and the ⁇ -axis current component i ⁇ are converted into the direct-axis current component i d and the quadrature-axis current component i q after Parker transformation, and the direct current component is obtained.
  • Axis current component i d and quadrature axis current component i q , and low-pass filtering is performed on the direct axis current component i d and quadrature axis current component i q through a low-pass filter to filter out the high frequency current (ie Disturbance signal) to obtain the direct-axis current feedback and quadrature-axis current feedback, and feedback the direct-axis current feedback to the direct-axis current input terminal, and the quadrature-axis current feedback to the quadrature-axis current input terminal, so as to realize the motor Closed-loop control. Therefore, it is avoided that the disturbance signal is doped into the direct-axis current feedback amount and the quadrature-axis current feedback amount to affect the normal operation of the motor.
  • the method for detecting the position of the motor rotor of the embodiment of the present application determines the deviation angle of the motor rotor according to the injected interference signal and the motor drive current feedback value, and then determines the position of the motor rotor through the deviation angle, which can improve the rotor The accuracy of location detection.
  • Fig. 6 is a structural block diagram of a motor rotor position detection device according to an embodiment of the present application.
  • the motor rotor position detection device 100 includes: a first acquisition module 10, a second acquisition module 20, a first determination module 30, a second determination module 40, and a third determination module 50.
  • the first obtaining module 10 is used to obtain the positive sequence component of the current with frequency f and the negative sequence component of the current with frequency f1 in the drive current after the first interference signal with frequency f is injected into the motor drive loop, where f1 is less than f;
  • the second obtaining module 20 is used to obtain the current driving current feedback value;
  • the first determining module 30 is used to determine the current reference coefficient value according to the current driving current feedback value;
  • the second determining module 40 is used to determine the current reference coefficient value according to the current driving current feedback value;
  • the current reference coefficient value, the amplitude of the positive sequence component of the current with frequency f, and the amplitude of the negative sequence component of the current with frequency f1 are used to determine the current deviation angle;
  • the third determining module 50 is configured to determine the current deviation angle according to the current deviation The angle determines the current position of the motor rotor.
  • the positive sequence component of the current with frequency f and the negative sequence component of the current with frequency f1 in the drive current are acquired; then, The current driving current feedback value is acquired through the second acquiring module 20 and sent to the first determining module 30; so that the first determining module 30 determines the current reference coefficient value according to the current driving current feedback value; finally, through the second The determining module 40 determines the current deviation angle according to the current reference coefficient value, the amplitude of the positive sequence component of the current with frequency f, and the amplitude of the negative sequence component of the current with frequency f1; and the third determining module 50 determines the current deviation angle according to the current deviation angle. To determine the current position of the motor rotor.
  • the first obtaining module 10 may be further used to: obtain the motor The current rotation frequency f2 of the rotor; according to the current rotation frequency f2 of the motor rotor and the frequency f of the first interference signal, the frequency f1 of the negative sequence component of the current is determined.
  • the first acquisition module 10 may include: a first current regulator 11, a second current regulator 12, a coordinate converter 13, and a space voltage vector modulation unit 14. Wherein, both the first current regulator and the second current regulator may be PI (Proportional Integral) regulators, and the coordinate converter 13 is a Parker inverse converter.
  • the second acquisition module 20 may include: a Clark converter 21 and a Parker converter 22.
  • the first determining module 30 may include a memory 31.
  • the second determining module 40 may include: a first low-pass filter 41-1, a first band-pass filter 42-1, and a first amplitude extractor 43 -1 and the first deviation angle calculator 44-1; the third determination module 50 may include a first rotor position estimator 51-1 and a current corrector 52.
  • the second determining module 40 may include: a second low-pass filter 41-2, a second band-pass filter 42-2, and a second amplitude extractor 43-2.
  • the second deviation angle calculator 44-2; the third determination module 50 may include a second rotor position estimator 51-2 and an estimated angle correction value 53.
  • the motor rotor position detection device of the embodiment of the present application determines the deviation angle of the motor rotor according to the injected interference signal and the motor drive current feedback value, and then determines the position of the motor rotor through the deviation angle, which can improve the accuracy of rotor position detection .
  • FIG. 11 is a structural block diagram of the motor controller according to an embodiment of the application.
  • the motor controller 1000 includes the motor rotor position detection device 100 of the above-mentioned embodiment of the present application.
  • the motor controller through the motor rotor position detection device of the embodiment of the present application, can determine the deviation angle of the motor rotor according to the injected interference signal and the motor drive current feedback value, and then determine the position of the motor rotor through the deviation angle, so as to Improve the accuracy of rotor position detection.
  • the present application also proposes a readable storage medium on which a motor rotor position detection program is stored.
  • the program is executed by a processor, the motor rotor position detection method of the above-mentioned embodiment of the present application is implemented.
  • the readable storage medium when the motor rotor position detection program stored on it is executed by the processor, can determine the deviation angle of the motor rotor according to the injected interference signal and the motor drive current feedback value, and then determine the motor by the deviation angle The position of the rotor can thereby improve the accuracy of rotor position detection.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium can even be paper or other suitable media on which the program can be printed, because it can be done, for example, by optically scanning the paper or other media, and then editing, interpreting, or other suitable media if necessary.
  • the program is processed in a way to obtain the program electronically and then stored in the computer memory.
  • each part of this application can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic gate circuits with logic functions for data signals Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate array (PGA), field programmable gate array (FPGA), etc.
  • the functional units in the various embodiments of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本申请提出一种电机转子位置检测方法、装置以及电机控制器,其中,方法包括:在电机驱动回路注入频率为f的第一干扰信号后,获取驱动电流中频率为f的电流正序分量及频率为f的电流负序分量,其中,f1小于f;获取当前的驱动电流反馈值;根据当前的驱动电流反馈值,确定当前的参考系数值;根据当前的参考系数值、频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度;以及,根据当前的偏差角度,确定电机转子当前所在的位置。该方法根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,能够提高转子位置检测的准确性。

Description

电机转子位置检测方法、装置以及电机控制器
相关申请的交叉引用
本申请基于申请号为202010421964.9,申请日为2020年05月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电机技术领域,尤其涉及一种电机转子位置检测方法、装置以及电机控制器。
背景技术
永磁同步电机或同步磁阻电机具有功率密度大、效率高的优点,在家用电器和电动汽车中得到了广泛应用。为了实现电机在无位置传感器条件下的稳定运行,基于电机凸极性的转子位置检测方法得到了广泛应用。目前,在进行转子位置的检测时,通常由于电机中直轴和交轴的交互耦合作用,会导致检测的转子位置与实际值发生偏差,检测准确性较低。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种电机转子位置检测方法,以根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,能够提高转子位置检测的准确性。
本申请的第二个目的在于提出一种电机转子位置检测装置。
本申请的第三个目的在于提出一种电机控制器。
本申请的第四个目的在于提出一种可读存储介质。
为达上述目的,本申请第一方面实施例提出了一种电机转子位置检测方法,包括:在电机驱动回路注入频率为f的第一干扰信号后,获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量,其中,f1小于f;获取当前的驱动电流反馈值;根据所述当前的驱动电流反馈值,确定当前的参考系数值;根据所述当前的参考系数值、所述频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度;以及,根据所述当前的偏差角度,确定所述电机转子当前所在的位置。
根据本申请实施例的电机电感检测方法,首先,在电机驱动回路注入频率为f的第一干扰信号后,获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量,然后, 获取当前的驱动电流反馈值;根据当前的驱动电流反馈值,确定当前的参考系数值;根据当前的参考系数值、频率为f的电流正序分量及频率为f1的电流负序分量,确定当前的偏差角度;最后,根据当前的偏差角度,确定电机转子当前所在的位置。由此,该方法根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,能够提高转子位置检测的准确性。
为达上述目的,本申请第二方面实施例提出了一种电机转子位置检测装置,包括:第一获取模块,用于在电机驱动回路注入频率为f的第一干扰信号后,获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量,其中,f1小于f;第二获取模块,用于获取当前的驱动电流反馈值;第一确定模块,用于根据所述当前的驱动电流反馈值,确定当前的参考系数值;第二确定模块,用于根据所述当前的参考系数值、所述频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度;第三确定模块,用于根据所述当前的偏差角度,确定所述电机转子当前所在的位置。
根据本申请实施例的电机转子位置检测装置,通过第一获取模块在电机驱动回路注入频率为f的第一干扰信号后,获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量;通过第二获取模块获取当前的驱动电流反馈值;通过第一确定模块根据当前的驱动电流反馈值,确定当前的参考系数值;通过第二确定模块根据当前的参考系数值、频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度;通过第三确定模块根据当前的偏差角度,确定电机转子当前所在的位置。由此,该装置根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,能够提高转子位置检测的准确性。
另外,根据本申请实施例的电机转子位置检测装置还可以具有如下附加技术特征:
根据本申请的一个实施例,在所述第一获取模块获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量之前,所述第一获取模块,还用于:获取所述电机转子当前的转动频率f2;根据所述电机转子当前的转动频率f2及所述第一干扰信号的频率f,确定所述电流负序分量的频率f1。
为达上述目的,本申请第三方面实施例提出了一种电机控制器,包括本申请第二方面实施例提出的电机转子位置检测装置。
本申请实施例的电机控制器,通过本申请实施例的电机转子位置检测装置,能够根据 注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,从而能够提高转子位置检测的准确性。
为达上述目的,本申请第四方面实施例提出了一种可读存储介质,其上存储有电机转子位置检测程序,当该程序被处理器执行时,实现本申请第一方面实施例提出的电机转子位置检测方法。
本申请实施例的可读存储介质,在其上存储的电机转子位置检测程序被处理器执行时,能够根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,从而能够提高转子位置检测的准确性。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的电机转子位置检测方法的流程图;
图2是根据本申请一个实施例的注入第一干扰信号的示意图;
图3是根据本申请一个实施例的计算电机的多个参考系数值的流程图;
图4是根据本申请一个实施例的注入第二干扰信号和第三干扰信号的示意图;
图5是根据本申请一个示例的对高频电流进行修正的原理图;
图6是根据本申请实施例的电机转子位置检测装置的结构框图;
图7是根据本申请一个实施例的第一获取模块的结构框图;
图8是根据本申请一个实施例的第二获取模块的结构框图;
图9是根据本申请一个示例的电机转子位置检测装置的结构示意图;
图10是根据本申请另一个示例的电机转子位置检测装置的结构示意图;
图11是根据本申请实施例的电机控制器的结构框图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的电机电感检测方法、装置以及电机控制器。
需要说明的是,在该实施例中,可定义两相静止坐标系α-β,在电机转子上建立一个两 相旋转坐标系d-q,进而该坐标系d-q与转子同步转动,d轴(直轴)即为转子磁场的方向、q轴(交轴)即为垂直于转子磁场的方向。该实施例中的电机转子位置检测方法、装置以及电机控制器可适用于永磁同步电机和同步磁阻电机,其中,电机具有凸极性,该凸极性体现在电机具有凸极的结构以及电机运行时由于电流的施加而导致电感具有凸极性。
图1是根据本申请实施例的电机转子位置检测方法的流程图。
如图1所示,该方法包括以下步骤:
S101,在电机驱动回路注入频率为f的第一干扰信号后,获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量。其中,f1小于f,f可为高频(1000Hz~2000Hz),第一干扰信号可以是正交的高频旋转电压信号。
具体地,如图2所示,将频率为f的第一干扰信号注入目标电机的驱动回路,即将高频旋转电压u αh *和u βh *分别叠加到电压u α *和u β *上。之后,该高频旋转电压u αh *和u βh *依次经过空间电压矢量调制后转换为用于驱动电机的PWM(Pulse Width Modulation,脉冲宽度调制)信号,以驱动电机运行,当驱动电流达到稳定时,可以通过对采样的电机的三相驱动电流进行解析处理,以确定其中频率为f的电流正序分量幅值I p和频率为f1的电流负序分量幅值I n
通常情况下,在加入干扰信号后的几个周期内,电机的驱动电流就可以达到稳定,比如为3个扰动信号周期长、或者为5个扰动信号周期长、或者为6个扰动信号周期长等等,本申请对此不做限定。
S102,获取当前的驱动电流反馈值。
具体地,参照图2,电机的三相驱动电流反馈值经克拉克转换器转换为α、β轴的驱动电流反馈值i α、i β,该驱动电流反馈值i α、i β经派克转换器转换为d、q轴的驱动电流反馈值i d、i q
S103,根据当前的驱动电流反馈值,确定当前的参考系数值。
具体地,存储器中可以存储有记录电机驱动电流i d、i q与参考系数值λ的对应关系即(λ,i d,i q)的三维表格,因此在步骤S102中已经获取到电流i d、i q的情况下,可以通过查询存储器中的三维表格得到对应的参考系数值λ。
S104,根据当前的参考系数值、频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度。
需要说明的是,当电机中存在交互耦合效应时,通过转子位置估计器得到的当前转子角度
Figure PCTCN2020112807-appb-000001
与转子的实际角度θ r会存在误差Δθ,该角度误差随着电机的实际工作点发生变化,当此误差较大时,会导致电机的控制性能下降,甚至导致系统不稳定。该实施例中根据参 考系数值λ、频率为f的电流正序分量幅值I p和频率为f1的电流负序分量幅值I n,计算电机转子的当前的偏差角度θ m,该偏差角度θ m可以消除转子角度误差Δθ。
S105,根据当前的偏差角度,确定电机转子当前所在的位置。
具体地,可以通过当前的角度偏差对转子位置估计器输出的转子角度进行补偿,以消除角度误差;或者,通过当前的角度偏差对进入转子位置估计器的高频电流进行修正,以使转子位置估计器输出较为准确的角度值。
可以理解的是,分别在步骤S101中获得频率为f的电流正序分量幅值I p和频率为f1的电流负序分量幅值I n后、在步骤S102中获得驱动电流反馈值i d、i q后、在步骤S103中获得当前的参考系数值λ后、以及步骤S104中获取当前的偏差角度θ m后,可将正序分量幅值I p和电流负序分量幅值I n、驱动电流反馈值i d、i q、当前的参考系数值λ、以及当前的偏差角度θ m存储于存储器中,以在实施步骤S105时进行调用。
本申请实施例的电机转子位置检测方法,相较于相关技术中的转子位置检测方案,能够根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度消除转子位置估计器得到的转子角度和实际转子角度之间的误差,从而使得转子位置估计器得到的电机转子的准确位置,避免交互耦合效应导致的转子位置的检测准确性较低现象。
由此,该方法根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,能够提高转子位置检测的准确性。
在本申请的一个实施例中,在上述步骤S101中,在获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量之前,还包括:获取电机转子当前的转动频率f2;根据电机转子当前的转动频率f2及第一干扰信号的频率f,确定电流负序分量的频率f1。
具体地,在电机驱动回路注入频率为f的第一干扰信号之后,该第一干扰信号经过一定变换后,转换为电机的驱动电流中的频率为f的电流正序分量及频率为f1的电流负序分量。其中,电流负序分量的频率f1因受到电机转子当前的频率的影响,并不等于频率f,因此,在获取电流负序分量之前,首先获取电机转子当前的转动频率f2,然后根据电机转子当前的转动频率f2及第一干扰信号的频率f,确定电流负序分量的频率f1。具体而言,根据公式:
f1=(f-2*f2)         (1)
确定电流负序分量的频率f1,其中,f2为电机转子当前的转动频率。
需要说明的是,一般情况下,电机转子当前的转动频率f2远小于第一干扰信号的频率f,因此电流负序分量的频率f1约等于频率f,此时,电流正序分量和电流负序分量的获取,可以不依赖于电机转子当前的转动频率。
在本申请的一个实施例中,在根据当前的驱动电流反馈值,确定当前的参考系数值之前,即在实施上述步骤S103之前,如图3所示,还包括以下步骤:
S301,在电机的直轴电流及交轴电流均达到设定值时,将电机的直轴电流调节器中注入第二干扰信号,以获取第二干扰信号对应的第一电流幅值。其中,直轴电流调节器可以为PI(Proportional Integral,比例积分)调节器。第二干扰信号可以是高频正弦电压信号。
具体地,在获取当前的驱动电流反馈值i d、i q之后,如图4所示,可分别给直轴和交轴施加设定的直轴电流i d *及交轴电流i q *。之后,可将直轴电流i d *进行PI调节以输出直轴电压u d *、将交轴电流i q *进行PI调节以输出交轴电压u q *,将该直轴电压u d *和交轴电压u q *进行派克逆变换得到α、β轴分别对应的电压u α *、u β *,根据电压u α *和u β *采用空间矢量调制技术对目标电机进行控制。
在电机的直轴电流及交轴电流均达到设定值i d *及i q *时,参照图4,将第二干扰信号注入直轴电流调节器的输出端,即将第二高频正弦电压u dh *叠加到直轴电压u d *上。之后,该高频正弦电压u dh *经过派克逆变换、空间电压矢量调制后,转换为目标电机的驱动电压,以驱动目标电机运行,可以通过对采样的电机的驱动电流进行解析处理,以确定其中的高频电流信号幅值,即第一电流幅值。
S302,将电机的交轴电流调节器中注入第三干扰信号,以获取第三干扰信号对应的第二电流幅值。其中,交轴电流调节器也可为PI调节器。第三干扰信号也为高频正弦电压信号,且第二干扰信号和第三干扰平信号的幅值和频率相同。
具体地,参照图4,将第三干扰信号注入交轴电流调节器的输出端,即将第三高频正弦电压u qh *叠加到直轴电压u q *上。之后,该高频正弦电压u qh *经过派克逆变换、空间电压矢量调制后,转换为目标电机的驱动电压,以驱动目标电机运行,可以通过对采样的电机的驱动电流进行解析处理,以确定其中的高频电流信号幅值,即第一电流幅值。其中,在注入第三扰动信号之前,为了避免第二扰动信号对第三扰动信号的影响,可将第二扰动信号置零。
S303,根据第一电流幅值及第二电流幅值,确定与设定的直轴电流及交轴电流对应的参考系数值。
进一步地,根据第一电流幅值及第二电流幅值,确定与设定的直轴电流及交轴电流对应的参考系数值,包括:
根据公式:
Figure PCTCN2020112807-appb-000002
确定与设定的直轴电流及交轴电流与参考系数值的对应关系,其中,λ为参考系数值,I 1为第一电流幅值,I 2为第二电流幅值。
具体地,可根据幅值和频率相同且已知的第二高频正弦电压u dh*和第三高频正弦电压u qh*确定公式(6),其推导过程如下:
注入直轴的第二高频正弦电压u dh*为:
Figure PCTCN2020112807-appb-000003
根据公式:
Figure PCTCN2020112807-appb-000004
计算第一电流幅值I 1,公式(3)中的L dh和L qh分别为直轴和交轴的增量电感、L dqn为直轴和交轴的交互耦合效应的增量电感、
Figure PCTCN2020112807-appb-000005
为PWM生成和硬件导致的延时所对应的相位。
注入交轴的第三高频正弦电压u qh*为:
Figure PCTCN2020112807-appb-000006
根据公式:
Figure PCTCN2020112807-appb-000007
计算第二电流幅值I 2
根据公式(3)和公式(5)可以求得直轴的增量电感L dh和交轴的增量电感L qh之间的相互关系式:
Figure PCTCN2020112807-appb-000008
此后,可多次改变电机的直轴电流及交轴电流的设定值i d *及i q *,然后重复上述步骤S301、S302以及S303。根据电机的工作特性可知,电机的不同工作点对应不同的直轴电流和交轴电流。因此,每重复一轮上述步骤S301、S302以及S303,即可根据公式(6)得到与上一轮不同的参考系数值λ,例如,i d1 *及i q1 *对应的λ 1、i d2 *及i q2 *对应的λ 2、i d3 *及i q3 *对应的λ 3等等,重复多次后即可得到多组(λ,i d *,i q *)对应关系,并将多组对应关系存储于存储器中,以待后续调用。
进一步地,根据当前的驱动电流反馈值,确定当前的参考系数值,即上述步骤S103,包括:根据当前的驱动电流反馈值,确定当前的直轴电流设定值及交轴电流设定值;以及,根据设定的直轴电流及交轴电流与参考系数值的对应关系,确定与当前的直轴电流设定值及交轴电流设定值对应的当前的参考系数值。
具体地,根据当前的驱动电流反馈值i d、i q确定当前的直轴电流及交轴电流设定值i d *、i q *,根据存储器中的直轴电流及交轴电流设定值i d *、i q *与参考系数值λ的对应关系,确定与当前的直轴电流及交轴电流设定值i d *、i q *对应的当前的参考系数值λ。
在一个示例中,在上述步骤S301中,在电机的直轴电流及交轴电流均达到设定值之前,还可包括:将电机转子固定。
具体地,由于本申请实施例中电机的干扰信号的注入以及后续处理过程需在其静止的情况下进行,因此需要在目标电机产生驱动转矩(即i d *≠0、i q *≠0,且i d *≠i q *)前,就将电机的转轴通过机械装置固定在任意的角度,也就是说,在给直轴电流及交轴电流分别施加设定值之前,需将电机转子固定,使得电机不会因为工作点的改变而发生转动,从而有利于干扰信号的注入以及后续处理。
在本申请的一个示例中,根据当前的参考系数值、频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度,即上述步骤S104,包括:
根据公式:
Figure PCTCN2020112807-appb-000009
确定当前的偏差角度。其中,θ m为当前的偏差角度,λ为当前的参考系数值,I p是频率为f的电流正序分量幅值,I n是频率为f1的电流负序分量幅值。
具体地,可通过幅值和频率已知的高频正弦旋转电压u αh *和u βh *、参考系数值λ、频率为f的电流正序分量幅值I p和频率为f1的电流负序分量幅值I n确定当前的偏差角度θ m,其推导过程如下:
注入驱动回路的高频正弦旋转电压u αh *和u βh *分别为:
Figure PCTCN2020112807-appb-000010
Figure PCTCN2020112807-appb-000011
其所对应的高频电流i α和i β的公式为:
Figure PCTCN2020112807-appb-000012
根据公式:
Figure PCTCN2020112807-appb-000013
计算正序电流分量幅值I p。其中,
Figure PCTCN2020112807-appb-000014
根据公式:
Figure PCTCN2020112807-appb-000015
计算负序电流分量幅值I n。其中,
Figure PCTCN2020112807-appb-000016
其中,当前的偏差角度θ m与电机的增量电感有关,其公式为:
Figure PCTCN2020112807-appb-000017
当电机中存在交互耦合效应,且没有对转子位置估计器的输入或者输出做任何补偿时,通过转子位置估计器得到的当前转子角度
Figure PCTCN2020112807-appb-000018
与转子的实际角度θ r会存在误差Δθ,该误差公式为:
Figure PCTCN2020112807-appb-000019
下面根据参考系数值λ、频率为f的电流正序分量幅值I p和频率为f1的电流负序分量幅值I n,计算电机转子的当前的偏差角度θ m
利用正序分量幅值I p的平方值减去负序分量幅值I n的平方值可以得到公式:
Figure PCTCN2020112807-appb-000020
将公式(14)代入公式(10)可得到直轴电感L dh和交轴电感L qh之间的和的公式,并定义为电感基准值L base,从而可得到公式:
Figure PCTCN2020112807-appb-000021
将公式(11)中的
Figure PCTCN2020112807-appb-000022
用公式(14)替换,得到直轴电感L dh和交轴电感L qh之间的积的公式:
Figure PCTCN2020112807-appb-000023
定义直轴的增量电感L dh、交轴的增量电感L qh、交互耦合效应的增量电感L dqh的归一化电感值分别为:
Figure PCTCN2020112807-appb-000024
将公式(15)和公式(16)的左侧用公式(17)中的归一化电感值表示可得到公式:
Figure PCTCN2020112807-appb-000025
求解公式(18)中的直轴电感L dh、交轴的增量电感L qh的归一化电感,得到公式:
Figure PCTCN2020112807-appb-000026
将公式(19)中的
Figure PCTCN2020112807-appb-000027
代入公式(14),可以得到交互耦合增量电感的归一化值:
Figure PCTCN2020112807-appb-000028
其中,公式(20)中的交互耦合增量电感L dqh的符号与设定的交轴电流i q *的符号相反。在设定的交轴电流i q *为正数时,交互耦合增量电感L dqh为正数;在设定的交轴电流i q *为负数时,交互耦合增量电感L dqh为负数。
根据上述公式(19)、(20)、(12)以及参考系数值λ,计算得到公式:
Figure PCTCN2020112807-appb-000029
其中,偏差角度θ m的符号与当前的交轴电流的符号相反,即:在当前的交轴电流为正数时,当前的偏差角度θ m为正数;在当前的交轴电流为负数时,当前的偏差角度θ m为负数。
由于注入的高频正弦旋转电压u αh *和u βh *是已知的,因此,电流正序分量幅值I p和电流负序分量幅值I n是已知的,且在步骤S103中确定出了参考系数值λ,因此,上述公式(21)的右侧参数均是已知的,由此能够计算出当前的偏差角度θ m
由此,根据注入驱动回路的高频正弦旋转电压信号和参考系数值计算出转子位置估计器的偏差角度,以供后续补偿因交互耦合效应差生的角度误差。
需要说明的是,本申请实施例中,计算出来的与增量电感有关的偏差角度θ m可以用来对转子位置估计器进行补偿来消除其输出的转子角度中的角度误差Δθ。在本申请实施例中,可以通过两种补偿方式实现补偿,从而实现上述步骤S105,下面通过两个示例进行描述:
在一个示例中,根据当前的偏差角度,确定电机转子当前所在的位置,即上述步骤S105,可包括:获取驱动电流中频率为f的第一坐标轴方向的第三电流、及频率为f的第二坐标轴方向的第四电流;根据当前偏差角度,对第三电流及第四电流进行修正;以及,根据修正后的第三电流及修正后的第四电流,确定电机转子当前所在的位置。其中,第一坐标轴方向可为α轴方向,第二坐标轴方向可为β坐标轴方向。
进一步地,根据当前偏差角度,对第三电流及第四电流进行修正,包括:
根据公式:
i αhm+ji βhm=(i αh+ji βh)e-jθ m         (22)
对第三电流及第四电流进行修正,其中,i αhm为修正后的第三电流,i βhm为修正后的第四电流,i αh为第三电流,i βh为第四电流,θ m为当前的偏差角度。其中,当前偏差 角度θ m即为步骤S104中计算出的。
具体地,如图9所示,三相驱动电流经克拉克转换器转换为α、β轴的驱动电流i α、i β,该驱动电流i α、i β经第一带通滤波器滤除其中的低频电流(低于频率f的电流)后,转化为频率为f的α轴的第三电流i αh、及频率为f的β的第四电流i βh,电流修正器获取第三电流i αh和第四电流i βh,进而电流修正器根据公式(22)对第三电流i αh和第四电流i βh进行修正,然后将修正后的第三电流i αhm和修正后的第四电流i βhm发送至第一转子位置估计器,第一转子位置估计器根据修正后的第三电流和第四电流输出估计的转子角度。
其中,第一转子位置估计器的工作原理如图5所示。具体而言,分别计算出两倍估计度值的余弦值
Figure PCTCN2020112807-appb-000030
和正弦值
Figure PCTCN2020112807-appb-000031
然后计算i αhm
Figure PCTCN2020112807-appb-000032
的乘积、计算i βhm
Figure PCTCN2020112807-appb-000033
的乘积;计算
Figure PCTCN2020112807-appb-000034
Figure PCTCN2020112807-appb-000035
的差值,并将该差值进行低通滤波处理后,输入到PI控制器,PI控制器进行PI调节后输出的信号经积分调节后得到转子角度的估计值
Figure PCTCN2020112807-appb-000036
由此,通过对驱动电流中的高频电流进行修正,实现对转子角度误差的补偿,使得第一转子位置估计器输出较为准确的转子角度估计值,从而根据转子角度估计值确定较为准确的转子位置。
在另一个示例中,根据当前的偏差角度,确定电机转子当前所在的位置,即上述步骤S105,可包括:获取驱动电流中频率为f的第一坐标轴方向的第三电流、及频率为f的第二坐标轴方向的第四电流;根据第三电流及第四电流,确定电机转子当前的估计角度;以及,利用偏差角度,对电机转子当前的估计角度进行修正,确定电机转子当前所在的位置。其中,第一坐标轴方向可为α轴方向,第二坐标轴方向可为β坐标轴方向。
进一步地,利用偏差角度,对电机转子当前的估计角度进行修正,确定电机转子当前所在的位置,包括:
根据公式:
Figure PCTCN2020112807-appb-000037
确定电机转子当前所在的位置,其中,
Figure PCTCN2020112807-appb-000038
为修正后的角度,
Figure PCTCN2020112807-appb-000039
为当前的估计角度,θ m为偏差角度。其中,当前偏差角度θ m即为步骤S104中计算出的。
具体地,如图10所示,三相驱动电流经克拉克转换器转换为α、β轴的驱动电流i α、i β,该驱动电流i α、i β经第二带通滤波器滤除其中的低频电流(低于频率f的电流)后,转化为频率为f的α轴的第三电流i αh、及频率为f的β的第四电流i βh,第二转子位置估计器获取第三电流i αh和第四电流i βh,并根据第三电流i αh和第四电流i βh确定电机转子当前的估计角度
Figure PCTCN2020112807-appb-000040
并将该估计角度
Figure PCTCN2020112807-appb-000041
发送给估计角度修正器,进而估计角度修正器利用当前偏差角度θ m,根据公式(23)对电机转子当前的估计角度
Figure PCTCN2020112807-appb-000042
进行修正,以输出修正后的角度,进而可根据修正后的角度,确定电机转子当前所在的位置。
由此,通过对第二转子位置估计器输出的当前估计角度进行修正,实现对转子角度误差的补偿,得到较为准确的转子角度估计值,从而根据转子角度估计值确定较为准确的转子位置。
可以理解的是,在电机的运行过程中,通过驱动电流对目标电机进行闭环控制,具体而言,检测并获取实际的驱动电流的三相电流,并将该三相电流进行克拉克变换后转换为α轴电流分量i α和β轴电流分量i β,α轴电流分量i α和β轴电流分量i β经派克变换后转换为直轴电流分量i d和交轴电流分量i q,获取该直轴电流分量i d和交轴电流分量i q,并通过低通滤波器对该直轴电流分量i d和交轴电流分量i q进行低通滤波处理,以滤除其中的高频电流(即扰动信号)以获取直轴电流反馈量及交轴电流反馈量,并将直轴电流反馈量反馈至直轴电流输入端,将交轴电流反馈量反馈至交轴电流输入端,从而实现对电机的闭环控制。由此,避免扰动信号掺杂在直轴电流反馈量和交轴电流反馈量中而影响电机的正常运行。
综上所述,本申请实施例的电机转子位置检测方法,根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,能够提高转子位置检测的准确性。
为了实现上述实施例,本申请还提出一种电机转子位置检测装置。图6是根据本申请实施例的电机转子位置检测装置的结构框图。
如图6所示,电机转子位置检测装置100包括:第一获取模块10、第二获取模块20、第一确定模块30、第二确定模块40和第三确定模块50。
其中,第一获取模块10用于在电机驱动回路注入频率为f的第一干扰信号后,获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量,其中,f1小于f;第二获取模块20用于获取当前的驱动电流反馈值;第一确定模块30用于根据所述当前的驱动电流反馈值,确定当前的参考系数值;第二确定模块40用于根据所述当前的参考系数值、所述频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度;第三确定模块50用于根据所述当前的偏差角度,确定所述电机转子当前所在的位置。
具体地,首先,通过第一获取模块10在电机驱动回路注入频率为f的第一干扰信号后,获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量;然后,通过第二获取模块20获取当前的驱动电流反馈值,并发送给第一确定模块30;以使第一确定模块30根据当前的驱动电流反馈值,确定当前的参考系数值;最后,通过第二确定模块40根据当前的参考系数值、频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度;以及通过第三确定模块50根据当前的偏差角度,确定电机转子当前所在的位置。
在本申请的一个实施例中,在第一获取模块10获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量之前,第一获取模块10可还用于:获取电机转子当前的转动频率f2;根据电机转子当前的转动频率f2及第一干扰信号的频率f,确定电流负序分量的频率f1。
该实施例中,如图7所示,第一获取模块10可包括:第一电流调节器11、第二电流调节器12、坐标变换器13、空间电压矢量调制单元14。其中,第一电流调节器和第二电流调节器均可以为PI(Proportional Integral,比例积分)调节器,坐标变换器13为派克逆变换器。如图8所示,第二获取模块20可包括:克拉克转换器21和派克转换器22。如图9、图10所示,第一确定模块30可包括存储器31。
在该实施例的一个示例中,如图9所示,第二确定模块40可包括:第一低通滤波器41-1、第一带通滤波器42-1、第一幅值提取器43-1和第一偏差角度计算器44-1;第三确定模块50可包括第一转子位置估计器51-1和电流修正器52。
在该实施例的另一个示例中,如图10所示,第二确定模块40可包括:第二低通滤波器41-2、第二带通滤波器42-2、第二幅值提取器43-2、第二偏差角度计算器44-2;第三确 定模块50可包括第二转子位置估计器51-2和和估计角度修正值53。
需要说明的是,前述对电机转子位置检测方法实施例的解释说明也适用于该实施例的电机转子位置检测装置,此处不再赘述。
本申请实施例的电机转子位置检测装置,根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,能够提高转子位置检测的准确性。
本申请还提出了一种电机控制器,图11是根据本申请实施例的电机控制器的结构框图。
如图11所示,该电机控制器1000包括本申请上述实施例的电机转子位置检测装置100。
该电机控制器通过本申请实施例的电机转子位置检测装置,能够根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,从而能够提高转子位置检测的准确性。
进一步地,本申请还提出了一种可读存储介质,其上存储有电机转子位置检测程序,当该程序被处理器执行时,实现本申请上述实施例的电机转子位置检测方法。
该可读存储介质,在其上存储的电机转子位置检测程序被处理器执行时,能够根据注入的干扰信号和电机的驱动电流反馈值,确定电机的转子的偏差角度,进而通过偏差角度确定电机转子的位置,从而能够提高转子位置检测的准确性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种电机转子位置检测方法,其特征在于,包括:
    在电机驱动回路注入频率为f的第一干扰信号后,获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量,其中,f1小于f;
    获取当前的驱动电流反馈值;
    根据所述当前的驱动电流反馈值,确定当前的参考系数值;
    根据所述当前的参考系数值、所述频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度;以及,
    根据所述当前的偏差角度,确定所述电机转子当前所在的位置。
  2. 如权利要求1所述的方法,其特征在于,在所述获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量之前,还包括:
    获取所述电机转子当前的转动频率f2;
    根据所述电机转子当前的转动频率f2及所述第一干扰信号的频率f,确定所述电流负序分量的频率f1。
  3. 如权利要求1所述的方法,其特征在于,在所述根据所述当前的驱动电流反馈值,确定当前的参考系数值之前,还包括:
    在所述电机的直轴电流及交轴电流均达到设定值时,将所述电机的直轴电流调节器中注入第二干扰信号,以获取所述第二干扰信号对应的第一电流幅值;
    将所述电机的交轴电流调节器中注入第三干扰信号,以获取所述第三干扰信号对应的第二电流幅值;以及,
    根据所述第一电流幅值及第二电流幅值,确定与设定的直轴电流及交轴电流对应的参考系数值。
  4. 如权利要求3所述的方法,其特征在于,所述根据所述第一电流幅值及第二电流幅值,确定与所述设定的直轴电流及交轴电流对应的参考系数值,包括:
    根据
    Figure PCTCN2020112807-appb-100001
    确定与所述设定的直轴电流及交轴电流与参考系数值的对应关系,其中,λ为参考系数值,I 1为所述第一电流幅值,I 2为所述第二电流幅值。
  5. 如权利要求4所述的方法,其特征在于,所述根据所述当前的驱动电流反馈值,确定当前的参考系数值,包括:
    根据所述当前的驱动电流反馈值,确定当前的直轴电流设定值及交轴电流设定值;以及,
    根据所述设定的直轴电流及交轴电流与参考系数值的对应关系,确定与所述当前的直轴电流设定值及交轴电流设定值对应的当前的参考系数值。
  6. 如权利要求3所述的方法,其特征在于,在所述电机的直轴电流及交轴电流均达到设定值之前,还包括:
    将所述电机转子固定。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述根据所述当前的参考系数值、所述频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度,包括:
    根据
    Figure PCTCN2020112807-appb-100002
    确定当前的偏差角度,
    其中,θ m为当前的偏差角度,λ为当前的参考系数值,I p是频率为f的电流正序分量幅值,I n是频率为f1的电流负序分量幅值。
  8. 如权利要求7所述的方法,其特征在于,
    在当前的交轴电流为正数时,所述当前的偏差角度为正数;
    在当前的交轴电流为负数时,所述当前的偏差角度为负数。
  9. 如权利要求1-6任一所述的方法,其特征在于,根据所述当前的偏差角度,确定所述电机转子当前所在的位置,包括:
    获取驱动电流中频率为f的第一坐标轴方向的第三电流、及频率为f的第二坐标轴方向的第四电流;
    根据所述当前偏差角度,对所述第三电流及所述第四电流进行修正;以及,
    根据修正后的第三电流及修正后的第四电流,确定所述电机转子当前所在的位置。
  10. 如权利要求9所述的方法,其特征在于,所述根据所述当前偏差角度,对所述第三电流及所述第四电流进行修正,包括:
    根据i αhm+ji βhm=(i αh+ji βh)e-jθ m,对所述第三电流及所述第四电流进行修正,
    其中,i αhm为修正后的第三电流,i βhm为修正后的第四电流,i αh为第三电流,i βh为第四电流,θ m为当前的偏差角度。
  11. 如权利要求1-6任一所述的方法,其特征在于,根据所述当前的偏差角度,确定所述电机转子当前所在的位置,包括:
    获取驱动电流中频率为f的第一坐标轴方向的第三电流、及频率为f的第二坐标轴方向的第四电流;
    根据所述第三电流及第四电流,确定所述电机转子当前的估计角度;以及,
    利用所述偏差角度,对所述电机转子当前的估计角度进行修正,确定所述电机转子当前所在的位置。
  12. 如权利要求11所述的方法,其特征在于,所述利用所述偏差角度,对所述电机转子当前的估计角度进行修正,确定所述电机转子当前所在的位置,包括:
    根据
    Figure PCTCN2020112807-appb-100003
    确定所述电机转子当前所在的位置,其中,
    Figure PCTCN2020112807-appb-100004
    为修正后的角度,
    Figure PCTCN2020112807-appb-100005
    为当前的估计角度,θ m为偏差角度。
  13. 一种电机转子位置检测装置,其特征在于,包括:
    第一获取模块,用于在电机驱动回路注入频率为f的第一干扰信号后,获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量,其中,f1小于f;
    第二获取模块,用于获取当前的驱动电流反馈值;
    第一确定模块,用于根据所述当前的驱动电流反馈值,确定当前的参考系数值;
    第二确定模块,用于根据所述当前的参考系数值、所述频率为f的电流正序分量幅值及频率为f1的电流负序分量幅值,确定当前的偏差角度;
    第三确定模块,用于根据所述当前的偏差角度,确定所述电机转子当前所在的位置。
  14. 如权利要求13所述的装置,其特征在于,在所述第一获取模块获取驱动电流中频率为f的电流正序分量及频率为f1的电流负序分量之前,所述第一获取模块,还用于:
    获取所述电机转子当前的转动频率f2;
    根据所述电机转子当前的转动频率f2及所述第一干扰信号的频率f,确定所述电流负序分量的频率f1。
  15. 一种电机控制器,其特征在于,包括如权利要求13或14中任一所述的电机转子位置检测装置。
  16. 一种可读存储介质,其特征在于,其上存储有电机转子位置检测程序,当该程序被处理器执行时,实现如权利要求1-12中任一项所述的电机转子位置检测方法。
PCT/CN2020/112807 2020-05-18 2020-09-01 电机转子位置检测方法、装置以及电机控制器 WO2021232615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010421964.9A CN113691169A (zh) 2020-05-18 2020-05-18 电机转子位置检测方法、装置以及电机控制器
CN202010421964.9 2020-05-18

Publications (1)

Publication Number Publication Date
WO2021232615A1 true WO2021232615A1 (zh) 2021-11-25

Family

ID=78575722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112807 WO2021232615A1 (zh) 2020-05-18 2020-09-01 电机转子位置检测方法、装置以及电机控制器

Country Status (2)

Country Link
CN (1) CN113691169A (zh)
WO (1) WO2021232615A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117543905B (zh) * 2024-01-05 2024-03-22 深圳市英士达机电技术开发有限公司 一种集成型闭环步进电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163127A (en) * 1999-11-22 2000-12-19 General Motors Corporation System and method for controlling a position sensorless permanent magnet motor
CN1787357A (zh) * 2004-12-06 2006-06-14 Lg电子株式会社 控制电动机启动的方法和装置
CN104079217A (zh) * 2013-03-29 2014-10-01 株式会社安川电机 电机控制装置和磁极位置估计方法
CN108900127A (zh) * 2018-06-29 2018-11-27 南京理工大学 考虑交叉耦合效应的ipmsm低速段无位置传感器控制方法
CN109889117A (zh) * 2019-04-04 2019-06-14 合肥工业大学 基于旋转高频注入法的ipmsm位置观测方法、系统及驱动系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163127A (en) * 1999-11-22 2000-12-19 General Motors Corporation System and method for controlling a position sensorless permanent magnet motor
CN1787357A (zh) * 2004-12-06 2006-06-14 Lg电子株式会社 控制电动机启动的方法和装置
CN104079217A (zh) * 2013-03-29 2014-10-01 株式会社安川电机 电机控制装置和磁极位置估计方法
CN108900127A (zh) * 2018-06-29 2018-11-27 南京理工大学 考虑交叉耦合效应的ipmsm低速段无位置传感器控制方法
CN109889117A (zh) * 2019-04-04 2019-06-14 合肥工业大学 基于旋转高频注入法的ipmsm位置观测方法、系统及驱动系统

Also Published As

Publication number Publication date
CN113691169A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
JP4834129B2 (ja) 速度センサレスベクトル制御装置
WO2020155864A1 (zh) 电机的转子位置估算方法、装置和电机控制系统
KR101046802B1 (ko) 교류 회전기의 제어 장치 및 이 제어 장치를 사용한 교류회전기의 전기적 정수 측정 방법
CN110022106B (zh) 一种基于高频信号注入的永磁同步电机无位置传感器控制方法
CN103825525A (zh) 一种改进的无传感器永磁同步电机速度估测方法
WO2022237829A1 (zh) 一种电机的控制方法、控制系统和存储介质
CN104852662B (zh) 永磁同步电机静态电感参数的测量方法及系统
CN105245151B (zh) 表贴式永磁同步电机转子位置的检测方法
CN112271970B (zh) 永磁同步电机矢量控制方法、设备及存储介质
CN110445443A (zh) 内置式永磁同步电机无位置传感器的控制方法和控制系统
CN112910352A (zh) 电机旋变初始转子位置标定方法、装置、电子设备及介质
WO2021232615A1 (zh) 电机转子位置检测方法、装置以及电机控制器
TW201415786A (zh) 同步磁阻電動機的控制方法
CN113691181B (zh) 电机电感检测方法、装置以及电机控制器、存储介质
KR101941976B1 (ko) 전동기 제어장치
CN111224599B (zh) 永磁辅助同步磁阻电机的控制方法
CN107769655B (zh) 永磁同步电机转速估算方法、装置、计算设备及存储介质
CN114301361B (zh) 一种基于母线电流控制的无电解电容永磁同步电机驱动系统控制方法
CN116500437A (zh) 用于磁阻马达的电感检测方法及马达检测装置
CN111224600B (zh) 永磁同步电机速度控制方法、装置、计算机设备及介质
CN110311599B (zh) 永磁同步电机磁极位置的校正方法、系统、介质及设备
CN112636657A (zh) 一种表贴式永磁同步电机初始位置检测方法
JP2007082380A (ja) 同期モータ制御装置
Chang et al. Research on Sensorless Control Technology of Dual-winding PMSM
TWI760228B (zh) 馬達控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936645

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20936645

Country of ref document: EP

Kind code of ref document: A1